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Preface

This book is designed primarily to supplement standard texts in physical or applied
acoustic at the senior undergraduate level, based on the belief that numerous solved
problems constitute one of the best means for clarifying and fixing in mind basic
principles. Moreover, the statements of theory and principle are sufficiently complete
that, with proper handling of lecture-problem time, the book could be used as a text.
It should be of considerable value to the physics and engineering students who are
interested in the science of sound and its applications. The practicing engineers could
also make frequent references to the book for its numerical solutions of many realistic
problems in the area of sound and vibration.

Throughout the book emphasis is placed on fundamentals, with discussions and
problems extending into many phases and applications of acoustics. The subject mat-
ter is divided into chapters covering duly-recognized areas of theory and study. Each
chapter begins with pertinent definitions, principles and theorems which are fully
explained and reinforced by solved problems. Then a graded set of problems are solved
followed by supplementary problems. The solved problems amplify the theory, present
methods of analysis, provide practical examples, illustrate the numerical details, and
bring into sharp focus those fine points which enable the students to apply the basic
principles correctly and with confidence. Numerous proofs of theorems and derivations
of basic results are included among the solved problems. The supplementary problems
with answers serve as a complete review of the material of each chapter.

The essential requirements to use this book are knowledge of the fundamental prin-
ciples of mechanics, electricity, strength of materials, and undergraduate mathematics
including calculus and partial differential equations.

Topics covered are vibrations and waves, plane and spherical acoustic waves, trans-
mission of sound, loudspeaker and microphone, sound and hearing, architectural
acoustics, underwater acoustics and ultrasonics. To make the book more flexible, con-
siderably more material has been included here than can be covered in most semester
courses.

I wish to thank Mr. Daniel Schaum for his utmost patience and kind assistance.

W. W. SETO

San Jose State College
December, 1970



CONTENTS

Page

Chapter VIBRATIONS AND WAVES ... ... i, 1
Introduction. Waves. Simple harmonic motion. Vibrations. Energy of vibra-
tion. Vibration of strings. Longitudinal vibration of bars. Vibration of mem-
branes. Vibration of circular plates.

Chapter PLANE ACOUSTIC WAVES ... ... i, 37
Introduction. Wave equation. Wave elements. Speed of sound. Acoustic inten-
sity. Sound energy density. Specific acoustic impedance. Sound measurements.
Resonance of air columns. Doppler effect.

Chapter SPHERICAL ACOUSTIC WAVES . ... ... ... ... . .. 64
Introduction. Wave equation. Wave elements. Acoustic intensity and energy
density. Specific acoustic impedance. Radiation of sound. Source strength.
Radiation impedance.

Chapter TRANSMISSION OF SOUND ..., 88
Introduuction. Transmission through two media. Transmission through three
media. Reflection of sound. Refraction of sound. Diffraction of sound. Scat-
tering of sound. Interference. Filtration of sound. Absorption of sound.

&

Chapter LOUDSPEAKER AND MICROPHONE .......................... 114
Introduction. Electroacoustical analogy. Loudspeakers. Loudspeaker enclos-
ures. Horns. Microphones. Pressure-operated microphones. Pressure gradient
microphones. Sensitivity. Directivity. Directional efficiency. Resonance. Cali-
bration.

Chapter SOUND AND HEARING ........ . it 139
Introduction. Noise. Physiological and psychological effects of noise. I:.oudness.
Noise analysis. Pitch and timbre. Music. Speech. The human voice. The
human ear.

Chapter ARCHITECTURAL ACOUSTICS ... 162

Introduction. Reverberation. Noise insulation and reduction. Sound absorp-
tion. Sound distribution. Room acoustics.



CONTENTS

Page
Chapter & UNDERWATER ACOUSTICS ... .. i 169
Introduction. Underwater sound. Refraction. Reverberation. Ambient noise.
Underwater transducers. Cavitation.
Chapter 9 ULT R ASONICS e e 185
Introduction. Wave types. Ultrasonic transducers. Piezoelectric transducers.
Magnetostrictive transducers. Electromagnetic transducers. Absorption.
Applications.
INDE X 194



Chapter 1

Vibrations and Waves

NOMENCLATURE
a = speed of wave propagation, m/sec; acceleration, m/sec?
A = area, m®
Ao = amplitude of wave, m
A, B = constants

¢ damping coefficient, nt-sec/m
C,D = constants

d = diameter, m

f = frequency, cyc/sec

fv = beat frequency, cyc/sec

h = length, m

I, = Bessel hyperbolic function of the first kind of order zero
Jo = Bessel function of the first kind of order zero
k = spring constant, nt/m

K, = Bessel hyperbolic function of the second kind of order zero
m = mass, kg

Dn = natural frequencies, cyc/sec

P = period, sec

Py = beat period, sec

r = frequency ratio; radial distance, m

S = tension, nt

SHM = simple harmonic motion

t’ = thickness, m

w = work done, joules/cyc

Y = Young’'s modulus of elasticity, nt/m?2

© = circular frequency, rad/sec

w4 = damped circular frequency, rad/sec

0, = natural circular frequency, rad/sec

A = wavelength, m

4 = damping factor

6, = angles, rad

p = density, kg/m?

Py = mass/area, kg/m?

PL = mass/length, kg/m

m = Poisson’s ratio

o = stress, nt/m?

€ = strain
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INTRODUCTION

Acoustics is the physics of sound. Although the fundamental theory of acoustics treats
of vibrations and wave propagation, we can consider the subject as a multidisciplinary
science.

Physicists, for example, are investigating the properties of matter by using concepts
of wave propagation in material media. The acoustical engineer is interested in the fidelity
of reproduction of sound, the conversion of mechanical and electrical energy into acoustical
energy, and the design of acoustical transducers. The architect is more interested in the
absorption and isolation of sound in buildings, and in controlled reverberation and echo
prevention in auditoriums and music halls. The musician likes to know how to obtain
rhythmic combinations of tones through vibrations of strings, air columns, and membranes.

On the other hand, physiologists and psychologists are actively studying the character-
istics and actions of the human hearing mechanism and vocal cords, hearing phenomena
and reactions of people to sounds and music, and the psychoacoustic criteria for comfort of
noise level and pleasant listening conditions. Linguists are interested in the subjective
perception of complex noises and in the production of synthetic speech.

Ultrasonics, a topic in acoustics dealing with sound waves of frequencies above 15,000
cycles per second, has found increasing application in oceanography, medicine and industry.

Moreover, because of the general awareness and resentment of the increasing high level
of noise produced by airplanes, automobiles, heavy industry, and household appliances, and
its adverse effects such as ear damage and physical and psychological irritation, greater
demand is made for better understanding of sound, its causes, effects and control.

WAVES

Waves are caused by an influence or disturbance initiated at some point and transmitted
or propagated to another point in a predictable manner governed by the physical properties
of the elastic medium through which the disturbance is transmitted.

As a vibrating body moves forward from its static equilibrium position, it pushes the
air before it and compresses it. At the same time, a rarefaction occurs immediately behind
the body, and air rushes in to fill this empty space left behind. In this way the compression
of air is transferred to distant parts and air is set into a motion known as sound waves.
The result is sound. To the human ear, sound is the auditory sensation produced by the
disturbance of air. Because fluids and solids possess inertia and elasticity, they all transmit
sound waves.

Sound waves are longitudinal waves, i.e. the particles move in the direction of the wave
motion. Propagation of sound waves involves the transfer of energy through space. The
energy carried by sound waves is partly kinetic and partly potential; the former is due to
the motion of the particles of the medium, the latter is due to the elastic displacement of
the same particles. While sound waves spread out in all directions from the source, they
may be reflected and refracted, scattered and diffracted, interfered and absorbed. A
medium is required for the propagation of sound waves, the speed of which depends on the
density and temperature of the medium. (See Problems 1.1-1.7.)

SIMPLE HARMONIC MOTION

For a particle in rectilinear motion, if its acceleration e is always proportional to its
distance z from a fixed point on the path and is directed toward the fixed point, then the
particle is said to have simple harmonic motion (SHM), which is the simplest form of
periodic motion. In differential equation form, simple harmonic motion is represented by
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a = —o’x or dz/dt®+ oix = 0
with solution z(l) = Asinot + B cosot

or x(t) = VA*+Bsin (ot +06), x(t) = \/AZ+ B? cos (ot — é)

where A, B are arbitrary constants, o is the circular frequency in rad/sec, and 6, ¢ are phase
angles in radians.

Simple harmonic motion can be either a sine or cosine function of time, and can be con-
veniently represented by rotating vectors as shown in Fig. 1-1. The vector r of constant
magnitude is rotating counterclockwise at constant angular velocity »; its projections on
the r and y axes are respectively cosine and sine functions of time. (See Problem 1.8.)

by by

Yo

(a) Sine Function

>
.

)

0 /2 ‘ 3772 ' 57/2\'

(b) Cosine Function

Fig.1-1

A harmonic wave is one whose profile or shape (displacement configuration) 1s.smu501d_al,
i.e. a sine or cosine curve. A harmonic wave moving in the positive z direction with velocity
¢ is given by

{ A, sinm(z — ct)
u(zx, t)

Ao cos m(z — ct)
whereas a harmonic wave moving in the negative x direction with velocity ¢ is given by

N = Ao sinm(x + ct)
uz ) = Aq cos m(z + ct)

where A, is the amplitude of the wave. These are known as harmonic progressive waves.

A spherical wave diverging from the origin of the coordinate with a velocity ¢ is

represented by
u(r,t) = (Ao/r) f(ct—1)
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Similarly. a spherical harmonic progressive wave is designated by
u(r' t) — (AO/T)ei(mt—kr)

where { =\ —1 and k =1/r is the wave number, i.e. the number of cycles gf t}.1e wave
per unit length. The wave profile repeats itself after a distance A = 2x/m which is called

the rcarelength.

VIBRATIONS

Systems possessing mass and elasticity are capable of relative motion. If the motion
of such systems repeats itself after a given interval of time, such periodic motion is known
as vibration. To analyze vibration, the system is first idealized and simplified in terms of
mass m, spring k, and dashpot ¢, which represents the body, the elasticity, and the friction
of the system respectively. The equation of motion then expresses displacement of the
system as a tunction of time. The period P is the time in seconds required for a periodic
motion to repeat itself, and the frequency f is the number of cycles per unit time.

Free vibration, or transient, is the periodic motion observed as the system is displaced
from its static equilibrium position. The forces acting are the spring force, the friction
force. and the weight of the mass. Due to friction the vibration will decrease with time
and is given by

r (t) = e “nt(A sinw,t + B cosu,t)
where = damping factor,
e, = natural circular frequency in rad/sec,

"y = natural damped circular frequency in rad/sec,

A B arbitrary constants. (See Problems 1.9-1.10.)

]

When external forces, usually of the type F(f) = Fosinut or Fy coswt, are acting on the
srstem during its vibratory motion, the resultant motion is called forced vibration. At
torced vibration, the system will tend to vibrate at its own natural frequency as well as
to follow the frequency of the excitation force. In the presence of damping, that portion
of motion not sustained by the sinusoidal excitation force will gradually die out. As a
result. the system will vibrate at the frequency of the excitation force regardless of the
initial conditions or the natural frequency of the system. The resultant motion is called

steady state vibration or response of the system, and is represented by
z,(t) = Fo co8 (ult — 9)
V(k — mo?)? + (Co)?

where F, = magnitude of the excitation force,

k = spring constant,
m = mass of the system,
¢ = damping coeflicient,
. = frequency of the excitation force in rad/sec,
_ Cw _
4 = tan™! T = phase angle. (See Problem 1.11.)

Resonance occurs when the frequency of the excitation force is equal to the natural
frequency of the system. When this happens, the amplitude of vibration will increase
without bound and is governed only by the amount of damping present in the system.
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ENERGY OF VIBRATION

During free vibration with damping, energy is being continuously absorbed by the
damper and dissipated as heat. The system is therefore continuously losing energy, and
as a result the amplitude of vibration will diminish. For free vibration without damping,
the total energy is constant and is either equal to the maximum kinetic or potential energy;
the system continues to vibrate.

During forced vibration with damping, energy is being continuously supplied from
external sources to maintain steady state vibration. (See Problems 1.12-1.15.)

VIBRATION OF STRINGS

The string is a unique vibrator with continuous media characteristics and is also the
simplest example of a medium of wave transmission. It has its mass uniformly spread
along its length and is the simplest case of a system with an infinite number of frequencies.

The general differential equation of motion is given by

62y — a? az_y
at? ax?
where y = deflection of the string,
r = coordinate along the longitudinal axis of the string,

a = /S/p, = speed of wave propagation,
S = tension,
p, = mass per unit length of the string.

The general solution can be expressed as either standing waves or progressive waves as
given in the following two equations:

y(z,t) = z=li; <Ai sin%x + B; cos%x>(Ca sin pit + D cos pit)
where A;, B; are arbitrary constants to be evaluated by boundary conditions, Ci, D; are
arbitrary constants to be evaluated by initial conditions, and p; are the natural frequencies
of the system;
d y(x,t) = fi(x —at) + f2(x + at)

where f, and f; are arbitrary functions. The first part fl(cc—a_t) represents a wave of
arbitrary shape traveling in the positive x direction with ve19c1ty a, wheregs f2(x + at)
represents a similar wave traveling in the negative z direction with velocity a. (See

Problems 1.16-1.20.)

LONGITUDINAL VIBRATION OF BARS

A bar is a material body greatly elongated in one direction, made of homogeneous,
isotropic material, and free of transverse constraints throughout. If. a suddep blow is made
in the direction of its axis, the elongation characteristics of any right s?ect.lon of Fhe jbar
will vary periodically with time but with different amplitudes. This is longitudinal

vibration of bars.
The general differential equation of motion is given by
_a_zg — a? a2u
at? dx?
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where u = displacement of any cross section,
r = coordinate along the longitudinal axis,
a = \Y/p = speed of wave propagation,
Y = Young’'s modulus of elasticity,
p = density.

The general solution is the same as that for the vibration of strings. (See Problems

1.21-1.25.)

VIBRATION OF MEMBRANES

A membrane is a material body of finite extent and uniform thickness, held under
homogeneous tension in a rigid frame. It is completely flexible and its thickness is very
small compared to its two other dimensions. When excited, free vibration without damping
is assumed to take place perpendicular to the plane surface of the membrane.

A vibrating membrane is the most easily visualized physical example of wave motion
in effectively two-dimensional space. Compared to its one-dimensional counterpart, the

flexible string, the membrane has much more freedom of motion.

The general differential equation of motion is given by

Py Py _ 18
ox2 = oz¢ ~  a?ot?
where y = vertical deflection of the membrane,
a = V/S/p, = speed of wave propagation,
S = tension,
p, = mass per unit area of the membrane,

x,z = coordinates in the plane of the membrane.

The general solution can be expressed either as series solution or traveling-waves solu-

tion as follows:
y(z,z,t) = 5: (Ai sin{/(pi/a)? — k?x + B cos V/(pi/a)® — ki x)
X (Cisinkiz + D; cos kiz)(E; sin pit + F'; cos pit)
where A, B;, C: and D; are arbitrary constants to be evaluated by boundary conditions, E;
and F; are arbitrary constants to be evaluated by initial conditions, and p; are the natural
frequencies of the membrane;
y(z,2,t) = fi(mz+mnz—at) + fo(mzx + nz + at) where m? +n? = 1

This form of solution represents waves of the same arbitrary profile traveling in opposnte
directions along z and z axes with velocity a. (See Problems 1.26-1.31.)

VIBRATION OF CIRCULAR PLATES

The vibration of plates is the two-dimensional analog of the transverse vibration of
beams. In contrast to a membrane, the thickness of a plate is not small compared to other
dimensions. Moreover, stresses and strains resulting from the stiffness and bending of
the plate will complicate greatly the almost limitless freedom of motion of the plate.



The general differential equation of motion is given by

where

[y, 10T, 2o By
arr " ror Yer  et?

¥ = deflection of plate,

r = radial distance from center of plate,

p = density of plate,
Y = Young’s modulus of elasticity,
t’ = thickness,

« = Poisson’s ratio.

The general solution for free vibration of a circular plate is

y(r,t) = [AJo(kr) + Blo(kr)]ei“"

where A and B are arbitrary constants, J, is the Bessel function of the first kind of order
zero, and [, is the Bessel hyperbolic function. (See Problems 1.32-1.33.)

Solved Problems

WAVES

1.1.

Prove each wave addition:
(@) A coset + Bsinet = C sin (ot + 6)
(b) A coswt + Bsinwt = C cos (of — ¢)

where C = A%+ B? tand = A/B, and tan¢ = B/A.
(a) Csin(ot+9) = C (sinwtcosé + coswtsing) = (C coss) sinwt + (C sin 8) cos wt

Let (Ccos¢) =B, (Csing) =A. Then A2+ B2=C2 or C=VA2+ B2, and tane¢ = A/B.

s Acosut + Bsinot = Csin(ot+6) if C=VA2+B? and tane = A/B
(b) Ccos(ut—¢) = C (coswtcosg + sinwtsing) = (C cosg)coswt + (C sin ¢) sin wt
Let (Ccos¢) =A, (Csing) =B. Then A2+ B2=C2 or C= VAZ+ B2, and tan¢ = B/A.
fhus A coswt + Bsinwt = C cos(wt—¢) if C= \/m and tan¢ = B/A
The above wave additions can also be found c

by considering the rotating vectors shown in
Fig. 1-2.
Vectors A, B and C are rotating about point
0 with constant angular velocity o. A4, = A
OA coswt, BB, = OBsinwt, and CC, =
OC sin (ot + ¢) are the projections on the y
axis of vectors 4, B and C respectively.

(a) Since vector C is the resultant of vectors
A and B, we have

CC, = CCy+ C,C, = AA, + BB,

or
OC sin (wt+ ¢) = OA coswt + OB sin wt
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Calling OA = A, OB=B, 0C=C, then C = \/AZ+B?, tang¢ = A/B and the required
result follows.

B Simi
(d) Similarly, AA+A4A, = 4,4 + BB,
or Ccos(ut—¢) = Acoswt+ Bsinot where C =A%+ B? and tan# = B/A.

12. Two harmonic wave motions r; = sin (ot +60°) and z:=2sin«t are propagated in
the same direction. Find the resultant wave motion.

The resultant wave motion is given by

r = x, + x, = sin(ot+60° + 2sinot
= sinwtcos60° + coswt sin60° + 2 sin wt
2.5 sinwt + 0.866 coswt = V/2.52+4 0.8662 sin (wt+ 0)

= 2.66 sin (wt +19°)

since ¢ = tan—!(0.866/2.5) = 19°.

The resultant wave motion can also be found by considering the rotating vectors shown in
Fig. 1-3. All the three vectors A, B, C are rotating with constant angular velocity w. The projec-
tions of vectors A and B on the z axis represent the two wave motions x, and z, respectively. The
resultant wave motion is represented by the projection of the vector C on the z axis.

Y

8

‘
1
I
!
|

e Il L—
11 + 12 ___—.4 - (Uzt + 5)
Fig.1-3 Fig.1-4

13. Given two sine or cosine waves of different frequencies and amplitudes, determine
their sum.

The addition of two or more sine or cosine waves is most conveniently done by rotating vectors
as shown in Fig. 1-4. A and B are vectors of different lengths rotating about O with constant
angular velocities ; and , and initial phase angles ¢ and 6. The projections of vectors A and B
on the z axis are respectively

OD = Acos(uot+¢), OFE = Bcos(ust+6) (1)
where A and B are the magnitudes of the vectors. The corresponding projections on the y axis are

OF = Asin(ot+¢), OG = B sin(ust+9) @
Similarly, the projections of vector C on the z and y axes are

OH = OD+DH = OD+0OE, OI = OF+FI = OF +0G (3)

From equations (1) and (2),

Ceos{ut+o+y) A cos (ot +¢) + B cos(wyt + 8) (4)

Csin(ut+o+y) = Asin(ot+¢) + B sin(uwt+ 6) (5)
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1.4.

where the magnitude of vector C is C = VA2 + B2 + 2AB cos [(w; — wg)t + (¢ — ¢)] which varies
sinusoidally with time at a frequency equal to the difference between the given frequencies. The
. A sin (ot + ¢) + B sin (wyt + 6)

A cos (w it + ¢) + B cos (wgt + 6) °

phase angle of the vector Cis ¢y = tan—! % = tan—

Thus equation (4) represents the addition of two cosine waves whereas equation (5) represents
the addition of two sine waves.

Fig. 1-b shows the addition of two sine waves of different frequencies and amplitudes. The
resultant wave is periodic but not harmonic,.

"MANNNDNNANLANNN
BAVAAVAAVAAVALV AL VALV VAAVARY

(a) ¥; = A sin 5wt

"’}/\v/\j\/\/\/\/\/\ N

RAVARVARVARVERVERVAR VA

(b) wo = 1.24 sindut

S /\/\v/\\/\\/ J\/\v/\\ >

) y=wv1tv
Fig.1-5

Vi

Two wave motions A = cos (of +30°) and B = 1.5 sin (ot +30°) are propagated si-
multaneously from source O in directions perpendicular to each other. Determine
the resultant wave motion.

T

™

Fig. 16
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1.5.

1.6.
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The shape of the resultant wave motion can be found graphically by means of rotating vectors
in the ry plane as shown in Fig. 1-6 above. The lengths of the vectors represent the amplitudes
while their projections on the r and y axes represent the original shapes of the waves. The cir-
cumferences of both circles are marked for equal time intervals of the circular motion of the vectors.
Then all these points are projected across the ry plane to form the locus of points, which is an
ellipse.

Given two wave motions A cos 2.t and A sin 3.t in directions at right angle to each
other, tind the resultant motion.

Let £ = A cos2wt, y = A sin3ut as shown in Fig. 1-7. The resultant motion on the xy plane
can be found graphically by means of rotating vectors. The lengths of the vectors represent the
amplitudes of the wave motions while their projections on the z and y axes represent the original
shapes of the waves.

Fig.1-7

The circumferences of both circles are marked for equal time intervals in the ratio of 3:2 which
is the ratio of the circular speeds of the vectors. All these points, 1 to 24 on both circumferences,
are projected across the zy plane to form the locus of points which is known as the Lissajou figure.
Lissajou figures are useful when setting up a series of motions whose frequencies are harmonics
of the fundamental.

Two harmonic motions of the same amplitude but of slightly different frequencies
are imposed on a vibrating body. Analyze the motion of the body.

Let =z,(t) = Ajcoswt, z,(t) = Agcos(v+Aw)t be the two harmonic motions. The motion
of the body, then, is the superposition of the two given motions:

z(t) = z(t) + z,(t) = Agcoswt + Agcos(wtAw)t = Aglcoswt + cos (v + Aw)t]
From trigonometry, cosz + cosy = 2 cos «}(:c + ¥) cos i(z —y). Thus

z(t) = Ag[2 cos }wt+ ot + Awt) cos (Aw/2)t] = [24, cos (Aw/2)t] cos (w + Aw/2)t
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The amplitude of z(t) is seen to fluctuate between zero and 24, according to the 24, cos (4w/2)t
term, while the general motion of z is 8 cosine function of angular frequency («+ Aw/2). This
special pattern of motion is known as the beating phenomenon. Whenever the amplitude reaches a
maximum, there is said to be a beat. The deat frequency as determined by two consecutive maximum
amplitudes is equal to

_ Auw+tow w _ Ao
fo = 2r 2= 2z cyc/sec
and the beat period P, = 1/f, = 2v/Aw sec. Sound waves of slightly different frequencies will also
give rise to beats as described here.

Fig.1-8. The beating phenomenon

L.7. !n each of Fig. 1-9(a)-(5), two identical triangle waves shown dashed are propagated
in the same direction. In each case, study the resultant wave with respect to the
indicated phase angle between the two waves.

\.\\/’
\/ () 90°
. (@) 0°
) . P
R ,m\\\& /; AR PAVERAN

\\/”J W
N
\/ (9) 108°
S /': 1\&\ \\\ ’,: o
7 A4 < \E < /.
\\/v’ 7/ v

(h) 126°

() 162°

Fig. 1%
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The resultant wave (solid line) is obtained by adding the two waves graphically. We begin in
Fig. 1-9(a) with zero phase angle between the two waves, i.e. the two waves are completely in phase
with each other. The resultant amplitude is equal to twice the amplitude of the given waves.

Fig. 1-9(b) shows the addition of two identical waves with 18° phase difference between them.
Similarly, Fig. 1-9(c) to Fig. 1-9(j) are the resultants of the additions of two identical waves with
progressively greater values of phase angle between the two identical waves.

When the two identical waves are completely out of phase, i.e. the phase angle between the two
waves is 180°, the resultant wave is zero. In other words, the two waves cancel each other.

SIMPLE HARMONIC MOTIONS

1.8.

A simple harmonic motion is given as z(f) = 10 sin (10t —30°) where z is measured
in meters, t in seconds, and the phase angle in degrees. Find (e) the frequency and
period of the motion, (b) the maximum displacement, velocity and acceleration, (c)
the displacement, velocity and acceleration at t =0 and ¢t =1 seconds.
(a) z(t) = 10 sin (10t —30°) = A, sin (ot — 6)

Then o = 10 rad/sec, f = w/2z = 1.6 cyc/sec, and p = 1/f = 0.63 sec.
(b) Displacement is z(t) = 10 sin (10t — 30°). Thus the maximum displacement is 10 m.

Velocity is dz/dt = wAgcos (vt —6). Thus the maximum velocity is 10(10) = 100 m/sec.

Acceleration is d@2z/dt? = —u2A;sin(wt—6), and so the maximum acceleration is
102(10) = —1000 m/sec2,
e) At t=0:

z(0) = 10s8in(—30°) = 10(—0.5) = —5m
z(0) = wA,cos(—30°) = 10(10)(0.866) = 86.6 m/sec
z(0) = —w?4, 8in (—30°) = —(10)2(10)(—0.5) = 500 m/sec?

At t=1:
z(1) = 10 sin (10 —30°) = 10 sin (570° — 30°) = 10 sin 180° = 0
2(1) = 10(10) cos 180° = —100 m/sec
z(1) = —(10)2(10) sin180° = 0

FREE VIBRATION

1.9.

Determine the differential equation of motion and natural frequency of vibration of
the simple single-degree-of-freedom spring-mass system shown in Fig. 1-10.

Apply Newton’s law of motion, 2 F = ma. For vertical
motion, the forces acting on the mass are the spring force
k(84 + z) and the weight mg of the mass. Therefore the dif-
ferential equation of motion is

mz = —k(3, +z) + mg

where 3, is the static deflection due to the weight of the mass k
acting on the spring. Then mg = 8,k, and the equation of

motion becom .e
es mz+kz = 0

which is the differential equation for SHM. The general forms k(34 + x)
of solution for this equation are m
I T
z(t) = A sinvVk/mt+ B cosVk/mt z ! J
i
z(t) = Csin(Vk/mt + ¢) R
| I |

z(t) = D cos(Vk/mt— @)

where A,B,C,D,¢ and ¢ are arbitrary constants depending on
initial conditions z(0) and z(0). Two constants must appear in
each of the general solutions because this is a second order
differential equation. Fig.1-10

-] 3

mg
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For an initial displacement z(0) = r, and zero initial velocity (0) =0, we have A =0,
8 = z, and hence
z(t) = xycosvVk/mt
Physically, this solution represents an undamped free vibration, one cycle of which occurs when
Vk/m t varies through 360 degrees. Therefore the period P and the natural frequency f, are

vk/
P = 2r sec and f, = 1/P = Z—mcyc/sec
Vk/m ”
where «, = Vk/m rad/sec is the circular natural frequency of the system.

VA NaNYA
\VARVERY,

Fig.1-11. Free vibration without damping

L10. A generalized single-degree-of-freedom spring-mass system with damping is shown
in Fig. 1-12. Investigate its general motion.

Employing Newton’s law of motion 2 F = ma,

mzZ = —ez—kz or mIZH+ct+kzr = 0 /. /477
where k is the spring constant, m the mass, and ¢ the damping coefficient.
We cannot assume solutions of the sine or cosine functions because gk

of the term cz. We assume z = e™; then z = re™, % = r2%. Sub- ¢ I

stituting these values into the differential equation of motion, we obtain
mr2e™ + cret + ket = 0 or mrl4+er+k =0 m
The two values of r satisfying the above equation are I
—c = Ve2—dmk ( . \/0_1 T
7, T = = (=t=vVe-—- .
1,72 2m $ ¢ )“’n Flg. 1-12

where o, = Vk/m, and { = ¢/2muw, is called the damping factor. Thus the solution to the equa-

tion of motion is
z(t) = Ae' + Be™*
where A and B are arbitrary constants determined by the two initial conditions imposed on the
system.
Since the values of r depend on the magnitude of {, we have the following three cases of free
vibration with damping:

Case 1: If { is greater than unity, the values of r are real and distinct; the amplitude of x
is decreasing but will never change sign. Therefore oscillatory motion is not possible for the system
regardless of initial conditions. This is overdamped, where

x(t) = Ae—nt + Be—rat

Case 2: If ¢ is equal to unity, the values of r are real and negative, and are equal to —o,.
The motion of the system is again not oscillatory, and its amplitude will eventually reduce to zero.

This is critically-damped, where
2(t) = (C+ Dt)e—wat
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Case 3: 1f { is less than unity, the values of r are complex conjugates:
ry = wa(—f F iV (), ry = wa(—t —iV1—{#)

And if we define o, = \/l - w, a8 the damped natural frequency in rad/sec, we have

R TR T PR Y
o x(t) = e bt (Belout + Fe~ toat)
Expanding, #(t) = e-wnt|(E + F) coswgt + i(E — F) sin wgt]

Letting E+F = G and (K — F) == H, we finally obtain
2(t) = a- ot (G cosw t + H ain wyt)

As shown before, we may combine a cosine and sine function of the same frequency into a

single sine or cosine function as
x(t) = Je—twat sin (w4t + 6)

2(t) = le—lwat cos (wyt — ¢)
where [ = VG¥+ H?, ¢ = tan~!(G/H), ¢ = tan—YH/G).

The motion is oacillatory with angular frequency wg. The amplitude of motion will decrease
exponentially with time because of the term e—{wat, which ia known as the decaying factor. This
is underdamped vibration. Refer to Fig. 1-18.

Hence it may be concluded that the motion of a dynamic system with damping and having
free vibration depends on the amount of damping present in the system. The resulting motion will
be periodic only if the amount of damping present is less than critical, and the system oscillates
with angular frequency slightly less than the free natural frequency of the system.

4
/—unu p

Y
K

critically-demped

/-\/\l
o \/\/\/—

underdamped

Fig.1-13. Free vibration with damping

FORCED VIBRATION

1.11. Investigate the general motion of a simple spring-mass
gystem with damping excited by a sinusoidal force
F. cos wt as shown in Fig. 1-14. .

Employing Newton's law of motion,

sum of forces in the z direction %
—k(z + 8,) + mg — o2 + Fy conut

But k8, = mg, the weight of the maess; hence the equation of
motion takes ita most general form

mz + ot + kzx = Fgconut |
z

The general solution for this second order differential equation
with constant coeficients is
o =z, two Fig.1-14

m ti‘o cos wt
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where z. is called the complementary solution, or the solution of the homogeneous equation,
mzx+cx+kxr =0. z,is the particular solution for the given equation.

The complementary solution, known as free vibration, has been solved previously in Problem
1-10. The particular solution, obtained from the nonhomogeneous part F, cos wt of the differential

equation of motion, is
x,(8) = A sinot + B coswt

and so T,(t) = wA coswt — wB sinwt
;p(t) = —w2A sinwt — w2B cos wt

Substituting these expressions into the equation of motion, we obtain

(kA — mAw? — cwB) sinwt + (kB —~mBuw?+ cwA) coswt = Fgcoswt

Equating the coefficients,

(k—mw2)A — cwB = 0, cwd + (k—muw?)B = F,

Fo(k — mw?)

from which A = Fowe

rom = Femr ¥ e BT T medr A (cor

Th t) = Foue . Fo (e — ma?) ¢
en () = (k—mo?2 + (ca)? " ot + (k= ma®? + (ca)? “*°

We may combine these two sinusoidal functions of the same frequency either by rotating vectors

or by trigonometric identities to obtain
Fy

x,(t) = cos (wt — ¢)
P Vk — mw?)? + (co)?
Fy/k
or z () = - cos (wt — @)
VA — 122 + (22
where 7 = w/w,, w, = Vk/m, and ¢ = tan-1—2 = tan"l—zL.
wo On ’ e — ma? 1—r

locus of maxima

0<§<$H<h

Fig.1-15

Hence it may be concluded that the particular solution z,(t), which is known as the steady
state response or forced vibration, is of the same frequency as that of the excitation force regard-
less of initial conditions. The amplitude of forced vibration depends on the amplitude and
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frequency of the excitation force, and the parameters of the systems. At resonance, i.e. when the
forcing frequency is equal to the natural frequency, or w/w, = 1, the amplitude of forced vibration
is limited only by the damping factor { and hence the amount of damping present. Therefore
resonance should be avoided at all times. Finally, the steady state response of the system is not
in phase with the excitation force: its variation by the phase angle ¢ is due to the presence of
damping in the system. Without damping, the steady state response is either in phase or 180° out
of phase with the excitation force. See Fig. 1-156 to Fig. 1-19.

Fig.1-16. Forced vibration without damping (2f, = 3/)

WM MM

Fig.1-17. Forced vibration without damping (f, = 6.28f)
x

Fig.1-18. Forced vibration with damping (f, = 6.28f)

MO

o

Fig.1-19. Free and forced vibration (f, = 6.28f)

ENERGY OF VIBRATION

1.12. Determine the power requirements for vibration testing and analysis.

In. vibration testing, we have forced vibration. The work done is the product of the excitation
and displacement, while power required is the rate of doing work. Let F = F, cos wt

d
z = A cos (ut — ¢); then the work done is o

W = dex = fFo cos wt[—A sin (vt — ¢) d(wt)]
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and work done per cycle of motion {s

2w
W = —F,A f cos wt 8in (ut — ¢) d(wt)
[}

as the angle wt goes through a cycle of 2r. Since sin (wt — ¢) = sin wt cos ¢ — co8 wt 8in ¢, the work
done per cycle of motion becomes

2 2n
W = FyAsing f cos? wt d(wt) — FyA cos ¢ f co8 wt sin wt d(wt)
(] 0
. 2w : 2n
= FyAsing [g—t- + %in 2ot |7 _ FyA cos ¢ sin? ut
2 4 0 2 0
. . wt | sin2ut]?" 1 cos2ut|?"
= FyA sing [ 2 + a ]o FoA cos ¢ [Z - ,
= rAF,sing

If F=PF,slnut and z = A sin (ot — ¢), then the work done is

w:fr:u:fr%i:de:fridc

The expression for work done in one cycle of motion is then

2nr/w /W
W = f F) sin wt[wAd cos (wt —¢) dt] = f FyAo sin ot cos (ot — ¢) dt
0 0
Since cos(wt —¢) = cos wt cos ¢ + sin wt sin ¢,
in/w 2r/w
W = j wAF, sin ut cos wt cos ¢ dt + f wAF sin ¢ sin2 ot dt
0 0
As shown earlier, the above expression can be reduced to
=9 . 2r/w
w AF u cos¢sm—“t- + AF 0 sing £ _ sin2ut
2 2 4o 0

_ 1 cos 2ut . t sin 20\

= [AF‘ou cos ¢ (E T) + AFjusing <2 ™ )iL

= gAFg8ing

Thus the power required is proportional to the amplitude F, of the excitation force as well as
to the amplitude A of the displacement. When there is no damping in the system, the work done
by the driving force is zero because ¢ = 0° or 180°. At resonance, energy is needed to build up
the amplitude of vibration; and for this case, ¢ = 90°,

1.13. The steady state response of a simple dynamic system to a sinusoidal excitation
10 sin 0.1x¢ newtons is 0.1 sin(0.1x¢t — 30°) meters. Determine the work done by
the excitation force in (a) one minute and (b) one second.

(a) From Pruoblem 1.12, the work done per cycle by the excitation force is given by
o P
W = Fdr = Fxdt = gAF,sing
Yo 0
where F, = 10 newtons is the amplitude of the excitation force, A = 0.1m is the amplitude
of the steady state response, and ¢ = 80° is the phase angle. Hence work done by tlfe
excitation force is W = 8.14(0.1)(10)(0.5) = 1.57 joules/cyc. The angular fl:equency is
0.1¢ rad/sec and the period P = 1/f = 20 sec. In one minute, the excitation force.wﬂl complete
three cycles. Therefore work done by the excitation force in one minute is 4.71 joules.

20
(d) Work done per cycle is W = f Fx dt. Then work done in one second is
i}

1 .
W = [ (10 5in 0.1¢0)(0.01r) cos (0.1rt —30°)dt = 0.05 joule
‘o
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1.14. Prove that the mean kinetic and potential energies of nondissipative vibrating systems

are equal.
For free vibratiqn without damping, the motion can be assumed harmonic and is given by

z(t) = A sinogt

Kinetic energy KE = imz? = %m(u§A2 cos?w,t) = 1kA?2 cos? w,t, where w2 = k/m.
Potential energy PE = }kx? = 1kA? sin? o,t.

P
(KE)yean = %f (%kAchS2wnt)dt = ikAZ
0

P
(PE)mean = %f (%kA2 sin? u"t) dt = kkAZ
0

1.15. A uniform string fixed at both ends is displaced a distance h at the center and released
from rest as shown in Fig. 1-20. Find the energy of transverse vibration of the

string.

Fig.1-20

The free transverse vibration of a uniform string can be expressed as

y(r, t) = S A sinyL—x cos (Pigt + 0i>

i=1.2,...
where A, is the amplitude of motion and 6; is the phase angle. (See Problem 1.17.) Then

L 2.2 x :
- "2 _ P 242 qin2 | =24 4+ 6.
KE %pLJ; y*dr = L i=1,22.... 12A2 gin I t+ 6,

Lr62—2 S_2 4 <
= V7Y g4, = 2% 242 cnc2| T8t 1 g,
PE }SJ; &l dz 4Li=12 12A% cos 3 t 4 0:)

2, ... .

or

where S is the tension in the string, o; is the mass per unit length of the string, and ¢ =V Slpy 18

the speed of wave propagation.
j 2hzIL, =z 7 L2 we obtain

From the initial conditicns y(z,0) =0 and y(z,0) = oh—s/L), LI2<z <L
Af = 64h2/i32. The expression for the energy of transverse vibration of the string becomes
KE ~ PE = 165 a2h?/z02L, 1 = 1,3,...
Let the total erergzy zasnciated with the fundamental mode of vibration be E,, i.e.

E. = 16p.a2h?/L=?
Then the ezergies asanciated with the first harmonic, second harmonie, third harmonic, ... are
respectively
EZZE;/Q, E;:EX/Z:J, E7:E1/49,

Thus the maT part of the ererzy of vibration is aawriated with the normal modes of low order.
The quaiity of 2 ume (3 goverred by the proportion of energy in each of the modes of vibration.
Though the furdamertzl frequercy may le the same, the energy distribution in the harmonies

characterizes each mausicz] irstrimert,



VIBRATION OF STRINGS
1.16. Investigate the transverse vibration of a stretched string of length L in g plane,

assuming the tension S in the string remains constant.

Fig.1-21

In general, it can be assumed that the flexible string offers no resistance to bending nor to
shear, and its tension is constant for small_displacements.
The differential equation of motion for an infinitesimal element of the string as shown in

Fig. 1-21 can be written as
2F = my

2y . .
or (oL A:)Et—z = —SsinB + Ssina

where p; is the mass per unit length of the string and S is the tension in the string. Partial
derivatives are used because there are two independent variables, x and t.

But [8_21:] = tan g, [a—y] = tana. And for small displacements, sina = tana
0 |, =, 0F |, = z4+az

and sing =tangB. Hence

P _ |y 3y
(PLAx) at? B S liaxj'a::: + 5 [a:l: r=z+Azx
or 2y (S0 )[(9y/0)s + ar — (8y/32),]
az Az
Py _ Sy
otz pL ox2

which is generally known as the one-dimensional wave equation, and is usually written in the form
By _ L%
123 dx?

replacing VS/p, by the constant a.
The solution of this wave equation can be found by the “variables separable” method. Since
y is a function of z and ¢, it can be represented as

y(z,t) = X(x)e T(2)

Py _ pBX %y _ T
Then azz - dxz) o2 - ar2
. dz2T d2X
and the wave equation becomes X i aszT:i’
ET/dt2 _ , d&X/dx?
a —

Separating the variables, T = e
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As X and T are independent of each other, the above expression must equal a certain constant.
Let this constant be —p2. This then leads to two ordinary differential equations,

i X
—+pT =0 and =)

Py _
T +EEX =0

and the solution is
yir,t) = <A s'm% + B cos%’-) (Csinpt + D cos pt)

With both ends of the string fixed, the boundary conditions are
(0,9
y(L, 1)

0
0

1
@

From condition (1),
0 = B(Csinpt+Dcospt) or B=0

and from condition (2),
0 = (A sin pL/a)(C sin pt + D cos pt)
Because A cannot equal zero all the time, sin pL/a must equal zero. Therefore the frequency equation is
sinpL/a = 0 )
and the natural frequencies of the string are given by
p; = ira/L  where 1=1,2,3,...
It is clear that there are an infinite number of natural frequencies; this is in agreement with
the fact that all continuous systems are composed of an infinite number of mass particles.

For this particular conﬁgull'ation of the vibrating string, i.e. with both ends fixed, the normal
function X(z) is therefore given by

Xi(z) = sinira/L

and ¥(z,t) = (A sinpz/a)(C sinpt + D cos pt)

In general, the expression for the vibrating string is given by

¥zt = 122 (sin%f> (C; sinp;t + D, cos p;t)

in which the principle of superposition is used to represent the many natural modes of vibration

of the string. C; and D; are arbitrary constants to be evaluated by the initial conditions of the
system.

1.17. A uniform string of length L and high
initial tension is statically displaced h %

units from the center and released as - h ) *
shown in Fig. 1-22. Find its subse-
quent displacements. l

v

The general expression for the free vibra-

tion of a string fixed at both ends is Fig.1-22

yiz,t) = 3 <sini%z> (A; sinp;t + B, cos p;?)

The initial conditions are

. _ 2hz/L, 0=z=1L/2
y(z,0) = 0, Y(z,0) =
2h(1~z/L), LI2=z=L
which are equal to

irx

y(z,0 = 1'22 B;sinZZ Yz, 0 = iz Ap; sin-
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Hence A; = 0, and
i B. sini’—x _ 2hz/L, 0=z =1L/2
i=12,. .. ' L 2h(1—2z/L), L/2=z=1L

Multiplying both sides of the above equation by sinizx/L and integrating between the limits
=0 and z = L, we obtain

L ; : L/2 . L
B, sinZZ sin %4 = f 2hz . irz I _xT\ . irx
J; i L L X \ L sin L dz + e 2h {1 L sin T dzx
or LBj2 = 2k [fm z sin 2% gz + fL (L — ) sinZ% g ]
i - T —— azx —z) sin—— dzx
L 0 L L/2 L
and thus B, = (—1)ti-Ds2 S—hz where i=1,3,...
27

The natural frequencies are given by

= ra _ 7a 3ra 5ra

p; L or Pl—r. p"_T’ P5='L—.

Therefore the expression for the displacement of the string is

y(z,t) = i=l.23.... (—1)6-D/2 [1%%] sinl;_.r‘—x cos”Irl—at

where a = VS/p, is the speed of wave propagation, S is the tension in the string, and p; is the
density per unit length of the string.

A flexible string of length 0.99m and mass 0.001kg is stretched to a tension S

newtons. If the string vibrates in three segments at a frequency of 500 cyc/sec, find
the unknown tension S.

If the string vibrates in 3 segments, the wavelength is A = 2L/3 = 2(0.99)/3 = 0.66 m and the
speed of transverse wave propagation a = Af = 0.66(500) = 330 m/sec.

Now a2 = S/p; where p; is the mass of the string per unit length. Hence

S = a?p; = (330)2(0.001/0.99) = 110 newtons

A uniform string of length L and fixed at both ends is released at zero initial velocity
from the displaced position as shown in Fig. 1-23(a) below. By means of the wave-
travel method, sketch the shape of the string at time intervals of L/8a for one half
cycle of the motion of the string.

As shown in the following figures, solid lines represent the actual shape of the string, and
dotted lines the traveling waves in opposite directions. At any time under consideration, the shape
of the string is the resultant configuration of the traveling waves.

The shape of the traveling wave is determined by the initial displacement of the string. Here,
as shown in Fig. 1-23(b), it is the shape of a triangle of height /2. The initial configuration of the

string is made up of two identical traveling waves on top of each other but traveling in opposite
directions.

At the end of the first time interval L/8a (where a is the velocity of the traveling waves), the
traveling waves have moved a distance of L/8, one to the right and the other to the left. The

configuration of the string at this moment is the resultant of the two traveling waves and is shown
in Fig. 1-23(c).
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R (a)
N
t=0 (b)
t="L/8a (¢)
t=L/da S ' — (d)
D’I/, \ i : / \\\‘
t=3Li8a [ T—=m \ ; —= (e)
| |
T~ | T
. ~d -
t=L/2a = i,_,— ! == (f)
- -—
l e
== | === (9)
t=5L/8a h ~ : ”
; — j e
e ’ *’ — *)
SN
o | =
| p—- ;
(i)
t:-l'L/ga i :\ \\\"‘//’
! [ , e ——
| | | %)
t=L/a : ==_  —
< —
Fig.1-23

When the waves reach the fixed ends of the string as shown in Fig. 1-23(e), they. ref:,zid?:;:
change sign. Then the waves just keep moving as shown in the rest of the figures. This 11; epeats
goes on for the rest of the cycle. At the end of the cycle, i.e. when &= 2L/a, the cyclitudes as
itself. In the absence of damping, this procedure will continue indefinitely and the amp
well as the shapes of the waves will remain the same.

. . . . 3 owever, becomes
The traveling wave representation of the transverse vibration of a string h

very involved if the initial velocity is not equal to zero.

i . - erse vibration
Investigate the wave motion and energy transmission of the transv

of a compound string as shown in Fig. 1-24.

To account for the change of phase and
mass density of the string, we use the complex

exponential to represent the harmonic progres- S\\ .
sive waves of the string: l%——’ - 1
yl(z' t) = Aewt—z/ay) + Bete(tt+z/a) (1) ;yl \T‘Zf: :1'2\
¥alz,t) = Celt=%/a) @) S

where @, = VS/(or);, @, = VS/(pr)s; S is the

tension in the string and p; is the mass per Fig. 1-24
unit length of the string. In the right hand .



CHAP. 1] VIBRATIONS AND WAVES 23

side of equation (1), the first term refers to the incident wave traveling in the positive r direction
with velocity a, while the second term refers to the reflected wave traveling in the negative z
direction with velocity a,. y.(x,t) represents the transmitted wave traveling in the positive z
direction with velocity a,.

At the junction of the string, the displacement as well as the force given by the two expressions
v, and y, should be the same, i.e,

(W):i=0 = Wa)s=0 (8)
S(y,/0x),=9 = S(9y,/02),=¢ 4)
Substituting equations (1) and (2) into ($) and (4) respectively, we obtain
A+B =¢C (5)
(A —B)/a; = Cla, (6)
Solving equations (5) and (6) simultaneously yields
B a, —a, C 2a,
A7 aFe ™M 27 5Fq

Putting a, = VS/(py); and a; = VS/(p;);, the above expressions become

B Vi) — Vier)s @)

A4 Voo + Vi,

c _ 2V(eL) )
4 VieL) + VipL):

If (o) is very large (for fixed end, (p ), = =), equation (7) gives
B/A = —1
The reflected wave B is equal to the incident wave A except for the negative sign. This means
reflection with reversal.
If (or); = (o) (for uniform string), equation (8) gives
c/lA =1
The transmitted wave C is exactly the same as the incident wave A.
If (or)s > (py), (for non-uniform string), equation (8) gives
C <A
The amplitude of the transmitted wave C is smaller than the amplitude of the incident wave A.
If (p.), is very small (for free end, (pr)y = 0), equation (7) gives
B =A
The reflected wave is exactly the same as the incident wave A.
The energy per unit length of the string for each of the three different waves is given by

incident energy = 4(p.),A%?
reflected energy = 4(pr);B%?
transmitted energy = 1(p.)yC%?
From the principle of conservation of energy, the rate of energy approaching the junction must
equal the rate of energy leaving the junction. Thus
$(pr)1A%%a; = 3(p)B%%a; + §(or)2C%%ay
or Z,A? = Z B2+ Z,C? 9)
where Z = (p;)a is called the mechanical impedance.

From equations (6) and (9), we obtain

reflected energy _ (21— 2y transmitted energy  _ 42,2,
incident energy =~ (Z,+ Z,)?"’ incident energy (Z,+ Z,)?

In order to obtain maximum transmission of energy, the two impedances must match each other.
In other words, when Z, = Z, there is no reflected energy, and transmitted energy is equal to

incident energy.
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LONGITUDINAL VIBRATION OF BARS .
1.21. Derive the differential equation of motion for the longitudinal vibration of uniform
bars and investigate its general solution.

| | 7/,
y&-_‘————'x—————-lln—dz _.szl‘-

Fig.1-25
Let u be the displacement of any cross section dx of the bar as shown in Fig. 1-25. Then the

strain ¢, at any point r is
ou

€, — ——
z dx

For an elastic bar, the stress is ¢, = Ye,, where Y is the modulus of elasticity. Thus the tensile

force at rx is

Ju
S = J; o,dA = YA 3z
2 3
and the inertia force is pA dx Z—tlzi, where p is the density of the bar and A is the area of cross
section of the bar. Balancing the two forces, we have
aS — 9%u %u  _ o 3% 1)
S + Ezdr = S + pA YD dz or e - Iz

where a = \VY/p is the speed of wave propagation.

For the solution of this partial differential equation of motion for the longitudipal vibrat.ion
of bars, let us look for a solution in the form of wu(z,t) = X(z) T(t). Substituting this expression
into equation (1) yields

d2X/dx2 _  d2T/dt2 2
g2 L£Aer o anl/atm
X T
Since the left-hand side of equation (2) is a function of x alone, and the right-hand side of equation

(2) a function of ¢ alone, each side must be equal to a constant. Let this constant be —p2. This
leads to two ordinary differential equations

d®T/dt?2 + p2T = 0 and d2X/dx? + (p/a)2X = 0
the solutions of which are
T(t) = A-cospt + B sinpt, X(x) = C cos(p/a)x + D sin (p/a)z
where A, B,C and D are arbitrary constants.

As X(x) is a function of z alone and determines the shape of the normal mode of vibration
under consideration, it is called a normal function. Thus the general solution is

o

u(x, t) = p (A; cosp;t + B; sin p;t) (Ci cos% x + D; sin %z) 3

i=1,2,,..

whe.re A; and B; are arbitrary constants to be evaluated by the boundary conditions, C; and D; are
arbitrary constants to be evaluated by the initial conditions, and p; are the natural frequencies of
the system.

122. Determine the free longitudinal vibration of a uniform bar of length L fixed at both
ends.

For longitudinal vibration of bars, the general solution is given by equation (8) of Problem 1.21.
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1.23.

1.24.

The displacements of this bar at its ends are equal to zero, i.e. the boundary conditions are
u(0,¢t) = u(L,t) = 0. Substituting these boundary conditions into the general solution, we have

u(0,t) = (A;cosp;t + B;sinpit)C; = 0 or C;=0
w(L,t) = (A;cospt + B, sinp;t)D, sin(p;,L/a) = 0
or sin(p,L/a) =0 and p,=1tra/L, i=1,2,....
The free vibration is
u(z, t) = i=1§, sin i%z(A'i cos p;it + B| sinp;t)

where A and B; are arbitrary constants to be evaluated by the initial conditions and p; are the
natural frequencies of vibration of the bar.

Determine the free longitudinal vibration of a uniform bar of length L free at both
ends.

For free longitudinal vibration of bars, the general solution is given by equation (3) of
Problem 1.21.

The forces at the ends of this bar during vibration are equal to zero, i.e. the boundary condi-
tions are Ju/dx =0 at z =0 and at z = L. Substituting these boundary conditions into the
general solution, we get

D.p.
@8 b (A;cospt + B;sinpt) = 0 or D, =0
ar a
a iCi . iL .
ug’;' 0 - _p_a: sin p:T(Ai cosp;t + B;sinpit) = 0

or sin(p;L/a) =0, and p,=1iza/L, 1=1,2,....
The free vibration is

u(z,t) = ; cosWTz(A'i cos pit + B| sin p;t)

i=1

where A',- and B are arbitrary constants to be evaluated by the initial conditions and p; are the
natural frequencies.

Obtain an expression for the free longitudinal vibration of a uniform bar of length
L, one end of which is fixed and the other end free.

For free longitudinal vibration of bars, the general solution is given by equation (3) of
Problem 1.21.

The tensile force at the free end of this bar is equal to zero while the displacement at the fixed
end of the bar is also equal to zero, i.e. the boundary conditions are (u),-=¢ =0, (du/éz),—; = 0.
Substituting these boundary conditions into the general solution, we obtain

u(0,t) = CyA;cospt + B;sinpit) = 0 or C; =0

ou(L, t p:D; pi L .
i(az—) = —a—cosT(Ai cosp;t + B;sinp;t) = 0

or cos(p;L/a) = 0 as D; cannot be equal to zero. Hence p; = iza/2L where 1 =1,3,....
The free vibration is

w(z,t) = S sin;r—;(A', cos p;it + B] sin p;t)

i=L3,...

where A and B/ are arbitrary constants to be evaluated by the initial conditions and p; are the
natural frequencies.
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125. A bar of length L is fixed at one end and has a concentrated mass
M attached at the other end as shown in Fig. 1-26. Derive the
frequency equation for the free longitudinal vibration of this bar.

For free longitudinal vibration of bars, the general solution is given by
equation (3) of Problem 1.21.

There is no displacement at the fixed end of this bar, and a dynamic force
in the bar at the free end is equal to the inertia force of the concentrated mass

M, i.e. the boundary conditions are

- du = —m(
oo =0, ar(2) - ow(2)

[CHAP,

Fig.1-26

where A is the cross-sectional area of the bar and Y is the Young’s modulus of elasticity.

From the first of these two boundary conditions,
u(0,t) = Cy(A;cospit+ B;sinpt) = 0 or C,=0
and from the second boundary condition,
AYp; L L pi L piL ApL

where a = VVY/p and p is the density of the bar.

- 2 o
COST = Mp; smT or —a—tan—a— = M = My/M

When M, /M - «, ie. when the mass M is small compared to the mass of the bar, the
frequency equation becomes cos(p;L/a) = 0. The system becomes that of a bar fixed at one end

and free at the other end. (See Problem 1.24.)

When M is large compared to the mass of the bar, it can be shown that p, = VAY/ML. This
corresponds to the natural frequency of a simple spring-mass system of mass M and spring

constant AY /L,

VIBRATION OF MEMBRANES

1.26. Derive the differential equation of motion for the transverse vibration of uniform

membranes and investigate its general solution.

1 ED

Fig.1-27

Assume an ideal two-dimensional membrane with a completely flexible surface of extremely
small uniform thickness which offers no resistance to bending or to shear. The tension is assumed
to remain constant in magnitude and uniform everywhere in all directions, and is not affected by
the small deflections taking place perpendicular to the membrane. In its rest or equilibrium

position, the membrane is assumed to be a plane surface, i.e. in the zz plane.

Consider the differential element dz dz of a membrane as shown in Fig. 1-27. The forces acting
are those resulting from the uniform tension S per unit length of the edge of the element due to

the deflection of the membrane from the equilibrium 2z plane.

As in the case of the flexible string, the total restoring force is equal to the product of the

mass times the acceleration, i.e. S F =m¥.
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The restoring force as shown in Fig. 1-27 is (—S sin 8+ S sine)dz. For small displacements
. K — | 9y . . F) '
slopes are small, sing = tang = [E:L== and sina = tana = [a_:] , and the restoring
force is F=ztds
3y | % | _ %%
S dz [(32 + Edt) - 'EJ = -az—zda:dz

. . 2
Similarly, the restoring force along edges dr is S ';ngz dz and the differential equation of motion

is given by . )
Sy, %y = %y
S<81'2 + ﬁ) dr dz = pawdz dz (1)
where p, is the mass per unit area of the membrane. The two-dimensional wave equation is
therefore
Py Lo _ 13y
ox2 0z2 a? ot2 (2)

where a = VS/p, is the speed of wave propagation.

The solution of this two-dimensional wave equation can be obtained by the “variables separable”
method. Since ¥ is a function of x, z and ¢, it can be represented as

y(z,z,t) = X(x)Z(z) T(t) £}
2y _ azXx 2y _ d?Z 2y _ 2T
Then ax2 2T dz2’ 9z2 XT dz2’ Atz Xz de? (4)
Substituting (4) into (3) gives
X d2Z d2T
277 &4 a7 &4 _ &L
a?ZT 72 + a Xsz2 = XZ g1t (5)
i QX | @ P2 _ 1&T
Dividing (5) by XZT, Xd T Zd2 © T ar (©)

Because X, Z,T are independent of gne another, and because the right-hand side of equation
(6) contains only ¢, both sides of (6) must be equal to a certain constant. Let this constant be
—p2 This then leads to the following two differential equations:

% + p2T = 0 with solution 7T(t) = E sinpt + F cospt (7)

@PX Pz _ _, 18X, p _ 14 ,
Xdz2 T Zdz2 - P Xdez T2 © T Z d? 8

Now each side of equation (8) involves only one variable, and so both sides must be equal to some
constant. Let this constant be k2, This leads to the following two ordinary differential equations

in z and z,
1329 P2 _ o — &z 27 =
722 + <a2 k )X 0, 122 + k2Z 0 9)

with solutions
X(z) = Asiny(p%a?) — k2x + B cosV(p*a?) — k2z (10)

Z(z) = Csinkz + D coskz (11)

A solution of the two-dimensional wave equation is therefore given by

= (A sinV(p¥/a?) — k2x + B cos V(p?/a?) — k2 x)(C sin kz + D cos kz)(E sin pt + F cos pi)

y(zr 2, t) -

The general solution is the sum of an arbitrary number of such solution, i.e.

Y(z,z,t) = o ? (4; sin V(p?/az) — k%x

T ik, .

+ B; cosV (pl?/az) — k2z)(C; sin kiz+ D; cos k;z)(E,; sin p;t + F; cos p;it)  (12)

where A,, B, C;, D; are arbitrary constants to be evaluated by the boundary conditions, E; and F;
are arbitrary constants to be evaluated by the initial conditions, and p; are the natural frequencies.
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1.27. A uniform rectangular membrane is rigidly fixed at all its edges as sho?vn in Fig.
1-28. Determine the general solution for the free transverse vibration of the

membrane.

=)
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Fig.1-28

The two-dimensional wave equation for the free transverse vibration of a uniform membrane is

S[oy o) - 2

Pa LOx2 922 T et
with general solution given by

y(z,z,t) = (A sin V(p%/a2) — k2z + B cos V(p2/a2) — k2 x)(C sin kz + D cos kz)(E sin pt + F cos pt)
where a = \VS/p, is the speed of wave propagation.

The four boundary conditions are

(1) 11(0. 2, t) = 0; (2) y(Lll z, t) = 0; (3) y(x, 07 t) = 0- (4) ‘.'I(-‘L', L2v t) = 0

i.e. there is no deflection at the edges.

From boundary condition (1) we obtain
¥(0,2,t) = B(C sinkz + D coskz)(E sinpt + F cospt) = 0 or B =0

From boundary condition (2),

y(Ly, z,t) = A sinV(p%/a2) — k2L,(C sinkz + D cos kz)(E sinpt + F cospt) = 0

or sinV(p¥/a?)— k2L, =0, ie. V(p2/a2)—kZ=mz/L; =y, m=0,1,2,....

From boundary condition (3),
y(x,0,t) = A sinyz(E sinpt+ Fcospt)D = 0 or D =0

From boundary condition (4),
y(x,Ls, t) = A sin yx(C sin kL,)(E sinpt + F cospt) = 0
ie. k=ns/L, n=01,2.... Thus p2>=a*m%%Li+k?) or pm, = (ax/LL)VLIn®+ LIm2,
., =12 ..., and the general solution becomes

A sin yx(C sin kz)(E sin pt + F cos pt)

or sinkL, = 0

m=12 ..
y(z,z,t) =

Combine the constants into ACE =M and ACF = N. Since there are many possible solu-
tions, the most general solution will be the superposition of all possible solutions,

[- -]
ylzr.z,t) = S 122 sin Y,z sin k,2(M,,, sin pp,,t + N, cos p,.,.t)

m=12_..n=

where M,, = A, C,Ep,, Npn = ApCoF e, and v, k, and p,,, are defined as above.

Fig. 1-29 below shows the modes of vibration of a rectangular membrane fixed at all its edges.
Shaded and unshaded areas are in opposite phase.
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Fig.1-29. Modes of vibration of a rectangular membrane fixed at all its edges.

128. A uniform circular membrane of radius d, is rigidly fixed at its circumference as

shown in Fig. 1-30. Determine the general solution for the free transverse vibration

of the membrane.

The general two-dimensional wave equation in cartesian
coordinates for the free transverse vibration of uniform

membranes is
o2y , 9% 3%y
2 —_— —_— = —_—
¢ (azz M az2> at2 (1)

where a = V/S/p, is the speed of wave propagation, S is the
tension, and p, is the density per unit area of the membrane.
For circular boundary, equation (1) can be transformed into
polar coordinates as

By 1oy 13 _ 13y 2
ar2 r dr 72 362 a2 3¢ (
by using the transformation equations
x = rcosé, z = rsine

Fig.1-30

Due to the symmetry of circular membrane with respect to its geometric center, dy/ae =0

and equation (2) becomes

oy | lay 1ay
ar2 ror a2 at?

C))
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Since y is a function of r and ¢, the “variables separable” method leads to the following form

of solution
yir,t) = R(r)T(t)
@A /BR [ 1dR\ _ 1dT
and equation (8) becomes Tl T r ;;) = ras (4)

Since each side of (§) contains only one independent variable, both sides must equal the same
constant. Let this constant be —p3. Then we have

‘f;' +pT = 0 withsolution T(¢) = C sinpt + D cos pt )

and = +1 > 3r + B2R = 0 where § p?/a
@R dR 2 = a
or r a3 T gt r282R 0 (0)

Using the transformation y = rg8, rewrite equation (6) as

dR dR
yzd_yz+73?+yzk = 0 4

which is known as the Bessel differential equation of zero order. The solution is given by

R(y) = AJy(rB) + BKy(rp) O

where A and B are arbitrary constants, J, is the Bessel function of the first kind of order zero,
and K, is the Beasel function of the second kind of order zero. Therefore the solution of (9)

becomes
y(r.t) = [AJy(rB) + BK,y(rB)](C sin pt + D cos pt) €)

@ —1\k 2k
Kot = Sy - 3 51(—’!;;(;) 100
o = S am

=1,
The boundary condition implies that the displacement at the center of the membrane must be
finite, i.e. y(0,t) » 0. Now K,0) =In0 = —o, so B must be zero. Then

y(r,t) = (E sinpt + F cos pt)J,y(rB) (10)

where the new constants E = AC and F = AD.

The other boundary condition is y(dp, t) = 0 or Jy(dyB)(E sin pt + F cospt) = 0 from which
Jo(dpB) = 0, i.e. doB; = 2.4, dyB, = 6.5, dogBs = 8.7, ..., and since A2 = p?/a?, p, = (a/Vdy) VdoBo
i=1,2,....

The complete solution for the free transverse vibration of a circular membrane fixed at its
edges is therefore given by

vint) = 3 Jo(rA)(E sinpt + Fycos pit) (n
where p; are the natural frequencies and J, is the Bessel function of the first kind of order zero.
E, and F,; are arbitrary constants to be evaluated by initial conditions.

Fig. 1-31 below shows the modes of vibration of a rigidly stretched uniform circular mem-
brane. Shaded and unshaded areas are in opposite phase.
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m=0 m= m=
n=1 n= n=3
Bndo = 2.4 Bozdo = 6.5 Bosdo = 8.7
m=1 m=
n=1 n=
Budy = 3.8 B12dg = 7.0
m=2 m=2 m=2
n=1 n=2 n=3
ﬁ21d0 =51 ﬁ22d0 =84 ﬁzado =11.6

Fig.1-31. Modes of vibration of a rigidly stretched circular membrane.

129. The displacement amplitude of a driven uniform circular membrane of a microphone

is given as y = (Po/k2S)[Jo(lcr)/Jo(kr0) — 1]. Find the corresponding average dis-
placement y., of the surface of the membrane.

The average displacement may be defined as

-— 1 ’
v = fs w(r)as )

ko
o
where S’ = 1r1"2, is the area of the surface of the membrane. Then
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o( ) d
Vav = ? (PO/k S) J (kf 2rrdr (2)
where P, - smplitude of driven force, S = tension of membrane, r, = radius of membrane,

and J, - Bessel function of the first kind of order zero.

Rewrite equation (£) as

To
Yav = -—,* J' Jolkr)rdr — _fll_f rdr 9
rok2S8Jg(kry) rok®S Yo

Now ‘ rJyevdr = rJy(r) or ’ (kr)Jotkr)k dr = (kr)Jy(kr). Thus equation (3) becomes

2P0 To 2Po f'o
= -0 - — d
e = ST fo Unidoenkdr — g f “rdr n
Performing the indicated integrations, we obtain
2P, fo 2pP, To
= —_— -— r2/2
Vav 'k‘SJo(l. 0)[("7)-,1(’“')] 2k2s[( / ):I
2P,
D — — Py/k? 5
or Yay ST, () (kro)d (fery) o/K2S (%)

From a table of Bessel functions, Js(krg) = 2J,(kro)/kry— Jo(kry); then equation (5) can be
written as

Yar =

2P, kryJ, (kry) — Pyr2kady(kro) Py [2lkry o ] _  Po Jakry
P2kAS Ty (kry) - k‘-'s.ro(kro)[ kr, olkro) | = i35 T, (kry)

A uniform circular membrane of radius 7, is tightly stretched along its circumference.
A sinusoidal driving force F) sin ot is acting uniformly over one side of the membrane.
If the coefficient of the damping force present is ¢, determine the resulting vibration.

The general differential equation for the free transverse vibration of a circular membrane in

polar coordinates is given by .
Py _ (P 1y
a2 ot ror

where @ = \§/p, and r = radial distance from center of membrane.

With the presence of the damping force ¢(3y/dt) and the driving force F, sin wt, the equation
of moticn becomes

#y _ S/ .1y cawy . Fo
ar = p.\a’" : '; puﬁ-r pasmut (1)
Using complex exponential notation, we have
Fy  _ _S_azy_lag c oy + Fo .
3t R a'r) T p.eu (®)
Assume a steady state solution y = Ye®* and substitute the assumed solution into (2):
S @Y _1d¥y [, ias)-
edr Trar T 0T )F = Rk @
. . &Y 1dY
which can be written as = v BY = -F,/S 4

where & = 2 —icn 'S,

The compiete solction of equatior i) is the sum of the complementary and particular solutions.
The compiemerntary solution is obtained by solving

&Y 1dY
—P'_;T—FY = 0 13)
with suTion Yo =

= AJ,dkry — BKyikr) *
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131.

where A and B are arbitrary constants, J, is the Bessel function of the first kind of order zero, and
K, is the Bessel function of the second kind of order zero. For a stretched circular membrane,
B = 0. (See Problem 1.28))

The particular solution is Y(r) = —F4/k2S. Thus the complete solution is
Y(r) = AJylkr) — Fy/k2S (7)
Now the deflection at the boundary is zero, i.ee. Y =0 at r =r, then from equation (7),
Y(ro) = AJo(kry)) —Fy/k*S =0 or A = Fy,/k2SJ,(kr,). Hence (7) becomes
Fo Jo (k"') Fo )
— — — ewt
kszo (kro) kzs
and the steady state vibration of the membrane is given by the imaginary part of equation (8),
vy = FofJelm
VRS = 28 [ T4 (kro)

Yiy = (8

- 1] sin ot

The diaphragm of a condenser microphone is made of a circular sheet of aluminum.
If its radius is 0.01 m and its thickness is 0.00001 m, find the maximum allowable
tension in nt/m to which this diaphragm may be stretched. What is the fundamental
frequency when stretched to this maximum tension? Determine the displacement
amplitude at the center of the diaphragm when it is acted upon by a sound wave of
frequency 100 cyc/sec and pressure amplitude 2.0 nt/m2. What is the average dis-
placement amplitude?

The maximum allowable tension S,,., is equal to the area times allowable stress, i.e. S ., = 0A.
If allowable stress o = 10% nt/m2, then S_,, = 108(0.00001) = 1000 nt/m.

The fundamental frequency of a uniform circular membrane is

2.4
H = 2:-_RVS/P° = 7350 cyc/sec

where R = 0.01 m is the radius, S = S, ., = 1000 nt/m is the tension,
pa = 2700(10)—5 = 0.027 kg/m?2
is mass per unit area of the membrane, and p = 2700 kg/m3 is the density of aluminum.

The displacement amplitude at the center of the diaphragm is

Py [Jo(0) — Jo(KR)
S KT kR)

where k = «w/a = w/VS/p, = 100(25)/1/1000/0.027 = 3.26 or k2 = 10.06, Jy(0) =1, Jyo(kR) =
Jo[(326)(0.01)] = J4(0.0326) = 0.9997 are the Bessel functions of the first kind and order zero.

Henee
_ 2 [1- 09997 _ s
v0.9 = 1500 {10.06(0.9997)] = 6107m

v(0,t) =

The average displacement amplitude is given by

_ 1 (*® s Jo(kr) — Jo(KR) Py [Jy(kR)
Voo = Ipm j; (Po/keS) g ——terdr = g J.,(kR)]
where J,(kR) = J,(0.0326) = 0.00015 is the Bessel function of the first kind of order two and
S =8,.. =1000 nt/m. Thus _ 2(0.00015) 3105 m
Yav 10.06(1000)

VIBRATION OF CIRCULAR PLATES
132 A thin uniform circular plate of radius R and thickness t, is rigidly clamped all

around its circumference. Investigate the free transverse vibration of the plate.

The differential equation for the free transverse vibration of a thin uniform circular plate is
given by _
[y 1oyt 120—sn 2y _ 1201 — uf) 2y _
L a2 rar_! + Ye Py 0 or V:V‘*'._Yt: 2 0 tn
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34
where p = density of the plate, s = Poisson’s ratio, ¥ = Young’s modulus, and ¢, = thickness
of the plate.
Assume a periodic motion in the following form
where Y is a complex function of r alone. Then equation (1) reduces to
viy = 12%0-y o (ViKY = 0 @
Ye?
where k¢ = 120%(1 — u2)/Yt]. Since V4 -kt = (V] + k2)(V2 — k2), the solution of (8) consists of
the sum of the solutions of V3 +k? = 0, given by ¥ = AJy(kr), and the solution of Vi-k2=,
given by Y = BJy(tkr) = Bly(kr) where I, is the Bessel hyperbolic function. Thus
Y(r) = AJy(kr) + Bly(kr) (4)
For a plate rigidly clamped at the edges, the boundary conditions are Y(R) =0 and aY(R)/ar = 0.
Substituting these into equation (4) and its derivative, we have
AJy(kR) + BIykR) = 0 %)
—~AkJ,(kR) + BkI,(kR) = 0 (6)
Divide equation (5) by (6) to obtain
Jo(kR) _Io(kR) ”
Ji(kR)y ~  I,(kR)
where kR =nr, n=1,2,.... Then
Yt2kt YtZ(nz/R)*
¢ = o T Tad— a2 (8
12p(1 — 4?) 12p(1 — u2)
and the free transverse vibration of the plate is
y(r,t) = [AJy(kr) + Bly(kr)]eiet
L33. The diaphragm of a telephone receiver is a circular steel plate of radius 0.015 m and
uniform thickness 0.0001 m. If the diaphragm is rigidly clamped at its edges, find
its fundamental frequency of transverse vibration.
From Problem 1.32, the fundamental frequency of a circular thin plate clamped at its edges is
0.47t, Y
L = 2 A= - 1100 cyc/sec
where ¢, = 0.000lm is the thickness of the plate, R =0.015m is the radius of the plate,
Y =19.5(10)° nt/m? is Young’s modulus of steel, p = 7700kg/m? is the density of steel, and
s = 0.28 is Poisson’s ratio.
Supplementary Problems
WAVES
134. Show that A coswt + A cos (ot + 120°) + A cos (ot + 240°) = 0.
135. Given two harmonic motions Z; = 10coswt and =z, = cos(wt+60°), find X and ¢ in
Xcos(ut+¢) = z,+ 1z, Ans. X =106, ¢ = 39.5°
136. Given two harmonic motions z, = 208in22¢t and z, = 30 sin23¢, find the beat frequency and

beat period. Ams. f, = 0.16 cyc/sec, P, = 6.28 sec
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If P, and P, are the periods of two harmonic waves z, and z, respectively, and mP, = nP;, find

1.37.
the period of z; + z,. Ans. P = mP, = nP,

1.38. Given u(z,t) = f(x—ect) + g(x+ect) and u(0,t) = u(L,t) = 0. If the waves are confined between
z=0 and z = L, what is the period of the functions f and g? Ans. P =2L/e

VIBRATIONS

1.39. A simply-supported beam of length L is acted upon by a mass M, at midspan. If the mass of the
beam is negligible compared to M,, find the natural frequency of vibration of the beam.
Ans. o, = V48YI/M L3 rad/sec

1.40. A homogeneous square plate of side L and mass M, is suspended from the midpoint of one of the
sides. Find its frequency of vibration. Ans. o, = \/6g/5L rad/sec

1.41. A U-shape tube has a uniform bore of cross-sectional area A. If a column of liquid of length L
and density p is set into motion, find the frequency of the resultant motion of the liquid column.
Ans. w, = V2g/Lp rad/sec

1.42. An electric circuit contains a capacitor C, an inductor L, and a switch in series. The capacitor
has initially a charge q, and the switch is open at time t < 0. If the switch is closed at t =0,
find the subsequent charge on the capacitor. Ans. q(t) = qgcosV1/LCt

1.43. If a simple spring-mass system is subjected to an impulsive excitation F;, find the response of

the system. Ans. z(t) = (F;/Vkm) sinvVk/mt

VIBRATION OF STRINGS

1.44.

1.45.

1.46.

1.47.

1.48.

Obtain an expression for the potential energy of a uniform vibrating string of length L, con-

L
sidering that the tension S is not constant. Ans. PE = %f S(9y/9z)2 dx
0

A uniform string of length L is fixed at both ends, and a damping force proportional to the velocity

of the string acts upon all points of the string. Find the free vibration of the string.
Ans. y(z,t) = S sint—zz(e—“/zﬂ)(Ai sinp;t + B, cosp;t) where p; = Vr2a?/L2— c?/4p?

i=1.2,...

A taut uniform string of length L is fixed at both ends and is acted upon by a uniformly distributed
sinusoidal excitation Fy cos wt. Determine the steady state vibration of the string.

Ans. y(x,t) (Fo/pw )<cosa z + tan %a smaa: 1> cos wt

Find the motion in terms of traveling waves of a uniform string of length L fixed at both ends.
The string is displaced a distance h at the center and released without initial velocity.

Ans. y(z,t) = %[sin%(%—t)+sin%"(§+t>—%sin%(%—t)—%sin:;%a(§+t>+ ]

A uniform string fixed at both ends is struck at the center so as to obtain an initial velocity which
varies linearly from zero at the ends to vy at the center. Find the resulting free vibration.

8voL < 1 . iz . irx . ima
Ans. y(z,t) = =y i=1.22.... 73 8in sin—r=sin =7~ ¢

LONGITUDINAL VIBRATION OF BARS

1.49.

1.50.

Show that the differential equation of motion for the free longitudinal vibration of a bar of variable

cross section A is given by % + % % g—: = % %2;—1:

A uniform bar of length L is moving in a horizontal plane with velocity v,. If the bar hits a solid
wall with one end and stops, what will be the free longitudinal vibration of the bar?

8v,L ® : ;
Ans. wu(z,t) = -rzoa ‘_123 il—zsing—ssin%t
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151. A uniform bar of length L is fixed at one end and the free end is stretched uniformly to L, and
released at ¢t = 0. Find the resulting free longitudinal vibration of the bar.

8(Lo— L) i (-1)u-17/2 1 int% s 78,

. ty =
Anc u(z’ ) fz ‘= 1'3’ . '2 2L 2L

1.52. What is the effect of a constant longitudinal force on the natural frequency of a uniform bar
undergoing longitudinal vibration? Ansg. No effect

153. A uniform bar of length L is free at one end and is forced to follow a sinusoidal movement
A sin wt at the other end. Find the steady state vibration of the bar.

Ans. wu(x,t) = A <cosgz + t:ané sin3x> sin wt
a a a

VIBRATION OF MEMBRANES

1.54. A rectangular membrane of sides L and 2L is clamped at its edges. What are the lowest degenerate
modes of free transverse vibration of the membrane? Ans. (2,2) and (4,1)

1.55. Show that the fundamental frequency of free transverse vibration of an equilateral triangle mem-
brane tightly stretched at all its edges is f; = 4.7TVS/Ap, where A is the area of the membrane.

1.56. A circular membrane of radius 10 em and density 1.0 kg/m2 is stretched to a uniform tension of
10,000 nt/m. Compute the three lowest natural frequencies of transverse vibration of the membrane.

Ans. f, =380, f, =870, f3 = 1460 cyc/sec

1.57. A uniform square membrane of sides L is fixed at two adjacent edges. It has an initial displace-

ment y(z,z,0) = y, sin (2rz/L) sin (372/L). Obtain an expression for the free transverse vibration
_ . 27z . 3wz 137S
of the membrane. Ans. y(z,z,t) = y,sin 7 sin — cos oL t

1.58. A uniform rectangular membrane of sides L, and L, is firmly fixed at all its edges. The membrane
is under the action of a constant force F'y over its entire surface, If the force is suddenly removed,
find the resulting free transverse vibration of the membrane.

< < 16F, Mrx nrz
Ans. y(z, z,t) = sin —— sin —— cos t
m= 123 n=1.3,... mnz2p2, L, L, Pmn

VIBRATION OF PLATES

1.59. The diaphragm of an electromagnetic sonar transducer is a circular steel plate of radius 0.09 m
and thickness 0.004 m. Find its fundamental frequency of free transverse vibration.

Ans.  f, = 1230 cyc/sec

1.60. Determine the average displacement amplitude of a uniform circular plate vibrating transversely
in its fundamental mode. Ans.  y,, = 031y,

1.61. A uniform circular steel plate of radius 12 inches and thickness 1.0 inch is clamped at the boundary.
What is the lowest natural frequency? Ans. f; = 700 cye/sec

1.62. A uniform rectangular steel plate of lengths 8 X 4 ft and thickness 4 inch is simply-supported
at all the edges. Determine its lowest natural frequency. Ans. 25 cyc/sec
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NOMENCLATURE

s b‘?s“p‘*\hpjmawbgh;

PWL

SPL

< <R

L

9>’7=‘<'°5N*<Hgg

I

I

= area, m?

acceleration level, db

bulk modulus, nt/m?

speed of wave propagation, m/sec
end correction factor, m

energy density, joules/m?
frequency, cyc/sec

acoustic intensity, watts/m?
intensity level, db

wave number

length, m

acoustic pressure, nt/m?

period, sec

sound power level, db

specific acoustic resistance, rayls
condensation

sound pressure level, db

absolute temperature
instantaneous displacement, m
speed of observer, m/sec

volume, m3

velocity level, db

speed of medium, m/sec

power, watts

specific acoustic reactance, rayls
Young’s modulus of elasticity, nt/m?2
specific acoustic impedance, rayls
circular frequency, rad/sec
density, kg/m?3

Chapter 2

ratio of the specific heat of air at constant pressure to that at constant volume

Poisson’s ratio
wavelength, m
coefficient of expansion of air
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INTRODUCTION

Sound waves are produced when air is disturbed, and travel through a three-dimensional
space commonly as progressive longitudinal sinusoidal waves. Assuming no variation of
pressure in the y or z direction, we can define plane acoustic waves as one-dimensional free
progressive waves traveling in the z direction. The wavefronts are infinite planes per-
pendicular to the x axis, and they are parallel to one another at all time.

In fact, when a small body is oscillating in an extended elastic medium such as air,
the sound waves produced will spread out in widening spheres instead of planes. The
longitudinal wave motion of an infinite column of air enclosed in a smooth rigid tube of
constant cross-sectional area closely approximates plane acoustic wave motion.

WAVE EQUATION

In the analysis of plane acoustic wave motion in a rigid tube, we make the following
assumptions: (a) zero viscosity, (b) homogeneous and continuous fluid medium, (c) adia-
batic process, and (d) isotropic and perfectly elastic medium. Any disturbance of the
fluid medium will result in the motion of the fluid along the longitudinal axis of the tube,
causing small variations in pressure and density fluctuating about the equilibrium state.
These phenomena are described by the one-dimensional wave equation

Fu_ aiu

otz ox?
where ¢ =1/B/p is the speed of wave propagation, B the bulk modulus, p the density, and
u the instantaneous displacement.

Since this partial differential equation of motion for plane acoustic waves has exactly
the same form as those for free longitudinal vibration of bars and free transverse vibration
of strings, practically everything deduced for waves in strings and bars is valid for plane
acoustic waves.

The general solution for the one-dimensional wave equation can be written in progressive
waves form
u(z,t) = fi{x—ct) + fo(x +ct)
which consists of two parts: the first part fi(z — ct) represents a wave of arbitrary shape
traveling in the positive z direction with velocity ¢, and the second part f2(z + ct) represents
a wave also of arbitrary shape traveling in the negative z direction with velocity ¢. In
complex exponential form, the general solution can be written as

u(x' t) — Aei(wt—k:)+Bei(wt+k:)

where k = o/c is the wave number, i =1/—1, and A and B are arbitrary constants (real
or complex) to be evaluated by initial conditions. In sinusoidal sine and cosine series, the
general solution is
u(z, t) = D (A.- sin%x + B; cos%x)(C.- sinpit + D; cos pit)
i=12,...

where A; and B; are arbitrary constants to be evaluated by boundary conditions, C; and D,
are arbitrary constants to be evaluated by initial conditions, and p, are the natural fre-
quencies of the system. (See Problems 2.1-2.6.)

WAVE ELEMENTS

Plane acoustic waves are characterized by three important elements: particle displace-
ment, acoustic pressure, and density change or condensation.
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Particle displacements from their equilibrium positions are amplitudes of motion of
small constant volume elements of the fluid medium poesessing average identical properties,

and can be expressed as w(z,t) = Ae“™~ 4 Be¥ e+t

or u(z,t) = A cos(et—kz) + B cos (et + kz)

Acoustic pressure p is the total instantaneous preasure at a point minus the static pres-
sure. This is often referred to as excess preasure. The effective sound pressure pm, at a
point is the root mean square value of the instantaneous sound pressure over a complete
cycle at that point. Thus

— _ zﬂ — 3 (@t —kx) _ (ot + k)
P = —pct o = ipcu(Ae Be )
or P = —pcoA 8in(wt — kZ) + pCuB sin («t + kz)

Density change is the difference between the instantaneous density and the constant
equilibrium density of the medium at any point, and is defined by the condensation s at such

point as _
g = PP _ _du ikAe N ® D _ {kBeiet+En

Po or

When plane acoustic waves are traveling in the positive z direction, it is clear that
particle displacement lags particle velocity, condensation and acoustic pressure by 90°.
On the other hand, when plane acoustic waves are traveling in the negative z direction,
acoustic pressure and condensation lag particle displacement by 90° while particle velocity
leads it by 90°. (See Problems 2.7-2.9.)

SPEED OF SOUND

The speed of sound is the speed of propagation of sound waves through the given
medium. The speed of sound in air is

¢ = Vyp/p m/sec

where y is the ratio of the specific heat of air at constant pressure to that at constant vol-
ume, p is the pressure in newtons/m?, and p is the density in kg/m?. At room temperature
and standard atmospheric pressure, the speed of sound in air is 343 m/sec and increases
approximately 0.6 m/sec for each degree centigrade rise. The speed of sound in air is
independent of changes in barometric pressure, frequency and wavelength but is directly
proportional to absolute temperature, i.e.

c/ea = VY T,/T,

The speed of sound in solids having large cross-sectional areas is

_ Y(1—p)
¢ = Nrrstey me

where Y is the Young’s modulus of elasticity in nt/m?, p the density in kg/m?, and u Poisson’s
ratio. When the dimension of the cross section is small compared to the wavelength, the
lateral effect considered in Poisson’s ratio can be neglected and the speed of sound is simply

¢ = V¥/p m/sec

c = VB/p m/sec
where B is the bulk modulus in nt/m? and p is the density in kg/m?®. (See Problems
2.10-2.13)

The speed of sound in fluids is



INTRODUCTION

Sound waves are produced when air is disturbed, and travel through a three-dimensional
space commonly as progressive longitudinal sinusoidal waves. Assuming no variation of
pressure in the y or z direction, we can define plane acoustic waves as one-dimensional free
progressive waves traveling in the r direction. The wavefronts are infinite planes per-
pendicular to the r axis, and they are parallel to one another at all time.

In fact. when a small body is oscillating in an extended elastic medium such as air,
the sound waves produced will spread out in widening spheres instead of planes. The
longitudinal wave motion of an infinite column of air enclosed in a smooth rigid tube of
constant cross-sectional area closely approximates plane acoustic wave motion.

WAVE EQUATION

In the analysis of plane acoustic wave motion in a rigid tube, we make the following
assumptions: (a) zero viscosity, (b) homogeneous and continuous fluid medium, (c¢) adia-
batic process, and (d) isotropic and perfectly elastic medium. Any disturbance of the
fluid medium will result in the motion of the fluid along the longitudinal axis of the tube,
causing small variations in pressure and density fluctuating about the equilibrium state.
These phenomena are described by the one-dimensional wave equation

o o*u
P
where ¢ =\ 'B/, is the speed of wave propagation, B the bulk modulus, p the density, and
u the instantaneous displacement.

Since this partial differential equation of motion for plane acoustic waves has exactly
the same form as those for free longitudinal vibration of bars and free transverse vibration
of strings, practically everything deduced for waves in strings and bars is valid for plane
acoustic waves.

The general solution for the one-dimensional wave equation can be written in progressive
waves form
u(z,t) = fi(z—ct) + f2(z + et)
which consists of two parts: the first part fi(z — ct) represents a wave of arbitrary shape
traveling in the positive z direction with velocity ¢, and the second part f:(z + ct) represents
a wave also of arbitrary shape traveling in the negative z direction with velocity ¢. In
complex exponential form, the general solution can be written as

w(z,t) = Aei@—k» 4 Beilat+kn

where k = o/c is the wave number, i=1/—1, and A and B are arbitrary constants (real
or complex) to be evaluated by initial conditions. In sinusoidal sine and cosine series, the
general solution is
wz,t) = Y (A; sin%z + B; cos%z)(Ci sin pit + D; cos pit)
i=12,...

where A and B; are arbitrary constants to be evaluated by boundary conditions, C; and D
are arbitrary constants to be evaluated by initial conditions, and p; are the natural fre-
quencies of the system. (See Problems 2.1-2.6.)

WAVE ELEMENTS

Plane acoustic waves are characterized by three important elements: particle displace-
ment, acoustic pressure, and density change or condensation.
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Particle displacements from their equilibrium positions are amplitudes of motion of
small constant volume elements of the fluid medium possessing average identical properties,
and can be expressed as Wz, t) = Ag“w* 4 Beiortko
or w(z,t) = A cos(wt—kz) + B cos (ot + kx)

Acoustic pressure p is the total instantaneous pressure at a point minus the static pres-
sure. This is often referred to as excess pressure. The effective sound pressure prms at a
point is the root mean square value of the instantaneous sound pressure over a complete
cycle at that point. Thus

p — _Pcza_u — ipcm(Aei(wt—kz) _ Bel(m¢+kz))
ox
or P = —pCwA 8in(wl —kx) + pCwB sin (ot + k)

Density change is the difference between the instantaneous density and the constant
equilibrium density of the medium at any point, and is defined by the condensation s at such

point as _
s = P Po — _g_u — ikAei(mt—kz) _ ikBei(mt+k::)
Po x

When plane acoustic waves are traveling in the positive x direction, it is clear that
particle displacement lags particle velocity, condensation and acoustic pressure by 90°.
On the other hand, when plane acoustic waves are traveling in the negative z direction,
acoustic pressure and condensation lag particle displacement by 90° while particle velocity
leads it by 90°. (See Problems 2.7-2.9.)

SPEED OF SOUND

The speed of sound is the speed of propagation of sound waves through the given
medium. The speed of sound in air is

¢ = Vyp/p m/sec

where y is the ratio of the specific heat of air at constant pressure to that at constant vol-
ume, p is the pressure in newtons/m? and p is the density in kg/m3. At room temperature
and standard atmospheric pressure, the speed of sound in air is 343 m/sec and increases
approximately 0.6 m/sec for each degree centigrade rise. The speed of sound in air is
independent of changes in barometric pressure, frequency and wavelength but is directly
proportional to absolute temperature, i.e.

cifes = V T,/T,

The speed of sound in solids having large cross-sectional areas is

_ ¥(1—)
¢ = ot me

where Y is the Young’s modulus of elasticity in nt/m?, p the density in kg/m?, and . Poisson’s
ratio. When the dimension of the cross section is small compared to the wavelength, the
lateral effect considered in Poisson’s ratio can be neglected and the speed of sound is simply

¢ = vVY/p m/sec
¢ = VB/p m/sec

where B is the bulk modulus in nt/m? and p is the density in kg/m3. (See Problems
2.10-2.13.)

The speed of sound in fluids is
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ACOUSTIC INTENSITY
Acoustic intensity I of a sound wave is defined as the average power transmitted per

unit area in the direction of wave propagation:
pgmu

1 = pr:
where p... is the effective (root mean square) pressure in nt/m?, p is the density in kg/m?,

and c is the speed of sound in m/sec.

At room temperature and standard atmospheric pressure, pPr. = 0.00002 nt/m3,
p = 1.21 kg/m?, ¢ = 343 m/sec, and so acoustic intensity for airborne sounds is approxi-

mately 10-'* watt/m?. (See Problems 2.14-2.18.)

watts/m?

SOUND ENERGY DENSITY

Sound energy density is energy per unit volume in a given medium. Sound waves carry
energy which is partly potential due to displacement of the medium and partly kinetic
arising from the motion of the particles of the medium. If there are no losses, the sum
of these two energies is constant. Energy losses are supplied from the sound source.

The instantaneous sound energy density is

[ poi
Ewi = p2* + —~ watt-sec/m?

and the average sound energy density is
E. = }pz* watt-sec/m?

where , is the instantaneous density in kg/m?® p, is the static pressure in nt/m? z is
particle velocity in m/sec, and ¢ is the speed of sound in m/sec. (See Problems 2.19-2.20.)

SPECIFIC ACOUSTIC IMPEDANCE
Specific acoustic impedance z of a medium is defined as the ratio (real or complex) of
sound pressure to particle velocity:

z = p/v kg/m*-sec or rayls
where p is sound pressure in nt/m?, and v is particle velocity in m/sec.
For barmonic plane acoustic waves traveling in the positive z direction,

z = _—';A = ¢ rayls
and for barmonic piane scoustic waves traveling in the negative z direction,
—¢teA
P — = o Tayls

where ;, 13 the demsity in kg/mr*, ¢ is the speed of sound in m/sec, and pc is known as the
cherocierietic impedance or vesistance of the medium it rayls. At standard atmospheric
presazre xxd 20°C, for example, the demsity of air iz 1.21 kg/m®, the speed of sound is
342 . ‘ver. amd 20, the cuxracteristic mpedsnee of wir is 1.21'34%, ur 415 rayls. For distilled
Wiier & sandurd stmospiveric pressure sud 2°C, the denxity is 993 kg/m’ and the speed
v svunt is 1495 m/sec. ewmce 7is dharacteristic mpedavce is 148107 rayls.
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For standing waves, the specific acoustic impedance will vary from point to point in the
z direction. In general, it is a complex ratio

z = r+1ix rayls

where r is the specific acoustic resistance, z is the specific acoustic reactance and i =V—1.

SOUND MEASUREMENTS

Because of the very wide range of sound power, intensity and pressure encountered in
our acoustical environment, it is customary to use the logarithmic scale known as the
decibel scale to describe these quantities, i.e. to relate the quantity logarithmically to some
standard reference. Decibel (abbreviated db) is a dimensionless unit for expressing the
ratio of two powers, which can be acoustical, mechanical, or electrical. The number of
decibels is 10 times the logarithm to the base 10 of the power ratio. One bel is equal to
10 decibels. Thus sound power level PWL is defined as

PWL = 10log (W/W,) db re W, watts

where W is power in watts, W, is the reference power also in watts, and re = refer to the
reference power W,. For standard power reference W, = 10712 watt,

PWL = (10 log W + 120) db

The acoustical power radiated by a large rocket, for example, is approximately 107 watts or
190 db. For a very soft whisper, the acoustical power radiated is 10~!° watt or 20 db.

Sound intensity level IL is similarly defined as
IL = 10log(I/Is) db re I, watts/m?
For standard sound intensity reference I, = 102 watt/m?,
IL = (10logI + 120) db

Sound pressure level SPL is thus defined as
SPL = 20 log (p/po) db re po nt/m?
For standard sound pressure reference po, = 2(10)~3nt/m? or 0.0002 microbar,

SPL = (20 logp + 94) db

In vibration measurements, the velocity level VL is similarly defined as
VL = 20log (v/ve) db re wvo m/sec
where vo = 1078 m/sec is the standard velocity reference. The acceleration level AL is
AL = 20log(a/as) db re a, m/sec?

where ao = 107° m/sec? is the standard acceleration reference. (See Problems 2.21-2.29.)

RESONANCE OF AIR COLUMNS

Acoustic resonance of air columns is tuned response where the receiver is excited to
vibrate by sound waves having the same frequency as its natural frequency. Resonant
response depends on the distance between sound source and the receiver, and the coupling
medium between them. It is, in fact, an exchange of energy of vibration between the source
and the receiver.



The Helmholtz resonator makes use of the principle of air column resonance to detect
a particular frequency of vibration to which it is accurately tuned. It is simply a spherical
container filled with air, and having a large opening at one end and a much smaller one at
the opposite end. The ear will hear amplified sound of some particular frequency from the
small hole when sound is directed through the larger hole.

Half wavelength resonance of air columns will be observed when the phase change on
reflection is the same at both ends of the tube, i.e. either two nodes or two antinodes. The
effective lengths of air column and its resonant frequencies are

L =1i\2, f=¢/x=1¢/2L, i =1,2,...
where \ is the wavelength and ¢ is the speed of sound.

Quarter wavelength resonance of air columns will be observed when there is no change
in phase at one end of a stationary wave but 180° phase change at the other end. The
effective lengths of air column and its resonant frequencies are

L =x2t—-1)/4, f = c2t—1)/4L, ¢ = 1,2,3, ...

In general, an open end of a tube of air is an antinode, and a closed end a node. (See
Problems 2.30-2.37.)

DOPPLER EFFECT

When a source of sound waves is moving with respect to the medium in which waves
are propagated, or an observer is moving with respect to the medium, or both the source
and the observer have relative motion with respect to each other and to the medium, the
frequency detected by the observer will be different from the actual frequency of the sound

waves emitted by the source. This apparent change in frequency is known as the Doppler
effect.

The observed frequency of a sound depends essentially on the number of sound waves
reaching the ear per second, and is given by

fF = (c—v)f/(c —u) cyc/sec

where f’ is the observed frequency, ¢ the speed of sound, v the speed of the observer relative
to the medium, and « the speed of the source. When the source and observer are approach-
ing each other, the observed frequency is increased; while if they are receding from each
other, the observed frequency is lowered. (See Problems 2.38-2.41.)
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Solved Problems

WAVE EQUATION

2.1.

Derive the differential equation of motion for the free longitudinal elastic vibration
of air columns and discuss its general solution.

Fig. 2-1

An air column may be defined as a sample of air contained by a cylindrical tube of length L
and of uniform cross-sectional area A. The tube is closed at both ends. Then the mass of the air
column is ALp, where p is the density of air. Assume the temperature is constant throughout the

tube, and also negligible air viscosity effects. In short, we have an ideal gas.

While the air column is vibrating, the density of the air in the neighborhood of any section
changes with time. Also, at any instant, the density of the air varies from point to point along
the column. Let u be the instantaneous displacement of any cross section dz of the air column
as shown in Fig. 2-1. When the column of air is vibrating, the initial and instantarneous section dx

and (dr + du) will always contain the same mass of air, Apdzx. Therefore we can write
Apdz = A(p+ dp)(dx + du) (1)
where (p + dp) is the instantaneous density of air, and (dx + du) is the instantaneous length of the
section of air dr in question.
Expanding equation (1) and neglecting the higher order term dp du, we obtain
dp = —pdu/dz 2
Now dp = Bdp/p is the change in pressure due to change of volume and B is the bulk modulus.

We can write equation (2) as
dp = —Bdu/dx 9

While the air is vibrating, pressure changes indicated by (8) will exert forces on the section dz.
Balancing the inertia force and the pressure forces on the section dx, we obtain

d2u _pdul) _pdu _ ,d%u
Apd:z:d—t2 = A(p de> A<p de dezdz>

. o d2u B d2
Simplifying, e - ;-‘#;- (4)

Since u is a function of both x and t, we may use partial differentials to rewrite equation (4) as

2u 02u
e = “an (%)

where ¢2 = B/p.

Equation (5) is therefore the differential equation of motion for the free longitudinal vibration
of an air column inside a closed cylindrical tube and is commonly known as the one-dimensional
wave equation. It has exactly the same form as the differential equation of motion for the free
transverse vibration of strings and free longitudinal vibration of bars. (See Problems 1.16 and 1.21.)
Hence all the theory discussed and problems solved in Chapter 1 for the free transverse vibration
of strings and free longitudinal vibration of bars apply equally well for the vibration of air columns.
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22, Prove that the following expressions are correct solutions for the one-dimensional

wave equation:
(@ u(r,t) = Ae~ sinkr + Be“! cos kz
(0) u(x,t) = (Ce** + De~*)e*

(@) The one-dimensional wave equation is given by

Pu _ (1)
o G
Lo ; ot Lo —k2(A sin kx + B cos kx)et! ®)
Now i s k(A cos kx — B sin kx)elst, Fyc i
a® : {wl
‘:_‘: = iw(A sinkz + B cos kx)e"!, ﬁ%‘ = —uA sinkz + B cos kz)el*t ®

Equating (¢) and (3) gives k% = o). But k = w/c is defined as the wave number. When
this expression for the wave number is used, the required answer follows.

(0) If u(r,t) = (Ce%s + De—ka)olvt, we proceed as in part (a):

du (ikCelkz — ik Do~ ikz)elot, P _ —k2(Celkt + De—ikz)ghot

iz ox®
ou ] _ Pu _ ikx - tkz) glwt
3 = w(Cel= + De—tkz)elat, e - —w2(Celkr + De )e

and the wave equation becomes ~
—o3(Co'kz + De-tkz)gint = —g2k2(Cetkr + Do—ikz)glut

which again yields k = o/¢ as in part (a). Therefore we conclude this is also a correct solution.

Since the wave equation for plane acoustic waves is linear, i.e. u and its coefficients never
occur in any form other than that of the first degree, the principle of superposition can be
applied to obtain solutions in series form. For example, if f, and f; are any two possible and
correct solutions for the wave equation, 6,f, + a,f; is also a possible and correct solution where
a, and ay are two arbitrary constants. In short, the most general solution is in series form
which is the sum of an arbitrary number of all possible solutions.

23, If wu(z,0)= Uo(z), u(z,0)=0 are the initial conditions, find the traveling-wave
solution for the one-dimensional wave equation.
The traveling-wave solution for the one-dimensional wave equation can be written as
uz, t) = fi(zx—et) + fy(z+et)
where f, and f, are arbitrary functions.
From the given initial conditions,

u(z,0) = f,(z) + f3(z) = Uy(z) n
U(z,0) = —of{(z) + of3(z) = 0 ®
and from (8), 1i(@) = fi(z) ®
Integration of (3) gives L@ = fux)+C @

Substituting (4) into (1), we obtain
2/(®)+C = Ugla) or fy(z) = U@ ~C) )
From (4), hiz) = §{Us@)+C)

Subatituting (5) and (6) into the traveling-wave solution,
und = §UoE =040 + [JUp +o0~C) = §[Uple~ot) + U,z + ot))

@
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24.

Show that solutions to the one-dimensional wave equation can assume harmonic,
complex exponential, hyperbolic and exponential forms.

Plane acoustic wave motion is governed by the one-dimensional wave equation
Pu 0%
e - Yz ()
Let us look for a solution in the general form of u(x,t) = X(x)T(t), where X and T are
functions of x and ¢ respectively. Substituting this expression for u into (1), we obtain
1ex _ 1T )
X de2 =~ 2T de?

Since the right-hand side of (2) is a function of t, and the left-hand side is a function of x alone,

each side must be equal to the same constant. Let this constant be —p2. This leads to the following
ordinary differential equations

‘f—j+p2x =0 and %'—+ c¢2p2T = 0
the solutions of which are
X(z) = A cospr + B sinpzx, T(t) = Ccoscpt + D sincpt
and so w(x,t) = (A cospz + B sin px)(C cos cpt + D sinept) 6))
or X(z) = Aeipr + Be—ipr,  T(f) = Ceicet + De—icpt
and w(z,t) = (AeiPz + Be—ipr)(Ceicpt 4 De—icpt) @)

where A, B, C,D are arbitrary constants.

If we call the constant for equation (2) p2, we obtain

fi—pQX =0 and :%g——-c?p?T =0
the solutions of which are
X(z) = A coshpr + B sinhpz, T(t) = C coshept + D sinhept
and so u(x,t) = (A cosh px + B sinh px)(C cosh ¢pt + D sinh ¢pt) 5)
or X(x) = AePr + Be—P1, T(t) = Cecpt + De—crt
and u(x,t) = (AePz+ Be pr)(CecPt 4+ De—cpt) 6)

Equations (3) to (6) represent the four different forms of solution for the one-dimensional wave
equation. These forms of solution — the harmonic, the complex exponential, the hyperbolic and the
exponential — are all interchangeable and will give rise to standing waves, formed by the super-
position of two sets of waves equal in wavelength and amplitude but moving in opposite directions.
(See Problem 2.3 for the progressive waves forms of solution for the one-dimensional wave equation.)

Show that the function u = f(ot + kx) represents a progressive wave of fixed profile
f(kz) moving along the negative x axis with constant velocity ¢ = o/k.

Since u is a linear, single-valued function of =z
and ¢, we may write b u

u = flot+kz) = kflot/k+2z) = kf(z+ ct)

ct
where ¢ = w/k.
T
Plotting the function u against x, the wave at o’ 0 -
time t =0 is u = kf(z) or f(kx). As the wave is —z
propagated without change of shape, the wave shape X
at a later time t will be identical to that at t =0

except that the wave profile has moved a distance ct
in the negative z direction.
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Now O’ is the new origin, and & = X — ot as shown in Fig. 2-2, The equation of the wave
profile referred to this new origin O’ is
u = kf(X) = kf(x+ct)
Similarly, it can be shown that u = f(ut — kz) or u = kf(x — ct) represents a wave of fixed
profile f(kz) moving in the positive z direction with constant velocity ¢ = w/k. 1f the wave profile
is harmonic, we have free harmonic progressive waves, e.g. A sin (wt + kx), A cos k(x — ct), Ae'(@t=k2),

A harmonic diverging spherical wave is therefore represented by (A/7) cos (wt — kz) or (A/r)e!(=t—k=)
where its amplitude decreases with distance of propagation.

26. Use D’Alembert’s method of integration to obtain the solution for the one-dimensional
wave equation.

Let us introduce two new independent variables r and & such that

r = z—¢c¢t, 8 = z+ ot
ér _ o, _ _, O _ s _
Then az -l T8 g Tl G T
Using the chain rule:
o dur  ua o, ou
= or = dedx ~  or ds
Pu _ Pudr | Pwon  Puse | Budr _ Su P, u
322 = oriaz T orosaz T 9%z T srosax - o2 T %5708 T a2 (1)
o _ e  ua o, du
2t ~ ot T ot - "ot %
Pu __ Pudy  Puds | u I o%u 38
FY2] art at oras 3t or as ot YY)
= Pu _ Pu 2 Pu
= ¢33 ros T aa (®
Substituting (1) and (2) into the wave equation 3’1‘7 = c’a 3 Yields
au
or O 0 L
Integrating () first with respect to r gives
n/ds = f1(s) %)

where f3(s) is an arbitrary function of s. Integration of (4) with respect to 8 gives
= = [fn@ds+ fi0 = S0+ S20) ®
where f,(7) s an arbitrary function of . Thus the general solution is

w(z,t) = f,(x—et) + f(z + ct)
where f, and /, are arbitrary functions.

WAVE ELEMENTS

27. For sinusoidal plane acoustic waves, show that the effective (root mean square)

value of acoustic pressure P = Prewn/V2. Find the intensity / of a plane acoustic
wave having a peak acoustic pressure of 2 nt/m? at standard atmospheric pressure
and temperature.

| 4
Pme = J%j: [Poear SiM (uf — Ex)2dt = Jf%*_[%(;.c—;ﬁnzat)]:
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2.8.

Now the period P = 2r/w, then

Prms = ~ip;zmlk = ppuk/ﬁ

and I = pl.x/2c = 2%/(2(1.21)343] = 0.0024 watt/m?, where p = 1.21kg/m® is the density of air
and ¢ = 343 m/sec is the speed of sound in air.

Here we have ideal constant wave front propagation, i.e. intensity remains constant for any
distance from the source because of plane acoustic waves. This is not true for spherical acoustic

wave propagation.

For harmonic plane acoustic wave propagation in the positive z direction, show that
particle velocity leads particle displacement by 90°. What is the phase relationship
between acoustic pressure and particle displacement when the waves are traveling
in the negative x direction?

For harmonic plane acoustic wave propagation in the positive z direction, particle displace-

ment is expressed as
ulx,t) = AeM9t=kD  or  y(z,t) = A cos (ot — kx)
Particle velocity du/dt = iwAel Otk = 4.y
du/dt = —uwA sin(wt—kx) = A cos(wt—kzx+ 90°)

or
Thus the particle velocity du/dt leads the particle displacement u by 90°.

For harmonic acoustic wave propagation in the negative z direction,

u(z, t) = Aeilwt k)

Now acoustic pressure p = —pcX(du/dz) = —ipcuAei@t+ks) = —jsc,u. Therefore the acoustic pres-

sure p lags the particle displacement u by 90°,

Derive an expression for acoustic pressure p in a free progressive plane acoustic wave
from measurement of particle velocity du/dt.
In the derivation of the wave equation for plane acoustic waves, the force acting is shown
equal to the product of mass and acceleration, i.e.
—dp/ax = p(d2u/at?)

For steady state sinusoidal progressive wave motion, we can write particle displacement,

velocity, and acceleration respectively as

o= AR qu/dt = iwAelOtTRD 2y /det = —2Ae7 @K = {u(du/dt)

Substitute the above expression for the acceleration into the force equation and obtain

—ap/oxr = pliw)(du/dt) or Ap = —iwAzp(du/dt) nt/m?

where i = V-1, o is the frequency in rad/sec, p is the density in kg/m3, Az is the particle displace-

ment in m, and dw/dt is the particle velocity in m/sec.

SPEED OF SOUND
2.10. Calculate the speed of sound in air at 20°C and standard atmospheric pressure.

¢ = Vyp/p = 343 m/sec

where y = 1.4 is the ratio of the specific heat of air at constant pressure to that at constant
volume, p = 1.01(10)° nt/m2 is the pressure, and p = 1.21kg/m3 is the density of air.
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The bulk modulus of water is B = 2.1(10)° nt/m?. Find the speed of sound in water.
¢ = VBlp = V2.1(10)%/998 = 1450 m/sec

where o = 998 kg/m3 is the density of water,

Young's modulus of copper is 12.2(10)!° nt/m?, and the density of copper is 8900 kg/m?.
Calculate the speed of sound in copper.

¢ = VY/p = V12.2(10)19/8900 = 3700 m/sec

Prove that the speed of sound in air is proportional to the square root of the absolute
temperature. :
The speed of sound in air at 0°C is given by

¢ = Vrpley

where y is the ratio of the specific heat of air at constant pressure to that at constant volume, p
is the effective pressure, and p, is the density at 0°C. Similarly, the speed of sound in air at

t°Cis
& = Vrprlp

where p, is the density of air at t°C. But py = p(1 + at) = py(T,/T,), where a is the coefficient of
expansion of air, T, and T, are absolute temperatures. Thus

& = ;O%,m = VopledTJ Ty = VETIT, or cley = VTJT,

INTENSITY AND ENERGY DENSITY
214 Derive a general expression for the intensity of harmonic progressive plane acoustic

waves.

Acoustic intensity is the average rate of flow of sound energy through unit area, or the average
of the instantaneous power flow through unmit area. Instantaneous power per unit area is the
pmducf of instantaneous pressure p and instantaneous particle velocity v, and the average power
per unit area or intensity is therefore givem by

1 (P P
I = F_’: prdt = }_l:aJ; [—pewA sin (ut — kz)|[—wA sin (ot — kz)] dt

rhereP.isthepe.riod,pisthedensity,cisthespeedofsonnd, ¥ = A cos (ot — kz) i3 the harmonic
progressive wave, ¢ = ju/dt = —ud gsin(ut—kr), and p = —pc¥(du/dr) = —pewd sin (ot — kz).

Thas

242 P'

1 = 55 f sin (ut — kx)]2 dt
L]

_ oeeltAr et
P \ (cm-kzsm-ut-.—mzkzcnszut—isin2utstn2kz)dt

ot A2
—p WP/2) = w‘p

Since p = —sced siniat—kx) and P = —pewd, p = N2 th i
for acoustic intensity can be written as max ras — Pmax \/_, e general expression

1= Bttee = prudee



CHAP. 2| PLANE ACOUSTIC WAVES 49

2.15. Compare the intensities of sound in air and in water for (a) the same acoustic pres-

2.16.

2.17.

2.18.

sure, and (b) the same frequency and displacement amplitude.

(a) At standard atmospheric pressure and temperature, the density of air is p =1.21 kg/m3® and
the speed of sound in air is ¢ = 343 m/sec. The characteristic impedance of air is pe =1.21(343) =

415 rayls. Similarly, the characteristic impedance of distilled water is pc = 998(1480) =
1.48(10)8 rayls.

Intensity I = p?,./pc and so the ratio is
Ialr _ plz'ms/(Pc)alr _ 1.48(10)8
Iwater p?‘ms/(P'c)wnter 415

This indicates that for the same acoustic pressure, the acoustic intensity in air is 3660 times
that in water,

= 35660

Iwater _ %(Pc"’zAz)wnter _ (Pc)water _ 1.48(10)0
Igic B &(Pcszz)alr - (P€)asr 415

For the same frequency and displacement amplitude, the acoustic intensity in water is 3560
times that in air.

(b) = 3560

A plane acoustic wave in air has an intensity of 10 watts/m2. Calculate the force on

a wall of area 10 m? due to the impact of the wave at right angles to the surface of
the wall.

Acoustic intensity is defined as power per unit area, and power is the product of force and
velocity. Acoustic intensity can be expressed as

I = pe watts/m?
where p is the acoustic pressure in nt/m2, and ¢ is the velocity of sound wave in air. Thus
p = I/c = 10/343 = 0.0292 nt/m?
where ¢ = 343 m/sec for air at room temperature and pressure. The force on the wall is therefore
F = pA = (0.0292)(10) = 0.292 nt

Compute the intensity and acoustic pressure of a plane acoustic wave having an
intensity level of 100 db re 102 watt/m2.
From the definition of sound intensity level, we have

IL = 10logl + 120 db re 10-12 watt/m2 or 100 = 101logl + 120
from which log I = —2 and I = 0.01 watt/m2.

Acoustic pressure p = VIpc = V/0.01(1.21)343 = 2.04 nt/m?
where p = 1.21 kg/m? is the density of .air, and ¢ = 343 m/sec is the speed of sound in air.
If the sound pressure level is assumed equal to the intensity level (see Problem 2.27), then

SPL = 20 logp + 94 db re 2(10)~5 nt/m2 or 100 = 20 logp + 94
from which logp = 0.3 and p = 2.00 nt/m2.

What is the acoustic intensity in water produced by a free progressive plane acoustic
wave having a sound pressure level of 100 db re 1 microbar? Find also the ratio of

sound pressures produced if an identical sound wave of equal intensity is propagated
through air and water.

The sound pressure level SPL = 20 log (p/p,) = 20 log(p/0.1) = 100 db re 1 microbar =
0.1 nt/m2. The effective pressure of the given wave is

Prms = 0.1 antilogb = 104 nt/m?2
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Since acoustic intensity I = pfm,/pc where , = 998 kg/ms3
¢ = 1480 m/sec is the speed of sound in water, then

I = (104)2/998(1480) = 177.6 watts/m?

For sound waves of equal intensities,

is the density of water,

Iwuter _ (p?mslpc)waler _ (p?ms)wnter/lAso'ooo
Iair (plgms/Pc)nir (plz'ms)alr/415

where pc is the characteristic impedance. Thus
Paaxer/1,430,000 = Pﬁlr/‘“-5 or Puwater/Pair = 60

Sound pressure in water is therefore 60 times greater than sound pressure in air for waves of equal
intensities.

Find the sound energy density in air and in water of a free progressive plane acoustic
wave having an intensity level of 80 db re 10-!2 watt/m?,

Wave in air:

Intensity level IL = 10 log (I/I;) where I, = 10-!2 watt/m? is the reference intensity. Thus
80 = 10log! + 120 or I = 10—4 watt/m2. The sound energy density is

I/le = 10-4/343 = 2.9(10)~7 joules/m3
where ¢ = 343 m/sec is the speed of sound in air.

Wave in water:
The sound intensity is the same but the speed of sound is different. The sound energy density

is theref
is therefore Ife = 10-4/1480 = 6.7(10)~* joules/m?

where ¢ = 1480 m/sec is the speed of sound in water.

Derive an expression for the sound energy density of a harmonic plane acoustic wave.

The sound energy density associated with a medium at any instant is the sum of the kinetic
and potential energies per unit volume. The kinetic energy is %pV:EZ, where p is the average density,
V the volume of the medium, z the average particle velocity over the volume. The potential
energy is determined as follows:

The potential energy is equal to the work done by the sound pressure and change in volume of
the medium, ie. W = —f p’ dV' where p’ is the instantaneous pressure and V' the instantaneous

volume. But dV’' = —V dp'/B where B = pc? is the bulk modulus of the medium. Let p, be the
static sound pressure; then

p'
W=V [ paf = VEBFR-5] o W = (VI2B)Zpip+ )
Po

where p = p’ — p, is the excessive pressure,
For harmonic plane acoustic progressive waves, p = pcZ; hence the total sound energy is the
sum of kinetic and potential energies,
E = }pVz%+ (V/2B)(2pyp +p?) = V(pz2 + poit/c)

Then the instantaneous sound energy density is
E,. = E/V = pi? + pyz/c watt-sec/m3

and the average sound energy density is therefore given by
P
E. = 1P f (632 + pyifc) dt
]

averaging over a complete cycle of period P. If z(t) = A cos (vt — kx), then £ = —wA sin (ot — kz),
and the above expression will yield
Ey = 303% or }pu?A? watt-sec/m?

A

L *
[t 0
i
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B e
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SOUND MEASUREMENTS

2.21.

2.23.

2.24.

The power output from a loudspeaker is raised from 5 to 50 watts. What is the
change in sound power level?

Sound power level is PWL = 10 log (W/W,) db re W, watts, where W, is the reference power
in watts. Thus

(PWL), = 10 log (5/W,) db, (PWL), = 10 log (50/W,) db
and APWL = (PWL), — (PWL), = 10 log (50/W,) — 10 log (5/W,)

50/W,
101ogw7° = 10logl10 = 10db

Conversely, if the power output is lowered from 50 to 5 watts, the change in power level
would be —10 db.

Show that the ratio of the acoustic powers of two sounds in decibels is equal to the
difference of their power levels.

Let W, and W, be the acoustic powers of two sounds. The ratio of the powers is W,/W,, and
in decibels this ratio becomes 10 log (W,/W,) db.

Now the sound power levels are
(PWL), = 10 log (W,/W,) db, (PWL), = 10 log (W,/W,) db
where W, is the reference power.

The difference in sound power level is given by

APWL = (PWL), — (PWL), = 10log(W,;/Wy — 10 log (W,/W)
= 1010g ™o _ 10 10g W /W,) db
- og W2/Wo - Og( 1 2)

Determine the acoustic intensity level at a distance of 10 m from a source which

radiates 1 watt of acoustic power. Use reference intensities of (a) 100, (b) 1,
(¢) 1072 and (d) 107! watts/m?.

The acoustic intensity level is defined as IL = 10 log (I/Iy) db re I, watts/m2, where I, is the
reference intensity.

First calculate the sound intensity at 10 m from the source:
Power radiated W = (intensity)(area) = 4s72I

(Here we assume spherical wave propagation.) Then I = W/A = 1/4(3.14)100 = 0.00079 watt/m2,

(@) IL = 10 log (0.00079/100) = 10 log 0.00079 — 10 log 100 = —51 db re 100 watts/m?
() IL = 10 log (0.00079/1.0) = 10(—3.1) = —31 db re 1 watt/m?2
(¢) IL = 10 log (0.00079/10-12) = 89 db re 10— !2 watt/m?2
(d) IL = 10 10g(0.00079/10—13) = —31 + 130 = 99 db re 1013 watt/m?2
In

general, the acoustic intensity level of a sound source at a given distance is given in the
number of decibels, omitting the reference intensity which is commonly accepted as 1012 watt/m2,

An air-conditioning unit operates with a sound intensity level of 73 db. If it is

operated in a room with an ambient sound intensity level of 68 db, what will be the
resultant intensity level?

(IL); = 10log(I/Iy) = 783db or I, = I,antilog7.3 = 4.77(10)"1, watts/m?2
(IL), = 101log(I/Is) = 68db or I, = I, antilog6.8 = 0.9(10)7I, watts/m?2
The total sound intensity I = I, + I, = 5.67(10)7], watts/m2 and the resultant intensity level is
IL = 10 log (I/I) = 10 log5.67(10)7 = 73.69 db



225 Calculate the sound pressure level for a sound wave having an effective pressure of

)
=3

-

35ntm:. Use reference pressures of (a) 10, (b) 1, (c) 10~* and (d) 2(10)™*
microbars.

The sound pressure level SPL = 20 log (p/p,) db re py microbars, where 1 microbar = 0.1 nt/m2,
(@) SPL = 20log:35/10; = 10.8 db re 10 microbars
ib) SPL = 201lvg35 = 30.8db re 1 microbar
et SPL = 201og:35/10-%) = 110.8db re 10~ * microbar
id) SPL = 20log:-35,0.0002) = 104.8 db re 2(10)~* microbar

In general, reference pressure of 1 microbar is commonly used for underwater sound. For

audible sound, reference pressure of 0.0002 microbar is being used.

If sound pressure is doubled, find the increase in sound pressure level.

Let p be the initial sound pressure. Then (SPL), = 20 log (p/py) db and similarly (SPL), =

20 log (2p/py) db.  Thus
2p/py
p/po

ASPL = (SPL), — (SPL);, = 20log = 20log2 = 6db

For plane acoustic waves, express the intensity level in terms of the sound pressure

level.
The intensity level is defined as IL = 10 log (I/1;)db where I is the intensity and 7, is the
reference intensity. Now [ = p¥pc and I, = p?/(pc), where p = p.,, — effective pressure,

Thus
10log! — 10logl, = 10 log(p¥/pc) — 10 log (p2/pyey)

10 log p? — 10 log pc ~ 10 log p2 + 10 log (pe),
10 log (pz/pg) + 10 log (pgeo/oe) = SPL + 10 log (pgce/pc)

IL

1}

If the measured characteristic impedance pc is equal to the reference characteristic impedance
(p€y (e.g. measurements are made in the same medium under identical environment), intensity level
IL will be equal to the sound pressure level SPL.

Two sound sources S, and S. are radiating sound waves of different frequencies. If
their sound pressure levels recorded at position S as shown in Fig. 2-3 are 75 and 80 db
respectively, find the total sound pressure level at S due to the two sources together.

Fig. 2-3

By definition, sound pressure level SPL = 20 log (p/py) db. Then
(SPL); = 20log (py/py) = 75 or p, = 5.6 X 103p, nt/m2

(SPL), = 20log(py/py) = 80 or p, 101py nt/m?2
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2.29.

Thus the total sound pressure at S is p = p, + pg = 15.6 X 103p, nt/m? and the total sound
pressure level is

(SPL)otar = 20 log (p/py) = 20 log (15,600py/py) = 20(4.195) = 83.9 db

The total sound pressure level is not at all equal to the arithmetic sum of the individual
sound pressure levels. It is not necessary to determine the actual sound pressure in the computa-
tion of total sound pressure level.

On the other hand, if the two sound sources are radiating sound waves of the same frequency,
the total sound pressure level at S will be different from the one calculated above.

(SPL), = 20logp; +94 = 76 or p; = 0.11 nt/m?
(SPL), = 20logp, +94 = 80 or p; = 0.2 nt/m?

and the total sound pressure p = \/pf +p2 = V(0.11)2 + (0.2)2 = 0.23 nt/m2. Thus
(SPL)io = 20 10g0.23 + 94 = 92.7 db

The pressure amplitude of a plane acoustic wave is kept constant while the tem-
perature increases from 0°C to 20°C. Find (a) the percent change in sound intensity,
(b) the change in sound intensity level, and (c) the change in sound pressure level.

(e) Sound intensity is I = p2/2pc, where p is the pressure amplitude in nt/m2, p is the density of
air in kg/m3, and c is the speed of sound in air in m/sec.

Let the sound intensity at 0°C be [, = p?/2(1.3)332 = p?/862 watts/m2 and the sound
intensity at 20°C be I 5y, = p%/2(1.2)343 = p?/824 watts/m2. Then

AI = 1(20) il l(o) = P2/824 - p2/862
where p is the constant pressure amplitude. Hence the percent change in sound intensity ia

iven b
¢ Y Al _ pY824 —pY862 _ o
I(o) -— p2/862 -_ 0-0 or 5 /(7

(b) The sound intensity level is IL = 10 log/ — 10 log I, db where I is the sound intensity and
I, is the reference intensity. At 0°C, we have

IL(O) = 10 log (P2/862) — 10 log Io db
and at 20°C, ILyy = 10 log (p?/824) — 10 log I, db
Then ILyo) — ILey = 10log862 — 10log824 = 10(2.936—2916) = 0.2db

(c) The sound pressure level is SPL = 20 log (p/p,) db where p is the pressure amplitude and
Po is the reference sound pressure amplitude. At 0°C, we have

SPL(O) = 20 ]Og (p(o)/p()) db
and at 20°C, SPL(20) = 20 log (p(Qo)/po) db

But since the sound preasure amplitude is kept constant, i.e. Py = P20y = P, SPL(s) = SPL(30).
We find no change in sound pressure level.

RESONANCE OF AIR COLUMNS

2.30.

A rigid tube of uniform smooth cross-sectional area is closed at both ends. If the
tube contains air, find its motion when disturbed.

The one-dimensional wave equation for harmonic progressive plane acoustic wave is (see
Problem 2.1)

o2u/ot? = c2(32u/ax?) 1)

where ¢ = \/B/p is the speed of sound, B the bulk modulus and p the density. The general
solution is

u(z,t) = 122 (A cos pit + B, sinp;t) <C‘ cos%: + D, sin%z> (8)
where A, B, are arbitrary constants to be determined by initial conditions, C,, D, are arbitrary
constants to be determined by boundary conditions, and p; are the natural frequencies of the system.
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The boundary conditions are u(0,t) =0 and w(L,#) =0 where L fa the length of the tube
From the first boundary condition,

C(Ajcoapt + Bysinpt) = 0 or C, = 0
and from the second boundary condition,
Dy sin (pL/e)(A, conpt + B sinpyt) = 0

Because D, cannot equal sero all the time, sin (p,L/¢) must equal zero. Therefore sin (plfe) =0
and p, = twe/L, i =1,8,... are the natural frequencies of the system.

The normal modes of vibration are given by X,(z) = sin (irz/L) and the general motion of the
air inside the tube is

u(e, t) = ‘ é sin (ire/L) (A cos pt + B{ sin pt) (]
where A, = A,D,, B, = B\D,.

The analysis and results of this problem are exactly the same as for the transverse vibration
of a uniform string fixed at both ends and the longitudinal vibration of a uniform bar fixed at
both ends. (See Problems 1.18 and 1.32.) This Is because their differential equations of motion
are mathematlcally similar; they are thus equivalent to one another. As a result, there are almost
complete analogies between the wave motion of uniform strings and plane acoustic waves. The
analogy between longitudinal vibration of a bar and plane acoustic waves in air columns Is almost
complete except that the bar is not a three-dimensionally infinite solld of the same physical con-
stituent. As the outer surface of the bar is free, any longitudinal elongation of the bar will result
in a transverse linear dilatation —us, where u is the Poisson’s ratio for the material of the bar.
This will in turn affect the value for Young's modulus which is one of the two factors governing
the speed of wave propagation.

first harmonle  (fundamentsl)

second harmonic  (Bret overione)

I /2 N

third barmonic /second overions)

Fig.2-4. Modes of vibration of air ecolumn in & closed tube.

231 A rigid tube of uniform cross-sectional area and length L is opened at buth ends.
Investigate the motion of plane scoustic waves inside the tube.

Refer to equations (1) and (£) of Problem 2.30 for the one-dimensional wave equation and ity
general solution.

The boundary conditions sre du/dzs = —dp/B =0 ot 2=0 and z =L, ie the serustic
pressure ot both ends of the tube rvust equs) stmospheric pressure. From the first boundary

condition,
DiipjevA conpt 4 Byompt) = 0 o D, = 0
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and from the second boundary condition,
~Ci(pi/c) sin (p;L/c) (A cosp;t + B;sinpit) = 0 or sin(pL/c) = 0

Hence p; = ire/L, 1=1,2,... .
The motion for plane acoustic waves inside a tube open at both ends is therefore given by

u(z, t) = 122 cos (irz/c) (A cos pit + B sin p;t)

TSN

where A, = A,C; and B{= B,C; are arbitrary constants to be evaluated by initial conditions, and
p; are the natural frequencies.

The motion is equivalent to the free longitudinal vibration of a uniform bar free at both ends.
(See Problem 1.23.)

first harmonic  (fundamental)

second harmonic (first overtone)

le /2 -
-

third harmonic (second overtone)

Fig.2-5. Modes of vibration of air column in an open tube.

232. A rigid tube containing air is closed at one and open at the other end. It has a

uniform cross-sectional area and length L. Find the motion of the air inside the
tube if it is disturbed.

Refer to equations (1) and (2) of Problem 2.30 for the one-dimensional wave equation and its
general solution. The boundary conditions are «(0,t) =0, i.e. no motion at the closed end.
du(L,t)/dz = 0, i.e. acoustic pressure must equal atmospheric pressure at the open end.

From boundary condition at z =0,
Ci(A;cospit + B;sinpt) = 0 or C; =0
and from boundary condition at z =L,
D;(pi/c) cos (p;L/c) (A;cospit +B;sinpt) = 0 or cos(pLic) = 0
Hence p; =ire/2L, i=1,3,....
The motion of air inside a tube open at one end and closed at the other is therefore given by

- . 11_2 [ .
u(z, t) = (= 123 sin 5 (A, cos pit + By sin p;t)

.....

where A= A;D, and B{= B;D; are arbitrary constants to be evaluated by initial conditions.
and p; are the natural frequencies.
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The motion is equivalent to the free longitudinal vibration of a uniform bar fixed at one end
and free at the other. (See Problem 1.24.)

l .
I~ N4 |

_< _ _

first harmonic  (fundamental)

/4 i

—_————

A

third harmonic (first overtone)

o |

fifth harmonic  (second overtone)

Fig.2-6. Modes of vibration of air column in a tube open at one end
and closed at the other end.

2.33. A rigid tube of uniform cross-sectional area is closed at one end by a rigid boundary
and at the other end by a mass M, free to move along the tube as shown in Fig. 2-7.
If the tube contains air, find the normal modes of vibration of the air inside the tube.

u

— — —_—_—

Fig. 2-7

Refer to equations (1) and (2) of Problem 2.30 for the one-dimensional wave equation and its
general solution.

Let the fixed boundary be taken as z = 0, and the normal equilibrium position of the movable
mass M, be at z = L. The boundary conditions are

u(0,t) = 0, A(p—py) = M, [%zt—',‘:l -

i.e.at z =0 the wave motion of the air is zero, and at z = L the force on the surface of the mass

M, due to the excessive pressure inside the tube causes the acceleration of the mass M, A is the
area of the surface of the mass M,

From the first boundary condition,
Ci(A;cospt+ B;sinpt) = 0 or C; = 0
and from the second boundary condition,
P—py = dp = —B(du/dz) = —pc2(du/dzx)

. L
where [%] =0 (A cos pit + B, sin pt) (Di cosp'—> . Then
=L c ¢
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2.34.

2.35.
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1 p L ’ .
[%;],=L = -p} Sm'_:,— (A} cos pit + B;sin p;t)

where A, = A;D, and B; = B;D;. Thus the second boundary condition becomes
du d?u
—Ac2, (% = au
At <dz):=l, Mq [dtz:l-f=l—

i iL ’ ’ . pL ’ ’ .
or —Ac?p [—:—' cospT (A cos p;t + B; sin p‘t)] = M, [—pf sm—;—— (A; cos p;t + B sin pit):|

and finally we obtain tan (p;L/¢c) = Acp/p;M, which is the frequency equation.
Thus the normal modes of vibration of the air inside the tube are given by

a . p. .
u(x,t) = S sin ;‘ z (A cos p;t + B] sin p;t)
i=12,...

where A’ and B/ are arbitrary constants to be evaluated by initial conditions and p; are the natural
frequencies. The normal modes of vibration are harmonic sine functions.

When M, =0, so that the tube is effectively open to the air at one end, we obtain the case
of a tube closed at one end and open at the other end (see Problem 2.32). When M, = =, so that
the tube is effectively closed at each end, we obtain the case of a tube closed at both ends (see

Problem 2.30).
The motion is equivalent to the free longitudinal vibration of a uniform bar with a concentrated

heavy mass attached at the free end (see Problem 1.25).

Calculate the three lowest frequencies of (a) closed tube, (b) open tube and (c) closed-
open tube, each of length 0.5 m and at standard atmospheric pressure and temperature.
(a) Wavelength A; = 2(length of tube) = 2(.5) = 1.0 m

fi = ¢/A\; = 343/1.0 = 343, f, = 2f, = 686, f3 = 3f; = 1029 cyc/sec

(b) Wavelength A, = 2(length of tube) = 1.0 m
fi = 343, f, = 686, fa = 1029 cyc/sec (same as in part (a))

(c) Wavelength A; = 4(length of tube) = 4(.5) = 2.0 m
fi = 343/2 = 1715, f, = 3fy = 5145, fa = 5f; = 8b7.5 cye/sec

A resonance tube (a tube open at one end and closed at the other) is employed to find
the frequency of a tuning fork. If resonance is obtained when the length of air
column is 0.52 and 2.25 m, what is the frequency of the tuning fork? What is the end
correction factor for this resonance tube?

Assume the two measurements of air column represent
the shortest and the next shortest lengths for resonance as
shown in Fig. 2-8. The lengths of air column plus the same )‘/{[ / T

end correction factor ¢ is equal to a quarter and three quarters

of a wavelength respectively; or the difference of their sums 3r/4
equals one half wavelength, i.e. | |
(2.25+e) — (052+¢) = §» or A = 3.46m \ /

Since A\ = ¢f, where )\ is the wavelength, ¢ = 343 m/sec is
the speed of sound in air and f is the frequency of the tuning

fork, then
f = ¢/» = 343/3.46 = 99 cyc/sec

To find the end correction factor, we write L,
052+e¢ = 4\, 226+e = 3\/4

o

from which e = 0.23/0.67 = 0.34 m. Fig. 2-8
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236. In order to determine the speed of sound at room temperature, a resonance tube is

2317.

used. A tuning fork of frequency fi = 200 cyc/sec causes it to resonate when the
water level is 0.344 m below the reference mark. A second tuning fork of frequency
f2 = 400 cyc/sec obtains resonance when the water level is 0.136 m below the ref-
erence mark. What is the speed of sound in air?

As shown in Problem 2.32, the shortest length for resonance for a tube open at one end and
closed at the other is equal to one quarter wavelength. Thus

L+0344 = \/4, L+0136 = \/4

where L is the distance from the open end of the tube to the reference mark, A, = ¢/f; = ¢/200
and \; = ¢/fy = ¢/400 are the wavelengths and ¢ is the speed of sound in air at room temperature,
Substituting these values in the above equations and solving, we obtain ¢ = 334 m/sec.

An air column 0.8 m long resonates in a closed cylindrical tube of diameter 0.1 m
with an unmarked tuning fork. Calculate the frequency of vibration of the unmarked
tuning fork.

Resonance of air column is an exchange of energy of vibration between a tuning fork and a
closed air column whose natural frequency can be adjusted to that of the tuning fork. This is
also the maximum acoustic response obtainable,

From Problem 2.32, for a closed tube the wave length A = 4L where L is the effective length
of the resonant air column. The effective length of the resonant air column is equal to the actual
length of the air column plus a correction. This correction, found by experiments to be equal to
0.3d, where d, is the diameter of the tube, is due to the spherical spread of the reflected plane
acoustic waves at the open end of the tube. Thus we have

L = 08+(03)0.1) =08m and A 4L = 332 m
Now f=¢/x where ¢ = 343 m/sec is the speed of sound in air. Thus

f = 343/3.32 = 103 cyc/sec

DOPPLER EFFECT

238,

Develop an expression for the Doppler effect, i.e. the apparent change in frequency
due to relative motion of the sound-producing source and the sound receiver.

We have previously shown that the speed at which sound waves propagate in a medium is
independent of the source producing it. If the source is moving relative to the medium, the speed

of sound is unchanged, but the wavelength and the frequency as observed by a stationary receiver
will be changed.

For example, take a square wave whose source is moving toward the stationary receiver R
with velocity u as shown in Fig. 2-9.

_—
s R’
.

Fig. 2-9

First assume the source S is fixed. The sound waves will fill the distance SE between the
fixed source S and stationary receiver R in a certain time At. Now let the source S move toward
the receiver B with velocity u. Then in the same time interval At, the same sound waves will be
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v, the apparent frequency is given by

SR — S’'R’ = uAt or AfAat — \'fAat =
of the emitted sound waves, A the original wavelength and A’ the apparent wavelength. Since

¢ =fx = f'\', we obtain
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compressed into the distance S’R’ = u At which is the distance covered by the source S in At. Now

= uAt, from which A’ = (fA —u)/f where f is the frequency

ro= N = g ()

Similarly, if the source is fixed while the receiver is moving in a straight line with velocity

o= C—‘Uf (2)

c

When both the source and receiver are moving along the same straight line with velocities u

and v respectively, the apparent frequency becomes

c—v
=2y 3)

fo=

For general plane motion of the source and receiver

relative to the medium as shown in Fig. 2-10, the apparent y
frequency observed by the receiver is
v
fo= c—vcos(y—,B)f %) /
¢ — ucosa B
Expression (4) will reduce to (1), (2) and (8) under identical
conditions.
If the medium through which sound waves travel moves
with respect to some inertial reference with velocity w, ex- y
pression (4) becomes a \
x
, _ c¢c—v+w .
o= c—u+w f (5) u
Fig. 2-10

where velocities u, v and w are in the x direction.

(1)

2)

@)

(4)

To summarize, we have

If the speed of the source u = ¢ while the receiver is at rest, f’ = =, and all the sound waves
travel with the source and reach the stationary receiver together. If u > ¢, the sound waves
emitted are being received in the reversed order. If u > ¢ and the receiver is stationary,
the Doppler effect develops into what is commonly known as sonic boom. The boom is heard
on the ground when an aircraft in the vicinity exceeds the speed of sound.

If the receiver has the same speed as sound waves, i.e. v = ¢, the apparent frequency f’ is
= —f, which indicates that the

zero. If v = 2¢ and source is fixed, equation (2) gives f' =
receiver will hear the sounds in correct time and tune but backward. If v > ¢ and the source
is stationary, f' = —«; this means that sound waves produced after the motion of the receiver

has begun will never reach the receiver (the person does not hear anything). But for sound
waves propagated before the motion of the receiver, he will gradually overtake the sound
waves and hear them in the reverse of the natural order. Finally, if v > —=, f' > o and the

receiver is approaching the source with great speed.

If the medium in which sound waves are propagated is moving with velocity w with respect to
some inertial reference, this will be the same as if the medium were at rest while the source
and receiver have a common velocity w relative to the medium. If » = v, then f’' = f. This
implies the velocity of the medium has no effect at all on the observed frequency.

From equation (2), f’ will be greater than f when source and receiver approach each other;
and f’ will be less than f when source and receiver separate from each other. This explains
the fact that the whistle of a locomotive is heard high as it approaches, and low as it moves
away from a stationary observer at the railway station, changing rather abruptly at the
moment of passage. If the relative velocity is not in a straight line joining the source and
receiver, the change in apparent frequency is more gradual, from cf/(c — ) to (¢ — u)f/e.
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238 An au bile emitting sound at a frequency of 100 cyc/sec moves away from a
stationary obeerver towards a rigid flat wall with velocity of 10 m/sec. How many
beats/sec will be heard by the observer?

The stationary observer hears sound of spparent frequency f; from the moving source directly,
and also sound of apparent frequency [; from the waves reflected by the wall. Now

fi = ef/le—v) = 343(100)/(343 — 10) = 103 cyc/sec
and f; = effe+v) = 343(100)/(343 + 10) = 97.2 cye/sec

where ¢ = M3 m sec is the speed of sound in air, v = 10 m/sec is the velocity of the souree and
! = 100 cyc’sec is the frequency of the source.

The beat frequency is [ = f1 —f; = 103 — 97.2 = 5.8 beats/sec.

240. Train A travels at 50 m/sec in still air while its whistle emits sound of frequency
600 cyc/sec. (a) What are the frequencies of the emitted sound observed by a
stationary receiver in front of and behind the train? (b) Another train B is Passing
train A at 100 m/sec. What are the frequencies of the emitted sound from the whistje
of train A as obeerved by passengers in train B before and after they pass train A?
(¢) For a wind velocity of 20 m/sec in the direction of the motion of the trains,
calculate the results of parts (a) and (b).

(@) For a moving source and a stationary receiver, the apparent frequency as given by equation
(1) of Problem 2.38 is

_ e _ 343

== T mi-n0®

ftrom = 700 cyc/sec
i.e. the apparent frequency will be greater than the actual frequency when source and receiver
approach each other.

. _ 343 _

Soebing = W3- 50, 600 = 520 cyc/sec
Le. the apparent frequency will be less than the actual frequency when source and receiver
separate from each other.

Thus the whistle of the train is heard high (ffcn; = 700 cyc/sec) as it approaches and
oW (fin.ng = 520 cyc/sec) as it moves away from a stationary observer at the railway station,
changing rather abruptly (from 700 to 520 cyc/sec) at the moment of passage.

{b) For both moving source and receiver, the apparent frequencies are given by equation (8) of

Problem 2.38,
. _e—v, _ 343-100 -
foctore = c—u, = m_soaoo 497 cyc/sec
343 - 100

fater = 343 — (—50) 900 = 370 cye/sec

{¢) When the air moves, the apparent frequencies are given by equation (5) of Problem 2.38,

Thos
L 343 +
@) frrom = m_—s&om = 697 eyc/sec
‘ 343 —
Jochina = 7,4T502_°;20600 = 521 cyc/sec
. 343 — 100 +
®) Sl = W_soT;: 600 = 503 cyc/sec
’ U3 -100+ 20

faws = 33To0-20 W = 300 cyc/nec
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2.41. Considering the same relative velocity in the Doppler effect, we obtain different

apparent frequencies according as the source or the observer is in motion relative to
the medium. Prove that this statement is correct.

Let the given relative velocity of approach be w. If the observer is approaching the stationary

source, we obtain e+ w
i = f @

[

where f’ is the apparent frequency, ¢ the speed of sound and f the actual frequency of the source.

If the source is approaching the stationary observer,

fa = f (2)

Thus filfs = (‘“:“’f>/<c_°wf) = 1 — w?c? (3)

Equation (3) shows that unless the relative velocity of approach w is equal to the speed of sound c,
the two apparent frequencies will not be the same.

If the observer is moving away from the stationary source with the same velocity w,

fi = &2y )

[

and if the source is also moving away from the stationary observer with velocity w,

fi = ——f )

c+w

and falfy = 1 — w?/c?2  (asin (3)) (6)

Supplementary Problems

WAVE EQUATION

242

2.4.

4.

2.5,

2.46.

Prove that u(x,t) = A(ct — x)—B(ct—1) jg a possible solution for the one-dimensional wave equation.
Use the Fourier transform to obtain the solution for the one-dimensional wave equation.

Show that the one-dimensional wave equation may be expressed in polar coordinates as

1 _ 14/ du) 1%
232~ rar\ or) " 123

Prove that the following expression is a possible general solution for the one-dimensional wave
equation.

i=0,1,2,

u(z,t) = ) A; cos (iz + 6) e—itcht

For one-dimensional wave propagation, find the initial conditions such as to cause only a wave
traveling in the negative x direction. Ans. u(x,0) =0, u(z,0) = cdu/dz

WAVE ELEMENTS

2.47.

248,

2.49.

Show that the maximum particle displacement and maximum pressure at a given point do not
occur simultaneously in a sound wave.

Show that the kinetic and potential energies of a free progressive plane acoustic wave are equal.

Show that the kinetic and potential energies of stationary sound waves in a rectangular room have
& constant sum.



250. The pressure amplitude of a plane acoustic wave is kept constant while the temperature rises from
0°C to 80°C. Find the percent change in sound intensity and the intensity level.

Ans. 149, 0.7db

SPEED OF SOUND
251,  Find the speed of sound wave propagation in an aluminum bar. Ans. ¢ = 5100 m/sec

232. The planet Jupiter has an atmosphere of methane at a temperature of —130°C. Find the speed
of sound there. Ang. ¢ =310 m/sec

253. A blow is made by 8 hammer on a steel rail 1 km from a listener who puts one ear to the rail and
hears two sounds. Calculate the time interval between the arrivals of the sounds.

Ans. t = 2.85 sec

ACOUSTIC INTENSITY AND ENERGY DENSITY

2.34.  Prove that intensity at any distance from the sound source for a one-dimensional cylindrical wave
is inversely proportional to the first power of the radius. (A one-dimensional cylindrical weve ig a
wave radiated outward from the longitudinal axis of a long cylinder expanding and contracting
radially.)

235. Show that I = 272f2A%c watts/m? is a correct expression for acoustic intensity of a plane wave,

2.56. Compute the intensity of a plane acoustic wave in air at standard atmospheric pressure and tem-
perature if its frequency is 1000 cyc/sec and its displacement amplitude is 10—5 m.

Ans. I = 0.82 watt/m2

257.  Show that the average sound energy density for a standing wave is twice that for a free Progres-
sive plane wave and is equal to p%/pe.

SPECIFIC ACOUSTIC IMPEDANCE
258. Calculate the characteristic impedances of hydrogen at 0°C and steam at 100°C,
Ans. 114, 242 rayls

259. Prove that the characteristic impedance of a gas is inversely proportional to the square root of its
absolute temperature.

SOUND MEASUREMENTS

2.60. Two electric motors have intensity levels of 68 and 60 db respecti'vely. Find the total sound
intensity level if both motors run simultaneously. Ans. 62.1db

261l. What will be the total sound pressure level of two typewriters if each has sound pressure level
70 db? Ans, 76 db

2.62. The sound pressure levels of three machines are respectively 90, 93 and 95 db. Determine the
total sound pressure level if all the machines are turned on. Ans. 97.8db

263. At standard atmospheric pressure and temperature, show that SPL = IL + 0.2 db.
2.64. What is the power level of 0.02 watts of power? Ans, PWL = 103 db

2.65. The power levels of two engines are 90 and 100 db respectively. Find the combined power level.
Ans. 100.4db

RESONANCE OF AIR COLUMNS

2.66.  If two parallel reflecting surfaces are 10 m apart, find the lowest frequency for resonant standing
waves that can exist between the surfaces. Ans. 172 cyc/sec



CHAP. 2] PLANE ACOUSTIC WAVES 63

2.67.

2.69.

2.70.

271

A resonance box is to be made for use with a tuning fork of frequency 472 cyc/sec. Find the

shortest length of the box if it is closed at one end. Ansg. 018 m

A vertical tube of length b m is filled with water. A tuning fork of frequency 589 cyc/sec is held
over the open top end of the tube while water is running out gradually from the bottom of the
tube. Find the maximum number of times that resonance can occur. Ans. 3 times

A closed tube of length 0.25 m and an open tube of length 0.3 m, both made of the same material
and same diameter, are each sounding its first overtone. What is the end correction for these

tubes? Ans. ¢ = 0.06bm

Show that f, = (2i—1)f,, i =1,2,..., where f, is the fundamental frequency for resonant tubes

open at one end.

A cylindrical tube of length 0.2 m and closed at one end is found to be at resonance when a tuning
fork of frequency 900 cyc/sec is sounded over the open end. Find the end correction.

Ans. ¢ =0.036 m

DOPPLER EFFECT

2.7

273

274,

2.75.

An automobile traveling at 50 m/sec emits sound at a frequency of 450 cyc/sec. Determine the

apparent frequency as the automobile is approaching a stationary observer.
Ans. f = 526 cyc/sec

The frequency of a car is observed to drop from 272 to 256 cyc/sec as the car passes an observation
post. What is the speed of the car? Ans. 23 mph

A locomotive is passing by a stationary observer at a railway station with speed v, and is sounding
a whistle of frequency f. Determine the change in pitch heard by the observer.

Ans. f = 2¢fv/(e? — v2)

Two observers A and B carry identical sound sources of frequency 1000 cyc/sec. If A is stationary
while B moves away from A at a speed of 10 m/sec, how many beats/sec are heard by A and B?

Ans. A, 2.8; B, 3.0 beats/sec
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Chapter 3

spherical Acoustic Waves

ATURE

= radius, m
— area, m?

il

bulk modulus, nt/m?

— speed of sound in air, m/sec

directivity factor
directivity index, db

— directivity ratio

)

i

1]

i

i

i

i

I

i

energy density, joules/m®

frequency, cyc/sec

acoustic intensity, watts/m?

Bessel function of the first kind of order one
wave number; sSpring constant, nt/m
constant

kinetic energy, joules

mass, kg

acoustic pressure, nt/m?

period, sec

potential energy, joules

source strength, m3/sec

radial distance, m

dissipation coefficient, nt-sec/m
radiation resistance, kg/sec
condensation

particle displacement, m; component velocity, m/sec

particle velocity, m/sec

volume, m?

component velocity, m/sec

power, watts

radiation reactance, kg/sec
specific acoustic impedance, rayls
mechanical impedance, rayls
radiation impedance, rayls

circular frequency, rad/ sec
wavelength, m

densitY; kg/ m?
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INTRODUCTION

When the surface of a pulsating sphere expands and contracts radially about its mean
position, a force will be exerted on the fluid medium in contact with the surface. The
fluid is hence disturbed from its equilibrium position. As a result, a disturbance is produced
and propagated away from the sphere uniformly in all directions as spherical waves. If
the fluid medium is air, we have spherical acoustic waves.

Though the spherical wave moves outward with a spherical wavefront in a three-dimen-
sional homogeneous medium, it is one-dimensional since all points of the wave can be
related to one distance — the radial distance r of the wavefront from the center of the sphere.

Spherical acoustic waves do not change shape as they spread out, and resemble circular
waves on a membrane in that they have infinite value at r = 0. Although the wavefront
of spherical acoustic waves can be assumed plane at great distances from the source, many
acoustical problems are concerned with diverging spherical acoustic waves radiated from
a simple source rather than plane acoustic waves.

WAVE EQUATION
The three-dimensional wave equation in rectangular coordinates is

¥p ¥p  ¥p _ 1
ox? oy? 9z2 c? at?

where p is acoustic pressure, ¢ = \VB/p is the speed of sound, B is the bulk modulus, and ,
is the density. The general solution can be expressed in progressive waves form as

p(z,y,2,t) = f(lz+my+nz—ct) + g(lz + my +nz + ct)

where f and g are arbitrary functions, and 2+ m2?+n2=1. In standing waves form, the
general solution can be written as
P(z,Y,2,t) = [(A18inckit + B cos ckit)(A: sin kax + B: cos kox)
(As sin ksy + Bj cos kay)(A4 sin kaz + By cos ksz))

where A, and B, are arbitrary constants to be evaluated by initial conditions, and
Az B, A3, By, Ay, B, are arbitrary constants to be evaluated by boundary conditions.

The three-dimensional wave equation can be written in spherical coordinates as

*(rp) _ o 0%(rp)
at2 - ar2
with solution p(r,t) = }. flet—7) + %Q(Ct +7)

where 7 is the radial distance from the source to the wavefront, and f and g are arbitrary
functions. (See Problems 3.1-3.8.)

WAVE ELEMENTS
For harmonic progressive spherical acoustic waves, we have

particle displacement u = — (% + ik> —12)—
o’p
. . 1 .\»p
particle velocity v = (= + 1k> —
T wp

condensation 3 = p/pc?

where p is acoustic pressure and ¢ =1/-1. (See Problems 3.12-3.183.) .
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ACOUSTIC INTENSITY AND ENERGY DENSITY
Acoustic intensity is the average rate of flow of sound energy through unit area. For
spherical acoustic waves this becomes
1 = §povocos® = 4ph/pc watts/m?

where po is the amplitude of acoustic pressure in nt/m?, v, is the velocity amplitude in
m/sec, p is the density in kg/m?, and c is the speed of sound in m/sec.

Energy density of a spherical acoustic wave at any instant is the sum of kinetic and
potential energies per unit volume.

Es = (pv? + pi/pc?®) joules/m®
(See Problems 3.9-3.11.)

SPECIFIC ACOUSTIC IMPEDANCE

Specific acoustic impedance has been defined as the ratio of acoustic pressure over
velocity at any point in the wave. For harmonic progressive spherical acoustic waves, the
specific acoustic impedance is given by

_ kr .1
z = pckr[1+w+tl+w]rayls

where the real part is known as the specific acoustic resistance while the imaginary part is
called the specific acoustic reactance. r is the distance from the source to the wavefront,
and k =o/c is the wave number. (See Problems 3.14-3.15.)

RADIATION OF SOUND

If waves radiated outward from a sound source are symmetric and uniform in all
directions, the source is an isotropic radiator. The simplest isotropic radiator is a pul-
sating sphere, which is a uniform and homogeneous sphere whose surface expands and
contracts radially and sinusoidally with time. If the dimensions of a radiator are small

compared with the wavelength of the sound radiated, the radiator can be approximated by
a pulsating sphere.

Sound waves produced by the vibration of an extended surface such as a diaphragm will
not have the symmetric spherical radiation pattern characteristic of an isotropic radiator.
However, the radiation produced at any point by such a source can be assumed equal to the
sum of the radiation produced by an equivalent array of isotropic radiators.

In general, sound waves produced by most sources have pronounced directional effects
known as the directivity of the source. This is due to the following factors: (1) size and
shape of source, (2) radiation impedance, (3) mode of vibration of the surface of the
radiator, and (4) reaction of the fluid medium on the surface of the radiator. The presence
of any large rigid surface known as infinite baffle near the vicinity of a sound source not

only confines the radiation to one side of the surface but also affects the directivity of the
source.

The directivity pattern of a sound source is therefore a graphical description of the

response of a radiator as a function of the direction of the transmitted waves in a specified
plane for a specified frequency.
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The directivity of a sound source is described by the directivity factor D,

2J:(ka sin 9)

b = ka sin 6

where J, is the Bessel function of the first kind of order one, k is the wave number, a is
the radius of the source, and ¢ is the directional angle from the axial direction of the source.
Hence a plot of the directivity factor in decibels will yield the relative values of acoustic
pressure and intensity at points equidistant from the source but at different angles from
the axial direction of the source.

Radiation of sound will be found equal to zero at certain angles from the axial direction
of the source, beyond which it will reach a maximum, and so on. The second maximum,
called the side or minor lobe, is usually much weaker than the first maximum at an earlier

angle.

The directivity ratio D, = Iy/l. is the ratio of the intensity at any point on the axis
of the sound source to the intensity that would be produced at the same point by a simple
source of equal strength. The directivity index or gain d, = 10 log D, db is simply the
decibel expression for the directivity ratio. Beam width is defined as the angle at which
sound intensity drops down to one half of its value at the axial direction of the source.
(See Problems 3.16-3.20.)

SOURCE STRENGTH

Source strength is the product of the surface area and velocity amplitude v, of a pul-
sating sphere, i.e. @ = 4ra?v, where a is the radius of the sphere. A hemispherical source
mounted in an infinite baffle, for example, has half the strength of a similar spherical source
having the same radius and velocity amplitude.

Acoustic doublet is an arrangement of two simple sound sources of identical strength
and frequency. The directivity pattern of this array of sound sources depends on the
distance between the two sources and the phase between them. (See Problems 3.21-3.23.)

RADIATION IMPEDANCE

Radiation impedance z, = f/v kg/sec is defined as the ratio of the force f in newtons
exerted by the radiator on the medium to the velocity » in m/sec of the radiator. The force

is due to the reaction acting on the radiator given by f pdA, where p is acoustic pressure
acting on the surface A of the radiator.

The total impedance acting on the radiator is therefore the sum of its mechanical
impedance zm = Rn + i(em — k/w) and the radiation impedance z. as defined above. Since
these impedances are functions of frequency o, the velocity amplitude vo = f/(zm +2,) will
not remain constant as the frequency is varied. (See Problem 3.16.)
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Solved Problems

WAVE EQUATION

311

Derive the general three-dimensional acoustic wave equation.

Th.o derivation of the general acoustic wave equation in a form valid for discussing any three-
dimensional type of nondissipative progressive wave is based on the following assumptions and
procedure.

(1) The medium is assumed to be continuous and homogeneous, (2) the process is adiabatic,
13) a completely elastic medium, and (4) small amplitudes of particle displacements and velocities,
as well as small changes in pressure and density.

(a) Develop the equation of continuity, (b) derive the dynamic equations from elastic properties
and force equations. and (c) combine the three dynamic equations to form the general wave equation.

Consider a small element dx dy dz of the fluid as
having equilibrium coordinates r, y, z as shown in Fig.
3-1. Let u,v,w be the components of the particle y v
velocity in the =z, y, z directions respectively and p the
density of the element. Then the mass flow of fluid
through the left surface of this element will be

_ 9 ,dr .
[pl( 2 (pit) ?} dyd:

while the mass flow through the right surface is

l:pll + 1% (pt) %':, dy dz

™

The resultant flow in the z direction is therefore
equal to the difference of these two flows,

l% (ou) dz dy dz Fig. 3-1
Similarly, the resultant flows in the y and z directions are

0 d
5y (pv) dx dy dz, o (pw) dz dy dz

so that the net flow through the entire element is
d d d
[ﬂ {pu) + @(pv) + ﬁ(pw):\ drdydz

Thus the equation of continuity is given by equating the net flow per unit mass to the time rate

%

change of density s s s
5 P T 'E(Pv) tgplw = —3

To obtain the dynamic equation in the z direction, let p be the pressure at the center of the
element. Then the pressures at the left and right faces of the element are respectively

_9p(dz dp (dz
Bz<2>' p+ax<2

Hence the net force acting on the element in the z direction is

3p _ ap = -
{’:p - 5(d_1:/2):l [p + e (d:c/2):l} dy dz (8p/ax) dx dy dz

For small amplitudes of particle displacement and velocity, the mass of this element can be
expressed as pdzdydz, and the velocity throughout the element in the z direction is u. From

Newton's second law 3 F = (%(mv), we have
—@dxdydz = i( u dzx dy dz)
dx FT
()]

dp _ 9
or A = 3t (pu)
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Similar dynamic equations in the y and z directions are

ap 2

- —ay = % (pv) (2)
op d
0z at (o) )

Now differentiate equations (1), (2), (3) respectively with respect to x,y, z:

a2p _ 92
a2 ~ atez P “
32p 92
_9% _ 97 5
ayz at ay (p’U) ( )
a2p a2
9 _ 9% 6
322 stz W )
Adding equations (4), (5), (6) yields
_fop  2p _ap\ _ 9o 9 3 ] )
<axz tar T ) T at|as P T gy 00 F 5 bW
?2p % , % 3%
op L p 9P _ 8
or ox2 + ay? 322 ot2 )
% 9% 9% _ 13%

Now p=opo(l+38) and p = Bs. Then 32 — Po3’ 38 — B o where p, is the static

density, s is the condensation, and B is bulk modulus. Equation (8) can be written as

2p , ?p , 9% Po 92p
P+ 2+ 2P = 0P 9
ox oy 922 B o¢?

Equation (9) is then the three-dimensional wave equation with acoustic pressure p as the variable.

32. Obtain solutions for the general two-dimensional wave equation in rectangular
coordinates.

The general two-dimensional wave equation in rectangular coordinates is
?p  #p _ 1 )
oz ay2 c2 at2

where p is the acoustic pressure and ¢ the speed of sound.

(a¢) As in the case of the one-dimensional wave equation, we can write the solution in progressive
waves form as

p(z,y,t) = f(mx+ny—ct) + gimx+ ny + ct), m2+n2 =1 2

which represents waves of the same shape moving in opposite directions along z and ¥ axes
with velocity ¢. This can be verified by differentiating equation (2) and substituting into (1).

(b) Let us next look for solutions in standing waves form which is represented by p = X(z) Y(y) T(?)
where X,Y, and T are functions of x,y and ¢ respectively. Substitute this expression for p

into (1) to obtain
1 &2X 1adY _ 1 4T )
X dx2 Ydy2 = 2T de2

Since the right-hand side of (8) is a function of ¢ alone, and the left-hand side a function
of z and v, each side must be equal to the same constant. Let this constant be —p2. This leads
to the following two differential equations:

d:T

g T ¢pT = 0 (4)
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with solution T(t) = A sinecpt + B coscpt (5)
or T(t) = Aeicet + Be—icpt (6

18X, L&Y o
and “Xdez2 P T Yar

Using the same argument as before, we see that both sides of equation (7) equal the same
constant, —p? + ¢¢. So we have 22X

=3 +¢:X = O (8)

with solution X(z) = Acosqr + Bsingz 9)

or X(x) = Aeier + Be—iar (10
where the A's and B’s are arbitrary constants. Similarly,

‘;—2};’ —(@—-pY = 0 (11)

with solution Yw) = A cosh W ¥y + Bsinhyq?—p2y {12)

or Y@) = AT 9y 4 Be~Vai—vty (19)

where the A’s and B’s are arbitrary constants.

(¢) 1f we replace the constant —p? in equation (3) by p?, we obtain
d2T

Sz T = 0 (14)
with solution T(t) = A coshept + B sinhept (15)
or T(t) = Aecrt + Be—crt (16)

Similarly, if we replace the constant (g2 — p2?) in equation (7) by —(g? + p2?), we obtain

with solution X(z) = A coshgx + B sinhgqx (18)

or X(z) = Aedst + Be 9z (19)
dzy

Also, v + (g2+p2)Y = 0 (20)

with solution Y(y) = AcosVq:+p2y + Bsinyg2+p2y n

or Y(y) = Ae'VP'+av 4 Be~iVeltaly (22)

The complete solution is plz, ¥, t) = X(z) Y(») T(t)

which is expressed in harmonic terms by equations (5), (9) and (21); in complex exponential terms
by equations (6), (10) and (22); ir. hyperbolic terms by equations (12), (15) and (18); and in exponential
terms by equations (18), (16) and (19).

The theory and solution carried out here for the two-dimensional wave equation can be applied
to the three-dimensional wave equation. Although there are four possible forms of solution avail-
able for the wave equations, the harmonic form of solution is widely employed. To account for the
change of phase, it is advantageous to use the complex exponential form of solution.

2. 21‘
Transform the two-dimensional wave equation a—yg+ a—; = 13
. ox oy c? 9tz
coordinates.

In polar coordinates r and 4, we have

into polar

22+ y? = 72, ¢g=tan—1¥
z
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34

ar Ir _x_ 90 _ —(y/:::_’)____/r2

or 2x = 27‘5;’» 3; - r' oz 1+ (]I/Z)z -

Using the chain rule,
sing the du _ Jduodr | dude

3z  orox e oz
Pu | duwor , awdtr , Pun  wie
dx? = dradz iz ar 3x? 30 3z oz a8 dx2

9r _ r—z@rlox) _ _,
Al e
a2¢ d

3 = w2 = 2myirt
% %u dr , du 30
oz or ox? ox ar 06 ox

%u Ru ar 2u 96

ox 38 00 or oz 362 oz

2u _  x29% xy 0%u y2o%u | y?ou xY ou

Hence 32 - e 2@ T A TRa T

2
A similar expression can be obtained for g_yui as
2u _ y2o%u zy %u

%u y2 %u zy z2 3% | z%du zy ou
w2 r2ar? 3 rde

t A TP 2o

The wave equation becomes

2u 0% 2u , 10du 1 9%u 1 o%u
ax2 y? ar? r or 72 962 c? at2

Find a solution for the general three-dimensional acoustic wave equation in rec-
tangular coordinates.

The general three-dimensional acoustic wave equation in rectangular coordinates is

Pp  Fp P _ 1P

= 1
ax2 ay? az2 ¢2 at2 )

where p is the acoustic pressure, and ¢ = V/B/p is the speed of sound waves.

Let us look for a solution in the form of p = X(z) Y(y) Z(z) T(t) where X,Y,Z, T are functions
of z,y,2,t respectively. Substituting this expression for p into equation (1), we obtain

1 d2X 1 d2Y 1d2Z _ 1 42T

Xdz2 " Yapr YV zar T atae ®
Now the right-hand side of (2) is a function of ¢t alone, and the left-hand side a function of z,y,
and z. Each side must be equal to a constant. Let this constant be —k2. This leads to the
following equations: BT

F + c2k§T = 0 (%)
with solution T(t) = A, sinck,t + B, cosck,t and

1 d2X 1d%Y 1d*Z

—_——— — e —_—— -_— — 2
Xz T¥ar t Zdz ks “
Equation (4) can be rewritten as
1 d2Y 1 d2Z 2 1 &2X 2 2
Yar T zazr T Thoxg T hth ®

where k, is another constant.
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Using the ume argument as before, we see that both sides of equation (5) must equal the same
constant, k -~ k,, so we have £X

It + kz =0 (6)
with solution X(xr) = A, sink;z + By coskgx and
1dY | 1d%2 2 2
vag Tzar T kit @)
We can rewrite (7) as
1a22 _ 2 2 14y _ 2 2
7dz - “hithk - Yd? © —ki + k3 + K 8
where k, is an arbitrary constant.
From (3) we obtai Y By = o
rom (8) we obtain dy ) Y = 9
with solution Y(y) = A,;sinkyy + Bycosksy and
$Z e 20, _ d’Z
d 2 (k k;,)Z =0 or F + kiZ = 0 (10)

with solution 2Z(z) = A, sink,z + B, coskz, K2 = kf - kg - kg,
The general solution for the three-dimensional wave equation is therefore given by
plz.y,2,t) = [(A sinckt + B, cosck,t)(A, sin kyx + B, cos k,x)
X (Ajgsinkyy + Bj cos kay)(A,4 sin kyz + By cos k,z)]

where A's and B’s are arbitrary constants.

A rectangular room has rigid walls of
lengths L, L; and L; as shown in Fig.
3-2. Find the normal modes of acous-

tic wave oscillation. Ly
The general three-dimensional acoustic i
wave equation is given by L,
#p, o Fp _ 1P
axz  ay? T T 2w J—
2

where p is the acoustic pressure, ¢ = VB/p
is the speed of sound waves. The general
solution is Fig. 3-2
p(z,y,2,t) = [(A,sinck,t + B, cosck,t)(A, sin kyz + B, cos kyz)
X (A sinkyy + By cos kay)(A, sin kyz + By cos kyz))

The boundary conditions are that the particle velocities normal to any wall surface must be
zero, i.e.

V.=0 at =0 and =1L, )
V,=0 at y=0 and y =L, @
V,=0 at z=0 and z =L, f))
ap aV: ap m _a_p _ aVz e
But 2= Par' iy Pt T Par and so the boundary conditions (1), (2), and
(3) become
‘;” 0 at =0 and z =1L, )
g_p 0 at y=0 and y=1L, (5)
3_p:0 at z=0 and z = L, (6)
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3.6.

Now (dp/ox);_o =0 or
Agky(A, sin ckyt + B, cos ckt)(A, sin kgy + By cos ksy) A sinkgz + By coskyz) = 0

fince lI;:; cadnnot alw(;a_{:e, be (zer/o. )Az =0 for the above expression equals zero. Similarly A3 =0
rom boundary condition (6p/dy),=9 =0; and A, =0 from bounda iti ’ =0.
Then the general solution become; ! v condition (9p/B2)e=0 = 0.

P(r,y,2,t) = (A, sinckit + By cos ck,t)(B, cos kyz)(B; cos kay)(B, cos k,z)
or p(x,¥,2,t) = (coskyx)(cos kyy)(cos k;2)(C, sin ck,t + C, cos ck,t)
where Cl = AIB2BaB4 and Cz = BleBaB_‘.

The second parts of boundary conditions (4), (5) and (6) yield

op _ . ]
<£>1=Ll = —ky(sin kyL,)(cos kyy)(cos k,2)(C, sin ck,t + Cy cosckit) = 0
or sink,L, = 0, k, = Iz/L; where | = 0,1,2, ... )
op _ . )
<£>y=L2 = —kj(cos kyx)(sin k3zL,)(cos k2)(C, sin ckit + Cycosckit) = 0
or sink;L, = 0, k3 = mz/L, where m = 0,1,2,... (8
op _ . X
<5>2=L3 = —ky(cos kyx)(cos kay)(sin k,L,)(C, sin ck,t + C, cos ck,;t) = 0
or sink,Ly = 0, ky = ma/L; where = = 0,1,2, ... )

The natural frequencies of the system are given by

w = ¢k, = c,’kg +k§+k2
and the normal modes of vibration are

X(x) Y(y)Z2(z) = coskox coskyy cosk,z (10)

which has the same form as the free transverse vibration of a uniform rectangular membrane
fixed at the edges. (See Problem 1.27))

Write the general acoustic wave equation in cylindrical coordinates and find its
solution.

The general acoustic wave equation in rectangular

coordinates for any three-dimensional space is z
@p  p  dp _ 1 "
ax? Iy 922 c2 ot2 rA
where p is acoustic pressure and ¢ = VB/p the speed of
sound in air. z
In cylindrical coordinates, a point A in space is de- 1
scribed by the three coordinates r, ¢ and z as shown in ¢ > <
Fig. 3-3 where B ~.
1 >~ ]
z = rcoss, Yy = rsing, 2z = z (2) A
Differentiating acoustic pressure p with respect to », 6 .
and z and transforming, we obtain Fig. 3-3
% ¥ % _ #p  1lp  1F , P 3
ax? + ay? + 9z2 = or? + r or + 72 962 + 222 )
#p  lop , 18 ¥ _ 12 y
and so (7) becomes ar2 r or r2 962 922 2 ot? )

A solution of the following form can be found by the method of separation of variables,
p(r,0,2,t) = R(r)e(s) Z(z) T(¢) (%)
where R,0,Z and T are functions of 7,6,z and t respectively. Substituting (5) into (4), we obtain
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$R  eZT4R _ RTZ d® $#Z _ ReZdT
Ml ~ o T T gat BT = (@)

and dividing by ReZT,

1R 1 dR 1 d%  1dZ _ 1 d&T @
Rd? " rRdr " rRedet * ZdaA 2T di2

Nuw the right-hand side of (7) is a function of ¢t alone, and the left-hand side a function of

r #» and z Each side must equal a constant. Let this same constant be —kf. This leads to the
foilowing equations.

&T
et

with solution T(t) = A, sin ¢kt + B, cosck t, and

+ kT = 0 (8)

1 d*R 1 dR 1 d*e

1 d2Z 2
= —_ == —_— == = =k
Rar T rRdr T Rede | Zds 1 ®
L 1 &*R 1 dR 1 d%e _ 2 1422 g2 2
Rewrite (9) as E F + md—r + I’Te'-d? = —kl Z_dzz kl + kz (10)

where k, is another arbitrary constant. Using the same argument as before, we see that both
sides of (10) equal the same constant, —kf + kg, so we obtain

fi +kZ = 0 (11)

with solution Z(z) = A, sink,z + B, cos kyz, and

1R . 1 dR —k2+k2—Lde .

Rde ' rRar 720 de?
Multiplying (12) by 2 and rearranging,

2R | rdR _iave = O o
Bat TRar T 2 -k = g = tkie

(19)
where k, is another arbitrary constant.
By the same argument as before, we have

dze

Iﬁ+k§0 =0

(14)

with solution ©(s) = Ay sinkgs + By coskye, and

kz
PRLIER _Bp i @~k = o

PR S (25)

Equation (15) is Bessel’s equation of order ks, with solutions J,‘s(r\/ k21 - ?2 ) and Yka(r\,/kf - k§ ).
Jy, is finite and Y,, is infinite when =0, so we usually require only the J*s solutions.

The final form for the general acoustic wave equation in cylindrical coordinates is therefore
given by the solutions of equations (8), (11), (14) and (15),

pir.e.1,t) = -’n,(Al sin ck,t + B, cos ck,t)(A, sin kyz + B, cos ksz)(Ag sin kye + By cos ky9) (16)
where the A’s and B’s are arbitrary constants.

du Fu u_ Fu 28u . .
3.7. Prove it Sty in the general three-dimensional wave equation.

- _ du du or T du
Using =22+ 2+ or/dx = TS ===
g 3+ Yyt + /dz = z/r and 3z ¥ 32 Far’ Ve have
#u o _ 1
axt r

zoudr  zdudr _ [P+2ow 2o
or ix ar? or rt or?
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. . l,
SISV o _ e etlow  prom | o o, 5ot
Fw # o Vs e Gm ]s*:ﬁ
Pu M O 2ow | P
Thus ozt +av’ + o —-67 5;'-

g8 Determine the general solutions for the three-dimensional wave equation in spherical
coordinates for (a) waves having spherical symmetry, (b) waves having circular
symmetry, and (c) waves having no symmetry.

The general three-dimensional wave equation in rec-
tangular coordinates is

dp % L dp _ 13
am Yo t o = ;a—:.e 6}

where p is the acoustic pressure, and ¢ = VB/p is the
speed of sound.

In spherical coordinates, a point in space is de-
scribed by the three coordinates r, ¢ and ¢ as shown in
Fig. 8-4, where

r = rsinodcosy
¥ = rsinésing
£ = rcose Fig. 34
It can be shown that the general three-dimensional wave equation in spherical coordinates is
given by _+lﬁ __a?p+2ap+__1__ap=182p @
ord r ged 13 sin? ¢ 9¢% ror re tan ¢ 96 c® 92

(a) For waves having spherical symmetry, acoustic pressure p = p(r,t) is a function of radial
distance r and time t. Equation (1) reduces to

ep  20p _ 1&3p) _ 13 )
art " ror r ont P
or A @

Since we assume spherical symmetry here, we could derive the wave equation (4) from (1)

directly as follows:
R =2+l +23 orfox = z/r

% _ I _ zp

and so o  orox  ror

Differentiating the last expression with respect to z,
#p _ 19 gdpdr | zdpor _ z19°p 1_=N\op _ =23  y'+sidp
= ik, +<r Blar = At or

' = ror “Poras ratar - font r
dp _ y¥p  £+rp dp _ =@p - ydp
i e e T ™ = = =
- *p ?p - ﬁ g‘l& = —".-'————az(w)
ar= B [ + a:i] - ‘J(av&Jrrar, r ot

Since r is an independent variable which is not a function of time t, we can write the
above expression as

#rp) _ ¥p *Mrp) _  ¥rp)
. T~ Ton F @ T %)
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If the term (rp) is considered a single term, the wave equation in spherical coordinates for
any three-dimensiona! space is of the same form as the plane wave equation derived earlier

in Chapter 2. The general solution is therefore

mir,t) = filet—nr) + felet+ 1)

or pir.t) = 1]", {ct—r) + 1f2 (et +7) (6)

where the first term - f,(cf—r) represents & sphencal wave diverging from the origin of the

cvordinate with a veloclty ¢, and the second term - ]‘,(ct+ r) similarly represents a wave con-
verging on the origin with velocity . Both waves dxmlmsh in amplitude as the distance from
The converging wave has little application in acoustics while the

the source increases.
diverying wave is frequently produced by a small pulsating sphere completely isolated from

reflecting surfaces, and has many uses. If the pulsation of the sphere is sinusoidal, the resulting
waves are diverging harmonic spherical waves designated by

p(f, t) = %ei(ml—kr) (7)

where A is an arbitrary constant (real or complex), v is the frequency, and k = w/c is the

wave number,
If we assume that the waves have circular symmetry, then acoustic pressure p = p(r,0,t) is
function of r.¢ and t. The general wave equation is reduced to
dp 1dp 13 _ 1%
er’+rc7r+rfao- T oo @

which we solve by the method of separation of variables. First we assume a solution of the

form
p(r,6,t) = R(r)6(6) T(t)

where R, @ and T are functions of r, ¢ and ¢ respectively. Substituting into (8) yields

Td’_R+9TdR+RTd20 _ eRd&T
am Ty T & de

and dividing through by ReT,

18R 1dR . 1dWw _ 1 dT ®

Ra TRrdr T P8 deE T~ 2T dee

Now the right-hand side of (9) is a function of ¢ alone, and the left-hand side a function

of r and ¢. Each side must equal the same constant. Let this constant be —kg.
to the following two equations:

dar
dT+03k3T = 0 (1
with solution T(!) = A, sineck,t + B, cos ¢k,t, and
RdR  rdR  l1d® _ e,
Rat TRar T odn ke
AdR rdR _ _ _lde _ . .2
or Rad TRar - HU Team T TRt R (
where k; is another arbitrary constant.

This leads

0)

m

Using the same argument as before, we see that both sides of (1) equal the same constant

(-k]’r'+ k:), and so we obtain
e
s ke = 0

with solution &(¢) = A, sinky + By cos ky# and

(19
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d’R dR
2 === —
ez T T3 KPR — KR = 0
@R | 1dR
or dare Ty, — k3/MR + K2R = 0 (13)

which is Bessel’s equation of order k,, with solutions Jiy(rky) and Y (rky). Jy, is finite and
Yy, is infinite when 7 =0, so we usually require only the Jx, solutions.

The final form of solution for the general acoustic wave equation in plane polar coordinates
is therefore given by the solutions of (10), (12) and (19),

p(r,6,t) = Jy, (A, sinck,t + B, cos ck,t)(A sin ky6 + B, cos ky9) (14)
where the A’s and B’s are arbitrary constants.

(¢) If we assume the waves have no symmetry, then the acoustic pressure p = p(r,0,¢,t) is a
function of r,6,¢ and t. We assume the following form of solution and then solve by the

method of separation of variables.

p(r,6,9,t) = R(r)6(e) ¥(g) T(¢) (15)
where R, 6, ® and T are functions of 7, 6, ¢ and ¢ respectively. Now (2) can be rewritten as
#p 2op 1 o fo ), 1 o _ 1%
ar2 ' rar  r2sing o6 <sm %36 r2sin2¢ 9¢2 ~  ¢2 ot2 (26)

Substituting (15) into (16),

oTodE , 20T¢dR . ReT d [ . do RTo d% _ 6R® &T
dr2 r dr r2sine dé de 72 sin2 ¢ de¢? ¢z dt2

and dividing by ReT¢,

R dr2 Rrdr ' ©r2sins des S de dr2sin2g dg2 =~ Te? dt2
The right-hand side of (17) is a function of t alone, while the left-hand side is a function
of r,6 and ¢. Each side must equal the same constant. Let this constant be —kf. This leads

to the following two equations:

T+ T = 0 (18)
with solution T(t) = A, sin ck;t + B, cosck,t and
1dR | 2 dR 1 df. .d\ _ _,2 1 d%
Rdr? " Rrdr = er? sin0§5< no%) = TR T eEeinte dg? 19)

Multiplying (19) by 72 sin2 ¢ and rearranging,
. 1 d2R 2 dR 1 d/ . de 0 . 1 d2¢ 2
2 2 Budipadiinhd = == - = kil = = =
T° sin®é [(R dr? * By dr t or2sinods <sm 6 + K ® dg? ky (20)
where k, is another arbitrary constant.
Using the same argument as before, we see that both sides of (20) equal to the same
constant kg, so we have

d2é
E¢_2 + kgq) = 0 (21)
with solution &(¢) = A, sinky,¢ + B, coskyp and
2
1 _d /[ ,98) _ ky _ _r*d’R _ 2rdE _ ., ,
6 sin ¢ d¢ < n 6 d0> sin2¢ R dr? R dr Sy (22)

As before, if we let both sides of (22) equal the same constant —kgy(ks + 1), then we obtain
the following two equations:

L d (. ,d0 e

sin 6 do <sm o do) + [ks(ks+ 1) — (k3/sin2 6)]6 0 29)
&R  2dR

Gt T g t [ —kyles+ /R = 0 4)
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Equaticn 1291 is the generalized Legendre equation with solutions
25
Alg) = Plicoss) (25)
where &, = m and ky = n.

To suive 2, we make the substitution Rird =r' ! 2R’(r} and obtain
$R VAR e L hylR = 0 (26)
drd r dr ey = tky + §)%/r }
which 13 the Bessel equation with solution
Ruir) = Jooyalpr) or Y, iy20p7)

. .. ; dinates i
The Bnal form of solution for the general acoustic wave equation In spherical coordinates 1s

therefore given by the solutions of (18), (21), (24) and (26),

prg ot = Plicoseir VA4, ., (pr)
+ B,yY, . 1.2(pr)] (A, sin mp + B, cos mg)(4, sin cpt + B, coscpt)

where the 4’3 and B's are arbitrary constants.

ACOUSTIC INTENSITY AND ENERGY DENSITY
39. Derive an expression for the acoustic intensity of harmonic diverging spherical waves.

From Problem 2.14, page 48,

P P
[ = %f pvdt = ll’f Po €08 (wt — kx)vg cos (wt —hkx — @) dt = %povo cos § (1
0 0
where P = period, p, = pressure amplitude, v, = particle velocity amplitude, k = wave number,
and 8 = cos-!(kr/y/1+ k%?) is the phase angle between acoustic pressure and particle velocity.
Since acoustic pressure p = pol\/i and particle velocity v = vol\/E, (1) can be written as
(2)

I = pvcoss
Since specific acoustic impedance z = p/v = peccos¢ for harmonic diverging spherical waves,
121 becomes
| = 2 a2 e — pcvZkr? )
AL S ey =

where o i3 the density and ¢ the speed of wave propagation.

310. Derive an expression for the energy density of a harmonic diverging spherical
acoustic wave.

The energy density of a sound wave at any instant is the sum of kinetic and potential energies

per unit volume. Now
KE = §pVyo? = 1pVy0l ()

where o is the average density, V, the average volume, v the average particle velocity over unit
volume, and v, the amplitude of particle velocity.

The potential energy is equal to the work done by pressure and change in volume of the
medium, i.e.
PE = —f pdV 2

where p is the instantaneous pressure and V the instantaneous volume. Since V=Vv,1- p/pc?)
and dV = —pV,dp/pe?,

14
PE = Vo/pczj; pdp = p2V,/2c® = ngo/4p02 ®

For harmonic diverging spherical waves,

P = (A/r)cos(ot—kr) = p,cos(ut—kr) (4)
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311

and v = p(l/r+ik)ipw = (Am/pckr’) cos (wt — kz — ¢) 5
which yields vo = AV1+ k2r2/pckr? (6)
The expression for energy density becomes
Ey = (KE+PE)/V, = }(pv] + p3/pc?) 4]
Substituting expressions for p, and v, from (4) and (6) into (7) gives
so= [+ 5] = k() ®

where ¢ is the speed of sound, k¥ = w/c is the wave number, and r is the distance from the source
to the point of interest in the wave.

A diverging spherical wave has a peak acoustic pressure of 2 nt/m? at a distance of
1 m from the source at standard atmospheric pressure and temperature. What is its
intensity at a distance of 10 m from the source?

Assume the source is emitting a constant amount of energy to the sound waves. For diverging
spherical waves, the area of the wavefront increases as the waves are traveling farther and farther
from the source. Hence intensity of such waves diminishes with distance of propagation.

At a distance of 1 m from the source,
I = p?/2p¢ = 22/[2(1.21)343] = 0.0048 watt/m?

where p = 1.21 kg/m3 is the density of air, and ¢ = 343 m/sec is the speed of sound in air at
standard atmospheric pressure and temperature.

At a distance of 10 m from the source, the effective sound pressure will change but the power
radiated will remain the same.

W = 47721 = 4(3.14)(1)2(0.0048) = 0.062 watt
Thus I = W/4sr2 = 0.062/4(3.14)100 = 0.000048 watt/m?

A simple sound source radiates harmonic diverging spherical waves into free space
with 10 watts of acoustic power at a frequency of 500 cyc/sec. Find the (a) intensity,
(b) acoustic pressure, (c) particle velocity, (d) particle displacement, (¢) energy

density, (f) condensation and (g) sound pressure level at a radial distanée of 1 m
from the source.

(@) Intensity I = W/4c-r2 = 10/4(3.14)(1)2 = 0.8 watt/m?

(%) Acoustic pressure p = V2pel = V/2(1.21)(343)(0.8) = 25.8 nt/m?

t¢) Particle velocity v = p/pec cos® = 0.062 m/sec

where p = 25.8 nt/m? is acoustic pressure, p = 1.21 kg/m3 is density of air, ¢ = 343 m/sec is
speed of sound in air, cos 8 = kr/V1+k2r2 = 0.99 and kr = wr/c = 2(3.14)(500)(1.0)/343 = 9.18.

(d) Particle displacement u = v/w = 0.062/6.28(500) = 1.97(10)—5m
(¢) Energy density (see Problem 3.10)

- % 1\ _ _ 258 1 _ _
Ea = 2. <1+2k’-r3) = 2(1.21)(343)2(1+W) = 234(10)73 watt-sec/m?

(N Condensation & = p/pc? = 25.8/(1.21)(343)2 = 1.8(10)—+

g} Sound pressure level SPL = 20logp + 94 = 20log258 + 94 = 1223 db
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313. Calculate the amplitude of particle displacement u, and the amplitude of particle

velocity vy of spherical acoustic waves in air at standard atmospheric pressure and
temperature. The pressure amplitude at a distance 0.01 m from the source is
10 nt/m?, and the frequency of the wave is 25 cyc/sec.

For spherical acoustic waves, acoustic pressure is
Po = pevcoss® = pevkr/V1+ k22 nt/m2

where pc = {15 rayls is the characteristic impedance of air at standard atmospheric pressure and
temperature. Now cosé = wr/c = 6.28(25)(0.01)/343 = 0.0046, and so

vy = pyfpccoss = 10/[(415)(0.0046)] = 5.23 m/sec
w, = volo = 5.23/[(6.28)(26)] = 0.033 m

These values are much greater than the corresponding values for plane acoustic waves under similar
conditions.

SPECIFIC ACOUSTIC IMPEDANCE

3.14. Derive an expression for the specific acoustic impedance of a harmonic diverging

3.15.

spherical wave.

Specific acoustic impedance is defined as the ratio of pressure over velocity at any point in
the wave. For harmonic diverging spherical waves, we have

p = %ei(ut—kr) (1
S A N A N2 o
oz~ PTar’ aw  Pat a2z P at

where k is the wave number, V., V,, V, are velocity components in the z,y,z directions, and ; is
the density. From equations (1) and (2) we obtain

_p _ v
ar Pt )

which shows that the radial pressure gradient is directly proportional to the radial acceleration.
Integrating (3), we obtain the radial velocity

= 1(épy - _ 1o _ (1, \P
vo= pJ or dt ipw or <T + tk) ipw “)
Hence the specific acoustic impedance is given by
_ P _ pw _ pck2r2 . pckr
2T Wik T a+ed T igses )

which consists of the real part known as the specific acoustic resistance, and the imaginary part
known as the specific acoustic reactance. From equation (5),

2| = pckr/V1+ k22 (6)

Spherical acoustic waves of frequency 125 cyc/sec are emitted from a small source.
At a radial distance of 1.5 m from the source, what is the phase angle between acoustic

pressure and particle velocity? Find the magnitude of the specific acoustic impedance
at this point.

For harmonic diverging spherical waves, acoustic pressure and particle velocity may be
written as

p = (A/Mei@t=k) = kp/pw + ip/ore
The phase angle is found from
o = cor2k? + ierpk _ pertk? + iperk
PV = "HF R T 1+ee T T4 Rk
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o = tan—1(1/kr) = tan—1(1/3.42) = 16.2°

or
where &k = w/e = 125(6.28)/343 = 2.28, kr = 2.28(1.5) = 3.42.
The magnitude of the specific acoustic impedance is given by equation (6) of Problem 3.14,

= pekr/V1+ k2r2 = 1.21(343)(3.4)/V1+ 3.42 = 397 rayls

2 =

RADIATION OF SOUND
316. A small circular piston of mass 0.01 kg and radius 0.05 m radiates sound at a fre-

quency of 1000 cyc/sec. It is mounted in an infinite baffle; the stiffness of the sus-
pension is 1000 nt/m and the mechanical resistance is 10 kg/m. If the effective
driving force is 1 newton, determine (a) the relative acoustic pressure at a point
equidistant from the piston but at an angle of 30° from the axis of the piston,
(b) the beam width 3 db down, (c) the power output, (d) the directivity factor, and

(e)

(@)

()

(c)

(@

()

the directivity index.

p(30°) _ 2ilkasing) _ 20022) _ 508 or _0.4db

p(0°) ka sin ¢ 0.46
where k = o/c = 1000(6.28)/343 = 18.3 is the wave number, ka = 18.3(0.06) = 0.92,
ka sin 30° = 0.46, and J,(0.46) = 0.22 is the Bessel function of the first kind of order one.

To compute the angle ° at which the intensity is 3 db less than the axial intensity at equi-

distance, we write
2J, (ka sin ¢)

20 log p(oo) = —-3db or p(oo) 0.707 ka sin @

from which we obtain ka sine = 1.6, or siné = 1.6/0.92 = 1.74 which is greater than unity.
This indicates that there is no angle at which the fall-off in acoustic intensity from the axial

direction is as great as 3 db.
Power output is given by W = v2R,, where v is the particle velocity and R, = pcra?R, is
the radiation resistance.
In order to determine R,, we have
R,(2ka) = 1 — 2J,(2kae)/2ka, R,(1.83) = 0.38

where 2ka = 2(18.3)(0.05) = 1.83. Hence
R, = pcza?R;, = 1.21(343)(3.14)(0.05)2(0.38) = 12.3

4[=z 3 Cad
Now Xz = ;[E ~ 3%(5) + FEAN :I
and X,(183) = 062, X, = pcra?X; = 1.21(343)(0.06)2(3.14)(0.62) = 20.2

T

Then z, = R, +iX, or |z,] = V(12.3)2+(20.2)2 = 23.3 acoustic ohms.

Mechanical impedance z, = R, + i(wm —Fk/u) = 10 + i(62.8 — 0.16)
Or zn| = V(10)2 + (62.6)2 = 63.8 ohms where R, = 10 kg/m, o, = 6280(0.01) = 62.8, and
k/w = 1000/6280 = 0.16.
The total impedance of the system is

z = |z + |zm| = 233 + 63.8 = 87.1 ohms
from which v = Fo/z = 1/87.1 = 0.0115 m/sec
and finally W = v2R_, = (0.0115)2(12.3) = 1.62(10)~2 watts
k2a2

Directivity factor D = 1= 2J,%ka)/2ka 24
where 2ka = 1.83 and J,(1.83) = 0.582.
Directivity index d = 10logD = 10log24 = 3.8 db
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3.17. Im'est.igate.the radiation pattern of a square plane rigid piston of sides L mounted
flush in an infinite plane baffle as shown in Fig. 3-5.

\H

Fig.3-5

In general, the radiation produced by the vibration of extended surfaces, such as pistons,
diaphragms, or cones, do not have symmetrical spherical radiation patterns characteristic of a
simple source. It is to be expected that these sources will have definite directional characteristics
if their linear dimensions are comparable to the wavelength. The radiation produced by these
sources can, however, be found by considering them to be assemblages of simple sources whose

pressure at a point is given by
p = (ipckvy/dzr’)e’ @t k"

where 7’ is the distance from point A to the source, and v, is the velocity amplitude of the surface
of the piston.

An elementary area of the surface of the piston, dz dz, can be considered to be a simple point
source radiating into half of the infinite space to the right of the baffle. This amounts to twice the

effect of the same source radiating into a free space. Then
dp = (ipckvy/2rr)e @ ¥ dx dz

where 7' is now the distance from point A to the dz dz element. The total pressure at A due to the
vibration of the entire piston is therefore found by integrating the above expression over the

surface of the piston. Now
OA’ = zcosa + zcosy

¥ = r—0A" = r — (xcosa+ zcosy)

and at great distance from the piston, r =/, so we have

. L
ip = tockvg g i0t—kn) L dz f eik(zcosa + zcosvy) da
P 277 L —L

) _ 2ipckvgL? .4y [ sin (ka cosa) |[ sin (ka cos y)
from which P = o ka cos a ka cosy

. . sin (k
The radiation in the yz plane can be determined by putting cosy = sin B, and —Icsz‘clo“(:):a) =
as a approaches 90°,
2ipckvgL? | .y | sin (ke sin B)
p = -~ ¢ ka sin 8
ﬂk(k_a‘_si;_ﬂ_) is known as the directivity function which determines the directional char-
a sin

acteristics of the radiation of the source.

where
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3.18.

3.19.

y

_—-- major lobe
ks increasing

minor lobe

Fig. 3-6

The directivity function is plotted for increasing values of ka as ghown in Fig. 3-6 above. It
is clear that the directional pattern becomes more pronounced with higher frequencies or with
increasing dimensions of the arrangement of sources. In other words, the greater the line
dimensions of the radiator, the more pronounced the directivity will be. At the same time, minor
lobes develop in addition to major lobes as the dimensions of the piston are increased.

Similar analysis can be applied to any other extended vibrating bodies in space. In general,
pronounced directional effects will be observed when the frequencies are high enough so that
wavelengths are comparable to the dimensions of the radiator.

A dynamic loudspeaker cone of diameter 0.2 m is mounted in an infinite baffle. Find

the frequency at which the pressure amplitude along the wall is equal to one half
of its axial value.

The loudspeaker cone may be regarded as a rigid circular piston of the same radius. From
Problem 3.16, acoustic pressure amplitude ratio is given by

2J,(ka sing) 1
ka sin ¢ 2
F ~ ano 2J,(ka) 1
or 8§ = 90°, we have ke " 2 or ka = 2

where J, is Bessel function of the first kind of order one. Thus

& = ke = (2/0.2)343 = 3430 rad/sec  or f = 546 cyc/sec

A pulsating sphere of radius e is vibrating with a surface velocity amplitude wvo.

Obtain expressions for the radiation resistance and radiation reactance acting upon
the surface of the sphere.

For harmonic diverging spherical waves, the specific acoustic imped~r e is given by equation
(5) of Problem 3.14,
pck2r? . pckr

z 1+ k2r2 TF e

where the real part is known as the specific acoustic resistance and the imaginary part is known as
the specific acoustic reactance.

The radiaticn resistance acting upon the surface of the sphere is equal to the product of the
area of the sphere and acoustic resistance of the medium in co~tact with the surface of the sphere

_ pckr2 4mpckal
R, = 4"02<iT2r3> = —lﬂ-‘:-—k‘-’a? acoustic ohms

Similarly the radiation reactance acting upon the surface of the sphere is given by

4xpcka’
X = -—1:'_”‘2112 acoustic ohms
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320. A pulsating sphere of radius 0.2 m is submerged in water. It radiates 200 watts of

acoustic energy at a frequency of 1000 cyc/sec. Find the velocity amplitude of the
sphere at the surface.

For harmonic diverging spherical waves, acoustic intensity at the surface of the sphere is
given by equation (3) of Problem 3.9,

pck2azv?
2(1 + k2a?)
where p = 998 kg/m3 is the density of water, ¢ = 1480 m/sec is the speed of sound in water,

k = w/e = 1000(6.28)/1480 = 4.23 is the wave number, ¢ = 0.2m is the radius of the sphere, and
v, is the velocity amplitude of the sphere at the surface.

I, watts/m?

Now acoustic power output at the surface of the sphere is

21rpck2a4vz
W, = 4mra?l, = 1 F k%a? watts
1+ )W, (1 + 0.72)200 _
Thus va T \/W =\ 628(998)(1480)(4.23)%(0.2)s 0115 misee

SOURCE STRENGTH

321.

3.22.

Derive expressions for acoustic intensity and power radiated by a harmonic diverging
spherical wave in terms of source strength.

Source strength of a pulsating sphere is defined as the product of its surface area and the
velocity amplitude at its surface, i.e.

Q = 4ma?v, m3/sec (1)

where ¢ is the radius of the sphere in meters, and v, is the velocity amplitude at the surface
in m/sec.

From equation (3) of Problem 3.9,

_ pevlkia®
L = 3t+ia @
Because of the continuity of velocity at the boundary, v = v, and so
_ pok?Q?
la = a0+ i) )
. _ a? _ pck2Q?
or in general I, = s I, = 32221 + K2a?) 4)
If the pulsating sphere is small compared with the wavelength, %2a? is negligible and (4) becomes
pck?Q? 2
I, 32,2, watts/m )

The power radiated equals the product of the area of the surface and the intensity,
W = 4ar2l, = pck?Q?/8r watts (6)

A hemispherical sound source of radius 0.2 m is mounted in an infinite baffle and
radiates harmonic diverging spherical waves into water at a frequency of 500 cyc/sec.
If the sound pressure level at a distance of 4 m from the source is 50 db re 2 microbars,
determine the surface displacement amplitude of the source.

Sound pressure level SPL = 20 log (p/py) = 50 db where p is the effective pressure and

Po = 2 microbars or 0.2 nt/m? is the reference pressure. Then 20logp = 50 + 20 log0.2 and
p = 63 nt/m2.

From equation (1) of Problem 3.21,
Q = 4ma2v, = 4ra?u,w m/sec (1

where u, = v,/ is the surface displacement amplitude of the source. And from equation (5) of
Problem 3.21,
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_ pck?@ _  p? 2
1, = 327222 = 2pc (®

63 = 3.2(10)-%m

Substituting equation (I) into (2) and solving for u,, we obtain
0.2(998)(500)2(6.28)2

p =

apw?

a = apckw
where k = w/c is the wave number and p = 998 kg/m3 is the density of water.

Two simple sound sources S, and S: spaced a half wavelength apart radiate harmonic
If the radiation

diverging waves of equal magnitudes uniformly in all directions.
of the sources are in phase with each other, study the sound radiation pattern of this

arrangement.
Let the midpoint between S; and S, shown in v

Fig. 3-7 be the reference point O for the radiation

pattern. Acoustic pressure at point 4,, a great A,

distance from the sources, will be the vector sum

of pressures radiated from S; and S,.

For harmonic diverging spherical acoustic
waves,
p = éei(wt—kr) — iei(wt—21rr//\)
which shows that the phase angle of acoustic pres- S, [o) S,
sure decreases linearly with the radial distance
Fig.3-7

from the source.

Now ¢, =4, =8, and sound waves from S, travel 4\ cos¢ farther than waves from S, in
reaching A;. There will be a phase difference of {\(cos#)(27/)\) or r cos¢ rad between the waves.
In other words, the wave from S, lags that from S, by = cos ¢ rad. Acoustic pressure at A, becomes

p = éeiwt + ﬂei(wt—ﬂcoso)
r r
When ¢ = 0, we have two sound waves of equal magnitude but 180° out of phase with each
other; hence p =0. When ¢ = 90°, we have two sound waves of same magnitude and phase;
hence p, = 24/r.

Continuing in this fashion with a locus of points equidistant from the reference point O, we
obtain a polar plot of pressure versus angular displacements as shown in Fig. 3-8, which is the
radiation pattern or directivity of this particular arrangement of two simple sound sources.

90°
major lobes
A
2A/r >
minor lobes
180° o— 0°
Sy S, S,
270°

Fig. 3-9

Fig. 3-8
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The magnitude of the acoustic pressure at any point in this two-dimensional plot is given by
the radial distance from the origin O to the point in question, e.g. at A,, the pressure is 2A/r, given

by the line O4,,

In general, the larger the extent of the radiator (here we mean the spacing between the sources),
the sharper will be the major lobe and the greater the number of side lobes. The greater the
number of the sources, the smaller will be the side lobes as shown in Fig. 3-9 above.

Practically all sound radiators have pronounced directional effects. This is particularly trye
when the source is radiating sound waves at high frequencies. The analysis and polar plot are

similar.

Supplementary Problems

WAVE EQUATION

i

15,

1%,

3.21.

328,

Obtain an expression for a two-dimensional wave traveling in the zy plane with velocity ¢ in a

direction at an angle ¢ to the z axis. Ans. ¢(z,y,t) = f(z cosd+y sins — ct)

Show that p = flt+my+nz—ct) + glz+my +nz+ct) represents the standing waves form
of solution for equation (9) of Problem 3.1, page 68.

Prove that p = écos (ot —kr) is a possible solution for the spherical acoustic wave equation

iequation 41 of Problem 3.8, page 75).

Show that p = %(ct-—r) is a possible solution for equation (4) of Problem 3.8,

Compute the three lowest frequencies of a rectangular room of dimensions 10 x 15 x 2¢ meterg

Ans. 28, 37, 50 cyc/sec

WAVE ELEMENTS

xn.

3.30.

3.31.

332

189

Show that the velocity amplitude of a harmonic diverging spherical acoustic wave is not inve
proportional to the distance of the wave from the source, rsely

For plane and sphérical acoustic waves of the same frequency, find the ratios of their ,
velocity amplitudes and particle displacement amplitudes. Ans. 1/110 Particle

Show that acoustic pressure and particle velocity of harmonic diverging spherical wa
essentially in phase at great distances from the source. Ves are

What is the phase angle between particle displacement and particle velocity of harmonic g; .
spherical acoustic waves? Ans, 90° Iverging

Prove that the maxima of kinetic and potential energies at any point in a harmonic g; .
spherical acoustic wave are equal. 1verging

ACOUSTIC INTENSITY AND ENERGY DENSITY

u.

5.

A simple underwater sound source radiates 10 watts of acoustic power at g fr
600 cyc/sec. Find the intensity and acoustic pressure at a distance of §m from :guency of
€ source,

Ans. ] =0.032 watt/m2, p = 22nt/m?

The minimum audible sound wave (assume harmonic diverging spherical waves) at th
to which the human ear is most sensitive is 3500 cyc/sec at an effective pressure of 8 f ffeqUencY
Find the corresponding intensity, velocity amplitude, and displacement amplitude (10)~6 n¢/m2,

Ans. [ = 155(10)~¢ watt/m?, v, = 2.74(10)-9 m/sec, up = 1.25(10)~12 m
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$36. An isolated point source of sound of strength Q, radiates harmonic diverging spherical waves into
free space. Find the average energy radiated and the specific acoustic impedance.

Ans. Ey. = Q2 k%pee/8r, 2z = 1/(1 + 1/ikr)

337.  An infinite circular cylinder has a uniform membrane at its open end. The membrane vibrates
with velocity v = vge'wt, Determine the reaction due to acoustic pressure on the membrane.
Ans. p = peyvge~ikz

SPECIFIC ACOUSTIC IMPEDANCE

338. If kr =100, what is the ratio between the specific acoustic resistance and the specific acoustic
reactance of & harmonic diverging spherical wave? Ans. 100

339. For harmonic diverging spherical waves, what is the maximum value of the specific acoustic
resistance? Ans. }pc

RADIATION OF SOUND

340. Two simple sound sources of equal strength but pulsating with a phase difference of 180° are
spaced a half wavelength apart. Determine the radiation pattern.
Ans. A figure eight with axis along the 0° line joining the sources

341. Determine the radiation pattern of two simple sound sources of equal strength but 90° out of
phase with each other and separated by one quarter wavelength. Ans. Cardioid

342, Derive an expression for acoustic pressure at a point due to » equidistant simple sound sources
all in a straight line and identical in strength, frequency, and phase angle.

sin [(nzd/)\) cos 6]
n sin [(rd/\) cos 6]

Ang. p =

343. Show that the directivity index for a nondirectional spherical source is equal to zero at all angles.

3.44. Six simple sound sources identical in strength, frequency, and phase angle are spaced a half

wavelength apart in a straight line. Find the angles at which (e¢) maxima and (b) zero amplitudes
occur. Ans. (a) 90°, 60°, 30°; (b) 71°, 49°, 0°

$45. A piston source of radius 0.1 m radiates sound in still air at a frequency of 1000 cyc/sec. Find
the beam width for down 6 db. Ans. 90°

346. The first lobe of acoustic pressure occurs at ka sing, = 8.83, while the second lobe occurs at
ka sing, = 7.02 for pressure distribution by a piston source. Prove that (py )max > (Po +1)max:
n

347.  Derive an expression for acoustic pressure at a point a grect distance r from a circular rigid
piston source mounted flush in an infinite baffle.
ipckQ ei(wt—kr) [2-,1 (ka sin 0)}

Ams. P = 2rt ka sin ¢



Chapter 4

Transmission of Sound

NOMENCLATURE

= radius, m

= area, m*

= bulk modulus, nt/m?

= speed of sound in air, m/sec

= frequency, cyc/sec

incident sound intensity, watts/m?

= transmitted sound intensity, watts/m?
reflected sound intensity, watts/m?
wave number

complex reflection coefficient
thickness, length, m

acoustic pressure, nt/m?
characteristic impedance, rayls
normal specific acoustic resistance, rayls

WY AN e
1

Tn =
s = condensation
SWR = standing wave ratio
TL = transmission loss, db
= particle displacement, m
v = particle velocity, m/sec
W = acoustic power, watts
r. = normal specific acoustic reactance, rayls
2 = specific acoustic impedance, rayls
Zn = normal specific acoustic impedance, rayls
2, = specific acoustic impedance, rayls
" = circular frequency, rad/sec
A = wavelength, m
a = absorbing coefficient; viscous attenuation constant, nepers/m
a, = sound power reflection coefficient
a, = sound power transmission coefficient
P = density, kg/m?
7 = viscosity coefficient, nt-sec/m?
T = viscous relaxation time, sec

88
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INTRODUCTION

When sound waves are traveling through a medium, they may be reflected or refracted,
diffracted or scattered, interferred or absorbed. The transmission of sound involves the
transfer of acoustic energy through the medium in which sound waves travel.

TRANSMISSION THROUGH TWO MEDIA

For the transmission of sinusoidal plane acoustic waves from one fluid medium to
another at normal incidence along the plane interface of the two media, sound power
reflection coefficient «, is defined as the ratio of the reflected flow of sound energy to the
incident flow of sound energy:

2
_ PoCo — P1C,y _ [R2 — lelz
R pyC, + p,C, R, + R,

Sound power transmission coefficient a, is similarly defined as the ratio of the trans-

mitted sound power to the incident sound power:
4p,C1p,C, — 4R\R,
(p1Cy + poC,)° (B1+ Ry)?
where the p’s are the densities and the ¢’s are the speeds of sound. (See Problems 4.1 4.4.)

For normal incidence at surfaces of solids, the reflected and transmitted sound power
coefficients can be expressed in terms of the normal specific impedance z. = r,+ iz, which
characterizes the behavior of solids with sound waves:

a,

L= (r,—p,C)° + 22 L= 4p.c.1
T (r,+pc)?+ a2’ o (ratpc,) +

where r, is the resistive component and z. is the reactive component. (See Problems
45,46.)

For the transmission of sound waves from one fluid medium to another at oblique
incidence, the sound power reflection and transmission coefficients are given by

. = [Rz cos i — R, cos 0:]2 _ 4R,R; cos 0 cos b;
Ry cosb; + Ry cos 6] ’ % T (Rzcos 6 + Ry cos 6:)?

where §; is the angle of incidence and 6. is the angle of refraction. (See Problems 4.5, 4.20.)

Sound power reflection and transmission coefficients for sound waves in air impinging
at oblique incidence on the surface of a normally reacting solid are

L= (rn cos 6; — Ry)? + z2co08?6; . = 4R,7r, cos 6;
" (rncosfi + Ry)? + z2cos?4;’ * (racosfi+ Ri)? + x2cos?f;

{See Problems 4.21, 4.22.)

TRANSMISSION THROUGH THREE MEDIA

The transmission of sinusoidal plane acoustic waves from one fluid medium through
a second and into a third fluid medium is similar to transmission through two media.
Reflected waves will be generated at the plane interfaces of the fluid media, and part of the

incidex.lt wave will be transmitted through the boundaries. The sound power transmission
coefficient from medium 1 through 2 into medium 3 is given by

4R\R,
(R1+ R3)? cos? koL + (R2+ R1Rs/R2)? sin? koL

at -
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where the R’s are the characteristic impedances of the media, k; = o/¢ is the wave number
of medium 2, and L is the thickness of medium 2. (See Problems 4.10-4.14.)

Transmission loss is the difference in decibels between the sound energy striking the
surface separating two spaces and the energy transmitted. It cannot be measured directly
but is computed from sound pressure level measurements on both sides of the partition.
Transmission loss TL can be expressed as

TL = 10log(I/I:) db

where /; is the incident sound intensity and I: is the transmitted sound intensity. (See
Problems 7.12-7.14.)

REFLECTION OF SOUND

In general, a sound wave will be reflected whenever there is a discontinuity and interface
of two media in which it is propagated. The reflected wave depends on the incident wave,
the angle of incidence, the reflecting surface, and the characteristic impedances of the media.
The reflected fiow of sound energy is proportional to the square of the amplitude of the
reflected sound wave.

Standing wave ratio SWR is defined as the ratio of acoustic pressure at an antinode to

acoustic pressure at a node or as the ratio of maximum to minimum amplitudes in a standing
wave. It serves as an indication of the amount of sound energy reflected at the boundary.

_pmax_Amax_pi+pr &__SWR—].
SWR - pmin - Amln - pi_pr or pi - SWR + 1

For ttal reflection of sound waves, SWR = =, or p./pi=1. For zero reflection of sound
waves, SWR=1 or p./p:i=0.

Law of reflection: The angle of incidence equals the angle of reflection.

Chefore Cafter

Snell’s law: (51N O)verore  (SIM O)arter

Echo is a definite or distinct, separate or delayed sound heard by an observer as the
result of reflection of sound. A reflected sound produced within 1/10 second interval of
the original sound will not be detected by the human ear and thus merges with the original
sound to give rise to reverberation or overlapping echo. A musical echo is the rapid and
successive reflection of a sound, and flutter echoes are pulses reflecting back and forth from
one end to the other end of an enclosure with diminishing amplitude.

The phenomenon of echo has many practical applications such as navigation and travel-
ing, direction finding and ranging, detection of submerged vehicles and objects, and ultra-
sonic flaw detection. (See Problems 4.15-4.19.)

REFRACTION OF SOUND

When sound waves arrive at a discontinuity or boundary, some will be reflected and
the rest cross the boundary to form transmitted waves. When the angle of incidence is
greater than the critical angle, all the waves are reflected and none crosses the boundary.
The direction of propagation of the transmitted waves is not the same as that of the
incident waves. The transmitted waves are bent toward or away from the normal to the
boundary in accordance with the speeds of sound in the media. This is refraction of sound.
(See Chapter 8.)
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Refraction of sound can take place in a single medium such as the earth’s atmosphere
or & large body of fluid such as the sea because of the effect of wind or temperature varia-
tions from place to place. (See Problems 4.20-4.22.)

DIFFRACTION OF SOUND

When sound waves meet an obstacle, they will spread around the edges of the obstacle
to give rise to diffraction of sound. In other words, sound waves are bent or their directions
of propagation are changed due to the obstacles placed in their paths. Also, sound waves
are diffracted rather than reflected if their wavelengths are comparable with the dimensions
of the reflecting objects. (See Problem 4.23.)

SCATTERING OF SOUND

Sound waves will be scattered in all directions when they strike obstacles of dimensions
small compared with their wavelengths. This is in contrast with reflection or diffraction

of sound.

The amplitude of the scattered waves at great distances from the obstacle is directly
proportional to the volume of the obstacle and inversely proportional to the square of the
wavelength. Hence sound of long wavelength will have little scattering effect whereas
sound of short wavelength will have great scattering effect.

Diffuse echo is produced by the scattering of sound by a collection of small obstacles.
A harmonic echo is the result of the differential scattering of a complex sound or noise of
different frequencies.

INTERFERENCE

If sound waves of the same frequency and amplitude are superposed, they either
neutralize or reinforce each other’s effects. The phenomenon is described as interference,
i.e. the resultant effect at each point in the medium is the algebraic sum of the effects of
the two waves. Destructive interference occurs at points where they meet in opposite
phase, and constructive interference occurs at points where they meet in phase.

Standing or stationary waves are formed from the interference of two sound waves of
equal amplitude and frequency propagated through a medium along the same line in opposite
directions. There will be fixed positions of zero amplitude (nodes) and fixed positions of
maximum amplitude (antinodes), and the medium is set into steady state vibration.

Beats will be produced, as in the case of mechanical vibrations, from the interference
of two sound waves of slightly different frequencies. (See Problems 4.15-4.19.)

FILTRATION OF SOUND

Filtration of sound, like any other forms of filtration, is a process employed to eliminate
some portion of the sound waves of definite frequencies and wavelengths while letting the
rest pass. In fact, this amounts to a selective passage of sound waves.

Acoustic filters, e.g. mufflers, plenum chambers, resonators, sound traps or silencers, and
hydraulic filters, are devices used for separating components of a signal or sound on the
basis of their frequency. They allow components of sound in one or more frequency bands
W pass relatively unattenuated, but attenuate components of sound in other frequency
bands. ;Fig. 41 below.) See Problems 4.24-1.26.:
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G600

{a) Broad-band filter

ag

a,[

J L

(b) High-pass filter

I
imimiy .

(¢} Low-pass filter

Fig. 4-1

ABSORPTION OF SOUND
A sound wave may lose some of its energy while propagating through a fluid or solid
medium. This loss of acoustical energy is due to absorption.

Viscous losses of sound energy in fluid media arise from shear stresses set l'lp in the
media by the passage of compressive waves through the media. Heat or conduction losses
are due to flow of heat from the slightly warmer compressed portion to the slightly coo.ler
expanded portion of the fluid. Molecular energy losses result from thermal relaxation
which causes exchanges of energy between different internal thermal states of the molecules.
Absorption of sound energy occurs if the phase of these exchanges of energy differs fx.-om
that of the sound waves. In air, for example, absorption of sound energy increases rapidly
with increasing frequency; and in water, absorption of sound energy can be caused by
scattering effect due to nonhomogeneities in the structure of water.

Absorption of sound in solids is caused by the interactions between sound waves
lattice vibrations, sound waves and electron motion, and ferromagnetic and ferroelect
effects. (See Problems 4.27-4.28.)

and
ric
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Solved Problems

TRANSMISSION THROUGH TWO MEDIA

4.1,

For the transmission of sound waves from one fluid medium to another, derive an
expression for (a) particle displacement, (b) particle velocity, (c) acoustic pressure,

and (d) condensation.

When sound waves strike at right angles to a plane interface of two different fluid media, a
wave will be reflected back along the original path in medium 1, and a second wave will be trans-
mitted through the boundary into medium 2.

(@) Particle displacement.
The waves in medium 1 are given by
u, = Aiei(ut—k,r) +A,.e““"+k11) 1)
where the first term represents an incident wave traveling in the positive z direction with speed
€1 = w/k,, and the second term represents a reflected wave traveling in the negative z direction
also with speed c,.
The transmitted wave in medium 2 is given by
Uy = Ageitot—ka 2
which travels in the positive = direction with speed ¢, = w/k,.

We assume the transmitted wave always has the same frequency as the incident wave,
and so we have ignored any Doppler effect. Because the speeds of sound are different in the
two media, the magnitudes of the wave numbers k; and k, are different, i.e. w = ¢;k; = cok,.

At the plane interface of the two media, acoustic pressures on both sides of the boundary
(£ = 0) are equal, and particle velocities normal to the interface are also equal, i.e. acoustic
Pressure must be continuous, and the two media must remain in contact at the boundary at
all times.

Acoustic pressures in media 1 and 2 are

ou . . i

P = —Bi5 ik Beiot (Aje— iz — A etki?) 6

Ju . ;
P = —Bza—:: = ikyBgeivt (A e~ i27) 4)

and particle velocities are 3
v _a'? = jwewt(Ae— iz + A7) (%)
d . .

vy = _a?-'l't—2 = Jqweivt (A € - 'kzz) (s)

At the boundary, z = 0, equations (8), (4), (5), (6) become
p, = ik,Bieiwt(4;—A,)
Py = tkyBjeivtA,
v, = ivelot(A; +4,)

vy = iweitht
Equating acoustic pressures and particle velocities at the boundary, we obtain
Blkl(A(_Ar) = szzA‘ (7)
A+ A, = A, )]
Eliminating 4, from equations (7) and (8),
ﬁ _ P11 — p2C2 »
A p1€y T 0262

and eliminating A, from equations (7) and (8),
A, 2p16y (10)

A; — picr t+ pacy
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e medium, and ¢ is the speeq

. ) . _ : ity of th
where the bulk modulus B = ,e2, Bk = pcw, p is the density O o T )0 coment while Aya,

of sound in the medium A/A, is called the reflection coefficient
is the transmission coefficient for displacement amplitude.

instead of the purely resistiv
(9) and (10) become

.. . e impedanc
Using z,. the specific acoustic impedance, p € pac,
at the boundary for the terminating medium, equations

R
4, _ G-z Ri-o f_t = _2——‘—— (9, (10y
4 pey +2, R +z' A; Ryt 2

which are known as the complex reflection and transmission coefficients fol'_ dlsplaceme.nt
= A;. This agrees with

amplitude. For the limiting case R, = R,, we have A, =0 and A, e
the physical situation of a continuous medium. If Ry > Ri, Ar= —4; and A =0. If
R, »R, 4,=4A; and A, =24, (See Problem 4.2.)

(d) Particle velocity.
Particle velocities for incident, reflected and transmitted waves are

au., . du But _ .
6= 37 loi,, v, = a_t' = doit,, v = ¢ T lole

and hence the reflection coefficient for velocity amplitude from medium 1 to medium 2 is

v ded, w, A, pi61 T (11)
Ui iuui - u; - Ai a Plcl + P202

which is the same for particle displacement as given by (9). Similarly, the transmission coeffi-
cient for velocity amplitude is

o e (12)
Vi p161 T paCy

and if the terminating medium 2 is not infinite in extent, we have the corresponding complex
reflection and transmission coefficients for velocity amplitude:

Tr Rl — 2y Ve _ 2Rl (11)1' (12)!

v ~ Ri+z' v Rtz

(e} Acoustic pressure.
The acoustic pressure in medium 1 consists of two parts:

P = P + p, = Piei(wt—klz) + Prei(wt+k1.r)
and the acoustic pressure in medium 2 is simply
P, = P,ei(”'_kﬂ‘”
Now the pressures at the boundary z = 0 are equal,

(p]);:o = (Pz)zzo or P‘ + Pf = Pt (1")

We have defined the ratio of acoustic pressure in a medium to the associated particle
velocity as the specific acoustic impedance, i.e. z = p/v; then

v = Pilper, v, = —Ppers v = Pilpacy
Since the velocities at the boundary are also equal, we have

(vi)z=0 + (vr)z=0 = (vt)r=0

or Pilpsey — Pyloyey = Pilpacy (14)

Eliminating P, from equations (13) and (14),
P, g6y —p& R, — R, (1%

P, T ptat ey R, + R,
and eliminating P, from equations (13) and (14),

P, 2psC; _ 2R, (16)

P, = pet et
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Equation (15) is the reflection coefficient for pressure amplitude while (18) is the transmission
coefficient for pressure amplitude. If the terminating medium 2 is not infinite in extent, we
obtain the corresponding complex reflection and transmission coefficients for pressure amplitude:

Pr 29 — Rl Pt _ 2R2

P, T z,+ R’ P, T R +z

(15Y, (18)

Thus we may write the reflection coefficients for displacement, velocity, and pressure as
A, R,— R, R P,

4~ R+R, v P

We see that particle displacement and particle velocity in the reflected wave are in phase with
each other, but 180° out of phase with acoustic pressure of the reflected wave.

The acoustic pressure of the reflected wave at the boundary is therefore either in phase or
180° out of phase with that of the incident wave at the boundary, depending on the values of
the characteristic impedances of the media. If the second medium is very dense, R; is much
greater than R,, and P, = P;. The pressure amplitude at the boundary is an antinode, and no
phase change takes place between the reflected and incident wave, If the second medium is a

rarefied medium, B, is much less than R;, and P, = —P,;. The pressure amplitude at the
boundary is a node, and a phase difference of 180° exists between the incident and reflected
waves.

(d) Condensation.
The incident, reflected, and transmitted condensations are

au‘l - du, . ou, _

& Tz ikyu,y, & = T3z T —tikyu,, & = — o T ikou,
Therefore the reflection coefficient for condensation amplitude from medium 1 to medium 2
is given b .

g y 2 _ -—dciu, _ —U, _ _A' — poz - P11y (17)
8; ik % A, pees + p16y

and the transmission coefficient for condensation amplitude from medium 1 to medium 2 is
similarly given by .
8 _ houy koA,  (lc)A, 2p,¢;
8 ey kA, (w/ey)A; ea(py€y + p2cs)
If the terminating medium 2 is not infinite in extent, the complex reflection and transmission
coefficients for condensation amplitude become
8, _ zZ— R, 8 2R;¢,
5 2+ R’ 8  &(z+R))

(18)

7y, (18)’

Derive expressions for the transmission of sound energy from one fluid medium to
another.

The average power per unit area for the incident, reflected, and transmitted waves is
respectively v .
W, = dnadls, W, = dncAls, W, = jecAls 6
where the A’s are displacement amplitudes, « is the angular frequency of the sound wave, p,c, = R,
and pycy — R, are the characteristic impedances of the media
Therefore the ratio of the reflected flow of energy to the incident flow of energy is
w, A: _ :rPlcx_chzﬁz R, —Bzﬁ{z

“ S W T A T atesm - BTER) @
Since intensity I = p/2ec, and sound energy is proportional to its intensity, we can expreas
eguation (2} as
o = ﬁ - ’:nﬁ‘l _ P_: _ ]_—31-32-:-! P
I P 2peey A LBy~ By
where o, is the sound power reflection coeficient or simply reflection coefcient.
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Similarly, the sound power transmission coefficient is the ratio of the transmitted flow of sounq

energy to the incident flow of sound energy:

_ W _ RA} _4RR, 4R,
“ T w, T RAZ =~ E,R +R)* (R,+ Rp)? ®
I, P2/2R, Rl[ 2R, :,2 _ _4R\R,
or “ = % T PR, T BB TR) (B, +R;)? ®)

A plane sinusoidal longitudinal wave in water is incident normally on a boundary
between water and ice. If each medium can be assumed to be infinite in extent,
compute the following amplitude ratios: (a) %/w, (b) w/ui, (c) vei/vi, (d) vw,
() p-/pi. (f) pe/pi, (9) Se/si, () si/si, (3) I/Li, (7) I./I; where u,v,p,s and I are respec-
tively the particle displacement, particle velocity, acoustic pressure, condensation and
intensity amplitudes, and where the subscripts 7, ¢ and t indicate whether these termg
are reflected, incident or transmitted. Find also their respective phase angles.

At standard temperature and atmospheric pressure, we have
(0€)water = (pc); = (998)(1480) = 1,480,000 rayls
(C)ice = (p€); = (920)(3200) = 2,940,000 rayls

where p is the density in kg/m? and ¢ is the speed of sound in m/sec.

@ 2o PNl (148294108 _ —0.33
U; (PC)] + (pc)2 (1-48 + 2-94)106
u, is 180° out of phase with ;.

u  (pO); + (pe); _ (1.48 + 2.94)10°

%, is in phase with u;.

Vr _ (01 = (pc)y .
(c) E = m = —0.33 asin (a)

v, is 180° out of phase with ;.

& —_ 2(Pc)1 _ .
(d) % (O + b0y 0.67 as in (b).

v is in phase with v;.

P (p€)g — (pc) - 8
r 2 1 _ (2.94—1.48)108 0.33

e) — = = =
( p; (o€)2 + (pc), (2.94 + 1.48)108
P; is in phase with p,.
P: 2(pc), 2(2.94)108
) — = = - =
(p€)2 + (pe), ~ (2.94 + 1.48)10° 1.33

p;
Pe i8 in phase with Dy

o o () g aein (e)

@) — = ——=2——"1
8 (0€)s + (pe),
8, is in phase with 8;.
%_ _ 2D) _ p1.48)(1480)108 0.3

*h = = =
8  cylpiCy +ppe)) | 3200(1.48 + 2.94)10°
8¢ is in phase with s;.

O L/ = (u/u) = (—0.33)2 = 0.109, see (a)
I, is in phase with I.

G) 11 =1 - I/I; = 1-0.109 = 0.891
I is in phase with I.
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44. A beam of sound waves is incident normally on a plane interface of air and an

4.5.

infinite body of fluid of unknown impedance. If half of the sound energy is reflected,
find the unknown impedance.

Sound energy reflected is described by the sound power reflection coefficient given by equation
(2) of Problem 4.2,

31—222 _ 415—222_ _
a, = [R_1+—z_;] = [m] = 0.b or zZg = 72 rayls

where R, = p,c, = 1.21(343) = 415 rayls is the characteristic impedance of air, and z, is the char-
acteristic impedance of the fluid.

Derive an expression for the sound power N
reflection coefficient for plane acoustic waves i 4
in air impinging at oblique incidence on the
surface of a normally reacting solid.

The normal specific acoustic impedance z, is
defined as the ratio of the acoustic pressure to the

particle velocity at the surface of the solid. For
oblique incidence and at z =0, Solid (z,)

Zp, = Ty + ix,, = % Fig. 4-2

or z, = Pt Pr
" v; cos 8; + v, cos (180° —¢,)

where P = Aiei(wt = kjzcosé; — kyysiné) gnd Py = Arei(wt — kpz cos 8, — kv cosb,)

. —p p1Ci(A; +A4)
Now v; = P and v, = ~; then b il Z, cOB 6; oOr
P11 P1C1 A, — A,
A, (r, cos 8, — pycy) + ix, cos 8,
A,  (rpcosé;+picy) + iz, coso

Hence the sound power reflection coefficient is given by
A? _ (r,, cos 6; — Plcl)z + Z: cos? o;
A? (v cos 8+ pyey)? + z2 cos? g,

Xy

Similarly, the sound power transmission coefficient is

4p,c,7, cO8 8,

a
¢ (rn cos 8,4 p;¢y)? + 22 cos? 6

Since for most solids 7, > p;c;,, the magnitude of the sound power transmission coefficient will
reach a minimum when r, cosé; = p;c;.

An acoustic tile panel has a normal specific acoustic impedance of 1000 — 13007 rayls.
Compute the sound power reflection and transmission coefficients for plane acoustic
waves in air incident normally on the surface of the panel.

The normal specific acoustic impedance of a solid is the ratio of the acoustic pressure acting
on the surface of the solid to the particle velocity of the fluid normal to the surface of the solid,
iie. z,=7r,+1iz,, where r, is the resistive component and z, is the reactive component.

For normal incidence #; = 90°, the sound power reflection coefficient is (see Problem 4.5)

(ra — pr€))? + 22 _ (1000 — 415)2 + 13002
(Ta + prcy)? + 22 (1000 + 416)2 + 13002

ay

= 0.66

where p,c; = 1.21(343) = 415 rayls is the characteristic impedance of air.
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Qimilarly, the sound power transmission coefficient is

401617q _ 4(415)1000
(r,+pye)? + 2 (1000 + 415)2 + 13002

0.45

R

or simply a, = 1 —o, = 1—0.55 = 0.45.

Plane acoustic waves in air strike the surface of an a(.:oustic tile panel 'haY(;::g; :gl‘tr;]l:z
specific acoustic impedance of 1000 — 1300t rayls. I.?‘lpd the ang:le of 1nc1the . et
the sound power retlection coeflicient will be a minimum. Find also
coefficient for an angle of incidence of 80°.
The sound power reflection coefficient will be a minimum when (see Problem 4.5)
Ty COS8; = pyC,

where 2z, = r,+ ir, = 1000 — 1300! rayls,

r. = 1000 rayls is the normal specific acoustic resistance,
8, = cos li(p,c;/r,) is the angle of incidence,
p, = 1.21 kg/m3 is the density of air,

— o
¢, = 343 m/sec is the speed of sound in air. Hence ¢; = cos—(415/1000) = 65.5°.
The sound power reflection coefficient for ¢; = 80° is
(rocos 8 — R + :rf‘ cos® 8; ((1000)0.174 — 415]% + 13002(0.174)2

_ = 0.27
“r T racose + B2 + z%cos’e;  [(1000)0.174 + 415]2 + 13002(0.174)2

Derive a general expression for the specific acoustic impedance for propagation of

plane acoustic waves in a homogeneous and isotropic fluid medium where reflection
18 present.

The total acoustic pressure and total particle velocity at a point in terms of incident and

ected waves are L FCoot + k)
refl p = pel@t=kD 4 p ilettks

v = viez(ut—k:r:) +vret(wt+k1)

Now the complex reflection coefficients for acoustic pressure and particle velocity are given by

Pr _ 23— R K = v,  Ry—2z

K P z,+ Ry’ v v, R, + 2,

—K
P

P

The total acoustic pressure and total particle velocity can now be expressed as
- i(wt—kz) iCwt + kz)
p = pi(elﬁl X +erlb) I)
v = vi(ei(wt—kx) _ er‘l(wt+k.t))

Since specific acoustic impedance is defined as the ratio of the total acoustic pressure to the total
particle velocity at a point, we have

) Pi e~ ikz 4 Keikz e~ ikr 4 Keikx

BTy T v—| e— ik — Kekz — PO\ g=ikz — Keikz
This ratio gives the specific acoustic impedance at any point of the medium as a function of the
characteristic impedance pc of the medium, the reflection coefficient at the boundary, and the

distance x from the point in question to the boundary. In short, it controls the transmission of
sound energy from one medium to another.

If there is no reflection at the boundary, K = 0, and the specific acoustic impedance z, will be
reduced to the characteristic impedance pc of the medium.

It is interesting to note that at a distance L from the boundary in the first medium, = = —L;
and if K =1,

ekl 4+ g—ikL .
2 = pc <¥ei“‘ ——Y5 = —ipc cot kL

which corresponds to the driving impedance of a flexible string.



CHAP. 4] TRANSMISSION OF SOUND 99

49. Determine the impedance of (a) a quarter-wavelength fluid column, and (b) a half-
wavelength fluid column for the propagation of plane acoustic waves.

(@) Quarter-wavelength.

The specific acoustic impedance of a fluid column of finite length is given by

e— k1 4 Keiks

2, T PCTikr — Kelks

where pc is the characteristic impedance of the fluid medium, K = K,, is the complex reflection
coefficient for acoustic pressure, and k = w/¢ is the wave number. (See Problem 4.8.)

Now k = w/6 = 2x/N and kz = (2z/A)(—N\/4) = —x/2 (the minus sign is needed because
r = 0 at the boundary). Hence

3y T PO ) Z Ke-w/D

et/ 4 Ke-imi) 1—K
T P\TFK

If K=1, (eg. R, > R,, or z;—+ = for rigid terminating boundary) z, =0: i.e. the
input impedance is zero.

If K=-1, (eg. R, > R, or with a rarefied terminating medium) z, - =; i.e. the input
impedance is very large.

If K=0, (eg. continuous medium, or matching impedances) z, =pc; i.e. the input
impedance is equal to the characteristic impedance of the medium.

If the column is terminated by a medium infinite in extent, K = (R,— R,)/(R;+ R,) and
z, = peR\/R, = Rf/Rz. The input impedance is therefore inversely proportional to the ter-
minating impedance R,.

(b) Half-wavelength.

_ e+ Ke i\ _ 1+ K
2T P\Td—Kei) T P\1T-K
If K=1, z,=w. If K=—1, z,=0. If K=0, z, = pe.
If the column is terminated by a medium infinite in extent, K = (R, — R,)/(R;+ R,),

2z, = pcRy/R, = R,. This means that the input impedance of a half-wavelength fluid column
equals its terminating impedance.

TRANSMISSION THROUGH THREE MEDIA

4.10. Derive an expression for the transmission coefficient of plane acoustic waves through
three homogeneous and isotropic media.

v
) [
A‘el(wt—k,r) Bte'(""—"") A:el(ﬁ)t—kar)
— ————— —
i(wt+ k1) i(wt +
A,e 1 B,e Wt + kgz)
i — ff———
medium 1 medium 2 medium 3 x
0 L

Fig. 4-3
As shown in Fig. 4-3, the incident wave A,6'“*"%17) jg traveling in the positive z direction and
the reflected wave at boundary I (z =0) is A,e!“***1¥)_ Then the wave in medium 1 is represented by
w = A‘et(ut—k.:) + A'ei(wt+kl:) (1)
Now the transmitted wave at boundary I is Be'“*"*1¥), and the reflected wave at boundary
II (=L) is B, “t**%™  Then the wave in medium 2 is given by

ug = B'ei(m—k,:) +B"((at+k,x)

®
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Part of the wave incident normally on boundary II will be transmitted into medium 3 as
u; = Aleilwt—ka(x—L)] (€3]

where the A’s and B’'s are amplitudes of sound waves, and k, = «/¢cy, ky, = w/ey and k3 = w/cy
are the wave numbers.

Under steady state condition. we have the following two boundary conditions at boundary
I and I

(1) the acoustic pressures at both sides of the boundary are equal,
:2) the particle velocities normal to the boundary are equal.

Thus at boundary I (xr = 0)

du,y duy
pp = p» oOr

“Bior T Bm

where B is the bulk modulus of the medium and k = w/c the wave number. Substituting (1) and
21 into the above conditions, we obtain

~By(—ikiA et + ik Ao = —By(—ik,Beiwt + ik,B eivt)
or prclA, — A) = pycy(B,— B)) (4)
where ¢ = \'B/p is the speed of sour‘1d and k = v/c.
At z=0, o M AtA, = B +B (5)
Jat at ! r t r

Similarly at boundary II the acoustic pressures are equal, ie., at x = L,

duy duy
2oz 35z
or —By(—ik,Be TR 4 k,B Uy = —By(—ikyAeivt)
which reduces to poco(Be~ kel — B giely = o004, (6)
and the particle velocities normal to boundary II are also equal, i.e, at = =L,
du ou ; .
a—: = a—: or B L 4 Beil = 4, t4)

Solving equations (4) to (7) simultaneously, we obtain
A,

At 2p1C1p2C2 (8)
A pacalpaca + p1€y) cos koL + i(p3c2 + pgeyeqcy) sin koL
We assume medium 3 extends to infinity, and write 2z; = pze; = Rj, p3¢3 = R, p1; = Ry then
equation {8) becomes
A, 2R,R, )
A;  RyRy;+R)cosk,L + i(Rg + R4R,) sin k,L
Now the sound energy transmission coefficient is
Iy (p)2/2R, R, A2 R
a I = —3 2 = _’._‘2 = 142
1 (pi)l /2R| R:] Ai R3
and from equation (9),
4R,R,
a, = 5 (10)
(Ry+ R))2 cos2 kL + (R, + R3R,/R)? sin? k2L

In the following cases we can further simplify the sound energy transmission coefficient given
in equation (10):

(a) When medium 3 is the same as medium 1, we have R, = R, and

— 4
o 4 cos?k,L + (R,/R, + R,/R,)? sin k,L an

(b) For sound transmission from a rarefied medium through a dense medium into the same rarefied
medium, such as sound waves from air in one room through a solid wall into air in an adjacent
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room, we have Ry, > R,, and so (11) yields

= . (12)
% T 4 cos?k,L + (Ry/R,)? sin?k,L
. L. R, sin kyL .
(¢} When the rarefied medium is air, we have — R > 2 cosk,L. Except for a very thick

1 .

medium 2 (i.e. large L) and high frequency sound, we have k,L €1 and sink,L = k,L. We

obtain the simplest expression for sound energy transmission coefficient from equation (10),
AR}
2.2

Ry k3 L2

ag

(19)

where L is the thickness of medium 2, R, = R; are the characteristic impedances of the media,
and k, = w/cy; is the wave number.

411. A plane sinusoidal acoustic wave in water is incident normally on the surface of a
large steel plate of thickness 0.02 m. If the frequency of the wave is 3000 cyc/sec,
find the transmission loss through the steel plate into water on the opposite side.

The sound energy transmission coefficient is defined as

4
4 cos?k,L + (R,/R,)? sin? k,L

at

where k, = w/c = 3000(6.28)/5050 = 3.74 is the wave number for steel, k,L = 3.74(0.02) = 0.075,
R, =39 X108 rayls is the characteristic impedance of steel, and R; = 1.48 X 108 rayls is the
characteristic impedance of water.

Now k,L = 0.075 = 0.075(180°)/3.14 = 4.3°, cos k,L = cos 4.3° = 1.0, sin k,L = sin 4.3° = 0.075,
and the transmission coefficient is

_ 4 B
@ = T @/iagE0omE | 052

The transmission loss is TL = 10 log (1/a,) = 3.02 db.

412 Maximum transmission of plane acoustic waves from water into steel is required.
What should be the optimum characteristic impedance of the material to be placed
between the water and the steel? If the thickness of the layer of material to be used
is 0.02 m and the frequency of sound transmitted is 1000 cyc/sec, find the speed of
sound in the material and the density of the material.

The sound energy transmission coefficient for transmission through three media at normal
incidence is given by
4R.R,
(Rl + R3)2 cos2 kzL + (R2 + R1R3/R2)2 sin? kzL

ay

where R, R,, Ry are the characteristic impedances of the media, k, = w/c, is the wave number of
medium 2, and L the thickness of medium 2.

If k,L =(2n—1)7/2 where n=1,2,..., then sink,L =1 and cosk,L =0, and the trans-
mission coefficient becomes
4R,R,
(Ry + R,R4/R,)?

ag

For maximum transmission of acoustic power, R, = V/R,R; where R, =1,480,000 and Ry =
47,000,000 rayls at standard temperature and atmospheric pressure; hence R, = 8,350,000 rayls.
Therefore 100% transmission of sound occurs only for bands of frequencies centered about the

particular frequencies for which
f = (2n—1)e,/4L

or ¢, = 4Lf = 4(0.02)1000 = 800 m/sec, and p = R,/c, = 8,360,000/800 = 10,500 kg/m®.
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4.13.

4.14.

TRANSMISSION OF SOUND [CHAP. 4

Show that a very thin layer of solid material of appropriate characteristic impedance
may be emp_]oyed to prevent two fluid media from mixing with each other and yet not
Interfere with the transmission of sound of low frequencies between them.

_ The sound power transmission coefficient from medium 1 through the thin layer into medium
3 is (see Problem 4.10, equation (10))
B 4R R,
a =
¢ (R3 + Rl)2 cos? k_)L + (Rz + RaRl/Rz)z sin2 k2L

where the R’s are the characteristic impedances of the three media, k; = w/c, is the wave number
for medium 2, and L is the thickness of medium 2.

If o is small, i.e. low frequency sound, k, is small. We have k,L >0, cos koL =1, and
sink,L = 0. Hence cos?hk.L =1, sin®k,L =0, and
B 4R\R,
T Bt R)?
which is the same sound power transmission coefficient as for sound waves moving directly from
medium 1 into medium 3. See Problem 4.2, equation (4).

A beam of plane sinusoidal acoustic waves in water is normally incident on a steel
plate of thickness 0.04 m and emerges into water on the opposite side. If the
frequency of the wave is 5000 cyc/sec, find the phase angle between the incident and

transmitted waves.
The amplitude ratio of the incident and transmitted waves for sound transmission through

three media is
A, (Ry+ Ry) cosk,L (R} + R4R)) sin k,L
a, 2R, ¢ 2R.R,

where the R’s are the characteristic impedances of the media, L is the thickness of medium 2 and
k, = w/¢, is the wave number of medium 2. The phase angle between the incident and transmitted
waves is therefore 5

(R; + RRy)
¢ = tan"l|o—5—7—~
Ry(R, + E3)

where k&, = w/c, = 5000(6.28)/6100 = 5.15, koL = 5.15(0.04) = 0.206, tank,L = tan0.206 =

tan 10.5° = 0.181, R, = R, = 1,480,000 rayls, R, = 47,000,000 rayls. The incident wave at = = ¢

therefore leads the transmitted wave at = = 0.04 m by 17.6°,

tankzL] = 17.6°

REFLECTION OF SOUND

4.15.

4.16.

Plane sinusoidal acoustic waves in air are incident normally on a plane surface of
characteristic impedance 785 rayls. Find the standing wave ratio.
At standard atmospheric pressure and temperature, the reflection coefficient for acoustic

litude i
pressure ampitude is = P,/P; = (Ry;—R\)/(R;+Ry) = 031

a, —
where R, = p,c; = 415rayls is the characteristic impedance of air.

Standing wave ratio SWR = (1+ P,/P)/(1— P./P) = 1.9,

A ship is steaming toward a cliff with constant speed in the fog and the siren on the
ship is sounded every minute. The echo of the first whistle is heard after 20 seconds
and that of the second after 16.5 seconds. Compute the original distance of the ship
from the cliff and her speed. What is the minimum distance for the observance

of an echo?
Let s in meters and v in m/sec be the distance and speed of the ship. Also let the speed of

The first echo is heard after the ship has advanced 20v m:

sound be 343 m/sec.
343(20) = 28 — 20v o
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417.

The second echo is heard after the ship has moved ahead v(16.5 + 60) m:

343(16.5) = 23 — 76.5v 2
Solving, 8 = 3640 m, v = 21 m/sec.

Sound waves emitted from the source will take a definite length of time to reach the surface
and reflect back. Since the human ear is unable to distinguish separate sounds unless the time
interval between the two sounds is more than 1/10 second, an echo will be observed when the time
interval from emission to the arrival of sound is equal to or greater than 1/10 second. Then

28 = vt or 8 = vt/2 = 343(1/10)/2 = 172 m

and so the minimum distance is 17.2 m.

A plane sinusoidal acoustic wave of effective pressure 100 nt/m? and frequency
1000 cyc/sec is incident normally on the plane surface of the water. Calculate
(a) the acoustic pressure of the wave transmitted from water into air, (b) the
intensity of the incident wave in water and of the transmitted wave in air, and
(c) the ratio of the intensity of the transmitted wave in air to that of the incident
wave in water.

{a) The transmission coefficient for acoustic pressure amplitude is

o e 2(415) = 563x10~4

Pi p202 + Plcl 415 + 1,480,000
where p,c; = 1,480,000 and pyc, = 415rayls are the characteristic impedances of water and
air respectively at standard temperature and atmospheric pressure. Thus the pressure of the

transmitted wave in air is
p, = 5.63x10~4100) = 5.63 X 10—2 nt/m2

(b) The intensity of the incident wave in water is

2
= B 100 6.78 X 10~3 watt/m?
Ii - plcl - 1,480,000 )
and the intensity of the transmitted wave in air is
2 63(10)—2]2
I, = Pe [5-63(10) 7] = 7.6 X10—% watt/m?
t poCo 415

I,  17.6(10)~8 L

- = =——— = 113 x103 r 10log(1.13x1073) = —-29.5db
(€) 7, = 6.8(10)-3 © gl

4.18. For normal incidence of plane sinusoidal acoustic waves from hydrogen to oxygen,

find the ratio of the reflected sound energy to the incident sound energy.

The ratio of the reflected sound energy to the incident sound energy is

p1C1 — chz]z
= _ = 036
o [Plcl + paty
where p; = pnydrogen = 0.09 kK&/M3, py = poxygen = 1.43 kg/m3, ¢, = Cnydrogen = 1269 m/sec and
€3 = Coxygen = 317 m/sec.

Since ¢,/¢; = Vpa/py, We can express the sound power reflection coefficient as

- 2 ¢ — ¢
a = \:M] =036 or a = [‘ 2] = 0.36
Ve + Vpy

4.19. Derive general expressions for the reflection and transmission coefficients of plane

acoustic waves incident normally on the plane interface of two absorbing media.

Assuming linear absorbing media, the particle displacements of the incident, reflected, and
transmitted waves can be expressed as
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- i(wt—k,T)
Aie ayr e:(a 1

u =
- i +k,1)
u, = A,e alzel(wt 1
- i(wt—ky1)
u, — A,e a,:rel(u P

where the A’s are the amplitudes of the waves, a, and a, are the linear absorbing coefficients of

the two media, k; = o/¢; and k, = w/¢, are the wave numbers.

|y
Ae U% ei(ut—klr) A e-—a,rei(ut—k,r)
i > t
Ae Mt ei(ul+klr)
r S —
medium 1 (p,c;) medium 2 (p2C2) x
0
Fig.4-4

The boundary conditions are:

(1) The particle velocities normal to the interface are always equal, i.e., at x =0,

w0
at ot at
or A, +A, = A,
(2) Acoustic pressure on both sides of the interface is the same, i.e, at = = 0,
du; du u
or (ay + ik)ByA; + (a — tk))B\A, = (ag+iky)BoA,

where B is the bulk modulus.

Elimination of A, from equations (1) and (2) gives

ﬁ _ By(ay + tks) — By(ay + iky)
A; Bs(ay + tky) — By(ay — k)
and elimination of A, from equations (I) and (2) yields
A, 21k, B,
A; Bylag + iky) — By(ay — ik;)

If we write B, = pic2, By = pocj, Biky =pici0 and Boky = pocyw, (3) and (4) become

A, 3 (pachay + ipaesw) — (p1cay + ipycyw)
A (pacZag + ipgcaw) — (pyciay — ip1€1w)
At _ 2iplclu
A; T (paclag +ipycyw) — (p1€}ay — ipycyw)

(1)

(2)

(9)

(4)

(%)

(6)

If the absorbing coefficients «, and a, are equal to zero, equations (5) and (6) reduce to (9) and

(10) of Problem 4.1 for the nondissipative case.

Now the average incident, reflected, and transmitted acoustic powers per unit area
respectively \
Wi = &plcluzA‘l W" = %plclsz?_, W' = %P2C202A?

Hence the ratio of the reflected to incident sound power is

2 2
W, _ (plclal - p26202)2 + (pi€10 — p2czu)2

ay = o= 2
(p202t12 - p10§a1)2 + (P]clu + p2c2w)2

W;
and the ratio of the transmitted to the incident sound power is

. = w. _ 4paC9p1 0y
e = = =
W, (p161 + pacr)? + [(pac2ag/w) — (pr62ay/w)]2

are

(7)

(8
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If a; =a, =0, equations (7) and (8) reduce to the reflection and transmission coefficients for
the nondissipative case of Problem 4.1.

If a)/ey = pzcglplcf, the sound power reflection and transmission coefficients of equations (7)
and (8) also reduce to those for the nondissipative media.

REFRACTION OF SOUND

420. Derive general expressions for the sound power reflection and transmission coeffi-
cients for the transmission of plane acoustic waves from one fluid medium to another
at oblique incidence.

The acoustic pressures for plane sinusoidal iy
longitudinal waves at normal incidence are P, Mediom 2 (Ry)
edium 2
— i(wt—k,1)
p; = Pie ! o
— i(ot+k,1) Medium 1 (R))
Py = Pre ! i 6, f
z
— i(wt—kyz) t =
pe = Pe *
6
and at oblique incidence,
P = Piei(ot — k,z cos8; — k,y sin 6;) P
p, = P ei(ut + ki zcosf, — kv siné,)
r - T
P = Ptei(wt — koI cos B¢ — koy sin 8;) Fig. 4-5

where 6, is the angle of incidence, 8, the angle of reflection, and 6, the angle of refraction as shown
in Fig. 4-5.

At the plane interface of the two media (r = 0), the acoustic pressure must be continuous, i.e.
pitp = p
or Pie—ikly sin; + P,e_ik‘" sin6, — Pt g iy sin 8
From the laws of reflection and refraction of plane waves, we have the angle of incidence ¢, is equal

to the angle of reflection 4,. And from Snell’s law, we have (sin g,)/(sin#,) = ¢,/c; = ky/k;. The
previous boundary condition of continuity of acoustic pressure becomes

be The second boundary condition states that the particle velocities normal to the interface must
equal, i.e,

v;co86; + v, cos(180°—0,) = v, cosé,
or in terms of acoustic pressure and characteristic impedance,
(P;/R,) cos 0; — (P,/R,) coss, = (P,/R,) cosé,

where R, = p1¢1, Ry = pse, are the characteristic impedances of the two media.

Solving for the ratios of P,/P; and P./P from the two boundary conditions,

P' _ R2 cos §; — Rl cos 03
P, =~ Rycosé; + R, coss,

and 8o the sound power reflection coefficient is
a [P,:r _ [Rycosé; — Ry coss,?
= |P] T |R,cos6 + R, coss,

The [J))
Tren; 3 A . .
Ponding gound power transmission coefficient is

4R,R, cos ¢; cos 9,
(Ry cos 6; + R, cos 8,)2

ay — l—a,
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4.21.

4.22.

TRANSMISSION OF SOUND [CHAP, 4

If the angle of refraction ¢, is 90°, we have from Snell's law,

sin o, € . . ¢
- = — or sing = sing, = —
sin &, [ e

Since no acoustic energy is transmitted for angle of incidence greater than 6. we call 9, the
critical angle of incidence,

If the angle of incidence approaches 90°, cosé; —» 0 and
l: R, cos 0,:]2
a, = | — =1
R, cos s,

Again, no acoustic energy is transmitted. This is known as the condition of grazing incidence,

The density of a given solution is 800 kg/m?

. J
and the speed of sound is 1300 m/sec. by
(a) Find the critical angle of incidence for 8 |6
plane acoustic waves traveling from the Solution R,
given solution into water. (b) If the angle -
of incidence in the given solution is 40°, Water B,
what is the sound transmission coefficient 8,
into water?
(a) The critical angle of incidence is given by Fig. 4-6
9 Csolution _ 1300

sing, = — = =
‘ 2 Cwater 1480

= 0879 or ¢, = 615°

(b) The sound transmission coefficient is

4R R, cos 6; cos 6,
ap = 2 = 0-96
(Rz CoSs 8; + Rl cos 0:)

where R, = p,¢, = 800(1300) is the characteristic impedance of the given solution, R, = pyc, =
998(1480) is the characteristic impedance of water, ¢; =40° is the angle of incidence,
0, = 47° is the angle of refraction, obtained from Snell’s law of refraction.

If the velocity of sound in oil changes suddenly from 1350 m/sec to 1340 m/sec along
a horizontal plane at a certain depth while the density of oil remains constant at
850 kg/m3, calculate the sound reflection coefficient for plane acoustic waves incident
from above the plane interface where velocity changes take place at angles of
incidence of (a) 88°, (b) 80°, and (c) at normal incidence.

The sound reflection coefficient for plane acoustic waves is given by

_ [Rycos8; — R, cos a2
ar = RZ €08 §; + Rl cos 8,

where R; = p,¢, = 850(1350) rayls and R, = p,c, = 860(1340) rayls are the characteristic imped-
ances of oil above and below the plane interface where velocity changes take place, ¢; is the angle
of incidence, and ¢, is the angle the transmitted wave makes with the normal.

€, 8in §; 1340 sin 88°

(a) sine, = o = 1350 = 0988 or s, =82° and a, = 0.36.

¢y sing; _ 1340 sin 80°
€ 1350

(b) sine,

= 098 or 4, =178° and 2, =8.7X1073

(¢) Since 6; =0 for normal incidence, 6, =0 and a, = 1.9 X 1075,
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DIFFRACTION OF SOUND
423 Sketch the diffraction of high frequency and low frequency sound waves around bends.

Figure 4-7 shows the diffraction of sound waves around bends. It is clear that low frequency
sound waves readily diffract around bends where bend openings are small compared to wavelength.
High frequency sound waves, as shown in Fig. 4-7(d) do not easily diffract around bends where

bend openings are large compared to wavelength. Moreover, multiple reflections occur at the bend
resulting in scattering and cancellation of high frequency sound waves.

f/ @
i

IR

one wavelength |

| -
(@) (b)

Fig.4-7. Diffraction of sound waves around bends

i)

FILTRATION OF SOUND

424. A rigid smooth pipe of radius 0.04 m has a hole of radius 0.02 m in its thin wall.
Find the sound power transmission coefficient for plane acoustic waves along the
pipe at the following frequencies: 100, 400, 800 cyc/sec. If a similar hole is drilled

directly across the first hole, what will be the sound power transmission coefficient
at a frequency of 400 cyc/sec?

The sound power transmission coefficient for a hole drilled in the thin wall of the main pipe
is given by 1

1 + (za?/2ALk)?

where a is the radius of the hole, 4 is the area of the cross section of the pipe, L = 1.7a, k = 2rf/c
is the wave number, and ¢ = 343 m/sec is the speed of sound in air. Now a2 = (0.02)2 = 0.0004 m2,

L =17a =0.034m, A = 3.14(0.04)2 = 0.0061 m2; and for f = 100 cyc/sec, k = 6.28(100)/343 = 1.83.
Substituting values, we find «, = 0.21.

For f = 400 cyc/sec, k = 6.28(400)/343 = 7.31, and a, = 0.81. For f = 800 cyc/sec, k =
6.28(800)/343 = 14.7, and a; = 0.94. In other words, sound power transmits better at higher fre-
quencies for plane acoustic waves in air along rigid smooth pipes with holes.

When a similar hole is drilled directly across the first hole, the result will be equivalent to two
identical impedances in parallel. The sound power transmission coefficient for f = 400 cyc/sec
- 1 —
therefore becomes a«, = 1+ af/ALR)E 0.61.
The plot of the transmission coefficient versus frequency for the transmission of plane acoustic

waves through an acoustic line with an orifice as a branch is shown in Fig. 4-8. «; is zero for
f =0, and increases to unity as f approaches infinity.

ag

ag)

1.0}—

Fig. 4-8
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425. A section of pipe of length 1 m and cross-
sectional area 0.8 m? is inserted into a main

transmitting pipe of cross-sectional area
0.2 m? as shown in Fig. 4-9. Compute the By S pa—

sound power transmission coefficient at ! A,
(a) 0 cyc/sec, (b) 100 cyc/sec, (c) 200 cyc/sec,
(d) 512 cyc/sec. Fig. 4-9
The sound power transmission coefficient for pipes with expanded sections is
4

U T T[4 A)*—2) sin2kL

where A, = 0.8m? is the cross-sectional area of the expanded pipe, 4, = 0.2m? is the cross-
sectional area of the main pipe, k = w/c is the wave number, ¢ = 343 m/sec is the speed of sound,
and L = 1m is the length of the expanded pipe.

(@) f=0, k=0, sinkL =0, and q, = 1.0.
(b) f=100, k = 100(6.28)/343 = 1.83, sin2kL = sin?1.83 = 0.95, and «, = 0.23.
(¢) f =200, k = 200(6.28)/343 = 3.68, sinkL = sin23.68 = 0.28, and a, = 0.49.
(d) =512, k= 512(6.28)/343 = 9.4, sin?kL = sin29.4 =0, and o, = 1.0.

Thus a plot of transmission coefficients versus a;
fre. encies has the following general form of selec-
tive transmission or filtration of sound. Note that
the result for a constriction is theoretically identical
with that for an expansion.

For A, < A, the incident and reflected waves 0 —
are in opposite phase. This corresponds to the pas-
sage of sound from a dense to a rare medium. Fig.4-10

For A, > A,, the incident and reflected waves are in phase with each other. This corresponds
to the passage of sound from a rare to dense medium.

For A, = A, there is no reflected wave, and the transmitted wave is always in phase with
the incident wave.

426. A plenum chamber designed to trap and absorb sound is installed in a ventilating
system of radius 0.2 m. (a) Find the minimum length of the chamber that will most
effectively filter out fan-induced sound of frequency 10,000 rpm. (b) What will be the
sound transmission coefficient if the radius of the chamber is 0.5 m? (c) What will be
the reduction in sound level? (d) If a 30 db sound reduction is desired, how many
chambers are required?

The sound power transmission coefficient for pipes with expansion type of acoustic filters is

4
4 cos?kL + (Ay/A,+ A ,/A,)? sin2 kL

where the A’s are the cross-sectional areas of the pipes, k = w/c is the wave number, and L is the
length of the expanded pipe.

a —

(¢) When sound is effectively filtered, there is a minimum transmission of sound through the
plenum chamber. This occurs at kL = z/2. Now k = w/¢c = 2rf/c. Hence the minimum leﬂgt_h
of the chamber is Ly, = ¢/4f = 0.52m, where c=343m/sec is the speed of sound in 8I
and f = 10,000/60 cyc/sec is the frequency of sound.

_ (244,

A} + A; + 2Af Ag
(¢) The reduction in sound level is 10 log (1/e;) = 10 db.
(d) Three chambers are required.

(b) a

= 0.1 where A; =026z and A, = 0.04~.
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ABSORPTION OF SOUND

427,

Plane acoustic waves of frequency 10,000 cyc/sec are being propagated in a water-
filled pipe of radius 0.01 m. Determine the attenuation constant « in nepers/m due
to the effects of viscous and heat conduction losses at the walls of the pipe. What is
the attenuation in a 10 m length of this pipe?

The attenuation constant due to the effects of viscous and heat conduction is

a = (1/ae)Vnu/2p = 0.012 nepers/m

where a = 0.0l m is the radius of the pipe, ¢ = 1480 m/sec is the speed of sound in water,
y = 0.001 nt-sec/m? is the coefficient of viscosity for water, p = 998 kg/m? is the density of water,
and o = 62,800 rad/sec is the frequency of sound.

The attenuation in a 10 m length of this pipe is 8.7(10)0.012 = 1.06 db.

Compute the viscous relaxation time and the viscous attenuation constant in air at
20°C and standard atmospheric pressure.

The relaxation time is defined as the time required for a process to proceed to within 1/e of
its equilibrium value. For viscous relaxation time,

T = 49/3pc? sec

where y is the coefficient of viscosity in nt-sec/m?, p is density in kg/m?, and ¢ is the speed of sound
in m/sec.

For air at 20°C and standard atmospheric pressure, 5 = 1.8 X 10~5 nt-sec/m2, p = 1.21 kg/m3,
¢=343m/sec, and so = = 1.7 X 10710 gec.

The viscous attenuation constant is given by

a = 2u27/3pc3 = 9.856 X 10* nepers/m
where f = 100 megacycles/sec.

MISCELLANEOUS PROBLEMS

429,

Plane acoustic waves are propagated in a

pipe in the longitudinal direction as shown

in Fig. 4-11. The pipe is frictionless and —
its cross section changes abruptly from
A = 100m? to A; = 0.80m2 Find the J
sound power transmission and reflection 4,
coefficients. Fig. 4-11

A,

At the junction z = 0, the acoustic pressure and the volume velocity must be continuous:
it P, = P Aiytv) = Agw,

where the subscript i refers to incident waves to the left of the junction, r refers to reflected waves
to the left of the junction, and t refers to transmitted waves to the right of the junction. These

boundary conditions yield
ptoe _ _A_l Pe
‘vi + 1), - A’ v'

v, = —pdpc, v = pilpe,
pelpi+p)  Ape peA, pr _ A —4,
Pi=p,  Aypec) A, or n - A+ A,
Then the sound power Teflection coefficient is

A, - A, 1.0 — 0.8]%
e = |Z1_ T2 = . . —
" [Al ¥ A,] [1.0 ¥ o.s] 0.012

S\lbltihlting v = pfpe,
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Similarly, the sound power transmission coefficient is

_op o [ AT e
= A+A] T

Note that the magnitudes of these two coefficients remain the same whether A, is greater than
A, or A, is greater than A,. No sound waves are reflected when A, equals A,

Two pipes of cross-sectional areas A, and A

contain fluid media of characteristic impedances v

p,c, and p,c, respectively. The pipes are con-

nected as shown in Fig. 4-12, and the two fluid Py, A, oA
media are separated by means of a thin dia- A i

phragm. Determine the sound power trans-
mission coefficient for plane acoustic waves
traveling from pipe A, to pipe A, and the
condition for 100% sound power transmission. Fig.4-12

At the junction z =0, the acoustic pressure and the volume velocity must be continuous:

pitop Ap,
v; + v, Ay,

pite =p, Av+v) = Ay,  or
where the subscript i refers to incident waves to the left of the junction, r refers to reflected waves
also to the left of the junction, and ¢ refers to transmitted waves to the right of the junction.
Now v; =p/R,, v,=-p/R;, v,=p/Ry, where R, =p,c;,, Ry =psc;. Then
pit P _ Rl(pi+pr) _ A]Dg _ A1R2

vi + vf B pi - pr - szf - A2
. Pr AR, - AR,
from which - = —
b AR, + AR,

and hence the sound power reflection coefficient is
AR, — AR 72
& = (pdp)? = [——]
PP AR, + 4,R,
The sound power transmission coefficient is
44,A,R R,
(AR, + AyR,)?

aq = 1-a

The condition for 100% power transmission is obtained by having zero power reflection or
a, =0, ie. A|R,=A,R,; and if R, =R,, this condition becomes A=A,

Harmonic plane acoustic waves of pressure amplitude P, are propagated into a pipe
of constant cross-sectional areas A, =24, as shown in Fig. 4-13. Determine the
pressure amplitude acting on the closed end of the pipe.

y
M4 ———
P I z
- ! P —p—
oy, ——
- _ i
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4.32.

For harmonic progressive plane acoustic waves, the incident, reflected, transmitted, and
secondary reflected waves are given respectively by

Pi = Poei(ut—kx) p, = Pre((wt+kz) pe = Pte((ut—kx)’ P,’- - P:e“""""“)

’ T ’
where Py, P,, P,, P! are the pressure amplitudes of the waves, « is the frequency of the sound waves
in rad/sec, and k = w/e¢ = 2¢/\ is the wave number.

At £ =0 (at the junction of the pipes) the boundary condition of continuity of acoustic
pressure yields

pi + P, = Pt + p;
Substituting the expressions for acoustic pressures into the above boundary condition, we obtain
P,+ P, = P+ P, )
At r =0, the forces acting are
A pi—py) = Ay(pc—Py)
and from expressions for acoustic pressure, we obtain
A(Py—P,) = AyP.—Py) )
At the closed end, p; = p; or

Ptei(ut—kk/4) - P;e((mt+kk/4) =0

Since k = 27/, we can reduce the above expression to

P e~i/2 — Pleiw/2 = 0 )
Using e-i"/2 = cosz/2 — i sinz/2 = —i, and ™2 = cosz/2 + isinz/2 = i, equation (3) becomes

Substituting (4) into (1) and (2), we have
Po+P, =0, A|Py—P) = 2A,P,

from which P, = (A/AQ)P, (%)

Now the sound wave in the small pipe is

plz, ) = Ptei(ut—kz) - ;ei(ut+kx) (6)
Since z = A/4 at the closed end and P, = —P,; by equation (4), we may rewrite (6) as
p(\/4,t) = —2iPelot
The pressure amplitude at the closed end is therefore equal to
2P, = 2(A/A)Py = 2(24,/A9)Py = 4P,

i.e. four times that of the incident wave.

An infinitely long rigid smooth pipe
of cross-sectional area A, = 1.0 m? is
connected with another infinitely long v
rigid smooth pipe as shown in Fig.
4-14. If the cross-sectional area of - 7 | | , -——
the main pipe is A = 4.00m?, find the P, ——— v —p

sound power transmission coefficient —-= --
in the main pipe and the branch pipe.

Fig. 4-14
When plane acoustic waves approach the junction, there is a change in acoustic impedance
because of the branch pipe. The equivalent acoustic impedance at the junction is

s = P

1 Zp2
e _ —

P
vwH+v  plzg+plz T Vzp+1lz T z+ 2
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where p is the common acoustic pressure at the junction because of continuity of pressure, v is
the particle velocity in the main pipe, v, is the particle velocity in the branch pipe, z and z, are the
acoustic impedances to the right of the junction into the main pipe and the branch pipe respectively,

Since z = pe/A for an infinitely long main pipe, we obtain

Py Zeqg — 2 _ sz/(z+zb)—z _ —pc/2A
P zZeqtz | zmEllztzy)tz T pe/2A + 2z,

(see Problem 4.1)

and so the sound power reflection coefficient is

_(pe/24)  _ (pc/24)?
(pc/2A + 2,)2 T (pc/2A + R,)? + X}

a, = (pr/pi)2

For a branch pipe of infinite length, z, = R, = pc/A, and

2
o o= leA2 M 1 g
(peRA T pclAE — @ATA)R — @B+1P

The sound power transmission coefficient for sound waves going into the main pipe from the
Jjunction is similarly given by

o Ry + X koA O sa e
‘ (pe/2A + Ry + X2~ (pc/2A+pc/Ap)2 — (24 + Ap)? '

and finally the sound power transmission coefficient for sound waves going into the branch pipe
from the junction is

_ pcRy/A (pc)?/AA, 4A,A
(a)y = = = = 0.198
(p¢/2A + R, + X3 (0€/2A + pc/A )2 (24 + A,)2

ie (a)y=1—a,—a,=1—0.79—0.012 = 0.198.

Supplementary Problems

Find the sound power transmission and reflection coefficients for sinusoidal plane acoustic waves
traveling from steel into air. Ans. o, = 1078 o, =1

For normal incidence of plane acoustic waves, determine the percent of sound energy passing into
steel from water, and into water from air. Ans. 14%, 12%

Show that a 2 to 1 mismatch of characteristic impedances between two media in contact will cause
a sound transmission loss of 2.5 db.

A compound rod is formed by joining the ends of two rods of constant cross-sectional areas 4;

and A,. For normal incidence of plane acoustic waves at the junction of the compound rod, find
the condition for no reflection of sound waves. Ans. A /A, = (p2Eo/p E)1/2

For maximum transmission of sound energy, two media should have matching impedances. Why?

The free vibrations of a steel bar decay much more rapidly when immersed in water than in air.
Explain.

A pipe of cross-sectional area A, is connected to a second pipe of cross-sectional area A, For

propagation of plane acoustic waves from pipes 4, to A, find the standi tio in pipe
A, if A, is smaller than A,. Ans. SWR = A, /A, ing wave ra
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440

44l
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443

44,

4.45.

4.46.

447

4.48.

4.49.

450.

Plane acoustic waves travel from the open end of a pipe to the other end of the pipe where a piston
of mass M is free to move within the pipe. Determine the sound power transmission and reflection
coefficients for the pipe.

_ 1 _ 1 .
A o = T v T Ty (=LA

Determine the specific acoustic impedance at a distance L to the left of the interface of two media
of characteristic impedances z, and z,.

(z) + zy)eikLl — (z, — 2,)e kL
z . .
Y (2, + z9)etkL + (2, — z,)e— kL

Ans. z =

Determine the input specific acoustic impedance of a fluid column of length L if the absorption
factor of the fluid is y. Ans. z = pe(el + Ke—7L)/(evL — Ke—7L)

The sound from an aircraft flying at a great altitude from an observer on the ground is found to
be limited to the lowest frequencies in the emitted complex noise. Explain,

For transmission of plane acoustic waves from one medium to another at oblique incidence, find
the angle of incidence (known as the angle of intromission) for 100% transmission.

2 2

¢ — C3

AM. 0‘- = cot—1

2.2 _ 2.2\/.2
(pgc5 — pycy)Py

A pipe of length 1 m and cross-sectional area A, is inserted into a main pi.pe.of cross-§ectiona1
area A;. If A,/JA, =10 and f = 100cyc/sec, find the sound power transmission coefficient.

Ans. a, = 0.185

A hole of radius 3.4a§u/c is drilled into the wall of a pipe of radius e¢;,. Find the sound power
transmission coefficient for plane acoustic waves of frequency 2zf in the pipe.
Am. ap = 0.5

An infinitely long pipe of radius 0.5 m is submerged in water. It has a hole of rad_ius 0.1 m in its
wall. Plane acoustic waves of frequency 1000 cyc/sec and 1.0 watt power are being propagated
through the pipe. Determine the sound power transmitted through the pipe.

Ans. W = 0.93 watt

Plane acoustic waves are being propagated in a pipe closed at one end. The measured standing
wave ratios of pressure at the open end and at a point 1.0 m from the open end are 10 and 9.6
respectively. Determine the attenuation constant in nepers/m. Ans. a = 0.0045 neper/m

Derive an expression for the sound power transmission coefficient for plane acoustic waves through
a pipe of cross-sectional areas A;, A, and A;. See Fig. 4-15.

4

Ans. o = (Ay/A; +1)2 cos2kL + (Ay/A, + Ay/A,)? sin2 kL

A,

Fig. 4-15 Fig. 4-16

A closed pipe is attached as a branch to the main transmitting pipe as shown in Fig. 4-16. If
both pipes are made of the same material and have the same cross section, find an expression for
the sound power transmission coefficient for plane acoustic waves through the main pipe.

4

Ans. o = seczkz + 8
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Loudspeaker and Microphone

NOMENCLATURE

a

A
B
¢

c

Ca
d
E

5]
e

;IS
()

g RRIB

L}

SRR N

MNYNTR NS

radius, m
area, m?

magnetic flux density, webers/m?; bulk modulus, nt/m?

speed of sound in air, m/sec
capacitance, farads
acoustical compliance, m®/nt
spacing, m

voltage, volts

voltage generated in the load resistor, volts

frequency, cyc/sec; force, nt
cut-off frequency, cyc/sec
resonant frequency, cyc/sec

= resistance constant, ohms/m

current, amperes

wave number; spring constant, nt/m
acoustical stiffness, kg-m?/sec?
length, m; inductance, henrys
flare constant of horns; mass, kg
sensitivity, volts/nt/m?

acoustical inertance or mass, kg/m*
sound pressure level gain, db
acoustic pressure, nt/m?

quality factor

acoustical resistance, nt-sec/m?®
resistance of voice coil, ohms
mechanical resistance, kg/sec
internal impedance of microphone, ohms
radiation resistance, kg/sec
stiffness of the suspension, nt/m
thickness, m

tension, nt

displacement along the z axis, m
voltage, volts

volume, m?

power, watts

volume displacement, m?

114
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X = volume velocity, m%/sec

X = volume acceleration, m¥/sec?

X, = radiation reactance, kg/sec

7z = total electrical impedance, ohms

7, = input electrical impedance, ohms

Z. = total mechanical resistance, kg/sec
= circular frequency, rad/sec

» = wavelength, m
p = density, kg/m?
y = m/2; ratio of the specific heat of gas at constant pressure
to that at constant volume
r = transmission coefficient
n = electroacoustic efficiency
INTRODUCTION

A loudspeaker is an electroacoustic transducer which converts electrical energy to
acoustical energy. A microphone is also an electroacoustic transducer, but it converts
acoustical energy to electrical energy. In general, loudspeakers are used to reproduce and
amplify sound while microphones are used to record sound and to make acoustical
measurements.

ELECTROACOUSTICAL ANALOGY

Like mechanical systems, acoustical systems are represented and analyzed by their
equivalent electroacoustical analogues which are easier to construct than models of the
corresponding acoustical systems and from which experimental results are more con-
veniently taken than from the acoustical models.

The equivalent electrical analogues are obtained by comparing the differential equations
of motion for both systems. The acoustical and electrical systems are analogous if their
differential equations of motion are mathematically the same. When this happens, the cor-
responding terms in the differential equations of motion are analogous to one another. The
equivalent electrical circuits can then be constructed using Kirchhoff’s laws of voltage
and current.

There are two electrical analogies for mechanical systems: the voltage-force or mass-
inductance analogy and the current-force or mass-capacitance analogy, as given in Table
5-1 below. Similarly, there are two electrical analogies for acoustical systems: the voltage-
pressure analogy and the current-pressure analogy, as given in Table 5-2 below.

Acoustical inertance M, is defined as

M. = acoustic pressure _ p - k 1
% 7 rate of change of volume velocity ~ d)'(/dt = ke/m
Acoustical resistance R. is defined as
_ acoustic pressure P }
R. = volume velocity ~ 4dXx/dt nt-sec/m"

Acoustical compliance C, is defined as

c. — Yolume displacement _ X
¢ acoustic pressure @~ p

= m’/nt
(See Problems 5.1-5.7.)
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Table 5-1
Electrical System
Mechanical System
Voltage-force Analogy Current-force Analogy
D’Alembert’s principle Kirchhoff’s voltage law Kirchhoff’s current law
Degree of freedom Loop Node
Force applied Switch closed Switch closed
F  Force (Ib) v Voltage (volt) 1 Current (ampere)
m  Mass (Ib-sec?/in) L Inductance (henry) Cc Capacitance (farad)
z  Displacement (in) q Charge (coulomb) o = fvdt
z  Velocity (in/sec) i Loop current (ampere) v Node voltage (volt)
¢ Damping (Ib-sec/in) R Resistance (ohm) 1/R  Conductance (mho)
k  Spring (Ib/in) 1/C 1/Capacitance 1/L  1/Inductance
Coupling element Element common to two loops Element between nodes
Table 5-2
Electrical System
Acoustical System
Voltage-pressure Analogy Current-pressure Analogy
P Pressure (nt/m2) v Voltage (volt) 1 Current (ampere)
M, Inertance (kg/m4) L Inductance (henry) C Capacitance (farad)
X  Volume displacement (m3) ¢ Charge (coulomb) fvdt impulse (volt-sec)
X Volume velocity (m3/sec) i  Current (ampere) v Voltage (volt)
R, Resistance (nt-sec/m®) R Resistance (ohm) 1/R Conductance (mho)
C, Compliance (m3/nt) C Capacitance (farad) L Inductance (henry)
Z, Impedance (ohm) Z Impedance (ohm) 1/Z2 Admittance (mho)
LOUDSPEAKERS

The loudspeaker is the prime source of sound in the sound reproduction system. It
provides mechanical vibrations of its own as it is energized, and vibrates the air in contact
with it. As an important source of sound, loudspeakers must have high efficiency, good
power-handling capacity, uniform frequency response, and minimum distortion.

The most widely used dynamic loudspeaker has the voice coil immersed in a fixed
magnetic field generated by a powerful permanent magnet. Current flowing through the
voice coil reacts with the magnetic field to produce motion which in turn actuates the
diaphragm into vibration to produce sound. This type of speaker has low impedance and
offers little resistance to the flow of current through it.

The electrodynamic loudspeaker operates like the dynamic loudspeaker and is thus
current sensitive. Unlike the dynamic loudspeaker, the magnetic field of an electrodynamic
speaker is electrically energized from an external power source.

The condenser or electrostatic loudspeaker is a voltage sensitive device and has high
impedance. It transfers electrical signals into mechanical motion of the diaphragm through
electrostatic attraction or repulsion force at the electrodes energized by voltage to produce
variation in capacitance. Hence this type of loudspeaker is not suitable for low frequency
operation because of the close spacing of the electrodes.
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The erystal or piezoelectric loudspeaker has limited application because of its restricted
uw frequency response and low power output. It operates on the theory that crystal
paterial will expand or contract when alternating electric current is applied to the surfaces
of the erystal.

Acoustic power output of loudspeakers is given by

&R, I? &?R.E?

W = 7z or 7z 2 watts

where ¢ = BL, B is the magnetic flux density in webers/m?, L the length of voice coil in
meters, R, the radiation resistance in kg/sec, Zn» the total mechanical resistance in kg/sec,

7,the total input electrical impedance in ohms, I the current in amperes, and E the applied
roltage in volts.

For multispeaker system, the speakers must be matched in efficiency to produce smooth

orerall response, and their ranges must also overlap to ensure no holes in the response
arve. (See Problems 5.8-5.13.)

LOUDSPEAKER ENCLOSURES

In general the shape, size, and construction of the loudspeaker enclosure affect its
overall performance. The loudspeaker enclosure generally directs the sound waves, deter-
mines the frequency response of the system, and controls sound intensity. Closed enclosure
also stops front-to-end cancellation of sound waves and at the same time raises the response

frequency of the system. A back-enclosed cabinet will increase the stiffness of the suspen-
sion system of the speaker cone by

2A2
s = pC‘IA nt/m

where o is the density of air in kg/m?, ¢ the speed of sound in m/sec, A the area of the piston
inm?, and V the volume of the cabinet in m3. (See Problems 5.10-5.12.)

HORNS

Loudspeaker horns, like loudspeaker enclosures, are designed to achieve various pat-
terns of sound distribution and to act as acoustic transformers to couple high impedance
at the throat to low impedance at the mouth of the horn. Moreover, horns usually

increase the electroacoustic efficiency of the speakers and provide better reproduction of
sound.

Basically there are three types of horn: (1) the conical horn, (2) the exponential horn,
and (3) the hyperbolic horn. The cross-sectional area of the conical horn expands the most
rapidly while that of the hyperbolic horn expands the slowest, as shown in Fig. 5-1.

low preuure

hlgh pressure

|

(l
HHIH

f

Fig.5-1
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The equation of motion for plane acoustic waves in horns is

ﬂ = 2@ + 0_2%%
o8 T o T Aozox
with solution u(z,t) = e~ [Ce'“ B 4 Deitet+80]

where u = displacement along the z axis, y = m/2, m = flare constant of the horn,

¢ = speed of sound in air, k¥ = o/c is the wave number, B8 =\/k*—m?/4. (See Problems
5.14-5.17.)

Transmission coefficient or radiating efficiency of a horn is the ratio of the actual acous-
tic power radiated out of a given horn to the acoustic power radiated by the same diaphragm
which moves at the same velocity into a cylindrical tube of infinite length and having the
same cross-sectional area as the throat of the given horn. For the exponential horn, the
transmission coefficient is 1

L —
V1-—(f./f)?
where f i3 the frequency of sound and f. is the cutoff frequency.

Cutoff frequency of horns is the minimum frequency below which propagation of sound
waves inside the horn is not possible. For the exponential horn, the cutoff frequency is

fo = me/2x cyc/sec
where m is the flare constant of the horn and ¢ is the speed of sound in air.

A multicellular is a group of horns; each radiates sound as a separate and distinct horn
but they are driven by a common source. To achieve wide distribution of sound waves,
different arrays of obstacles are built into the acoustic lens, a horn designed to control the
directional spread of sound. A diffraction horn is a narrow horn that expands uniformly
in the vertical direction but is unflared in the horizontal direction. Thus a diffraction horn
approximates a point source.

MICROPHONES

As dynamic air pressure transducers, microphones can be classified into two appropriate
groups: (1) the constant-velocity, e.g. moving-coil, velocity-ribbon, and magnetostriction;
(2) the constant-amplitude, e.g. carbon, condenser, and crystal. Depending on the nature
of the operational force obtained from sound pressure to drive the diaphragm, microphones
are either pressure-operated, pressure-gradient operated, or phase-shift operated. This
determines whether the microphone will accept or discriminate against sounds from a
particular direction.

PRESSURE-OPERATED MICROPHONES

Basically pressure-operated mi-

crophones utilize the cyclic variation diaphragm
in air pressure resulting from the vi-
bration of an elastic body. The pres-
sure inside the casting is maintained
at atmospheric level, hence the force
acting on the diaphragm is propor-
tional to sound pressure and is inde- \ hole
pendent of frequency, as shown in

Fig. 5-2. Fig. 5-2
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pRESSURE GRADIENT MICROPHONES

Because both front and back faces of the dia- d
phragm are exposed to sound pressure as shown in
Fig. 5-3, a pressure gradient microphone experiences ( >
3 phase difference in sound pressure. This pressure _
difference or gradient causes the diaphragm to move - T axis
and produce a force that is proportional to frequency
and path length d. A pressure gradient microphone diaphragm
thus discriminates against sounds arriving at an angle
to the axis of the microphone. Fig. 5-3

SENSITIVITY

Sensitivity or open-circuit voltage response of microphones is the voltage output for a
sound pressure input of one microbar, i.e. 74 db re 0.0002 microbar. For carbon micro-
phones, for example, the sensitivity is expressed as

M. = EI;{; A volts per nt/m?> or 20 log(M./10) db

where E) is the voltage of the battery in volts, i the resistance constant in ohms/m, A the
area of the diaphragm in m?, R, the internal impedance of the microphone in ohms and s
the effective stiffness in nt/m. (See Problems 5.18-5.23.)

DIRECTIVITY

Directivity or directional response characteristics of microphones is the variation of
microphone output with different angles of incidence, and is usually represented by a polar
graph or directivity characteristics as shown in Fig. 5-4.

i /V\
U O

Omni-directional Bi-directional

Fig.54

The directional response characteristics of an uni-directional or cardioid microphone,
for instance, is the combination of the response characteristics of an omni-directional and
a bi-directional microphones. It discriminates against sounds from its sides and back, but
will receive sounds from its front. Other uni-directional response characteristics may be
obtained by the combination of different sizes of omni-directional and bi-directional response
characteristics.

DIRECTIONAL EFFICIENCY

Directional efficiency of a microphone is the ratio of energy output due to simultaneous
sounds at all angles to energy output which would be obtained from an omni-directional
microphone of the same axial sensitivity. (See Problems 5.27-5.28.)
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RESONANCE
The effects of resonance on microphone performances may be controlled and made

negligible by: (1) resistance control: heavy damping is built-in to reduce the amplitude of
vibration of the diaphragm; (2) mass control: the resonant frequency is made much lower
than the working frequency; (3) compliance control: the resonant frequency is made much

higher than the working frequency.

CALIBRATION
Microphones can be calibrated by one of the following methods: direct known sound

source, comparison, Rayleigh disc, radiometer, hot-wire microphone, motion of suspended
particles, and the reciprocity technique. Calibration can be carried out either in a free
field with purely progressive waves as in an anechoic chamber or in a closed chamber such
as a reverberation chamber where acoustic intensity and energy are constant throughout,
(See Problems 5.24-5.25.)

The choice of microphone is therefore determined by the environmental conditions such
as temperature, humidity, range of pressure level, and frequency response. Microphones
should have high sensitivity, favorable directivity, uniform frequency response, minimum

phase distortion, and very little inherent or external noise.

Solved Problems

ELECTRO-MECHANICAL ANALOGY
S.1.  Investigate the electrical analogues of the single-degree-of-freedom vibratory system
as shown in Fig. 5-5(a).

i(t)<> ==c 3R L CP o(t) %L

f(t)
C

b
(%) (©)
Fig.5-5

Employing Newton’s law of motion, the differential equation of motion is gi b
given by

d2z dz
mag T etk = f )
For an electrical network as shown in Fig

. b-b :
written: (%), an equation of the following form can be

v 1dv 1 .
C— + =22, _ d
dt2+Rdt+L” = % @)

where C = capacitance; (i = C:—’:) ,
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R = resistance; (i = v/R),

L = inductance; [i = %f vdt + i(O)] ,
i(t) = current source,

v = voltage,

Since equations (1) and (2) are of the same form, i.e. they are identical mathematically, the two
systems represented by these two equations are analogous.

Using Kirchhoff’'s voltage law, the voltage equation for the electrical network as shown in
Fig. 5-5(c) is given by

L— + Ri + Cf idt = w(t) (3)
Rewrite equation (I) as d.i
m + cx + kf zdt = £t (4)

where dz/dt is replaced by z, and z by f zdt. Now equations (3) and (4) are of the same form,

which means that the two systems represented by these two equations are analogous. In other words,
the excitation voltage v(t) is analogous to the excitation force f(t), the loop current i is analogous to
the mass velocity Z, and so on. This is known as the mass-inductance or voltage-foree analogy.

Integrating equation (2) once with respect to time, we obtain the current equation for the
network shown in Fig. 5-5(b):

C—+—+Lf vdt = i(t) (5)
(Equation (5) can also be obtained by Kirchhoff’s current law.)

Now equations (4) and (5) are of the same form; which means that the two systems represented
by these two equations are analogous. Hence the excitation current i(¢) is analogous to the excitation

force f(t), the network voltage v is analogous to the mass velocity z, and so on. This is known as the
mass-capacitance or current-force analogy.

A two-degrees-of-freedom spring-mass system is shown in Fig. 5-6(a). Use both the
voltage-force and current-force analogy to set up the equivalent electrical circuits
for the system.

4

L, R, L,
ky & — 000 ——www JO——
m t!(t) + . R
T QB v(t)
z, -
k2 [ ) CZ ——
1 i
i1
L™ 1
¥ :
Z
: (a) (d)
Fig.5-6

The equations of motion givern by =F = ma are

dz, dz, dz,
my dt2 + (cl+cz)d_t + (kl+k2)zl - Cyg—— dt — kzzz = f(t)

dzxz dxz dz
"'Qd_tz + Cz? + kztz - 62# - kzzl = 0
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Using the voltage-force analogy given in Table 6.1, the analogous electrical equations are

di . 1,1 '—'—if'dt=
L‘:;_tl + (R, + Ry, + [C—l + 'C:;]f tdt — Rgip C; L) v(?)

¢y p; -l-f'dz—m-—l- idt = 0
Lza‘*'Rz‘z‘*'C’ ) M)

and the analogous electrical circuit is ghown in Fig. 5-6(b).

Using the current-force analogy as shown in Table 6.1, the analogous electrical equations are
do, [1 1 1 1]f S TP U (A
—_— —_— =t — 4+ — v, dt 9
G * [R, +Rz] et [Ll L, ! R, L,

dvy % IJ‘ "1__1.f dt = 0
—_—t =+ = dt — 5= v
G trtn) " R LI

and the analogous electrical circuit is shown in Fig. 5-6(c).

I()im o I Bu oo

Fig. 5-6(¢)

ELECTRO-ACOUSTICAL ANALOGY

53. A rigid enclosure of volume V with a small opening of radius a and length L is sub-

jected to harmonic plane acoustic waves as shown in Fig. 5-7. Investigate the motion
of the air in the enclosure.

% ALY Z AAARAA
/ ? .
)= //1 v % ¢ i
— a
% l
/ 7 0| m c
Wit Ill
l L z
Helmholtz .
r:son;n?or Lie::‘l:l::: l lELe.clt:;%:l
Fig. 5.7
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Neglecting viscous forces, the resistance element of the system is due to the radiation of
sound at the opening in the form of acoustic energy dissipation, i.e. resistance resulting from
radiation of sound from a simple source. This is pe2k2A2/2z, where ¢ is the speed of sound in air
and k = ¢/w is the wave number.

The volume of air inside the enclosure acts like a spring to provide the stiffness element of
the system. When it is compressed the pressure increases, and when it is expanded the pressure

decreases.
Now acoustic pressure p = pc2s, and s = dV/V is the condensation.
on area A of the opening due to acoustic pressure is
f = pA = pe2AdV/V = pe2A2z/V

Then the force acting

and thus the effective spring stiffness is
k = flx = pc2A2/V

The driving force of the system is due to harmonic acoustic pressure, i.e.
f(t) = AP,sinot
where P, is the amplitude of the pressure.

Summing all the forces,
.o pc2k2A2 . pc2A2 . .
ApLz + o + v % = AP sin ot

and dividing by A,

212 2
':TL(A z) + "‘;" (A2) + P;.—(Ax) = Pysinot
T

or Majf + Ra)'f + k, X = Pysinowt
where M, = pL/A is the acoustical mass, R, = pc2k?/2z is the acoustical resistan.ce, k, = pc?/V
is the acoustical stiffness (C, = 1/k, = V/pc? is the acoustical compliance), and X = Az is the
volume velocity.

Thus we have reduced a simple acoustic system to an analogous simple oscillator, i.e. a

mechanical system having lumped mechanical elements of mass, resistance and stiffness. The
final equation of motion corresponds to the equation of motion for a forced oscillation of a

mechanical system with damping.
The steady state acoustical oscillation is therefore given by
X l
®) = BT iwM,—1/aC)

where the denominator represents the acoustic impedance.
Resonance or maximum volume velocity (air flow) in the neck occurs at a frequency which

makes the total reactancg zero, i.e.

1 _ _ ,1 _ ‘/f_
uMa—-‘E =0 or Wy = M, - A iv rad/sec

This basic acoustic system is represented by the Helmholtz resonator and its mechanical and
electrical analogues as shown in Fig. 5-7. Because oi the restoring force due to the volume of air

inside the resonator opposite to the displacement of the volume of air in the neck, the air in the

neck has harmonic motion. The Helmholtz resonator plays an important role in musical acoustics.

The resonant frequency f, and the quality factor @ of the three systems are

. 1
Acoustical: f, = ——— cyc/sec, = oM,/R
r 2, m y Q Wil g/ity
. 1
Mechanical: [, = ———= cye/sec, = om/c
2rvVm/k y Q=v
1 cyc/sec, Q@ = oL/R

Electrical: f =
i 27VLC
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5.4. An air column of length 0.2 m and diameter 0.02 m is exposed to standard atmospheric
pressure. For small adiabatic changes in length, find its spring constant.

For adiabatic changes, the relation between the absolute pressure and the volume is
pV’ = constant, where y is the ratio of the specific heat of the gas at constant pressure to the
specific heat at constant volume.

Using d(u®) = nu—!du, we have
Vi4dp + 14pV%4dV = 0 or dp/dV = —14p/V

But the bulk modulus for fluid is defined as B = —V dp/dV = —V(—1.4p/V) = 1.4p and so the spring
constant is
k = AB/L = or*1.4p)/L = 3.14(0.01)%(1.4)(1.01)(10)5/0.2 = 223 nt/m

5.5. Using both the voltage-pressure and the current-pressure analogy, set up the electrical
analogue circuits for the low-pass acoustic filter as shown in Fig. 5-8(a).

n_o G Cy G == E P2
— M, M, M, M,
Fig.5-8(a)

The differential equations of motion of air inside the low-pass filter are given by

.. Xl —Xz [ Xa_Xz Xs—'X4
M]Xx + Cl = p;cos wt M3X3 + C2 + C3 = 0
[ X - X x - x [ 1) X - X
1”2X2 + 2C ! + ZC 3 =0 M4X4 + —4?—_3 Do cOS wt
1 2 3

where the M’s are the inertances in kg/m4, X’s are the volume displacements, and C’s are the
compliances in m?/nt,

Using the voltage-pressure analogy, the electrical analogue equations are

diy 1 .. ‘
L, 7 C—.l-f (ii—1)dt = v, coswt

diy 1 o
L,dt f(za ip) dt + lsf(zs—u)dt =0

L4 dt I f (i,—%)dt = wycoswt

where i’s are the currents in amperes, L’s are the inductances in henrys, C’s are thc.a ca.pa'citances
in farads, and v's are the voltages in volts. The corresponding electrical analogue circuit is shown

in Fig. 5-8(b).
La L4

3+
3

1
L1k

L L v

|
jl_

Fig. 5-8(b)
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Using the current-pressure analogy, the electrical analogue equations are

dv
Cld_tl + Llf (vi—wvy)dt = 4 coswut

I
o

dv,

Czﬂ + L, f(v2_v1)dt + L, f(”z_'va)dt
dva

Cad_t + L2 f(va—vg)dt + Laf(’va—v‘)dt = 0

dv
C‘d_: + Laf(v,,—va)dt = 1y coswt

where v’s are the voltages in volts, C’s are the capacitances in farads, L's are the inductances in

henrys, and i's are the currents in amperes, The corresponding electrical analogue circuit is
shown in Fig. 5-8(¢).

iy % L, L, L g) )

Fig. 5-8(¢c)

56. A Helmholtz resonator has a volume of 0.001 m® and a neck of radius 0.01 m and

length 0.002m. Find (a) the frequency at resonance, (b) the quality factor, and
(c) the sound pressure level gain.

(e¢) The resonant frequency of the Helmholtz resonator is

0.000314
1/LV 343 \, 0.002(0. 001) 4300 rad/sec

where ¢ = 343 m/sec is the speed of sound in air, = 3.14(0.01)2 m2 is the cross-sectional
area of the neck, L = 0.002 m is the effective length of the neck, and V = 0.001 m? is the
volume of the resonator.

When used as a band filter, e.g. a Helmholtz resonator constructed around a ventilating
duct, this resonator will most effectively filter sound at a frequency of 4300 rad/sec or
685 cyc/sec.

(b) The quality factor is an indication of the sharpness of resonance of a Helmholtz resonator and

can be obtained by
_ v _ 8(10)—9(0.001) _
Q= T\ = 6'28\/ 31401z - 10

(¢) The sound pressure level gain is acoustic pressure amplification at resonance in decibels, i.e.
ny, = 20 log (P/Py) = 20logQ = 201log10 = 20 db

5.7. A small hole is drilled in the sphere of a Helmholtz resonator of radius 0.05 m. (a) If
the frequency of resonance is 300 cyc/sec, what is the radius of the hole? (b) If the
internal pressure of the resonator at resonance is 30 microbars, find the pressure
amplitude of an incident plane acoustic wave that produced it. (c) Find also the
resonant frequency if two additional holes of the same size are drilled in the sphere.

(2) The resonant frequency of a Helmholtz resonator is

wg = ¢VA/LV rad/sec



126

LOUDSPEAKER AND MICROPHONE [CHAP. 5

Zh_"les /"' = 343' m/sec is 'the speed of sound in air, A = »r2m? is the area of the hole,
; r_3 7 m i3 the effective length of the hole, V = 4z73/3 m3 is the volume of the resonator,
and wy = 27(300) rad/sec. Substituting values into the above expression, we find 7 = 0.0093 m,

(b) The acoustic pressure amplification of the resonator at resonance is
P/Py = 2:VL3V/A3 = 671 or P, = 0.446 microbar
where L = 16(0.0093)/3z m, V = 4r(0.0093)3/3 m3, A = 7(0.0093)2 m2, and P = 30 microbars,

(¢} For a total of three holes of the same size, the area is three times the original area while the
effective length and volume of the resonator remain the same.

wo = c¢V3IA/LV = 343(9.76) rad/sec or f, = B53b cyc/sec

LOUDSPEAKERS
58. A direct-radiator dynamic loudspeaker has a total mass of 0.01 kg (the cone and

5.9.

voice coil) and operates in a magnetic field of flux density 1 weber/m2. The radius
of the speaker is 0.1 m, its mechanical resistance is 1 kg/sec, its radiation resistance
is 2 kg/sec, its radiation reactance is 2 kg/sec, and the stiffness of the cone system is
2000 nt/m. The length of the voice coil is 7.5 m, its inductance is 0.0005 henry, and
its resistance is 10 ohms. Compute the following quantities at a frequency of
200 cyc/sec: (a) the frequency of mechanical resonance, (b) the electroacoustic effi-
ciency, and (c) the acoustic power output W for an input current of 2 amperes.
(a) The frequency f, of mechanical resonance is determined by
(X,. + wgm — 8/00) =0
where X, = 2 kg/sec is the radiation reactance, m = 0.01 kg is the mass, s = 2000 nt/m
is the stiffness. Substitute values and solve for «, = 360 rad/sec or f, = 57.3 cyc/sec.
(b) The electroacoustic efficiency is :p
"= SR +;m)'+ R7 = 0.058 or 5.8%
where ¢2 = (BL)? = (1.0)%(7.5)2 = 56.1,
B = 1.0 weber/m? is the magnetic flux density,
L = 1.5 m is the length of voice coil,
R, = 2kg/sec isthe radiation resistance,
R, = 1kg/sec is the mechanical resistance,

Ry = 10 ohms is the resistance of voice coil,

2, = VIR, +Rp?+ (X, +wum—s/u)? = V17T kg/sec
is the total mechanical impedance,

w = 200(6.28) rad/sec.

_ ¢RI? 56.1(2)4
() W =5 = 7

= 2.6 watts

For the direct-radiator dynamic loudspeaker of Problem 5.8, compute the acoustic
power output produced by a driving voltage of 20 volts and the rms displacement

amplitude of the speaker cone at resonance.

The acoustic power output is
W = ¢ZR:-E2/Z;2:|Z? = 1.86 watts

(BL)? = 56.1,

2 kg/sec is the radiation resistance,

E = 20 volts is the driving voltage,

V177 kg/sec is the total mechanical impedance,

V(RBg + By + (g + Xy)2 = V(104 0.95)2 + [(57.3)(6.28)(0.0006) — 4.14)2
11.7 ohms is the total input electrical impedance.

where ¢?

-]
-
|

N
3
I

N
I
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5.10.

sl

For an applied voltage E,, the current in the voice coil is
E,
m = 1.4 amperes
where Z; = 10 + i(0.628) ohms is the total electrical impedance of the voice coil, or its magnitude

is V102+ (0.628)2 = 10.1 ohms.

Now the velocity of the voice coil is vy, = BLi/Z,, and so the displacement amplitude
uy = vo/w = BLi/wZ, = 0.002156 m. Thus the root mean square displacement amplitude of the
speaker cone at resonance is 0.00215 m.

1

If the loudspeaker of Problem 5.8 is mounted in a back-enclosed cabinet of volume
0.1 m?, compute the frequency of mechanical resonance and the acoustic power output.

The increase in the suspension stiffness due to the back-enclosed cabinet is

2)2 2 2
s = pc2(1‘r,a) _ 1.21(343)1(0.017) = 3160 nt/m

The total stiffness constant of the suspension system is 3160 + 2000 = 5160 nt/m.

The frequency of mechanical resonance is obtained from
(X, + wgm — 8/wg) = (0.010 + 20y — 5160) = 0
which gives oy, = 625 rad/sec or fy, = 99.8 cyc/sec.
The acoustic power output for an input current of 2 amperes is

#*R 12 56.1(2)4

w Z,z,. - 121

3.72 watts or 42.5% increase
where
z:‘ = (R, +Ry)2 + (X, + om —8/w)?2 = (2+ 1) + [2 + 200(6.28)0.01 — 5160/1266]2 = 121 ohms?2

By mounting the loudspeaker in a back-enclosed cabinet, an increase in power output is achieved.
For loudspeakers operating in the low frequency ranges, this effect is much greater.

A direct-radiator dynamic loudspeaker of radius 0.1 m and mass of the cone
0.01 kg has a suspension system of stiffness 1500 nt/m. If the loudspeaker is mounted
in a back-enclosed rigid-walled cabinet of inside dimensions 0.4 X 0.5 X 0.6 m and wall
thickness 0.02 m, find the resonant frequency of the cabinet which can be considered
as a Helmholtz resonator. What is the resonant frequency of the loudspeaker cone?

The resonant frequency of the Helmholtz resonator is

wp = ¢VA/LV = 3431/0.0314/0.189(0.12) = 406 rad/sec

where ¢ 343 m/sec is the speed of sound in air,
A = grr2 = 0.0314 m? is the cross-sectional area of the opening,
L = 0.02 + 167/3r = 0.189 m is the effective length of the opening,

14 0.4(0.5)(0.6) = 0.12 m3 is the volume of the resonator,

By considering the loudspeaker and the cabinet as a system, the effective mass is the sum of
the mass of the cone and the fluid in the opening, and so the acoustic inertance is

M, = m/A?2 = (pLA +0.01)/A2 = 17.43 kg/m* where p = 1.2 kg/m3

The effective stiffness of the system is the sum of the stiffness of the cone and of the cabinet.
Hence the acoustic compliance of the system is

Ca = VA%/(pc2A2+8V) = 3.7X 10~ 7 sec2mé/kg where 8 = 1500 nt/m
The resonant frequency of the loudspeaker cone is

fo = (1/6.28)V1/M,C, = 62.4 cyc/sec
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5.12. A direct-radiator dynamic loudspeaker, mounted in an infinite baffle, has a radius
of 0.1 m and a frequency of mechanical resonance of 20 cyc/sec. When mounted in
a back-enclosed cabinet of volume 0.1 m? the same loudspeaker has a frequency of
mechanical resonance of 40 cyc/sec. Find the mass of the speaker cone and the
stiffness constant of its suspension system.

A back-enclosed cabinet will increase the stiffness of the suspension system of the speaker

cone b
d 8 = pc2A%/V = 1420 nt/m

where p = 1.21 kg/m3 is the density of air, ¢ = 343 m/sec is the speed of sound in air,
A = 3.14(0.01) m? is the area of the piston, and V = 0.1 m3 is the volume of the back-enclosed
cabinet.

Now the frequency f, of mechanical resonance is determined from (X,+ 2#fom — 8/2wfq) = 0,
where X, = 1.0 kg/sec is the radiation reactance acting on one side of the speaker. Two such
equations can be written for two frequencies f,; and f,, of mechanical resonance, i.e.

1.0 + 126m — 8/126 = 0
1.0 + 252m — (s + 1420)/252 = 0
Solving these two equations, we obtain 8 = 555 nt/m, m = 0.027 kg.

5.13. Two identical loudspeakers are radiating acoustic power of 0.1 watt separately at a
frequency of 50 cyc/sec. If they are brought together to a distance of 0.5 m between

their centers and if they radiate sound waves in opposite phase, find the total acoustic
power output.

Assume the sound radiation coming from each loudspeaker possesses hemispherical symmetry.
Apply the acoustic doublet theory

W,/W, = k2L?/3

where W, is the acoustic power output of two identical sources radiating in opposite phase, W, is
the acoustic power output of one such source, k = w/c = 50(6.28)/343 = 0.92 is the wave number,

¢ = 343 m/sec is the speed of sound in air, and L = 0.5 m is the distance between the centers
of the two sound sources. Then

Wi = (0.92)2(0.5)2(0.1)/3 = 0.007 watt

HORNS

5.14. Investigate the propagation of plane acoustic waves along the axis of an infinite
exponential horn.

Fig.5-9

An infinite exponential horn is a pipe whose cross-sectional area A increases exponentially
with distance from its throat.

Consider an incremental section of air PQ of length dz, and its displaced position P'Q’. We
have shown that
2w _ _dp

Pogez — du
where p, is the density of air and p is the acoustic pressure.



But the mass of air in PQ is the same as that In P'Q, i.e.
ped(z)dz = pA(z + u)(dzx + du)

or pod(z) = |:A(x) + u%:l(l + 6_u>
ox oz

Neglecting higher order terms, we have

_ ou |, udA
Po [4 <1 + 3z + ZE)

We can express the density of air as

- _ 0w _udAl) _ 134
pP = P0<1 Fy" Aa::) = po[l— zg(Au)}

The equation of motion for the incremental section becomes

2u dp dp a1 o
cu _ _%P% _ H» 0|1 0
Po 3¢z dp 3z %057 | 4 3z AW
where ¢2 = dp/dp. Thus the equation of motion is
Pu L @Ad
at2 dx2 A oz oz

which has the same form as the equation of motion for the free longitudinal vibration of a bar
with variable cross section.

For an infinite exponential horn, the cross-sectional area varies with the distance according to
A(x) = Agems

where A, is the throat area. Substituting this expression into the equation of motion, we obtain

u _ o[ %u ou
g~ ¢ <3x2 + i

and the solution is ulz,t) = e-vZ(AeM@t™82) 4 Bei(“’HB’))

where y=m/2, B =Vk2—m2/4, k = w/c. The first term on the right represents a wave going
outwards and the second a wave coming inwards. The plane waves decrease in amplitude because
of the attenuation factor e—7* as a result of the spreading of waves over an increasing cross-
sectional area within the horn. Since sound waves travel outward with a velocity ¢ which is
approximately independent of the frequency and with an attenuation factor which is also independ-
ent of the frequency, good reproduction of whatever waves are generated at the narrow end of the
exponential horn is possible. Other forms of horn such as the conical, hyperbolic, etc., in general
will not give rise to the same behavior.

5.15. Determine an expression for the cutoff frequency of an infinite exponential horn.
The motion of sound waves in an infinite exponential horn is (see Problem 65.14)

u(.r, t) — e_yI(Ae“wt—BI) + Be‘(w!+ﬂ¢))
which represents waves traveling in opposite directions with velocity v = w/B. Since 8 = V/ k2 — m2/4,
the velocity of sound propagation can be expressed as

v = w - w/k

V2 — m?/3 1 — m2/4k?

where the quantity under the radical sign cannot be negati\;e. Then

1 = m24k2 or k = olec = m/2

and the cutoff frequency is fo= w./2r = .. -
. Je = w/er = mc/4r. This is the minimum frequency, below whi
propagation of sound waves ingide an infinite exponential horn is not possible. tch
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5.16. An infinite exponential horn of length 0.75 m has a radius of 0.02 m at the throat
and a radius of 0.2 m at its mouth. Find (a) the flare constant of this horn and its
cutoff frequency, (b) the peak volume velocity at the throat for 0.5 watt acoustic
output of the horn. (¢) If the radius of the driving diaphragm is 0.03 m, find the

peak displacement amplitude in order to produce the above volume velocity at the
throat of the horn.

(a) For infinite exponential horns, the cross-sectional area at a distance L from the throat is
A, = Ayl
where A is the throat area and m is the flare constant. Thus
(0.2)2 = (0.02)2¢0-75m or 100 = e0-75m

Taking natural logarithms, we obtain the flare constant m = 6.15.
The cutoff frequency of infinite exponential horns is f. = me/dr = 167 cyc/sec.
(b) Acoustic output for an inﬁpite exponential horn can be expressed as
W = Rv? = (AlR)w? = Ag(pc/Agv? watts

Since volume velocity at the throat is Vy= Ay, we have W = V%(pc/Ao) or

Vo = VWAy/pe = V0.5r(0.02)2/415 = 0.00123 m3/sec

(¢) The peak velocity at the throat is v, = Vo/rAﬁ =0.979 m/sec. Thus the peak displacement
amplitude at the throat is

uy = vy/e = 0.979/(167(6.28)] = 0.000928 m

' The volume displacement at the throat must equal the volume displacement at the driving
diaphragm, ie. wupA, = usdy, and hence the peak displacement amplitude at the driving
diaphragm is

ug = ugdg/A, = [0.000464r(0.02)2)/[r(0.03)2] = 0.00021 m

5.17. Investigate the propagation of sound waves v . —
along the axis of a conical horn as shown |
in Fig. 5-10. . ay
I
The equation of motion for horns with variable -
cross-sectional area A is
u 0% , c23A du
— - 02 — + —_————
at2 or? A dx oz
where u is the displacement along the axis and ¢
is the speed of sound in air. Rewriting, L
otz 7 ox? dz oz Fig.5-10
From the geometry of the conical horn,
% _z AT
ay L AL B gai h L2

where A, is the area of cross section at the mouth, A, is the area of cross section at a length x
from the throat, and the area at the throat is assumed to be negligible.

Taking the natural
logarithm of the last expression,

Ind, = 2Inz + In(A,/L?
dlnd, 9

or

i =z
Putting the above expression into the general equation of motion,

2u u |, 20u
g _ ofdu | sou
at2 ¢ <ax2 + x 0z
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o3 (zu) _ ,3%(zw)

This can be written as g = P n

which is similar to the equation governing the propagation of spherical acoustic waves from a point
source. Thus we conclude that spherical instead of plane acoustic waves will be propagated in a
conical horn with a velocity ¢ independent of frequency, and with attenuation of intensity in
sccordance with the inverse square law. (See Problem 3.8.)

MICROPHONES

518 A crystal microphone has a sensitivity of —50 db re 1 volt/microbar and an internal

3.19.

capacitive impedance of 150,000 ohms at 500 cyc/sec. Plane acoustic waves of fre-
quency 500 cyc/sec and acoustic pressure 0.5 microbar are incident on the microphone.
Determine the voltage generated in a load resistor of 400,000 ohms connected across
the output terminals of the microphone. What power will be generated in this load
resistor?

The sensitivity of the microphone is

M. = 20log(E/p)

20 log (E/0.5) = —50

or the output voltage of the microphone is E = 0.5 antilog (—2.5) = 0.00161 volt. Hence the volt-
age generated in the load resistor is

E. - iR = ER, _ 0.00161(400,000)

L= aht R, +R ~ 400,000 + 150,000

0.00117 volt

The power generated by the load resistor is W, = Ei/RL = 3.42 X 1012 watt,

A carbon microphone diaphragm of radius 0.01 m and effective stiffness 10° nt/m is
connected to a 12-volt battery. If the internal impedance of this microphone is
120 ohms and its resistance constant is 7.5 X 10° ohms/m, find the microphone
sensitivity. Find also the ratio of the second harmonic to fundamental voltage
developed in this microphone for an incident plane acoustic wave of 150 microbars
pressure amplitude.

The sensitivity of the carbon microphone is
M. = EhA/Rps = 12(7.5X 109)(0.000314)/1.2(10)® = 2.35 X 102 volt/nt-m?

where E, = 12volts is the voltage of the battery,
h = 7.5 108 ohms/m is the resistance constant,
A = 0000314 m? is the area of the diaphragm,
R, = 120 ohms is the internal impedance of the microphone,
¢ = 108 nt/m is the effective stiffness.

The response of the microphone can be expressed as a decibel level relative to one volt/microbar
or one volt per 0.1 nt/m2, i.e. 20 log(M/10) = —62.6 db re 1 volt/microbar.

The ratio of the second harmonic voltage to fundamental voltage is hyy/2R,, where Yo is the
displacement amplitude at the center of the diaphragm due to sound pressure and is given by

vo = PoAls = 47x10-0p

where P, = 150 microbars or 156 nt/m? is the pressure amplitude of the incide

g X nt sound
Thus the ratio of the second harmonic to the fundamental is hyo/2R, = 0.015. waves,

It is interesting to note that both the microphone response and the ratio of
. . . - ’ sec i
distortion depend on the factor h/R,. By increasing h/R, either by increasing the VZ'I’: l';'l!l'momc
decreasing the internal impedance R,, we obtain better microphone sensitivi e for h or

i ty but greater distorti
and vice versa. For very intense sound waves, the output will ha ; r istortion,
due to large y,. ve considerable harmonic distortion
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5.20. A moving-coil microphone has a moving element of radius 0.05 m, 0.002 kg mass,
50,000 nt/m stiffness, and 20 kg/sec mechanical resistance. The coil is 0.3 m long
and moves in a magnetic field of 1.5 webers/m? flux density. What is the open-circuit
response at 1000 cyc/sec frequency? Find the amplitudes of the velocity and displace-
ment of the diaphragm when it is subjected to an acoustic pressure of 1.0 nt/m?2.
What is the open-circuit voltage generated in the coil?

The open-circuit response is

M, = BLA/Z, = 1.75X 1074 volt per nt/m? = 1.75 X 10~5 volt/microbar
where B = 1.6 webers/m? is the flux density,
L = 0.3 m is the length of the coil,
A = za! = 3.14(0.06)2 = 7.84 X 10-3 m2 is the cross section,

Z, = \/;2,2,‘ + (em —1/uC,)> = 20.6 ohms is the impedance,

w = 1000(2r) = 6280, «m = 6280(0.002) = 12.56,

C, = 1/s = 1/50,000 = 2Xx10-5 isthe compliance in m/nt, 1/wC,, = 8.0,
R, = 20 kg/sec is the mechanical resistance.

Using one volt per microbar as reference, the open-circuit response in decibels is
M, = 201logl.76X10-5 = -95db
The amplitude of velocity of the diaphragm is v, = F/Z,, = 1/20.6 = 0.0485 m/sec. Hence the

amplitude of displacement of the diaphragm is u; =vp/0 = 7.72X10~-¢m. The open-circuit
voltage generated in the coil is V = BLv, = 0.0218 volt.

521. A condenser microphone diaphragm of radius 0.02 m is stretched to a tension of
20,000 nt/m. The spacing between diaphragm and the backing plate is 0.00001 m,
and the polarizing voltage of the microphone is 400 volts. (a) What is the open-
circuit voltage response of the microphone? (b) Find the amplitude of the average
displacement of the diaphragm when it is acted upon by a sound wave of 15 nt/m?
pressure amplitude. (c¢) Determine the voltage generated in a load resistor of
3 megohms if the frequency of the incident sound waves is 150 cyc/sec.

(a) The open-circuit voltage response of the condenser microphone is

Ep? 400(0.0004)
8dT ~  8(0.00001)(20,000)

where E, = 400 volts is the polarizing voltage, a is the radius of the diaphragm in meters,
d = 0.00001 m is the spacing between diaphragm and backing plate, and T = 20,000 nt/m
is the tension.

M,

= 0.1 volt per nt/m2 = 0.01 volt/microbar

The response in decibels is M. = 20 log0.01 = —40 db re 1 volt/microbar.
(b) The amplitude of the average displacement of the diaphragm is
Yav = Pya?/8T = 15(0.02)2/8(20,000) = 3.76 X108 m
(¢) The voltage drop across the load resistor is
_ E.C\R,

E, = = 148 volt
LT WG+ B o

where C, = (27.8¢%/d) X 1012 = ((27.8)(0.0004)/0.00001]10!2 = 1120 X 10'2 farads,
_ 1120 x 1012(15)(0.0004)
= 2 = =
C, CoP,a?/8dT 8(0.00001)(20,000) - 4.2 X 10'2 farads,
E, = 400 volts,

R;, = 3 megohms = 3 X 10 ohms.
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A velocity-ribbon microphone has an aluminum strip of width 0.004 m, length
0.03m and mass 3 X 10-%kg. The strip moves in a magnetic field of flux density
0.3 weber/m? inside a circular baffle of radius 0.05 m. If a plane acoustic wave of
frequency 300 cyc/sec and pressure 2.5 nt/m? is incident normally on the face of the
ribbon, find (a) the voltage generated in the ribbon, (b) the sensitivity of the micro-

phone M, at this frequency, and (c¢) the amplitude of the velocity and displacement
of the ribbon.

(@) Voltage generated is
E = BL.LAPy/em = 1.31X10~% volt

where B

0.3 weber/m? is the flux density of the magnetic field,
L. = 0.03 m is the length of the ribbon,

L = 0.05m is the radius of the circular baffle,

A = 0.004(0.03) = 1.2% 104 m? is the area of the strip,
Py = 2.5 nt/m? is the acoustic pressure amplitude,

¢ = 343 m/sec is the velocity of sound,

m = 3X10-% kg is the mass of the ribbon.

(b) M,=(2BLA/wm) sin ($kL cos 6) = 5.35 X 10~3 volt/(nt/m2) = —85.4 db re 1 volt/microbar where
k = /e = 300(6.28)/343 = 5.49, kL = 5.49(0.05) = 0.274, cosé¢ = 1 at normal incidence,
sin (%kL) = sin 7.85° = 0.14.

(¢) The amplitude of velocity of the ribbon is v, = E/BL, = 0.0146 m/sec, and hence the amplitude
of displacement of the ribbon is uy = vp/o = 7.76 X 10~ € m.

If the diaphragm of the condenser microphone of Problem 5.21 is made of steel of
thickness 0.00001 m, compute the fundamental frequency of the diaphragm. What
is the internal impedance of the condenser microphone?

The fundamental frequency of a flexible circular diaphragm stretched to a high tension at the

tres 15 given b
edges is given by fi = (24/27a)VT/p, = 9780 cyc/sec

where a = 0.02m is the radius of the diaphragm, T = 20,000 nt/m is the tension, p, = pt =

7700(0.00001) = 0.077 kg/m? is the density per unit area of the diaphragm, and ¢ = 0.00001 m is
the thickness of the diaphragm.

The internal impedance = 1/wC, = t/150(6.28)27.842 = 0.95 X 10~ ohm.

In a reciprocity type of calibration of two identical reversible microphones spaced
1.5 m from each other, the measured open-circuit voltage output of one microphone
is 0.01 volt when a driving current of 0.15 ampere is supplied to the other microphone
at a frequency of 1500 cyc/sec. Calculate the sensitivity of the microphones.

The open-circuit voltage response of the microphones calibrated by the reciprocity method is

M, = M, = V2dE,/ofI,

= V2(1.5)(0.01)/(1.21)(1500)(0.15) = 0.0106 volt/(nt/m?2)

= —59.94 db re 1 volt/microbar
;‘;?: :d = 1.511_1 is. the spacing between the two identical microphones, E, = 0.01 volt is the
e “;'_ {);:;l-clr;:mt v?ltage output of one of the microphones, p = 1.21 kg/m3 is the density of
dr'\'ving curren:.yc sec i the frequency of the driving current, and I, = 0.15 ampere is the
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A reversible electroacoustic transducer and a loudspeaker are used in the reciprocity
calibration of a microphone. The open-circuit voltages in the transducer and the
microphone are 0.16 and 0.64 volts respectively when they are placed the same dis-
tances from the loudspeaker. When the microphone is 2.0 m from the transducer
which acts as the source, an open-circuit voltage of 0.02 volt is generated in the
microphone while the transducer is supplied with a driving current of 12 amperes at
a frequency of 1500 cyc/sec. Determine the open-circuit response of the microphone
and the acoustic pressure p acting on the microphone.

The open-circuit response of microphones calibrated by the reciprocity method is given by
(see Problem 5.24)

M, = V2dE_E./ofl,E, = V2(2)(0.64)(0.02)/(1.21)(1500)(12)(0.16) = 0.0038 volt/(nt/m?2)

= —88 db re 1 volt/microbar

and so p = E,/M, = 0.02/0.0038 = 5.3 nt/m2.

A microphone of impedance 100 ohms and frequency 1000 cyc/sec is connected to an
amplifier by 25 m of coaxial cable having a capacitance of 0.01 microfarad per meter
of cable. If the impedance of the microphone is entirely reactance, find the voltage
loss in decibels due to the capacitance of the cable.

The capacitance of the microphone is C,, = 1/uX. = 1/6280(100) = 1.6 microfarads, and the
capacitance of the coaxial cable is C, = 25(0.01) = 0.25 microfarad. Hence voltage loss is
20 log (1.6 + 0.25)/1.6 = 1.24 db.

Cables connecting microphones to amplifiers should be short in length, well screened, and of
low capacitance. Otherwise the voltage output of the microphone will be affected.

Find an expression for the ratio of the pressure gradient in spherical acoustic waves
and the pressure gradient in plane acoustic waves for a first-order pressure gradient
microphone.

For harmonic spherical acoustic waves, the instantaneous pressure p at a distance r from
the source is

P,
p = y cos (wt — kr)

where k = w/c is the wave number and P, is the maximum pressure amplitude. The pressure
gradient is therefore given by

dp Pok P,
& - Tsm(at—kr —ﬁcos(ut—kr)

- Pl 1
= sin (wt — k7) —;cos(ut—kr)

and hence the rms value of the pressure gradient is

d P Pk
<d—f> = 2VIRFUR) = S VT¥ 1/rk2
rms r T\/E
Similarly, for harmonic plane acoustic waves of the same amplitude the instantaneous pressure

P at a distance r from the source is
P = Pgcos (wt — kr)

where the amplitude Py = Py/r remaing constant. For the pressure gradient we have

dp _ , P,k
4r = Poksin(ut—kr) = %sin(wt—kr)

and the rms value is Pyk/r\/2,
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Thus the ratio of the first-order pressure gradient is

P,k 2)V(Q1+1/r2k2
Pn — ( 0 /7'\/—) ( l/T ) — m
Pok/rV2

This ratio indicates that pressure gradient microphones favor spherical acoustic waves (e.g. close
sound sources) but discriminate against plane acoustic waves (e.g. distant ambient noises). This is
based on the assumption that the path length of the microphone is very small compared with the
wavelength (this is true for low frequencies but inaccurate at high frequencies).

It can be shown in a similar manner that the ratio of pressure gradient for second-order

pressure gradient microphones is V1 + 4/k%4. As in the previous case, plane acoustic waves are
being discriminated against while spherical acoustic waves are being favored.

An array of n pressure-sensitive microphones are connected in series and equally
spaced a distance d meters as shown in Fig. 5-11. If the microphones have identical
response and sensitivity, determine an expression for the output of the array for
plane acoustic waves with angle of incidence 4.

M, M, My M, oM
A4 4 A4 7 7
(]
]
‘\
Fig. 5-11

Since sound waves arrive with angle of incidence 6, the wavefront reaches different micro-
phones at different times and the output from each unit will vary in phase. Let AB and BC
represent the outputs of microphones M, and M, respectively. If the angle of incidence ¢ =0,
AC’ would represent the total output of microphones M; and M,. Now the output BC from
microphone M, lags the output AB from microphone M, by an angle ¢ = kd siné as shown in
Fig. 5-12, where k = w/c = 27/\ is the wave number.

h— a —
C"L B E A o\ oD
A M, 6 M,
D
C '\
[

¢
0

Fig.5-12

Triangles OAB and OBC are similar isoaceles triangles, so

¢ = 180° — /CBO — LOBA and ¢ = (BOA = (BOC
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The output for microphones M, and M, is therefore AC = 2AD =240 sin¢. Thus for an array

of n identical units, the total output is
E, = 2A0 sin (n¢/2)

But AO = AE/sin (¢/2) where 24E = E, is the output of one microphone. Then

_ 24E . sin (n¢/2)
E. = S0 sin (ng/2) sin (¢/2) !

At low frequencies the wavelength \ = c/f is considerably larger than the spacing distance d;
hence ¢ = kd sine = (2#/)\)d sing and so

sin (n¢/2) .+ n$/2 _ | g0 cmall values of ¢

sin (¢/2) #/2

In other words, the total output of an array of n microphones at an angle of incidence ¢ is
E, = nE,, which is the same for an array at an angle of incidence ¢ = 0.

At high frequencies the values for ¢ are no longer small, Consequently the output depends on
the angle of incidence ¢, i.e. the array is highly directional,

For an array of 10 microphones spaced evenly at a distance 0.12 m apart, for example, the
angles of incidence for zero output for sound waves at a frequency of 343 cyc/sec are given by

sin(ng/2) = 0 or 10¢/2 = 7 or ¢ = #/5
Now ¢ = (2zd/\) sine or 2(3.14)0.12sins = (3.14/5)x

where w/c = 27/\ and A = 2r¢/343(6.28) = 1.0. Hence sing = 0.83 and ¢ = 56°, 124°,

Supplementary Problems

$.2. Determine the equivalent electrical circuit for the acoustical system consisting of a series of Helm-
holtz resonators as shown in Fig. 5-13.

Ans. -

PR

C== —_ 3

Fig.5-13

30. Find an equivalent electrical circuit for the acoustical system shown in Fig. 5-14

Ans. I T —— T

P S I e L
FARREE _
o [ S c== == =

Fig.5-14
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g1 For the acoustical system shown in Fig. 615, find the equivalent electrical circuit

Ans,
% /'OU\

b ) f -

]

Fig.5-15

1l
"

532.  An acoustic filter as shown in Fig. 5-16 is subjected to steady harmonic sound pressure p, sin ot,
Find the amplitude ratio of the steady state response. Ans. p/p, =1/(1 - .,,2/‘,,:)

P sin wt —> ‘ p sin wt

Fig. 5-16

533. Determine the equivalent electrical circuit for the mechanical-acoustical system shown in Fig. 5-17,

M, Fy sin wt Ana.
Cnm M, J%%\ % fo‘o\Mﬂ R,
R,- 77 V//
// /A\\\/ — M, F, sin ot <> ==Cn C, =F-'
»
%

AN

%////////

Fig.5-17

\

5. A high-pass acoustic filter is shown in Fig. 5-18. Find its equivalent electrical circuit.

Ans, I
A
Mll | M!J M3 Cl C2 Ca
L L
C] CZ Ca % L 2 La
Fig.5-18
~
5.35. A rigid enclosure as shown in Fig. 6-19 is subjected P > l 1%4
to acoustic pressure p. Derive an expression for
the stiffness of the system. 1 ]“
Fig.5-19

Ans. k = (1.4p/V)(zd2/4)?
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MICROPHONES
536. Calculate the lowest natural frequency of a conical horn of radius 1 meter open at its wide end.
Ans. 166 cyc/sec
537. What is the sound loss in decibels for a bi-directional pressure gradient microphone if the sound
on the axis is moved to an angle of 50°? Ans, 38db
5.38. Obtain an expression for the force acting on the diaphragm of a pressure gradient microphone
when it is exposed to an acoustic pressure p, sin ot. Ans. F = 2Ap, sinkd
539. For a second-order pressure gradient microphone, derive an expression for the ratio of pressure
gradients for spherical and plane acoustic waves. Ans. (1+ 4/kiA)1/2
540. If the directional response characteristics of a second-order pressure gradient microphone is pro-
portional to cos? ¢, find an expression for the pressure gradient for spherical and plane acoustic waves.
Ans. (b + 20/k*rt)l/a
5.41. Compute the directional efficiency of bi-directional and uni-directional microphones.
Ans. 1/3,1/3
5.42. An array of n identical microphones are spaced evenly in a distance L. For incident acoustic waves
of wavelength \ = nL, show that the output of the array at ¢ = 90° is 1/n of the output at the
axis of the array.
543. An array of 10 identical microphones are spaced equally at 1/9 meter apart. For incident sound
waves of frequency 343 cyc/sec, determine the angles of incidence that will give zero output.
Ans. ¢ = 64°,116°
5.44. Plane acoustic waves are incident at an angle ¢ to the axis of a multi-tube microphone as shown
in Fig. 5-20. Find the phase angle ¢ between acoustic pressures for adjacent tubes, and the result-
ant pressure on the diaphragm.
_ _kL . _ gin (ng/2)
Ams. ¢ = Tl —cos0), py = "°[sin(¢/2)]
Po
“:L_l
1
]
' /<‘
{ J
L |
I L |
Fig.5-20
545.

A cardioid microphone has response of 2M at the axis, compute its responses at angles of 80°, 60°
90°, 130° and 160°.  Ans. 1.866M, 1.6M, M, 0.6M, 0.134M ’



Chapter 6

Sound and Hearing

NOMENCLATURE
f = frequency, cyc/sec
HL = hearing loss, db
I = sound intensity, watts/m?

IL = intensity level, db

ISL = intensity spectrum level, db
LL = loudness level, phons

p = acoustic pressure, nt/m?
PBL = pressure band level, db

PSL = pressure spectrum level, db
SIL = speech interference level, db

SL = sensation level, db

SPL = sound pressure level, db

" = circular frequency, rad/sec

p = density, kg/m3
INTRODUCTION

Noise, music and speech are the three basic categories of sound. The human voice as
the natural sound source and the human ear as the natural sound receiver constitute the
fundamental natural sound system. Basic understanding of sound and the human ear is
therefore essential for acoustical studies and measurements.

NOISE

Noise is simply anything that we hear, and is subjectively defined as unpleasant or
unwanted sound. Technically noise is the combined result of single-frequency sounds or
pure tones, and has essentially a continuous frequency spectrum of irregular amplitude and
waveform. Airborne noise is due to the fluctuations of air pressure about the mean atmos-
pheric pressure, structural-borne noise results from mechanical vibrations of elastic bodies,
and liquid-borne noise is caused by pulsations of liquid pressure about the mean static
pressure. Ultrasound is noise of frequency greater than 20,000 cyc/sec while infrasound
is noise of frequency less than 20 cyc/sec (below the normal lower audible limit of the
human ear).

PHYSIOLOGICAL AND PSYCHOLOGICAL EFFECTS OF NOISE

Noise interferes with work, sleep and recreation. It also causes strain and fatigue,
loss of appetite and indigestion, irritation and headache. High intensity noise has adverse
cumulative effect on the human hearing mechanism, producing temporary or permanent
deafness. Psychologically, noise adversely affects the output of workers, decreases their
efficiency, and increases their liability to error because of distraction from work. Noise
from machines causes wear and damage to the machines.

139
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LOUDNESS

Loudness of a sound is the magnitude of the auditory sensation produced by the
amplitude of the disturbances reaching the ear. Vibrational energy of sound is a physical
property while loudness is a mental interpretation. Loudness of a sound is therefore a
subjective quantity and cannot be measured exactly with any instrument. No absolute
scale has been established for the measurement of loudness of a sound. A relative scale,
based on the logarithm of the ratio of two intensities, is used.

The sone is an acoustic unit used to measure loudness of a sound. It is used to rank
and compare loudness of sounds on a common basis as the ear hears them. A pure tone of
frequency 1000 cyc/sec at a sound intensity level of 40 db is defined as having a loudness
of one sone. A loudness of 0.001 sone or 1 millisone corresponds to the threshold of hearing.
Unlike the phon, a loudness of 2 sones is twice as loud as a loudness of 1 sone.

The phon is an acoustic unit used to measure the overall loudness level of a noise. A
pure tone of frequency 1000 cyc/sec at a sound intensity level of 1 db is defined as having a
loudness level of 1 phon. All other tones will have a loudness level of n phons if they are
judged by the ear to sound as loud as a pure tone of frequency 1000 cyc/sec at a sound
intensity level of n db.

Like the decibel, a tone with a loudness level of 30 phons does not sound half as loud as
a tone with a loudness level of 60 phons. A tone of frequency 500 cyc/sec at a loudness
level of 40 phons, however, sounds exactly as loud to the ear as any other 40 phons tone
at any other frequency.

Loudness level of a sound is defined as ;
LL = 10log 10-1 phons
where [ is sound intensity in watts/m>.

Figure 6-1 shows contours of equal loudness level in phons over the entire band of audible
frequencies against intensity level in db or intensity in watts/m2. The upper contour of
120 phons represents the threshold of feeling while the lower contour of zero phons rep-
resents the threshold of hearing. At low intensity levels the human ear is most sensitive
to frequencies between 1000 and 5000 cyc/sec, and at very high intensity levels the response
is more uniform.

ol — N S

i

\.\Loudness level iniphons /

- 1.
120 0

- — —————— 4 —

4. + 102

Intensity Level, db
fntensity, watts/m?

10-10

-1 10-12

20 50 100 200 500 1000 2000 5000 10,000 20,000
Frequency, cyc/sec

Fig. 6-1
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Figure 6-2 is a plot of loudness level versus loudness in phons and sones respectively.
(See Problems 6.1-6.6.)

100
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0.01
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Loudness Level, phons

Fig. 6-2

The noy has been suggested as a possible acoustic unit to rank and compare the noisiness
or annoyance of noises as the ear hears them. A noise, for example, may be judged sub-
jectively by the ear to be louder but not necessarily more annoying than another noise half
as Joud.

Perceived-noise-level PNdb is a subjective scale developed to measure the unwantedness
or noisiness of a noise, especially noises from jet aircraft. It not only represents the
intensity of the noise but also its frequency spectrum. The noise spectrum is mathematically
divided into a number of frequency bands and the sound pressure levels in these bands are
determined. These are combined in some fashion after suitable weighting factors have
been applied to each frequency band measurement. The result is perceived-noise-level in
decibels.

NOISE ANALYSIS

In noise analysis the overall sound pressure level of a noise can be accurately measured
by a sound level meter and a sound analyzer, while an audio frequency spectrometer and a
level recorder plot the pressure spectrum level of the noise over the entire band of audible
frequencies.

An octave is the interval between two frequencies having the ratio 2:1. The
commonly used octave bands are 37.5-75, 75-150, 150-300, 300-600, 600-1200, 1200-2400,
2400-4800, 4800-9600 cyc/sec. A ome-third octave band is a band of frequencies in which
the ratio of the extreme frequencies is equal to the cube root of 2. A narrow band is a
band whose width is less than one-third octave but not less than one percent of the center
frequency.

Intensity spectrum level ISL at any particular frequency f of a noise is defined as the

intensity level of the given noise contained within a band of frequencies 1 cyc/sec wide,
centered on the frequency f.

I
ISL = 1010gIO—Af = IL — 10logaf db

where [ is sound intensity in watts/m?, Io=10-'2 watt/m? is the reference intensity, IL
is intensity level in decibels, and Af is the bandwidth in cyc/sec.
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Pressure spectrum level PSL can be similarly defined as the sound pressure level con-
tained within a band of frequencies 1 cyc/sec wide.

PSL = SPL - 10logaf db
where SPL is sound pressure level in decibels in the band of Af cyc/sec width.

Pressure band level PBL is similarly given by

PBL = PSL + 10logaf db
(See Problems 6.7-6.12.)

White noise has a constant spectrum level over the entire band of audible frequencies,
and need not be random or time-dependent. The amplitude of a random noise occurs, as a
function of time, according to a Gaussian distribution curve. A random noise does not
have a uniform frequency spectrum. Pink noise is characterized by equal energy per octave
from 20 to 20,000 cyc/sec.

PITCH AND TIMBRE

Loudness, pitch and timbre are the three fundamental quantities which characterize a
tone. From the physical point of view, pitch is the frequency of vibration of a pure tone.
For a complex sound, pitch is characterized by its frequencies, and to some extent by the
sound pressure and the wave form. To the human ear, pitch is that attribute of auditory
sensation in terms of which sounds may be ranked and compared. In short, pitch is the
mental counterpart of modes of vibration.

Sound intensity significantly affects pitch at very low and very high audio frequencies.
When sound pressure is increased, the pitch of a low frequency tone will decrease whereas
the pitch of a high frequency tone will increase. The mel is an acoustic unit used to describe
the pitch of a sound. A pure tone of frequency 1000 cyc/sec and loudness level 40 phons is
defined to have a pitch of 1000 mels.

Timbre or tone quality may be described as the instantaneous cross section of the tone,
i.e. in terms of the number, intensity, distribution and phase of the harmonics. Intensity
of overtones can produce changes in timbre whose subjective behavior is much more
complex than that of loudness or pitch.

MUSIC

Music can be described as a highly subjective and complex mental sensation derived
from listening to a succession or combination of different sounds produced by various
vibrating bodies such as strings, membranes and air columns. Unlike noise, musical tones
have simple harmonic structure with regular waveforms and shapes, and consist of a
fundamental and harmonics of integral-related frequencies. Musical acoustics involves
psychological and physical laws as well as aspects and phenomena of tone production.

SPEECH

Speech sounds are complex audible acoustic waves that provide the listeners with
numerous clues. Speech concerns the structure of language and is characterized by the
interpretive aspect, loudness, pitch, timbre and tempo. Intelligibility of speech is an indica-
tion of how well speech is recognized and understood. This depends on acoustic power
delivered during the speech, speech characteristics, hearing acuity, and ambient noises.
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Sound articulation is the percentage of the total number of speech sounds correctly
recorded and identified. Syllable articulation is the number of syllables heard correctly
from 100 speech syllables announced. Articulation generally increases rapidly with speech
level until 70 db.

Speech interference level SIL in decibels is the arithmetic average of readings in the
three octave frequency bands, i.e. 600-1200, 1200-2400, and 2400-4800 cyc/sec. A voice
speech spectrogram shows a time series of frequency versus amplitude plots.

The masking of a sound can be described as the shift of the threshold of hearing of the
host sound due to the presence of the masking sound. It is the reduction of the ability of
a listener to hear one sound in the presence of other sounds. For a given frequency, the
decibel difference between the background noises and the normal threshold of audibility
is defined as the degree of masking.

In general, pure tones are used as the masked sounds. A tone of high pitch can easily
be masked by a tone of low pitch. A continuous bland background noise tends to dull the
edges of intermittent harsh sounds.

THE HUMAN VOICE

The mechanism of the human voice is a very low efficiency sound-producing system. It
has four main parts: (1) a power generator that includes diaphragm, lungs, bronchi,
trachea and associated muscles, (2) a vibrator called the larynx, (3) resonators (nose,
mouth, throat and other voids) and sounding boards (chest, head and palate), and (4) artic-
ulators such as lips, tongue, teeth and palate.

The loudness of the human voice is dictated by the stream of air forced through the
vocal cords from the lungs. The frequency of the human voice is controlled by the elasticity
and vibration of the vocal cords, while the resonators govern the quality of the sound
produced.

THE HUMAN EAR

The human hearing mechanism is essentially a very sensitive electroacoustic transducer
responding to sound waves of a wide range of frequencies, intensities and waveforms. It
translates acoustic pressure fluctuations into pulses in the auditory nerve. These pulses
are carried into the brain which interprets and identifies them, and converts them into
sensations — the perception of sound.

As the response of the human ear is a purely subjective quantity, it cannot be measured
directly like other physical quantities. The response of the human ear varies with both
frequency (20-20,000 cyc/sec) and sound intensity (10~!2-1 watt/m?) at all values. However,
the human ear is more sensitive to changes in frequency than to changes in sound intensity
and more sensitive to sounds of low intensity than to those of high intensity. Because of
its nonlinear responses to sound waves, the human ear actually creates sounds of various
frequencies.

Hearing loss HL can be defined as the decibel difference between a patient’s threshold
of audibility and that for a person having normal hearing at a given frequency. It is
actually a shift in sensation level.

HL = 1010g11 db
0

where .I is the threshold sound intensity for the patient’s ear and I, is the threshold sound
intensity for the normal ear.
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Sensation level SL of a tone is the number in decibels by which it exceeds its threshold
of hearing.

SL = 10 logll db
t
where [ is the intensity of the tone and I; is the intensity at the threshold of hearing.

The hearing mechanism is highly resilient to intensity changes and can be overloaded.
Deafness is usually rated by the amount of hearing loss in decibels. Conductive deafness
is hearing impairment due to abnormality or obstruction in the middle ear. Nerve
deafness is the loss of hearing caused by nerve defect.

Hearing test employs an audiometer, an attenuator, an interrupter switch, and an
earphone to determine the threshold of hearing, hearing defect and deterioration.

The ability of the human ear to identify and locate the direction of a source of sound
with great accuracy is termed binaural audition or auditory localization. This is due to
the difference in sound intensity at the two ears due to diffraction, and to the phase dif-
ference in sound arriving in different times at the two ears. (See Problems 6.13-6.16.)

Solved Problems

LOUDNESS

6.1. A pure tone of frequency 200 cyc/sec has an intensity level of 60 db. Determine its
loudness level and loudness. To what intensity level must this pure tone be raised
in order to increase its loudness to twice the original value?

The loudness level can be found from Fig. 6-1. The intersection of lines representing a fre-
quency of 200 cyc/sec and an intensity level of 60 db yields a loudness level of 52 phons.

From Fig. 6-2, a loudness level of 52 phons corresponds to a loudness of 2.3 sones.

For a pure tone of twice the loudness, i.e. 4.6 sones, the corresponding loudness level is seen
to be 60 phons. And from Fig. 6-1, a pure tone of frequency 200 cyc/sec and loudness level
60 phnns corresponds to an intensity level 65 db.

6.2. The loudness level of a 1000 cyc/sec pure tone is 60 phons. How many such tones
must be sounded together in order to produce a loudness level twice that produced
by one tone?

The loudness level required is 120 phons. Then at a frequency of 1000 cyc/sec, the intensity
level is 120 db. Using

IL = 10 log (I/10-12) db
the intensity of one such tone is

60 = log (1/10—12), I = 10-12 antilog 6 = 10~ watt/m?
and the intensity of all the tones together would be

120 = log(1/10-12), I = 10-'2antilog12 = 1.0 watt/m?2
Thus the number of tones required = 1/10-6 = 108,
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63 A pure tone of intensity level 60 db and frequency 1000 cyc/sec is mixed with another

6.4.

6.6.

pure tone of intensity level 50 db and frequency 1000 cyc/sec. Find the loudness
level of this combination.

From Fig. 6-1, the first pure tone has loudness level 60 phons, and the second pure tone has
loudness level 50 phons.

Since loudness level LL = 10 log (1/10~12) phons, where I is the sound intensity in watts/m?,
(LL), 10 log (I/10712) = 60 or I, = 1012 antilog6 = 108 watt/m?
(LL), 10log (I/10-12) = 50 or I, = 10-12 antilog§ = 103 watt/m?

Thus the sound intensity of the combination is I = I, + I, = 1.1 X 10~6 watt/m?, and the loud-
ness level of the combination is LL = 10 log (1.1 X 10-8/10-12) = 60.44 phons.

A pure tone of frequency 1000 cyc/sec has intensity level 60 db. Find the loudness
level produced by two such tones operating simultaneously.
From Fig. 6-1, the loudness level of the tone is 60 phons. Then
10 log (I/10-12) = 60 phons or I = 1076 watt/m?

The intensity of two such tones is 2 X 108 watt/m?, and the loudness level of two such tones
is 10 log(2x10-6/10—12) = 63 phons.

Given three pure tones with the following frequencies and intensity levels: 100 cyc/sec
at 60 db, 500 cyc/sec at 70 db, and 1000 cyc/sec at 80 db. (a) Compute the total loud-
ness in sones of these three pure tones. (b) What is the combined intensity level of
these three pure tones? (c) Find the intensity level of a single 2000 cyc/sec pure
tone which has the same loudness as all the three pure tones combined.

(@) The loudness level and loudness of a pure tone with known frequency in cyc/sec and intensity
level in db can be found from Fig. 6-1 and Fig. 6-2. For the given pure tones, we have

Frequency Intensity Level Loudness Level Loudness
cyc/sec db phons sones
100 60 37 0.8
500 70 m 9.5
1000 80 80 18.5

The total loudness of these three pure tones is 0.8 + 9.5+ 18.5 = 28.8 sones.

(b) The intensity level is defined as IL = 10 log (I/10-12) db, where I is the intensity in watts/m2.
The intensities of the three pure tones are found to be respectively 10-6, 10-5 and 104 watts/m2.

Then the total intensity is 111 X 10-8 watt/m2, and the combined level of these three pure
tones is 10 log (111 X 10—6/10-12) = 80.47 db.

(¢) The total loudness of the combined tones (28.8 sones) corresponds to a loudness level of 87 phons.

A pure tone of frequency 2000 cyc/sec and loudness level 87 phons has an intensity level of
B6 db.

The frequencies and sound pressure levels of three pure tones are 200 cyc/sec at

64 db, 500 cyc/sec at 70 db, and 1000 cyc/sec at 74 db. (a) Which tone is the loudest?
(b) What is their total loudness level in phons?

Sound pressure level in decibels relative to 0.0002 microbar can be expressed as
SPL = 20logp + 94 db

where p is the acoustic pressure in nt/m2. Then the acoustic pressures of the three pure tones are
found to be p, =3.15X10-2, p, = 6.3 X102, p, = 0.1 nt/m2
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Now intensity I = p?/pc, where pe = 415 rayls is the characteristic impedance of air, Thus
the intensities of the three pure tones are I, =238x10-6, I, =9.66x10"8, I, =24.1Xx10-6
watts/m2. The corresponding intensity levels in decibels are (IL), = 63.8db, (IL); = 69.8 db,
(IL)g = 73.8 db.

(a) From Fig. 6-1 and Fig. 6-2, the loudness levels of the three pure tones and the corresponding
loudness in sones are: 200 cyc/sec at 59 phons and 3.8 sones, 500 cyc/sec at 69 phons and
8.0 sones, and 1000 cyc/sec at 74 phons and 10 sones. Thus the loudest tone has a loudness of
10 sones, i.e. the pure tone of 1000 cyc/sec and intensity level 74 db.

() The total loudness is 3.8 + 8.0 + 10 = 21.8 sones. The total loudness level in phons is
therefore 83.

NOISE ANALYSIS

6.7.

68.

The sound intensity I; of each one-cycle band of a noise is 10-5/f watts/m?, where f
is the center frequency of the band in cyc/sec. Determine the intensity spectrum
level of the noise at 2000 cyc/sec and the intensity level of the noise between 1500
and 2500 cyc/sec.

The intensity spectrum level

-5
ISL = 101og,LM = 1010g1010—£2300-
0

where I is the intensity in watts/m2 and Af = 1 cyc/sec is the bandwidth of the filter.
IL = ISL + 10logAf = 37+ 10log1000 = 67db
where f = 2000 cyc/sec and Af = 2500 — 1500 = 1000 cyc/sec.

37db

The acoustic pressure in each one-cycle band of a noise is expressed as 10/f nt/m?
where f is the center frequency of the band in cyc/sec. Compute the pressure spec-
trum level of the noise at 1000 cyc/sec and the sound pressure level of a 50 cyc/sec
bandwidth centered on a frequency of 2000 cyc/sec.

The pressure spectrum level of a noise is defined by

PSL = 20log —E— db
gPoAf

where p is the pressure in nt/m2?, p, = 0.0002 microbar is the reference pressure, and Af =1 cyc/sec

is the bandwidth of the filter. Thus at 1000 cyc/sec, PSL = 20 log 21 ?(/ 11%0_05 = b4 db; and at
2000 cyc/sec, PSL = 48 db.

The sound pressure level SPL = PSL + 10 logaf = 48 + 10 log 50 = 66 db.

Figure 6-3 below shows the pressure spectrum levels of an office noise. Determine
the overall pressure level of the office noise.

The mean pressure spectrum level in the frequency band 20-50 cyc/sec is approximately 63 db,
so the corresponding pressure band level is

PBL = PSL + 10logaf = 63 + 10log30 = 77.79 db

where sound pressure level SPL = 20 logp + 94 db re 0.0002 microbar. Thus the sound pressuré
for this frequency band 20-50 cyc/sec is given by

7719 = 20logp+94 or p = 0.154 nt/m?
and the corresponding intensity is I = p%/pc = (0.154)2/415 = 5.68 X 10-5 watt/m2
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6.10.
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The procedure is repeated for the other frequency bands, and the results are:

Frequency Band Spectrum Level Band Level Pressure Intensity
cyc/sec db db nt/m2 watts/m2
20-50 63 77.79 0.154 5.68 X 10~3
50-100 72 89.00 0.560 0.75 X 103
100-200 74 94.00 1.000 2.41 X103
200-500 72 96.90 1.390 0.0046
500-1000 66 93.10 0.9000 0.0019
1000-2000 60 90.000 0.630 9.5 x10~4
2000-5000 50 84.80 0.350 29x10—4
5000-10,000 37 74.00 0.100 24 XxX10-5
10,000-20,000 26 66.00 0.040 3.7 x10-8

The intensity of the noise is the sum of the intensities of all bands of frequency and is found
to be 0.0195 watt/m2. The acoustic pressure of the noise is therefore given by

p? = 415(0.0195) = 8.15 or p = 2.85nt/m?
Finally, the overall pressure level of the noise is
SPL = 201log285 + 94 = 103.14db

This overall pressure level of a noise for the entire band of freguency, usually measured directly
by means of sound level meters, is conveniently used for the rating of noise.

Figure 6-4 represents the frequency spectrum of white noise generated by an aircraft.
Each line spectra has the same intensity level of 90 db. What is the intensity level
of the white noise?

0 21,000 22,000 f (cyc/sec)

Fig. 6-4
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(a) Assume each line spectra represents a gingle discre then the intensity
: ! s requency component; 1 1

(L), = 10lgn+IL = 10logloo0 + 90 = 120 db

where n is the number of tones having the same intensity level and IL is the intensity level
of the tone in db.

(b) The intensity level of the white noise is slso equal to the area under the intensity-frequency
curve shown in Fig. 6-4, ie.

I

f
(L, = 10lg [ 10u0df = 10 log 106/0(fy— f) = L + 10log(fa=f1)
h

= 90 + 101og1000 = 120 db

where L is the intensity level of each line spectra.

6.11. A microphone with sensitivity —40 db relative to 1 volt per microbar is used to
measure the spectrum level of a noise. If the open-circuit voltage is 0.01 volt and
the bandwidth of the filter used with the microphone 18 100 cyc/sec, find the pressure

spectrum level PSL of the noise.

The sensitivity of the microphone is 20 log (Elp) = —40 db re 1 volt/microbar or E/p =
tic pressure oxerted on the microphone in microbars pan:l

0.01 volt/microbar, where p is the acous
E is the open-circuit voltage of the microphone in volts. Then p = E/0.01 = 0.01/0.01 = 1 microb
ar

or 0.1 nt/m%.
The sound pressure level of the noise is therefore
SPL = 20log (0.1/0.00002) = 74 db

Thus PSL = SPL — 10 logAf = 74 — 10 log 100 = 54 db, where Af is the bandwi
filter used with the mierophone in eye/sec. width of the

612 The poise spectrum of a certain machine is shown in Fig. 6-5. Compute th
sound intensity and the sound pressure level in the 150-300 cyc/sec band. ¢ total

_'_r///ﬁ\

Fig. 8-5

In the 150-300 cye/sec band, the average sound intensity for each 1 eye/sec is
I, = 10"[6(75)+8(75)]/150 = 9 X 10-4 watt/m?2 .
Hence jntensity I=1Laf=(@X 10-4)(160) = 0.135 watt/m2.
Rewrite sound mtinslty \/% (f’/pc)m. = (p?/pc), Af. Since the characteristic im
be the “m:hef;m; =pio 4(75)_+°'45 160 = §51nt/m® and SPL = 20} Pedance pe must
06,88 db, d,l . 0.5(75))/160 = 0.45 nt/m? is the averageog 0-81/(2 x 1073) =
sound pressure f
or
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THE HUMAN EAR

6.13. Two pure tones of frequencies f, =300 and f; =305 cyc/sec are introduced simul-
taneously into the human ear. Determine the beats observed.
We hear a beat between the two fundamentals (305 — 300 = 5 cyc/sec) which varies from loud
to soft and back to loud, five times a second.

Due to the nonlinear response of the ear, sounds of 2f, = 600 cyc/sec (second harmonics) and
2f, = 610 cyc/sec (second harmonics) are also produced. In addition to this b cyc/sec beat, we
are aware of a 10 cyc/sec beat that arises from the beating of the second harmonics. Moreover, we
hear beats of 15 eyc/sec, 20 cyc/sec, 25 cyc/sec, ... which come from the beating of the pairs of
third, fourth, fifth, ... harmonics.

The higher harmonics, as a rule, have very little energy. Also the beats of the higher harmonics
are too high to recognize.

6.14. Two pure tones of frequencies f, = 1400 and f. = 800 cyc/sec are introduced simul-
taneously into the human ear. Find the first, second and third order aural
harmonics.

When two pure tones of different frequencies f, and f, are introduced simultaneously into the
human ear, aural combination tones or aural harmonics will be produced in the ear and will be
detected as the combination of the sums or differences of the two tones.

First order:

Summation tone:  f; + f, = 1400 + 800 = 2200 cyc/sec
Difference tone: fi—Fa = 1400 — 800 = 600 cyc/sec
Second order:
Summation tones: 2f, + f, = 2800 + 800 = 3600 cyc/sec
2fs + f; = 1600 + 1400 = 3000 cyc/sec
Difference tones: 2f1 — f, = 2800 — 800 = 2000 cyc/sec
2fa —f1 = 1600 — 1400 = 200 cyc/sec
Third order:
Summation tones: 3f, + fo, = 4200+ 800 = 5000 cyc/sec
2f,+ 2f, = 2800 + 1600 = 4400 cyc/sec
3fa + f; = 2400 + 1400 = 3800 cyc/sec

Difference tones: 3fi — fa = 4200 — 800 = 3400 cyc/sec
2f, — 2f, = 2800 — 1600 1200 cyc/sec
3f—fi, = 2400 — 1400 = 1000 cyc/sec

Other tones of multiple frequencies, e.g. 2f,, 3fy, 4f}, ..., 2f, 35, 4f5, ... are possible but are
weak in comparison with the other tones.

6.15. If the nonlinear response of the human ear is expressed as r = a;p + a;p?> where
» = P coset + P,cosw,t is the sum of two harmonic sound waves, determine the
amplitudes and frequencies of the response.

The nonlinear response is
r = a)(P;coswyt + Py coswyt) + ay(Py coswt + P, cos w,yt)?
= a,Pycosu;t + a,P, coswyt + az(Pf cos? uyt + Pg cos? wyt + 2P, P, cos w;t cos wyt)

Now employing trigonometric identities

cos?u;t = 4 + } cos2ut, 2 coswyt coswpt = o8 (wg + wy)t + cos (w; — wy)t
the response can be expressed as
r = é(Pf + P.f,)az + a,Py coswit + a,P, coswyt + iasz cos 2u,t

+ iang cos 2wyt + ayP P, cos (0 — wy)t + a3 P P, cos (w; + wy)t



6.16. Find the sensation levels of a pure

tone of intensity level 40 db at 10,000, 5000, 2000,
1000, 500, 200 and 100 cyc/sec.

ibels by which it exceeds itg
i i d as the number of decibe
The sens;‘atxof! le'efl-rzfn‘yit;“ee-lls,:;ﬁ::r a pure tone of intensity level 40 :b at IOé(')OO Tyc/sec’
.t:r‘?‘]::i:i:; leev.:;uiisg .seen to exce;.d the threshold of hearing by 27 db. Thus the sensation level at
its in

10,000 cyc/sec is 27 db.

The sensation levels at other frequencies are similarly found to be

Frequency, cyc/sec 5000 | 2000 [ 1000 | 500 200 | 100

34 | 20 2

Sensation level, db 317 42 40

The sensation level at 10,000 cyc/sec can also be determined by
SL = 10log(l/I) = 10 log (10-8/2x10~1) = 27db

where I is the intensity in watts/m? of the tone at a particular frequency, and I, is the threshold
intensity also in watts/m? at the same frequency.

Supplementary Problems

LOUDNESS

6.17.

6.18.

6.19.

6.20.

6.21.

6.22,

6.23.

6.24.

6.25.

A pure tone of frequency 1000 cyc/sec has intensity level 50 db. What loudness level will be
produced by two such tones together? Ans. 53 phons

A pure tone of frequency 1000 cyc/sec has intensity level 50 db; another pure tone of frequency
1000 cyc/sec has intensity level 40 db. What loudness level will be produced by two such tones?

Ans. 50.4 phons

A pure tone of frequency 1000 cyc/sec has intensity level 60 db. How many such tones, if all sound
simultaneously, will produce a loudness level twice as great as that produced by one tone?

Ans. 108

Find the difference in intensity of two pure tones at 1000 cyc/sec if one is twice as loud as the
other. Ans. 3db

The loudness of one pure tone is twice that of another. What is the difference

in energy?
Ans. 100 times

If the energy of a pure tone is increased 1000 times,

how much is the loudness increased?
Ans. 3 times

If the intensity of a pure tone at 1000 cyc/sec is increased 10 times,

o ias find the ch i .
The initial loudness level of the tone is 40 phons, Ans. 1 sone ¢ change in loudness

Show that a reduction of loudness level from 72 to 40 phons gives a noise one-tenth as loud

If one sone corresponds to 40 phons,

2 sones to 650 ph
10 log s = (p — 40) log 2, where g is the phons, 4 sones to 60 phons, etc., show that

number of sones and P the number of phons.
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NOISE ANALYSIS

6.26.

6.27.

6.28.

6.29.

Find the limiting sound pressure level in air. Ans. 194 db

A noise is generated by combining 100 identical pure tones. Each pure tone has intensity level
60 db. Determine the intensity level of the noise. Ans. 80 db

Show that a tone of sound pressure 1 nt/m? has 108 times more energy than a tone of the same
frequency but having sound pressure 0.001 nt/m2.

Show that the total intensity level of n identical pure tones, each at an intensity level of IL db, is
(IL), = 10 logn + IL db.

THE HUMAN EAR

6.30.

6.31.

6.32.

Find the sensation level of a tone of intensity 10— watt/m2 and frequency 60 cyc/sec.
Ans. 9db

What is the minimum variation in sound pressure detected by the human ear?
Ans. 106 atmosphere (0.01 nt/m?)

The nonlinear response of the human ear can be expressed as r = a;p+ ayp?+ayp’, where
p = Pycoswt is the harmonic acoustic pressure exerted on the ear., Determine the amplitudes
and frequencies of the response.

Ans. r = %ang + (a,Pp + %aan) coswt + %%Pf, cos 20t + }aan cos 3wt



Chapter 7

Architectural Acoustics

NOMENCLATURE
— sound absorption, sabins or metric sabins

= speed of sound in air, m/sec
sound energy density, joules/m’
sound intensity, watts/m?

= intensity level, db

= mean free path, m
space average sound pressure level, db

24, absorption coefficient for air, nepers/m

acoustic pressure, nt/m?

room acoustics, ft2 or m?

noise reduction factor, db

= area, m*

= sound pressure level, db
reverberation time, sec

TL = transmission loss, db

volume, m3

= sound power, watts

circular frequency, rad/sec

density, kg/m?

sound absorption coefficient
average sound absorption coefficient
= effective sound absorption coefficient
= sound transmission coefficient
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INTRODUCTION
Architectural acoustics deals basically with reverberation contro) noise insulation and
’ an

reduction, and sound distribution and absorption. It strives for the ; .
e . X K
speech, the freedom from external unwanted noises, and the richness of lnl;c:ililglbxhty of

REVERBERATION
Reverberation is the persistence of sound in an enclosure ag th
€ result of continuous

reflections of sound at the walls after the sound source has beep t
free vibration with damping, reverberation depends on the size andug}?::) oﬁ} t:s resonant
€o e enclosure

as well as the frequency of the sound.
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Reverberation time T at a specific frequency is the time in seconds for the sound pres-
sure to decreasg to 107¢ of its original value (or a 60 db drop) after the source is turned off.

T = 0.161V/a seconds (metric units)
T = 0.049V/a seconds (English units)

where V is the volume of the enclosure in m?3 or ft® and a is the total sound absorption of the
enclosure in metric sabins or sabins. If reverberation time is too short, the sound may not
be sufficiently loud in all portions of the enclosure. If it is too long, echoes will be present.
Though the best intelligibility would be obtained with the shortest possible reverber:.tion
time, shorter reverberation time decreases sound intensity in the enclosure which in turn

decreases intelligibility. Reverberation time is therefore an important measure of good
room acoustics.

Reverberation chamber (or live room) is a specially constructed room with paddle-like
turning vanes to cause uniform sound diffusion and with room surfaces having practically
no sound absorption. The walls are highly reflective of sound waves, and consequently
sound waves suffer very little loss at each reflection. These reflections will produce uniform
sound energy distribution so that at any point in the room (not too close to the wall or the
source) the sound appears to come equally from all directions. A reverberation chamber is
used to measure the total sound power output of equipment, to establish the noise reduction

coefficient, to test the sound control efficiency of materials and structures, and to calibrate
microphones.

The growth of sound intensity in a reverberation chamber is given by

I(t) = lg (1 — e ‘ae/4) watts/m?
and the decay of sound intensity is similarly given by

I(t) = 1Eoce (o4t watts/m?

where W is the sound power output in watts, a is the total sound absorption in metric
sabins, ¢ is the speed of sound in m/sec, V is the volume of the room in m? and E, is the
sound energy density in joules/m® when the source is shut off. (See Problems 7.1-7.6.)

NOISE INSULATION AND REDUCTION

When noise at the source cannot be economically reduced below the objectionable range,

noise insulation or soundproofing is required. This can be accomplished either by absorption
or by reduction of the transmission of sound.

In buildings, airborne noise leaks through holes and cracks, weak or poorly-fitting doors
and windows, air intakes and exhausts. It also sets panels and walls into vibration.
Airborne noise can be reduced by breaking its transmission path, by using absorptive

materials and directly surrounding the source with effective sound-absorbing devices or
enclosures (e.g. sound barriers and silencers).

Transmisston loss TL is airborne noise reduction. It is defined as the difference in
decibels between the sound energy striking the surface separating two spaces and the

sound energy transmitted. It cannot be measured directly, but is computed from sound
pressure levels on both sides of the surfaces.

S
TL = 10log 28 _ (SPL), — (SPL); db

3 S

where S is the area of the surface in m? and r is the sound transmission coefficient.
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Structural-borne noise is vibration of elastic bodies. It travels through walls, floors,
columns, beams, pipes, ducts, and other solid structures. Since the amount of energy it
carries is much greater than that of airborne noise, structural-borne noise should be sup-
pressed at its source. Its transmission paths should be interrupted by resilient mounting
insertions and sound plenums or traps. Walls should have discontinuities which are filled
with air or absorptive materials.

Machine noise generally indicates poor balance, excessive clearance, turbulent flow or
other improper working of some components of the machine. Most machine noises can be
reduced and attenuated by proper redesign or using soundproofing enclosures lined with
absorptive materials. Acoustical filters such as mufflers, plenum chambers, resonators,
hydraulic filters, and sound traps should be employed wherever necessary. Sources should
be properly isolated and vibration-mounted to reduce sound and vibration transmission.

Impact noise can be reduced by using carpets to cushion the impact areas of floors which
are isolated from supporting structures by resilient mountings.

Space average sound pressure level L, is defined as
pitpt -+,
np;
where p. are sound pressures in nt/m? and po = 0.00002 nt/m? is the reference sound

pressure.

L, = 10log db

Background noise requires similar acoustical treatments described for airborne noise.
(See Problems 7.7-7.15.)

SOUND ABSORPTION

Sound absorption is a process in which sound energy is converted partly into heat
(by frictional and viscous resistance of the pores and fibers of acoustical materials) and
partly into mechanical vibration of the materials.

Unwanted sounds can be absorbed by draperies, carpets, suspended space absorbers, and
interchangeable absorptive panels in rooms and buildings. Thin panels with air trapped
behind them are employed to absorb sounds at low frequencies. Helmholtz resonators and
resonator-panel absorbers are most efficient for sound absorption at their resonant fre-
quencies. Mufflers impede the transmission of sound but permit the free flow of air.

The sound absorption coefficient « of a material is defined as the decimal fraction of
perfect absorption that it has; e.g. « = 0.6 means 60% absorption. It is the efficiency of
a material in absorbing sound energy at a specified frequency, and varies with the angle of
incidence and the thickness of the material. An open space is sometimes taken as a
standard of unity absorption coefficient.

a i3 obtained by statistically averaging the ratio of absorbed to incident energy over all
possible angles of incidence. The average sound absorption coefficient & is determined by
averaging the absorption coefficients over all the absorbing areas of the room.

Sound absorption a in sabins is the total area in square feet of perfectly absorbing
material. Similarly, 1 metric sabin is one square meter of material having perfect sound
absorption.

Noise reduction factor RF is given by
RF = TL + 10log(a/S) db

where TL is transmission loss in decibels, ¢ is the total sound absorption in sabins, and S
is the area of the partition in ft2



CHAP. 7] ARCHITECTURAL ACOUSTICS 155

The difference in noise level can be expressed as
(db)be!ore - (db)after = 10 lOg Qafter db

Abefore

where the a’s are sound absorption in sabins.

Acoustical materials used for sound absorption are characterized by reduction efficiency,
porosity, flow resistance, propagation constant, and structure factor. Other factors such
as flame resistance, light reflection, paintability, weather exposure, non-hygroscopicity,
heat insulation, weight, ease of installation, and appearance should also be taken into
consideration.

In general, sound intensity in an enclosure is inversely proportional to the amount of
sound absorption present. If the enclosure is very large while the total sound absorption
is small, the absorption of sound in air must be considered.

Anechoic chamber (or dead room) is characterized by highly absorptive wedges or long
pyramids mounted to the walls of the room to absorb all incident sound energy. It simulates
a free field or unbounded space. Complete soundproofing can be achieved by construction
of an anechoic chamber with a floating floor vibration-mounted to another room. Accurate
and consistent measurements of acoustic characteristics of equipment, absolute calibration
of microphones, and sound radiation patterns of loudspeakers can be made inside the

anechoic chamber.
The decay of sound intensity in an anechoic chamber is given by

I(t) — Ioe(S(‘/-H')lnn'l—c'()t watts/m:!

where [, is the sound intensity in watts/m* when the source is shut off, S is the total wall
area iIn m?, ¢ is the speed of sound in air in m/sec, V is the volume of the room in m3, and &
is the average sound absorption coefficient of the room. (See Problems 7.16-7.23.)

SOUND DISTRIBUTION

Sound distribution describes how the sound pressure level varies with position in an
enclosure. To insure smooth growth and decay of sound, rooms and buildings are designed
to have sound as evenly as possible distributed or diffused over the entire area by acoustical
treatments such as the scattering effects of objects, irregularities of wall surface, random
mounting of absorptive material, and reflecting surfaces and diffusers.

Model analysis with light rays, ultrasonic waves, or ordinary audio frequency sound

is used to study sound distribution. Graphical construction of first reflections of the sound
waves at various cross sections can also be used as in Fig. 7-1. (See Problems 7.24-7.26.)

ceiling

balcony

main floor

stage

Fig.7-1. Reflection of sound waves
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ROOM ACOUSTICS

An acoustically well-designed room has good intelligibility of sounds of sufﬁci-ent
intensity (optimum reverberation time), freedom from extraneous and unwanted noises
(soundproofing and reduction), and good sound distribution.

Sound that reaches a listener via two paths differing greatly in length produces an
unpleasant fluttering effect called echoing. Room flutter occurs between a pair of parallel
opposite walls that are smooth and highly reflective. The sound is reflected back and forth
between the pair to produce multiple echoes. Sound focusing is concentration of sound
at a point in an enclosure due to reflection of sound from curved or circular surfaces. Tjhe
result is unequal distribution of sound. Dead spot is a region of deficiency of sound, l.e.
practically nothing can be heard from there, and is due to destructive interference of two
or more sound waves. Because of diffraction of sound, i.e. sound waves bending around an
pbstacle, the obstacle may prove to be an effective barrier if its size is comparable with
the wavelength of sound. An acoustic shadow is formed on the other side of the obstacle.

Acoustical design of rooms should also encourage oblique waves because they decay
most rapidly, but should discourage axial waves because they are most persistent.

Percentage articulation, which is sometimes used as an intelligibility rating of rooms,
is determined from the shape and noise of the room, reverberation and loudness. Room
constant R is another way to indicate and compare the acoustics of a room:

S

R:l_

ft?

RI

where S is the total wall area of the room in ft?, and a is the average sound absorption
coefficient. (See Problems 7.27-7.30.)

Solved Problems

REVERBERATION
7.1. Derive an expression for the rate of absorption of sound energy by the walls of an
enclosure.

Consider the radiation of sound energy from an elemen-
tary volume dV within the enclosure toward an elementary dVv
surface area dS of the wall as shown in Fig. 7-2. dV is at a
distance r from the elementary surface area dS, where r makes

an angle ¢ with the normal to dS. - r
Now dV is radiating sound energy equally in all directions
with velocity ¢, and the differential amount of energy striking dsS
ds is
dE; = (dV E,dS cos 6)/4z7r? Fig.7-2

where E, is the sound energy density in the enclosure, E;dV is the amount of energy in aV, 4=r2
is the surface area of a sphere of radius r surrounding dV, and dS cos ¢ is the projected area of
dS on any portion of the sphere.
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U'sing spherical coordinates (r,6,¢), dV = 72 sin ¢ dr ds dy and the expression for the dif-
ferential amount of energy striking dS can be rewritten as

dEy = (E4dS cose sine dr ds de)/4n

so the total differential amount of sound energy contribution to dS of a hemispherical shell of
radius r and thickness dr is given by
E;dS

2 /2
dEq = —- _I; J; sins cose do dp dr = }E;dSdr

But this total energy travels toward dS with velocity ¢ = dr/dt. Hence the rate at which sound
energy arrives at dS is
dE,/dt = }E,dSdr(c/dr) = }EscdS

or }E,c per unit area. The intensity / of such diffuse sound energy at the walls is therefore
I = *CE'd.

If the enclosure has areas S,,S,, S3 ... having absorption coefficient a,a,, a3, ..., then the
rate at which sound energy is being absorbed by all these surfaces is }cE(a;S; + agS;+ -+°) or
}acE,, where a is the total sound absorption of the enclosure.

72. Derive expressions for the growth and decay of sound in a reverberation chamber.

In general, the rate of sound energy radiated from the source inside a reverberation chamber
or live room must equal the rate of increase of sound energy in the medium throughout the interior
of the room plus the rate of sound energy absorbed by the walls of the room. This condition can
be expressed by the fundamental differential equation of growth of sound energy,

VdE,/dt + }acE; = W (1)

where V is the volume of the room, E, is the sound energy density, a is the total absorption of the
room, ¢ is the speed of sound in air, and W is the rate of sound energy being produced. The first
term represents the rate sound energy increases in the medium, and the second term is the rate
of sound absorption obtained by the classical ray theory. (See Problem 7.1.)

Solution of (Z) can be written as
Ey(t) = (4W/ac)e(ac/aV)t + Ce—(ac/aVt (@)
For growth of sound, the initial sound energy is zero, i.e. E4(0) = 0. Then from (2),
E 40 = 4W/ac+C = 0 or C = —4W/ac
and the expression for the growth of sound energy in a live room is
E (t) = (4W/ac)(1 — e~ (ac/4V)t) )

Since I = E c/4 and E,; = p%/pc?, we can express the growth of sound intensity and of acoustic
pressure in a live room as

w 4Woc
a

It) = ;(1 — g~ (ac/aV)t) p(t) = (1 — e—(ac/aVde)

As time t increases, the expressions for the growth of sound energy, sound intensity, and sound
pressure approach their ultimate values of the steady state condition. These are

E; = 4W/ae, 1 = W/a, p? = 4Wpc/a
For decay of sound the source is shut off at time ¢t =0, and assume energy density at ¢ =0
equals £, From (2) with W =0,
E 0 = E, = C

80 E4(t) = Ce—(ac/AaV)t = [F ¢—(ac/4V)t (4)

The corresponding expressions for the decay of sound intensity and sound pressure in a live room

are similarly given by
I(t) = }Ejce(ac/avt, pi(t) = 2pcEqe—(ac/4V)t
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73. Derive an expression for the reverberation time in a live room.

. : umptions
In Problem 7.2 we showed how sound grows and decays in a hv.e room based 1(;“ t}'}?h:s:xprzssion
of homogeneous sound energy density and continuous sound absorption by the walls.
for decay of sound is E (t) = Ege—tac/avit,

. . d it
Now reverberation time is defined as the time interval during which the soundh e:::rgy ensity
falls from its steady state value to 1/108 of this value, or a 60 db drop. We then ha

Ey/E, = e-(aeiWT = 10-6,  Ine~(ac/A"NT = In107°
. -6
or —(ac/4V)T = 2.31og10-% and so the reverberation time T is T = —4V(2.3 log 10~ 8)/ac sec.

In metric units (c = 343 m/sec at 20°C) T = 0.161V/a sec, and in Englis_hh units (¢ =
1130 ft/sec at 20°C) T = 0.049V/a sec, where V is the volume of the. enclqsure e1§ er in m or
ft3, and a is the total sound absorption of the enclosure either in metric sabins or sabins.

74. A room of volume 86 m? has a total sound absorption of 10 metric sabins. A .sound
source having 10 microwatts sound power output is turned on. (a) .What 18 th'e
sound intensity level inside the room at the end of 0.2 sec? (b) Determine the maxi-

mum sound intensity level attainable. (c) Find the decay rate of the sound intensity
level when the source is turned off.

(a) For growth of sound in a live room,

I = %(l—e‘(ﬂf“"“) = 86.5x10-% watt/m?

where W = 10 X 10— % watt is the rate of sound energy produced in the room, a = 10 metric
sabins is the total sound absorption of the room, ¢ = 343 m/sec is the speed of sound in air,
and V = 86 m3 is the volume of the room. Then the sound intensity level

O X -8
IL = 10 log%— = 59.4db re 1012 watt

(b) I,., = W/a =10"% watt/m2. Then (IL),,, = 101log10-6/10-12 = 60 db re 1012 watt.

(¢) For decay of sound in a live room, the sound intensity at any time ¢t is
I(t) = 1Ece~(ac/4v)t

When the source is shut off, I(0) = }E,c and I(t)/I(0) = e—(ac/4V)e,

The change in intensity
level is thus

10 log e~(ac/4V2t = (10/2.3) Ine~(ac/aVit = —1.09act/V = 43 db/sec

Hence it takes 1.4 sec for the sound to die out completely after the source is turned off.

75. The internal dimensions of a reverberation chamber are 5 x 6 x 8ft and its average
sound absorption coefficient is 0.04. (a) A sound source of 1.0 microwatt output is
tested inside the chamber. Find the maximum sound pressure level produced.
(b) A man goes into the chamber to make measurements. What will be the new sound
pressure level if the equivalent sound absorption of the man is 9.41 sabins?

(a) Maximum sound pressure level will be obtained when steady state condition is reached inside
the chamber. This condition is represented by a sound pressure of

P = V4Wpoe/a nt/m?

where W is the acoustic power output in watts, pe = 415 rayls is the char istic i
c . . act
of air, and a is the total sound absorption in metric sabins. cteristic impedance
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1.6.

Now total sound absorption is @ = a2 S = 0.04[2(30) + 2(40) + 2(48)] = 9.41 sabins or
9.41/10.76 = 0.88 metric sabins. Thus

Puax = V4(10-9)416/0.88 = 0.0435 nt/m?
(SPL)ax = 20 log 0.0435/2(10-5) = 66.8 db

{b) When the man is inside the chamber, the total sound absorption becomes 9.41 + 9.41 =
18.82 sabins or 1.76 metric sabins. This will change the sound pressure to

Pmax = V4(1079)(415)/1.76 = 0.0308 nt/m?2
and so (SPL)ax = 20 log 0.0308/2(10-5) = 63.8 db

A 3 db drop in sound pressure level is observed because of the additional sound absorption.
Since the sound pressure level inside the chamber can be accurately measured by a sound
level meter, this procedure can be reversed to determine the amount of sound absorption of the
man or sound absorption materials. In fact, reverberation chambers are often used to deter-
mine the sound absorption coefficients of different types of building materials.

A classroom is 4 X 6 x 10 m and has a reverberation time of 1.5 sec. (a) What is the
total sound absorption a of the classroom? (b) Forty students are in the classroom,
and each is equivalent to 0.5 metric sabin sound absorption. Find the new rever-
beration time of the classroom. (c) If a speaker lectures with an acoustic power
output of 10 microwatts, determine the sound pressure level in the classroom with
and without the students.

(a) a = 0.161V/T = 0.161(240)/1.5 = 25.8 metric sabins
(b) T = 0.161V/a = 0.161(240)/(25.8 + 20) = 0.85 sec

(¢) Using p = V4dWpoec/a where W = 10—5 watts and pc = 415 rayls, the sound pressures pro-
duced by the speaker with and without the students are respectively 0.0191 and 0.0254 nt/m2.
The corresponding sound pressure levels are

SPL = 20 log 0.0191/(2 X 10—5) = 59.64 db
SPL = 20 log 0.0254/(2 X105 = 62.12 db
NOISE INSULATION AND REDUCTION
7.7. Sound transmission loss through solid
panels can be evaluated in a specially con- source room receiver room

structed room as shown in Fig. 7-3. The
sound energy produced in the source room
travels through the test sample into the
receiver room lined with absorptive mate-
rials. Derive an expression for the trans-
mission loss. Fig.7-3

AR RN

ANAAARRRTTMORRRRRRRNRN

Assume sound energy density is constant in the source room having sound pressure level (SPL),.
Now sound energy transmitted through the test piece (here we assume this is the only possible path
for the transmission of sound from the source room to the receiver room) must therefore be equal
to that absorbed by the wall surface of the receiver room at sound pressure level (SPL),.

Since transmission loss can be defined as the ratio between the sound power striking the panel
on one side and the sound power being transmitted from the other side of the panel,

TL = 10 log (W,/W,) db

where W, = I,S, watts, W, = I,S, watts, S, is the area of the test sample in m2, S, is the area
of the wall surface of the receiver room in m2, I, is the intensity in the source room in watts/m?,
and I, is the intensity in the receiver room in watts/m2. Then

(p}/p0)S, pis,
0 log o
(pzlpc)s2

- Ilsl
TL = lgps = 101og 55 = 10log(pi/py)* + 10 log (Sy/S,)
242
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where
/
10 log (p,/p,)2 = 20 log (p,/py) = 20 log Py P = 20 logﬁ - 20 log& = (SPL); — (SPL),
P2/Po Po Po

Thus the expression for transmission loss becomes
TL = (SPLj; — (SPL), + 10 log(S,/S,) db

If S, €S, then 10log(S,/S,) =0 and TL = (SPL), — (SPL), db. Hence by measuring the
sound pressure levels with a sound level meter, the transmission loss of a given panel can be
determined.

A 1x25m door is located in a 4 X 7Tm wall. The door has a transmission loss of
20 db while the wall has a transmission loss of 30 db. What is the transmission loss
of the combination?

Using TL = 10 log (1/r), we have for the door 10 log(l/ry) = 20 or r4=0.01, and for
the wall 10 log(1/r,) = 30 or r, = 0.001. Hence the transmission loss of the combination is

28

TL = 101og(325/287) = 10log 5oaan =05 0.001)

27.47 db

The space under a solid door is 1/100 of the total area of the door. If the noise level
outside the room is 90 db, find the noise level inside the room with the door closed.

Assume the solid door does not transmit sound and that the space under the door is the only
open space for sound transmission. The transmission loss through the space under the door is

_ 35 _ . 8+001S  _
TL = lggs = 1018 g rio0015 — 209

where S is the area, and 7, =0 and r = 1.0 are the transmissivities of the door and open space
respectively. The noise level inside the room with the door closed is therefore 90 —20 = 70 db, i.e.
only a 20 db drop in noise level.

If there is no space under the door, the theoretical noise level drop will be 90 db as there is no
sound transmission at all. On the other hand, if the space under the door is reduced, say, to 1/1000

of the total area of the door, the transmission loss will be 30 db and the noise level inside the room
will be 60 db.

An office is separated by a partition of area 100 m? having a transmission loss of
40 db. A door of area 2.5 m? having a transmission loss of 30 db is added to the
partition. If the room adjoining the office has a noise level of 75 db, what will be the
noise level in the office when the door is closed and when the door is open?

Transmission loss TL = 10 log(1/7) db, where r is the transmissivity of the material. For
the partition alone, we find 40 = 10 log(l/7,) or r, =0.0001; and for the door alone, 30 =
10 log (1/74) or 4 =0.001. Hence for the partition with the door built-in,

2S 100

TL = 10lg g5 = 10108 57755501) + 2.5(0.001)

= 39.1db

where 2 Sr is sometimes called the transmittance of the material. Thus the noise level in the
office with the door closed is 756 — 39.1 = 35.9 db.

With the door open, the transmissivity for the open space is 1.0 and the transmission loss
becomes 100

10 log o7276:0001) + 2.6(1.0)
Thus the noise level in the office with the door open is 76 —16.6 = 58.5 db.

TL = 16.6 db
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112,

713.
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1.15.

A small fan radiates 20 microwatts of sound energy into a soundproof room having
10 metric sabins sound absorption. Assuming sound energy absorbed equals sound
energy generated, calculate the sound intensity level in the room.

I = W/a = 20(10-8)/10 = 2x10-6 watt/m?
IL = 10log(2x10-9)/10-12 = 63 db re 10712 watt/m?

When the air conditioner is operating, the noise level in a room is observed to be
70 db. Additional acoustical materials of 50 metric sabins sound absorption are
mounted to the ceiling of the room. What is the new noise level if the initial sound
absorption of the room is 15 metric sabins?

Let the sound power output from the air conditioner be W watts. Then the sound intensities

in the room before and after the addition of acoustical materials are I, = W/e; and I,=
W/a, watts/m2, where a; =15 and a, = 15+ 60 = 65 metric sabins.

Since the initial noise level is 70 db, we have
(IL); = 10log(I,/Ig) = 70 or I, = I,antilog7 watts/m?2

where 1, is the reference intensity in watts/m?2.
Now W = a,lI, = a,l;antilog7, and so I, = W/a, = (a,/a,)l, antilog7. Then (IL), =
10 log (Io/1y) = 70 + 10 log (a,/a,) = 63.62 db.
The same result is obtained if we assume noise reduction is proportional to sound absorption, i.e.
A(IL) = 10 log (as/a;) = 10 log(65/15) = 6.38db and (IL); = 70 — 6.38 = 63.62db

Two adjoining rooms have sound intensity levels of 73 and 64 db respectively.
What is the attenuation through the wall?

Attenuation = (IL); — (IL); = 78 —64 = 9db

or 10 log (I,/1,) = 9 db, where I, and I, are the respective sound intensities.

A room has 100 metric sabins sound absorption and a total wall area of 200 m2. If
the average sound transmissivity is 0.05, find the noise-insulation factor.

100

The noise-insulation factor is 10 log (a/2S7) = 10 log 200(0.05) = 10 db.

A room of dimensions 3 X 5 X 7 m has a reverberation time of 0.85 sec and 15 metric
sabins sound absorption. A standard tapping machine is used at four different
Positions to excite the floor. The sound pressure level readings in octave bands are
82.3, 85.1, 79.8, and 80.4 db re 0.0002 microbar. Find the space average sound pres-
sure level and the normalized impact sound level.

The space average sound pressure level is
Pyt Pt Pt A

L, = 10log yoe db
0

Now (SPL), == 82.3 = 20 log p,/(2X 10-%5) or p, = 0.264 nt/m2. Similarly, p, = 0.362,

P3=0.19, p,=0.2nt/m2. Then L,=8216db, where p,=0.00002nt/m? is the reference
Pressure.

This differs from the average sound pressure level 4(82.3 +86.1 + 79.8 + 80.4) = 81.9 db by
0.26 db. This is a small difference. However, for large rooms the difference will be significant.

The normalized impact sound level = L + 10 log (a/ay) = 82.16 + 10 log (15/10) = 83.94 db.
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SOUND ABSORPTION

7.16.

7.17.

7.18.

Derive expressions for the decay of sound and reverberation time in dead rooms,

By geometrical analysis involving classical ray theory, the average distance traversed by a
sound wave between two successive reflections in an enclosure is found to be

L = 4V/S

where L is the mean free path, V is the volume of the enclosure, and S is the total wall area of the
enclosure.

Traveling at speed ¢, the number of reflections the sound wave makes with the walls in any

time t will be n = ct/L = Sct/4V

Assuming an average sound absorption coefficient & of the enclosure, the sound wave loses a
fraction a of its intensity at each reflection. The intensity after n reflections is therefore

I, = I(1—an = Iy(1—a)Se/ae

or the decay of sound in dead rooms is

— (Sc/4V)t

Ity = [yen(1-® = [ el(Se/aV) In(1-a)]e

where the decaying factor is —(Se/4V){-In (1 — a)]t.
Comparing with the decay of sound in live rooms (see Problem 7.2), we have
ac/dV = (Se/4V)ae or o = —In(1—-a)

where a, is the effective absorption coefficient.
The reverberation time in dead rooms can be obtained from that for live rooms by putting
e, = —In(l—a), ie
r = _ 004V 0.161V

S—In(1—a)] in metric units = m(—l—_a)] in English units

A small reverberation chamber 8 x 9 x 10ft is employed to measure the effective
sound absorption coefficient of certain acoustical tile. The observed reverberation
time is 5 sec or 1.0 sec when 40 ft* of acoustical tile is used to cover part of one
wall of the chamber. Find the effective sound absorption coefficient of the tile.

The volume of the chamber is V =720 ft3, and the total area of the wall surfaces is
S = 2(8)9 + 2(8)10 + 2(9)10 = 484 ft2.

Since reverberation time in a reverberation chamber is T = 0.049V/Sa sec, the sound absorp-
tion coefficient of the chamber wall is

a; = 0.049V/ST, = 0.049(720)/[484(5)] = 0.016

When acoustical tile of total sound absorption S,a, is added to part of one wall of the chamber

(where S, is the area in ft of the tile and a, is the effective sound absorption coefficient of the tile),
the new reverberation time of the chamber becomes

T2 = 0.049V/(SIGI+S2¢12) sec
where §; = S—S; = 484 — 40 = 444 ft2 is the new area of the wall surfaces of the chamber.
Thus
0049V — SiaTy _ 0.049(720) — 444(0.015)(1.0)

S,T, 40(1.0) -

a

0.71

Find the reverberation time of an office which has a volume of 1600 m® and a total
sound absorption of 80 metric sabins. What is the sound absorption required for an
optimum reverberation time of 1.2 sec?

Reverberation time T = 0.161V/a = 0.161(1600)/80 = 3.22 sec,
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7.19.

720

For an optimum reverberation time of 1.2 sec,
a = 0.161V/T = 0.161(1600)/1.2 = 216 metric sabins

i.e. additional sound absorption required = 216 — 80 = 136 metric sabins.

Ten persons are talking in a room with total sound absorption of .975 metric sabins.
If each person produces an acoustic power output of 10 microwatts, compare the
background sound pressure level of the reverberant sound with the direct sound
pressure level at a distance 0.3 m from the closest speaker.

The sound pressure in the live room is
p, = V4pcW/a = V4(415)(10-4)/0.975 = 0.41 nt/m?

where p, is the background reverberant sound pressure, a = 0.975 metric sabin is the total sound
absorption of the room, pc = 415 rayls is the characteristic impedance of air, and W = 10—4 watt
is the total acoustic power output. Then the reverberant sound pressure level becomes

(SPL), = 20 log (0.41/0.00002) = 86.4 db

For the direct sound pressure, we have I = W/4rr2 = pﬁ/pc or
pa = VWpc/dzr2 = /10~5(415)/[4(0.3)2] = 0.061 nt/m?2
and so (SPL)y = 20 log (0.061/0.00002) = 69.6 db

It is apparent that the background reverberant sound presents an unpleasant high level noise
which, for all practical purposes, completely masks the intelligibility of conversation. The situation
can be remedied by reducing the acoustic power output of each person (i.e. speak softly), thereby
lowering the background reverberant sound.

The observed reverberation time at 5000 cyc/sec in a reverberation chamber filled
with dry air is 16 sec. With moist air, the reverberation time is 6 sec. If
of/f*=1.4(10"1) for dry air, determine the absorption coefficient (or attenuation
constant) for the moist air.

We have shown that the intensity of a plane acoustic wave decreases according to
I(t) = Ije~2ax = J,e—mz

where m = 22 in nepers/m is the absorption coefficient for air. But the decay of sound in a live
room is I(t) = Iye—act/4V, and when the effect of air absorption is incorporated we have

I(t) = ]oe—(al4v+m)ct
and AIL = 10 log (I/Iy) = (10/2.3) In e~ (a/4Vtmict = —4.34(a/4V + m)ct
which represents the change in intensity level in decibels. The decay rate is therefore
D = 4.34(a/4V + m)c db/sec

Now reverberation time is the period required for the level of the sound in the room to decay
by 60 db, or 60

T = 60/D = 3.34(a/4V + m)e = 0.161V/(a+4Vm) sec

where ¢ = 343 m/sec is the speed of sound in air, V is the volume of the room in m3 and a is the
total sound absorption in metric sabins. Also

T = 0.049V/(a + 4Vm) sec

where V is the volume of the room in ft3 and a is the total sound absorption in sabins.

Since the volume and total sound absorption due to the wall surface of the room are constant,
we can write expressions for the reverberation time for dry and moist air,

_ 0.049V 0.049V — Ta
T — m =

= 2+ 4Vm or = /T for dry air
o= 0.049V or m = 0.049V — T'qg for moist ai
= T ava = Twr moist air



164

721.

722,

723

ARCHITECTURAL ACOUSTICS [CHAP. 7

Combining,
. _ 0.01225(T—T)
m-m = T
Now a/f2=14X10"1! or o = 1.4 X 101! X (5000)2 = 3.5 X 10~ 4 neper/ft. Thus
m = &%(2;(51(;;5—_@ +7X10-4 = 19.7x10-4 neper/ft

A room has an average sound absorption coefficient 0.5 and mean free path 10 m.
Calculate the reverberation time of the room.

With an average sound absorption coefficient & = 0.5, the sound waves lose a fraction a of
their intensity at each reflection. The number of reflections required for the intensity to decrease
to 10-° of its original value is therefore 0.5* =10-%, from which = = 20.

Since we know the average free path is 10 m, the number of reflections made by a sound wave
per sec is n = ct/L = 343(1.0)/10 = 34.3. Thus the reverberation time is T = 34.3/20 = 1.72 sec.

Conversely, we can measure reverberation time directly and use the information to calculate
the number of reflections and the free mean path.

The volume of a room is 324 m®. The wall has area 122 m? and average sound
absorption coefficient 0.03. The ceiling has area 98 m? and average sound absorption
coefficient 0.8. The floor has area 98 m? and average sound absorption coefficient
0.06. Compute the reverberation time for this room.

The average sound absorption coefficient of the room is

_ _ oS taSy;+eS;  0.03(122) + 0.8(98) + 0.06(98) _ 007
* T T8 +8,+8, ~ 122 + 98 + 98 -

Then the total sound absorption of the room ¢ = 0.27(318) = 86 metric sabins.

Reverberation time T = 0.161V/a = 0.161(324)/86 = 0.6 sec.

An office with a noise level of 72.5 db has originally 100 metric sabins sound absorp-
tion. Sound absorption material with a coefficient of 0.85 is applied to the ceiling
of dimensions 20 x 40m. What will be the resultant noise level?

Since the original sound absorption is 100 metric sabins, and 20(40)(0.85) = 680 metric sabins
are added, the total sound absorption is 680 metric sabins. (Here we assume the original sound
absorption of 100 metric sabins is entirely due to the ceiling.) Sound reduction is therefore

(db); — (db)y, = 10log(680/100) = 8.34 db

and the resultant noise level is 72.5 — 8.34 = 64.16 db. A reduction of 5-10 db is considered
satisfactory for most offices.

SOUND DISTRIBUTION

T24.

An electric motor is tested on a large hard surface inside an anechoic chamber. At
a radius of 1 m from the motor, five readings of the noise level are taken near the
centers of five equal areas on a hemispherical surface. These readings are 73, 72, 69,
70 and 68 db. What is the sound power output of the motor?

The noise level is 10 log (I/I) db where I, = 10-!2 watt/m? is the reference intensity.
Then I, = I, antilog7.3 = 1.99 X105, I, = 1.68x10-5, [I; = 794X 10-8, I, = 10-5, Iy =
6.28 X 108 watt/m2.
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The area of a hemispherical surface is 2772 = 6.28 m?, and the area of each of the five

s;gments is 1.26 m2. The total acoustic power through all five segments is the acoustic output of
the motor.

Now W, = 1.26(1.99 x 10-%) = 252X 10-6, W, = 20.1x10-%, W, = 101x10-¢, W, =
127X107%, W, = 8.0 x 10-® watt, and thus

W= W, +W,+Ws+ W, +Ws = 761x10-¢ watt

725. The sound pressure level of a machine in a reverberation chamber 3 x 4 X 5m is 70 db

re 0.00002 nt/m2. The reverberation time is 4 sec. Find the acoustic power output
of the machine.

The maximum sound pressure level in a reverberation chamber is obtained when steady state

condition is reached, i.e. P = V4Wpe/a nt/m?2 where W is the acoustic power output in watts,
p = 1.21 kg/m3 is the density of air, ¢ = 343 m/sec is the speed of sound in air, and a is the total
sound absorption in metric sabins.

Reverberation time 7 = 55.2V/ac sec, where V = 60 m3 is the volume of the chamber.

Upon eliminating the constant a from these two expressions,

13.8p2V _  13.8(0.063)2(60)
2T~ 1.21(343)%(4)

since SPL = 20 log p/(2 X 10—35) or p = 0.063 nt/m2,

W =

= 5.84 X108 watt or 5.84 microwatts

726. A room has dimensions 4 X 5 x 8m. Determine (a) the mean free path of a sound
wave in this room, (b) the number of reflections per sec made by sound waves with
the walls of this room, and (c) the decay rate of sound in this room.

(@) The mean free path L is the average distance a sound wave travels through the air between
two successive encounters with the walls of the room.
L = 4V/S = 4(160)/184 = 348 m

where V = 4(5)8 = 160 m? is the volume of the room, and S = 2(4)5 + 2(4)8 + 2(6)8 = 184 m?
is the total wall surface area of the room.

() m=ec/L = 343/3.48 = 98.5, where ¢ = 343 m/sec is the speed of sound in air.

(¢) The decay rate of sound depends on the total sound absorption of the room. If we assume a
fairly dead room with an average sound absorption coefficient a = 0.6, then

_108Sc¢In(1—a) _ _ 1.08(184)343In 04 _ 179 db/sec

b = V 160

ROOM ACOUSTICS

727. Compute the lowest characteristic frequencies associated with the axial sound waves,
the tangential sound waves, and the oblique sound waves in a rectangular room of
dimensions 3 X 5 X 7Tm. :

The frequency equation for harmonic acoustic wave motion in a rectangular room is

fz'uz = ‘&c\/("lz/L,;:)2 + (n,/L,)z + ("z/Lz)2 cyc/sec

where ¢ = 343 m/sec is the speed of sound in air, the n’s are the modes of vibration, and the L’s
are the lengths of the sides of the room.

The axial sound waves are those moving parallel to either one of the three rectangular axes,
i.e. two of the n's are zero. The lowest characteristic frequency associated with the axial waves

in the z direction is
foor = (343/2)(1/7) = 24.4 cyc/sec
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The tangential waves are those moving parallel to the surfaces of either one of the walls, i.e.
one of the n's is zero. The lowest characteristic frequency associated with the tangential wave in

. .
the yz plane is forn = (343/2) V752 + (1/7)2 = 42 cyc/sec

The oblique waves are those striking all six walls of the room, i.e. none of the n's is zero. The
lowest characteristic frequency associated with the oblique waves is

fin = (343/2)V(1/3)2 + (1/5)2 + (1/7)2 = 66.1 cyc/sec

It is apparent that axial waves are the most persistent while oblique waves decay most rapidly.
Wall irregularities as well as irregular room shapes are therefore preferred because they discourage
axial sound waves and encourage oblique sound waves,

Compute the characteristic frequencies associated with the first six principal modes
of vibration in a rectangular room of dimensions 3 x5 X 7m.

The frequency equation for harmonic wave motion in a rectangular enclosure is

foe = $eV(nJL)E + (nJL)2 + (n,/L,)? cyc/sec

For the first principal mode in the z direction, n, = n, = 0; in the y direction, n, = n, = 0;
in the z direction, n, = n, = 0. Hence

fioo = (343/2)(1/3) = 572, fo0 = (343/2)(1/5) = 34.3, foor = (343/2)(1/7) = 24.2 cyc/sec

Similarly, for the second principal mode in the z direction, n, =2, n,=n,=0; in the y
direction, n, =0, n, =2, n,=0; and in the z direction, n, =n, =0, 7, = 2. Hence

fooe = (343/2)(2/3) = 1144, foyy = (343/2)(2/5) = 68.6, fooe = (343/2)(2/7) = 49 cyc/sec

For the fundamental mode of vibration, calculate the directional angles for the axial,
tangential, and oblique waves in a rectangular enclosure of dimensions 3 x5 x 7m.

Let the rectangular enclosure be the zyz coordinates with sides L, =5, L,=3, L,=Tm.
The directional angles o_, 8,,8, are the angles formed by the wave vector and the coordinate axes.

(1) Axial waves: z-axial, for the (1,0,0) mode, », =1, n, =n, =0; y-axial, for the (0,1,0)
mode, n, = 0, n, = 1’ n, = 0; for the (0’ 0,1) mode, n, = "v = 0, n, = 1; the directional
angles are respectively

0, =0, 6,=6,=90° 0,=6,=90° 0,=0;, 6,=06,=90° ¢,=0
(2) Tangential waves: zy-tangential, (1,1,0) mode, n, =n, =1, n, = 0;
0 = tan~I(L,/L,) = 59°, ¢, = tan—'(L,/L,) = 31°, 6, = 90°

yz-tangential, (0,1,1) mode, n, =0, n, = n, = 1;

0: = 90° 8, = tan-!(LJL,) = 253°, 6, = tan~'(LJL,) = 64.7°
zz-tangential, (1,0, 1) mode, n,=n,=1,n,=0

tan—1(L,/L,) = B4.5°

6 = tan~Y(L,/L,) = 355°, ¢, = 90°, 4,

(3) zyz-oblique waves: (1,1,1) mode, n,=mn,=mn, =1,
6; = tan—Y(L/VL2+L%+L?) = tan—!(6/9.1) = 28.9°
6, = tan=1(3/9.1) = 18.3°, 9, = tan—1(7/9.1) = 37.6°

. For higher modes of vibration, eg. the (3,2,0) mode, the procedure for obtaining the direc-
tional angles is the same:

6, = tan—l(aLlszv) = 48.90’ ov = tan—l(2Lv/3L:) = 41.101 0, = 90°
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7.30. What is the room constant of an enclosure having a total surface area of 400 ft?

and an average sound absorption coefficient of (a) @ =0.2, (b) a=0.8?

Room constant R = Sa/(1 — &) ft2 where S is the total wall area of the room in ft2 and a is
the average sound absorption coefficient. Substituting values, we find (2) R =100 ft2, (b) B =
1600 ft2, The greater the room constant the better the room acoustics.

Supplementary Problems

REVERBERATION

131

132

1.33.

.34,

1.35.

1.36.

137,

A room 20 X 40 X 60 ft has an average sound absorption coefficient 0.24. What is the reverberation
time? Ans. T = 1.0 sec

What is the theoretical reverberation time if the sound absorption coefficient is (a) « = 1.0,
b) a =07 Ans. (a) T=0, ) T ==

Show that Sabine’s equation for the reverberation time 7T = 0.049V/a will not be applicable for
sound absorption coefficient a > 0.2.

0.049V

Show that Eyring’s expression for reverberation time in a dead room, T = m

identical value as given by Sabine’s equation, T = 0.049V/a, for a = 0.

, Yyields

The volume of a room is 1000 m3 and its total wall area is 400 m2. Calculate the reverberation
time if 5% of incident sound energy is being absorbed at each reflection at the wall.

Ans. T = 6.5 sec
.

Derive an expression for the decay rate in db/sec of sound energy in a live room.
Ans. 372a/V (metric units), 1230a/V (English units)

A room of volume 400 ft3 has 20 sabins absorption. Determine the reverberation time for both
dry and humid air having a relative humidity of 40% at 75°F. The attenuation constant at
1500 cyc/sec is given as m = 0.002. Ang. 098, 0.85 sec

NOISE INSULATION AND REDUCTION

1.38.

1.39.

140,

741

742,

An office is planned in a building having an average noise level of 70 db. If the noise level in the
office should be 45 db, what is the noise reduction required? Ans. 25db

If the noise level outside a room is 65 db and its noise insulation is 30 db, find the noise level
inside the room. Ans. 35db

A wall 10 X 20 m with an initial transmission loss of 50 db has four windows built into it. The
area of each window is 5 m2 and its sound transmission coefficient is 0.01. What will be the new
transmission loss of the wall with windows? Ang. 26.6 db

Sound waves of power level 70 db are incident on a concrete wall. Assuming 1/10,000 of the
incident energy is transmitted through the wall, find the transmission loss of the wall and the
reduced sound power level. Ans. TL=40db, SPL =30db

The noise level reduction of a noisy machine employing a partial enclosure is approximately given
by 10 log (A,/Ag) db, where A, is the total area of the enclosure and A, is the open area of the
enclosure. Find the noise level reduction by an enclosure 20% opened. Ans. 7db
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SOUND ABSORPTION

1.43.

7.4,

1.5.

Prove that if the total sound absorption in an enclosure is doubled, the average noise level will be
decreased by 3 db.

An office has a noise level of 70 db with 10 metric sabins sound absorption. How much more absorp-
tion is needed to reduce the noise level to 60 db? Ans. 90 metric sabins

Derive an expression for the noise reduction level in dead rooms.
A, log (1 —ay)

Ans. 10 log m

db

SOUND DISTRIBUTION

1.46.

141,

7.48.

Compute the sound pressure level drop for a tenfold increase of distance from the source. Assume
spherical acoustic wave propagation. Ans. 20db

Show that the sound pressure level drop at each reflection by a sound wave in an enclosure is given
by 10 log1/(1 — a) db.

If a sound system has efficiency 6%, find the power required to produce a sound pressure level
of 100 db in an enclosure of volume 10,000 ft3 and having a reverberation time 1.1 sec.
Ans. 185 watts

ROOM ACOUSTICS

749.

1.50.

151.

Derive the expression for mean free path, L = 4V/A, by energy considerations.

Show that the sound pressure level in an enclosure can be obtained from the expression
SPL = PWL + 6.5 —10loga.

The dimensions of a rectangular room are 10 X 156 X 20 m. Determine the characteristic frequency
associated with the lowest degenerate normal mode of vibration of sound waves.

Ang. 55 cyc/sec



Chapter 8

Underwater Acoustics

NOMENCLATURE

= absorption coefficient, db/m
transmission anomaly, db
speed of sound in air, m/sec
depth, m; directivity
diameter, m

= voltage, volts

= frequency, cyc/sec

velocity gradient, m/sec/m
transmission loss, db

= sound intensity, watts/m?
intensity level, db

wave number

length, m

= acoustic pressure, nt/m?
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distance, m

area, m*

PL = sound pressure level, db
velocity, m/sec

= sound power, watts
Young’s modulus, nt/m?
circular frequency, rad/sec
density, kg/m?

wavelength, m

a = absorption coefficient, nepers/m
o = cavitation number
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INTRODUCTION

Underwater acoustics deals with transmission of sound waves through water, taking
into consideration the transmission losses, sound generation and reception, divergence and
absorption, reflection and refraction, noises and reverberation.

UNDERWATER SOUND

'As a medium for communication, water transmits sound waves far better than optical,
radio or magnetic waves. The transmission of sound waves in water depends on variables
such as temperature and pressure gradients, marine organisms, air bubbles, salt content
and other nonhomogeneities.

169
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Sound transmission losses in sea water are chiefly due to the following. (1) Divergence:
outgoing spherical acoustic waves decrease in intensity according to the inverse square
law. (2) Absorption: the dissipation of acoustic energy into the medium or boundaries
because of viscous losses, heat conduction losses and molecular action. (3) Irreversible
attenuation: losses caused by refraction, scattering, diffraction, interference, etc., commonly
known as transmission anomaly A in decibels. The total transmission loss H in decibels is

therefore given by
H = 20logr +ar+ A4 db

where r is the distance in meters between source and receiver, a is the absorption coefficient
in db/m, and A is the transmission anomaly in decibels. (See Problems 8.13-8.15.)

REFRACTION

Refraction is the bending of sound waves because of velocity changes accompanying
temperature and pressure changes. Since the velocity of sound is a function of temperature
which varies linearly with depth, sound waves will be refracted downward in a circular
arc. Because of the downward bending of sound waves, no sound waves will reach the
surface of the sea, forming a shadow zone as shown in Fig. 8-1.

water surface water surface

SF eSS

sound channel

Fig. 8-1 Fig. 8-2

At great depths where the temperature is constant, sound velocity increases linearly
with depth because of pressure. Here sound waves will be refracted upward and follow
an arc of a circle. (See Problems 8.3-8.7.)

Sound channels are formed at great depths in the sea where the temperature is constant.
Sound waves emitted at this constant temperature level will be refracted upward or down-
ward along a narrow channel as shown in Fig. 8-2. This is due to temperature and pressure
gradients. As a result, sound waves within sound channels spread out in a circle rather
than a sphere, and propagate to much greater distances. (See Problems 8.8-8.11.)

REVERBERATION

Transmitted acoustic energy that returns to the listening hydrophone without inter-
cepting an object or target is reverberation. Unlike ambient noise, reverberation or back-
ground scattering is directly related to the acoustic energy projected into water by the
sound source. It is in general an unwanted signal and tends to interfere with the returned

echo.

Volume reverberation is caused by the scattering of sound in the bounded and non-
homogeneous volume of the sea, while surface and bottom reverberation are due to reflections
at the sea surface and bottom respectively.
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E'cho-sounding is based on the reflection of sound and the production of an echo. It
locates submerged objects by sending out a sound wave and receiving the returned echo.
Passive listening is used to detect sounds from an unknown direction by collecting sound
waves while maintaining complete silence. This has greater detection range than echo-
ranging, without the risk of revealing one’s own position. (See Problems 8.12-8.17.)

AMBIENT NOISE

Ambient or background noise in the sea is a function of the state of agitation of the sea
by natural agents such as wind and rain, and is often very unpredictable. Moreover,
biological noises, man-made noises, noises from ships, and self-noise from sound systems
all tend to mask the wanted signal.

UNDERWATER TRANSDUCERS

Hydrophone is an electroacoustic transducer that responds to sound waves in water
and produces equivalent electric waves. Like microphones and other electroacoustic trans-
ducers, hydrophones should have good stability, high sensitivity and linear responses. They
must be rugged to withstand high hydrostatic pressures and be independent of temperature.
To meet high power and small displacement requirements, their faces should be large.

Hydrophone sensitivity in volts/microbar is the voltage generated at its terminals by
unit sound pressure. It is a function of the angle measured from the acoustic axis of the
hydrophone (or the axis of maximum sensitivity) and of the frequency of the signal
generated.

Hydrophone directivity is an indication of the fraction of the total signal the hydro-
phone is permitted by its sensitivity pattern to convert into electrical energy. A hydrophone
equally sensitive in all directions has a directivity factor of one and a directivity index
zero. (See Microphone sensitivity and directivity of Chapter 5.)

Underwater sound projector, or simply projector, is an electroacoustic transducer used
to generate sound in water. A projector converts electrical energy into acoustical energy
in water through either magnetostrictive or piezoelectric effects. (For magnetostrictive
or piezoelectric transducers, see Chapter 9.)

Sonars and passive sonars are underwater sound systems. usually consisting of hydro-
phones, power amplifiers and readout devices. They are used to detect sounds in water.
The sonar, for example, scans the water until its sound beam hits a target and produces an
echo, whose reception at the sonar can be made to give information about the target. (See
Problems 8.18-8.23.)

CAVITATION

If the existing pressure is reduced to less than the vapor pressure of the water, bubbles
filled with water vapor are formed. These bubbles collapse when they are forced to move
into a region of higher pressure. Their collapse or local boiling produces noises with
accompanying vibration which is detrimental to the transmission of sound. This phe-
nomenon is called cavitation.

A cavitation number o is defined as
_ 2(po—pv)
g —_ __2—"
pY
where p, is the ambient pressure in nt/m?, p, is the vapor pressure of water in nt/m?, , is
the density of water in kg/m3, and v is the speed of the vehicle in m/sec. (See Problems

8.24-8.25.)
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Solved Problems
UNDERWATER SOUND

8.1. What is the ratio of particle velocity in air to that in water if (a) acoustic pressure
in air and in water are the same, (b) acoustic intensity in air and in water are the
same?

(a) Particle velocity v = p/pe m/sec where p is acoustic pressure in nt/m2, and pc is the char-
acteristic impedance of the medium in rayls. Then

Yair _ p/(Pc)alr _ (Pc)wnter _ 1,480,000
Vwater p/(Pc)water (Pc)air 415

3570

(b) Acoustic intensity I = p2/2pc watts/m2. Then p = V2Ipe, and

Vair [V 2lpelpelg v (PC)water _ 1,480,000
VUwater [V 2IpC/Pc] water V (Pc)air 415

59.8

82. Prove that the path of a sound wave through
wa or having a constant positive velocity gra- water surface
diel.. g m/sec per meter is an arc of a circle of
constant radius R = c¢,/g meters. 8,

Let R be the radius of an arc ABC of a circle as
shown in Fig. 8-3. Then

d; = R(1-—-coss,), dy = R(1—cosdy) R

[}

Ad

Ad = dy—d, = R(cos#, — cosé,)

Since the water has a constant positive velocity d
gradient, the velocity of sound increases with depth. { !

€y = Cl—ﬂAd or Ad = —(62—61)/g

where ¢, is the speed of sound at point C, and ¢; is the
speed of sound at point B. Fig.8-3

Now Snell’s law for a sound wave in a medium in which the velocity changes with depth is

given by co/(cos 8g) = ¢,/(cos8,) = cyf(cos by)

where ¢, is the speed of sound at A.

From the expressions for Ad and Snell’s law, R = ¢y/g = ¢,/(g cos 8,).

83. Determine the path of a sound ray in a layer of water where the velocity of sound
increases with depth.
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84.

Assume a sound ray at A has initial velocity ¢, and its path makes an angle ¢, with the horizon-

tal. At point B, assume the velocity of sound becomes ¢, and its path makes an angle 6, with the
horizontal. Using Snell’s law,

¢ ¢y ¢y COS 6,
= or cosf, =
cos 6, cos 6, 2 ¢
. Ca+1
and so in general cos b,y = cos 4,
n

Now ¢, ., is greater than ¢, because the velocity of sound increases with depth. Thus
c088,,y > co86, or B8,, < 6,

In words, the path of a sound ray traveling in water with constant positive velocity gradient is
bending upward as shown in Fig. 8-4.

Finally at C the sound path becomes horizontal, and beyond this point ¢,,, is smaller than ¢,.
So we have
C0Sfpy) < COSH, Or O ,,, > 6,

i.e. the sound ray will continue to be refracted upward.

As long as the water has a constant positive velocity gradient, sound waves traveling in it will
be refracted upward. This is true for any initial position of the sound ray.

A narrow beam of sound is produced horizontally in water having a constant velocity
gradient of —g m/sec per meter. Derive an expression for the horizontal distance
traveled by the sound beam after it has reached a depth d meters.

In view of the negative constant velocity gradient,
the water will refract sound. The narrow beam of sound
will therefore follow the path of an arc of a circle whose
radius is R = cy/g, where ¢, is the velocity of sound and
g is the velocity gradient. (See Problem 8.2.)

c
The sound beam at a depth d is tangent to the circle ~ o
at point B and makes an angle 4, with the horizontal. RB

From Fig. 8-5, b1

22+ (R—d)2 = R? or z2 = 2dR — d2 ¢
where z is the horizontal distance traveled by the sound I R
beam in reaching the depth d. Replacing R by c,/g, this

b
becomes 22 = 2dog/g —

In general, the horizontal distance traveled by the sound r
beam is very much greater than the depth it reached, i.e.
z » d, so the term d? can be neglected. Thus

z = V2c,dlyg Fig. 8-5

The velocity of sound in sea water decreases uniformly from a value of 1500 m/sec
at the surface to 1450 m/sec at a depth of 100 m. Determine (a) the velocity gradient,
(b) the horizontal distance required for a horizontal sound ray at the surface to reach
a depth of 100 m, and (c¢) the angle of such a sound ray upon reaching this level.

(@) Velocity gradient g = (cy—¢;)/d = (1450 —1500)/100 = —0.5 m/sec per meter

(b) Horizontal distance z = V2¢,d/g = \/2(1500)(—100)/(—0.5) = 77bm

(¢) Since ¢, =0, the downward angle 8, = cos~!(cy/c;) = cos~!(1460/1600) = 10°
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Given an isothermal layer of sea water at 20°C and thickness 50 m. (a) If a sound

ray leaves a sonar transducer at a depth of 10 m in a horizontal direction, what is

the horizontal distance traveled by this ray before it reaches the surface of the water?

(b) Find the downward angle of a sound ray that will become horizontal at the bottom

of the isothermal layer and the horizontal distance this ray has traveled in reaching

this position.

(a) Assume the speed of sound in water at the given temperature to be 1500 m/sec. Since the
temperature is constant and the pressure is not, the speed of sound will increase 0.017 m/see
per meter increase in depth. In other words, the velocity gradient is due to hydrostatic pressure
and is approximately ¢ = 0.017 m/sec per meter. Hence the horizontal distance traveled is
isee Problem 8.4)

r = V2eyd/g = V2(1500.17)(10)/0.017 = 1330 m

(b) Since cos#, =1 and ¢; = 1500 + 50(0.017), the required downward angle is
8, = cos—l(cy/e;) = cos'(1500.17/1500.85) = 1.5°

and r = V2¢,d/g = V/2(1500.85)(40)/0.017 = 2660 m

A destrover is searching for an enemy submarine in water having a constant velocity
gradient of —0.1 m/sec per meter. Its sonar transducer is at a depth of 10 m where
the velocity of sound is 1500 m/sec. The sonar detects a submarine at a horizontal
distance of 800 m and at a downward angle of 10°. What is the depth of the
submarine?

water surface -/

Fig.8-6

From Fig. 8-6, the apparent depth CB of the submarine from the sonar is 800 tan 10° = 141 m,
and so the apparent depth is 10 + 141 = 151 m below the surface of the water.

Because of the constant negative velocity gradient of the water, the narrow sound beam AB
from the sonar will actually bend downward in an arc of a circle of radius

R = ¢y/(—g) = 1500/0.1 = 15,000 m

The inclination of the sound beam at point B’ is 6,5, which is greater than ¢, because of refrac-
tion by water. Then

AC = Rsine, — Rsing, = 800
) 800 + R sine, 800 + 15 i o
sin 02 = R = 15’%(:)008”1 10 or 02 = 13.2°
The depth between the sonar transducer and the submarine is
CB" = Rcos¢ — Rcoss, = 15,000(0.985—0.973) = 180 m

Hence the true depth of the submarine below the surface of the water is 180 + 10 = 190 m.
This value is considerably different from that obtained earlier without taking refraction into
consideration. On the other hand, if the constant velocity gradient is positive, the sound beam will
bend upward. The true depth of the submarine is then less than its apparent depth.
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SOUND CHANNELS
88. A surface sound channel is formed by a water layer of thickness 100 m and velocity

8.9.

gradients as shown in Fig. 8-7 below. Determine (a) the maximum angles with
which a sound ray may cross the axis of the sound channel and remain within the
channel and (b) the horizontal distance these sound rays cross the axis of the channel.

®
- - 1o &
5
[-]
[)
Q
[ ]
b |
o
B
X, 100
1480 1500

Sound Velocity, m/sec

Fig. 8-7

(a) The constant velocity gradient in the upper channel is g’ = (1480 —1500)/20 = —1.0 m/sec
per meter, and in the lower channel is g’ = (15600 — 1480)/80 = 0.256 m/sec per meter.

In water with constant velocity gradient, the horizontal distance traveled by a sound ray
in reaching a depth d is z = \/2¢¢d/g. For the upper and lower channels, we obtain respectively

5y = V2eidy/9’ = V2(1500)(20)/1.0 = 246 m, =z, = V2¢,d,/g" = V2(1500)(80)/0.26 = 980 m

The radius R of the arc of a circle traveled by the sound ray is R = ¢y/g. Thus in the
upper and lower channels respectively, R, = ¢o/g’ = 1500 m, R, = ¢,/g’’ = 6000 m.

But sin#y, = ry/R, = 246/1500 or e, = 9.4°, and sine, = z,/R, = 980/6000 or ¢, = 9.4°,
Therefore the maximum angle with which a sound ray may cross the axis of the channel in
either direction and still remain within the channel is the same and is 9.4°, Also, a sound

ray that once crosses the axis of the sound channel at ¢, = 9.4° will continue to recross the
axis at this same angle.

(b) The horizontal distances at the first and second crossings of the axis of the channel are

X, = 2R,sing, = 492m, X, = 2R,sine, = 1960 m

Referring to Problem 8.8, find (a) the time required for a sound ray to travel to the
second crossing if it crosses the axis of the channel at the maximum angle, (b) the
time required for a sound ray to travel the same distance as in part (a) along the
axis of the channel, and (c) the difference in the time required.

(a) Along the axis of the channel the velocity of sound is at its minimum value of 1480 m/sec, so
the time required to travel to the second crossing is t, = z/¢c,, = (492 + 1960)/1480 = 1.66 sec.

(b) The mean horizontal velocity of the sound ray crossing the axis of the channel at angle 4, is
(see Problem 8.11)

e. = cn(1+82/6) = 1480(1 + 0.1642/6) = 1486.67 m/sec
where 6, = 9.4° = 0.164 rad. Hence ¢, = (492 + 1960)/1486.67 = 1.65 sec.

(¢) The time difference for such a short distance is t;, — ¢, = 0.01 sec. It is clear that for great
distances the difference will be appreciable. Moreover, at 26.7 m below the axis of the channel

and at 6.67 m above the axis of the channel, the speed of sound will equal the mean horizontal
velocity of the sound ray crossing the axis at 9.4°.
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8.10. Figure 8-8 shows the velocity pro-
file of a portion of the sea. Deter-

mine the path of a sound wave 0
traveling in it. /

200
Assume the sound wave is initially /
horizontal at the surface of the sea. For 400
the first layer of water from 0 to 200 m /

depth, the velocity of sound decreases lin-
early with depth. The velocity gradient is

g: = (1450 — 1500)/200 = —0.25 (m/sec)/m
and the radius of the path is

R, = cy/(—g,) = 1500/0.25 = 6000 m 1200 \
1400 L A

Since 4, = 0, the angle ¢, this sound
1400 1450 1500

ray makes with the horizontal at the depth .
of 200 m is 8, = cos~!1450/1500 = 15° Sound Velocity, m/sec

and the horizontal distance it travels in
reaching the second layer is

800

Water Depth, m

1000

Fig.8-8
I = Rl Sinﬂl = 6000 Sin 150 = 1550m

Similarly for the second layer of water,

(1400 — 1450)/800 = —0.0625 (m/sec)/m, R, = co/(—gy) = 1500/0.0625 = 24,000 m

9, = cos~ley)/ey, = cos—11400/1500 = 21°

g2 =

and z, = Ry(sin21° —sin15°) = 2400 m

Below this depth of 1000 m, the temperature is constant. The velocity of sound, however,
increases at a constant rate of 0.017 m/sec per meter increase in depth because of increasing hydro-

static pressure. The sound ray therefore bends along a radius
Ry = c¢y/(—gs) = 1500/(—0.017) = —88,200 m

Thus the sound ray will become horizontal at a depth of (1500 —1400)/0.017 + 1000 = 6890 m,

and .
r3 = Rysing, = 88,200 sin 21° = 31,800 m

Upon reaching this maximum depth of 6890 m and a velocity of 1500 m/sec, the sound ray begins
an upward path similar to the downward path as shown in Fig. 8-9. The total horizontal distance

traveled by this sound ray is
z = 2x;+zy3+25) = 2(1550 + 2400 + 31,800) = 72,000 m

4 I %
water surfmq ¢
———————— —
\ R, ci
o R, R,
C2

Fig.8-9
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g1l Derive an expression for the mean horizontal velocity of sound rays crossing the
axis of a sound channel at an angle 6.

Fig. 8-10
At the axis of the sound channel, the velocity of sound is a8 minimum, ie. ¢=¢, At any

other point in the sound channel, the velocity of sound is, by Snell's law, ¢ = (e, cos §)/(cos 6;) and
its horizontal component is ¢, = ¢ cos8 = (c,, cos?g)/(cos 8;). Hence the average value is

' 8, 6, :
[ o [ . 0 ¢ 1 Bln @
¢ o m _1. cos2 8 da = _"_'— 8 + sin 6 cos # = m + 0
I
cos 8 0 8o 6y cos 6 0 2 cos 8, 1)

From their series expansions, sin§; = 85— 03/6, cos8y=1— 0(2,/2. and so

& = cp(l+62/6)

where 0, is in radians. Thus the mean horizontal velocity of sound rays crossing the axis of the
sound channel is always greater than the minimum velocity of sound e, at the axis of the channel.

JOUND TRANSMISSION LOSSES

J2. For propagation of spherical acoustic waves through an unbounded and homog-

eneous body of sea water, derive an expression for the transmission loss in decibels
due to divergence and absorption.

Because of divergence and absorption, the sound pressure amplitudes at distances r, and r,
from the sound source can be written as

P
= —e—an = —e—ar,
P1 r ’ 2 g

where P is the pressure amplitude at the sound source, and « is the absorption coefficient in
nepers/m.

The sound pressure levels at these two points are

(SPL), = 20log 2! db, (SPL), = 20log =2 db
Po Po
where p, is the reference sound pressure.
The difference in sound pressure level between these two points is

(SPL), — (SPL), = 20 log ——e=a7 — 20 log -£— ¢-ans
71Po T2Po

T
= 20log o~ + 20 log ea(ra— )
1
T2
= 20log > + 8Talry—r) db
1

If 7, =1m, then the transmission loss from 7, to 7, or simply a distance r meters ia

(SPL), — (SPL), = 20logr, + 8.7a(ry—1) db

or H = 20logr + ar db

Where a i3 the absorption constant in db/m for sound waves in sea water.
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The spatial rate of transmission loss is

dH _ 20d(In7) _ 87
&r T 23 4 T2 S S, te
When the rate of transmission loss caused by divergence is equal to the rate of transmission loss
caused by absorption, we have
dH _ _ 87
r =0 or r=r ===
where 7, is sometimes known as the crossover range.
ECHO-SOUNDING
8.13. Derive an expression for the intensity level of the returning wave in underwater
echo ranging.

Underwater echo ranging is a process in which a sonar transducer scans the water until the
emitted sound beam hits a submerged object. The object then produces an echo whose reception at
the source can be made to give information about the object.

Let I, be the intensity at a distance of 1 m from the sound source; then the intensity at a
distance of r meters from the same sound source is I;/r> watts/m2.

If the underwater object is at a distance r meters from the sound source with a perfectly
reflecting surface of cross-sectional area S m?, the sound energy received by the object will be at
the rate of I,S/r2 watts. Assume the sound energy received by the object will be radiated back
equally well in all directions, i.e. a sphere of area 4772, The sound intensity of the returning waves
at the source is IS/ ) I - -

I, = yrerali F( )? watts/m
where D is the diameter of the underwater object in meters, and S = 772 m2. In decibel notation,
I, = 10logl;/I, + 10 log(D/4)2 — logr* = I, + 20logD/4 — 40logr
where I, is the intensity level of the transmitted signal at 1 m from the sound source, 20 log D/4
represents the transmission gain or target strength due to the reflection of the underwater object,
and 40 log r is the loss due to divergence.

The effects of directivity d, refraction 24 and absorption 2ar can be incorporated into the

expression for the intensity level of the returning echo signal:
I, = I, + 201logD/4 + d — 40logr — 2A — 2ar db
8.14. Determine the intensity level and sound pressure level of the returned echo from a

submerged object of average diameter 40 m at a distance of 3000 m from a trans-
mitting source. The sound source radiates 1500 watts of acoustic power at a fre-
quency of 20 ke/sec in a beam of 20 db directivity index. The transmission anomaly
is 10 db.

The intensity level of the returned echo from a submerged object in underwater echo ranging
is given by (see Problem 8.13)

I, = I, + 20logD/4 + d — 40logr — 2A — 2ar = 248db

where I, = 1500/4z = 120 watts/m? or 140 db re 10~12 watt/m2, 20 log D/4 = 20 log 40/4 = 20 db,
d=20db, 40logr = 40 log3000 = 139.2 db is the loss due to divergence, 24 =10 db, 2ar =
2(0.001)3000 = 6 db is the absorption loss at 20 ke/sec frequency.

p = VIpe = V/(3.08 X 10-19)(1,480,000) = 2.14 X 10-2 nt/m?

where 24.8 = 10 log I/l, or I = 10~12 antilog 2.48 = 3.08 X 10—10 watt/m2, Hence
SPL = 20log(2.14X10-2)/(2x10-4) = 82.1db rel microbar
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g15. A sonar transducer has a source level of 100 db re 1 microbar. Calculate the sound

s.16.

817.

pressure level produced by the transducer at a distance of 4000 m.

At 1 m from the source, I = W/4r = p2/pc watts/m2, where p is the effective sound pressure
in nt/m2, W is the total acoustic power output in watts, and pe = 1,480,000 rayls is the char-

acteristic impedance of water. Thus p = VpcW/4r = 344WV3 nt/m2 and SPL = 20loglOp =
20log344W12 = 71 + 10log W db or W = 794 watts.

At r=4000m, we have I = W/4xr2 = 3.95 <X 10-¢ watt/m2, p = Vpel = 2.41 nt/m2, and
SPL = 20log24.1 = 27.6 db re 1 microbar.

If other losses are neglected, we have transmission loss due to divergence H = 20logr =
20 log 4000 = 72db, and SPL = 100-—-72 = 28db at r = 4000 m.

A sonar transducer has an intensity level of 125 db re 1 microbar and generates
output pulses of 0.05 second duration. It has a receiving directivity of 20 db while
radiating acoustic energy at a frequency of 20 kc/sec. Compute the reverberation
level produced by scatterers of a density and size ne¢ = 10~° per meter at a range of

2000 m from a submerged object.

The reverberation level produced by scatterers in sea water is

I = I, + 10logns + 10 log fcat — d — 20 logr — 2ar = -—11.3db re 1 microbar

where I, = 125 db, 10 log ne = —50 db, 10 log }cat = 10 log 1(1480)(0.05) = 15.7db, d = 20 db,
20 logr = 20 log 2000 = 66 db, and 2ar = 2(0.004)(2000) = 16 db.

A sonar transducer produces an axial sound pressure level of 50 db re 1 microbar
at a distance of 1000 m in sea water. If the absorption constant has a value of
0.01 db/m, find the axial sound pressure level at 1 m and at 2000 m. At what distance
will the axial sound pressure level be reduced to 0 db? At what distance will the
transmission loss caused by spherical divergence be equal to that caused by absorption?

Assume the transmission anomaly A = 0; then transmission loss in sea water due to spherical

divergence and absorption is
H = 20logr + ar db

and at a distance of 1000 m, H = 20 log 1000 + 0.01(1000) = 70 db where a = 0.01 db/m is
the absorption constant. Thus
(SPL); = 70+ 50 = 120 db re 1 microbar

At 2000 m, H = 20 log 2000 + 0.01(2000) = 86 db and so
(SPL)3g0¢ = 120 — 86 = 34 db re 1 microbar

When the axial sound pressure level is zero, we have the total teansmission loss of 120 db, i.e.
120 = 20 logr + 0.017 or r = 4700 m.

Transmission loss caused by spherical divergence is 20 log r while transmission loss caused by
absorption is ar. If they are equal, we have 20 logr = 0.0lr or r = 7800 m,

When the rate of transmission loss due to spherical divergence equals the rate of transmission
loss resulting from absorption, we have

dH _ 20d(ln7)

dr ~ 23 4y T = 8lrtae =0

Thus 7, = 8.7/a = 8.7/0.01 = 870 m.
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UNDERWATER TRANSDUCERS

8.18.

8.19.

In order to collect more sound underwater, two microphones M, and M, are used with
their tubes leading into the common tube C as shown in Fig. 8-11. If sound waves
come from the left, find an expression for the length of tube A for maximum sound

intensity received at C.

1]

Fig.8-11

Since sound waves come from the left, microphone M, will be excited first; sound propagates
down tube 4 toward C with velocity ¢, of sound in air. The remaining sound waves travel through
water with velocity ¢, of sound in water and excite microphone M,. The resulting sound waves

then travel down tube B toward C with velocity c,.

For maximum sound intensity received at C, sound waves coming from microphones M, and M,
should arrive at C in phase, i.e.

A _ A+B " B
N A A
where A, and A, are the wavelengths of sound in air and in water respectively. Thus
B(\g +\y) B(c, + ¢y)
= — or A= ——
Ao — g Cyw — Cq

where ¢, = fA; and ¢, = fA,.

A sonar transducer has a maximum detection range of 4000 m operating at 20 kc/sec
frequency on a given submerged object. Determine its new maximum detection range
if (@) the source level is increased_ by 30 db, (b) the operating frequency is reduced

to 10 kc/sec.

(@) The general expression for returned echo signal level is
I, = 1,+T—2H db

where I, ia the source strength, T is the target strength, and H = 20 logr + ar is the loss
due to divergence and absorption. For the initial 4000 m range,

1, = I, + T - 2[20 log 4000 + 0.00373(4000)] = I, + T — 2(86.9) db
where a = 0.00373 db/m is the absorption coefficient at 20 ke/sec,

Now the source strength I, is increased by 30 db while the echo and target strengths remain
the same. Then 2H = 2(86.9) + 30 and

H = 20logr + 0.00373r = 869 + 15 = 1019 or r = 6700 m

(5) At 10 kc/sec, the absorption coefficient is found to be a = 0.001 db/m. Then
H = 20logr + 0.001r = 869 or r = 8100 m
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820. Sound waves are produced at a
dept:h d below the surface of the sea.
l?erlve an expression for the inten- ! ™~ <
sity at point P a distance L from the |
source S as shown in Fig. 8-12. l

For a homogeneous medium, sound
waves reach P via two paths: SP directly d
from the source S, and SOP after reflection
at O on the boundary surface. From the S
acoustic mirror phenomenon, the sound ray
QP appears to come from the acoustic
image I directly opposite the source S. The
total effect at P is therefore the sum of the
direct and reflected waves.

Let p; be the acoustic pressure at P due to the direct wave alone,
p, = P, cos (wt — 6y) nt/m?2

is the phase difference between the pressure
reflected wave alone,

Air
Water

Fig. 8-12

where P, is the pressure amplitude, and 6, = wL/c
at S and that at P. Similarly let p, be the acoustic pressure at P due to the

ps = P, cos(ot—6;—180°) nt/m?
een the pressure at the image I and the receiver

where ¢, = u(IP)/c¢ is the ph diff betw
2 = w(IP)/¢ is the phase difference The resultant

P, and 180° is the phase change due to reflection at the interface (from water to air).
pressure at P is therefore

p = p, + p, = P,cos(wt—6,) + Pzcos (at — 6, — 180°)
Now P, cos (ot —8,) = P;coswtcosé; + P, sin ot sin 8,
P, cos (ot — 8, — 180°) = P, cos wt cos (62 + 180°) + P; sin vt sin (6, + 180°)
cos (6, +180°) = —cosé,
sin (9, +180°) = —siné,
We have P = coswt(P, cos8, — P,cosd,) + sinwt(Pysiné; — P sin6,)
or p = Pcos(ut—¢)

where P =\/A2{ B2, 4 = tan—1(B/A), A = P, cosé, — P, cos6,, and B = P, sin¢; — P, sin ¢,.
The intensity of the resultant radiation at P becomes

I = p2/2p¢c = (A2?2+ B2)/2pc watts/m?

where pc is the characteristic impedance of water in rayls.

But A2 = Pf cos2 6, + P% cos2 8, — 2P, P, cos 6, cos 8,
B2 = PIsin%2e, + P} sin2e, — 2P, P, sin¢, sine,
A2 + B2 = P} + P2 — 2P, P, cos (6, — 6,)

P} + P2 — 2P, P, cos (6, — 6.)
2pc

and finally I =

It is convenient to express this intensity in terms of the intensity I, = pf/2pc produced at P
by the direct radiation from source S. Then

—_— 4+ —
2 2 2
P7 P I

Pi[PY  Pi  2P,Pycos(e,— 6y
:' = I4i{1 + R? — 2R cos (6, — 6,))

2pc
where R = P,/P, is the ratio of the pressure amplitudes due to reflected and direct waves,

Depending on the values of the phase angles #, and 6y, cos (#; —#,) will fluctuate between —1
and +1. The resultant intensity is seen to fluctuate between I,(1 + R)2 and Iy(1 — R)2.  Further-
more, 1f]the source and the receiver are close together near the surface, the phase angles are
essentially zero and R approximat ity: . . ye
and a1, y pproximates unity; then the resultant intensity will fluctuate between zero
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821. An underwater magnetostrictive sound transducer has a nickel rod of radius 0.01 m
and length 0.1 m. What is the frequency of vibration of the transducer?

When magnetostrictive effect is employed for transducer action, the rod is driven to vibrate
longitudinally at its fundamental natural frequency,

fo = 1/2LVY/p = 24,500 cyc/sec

where L = 0.1 m is the length of the rod, Y = 2.1 X10!! nt/m? is Young’s modulus for nickel,
and p = 8.78 X 103 kg/m? is the density of nickel. (Transducers are usually driven at their funda-
mental resonant frequencies, i.e. those of the rod, in order to obtain maximum efficiency.)

822, Obtain an expression for the resultant voltage E generated by two small omni-
directional hydrophones whose electrical outputs are connected in series as shown in
Fig. 8-13. Sound waves are incident on a perpendicular plane through the center
of the line connecting the hydrophones.
Ed

' ?/2

\4 ®/2

TP
i o)

Fig.8-13

For an angle of incidence ¢, the phase difference of the hydrophones is given by (see Fig. 8-13)
¢ = (2zd/\) sine = kdsine¢
where k = o/c = 2¢/\ is the wave number, and ) is the wavelength.
Now the voltage generated is E, = E, cos ¢, where E,, is the voltage generated when 6 = 0.
Thus E, = E,cos }kd sins

This result can also be obtained from the general expression for voltage E, generated by a
line array consisting of n equally spaced small omnidirectional hydrophones whose electrical
outputs are connected in series as (see Problem 5.28)

sin (}knd sin ¢)

E = E, n sin (}~nd sin )

sin (kd sin @)
92 sin (}kd sin 6)

since sin (kd sin#) = sin2({kd sin6) = 2 sin (4kd sin 6) cos (4kd sin o).

Here n = 2 and so E = E, cos (4kd sin ¢)

823. The observed frequency of a returned echo signal from a submarine is 40,400 cyc/sec
while the driving frequency supplied to the sonar transducer aboard a destroyer is
40,000 cyc/sec. If the destroyer is speeding at 40 knots, find the speed of the
submarine.

Because of the Doppler effect, we can express the observed frequency as
' = f(1+2v,,,/¢) cyc/sec

where f is the actual frequency produced at the source in cyc/sec, v,,, is the relative speed between
source and receiver in m/sec, and ¢ = 1500 m/sec is the speed of sound in water. Then

40,400 = 40,000(1 + 2v,,,/1500) or v,, = 7.5 m/sec
and the speed of the submarine is v, = v,—v,,, = 20.4 — 7.5 = 12.9 m/sec or 25.2 knots,
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CAVITATION

824.

Compute the maximum sound pressure level allowed in water without causing
cavitation.

Cavitation results from negative instantaneous pressure in water. Because water supports
very little tension, it will break away forming turbulences and eddies when pressure becomes
negative. Now total pressure at a point in water is equal to atmospheric plus the hydrostatic
pressure of the water. Atmospheric pressure is approximately p = 105 nt/m2 or p,,, = 105/y/2 =
0.7 X 105 nt/m2, and so SPL = 20 log (0.7 X 105/0.0002) = 116.9 db re 1 microbar.

In order to prevent cavitation, a hydrophone should not produce sound pressure amplitude
greater than the instantaneous pressure (atmospheric + hydrostatic) it is subjected to. The mini-
mum value is 116.9 db re 1 microbar at the surface of the water and increases with depth because
of increasing hydrostatic pressure. On the other hand, cavitation is sometimes deliberately induced
for the destruction of liquid-borne organisms, in the dispersion of liquid-borne particles, the produc-
tion of colloidal suspensions and emulsions, and the cleaning of metal parts.

A vehicle in water is at a depth of 30 m and moves at a speed of 30 knots. What is
the required cavitation number such that cavitation will not take place?
2 -
Cavitation number ¢ = (Po—zpv) = 3.14
pY
where p, = 105 + 30(3.28)3(62.4)/0.225 = 392,000 nt/m2 is the ambient pressure (atmospheric +
hydrostatic pressure), p, = 2400 nt/m2 is the vapor pressure of water at 20°C, p = 1061 kg/m3
is the density of water at 20°C, and v = 30 knots or 15.3 m/sec is the speed of the vehicle in water.

Supplementary Problems

UNDERWATER TRANSMISSION

826. A simple underwater sound source radiates 10 watts of acoustic power at a frequency of 500 cyc/sec.
Find the acoustic intensity and sound pressure at a distance of 5. m from the source.

Ans. I =0.032 watt/m2, p = 22 nt/m2

8.27.  For plane acoustic waves in water, show that SPL = IL if the pressure fluctuations and particle
displacements are in phase.

828. Show that low frequency sound waves are better than high frequency sound waves for underwater
communications.

829. Sound pressure level for underwater acoustics is usually given 1 microbar as the reference pres-
sure. Compared to the usual sound reference pressure of 0.00002 nt/m2, what will be the sound
pressure level? Ans. 74 db higher

830. Transmission anomaly produced by increased divergence at layer depth is often given by

sin 4, + sin ¢
A = 20log -z
R 2 sin 01
where ¢, is the angle of incidence and 6, is the angle of transmittance. If ¢; = 1500 m/sec,
¢, = 1450 m/sec, and ¢, = 5°, find the value of transmission anomaly. Ans. 6db

REFRACTION

83l.  Prove that in water having a constant negative velocity gradient, the path of sound waves will be
refracted downward.

832 A submarine is at a depth of 180 m where the velocity of sound is 1500 m/sec. Its sonar transducer

detects a surface vessel at an upward angle of 10° with the horizontal. What is the horizontal
range of the vessel from the submarine? Ans. 800 m
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8.33. A sonar transducer operating at a 50 kc/sec frequency has a source strength of 140 db. What
will be the echo signal strength returned from a spherical object of 40 m radius at a distance of

1000 m? Ans. 16 db

UNDERWATER TRANSDUCERS

8.34. Three hydrophones A, B, C shown in Fig. 8-14 are used to detect the location of a submerged object
in water. By observing the time of arrival of sound from the object O, show that the position of
the object is given by the intersection of two hyperbolas with A and B, B and C as foci respectively.

2l
Fig. 8-14 Fig.8-15

8.35. Prove that the resultant voltage E, generated by a line array consisting of n equally spaced small
omnidirectional hydrophones whose electrical outputs are connected in series is given by

sin (§nkd sin 9)
O n sin (3kd sin )
where E is the voltage generated when ¢ = 0 and k is the wave number. (See Fig. 8-15.)

E,

8.36. If sound waves of frequency 10 ke/sec are incident at an angle of 10° to the normal of a line
array of six omnidirectional hydrophones spaced equally at 0.1 m apart, what will be the electrical
phase difference between the signals produced in adjacent hydrophones? The electrical outputs

of all hydrophones are connected in series. Ans, 40°

8.37. Show that the Doppler effect will give rise to the following expression for frequency received
from a submerged object by the sonar transducer aboard a surface vessel:

= f(1+2V/e)
where f’ is the observed frequency, f the actual frequency, V the speed between the object and the
sonar transducer, and ¢ the speed of sound in water.

8.38. Given the velocity V, of a destroyer and the angle ¢, it makes ~— Ja -V,
with the line to a submarine as shown in Fig. 8-16. The speed of = \d\
sound in water is ¢, and the frequencies of the source and the T~
returning echo are f4 and f, respectively. Find an expression for e
the velocity of the submarine, 0;,
s

4 2f;Vycos by — clfe—fq)
ns. =
s 2f4 cos 6, Fig. 8-16

8.39. The sonar transducer aboard a destroyer radiates sound waves of frequency 20 kc/sec. If the
relative speed between the destroyer and a submarine is 7.5 m/sec, find the frequency observed by
the sonar transducer. Ans. f' = 20,200 cyc/sec

CAVITATION

840. Compute the minimum power per unit area required to produce cavitation at (a) the surface of
the sea, (b) a depth of 30 m. Ans. (a) 3000 watts/m2, (b) 50,000 watts/m2

841. In order to prevent cavitation, a hydrophone should not produce sound pressure amplitude greater
than the hydrostatic pressure it is subjected to. For a hydrostatic pressure of 100,000 nt/m?2,
compute the highest sound intensity allowed. Ans. I = 1690 watts/m?2
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Ultrasonics
NOMENCLATURE
a = acceleration, m/sec?
A = area, m’
B = flux density, webers/m?
¢ = speed of sound in air, m/sec

Co» = capacitance, farads
= piezoelectric strain coefficient, m/volt

.
s
|

= voltage, volts

= piezoelectric stress coefficient, coulombs/m?
= frequency, cyc/sec

= sound intensity, watts/m?

= coefficient of electromechanical coupling
proportional material constant, m*/weber?
length, m; inductance, henrys

acoustic pressure, nt/m?

quality factor

radius, m

resistance, ohms

compliance coefficient, m?/nt

area, m?

thickness, m; time, sec

Young’s modulus of elasticity, nt/m?2
sound power, watts

impedance, rayls

= circular frequency, rad/sec

density, kg/m?

= wavelength, m

sound power transmission coefficient
= stress, nt/m?

= transformation factor, coulomb/m
clamped dielectric constant

0 permittivity of free space, farads/m
Poisson’s ratio

incremental permeability of the material, henrys/m
permeability of free space, henrys/m
A = magnetostriction constant
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INTRODUCTION

Ultrasonics is the study of sound waves of frequencies higher than the upper hearing
limit of the human ear (frequency region above 20 ke/sec) and has become synonymous with
the applications and effects of ultrasonic vibration for other purposes than the excitation
of the hearing mechanism. In fact, ultrasonic energy has been applied to gases, liquids and
solids to produce desired changes and effects or to improve a product or a process.

The upper frequency limit for the propagation of ultrasonic waves is thermal lattice
vibrations beyond which the material cannot follow the input sound. The smallest wave-
length of sound is therefore twice the interatomic distance, and for metal this is approxi-
mately equal to 2 x 107" m. This occurs at a frequency of 1.25x 10! cyc/sec which
corresponds to the twenty-first harmonic of a 10-megacycle quartz crystal. At such high
frequencies, ultrasonic wave periods become comparable with relaxation time.

High-amplitude ultrasonic waves are sometimes called sonic, and hypersound refers to
waves having frequencies greater than 10! cyc/sec.

WAVE TYPES

Rayleigh surface waves propagate over a surface without influencing the bulk of the
medium below the surface. They are produced from unbalanced forces at the surface of a
solid and generate an elliptical motion of the medium whose amplitude decreases exponen-
tially as the depth below the surface increases. Ultrasonic Rayleigh waves can be propagated

along the surface of the test object to detect flaws or cracks on or near the surface of the
test object.

Waves produced in a thin plate whose thickness is comparable to the wavelength are
known as Lamb waves. They are very complex waves, moving in asymmetrical or sym-
metrical modes, and are employed to locate nonbonded areas in laminated structures,
radial cracks in tubing, and for quality control of sheet and plate stock.

ULTRASONIC TRANSDUCERS

Basically there are three types of ultrasonic transducers: (1) gas-drivern transducers,
e.g. whistles, sirens; (2) liquid-driven transducers, e.g. hydrodynamic oscillators, vibrating
blade transducer; and (3) electromechanical transducers, e.g. piezoelectric and magneto-
strictive transducers. They are classified according to the form of energy used to excite
them into mechanical vibration and the medium into which the wave is to be propagated.

The quality factor Q (or the quality of resonance) of a system determines the frequency
responses of the system, i.e. for a low Q the frequency bandwidth is wide and for a high
Q the frequency bandwidth is narrow. The magnification of ultrasonic transducer is
approximately equal to the quality factor Q. (For water, quartz, and water, Q = 7.)

PIEZOELECTRIC TRANSDUCERS

If an alternating electric field is applied along the axis of a piezoelectric crystal, the
latter will expand and contract along the axis (see Fig. 9-1). As the frequency of the
applied electric field approaches the natural frequency of any longitudinal mode of vibration
of the crystal, the amplitude of the resulting mechanical vibration of the crystal becomes
significantly large. These types of mechanical vibration from piezoelectric crystals have

been utilized to produce ultrasonic vibrations at frequencies ranging from 5 kc¢/sec to
200 kc/sec.
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Piezoelectric transducers are usually made from
quartz, tourmaline, Rochelle salt, ammonium dihydro-
gen phosphate, barium titanate, and ceramics having
strong ferroelectric properties.

These transducers provide stable ultrasound of
narrow bandwidth over a wide range of frequencies.
Some piezoelectric materials, however, are hygroscopic
and are incapable of sustaining high power densities
without fracture, and some exhibit instabilities. (See

Problems 9.1-9.8.) Fig.9-1. Piezoelectric transducer

MAGNETOSTRICTIVE TRANSDUCERS

When a rod of magnetizable material is exposed to a magnetic field which varies in
magnitude, the rod changes in length. An alternating current passing through a coil sur-
rounding such a rod will cause it to vibrate longitudinally. These small forced vibration
amplitudes will increase very greatly if the frequency of the applied current coincides with
one of the normal longitudinal modes of vibration of the rod. Ultrasonic sound of this
frequency is radiated.

Magnetostrictive transducers are usually made from alloys of iron, nickel, and cobalt.
Thev are mechanically rugged and capable of producing large acoustical power with fairly
good efficiency, e.g. 60<7. Their deficiencies are low upper frequency limit because of
extreme length required and conversion losses due to hysteresis and eddy-currents. (See
Problems 9.9-9.12.)

ELECTROMAGNETIC TRANSDUCERS

Electromagnetic transducers, like most of the loudspeakers, generate ultrasound from
the movement of a coil carrying a varying voltage in a magnetic field of constant intensity.
(See Chapter 5.)

ABSORPTION

The absorption of ultrasonic energy by gases is due to viscosity effect and heat conduc-
tion. However, the delay in attainment of equilibrium between translational, rotational
and vibrational energy of molecules also plays an important role in the absorption of
ultrasonic energy.

In solids, the absorption of ultrasonic waves may be attributed to lattice imperfection,
ferromagnetic and ferroelectric properties, electron-photon interactions, thermal effects,
grain boundary losses, thermoelastic and structural relaxation, acoustoelectric effect, and
nuclear magnetic resonance.

Ultrasound can be propagated to much greater distances in water and at much higher
frequencies than in gases and solids. Attenuation and absorption of ultrasonic waves in
water are comparatively low.

APPLICATIONS

As one of the important nondestructive testing methods, ultrasonics plays an essential
part in flaw detection, process improvement, control and monitoring, and measurement of
mechanical, physical, chemical and metallurgical properties of materials.
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By means of a transducer, ultrasonic energy is converted into high frequency mechanical
vibration of the medium through a proper coupling element such as a horn.

In industry, ultrasonics is widely used for metal processing such as solidiﬁcatiol.l,
precipitation, agglomeration, emulsification, dispersion. Many different types of ultrasonic
devices, generators and detectors are currently being used.

In medicine, ultrasonics is employed for tumor detection, biological measurements and
diagnostic work.

In underwater applications, ultrasonics is employed to measure water depth in the

mapping of the ocean floor, and to detect submerged objects such as fish, submarines and
mines.

Ultrasonics is also used for traffic control, fabric cleaning, aging of wines, packing of
cement, counting and sorting, and dispersion of fog. (See Problems 9.14-9.17.)

Solved Problems
PIEZOELECTRIC TRANSDUCERS

9.1. An X-cut quartz crystal of thickness 0.001 m is vibrating at resonance. Find the
fundamental frequency.

For longitudinal wave motion, ¢ = VY/p = V7.9 x 1019/2650 = 5460 m/sec. Since t =i\ = }(c/f),
fi = ¢/2t = 5460/0.002 = 2730 ke/sec

92. An X-cut quartz piezoelectric transducer is to be operated in contact with water and
with air. Determine the maximum intensity at resonance.

The maximum intensity at resonance is given by

Omax 2 .
pc watts/m?2
(pc)q

where pc is the characteristic impedance of the medium in contact with the transducer, o,,.x =
7600 nt/m2 is the maximum stress allowable for quartz, and (pc), = 14.5 X 106 rayls is the char-
acteristic impedance of X-cut quartz.

1 =

max

[

When in contact with water, pc = 1.48 X 10% and I,,, = 0.2 watt/m2.

When in contact with air, pc = 415 rayls and [,,,, = 0.58 watt/cm?2.

93. Determine the maximum acceleration and displacement of a quartz ultrasonic trans-

ducer radiating sound of 5 watts/em? intensity and 20,000 cyc/sec frequency into

water. . .
Sound intensity I = p?/2)c watts/m?

or sound pressure p = V2pel = V/2(1.48 x 108)(5 x 104) = 3.85 > 105 nt/m?.
Since force = pA = ma = tpAa, the maximum acceleration is
Gmax = Plot = (3.85 X 105)/2650(0.001) = 1.45 » 105 m/sec?
where t = 0.001 m is the thickness of the quartz.

The corresponding maximum displacement is

dmax = @/w? = (1.45 X 105)/[(6.28)(20,000)]2 = 9.4 % 10-6 m
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94.

9.5.

9.6.

9.7.

A plated X-cut quartz crystal of dimensions L. =0.001m, L,=0.02m, L,=0.005m
is used as a longitudinal ultrasonic transducer. Find the longitudinal strain in the
unstrained crystal when 120 volts is applied between the plated surfaces. If the
crystal is constrained so that it cannot move longitudinally, find the resulting stress.
The simplified equation for longitudinal piezoelectric vibrators is given by
on/dy = —syF,/S, + d,E,/L,

where d7/dy = the longitudinal strain,

89 = 1.27 X 10~ !! m2/nt is the compliance coefficient,

F, = the compressional force in newtons in the y direction,
S, = L_L, = 0.000005 m? is the cross-sectional ares,

dis = 2.3X107!2m/volt is the piezoelectric strain coefficient,
E, = 120 volts is the applied voltage.

For the unconstrained crystal, F, = 0; the longitudinal strain is
an/dy = (2.3 X 10712)(120)/0.001 = 2.76 x 10—7
and when the crystal is constrained the resulting stress is

F,/S, = (2.76 X 10-7)/(1.27 X 10~11) = 2.18 X 10* nt/m?

If the crystal of Problem 9.4 is fastened to a rigid backing plate at one end and
radiating sound into water at the other end, find its fundamental frequency of
longitudinal vibrations. Determine the acoustic power radiated when the crystal
is driven at its fundamental frequency by an rms voltage of 120 volts.
The fundamental frequency f, = ¢,/4L, = 68,100 cyc/sec and the acoustic power radiated
W = ¢2E%/pcS, = 1.6 X 103 watts, where ¢, = 5450 m/sec is the longitudinal wave velocity of
sound in quartz, L, = 0.02m and L, =0. 005 m are the dimensions of the crystal, ¢ = d,L,/22 =
9.1 x 104 coulomb/m is the transformatlon factor for the crystal, E = 120 volts, ¢ = 1.48 X 108 rayls
is the characteristic impedance of water, and S, =5X10-8 m? is the cross-sectional area of the
crystal.

Compare the quality factor @ of a longitudinally vibrating quartz crystal radiating
ultrasound into water and into air.

0 _ w(pC)quartz  _ 3.14(1.45 X 107) 75
water T 4(p€)water | 4(1.48 X 106) '
Tr(pc)quarlz 3.14(1.45 x 107)

. = Mauartz 33229 2 JT) 27,5
Quir 4(p);r 4(415) 00

The very large value of Q,;, indicates that the resonance curve of a quartz crystal driven in
air should be sharply peaked.

An X-cut quartz crystal has dimensions
L, =000lm L, = 002m, L, = 0.005m.

The crystal is used in an air-back electro- ___,,4.__.4"_.,,..,___,
acoustic ultrasonic transducer. Find the [
elements of the equivalent circuit. __[ g C L

The circuit components near resonance for an Y —"

air-back quartz electroacoustic transducer are deter-
mined as follows (see Fig. 9-2). Fig.9-2

Co = ezl L,/L, = 4.45(8.85 X 1012)(0.02)(0.005)/0.001 = 3.94 X 10~12 farads

where e¢; = 4.45 is the clamped dielectric constant, ¢; = 8.85 X 10—12 farads/m is the permittivity
of free space.
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R = pyeeS,/9?2 = 2500 ohms

where pyc, = 415 rayls is the characteristic impedance of air, ¢ = d;;L,/855 = 9.1 X 10-4 coulomb/m
is the transformation factor, d,, =2.3X10-12m/volt is the piezoelectric strain coefficient,
830 = 1.27 X 10~ m2?/nt is the compliance coefficient, and S, = 0.001(0.005) m? is the cross-

sectional area.
C = B8¢%,,L /xS, = 344 x10-Y farads and L = L,S, = 2¢> = 160 henrys

where p = 2650 kg/m? is the density of quartz.

The dimensions of an air-back barium titanate transducer are L,=0.01m,
L,=0.02m, L.=0.03m. Determine the fundamental frequency of this transducer
and the acoustic power produced into water if 100 volts is applied.

The fundamental frequency is f, = ¢,/2L, = 5200/[2(0.01)] = 260 ke/sec and the acoustic
power produced is W = ¢2E%/pcS, = 41.4 watts, where ¢ = 2¢,,S,/L, = 1.92 coulombs/m is the
transformation factor, pc = 1.48 < 10% rayls is the characteristic impedance of water, e¢,, =
16 coulomhs'm? is the piezoelectric stress coefficient for barium titanate, and S, = 0.02(0.03) m?

is the area.

MAGNETOSTRICTIVE TRANSDUCERS

9.9.

9.10.

9.11.

9.12.

A magnetostrictive transducer is made
of a duraluminum rod of length 0.13 m
and diameter 0.015 m. It is supported at
its center as shown in Fig. 9-3. Find
its fundamental frequency of longitudinal
vibration. Fig. 9-3

Th _ 1= (prr)? |Y . .,
e fundamental frequency f, = Y : = 250 ke/sec where u = 0.31 is Poisson’s

ratio, ¥ = 21 < 10! nt/m> is Young’s modulus, r = 0.0075 m is the radius of the rod, L =0.13 m
is the length of the rod, and p = 8800 kg/m? is the density of the rod.

A magnetostrictive hydrophone is made of a nickel rod of length 0.2 m clamped at
the center. Compute its fundamental frequency of longitudinal vibration.

Since the rod is clamped at the center and is vibrating at the fundamental mode, there must be
a node at the center and antinodes at the free ends,

Wavelength A = 2L = 2(0.2) =04 m, and speed of wave propagation ¢ =fA. Then f, =
¢/A; = 4900/0.4 = 12,250 cyc/sec.

A magnetostrictive steel vibrator is used as a drilling driver. The cross-sectional
area is 0.0004 m2 and the maximum allowable strain is 8 x 10-4, What is the maxi-
mum driving force at the end of the driver?

Maximum driving force = AY(d¢/0z) = 0.0004(19.5 X 1019)(8 X 10~4) = 624 nt

where Y = 19.5 x 10!° nt/m2 is Young’'s modulus for the steel.

A longitudinal magnetostrictive ultrasonic transducer is constructed from a nickel
tube of length 0.05 m, inner radius 0.005 m, and wall thickness 0.0002m. If the
proportional material constant is given as K = —1.0 X 10~* m*/weber? and a polarizing
flux density B, = 0.3 weber/m? is applied to the tube, find (a) the magnetostriction
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constant of the tube, (b) the permanent change in length of the tube, and (c) the
coefficient of electromechanical coupling. (d) For an additional magnetic flux density
of 0.03 weber/m?, what will be the new length of the tube?

() Magnetostriction constant A = 2YKB, = —12.6 X 108 where Y = 21 X 1010 nt/m? is Young’s
modulus of the nickel.

(b) Since static strain produced is proportional to the square of the polarizing flux density, i.e.
(de/ox),, = KB2 = —9 X 10—6, then the permanent change in length of the tube is AL =
L(de/dx),, = —4.5 X107 m (contraction).

(¢) The coefficient of electromechanical coupling is k = Vpu;ugA2/Y = 0.31 where g = 100 henrys/m
is the incremental permeability of the material, and g, = 1.26 X 10~% henrys/m is the perme-
ability of free space.

(d) For additional application of magnetic flux density B; = 0.03 weber/m2, the force equation
becomes F,; = —SY(d¢/dx); + ASB;; and with no restraining force, the strain is (9¢/dzx); =
AB;)Y = —1.8 X106, Thus L = L(3¢/dx); = —9 X 10-8 m (contraction). The new length of
the nickel tube will be [0.05 — (4.5 X10-7 + 9 X 10-8)] m.

ELECTROMAGNETIC TRANSDUCERS

9.13.

An electromagnetic transducer consisting of a steel rod of length 0.1 m and radius
0.05 m and carrying electric current in a magnetic field is employed to generate ultra-
sound. If the rod is elastically supported at its center to allow radial vibrations,
determine its frequency at half-wave resonance.

Frequency at half-wave resonance = 1_8%% \’ % = 630 ke/sec

where 4 = 028 1is the Poisson’s ratio, r = 0.05 m is the radius of the rod, L =0.1 m is the
length of the rod, ¥ = 19.5 X 101 nt/m2 is Young’s modulus for the steel, and p = 7700 kg/m3 is
the density of the steel.

APPLICATIONS

9.14.

9.15.

Delay time of ¢ = 10"°®second is designed for a computer for storing information
to be extracted. If a copper wire of diameter 10-¢ m is used as the ultrasonic delay
line, find its length.

When an electrical signal is converted into an ultrasonic wave, the latter will be propagated
through the copper wire at a speed of ¢ = 3700 m/sec. At the end of the wire, the wave is
reconverted back into its original forms. Thus the length required = ¢t = 0.0037 m.

Compute the transmitted pressure ratio and the sound power transmission coefficient
for sound waves from water into lucite at normal incidence.

Transmitted pressure ratio p,/p; = 2ps¢y/(pscy +p1c;) = 1.4

where p, = 998 kg/m3 is the density of water, p, = 1200 kg/m3 is the density of lucite,
¢; = 1480 m/sec is the speed of sound in water, and ¢, = 2650 m/sec is the speed of sound in lucite.

. . 4p1€1p262
Sound power transmission coefficient o, = (i T pacy)? = 0.87
101 T P2

The acoustic pressure is seen to increase by 40% when it crosses the boundary while the
intensity drops 13%. This is partly due to the crowding of energy into a smaller cross section
of wavefront and partly due to change in density or velocity of sound.
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9.16. The ultrasonic pulse-echo method is employed to detect possible defects in a steel bar

9.17.

of thickness 0.2 m. If the pulse arrival times are 30 and 80 microseconds, determine
the defect.

transducer transducer
/ r—l/
i RN
4 - defect
\ pulse signal

0.2 m

Fig.9-4

In the pulse-echo method, a8 pulse of ultrasonic energy (commercial flaw-detector uses
1000 pulses/sec of 1.6 Mc/sec ultrasound) is sent out from the transducer into the test object as
shown in Fig. 9-4. The sound wave is reflected back from the boundary of a defect as a reflected
pulse, properly detected by the transducer and displayed by an oscilloscope.

Now the time taken by the reflected pulse from the boundary is t, = 80 X 108 sec = 2(0.2)/c,
from which ¢ = 5000 m/sec. Hence the depth of the defect from the surface of the steel bar is
d = 5000(15 X 10-8) = 0.075 m. The size of the defect can be mapped by moving the transducer
around in the area where the initial indication of the defect is found.

In the similar transmission method for flaw-detection, a pulse of ultrasonic energy is sent
into the test object through the source transducer and detected by the receiver transducer on the
opposite side of the test object. If there is a defect in the test object, the receiver transducer will
detect its presence from the reduced strength in the pulse.

Another way to detect flaws by ultrasonics
is the resonance method. Here ultrasonic waves
of various frequencies are sent into the test ob-

ject by the transducer until a standing wave is 1_4/ transducer
set up in the test object as shown in Fig. 9-5. T T L=
This indicates that the frequency of the oscil- : e R
lator driving the transducer coincides with a t Vo =?defect
resonant frequency of the test object, resulting J_

in a momentary increase in the energy drawn
by the transducer. Large defects and unbonded
areas in composite materials can set up stand-
ing wave patterns and thus be detected. Fig. 9-5

standing wave

An ultrasonic transducer is employed to measure the thickness of a steel plate. If
the difference of two adjacent harmonics is found to be 56,000 cyc/sec, find the
thickness of the plate.

transducer
) \ A %
Bt '.-'_Lq T sty
k 1_ J\f
!-xlz——l l-— ——-I L———!:15>\—"r

Fig. 9-6

As shown in Fig. 9-6, the fundamental frequency at which thickness resonance vibration will
be produced is given by f; = ¢/2t where f, is the fundamental frequency in cyc/sec, ¢ = 5050 m/sec
is the speed of sound in steel, and t is the thickness of the steel plate in meters.
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Thickness resonance also occurs at all harmonies of the fundamental frequency, ie. fa = 2f,,

fs=3f1, --., fa=nf,. Since the frequency difference between two adjacent harmonics is numer-
ically equal to the fundamental frequency,
t = S = 50 obm

2(fa—fa-1) 2(56,000)

Supplementary Problems

PIEZOELECTRIC TRANSDUCERS

L1\

419,

Ly}

For an X-cut quartz rod excited at the X faces and vibrating along Y with a node at the center,
show that the fundamental frequency is given by 2720/y ke/sec, where y is length in mm.

For vibration in the direction of its thickness, what thickneass must a free quartz plate have in
order to obtain a fundamental frequency of 50 Mc/sec? Ans. 0.056 mm

An X-cut quartz crystal is radiating ultrasonic waves of frequency 1 Mc/sec into water on one side
and into air on the other. If the radiating surface has a diameter of 0.05 m, determine the
radiation resistance. Ans. R; = 50,000 ohms

MAGNETOSTRICTIVE TRANSDUCERS

.

n

Show that when a polarizing flux is present in a rod of magnetostrictive material, its fundamental
frequeney of longitudinal vibration is reduced.

A rod free at both ends is vibrating vigorously at its fundamental longitudinal frequency by
magnetostriction. Find the breaking point of the rod.

Ans. At the center (node or zero displacement)

921 The thickness vibration of a barium titanate generator is in a form of a circular bowl. If its
thickness is 0.0064 m, find its approximate frequency of thickness vibration.
Ans. f = 400 kc/sec

824 One end of a magnetostrictive transducer is connected to a diaphragm while the other end is free.
Show that the ratio of the particle velocity at the free end of the rod to that of the mass for the
fundamental mode of vibration is sech kL.

APPLICATIONS

925. Only little energy can enter the human body when exposed to ultrasonic waves. Why?
Ans. Mismatching impedances

9% Show that the maximum rate of decrease in intensity of ultrasound is 6 db for each doubling of
the distance from the source.

921. For an amplitude of 10-3 m, compute the values of acoustic intensity at a frequency of 1 Mc/sec
in water and in air. Ans. 0.293, 8.45 X 105 watt/cm?

928. For ultrasound waves traveling from steel to water at normal incidence, determine the pressure
amplitude ratios. Ans. p/p; = 0936, p,/p, = 0.061

98. In ultrasonic cleaning, the transducer of impedance Z, is coupled to the volume liquid in the tank

of impedance Z, so as to reduce loss of efficiency due to mismatching of impedances (Z, > Z; in
general). For maximum efficiency, what should be the impedance of the coupling element?

Ans. Z = v2122



Absorption coefficient, air, 163
Absorption of sound, 92, 109, 187
Acoustic compliance, 115
Acoustic doublet, 67, 128
Acoustic filter, 91-92, 107-108
Acoustic inertance, 115
Acoustic intensity, 40, 66, 78-79
Acoustic pressure, 39
Acoustic resistance, 115
Analogue, electroacoustic, 116, 122-125
electromechanical, 115-116, 120-122
Anechoic chamber, 155
decay of sound, 155, 162
Architectural acoustics, 152
Attenuation of sound, in air, 92, 109
Aural harmonics, 149

Baffle, for loudspeaker, 117

Bar, transverse vibration, 6
longitudinal vibration, 5-6, 24-26

Beam width, 67, 81

Beats, 11, 91

Binaural localization, 144

Cabinet, loudspeaker, 117

Carbon microphone, 118, 131

Cardioid microphone, 119

Cavitation, 171, 183

Characteristic frequencies of a room, 166
Characteristic impedance, of medium, 40
Combination tones, 149

Compliance, acoustic, 115

Condensation, 39, 65

Condenser microphone, 132-133
Continuity, equation of, 68

Critical angle, 90, 106

Crystal microphone, 131

Cutoff frequency, 118, 129

Damped vibrations, 13

Damping, critical, 13

Decay modulus, 14

Decay of sound, in dead rooms, 155, 162
in live rooms, 153

Decibel scales, 41

Diaphragm, circular, 29

Difference tones, 149

Diffraction of sound, 107

Direct radiator loudspeaker, 116, 126-128

Directivity factor, 66, 67, 81

Directivity functions, 66, 82-83

Directivity index, 66-67, 81

Doppler effect, 42, 58-63 .

Doublet, acoustic, 67, 128

Dynamic loudspeaker, 83

Ear, 143-144
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Echo, 90-91, 102
Echo-ranging, 171
Electroacoustic analogue, 115-116, 122-124
Electroacoustical reciprocity theorem, 133-134
Energy density, plane waves, 50

spherical waves, 78
Exponential horn, 117, 128-130

Filter, acoustic, 91-92, 107-108
Forced vibration, 4, 15-16

Growth of sound in live room, 153, 156-158

Harmonic distortion, 131
Hearing, loss, 143
response, 149
Helmholtz resonator, 123, 125
Horn, 117-118
exponential, 128-130
conical, 130
Hydrophone, ceramic, 171
line array, 135
magnetostrictive, 187
piezoelectric, 186, 188

Image source, 181

Impedance, characteristic of medium, 40
specific acoustic, 40-41

Inertance, acoustic, 115

Intensity, acoustic, 48-49, 51

Intensity level, 41, 146-148, 161

Instensity spectrum level, 141, 146

Law of reflection, 90

Layer effect, 175

Lissajou figure, 10

Live room, 153

Lobe, side or minor, 67

Loudness, 140, 144-145

Loudness level, 140, 144-145

Loudspeaker, 115-116
direct-radiator dynamic, 126-128
enclosure, 117

Magnetostrictive hydrophone, 187
Magnetostrictive transducer, 187, 190
Mel, 142
Membrane, vibration, 6
circular, 29-31
forced vibration, 32
rectangular, 28
Microphone, 118
calibration, 120
carbon, 131
cardioid, 119
crystal, 131
directional efficiency, 119



Microphone (cont.)
directivity, 119
pressure-gradient, 119, 134
pressure-operated, 118
response, 135
gensitivity, 119
velocity-ribbon, 133

Noise, 139
physiological and psychological effects, 139
pink, 142
random, 142
underwater, 171
white, 142
Noise reduction factor, 154
Normal specific impedance, 89
Noy, 141

Oblique incidence, 89, 97-98, 105
Octave, 141
Octave bands, 141

Particle displacement, 39

Perceived-noise-level, 141

Phon, 140

Piezoelectric transducer, 186, 188

Pipe, branch, 111
filtering effect, 108
transmission, 109

Piston, directivity, 82-83
radiation from, 82

Pitch, 142

Plane waves, acoustic, 37

Plate, circular, 6, 33-34

Point source, 82

Pressure, acoustic, 39

Pressure band level, 142

Pressure spectrum level, 142, 146

Pulsating sphere, 83-84

Quality factor, 189
Quartz, 188-189

Radiation impedance, 67
Radiation of sound, 66
Radiation pattern, 82, 85
Radiation, resistance, 83
reaction, 83
Rayl, 40
Reciprocity calibration of microphone, 133-134
Reflection of sound, 90, 102-105
Refraction of sound in sea water, 170, 172
Resonance, mechanical, 4, 15
Resonator, Helmholtz, 122
Reverberation, in sea water, 170
Reverberation chamber, 153
decay of sound in, 163, 167
growth of sound in, 1563, 157
Reverberation time, 153, 158-159, 162, 1¢4
Room, modes of vibration, 72, 166-167
acoustics, 156, 166

Sabin, 154

195

Sabine’s equation, 153
Shadow zone, 170
Simple harmonic motion, 2
Simple harmonic vibrations, 12
Simple source, 82
Snell's law, 90
Sonar, 171
Sone, 140
Sound channel, 170, 1756-177
Sound power reflection and transmission
coefficients, 89, 109, 110-112
Sound pressure level, 41, 62, 53
Source strength, 67, 84
Space average sound pressure level, 164, 161
Specific acoustic impedance, 40, 66, 80
Speed of sound, 39, 47-48, 62, 66
Sphere, pulsating, 83-84
Spherical wave, 64
Standing wave ratio, 90, 102
Steady state, 4
String, energy of vibration, 22-23
free vibration, 5, 20
plucked, 20
wave equation, 19-22

Temperature effect on sound velocity, in air, 39
in sea water, 174
Threshold of hearing, 140
Threshold of feeling, 140
Timbre, 142
Transient, 4
Transmission, through two media, 89, 93-96,
103
through three media, 89, 99-102
Transmission anomaly, 170
Transmission coefficient, 89-90
Transmission loss, 90, 153, 159-160
in sea water, 170, 177
Transmissivity, 160
Transmittance, 160

Ultrasonic pulse-echo method, 192
Ultrasonic resonance method, 192
Ultrasonic transducer, 186
Underwater transducers, 171, 180-182

Velocity of sound, 39-40
Vibration, of bar, 5-6, 24-26
of membrane, 26-27, 33, 36
of plate, 6, 33-34, 36
of simple oscillator, 4, 12-14
of string, b, 18-23, 36
Volume displacement and velocity, 123

Wave, addition, 7-11

elements, 38, 46-47

equation, cylindrical, 73
three-dimensional, 68, 71, 75-78
two-dimensional, 69-70

harmonic, 3

harmonic progressive, 3

standing, b
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