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Preface

This book is designed primarily to supplement standard texts in physical or applied 
acoustic at the senior undergraduate level, based on the belief that numerous solved 
problems constitute one of the best means for clarifying and fixing in mind basic 
principles. Moreover, the statements of theory and principle are sufficiently complete 
that, with proper handling of lecture-problem time, the book could be used as a text. 
It should be of considerable value to the physics and engineering students who are 
interested in the science of sound and its applications. The practicing engineers could 
also make frequent references to the book for its numerical solutions of many realistic 
problems in the area of sound and vibration.

Throughout the book emphasis is placed on fundamentals, with discussions and 
problems extending into many phases and applications of acoustics. The subject mat­
ter is divided into chapters covering duly-recognized areas of theory and study. Each 
chapter begins with pertinent definitions, principles and theorems which are fully 
explained and reinforced by solved problems. Then a graded set of problems are solved 
followed by supplementary problems. The solved problems amplify the theory, present 
methods of analysis, provide practical examples, illustrate the numerical details, and 
bring into sharp focus those fine points which enable the students to apply the basic 
principles correctly and with confidence. Numerous proofs of theorems and derivations 
of basic results are included among the solved problems. The supplementary problems 
with answers serve as a complete review of the material of each chapter.

The essential requirements to use this book are knowledge of the fundamental prin­
ciples of mechanics, electricity, strength of materials, and undergraduate mathematics 
including calculus and partial differential equations.

Topics covered are vibrations and waves, plane and spherical acoustic waves, trans­
mission of sound, loudspeaker and microphone, sound and hearing, architectural 
acoustics, underwater acoustics and ultrasonics. To make the book more flexible, con­
siderably more material has been included here than can be covered in most semester 
courses.

I wish to thank Mr. Daniel Schaum for his utmost patience and kind assistance.

W. W. SETO
San Jose State College 
December, 1970
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Chapter 1

Vibrations and Waves
NOMENCLATURE

a - speed of wave propagation, m/sec; acceleration, m/sec2
*4 area, m-
Ao amplitude of wave, m
A,B - constants
c - - damping coefficient, nt-sec/m
C,D - constants
d - diameter, m
f — frequency, cyc/'sec
h - beat frequency, cyc/sec
h = length, m
h - Bessel hyperbolic function of the first kind of order zer
Jo Bessel function of the first kind of order zero
k = spring constant, nt/m
K0 - Bessel hyperbolic function of the second kind of order 1
m = mass, kg
Pn - natural frequencies, cyc/sec
p = period, sec
p b = beat period, sec
r : frequency ratio; radial distance, m
S = tension, nt
SHM = simple harmonic motion
V — thickness, m
w - - work done, joules/cyc
Y = Young’s modulus of elasticity, nt/m2
CD = circular frequency, rad/sec
“d = damped circular frequency, rad/sec

= natural circular frequency, rad/sec
A — wavelength, m
£ — damping factor
e,<t> - angles, rad
p = density, kg/m3
Pa = mass/area, kg/m2
Pl - mass/length, kg/m
P- Poisson's ratio
a — stress, nt/m2
£ = strain

1



2 VIBRATIONS AND WAVES [CHAP. 1

INTRODUCTION
Acoustics is the physics of sound. Although the fundamental theory of acoustics treats 

of vibrations and wave propagation, we can consider the subject as a multidisciplinary 
science.

Physicists, for example, are investigating the properties of matter by using concepts 
of wave propagation in material media. The acoustical engineer is interested in the fidelity 
of reproduction of sound, the conversion of mechanical and electrical energy into acoustical 
energy, and the design of acoustical transducers. The architect is more interested in the 
absorption and isolation of sound in buildings, and in controlled reverberation and echo 
prevention in auditoriums and music halls. The musician likes to know how to obtain 
rhythmic combinations of tones through vibrations of strings, air columns, and membranes.

On the other hand, physiologists and psychologists are actively studying the character­
istics and actions of the human hearing mechanism and vocal cords, hearing phenomena 
and reactions of people to sounds and music, and the psychoacoustic criteria for comfort of 
noise level and pleasant listening conditions. Linguists are interested in the subjective 
perception of complex noises and in the production of synthetic speech.

Ultrasonics, a topic in acoustics dealing with sound waves of frequencies above 15,000 
cycles per second, has found increasing application in oceanography, medicine and industry.

Moreover, because of the general awareness and resentment of the increasing high level 
of noise produced by airplanes, automobiles, heavy industry, and household appliances, and 
its adverse effects such as ear damage and physical and psychological irritation, greater 
demand is made for better understanding of sound, its causes, effects and control.

WAVES
Waves are caused by an influence or disturbance initiated at some point and transmitted 

or propagated to another point in a predictable manner governed by the physical properties 
of the elastic medium through which the disturbance is transmitted.

As a vibrating body moves forward from its static equilibrium position, it pushes the 
air before it and compresses it. At the same time, a rarefaction occurs immediately behind 
the body, and air rushes in to fill this empty space left behind. In this way the compression 
of air is transferred to distant parts and air is set into a motion known as sound waves. 
The result is sound. To the human ear, sound is the auditory sensation produced by the 
disturbance of air. Because fluids and solids possess inertia and elasticity, they all transmit 
sound waves.

Sound waves are longitudinal waves, i.e. the particles move in the direction of the wave 
motion. Propagation of sound waves involves the transfer of energy through space. The 
energy carried by sound waves is partly kinetic and partly potential; the former is due to 
the motion of the particles of the medium, the latter is due to the elastic displacement of 
the same particles. While sound waves spread out in all directions from the source, they 
may be reflected and refracted, scattered and diffracted, interfered and absorbed. A 
medium is required for the propagation of sound waves, the speed of which depends on the 
density and temperature of the medium. (See Problems 1.1-1.7.)

SIMPLE HARMONIC MOTION
For a particle in rectilinear motion, if its acceleration a is always proportional to its 

distance x from a fixed point on the path and is directed toward the fixed point, then the 
particle is said to have simple harmonic motion (SHM), which is the simplest form of 
periodic motion. In differential equation form, simple harmonic motion is represented by
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a — —*>2x or d2x/dt2 + — 0

with solution x(t) = A sin o>t + B cos at

or x(t) = yjA2 + B2 sin («>t + 6), x{t) = y/A2 + B2 cos (*t -  <f>)

where A,B  are arbitrary constants,  ̂ is the circular frequency in rad/sec, and 8,<f> are phase 
angles in radians.

Simple harmonic motion can be either a sine or cosine function of time, and can be con­
veniently represented by rotating vectors as shown in Fig. 1-1. The vector r of constant 
magnitude is rotating counterclockwise at constant angular velocity <»; its projections on 
the x and y axes are respectively cosine and sine functions of time. (See Problem 1.8.)

(a) Sine Function

(6) Cosine Function 

Fig. 1-1

A harmonic wave is one whose profile or shape (displacement configuration) is sinusoidal, 
i.e. a sine or cosine curve. A harmonic wave moving in the positive x direction with velocity 
c is given by

f Ao sin mix — ct) 
u(x,t) = ] . „[ Ao cos m(x — ct)

whereas a harmonic wave moving in the negative x direction with velocity c is given by

f A0 sin mix + ct)
uix, t) — [ Ao cos m(x + ct)

where Ao is the amplitude of the wave. These are known as harmonic progressive waves.

A spherical wave diverging from the origin of the coordinate with a velocity c is 
represented by

u(r,t) = (Ao/r) f(ct -  r)
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Similarly, a spherical harmonic progressive wave is designated by
u(r, t) -  (Ao/r)eiiot~kTi

where i ~ \ - 1  and k =  1 /A  is the wave number, i.e. the number of cycles of the wave 
per unit lenirth. The wave profile repeats itself after a distance A = 2tr/ra which is called
the icarelcngth.

VIBRATIONS
Systems possessing mass and elasticity are capable of relative motion. If the motion 

of such systems repeats itself after a given interval of time, such periodic motion is known 
as vibration. To analyze vibration, the system is first idealized and simplified in terms of 

spring k, and dashpot c, which represents the body, the elasticity, and the friction 
of the system respectively. The equation of motion then expresses displacement of the 
system as a function of time. The period P is the time in seconds required for a periodic 
motion to repeat itself, and the frequency /  is the number of cycles per unit time.

Frcc vibration, or transient, is the periodic motion observed as the system is displaced 
from its static equilibrium position. The forces acting are the spring force, the friction 
force, and the weight of the mass. Due to friction the vibration will decrease with time 
and is given by

z c(t) =  e_Cu"f (A sin<ndt + B coso>d£)

where = damping factor,

= natural circular frequency in rad/sec,
= natural damped circular frequency in rad/sec,

A ,B  =  arbitrary constants. (See Problems 1.9-1.10.)

When external forces, usually of the type F(t) — F0 sin u>t or F0 cos <ut, are acting on the 
system during its vibratory motion, the resultant motion is called forced vibration. At 
forced vibration, the system will tend to vibrate at its own natural frequency as well as 
to follow the frequency of the excitation force. In the presence of damping, that portion 
of motion not sustained by the sinusoidal excitation force will gradually die out. As a 
result, the system will vibrate at the frequency of the excitation force regardless of the 
initial conditions or the natural frequency of the system. The resultant motion is called 
steady state vibration or response of the system, and is represented by

xp(t) = —— = = = = =  cos (u>f — 0)
\/{k -  vu>2)2 +  (Cm)2

where F > = magnitude of the excitation force,
k =  spring constant,
m =  mass of the system,
c =  damping coefficient,

=  frequency of the excitation force in rad/sec,

b = tan-1 i---- -—x =  phase angle. (See Problem 1.11.)k — m<n2 1

Resonance occurs when the frequency of the excitation force is equal to the natural 
frequency of the system. When this happens, the amplitude of vibration will increase 
without bound and ia governed only by the amount of damping present in the system.
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ENERGY OF VIBRATION
During free vibration with damping, energy is being continuously absorbed by the 

damper and dissipated as heat. The system is therefore continuously losing energy, and 
as a result the amplitude of vibration will diminish. For free vibration without damping, 
the total energy is constant and is either equal to the maximum kinetic or potential energy; 
the system continues to vibrate.

During forced vibration with damping, energy is being continuously supplied from 
external sources to maintain steady state vibration. (See Problems 1.12-1.15.)

VIBRATION OF STRINGS
The string is a unique vibrator with continuous media characteristics and is also the 

simplest example of a medium of wave transmission. It has its mass uniformly spread 
along its length and is the simplest case of a system with an infinite number of frequencies.

The general differential equation of motion is given by

&V  -  ni ^ y
dt2 dx2

where y = deflection of the string,
x = coordinate along the longitudinal axis of the string,
a = } /S /pL =  speed of wave propagation,
S = tension,
PL = mass per unit length of the string.

The general solution can be expressed as either standing waves or progressive waves as 
given in the following two equations:

y(x>t) =  2  (A i sin—x + BiCos — xj(C ism  pit + Di cosptt)
« = i,2,... \ a a J

where A itBi are arbitrary constants to be evaluated by boundary conditions, Ci,Di are
arbitrary constants to be evaluated by initial conditions, and pt are the natural frequencies
of the system; „ ,

y(x, t) = fi (x -  at) +  /2 (z + at)

where /i and /2 are arbitrary functions. The first part fi(x  — at) represents a wave of 
arbitrary shape traveling in the positive x direction with velocity a, whereas fn(x +  at) 
represents a similar wave traveling in the negative x direction with velocity a. (See 
Problems 1.16-1.20.)

LONGITUDINAL VIBRATION OF BARS
A bar is a material body greatly elongated in one direction, made of homogeneous, 

isotropic material, and free of transverse constraints throughout. If a sudden blow is made 
in the direction of its axis, the elongation characteristics of any right section of the bar 
will vary periodically with time but with different amplitudes. This is longitudinal
vibration of bars.

The general differential equation of motion is given by
d2u _  2
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where u = displacement of any cross section,
x = coordinate along the longitudinal axis, 
a = y Y/p = speed of wave propagation,
Y = Young’s modulus of elasticity, 
p -  density.

The general solution is the same as that for the vibration of strings. (See Problems 
1.21-1.25.)

VIBRATION OF MEMBRANES
A membrane is a material body of finite extent and uniform thickness, held under 

homogeneous tension in a rigid frame. It is completely flexible and its thickness is very 
small compared to its two other dimensions. When excited, free vibration without damping 
is assumed to take place perpendicular to the plane surface of the membrane.

A vibrating membrane is the most easily visualized physical example of wave motion 
in effectively two-dimensional space. Compared to its one-dimensional counterpart, the 
flexible string, the membrane has much more freedom of motion.

The general differential equation of motion is given by

Fy Py l # y  
dX2 dz2 a2 dt2

where y = vertical deflection of the membrane,

a = V$/pa = speed of wave propagation,
S = tension,
pa = mass per unit area of the membrane,
x, z — coordinates in the plane of the membrane.

The general solution can be expressed either as series solution or traveling-waves solu­
tion as follows:

y(x, z,t) = (Ai sin y/(Pi/a)2 -  k2 x + Bi cos y jip ja f-k f c)
» = 1,2__

x (Ci sin kiZ + Di cos kiZ)(Ei sin p<t + Fi cos pd)
where Aif Bit C, and D, are arbitrary constants to be evaluated by boundary conditions, Et 
and Fi are arbitrary constants to be evaluated by initial conditions, and Pi are the natural 
frequencies of the membrane;

y(x,z,t) = fi(mx + nz — a t)+ f2(mx + nz + at) where m2 + n2 = 1
This form of solution represents waves of the same arbitrary profile traveling in opposite 
directions along x and z axes with velocity a. (See Problems 1.26-1.31.)

VIBRATION OF CIRCULAR PLATES
The vibration of plates is the two-dimensional analog of the transverse vibration of 

beams. In contrast to a membrane, the thickness of a plate is not small compared to other 
dimensions. Moreover, stresses and strains resulting from the stiffness and bending of 
the plate will complicate greatly the almost limitless freedom of motion of the plate.



The general differential equation of motion is given by

~dhj 1 dyl2 12p ( l  —  (i2) d2y =
.dr2 r dr] + YV2 dt2

"here y = deflection of plate,
r — radial distance from center of plate, 
P = density of plate, 
1 oung’s modulus of elasticity, 
t’ =  thickness, 
,n = Poisson’s ratio.

The general solution for free vibration of a circular plate is

y(r,t) = [AJo(kr) + BI0(kr)]eiut

where A and B are arbitrary constants, J0 is the Bessel function of the first kind of order 
zero, and I0 is the Bessel hyperbolic function. (See Problems 1.32-1.33.)

Solved Problems
WAVES
1.1. Prove each wave addition:

(a) A cos wt + B sin U = C sin (a>t + 6)
(b) A cosw£ + B sinw£ = C cos (a>t — <f>)

where C = y/A1 + B2, tan 6 = A/B, and tan <f> = B/A.

(a) C sin (ut +  e) — C (sin ut cos 6 +  cos ut sin o) =  (C cos e) sin ut +  (C sin 6) cos ut

(b)

Let (C cos e) — B, (C sin e) =  A. Then A 2 +  B 2 =  C2 or C =  y/A2 +  B2, and tan e =  A/B.
Thus _______

A  cos ut +  B sin ut =  C sin (ut +  e) if  C =  y/A2 +  B2 and tan e -  A/B

C cos (ut — $) =  C (cos ut cos <(> +  sin ut sin <f>) =  (C cos <p) cos ut +  (C sin sin ut

Let (C cos <(>) =  A, (C sin <p) =  B. Then A 2 +  B2 =  C2 or C =  V A 2 +  B2, and tan 0 =  B/A.
Thus ________

A  cos ut +  B sin ut =  C cos (ut -  <p) i f  C =  y/A2 +  B2 and tan * =  B/A

The above wave additions can also be found 
by considering’ the rotatingf vectors shown in 
Fip. 1-2.

Vectors A, B and C are rotating about point
0  with constant angular velocity u. A A X =
OA cos ut, BB^ — OB sin ut, and CCi =
OC sin (ut + <f>) are the projections on the y 
axis of vectors A, B and C respectively.
(a) Since vcc.tor C is the resultant of vectors 

A and B, we have
CC, =  CC2 +  C2C, =  A A X +  BBx

or
OC sin (ut +  <(>) — OA cos ut +  OB sin ut



8 VIBRATIONS AND WAVES [CHAP. 1

Calling OA -  A, OB — B, OC — C, then C = \M2 + B2, tan^ = A/B and the required 
result follows.

(6) Similarly, . . , . „
AiA +AA,_ = AtA + BBx

or C cos (uf — tf) = A cos at + B sin at where C = VA2 + B2 and tan 9 = B/A.

1.2. Two harmonic wave motions x( = sin (u>t + 60°) and £2 = 2 sin <■>t are propagated in 
the same direction. Find the resultant wave motion.

The resultant wave motion is given by
x = j:, + x2 = sin(u( + 60°) + 2 sinut

= sin ut cos 60° + cos at sin 60° + 2 sinu£

= 2.5 sin at + 0.866 cos at = V2.52 + 0.8662 sin {at + e)

= 2.66 sin (ut + 19°)

since e = tan-1 (0.866/2.5) = 19°.
The resultant wave motion can also be found by considering the rotating vectors shown in 

Fig. 1-3. All the three vectors A,B,C are rotating with constant angular velocity a. The projec­
tions of vectors A and B on the x axis represent the two wave motions and x2 respectively. The 
resultant wave motion is represented by the projection of the vector C on the x axis.

Fig.1-4

1.3. Given two sine or cosine waves of different frequencies and amplitudes, determine 
their sum.

The addition of two or more sine or cosine waves is most conveniently done by rotating vectors 
as shown in Fig. 1-4. A and B are vectors of different lengths rotating about O with constant 
angular velocities <jj and a2 and initial phase angles <p and s. The projections of vectors A and B 
on the x axis are respectively

OD — A cos (ujt + <p), OE — 2? cos (u2t + 0) (1)

where A and B are the magnitudes of the vectors. The corresponding projections on the y axis are

OF -  A sin (ujt + <t>), OG -  B sin (u2t + e) (2)

Similarly, the projections of vector C on the x and y axes are

OH -  OD +  DH = OD + OE, OI =  OF + FI =  OF + OG (s )

From equations (1) and (2),

C COS (a1t +If,+ )̂ = A COS (<d]t + <t>) + B COS (u2t + $) (4)

C sin (ujt + <p + = A sin(u,t + 0) + B sin(u2t+  e) (5)



CHAP. 1] VIBRATIO N S AND W A V E S 9

where the magnitude o f vector C is C =  V A 2 +  B2 +  2A B  coa [(<d! -  u2)t +  *)] which varies 
sinusoidally with time at a frequency equal to the difference between the given frequencies. The

. CH „ A sin ( « ,« +  0 ) +  B sin («2« + * )phase angle o f the vector C is + =  tan -1 -=rr =  tan- 1 -*------- -— —— - , --------- -— —— -
Ci A  cos (wji +  +  B cos («2  ̂+  0)

Thus equation (4) represents the addition o f two cosine waves whereas equation (5) represents 
the addition o f  two sine waves.

Fig. 1-5 shows the addition o f two sine waves o f different frequencies and amplitudes. The 
resultant wave is periodic but not harmonic.

Fig. 1-5

1.4. Two wave motions A — cos (mt -I- 30°) and B =  1.5 s in (J  + 30°) are propagated si­
multaneously from source O in directions perpendicular to each other. Determine 
the resultant wave motion.

X-+~

Fis-1-6
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The shape o f the resultant wave motion can be found graphically by means o f rotating vectors 
in the xy  plane as shown in Fig. 1-6 above. The lengths o f the vectors represent the amplitudes 
while their projections on the x and y axes represent the original shapes of the waves. The cir­
cumferences o f both circles are marked for equal time intervals o f the circular motion o f the vectors. 
Then all these points are projected across the xy plane to form the locus o f points, which is an 
ellipse.

1.5. Given two wave motions A cos 2„>t and A sin3wf in directions at right angle to each 
other, find the resultant motion.

Let X -  A cos 2uit,  y -  A sin 3a t  as shown in Fig. 1-7. The resultant motion on the xy  plane 
can be found graphically by means o f rotating vectors. The lengths o f the vectors represent the 
amplitudes o f the wave motions while their projections on the x and y axes represent the original 
shapes o f the waves.

F ig .1-7

The circumferences o f both circles are marked for equal time intervals in the ratio o f 3 :2  which 
is the ratio o f  the circular speeds o f the vectors. All these points, 1 to 24 on both circumferences, 
are projected across the xy  plane to form the locus o f points which is known as the Lissajou figure. 
Lissajou figures are useful when setting up a series o f motions whose frequencies are harmonics 
o f the fundamental.

1.6. Two harmonic motions of the same amplitude but of slightly different frequencies 
are imposed on a vibrating body. Analyze the motion of the body.

L«t Xj(<) =  i40 cos<jt, x2(t) =  A 0 cos (u +  Au)( be the two harmonic motions. The motion 
o f the body, then, is the superposition o f the two given motions:

x ( t )  — X t ( t )  +  X2( t ) =  Aq COS a t  +  A 0 COS ( a  +  Au)t =  i40[cos a t  +  COS ( a  +  Au)t]

From trigonometry, cos x +  cos y =  2 cos \(x +  y) cos ^(x -  y). Thus

x(t) — A 0[2 cos ^(ut +  ut +  Aut) cos (Au/2)t] =  [2i40 cos (Au/2)t] cos (u +  \a!2)t
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The amplitude of *{t) is seen to fluctuate between zero and 2A0 according to the 2A0 cos (W 2)t  
term, while the general motion of x is a cosine function of angular frequency ( « +  Aw/2). This 
special pattern of motion is known as the beating phenomenon. Whenever the amplitude reaches a 
maximum, there is said to be a beat. The beat frequency as determined by two consecutive maximum 
amplitudes is equal to

_  Am +  n _  u_ Au I
fb ~  2r 2v 2v y /

and the beat period Pb — 1 / /„  =  2r/Aw sec. Sound waves of slightly different frequencies will also 
give rise to beats as described here.

1.7. In each of Fig. l-9(a)-(/), two identical triangle waves shown dashed are propagated 
in the same direction. In each case, study the resultant wave with respect to the 
indicated phase angle between the two waves.

\
(a) 0‘

-----yf-

y

v y '
(e) 72°

Z / /

(J) 90°

/  /  v N  /

(g) 108°

J /
(h.) 126°

/\  y\

\Z V"
(i) 144<

y
(J) 162°

FSg. 1-9
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The resultant wave (solid line) is obtained by adding the two waves graphically. W e begin in 
Fig. l-9(a) with zero phase angle between the two waves, i.e. the two waves are completely in phase 
with each other. The resultant amplitude is equal to twice the amplitude o f the given waves.

Fig. 1-9(6) shows ftie addition o f two identical waves with 18° phase difference between them. 
Similarly, Fig. l-9(c) to Fig. l-9 (/)  are the resultants o f the additions o f two identical waves with 
progressively greater values o f phase angle between the two identical waves.

When the two identical waves are completely out o f phase, i.e. the phase angle between the two 
waves is 180°, the resultant wave is zero. In other words, the two waves cancel each other.

SIMPLE HARMONIC MOTIONS
1.8. A simple harmonic motion is given as x(t) =  10 sin (10£ — 30°) where x is measured 

in meters, t in seconds, and the phase angle in degrees. Find (a) the frequency and 
period of the motion, (6) the maximum displacement, velocity and acceleration, (c) 
the displacement, velocity and acceleration at t =  0 and t =  1 seconds.
(o) x(t) =  10 sin (lOt — 30°) =  A 0 sin (ut — 0)

Then u =  10 rad/sec, /  =  u /2r =  1.6 cyc/sec, and p =  1 //  =  0.63 sec.

(b) Displacement is x(t) =  10 sin (lOt — 30°). Thus the maximum displacement is 10 m.
Velocity is dx/dt =  uA0 cos (ut — $). Thus the maximum velocity is 10(10) =  100 m/sec.
Acceleration is (Px/dt2 =  — u?A0 sin (ut — 9), and so the maximum acceleration is 

102(10) =  -1 0 0 0  m/sec2.

(c) A t t =  0:
x (0) =  10 sin ( -3 0 ° )  =  10(-0 .5) =  - 5  m
x (0) =  uA0 cos (—30°) =  10(10)(0.866) =  86.6 m/sec
x(0) =  —u*Aq sin (—30°) =  - ( 10)2(10) ( - 0.5) =  500 m /sec2

A t t =  1:
x ( l )  =  10 sin (10 - 3 0 ° )  =  10 sin (570° -  30°) =  10 sin 180° =  0
x (1) =  10(10) cos 180° =  -lO O m /sec
x ( l )  =  - ( 10)2(10) sin 180° =  0

FREE VIBRATION
1.9. Determine the differential equation of motion and natural frequency of vibration of 

the simple single-degree-of-freedom spring-mass system shown in Fig. 1-10.
A pply Newton’s law o f motion, 5 F  =  ma. For vertical 

motion, the forces acting on the mass are the spring force 
fc(ast -I- x) and the weight mg o f  the mass. Therefore the dif­
ferential equation o f  motion is

m x  =  —k(Sst +  x) +  mg

where is the static deflection due to the weight o f the mass 
acting on the spring. Then mg =  i Itfc, and the equation of 
motion becomes

m x + kx = 0
which is the differential equation for  SHM. The general forms 
o f solution for  this equation are

x(t) =  A  sin yjktm t +  B  cos y/k/m t

x(t) =  C sin (yjk/m t +  ^)

x(t) =  D cos (\Jk/m t — e)

where A ,B ,C ,D ,$  and e are arbitrary constants depending on 
initial conditions x(0) and x(0). Two constants must appear in 
each o f the general solutions because this is a second order 
differential equation.

*($st +  x )

I___ I m

m g '



CH AP. 1J V IB R A T IO N S  A N D  W A V E S 13

For an initial displacement x(0) =  x0 and zero initial velocity x(0) — 0, we have A — 0, 
B = x0 and hence

x (t) =  x0 cos V*7m t

Physically, this solution represents an undamped free vibration, one cycle o f  which occurs when 
'/kfm t varies through 360 degrees. Therefore the period P and the natural frequency / „  are

_ 2j t _ 
'i/ k/n

_ y/klm sec and / ,  =  1/P =  —^ — cyc/sec

where u„ =  \rk/m rad/sec is the circular natural frequency o f the system.

1.10. A  generalized  sing]e-degree-of-freedom  spring-mass system with damping is shown 
in Fig. 1-12. Investigate its general motion.

Employing Newton’s law of motion 2 F = ma,

m x  =  —ex  — kx or m x  +  ex +  kx =  0 
where k is the spring1 constant, m the mass, and e the damping coefficient.

We cannot assume solutions of the sine or cosine functions because 
of the term ex. We assume x =  ert; then x = rert, x = r2eTt. Sub­
stituting these values into the differential equation of motion, we obtain

mr2eTt +  creTt + kert =  0 or mr2 + cr + k — 0 
The two values of r satisfying the above equation are

'///////////,

,r2
—c — yjc2 — 4mk 

2m Fig. 1-12

where un — y/k/m, and = e/2mun is called the damping factor. Thus the solution to the equa­
tion of motion is

x(t) =  A er,t +  Be7*1

where A and B are arbitrary constants determined by the two initial conditions imposed on the 
system.

Since the values of r depend on the magnitude of f, we have the following three cases of free 
vibration with damping:

Case 1: If f is greater than unity, the values of r are real and distinct; the amplitude of x 
is decreasing but will never change sign. Therefore oscillatory motion is not possible for the system 
regardless of initial conditions. This is overdamped, where

x(t) =  A c~ Tit +  Bc~rit

Case 2: I f f  is equal to unity, the values of r are real and negative, and are equal to —u„. 
The motion of the system is again not oscillatory, and its amplitude will eventually reduce to zero. 
This is critically-damped, where

x(t) =  (C + Dt)e~<*nt
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I 'm  3: If f ia leas than unity, the values of r are complex conjugates: 

r, ~ u „(-f + iV l — f2 ). r2 -  un( - f  - i y / l - p )

And if we define Uj ■- \/l ’ f"* as the damped natural frequency in rad/sec, we have

r l ~ ~t<*n * ri "  _ fwn »“ .l

and *(f) = e~ k'’*1 + Fe~,uii>)

Expanding, x(f) ■= «< -Ui.i |(£ + F) cosu,|f + i(E — F) sin ul(f]

Letting E + F ~ G and i(F — F) -- H, we Anally obtain

x(<) -  »■ C“»*(G cos u1(f + W sin u,/<)

Aa shown before, we may combine a cosine and sine function of the same frequency into a 
•ingle aine or cosine function as

x(t) = sin (u.jf + e)

x(t) = /«<— cos (udf -  </>) 

where / =  +  H°-, » =  tan-*(G/W), 0 =  t a n - ' (H/G).

The motion ia oscillatory with angular frequency ud. The amplitude of motion will decrease 
exponentially with time because of the term which ia known as the decaying factor. This
ia underdamped vibration. Refer to Fig. 1-13.

Hence it may be concluded that the motion of a dynamic system with damping and having 
free vibration depends on the amount of damping present in the system. The resulting motion will 
be periodic only if the amount of damping present is less than critical, and the system oscillates 
with angular frequency slightly less than the free natural frequency of the system.

FORCED VIBRATION
1.11. Investigate the general motion o f a simple spring-mass 

system with damping excited by a sinusoidal force 
Fo cos iut as shown in Fig. 1-14.

Employing Newton’s law of motion,

tn * = sum of forces in the x direction
= —k(x + 4lt) + mg — ex + F0 cot ut

But fca,t - mg, the weight of the mass; hence the equation of 
motion takes ita most general form

m ’£ + ei  + kx = F0 coa u t

The general solution for this second order differential equation 
with constant coefficient* ia

9 = Xe + Wp

r
I

| f 0 cosut

Fig. 1-14
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where x e is called the complementary solution, or the solution of the homogeneous equation, 
m x  +  cx + kx = 0. xp is the particular solution for the given equation.

The complementary solution, known as free vibration, has been solved previously in Problem 
1-10. The particular solution, obtained from the nonhomogeneous part F 0 cos at o f  the differential 
equation o f motion, is

x v(t) =  A sin wt +  B cosut 

and so xp(t) =  wA cos wt — wB sin wt

xp(t) =  —u2A  sin wt — u25  cos u(

Substituting these expressions into the equation of motion, we obtain

(kA — mAu2 — coiB) sin ut +  (kB — mBw2 +  cwA) cos wt =  F0 cos wt 
Equating the coefficients,

(k — mw2)A — cwB = 0, cu4 + (k — mu2)B = F 0

F 0uc F 0(k — mu2)
from which A  =  , .— — , B =(k -  wiu2)2 +  (cw)2 ’ (fc -  mu2)2 +  (cu)2

F 0wc F 0(k — mw2)
Then Xp{t) =  ( f c - W ) 2  +  (Cu)2 Slnut +  ( k - m w 2)2 +  (cw)2 C0S“ ‘

W e m ay com bine these tw o sinusoidal functions o f  the same frequency either by rotating vectors 
or by trigonom etric identities to obtain

F0
x„(t) =  —  COS (wt — <t>)

y/(k — mu2)2 +  (cu)2

F 0/k
or xJt)  =  ' ■ -  cos (ut — <(>)

V( 1 -  r2)2 + (2fr)2

where r = u/wn, id. = y/k/m, and <p - tan 17---- -— — tan 1 z------ « ." 71 k — mu2 1 — r1

Fig. 1-15

Hence it may be concluded that the particular solution xp(t), which is known as the steady 
state response or forced vibration, is of the same frequency as that of the excitation force regard­
less of initial conditions. The amplitude of forced vibration depends on the amplitude and
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frequency o f the excitation force, and the parameters o f the systems. At resonance, i.e. when the 
forcing frequency is equal to the natural frequency, or « / « n =  1, the amplitude o f forced vibration 
is limited only by the damping factor f and hence the amount o f damping present. Therefore 
resonance should he avoided at all times. Finally, the steady state response o f the system is not 
in phase with the excitation force: its variation by the phase angle ^ is due to the presence of 
damping in the system. Without damping, the steady state response is either in phase or 180° out 
o f phase with the excitation force. See Fig. 1-16 to Fig. 1-19.

ENERGY OF VIBRATION
1.12. Determine the power requirements for vibration testing and analysis.

In vibration testing, we have forced vibration. The work done is the product o f the excitation 
and displacement, while power required is the rate of doing work. Let F  =  F 0 cos ut and 
x — A  cos (wt — ^); then the work done is

w = f  Fdx =  f  F o cosu t[-A  sin f a t - # )  d(ut)]
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•nd work don« per cycle of motion it
j »2ir

coa ut Bin (ut — 0) d(ut)
0

as the angle ut goes through a cycle o f 2ir. Since sin (ut -  0) =  sin ut cob 0 — cob ut sin 0, the work 
done per cycle of motion becomes

cob2 wt d(ut) — F UA cob 0 I cob ut sin  ut d(ut)J0

-= F0A .in 0 ~  cob 0

r>  ̂ F 1 sin  2utlJ,r _  . Pi c o s 2u t-|2lT-  F ^ . . n 0 [ T  + - r - J ii - F „ , 4 c o m Lj ------ !2 L |
J2ir
0

= irAFo Bin 0

If F — F0 sin ut and x — A sin (ut — 0), then the work done is

w = f Fd* = f F % d< = / « « <
The expression for work done in one cycle of motion is then

s*2n/u
W = I Fq sin ut[ui4 cos (ut — 0) dt] =  | F 0Au sin ut cos (ut — 0) dt 

‘ 0 ‘'o
Since cos (ut — 0) -  cos ut cos 0 + sin ut sin 0,

J *itr/u s*2irlu
u>AF0 sin ut cos ut cos 0 dt +  I uAF0 sin 0 sin2 ut dt

0 -'0

Aa shown earlier, the above expression can be reduced to

sin2ut , A 0  ( t  sin 2ut\~l2ir/"W  0u cos 0 — - —  + A F 0u sin 0 f --------- - —  J

I t c  (  1 co s2ut\ , a n ( t  s in2ut\=: j^i4F0u cos 0 — J +  A F 0u sin 0 4^ J
2ir/u

0
“  vAFa sin 0

Thus the power required is proportional to the amplitude F0 of the excitation force as well as 
to the amplitude A of the displacement. When there is no damping in the system, the work done 
by the driving force is zero because 0 = 0° or 180°. At resonance, energy is needed to build up 
the amplitude of vibration; and for this case, 0 =  90°.

1.13. The steady state response of a simple dynamic system to a sinusoidal excitation 
lOsinO.lirt newtons is 0.1 sin(0.l7rt — 30°) meters. Determine the work done by 
the excitation force in (a) one minute and (b) one second.

1
(a) From Problem 1.12, the work done per cycle by the excitation force is given by

W  =  f  F dr =  f  F i  dt — rA F 0 sin 0
• i) *'0

where FQ ~ 10 newtons is the amplitude of the excitation force, A =  0.1 m is the amplitude 
of the steady state response, and 0 = 30° is the phase angle. Hence work done by the 
excitation force is W =  3.14(0.1)(10)(0.6) = 1.67 joules/cyc. The angular frequency is
O.lr rad/sec and the period P  = 1 //  = 20 sec. In one minute, the excitation force will complete 
thr«« cycles. Therefor* work done by the excitation force in one minute is 4.71 joules.

f ao
F i  dt. Then work done in one second is

it
/ '1

W  -  I (10 sin O.lrtKO.Olr) cos (O.lrt -  30°) dt =  0.05 joule
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1.14. Prove that the mean kinetic and potential energies of nondissipative vibrating systems 
are equal.

For free vibration without damping, the motion can be assumed harmonic and is given by
x(t) = A sin unt

Kinetic energy KE = £mx2 = \m(JnA2 cos2 unt) =  £kA2 cos2 unt, where u2 =  fc/m.

Potential energy PE = ^kx2 = §kA2 sin2 <j„t.

1 f P(KE)mean = p j  ($kA2 cos2 <jnt) dt =  ±kA2

(PE)mean = ^  C  ($kA2 sin2 »nt)dt =  ±kA2 
J o

1.15. A uniform string fixed at both ends is displaced a distance h at the center and released 
from rest as shown in Fig. 1-20. Find the energy of transverse vibration of the 
string.

Fig. 1-20

The free transverse vibration of a uniform string can be expressed as

y(x ,t) — 2  A; s i n ^  c o s ^ - ^ t  +  0i 

where A{ is the amplitude of motion and 0; is the phase angle. (See Problem 1.17.) Then

KE = ip Lf " y ' - d Z = +

PE =  [ 0 ] ‘ *  =  I T . , , 1 ...

~2q2PL 2, 2or KE -  PE = —
i = 1,2___

where S is the tension in the string, pL is the mas3 per unit length of the string, and a -  y/SIpL 
the speed of wave propagation.

From the initial conditions y(z, 0) = 0 and y<z, 0) = \ I /2 < x ^ L WC 0')*’a'n

A~i — 6 4 A T h e  expression for the energy of transverse vibration of the string becomes

KE -  PE = l<if>LaW kW L, i = 1,3, . . .

Let the total energy associated with the fundamental mode of vibration be E x, i.e.

=  \f>pLa^hl I L z l

Then the energies associated with the first harmonic, second harmonic, third harmonic, . .. are 
respectively

E  ̂— EJrj, Ê  — E f̂2fj, Ej ~ E j/49, . . .

Tkas tfae main part of the energy of vibration is associated with the normal mode* of low order. 
The quality of a toie is governed by the proportion of energy in each of the mode* of vibration. 
Tfcoogfe the fundamental frequency ma7  be the lame, the energy distribution in the harmonica 

rig** each siosical initnraent.



VIBRATION OF STRINGS
116. Investigate the transverse vibration of a stretched string of length L in a plane, 

assuming the tension S in the string remains constant.

Fig. 1-21

In general, it can be assumed that the flexible string offers no resistance to bending nor to 
shear, and its tension is constant for small, displacements.

The differential equation of motion for an infinitesimal element of the string as shown in 
Fig. 1-21 can be written as

2  F = my

or d2y(pL Ax) jp- = — S sin p + S sin a

where pL is the mass per unit length of the string and S is the tension in the string. Partial 
derivatives are used because there are two independent variables, x and t.

But *y = tan B, ~dy~
dx rlI = X dx x = i + Ai

= tan a. And for small displacements, sin a = tan a

and sin p = tan /?. Hence

= - s + s dy~
dx I = X dx x = x + Ax[pL 1 at2

32y (S/pL)[(dy/dx)x + Ax -  (dy/dx)x\or —~ zz ---------------------------------------
dt2 Ax

Py _  S_d*y 
dt2 PL dx2

which is generally known as the one-dimensional wave equation, and is usually written in the form

d2v _  2 d2y
dt2 a dx2

replacing y/S/pL by the constant a.

The solution of this wave equation can be found by the “variables separable” method. Since 
y is a function of x and t, it can be represented as

y(x,t) = X(x)-T(t)

Then =  T —  
dx2 dx2’ dt2 =  x * —at2

and the wave equation becomes 

Separating the variables,

yd *T  _  d*X
x li°  ~ a T di ?

cPT/dt2 = a2 (PX/dx2
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As X and T are independent of each other, the above expression must equal a certain constant. 
Let this constant be -p-. This then leads to two ordinary differential equations,

and the solution is

^ r  + P2T = 0 and ~ ^  + ̂ X  = 0 dt1 dx1 a1

y(z, t) = ( A sin ̂  + B cos ) (C sin pt + D cos pt)

With both ends of the string Axed, the boundary conditions are
1/(0, t) =  0 (J)

y(L,t) = 0 (2)

From condition (1), •
0 = B(C sin pt + D cos pt) or B = 0

and from condition (2),
0 = (A sin pL/a)(C sin pt + D cos pt)

Because A cannot equal zero all the time, sin pL/a must equal zero. Therefore the frequency equation is
sin pL/a = 0

and the natural frequencies of the string are given by

Pi = xjo.IL where i = 1,2,3,...

It is clear that there are an infinite number of natural frequencies; this is in agreement with 
the fact that all continuous systems are composed of an infinite number of mass particles.

For this particular configuration of the vibrating string, i.e. with both ends fixed, the normal 
function X(x) is therefore given by

Xt(x) = sin ijrx/L

and y(x, t) = (A sin px/a)(C sin pt + D cos pt)

In general, the expression for the vibrating string is given by

iirx
V&’ Q ~ ,= 2  ^ s i n j  (Cj sinPjt + Dj cos p /)

in which the principle of superposition is used to represent the many natural modes of vibration 
of the string. Cf and are arbitrary constants to be evaluated by the initial conditions of the 
system.

L17. A uniform string of length L and high 
initial tension is statically displaced h 
units from the center and released as 
shown in Fig. 1-22. Find its subse­
quent displacements.

The general expression for the free vibra­
tion of a string fixed at both ends is

y{x, t) = 2  
t = 1,2.. .

Fig.1-22

sin “jf J sin p; t + Bj cos p( t)

The initial conditions are

y(x, 0) = 0, f 2hx/L, 0 — x — LI 2 
y(x, 0) = <

\2h(l-x/L), L/2 — x — L
which are equal to

V(x, 0) = i(*,o) = 2 
i =  1.2.

A|Pi sin
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Hence i4,- =  0, and
v  r* ivx f lit, 0 — x — L/2s m - i -  =  ■{

< = ».*•... ^  \ 2 / i ( l - x /L ) ,  L /2 — x — L

Multiplying both sides o f the above equation by sintVx/L and integrating between the limits 
x =  0 and x =  L, we obtain

X B‘ si" T  si"TT d* = ^ sin̂  dx + /1 2k ( ‘  ■ e)

^ i / 2  =  ^ [ j ^ L/2 x s i n ^ d x  +  J L ( L - x ) s i n ^ d x ]  

and thus =  ( - i ) ( i - n /2 j f L  where 1 =  1, 3, . . .

The natural frequencies are given by

_  iira _ jra _  3ra 5ira.
Pi L  or Pl ~  IT  ’ Pa ~  T ~  ’ Ps ~  ~L~ ’

Therefore the expression for  the displacement of the string is

y(x,t) =  2 ( l)(i—1)/2i = 1.3. .
'8 h itrx iira . sin cos ~j^t

where a — V S/pL is the speed o f wave propagation, S is the tension in the string, and pL is the 
density per unit length o f the string.

1.18. A flexible string of length 0.99 m and mass 0.001 kg is stretched to a tension S 
newtons. If the string vibrates in three segments at a frequency of 500 cyc/sec, find 
the unknown tension S.

If the string vibrates in 3 segments, the wavelength is \ =  2L/3 =  2(0.99)/3 =  0.66 m and the 
speed of transverse wave propagation a =  Xf =  0.66(500) =  330 m/sec.

Now a2 =  S/pL where pL is the mass o f the string per unit length. Hence

S =  a2pL =  (330)2(0.001/0.99) =  110 newtons

1.19. A uniform string of length L and fixed at both ends is released at zero initial velocity 
from the displaced position as shown in Fig. l-23(a) below. By means of the wave- 
travel method, sketch the shape of the string at time intervals of L/Sa for one half 
cycle of the motion of the string.

As shown in the following figures, solid lines represent the actual shape of the string, and 
dotted lines the traveling waves in opposite directions. A t any time under consideration, the shape 
of the string is the resultant configuration o f the traveling waves.

The shape o f the traveling wave is determined by the initial displacement o f the string. Here, 
as shown in Fig. 1-23(6), it is the shape o f a triangle of height h/2. The initial configuration of the 
string is made up o f two identical traveling waves on top o f each other but traveling in opposite 
directions.

At the end o f the first time interval L/80 (where a is the velocity o f the traveling waves), the 
traveling waves have moved a distance o f L /8, one to the right and the other to the left. The 
configuration of the string at this moment is the resultant o f the two traveling waves and is shown 
in Fig. l-23(c).
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(a)

(b) 

(e) 

(d)

(e)

(/)

(g) 

(A)

(i)

(i)

Fig.1-23

When the waves reach the fixed ends of the string as shown in Fig. 1-23(e), 
change sign. Then the waves just keep moving as shown in the rest o f the figures. i repeats 
goes on for the rest of the cycle. At the end of the cycle, i.e. when t =  2L/a, e ^ n jitU(je3 as 
itself. In the absence of damping, this procedure will continue indefinitely an e 
well as the shapes of the waves will remain the same.

i • p however* bcconics 
The traveling wave representation of the transverse vibration o f a stn g,

very involved if the initial velocity is not equal to zero.

1.20. Investigate the wave motion and energy transmission of the transverse vib 
of a compound string as shown in Fig. 1-24.

To account for the change of phase and 
mass density of the string, we use the complex 
exponential to represent the harmonic progres­
sive waves of the string: ■*i

Vi(x,t) = Ae'b>u~x,ai) +  Beu‘ u+z/a (1 ) * V\

V2(x,t) =

where o, =  y/S/(pL)u }JS/{pL)2; S is the 
tension in the string and pL is the mass per
unit length of the string. In the right hand Fig. 1*24
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side of equation (1), the first term refers to the incident wave traveling in the positive x direction 
with velocity a ( while the second term refers to the reflected wave traveling in the negative x 
direction with velocity a,, ^ ( i ,  t) represents the transmitted wave traveling in the positive x 
direction with velocity a2.

At the junction o f the string1, the displacement as well as the force given by the two expressions
y t and y-z should be the same, i.e.

(Vi)z = o =  (V2)i = o (J)
S(dyl/dx)I=0 =  S(dy2/dx)x=0 (4)

Substituting equations (J) and (2) into (J) and (4) respectively, we obtain
A  +  B =  C (5 )

(A fi)/d j =  C/02 (6)
Solving equations (5) and (6) simultaneously yields

B  -  a2 c  2ai
and -r =A a 1 +  a2 A Oj +  a2

Putting a1 =  vS/(pL)l and a2 =  y/S/(pL)2, the above expressions become

B  V W )l  — V(Pl)-2
A

C
A

v W h  +  VipJi
(7)

(8)
VW) 1 +  V ( pl ) 2

I f  (pL)2 is very large (for fixed end, (pL)2 =  w), equation (7) gives
B/A =  - 1

The reflected wave B  is equal to the incident wave A except for the negative sign. This means 
reflection with reversal.

I f  (p l ) i  =  (p l )2 ( f ° r uniform string), equation (8) gives
C/A =  1

The transmitted wave C is exactly the same as the incident wave A .
I f  (pL)2 >  ( p l )  1 (for non-uniform string), equation (8) gives

C <  A

The amplitude o f the transmitted wave C is smaller than the amplitude o f the incident wave A. 
I f  (pl) 2 is very small (for free end, (pL)2 =  0), equation (7) gives

B =  A

The reflected wave is exactly the same as the incident wave A.
The energy per unit length o f the string for  each o f the three different waves is given by

incident energy =  %(pl) iA 2u2
reflected energy =  ^(p£,)xB 2(j2

transmitted energy =  £(pL)2C2u2

From the principle o f conservation o f energy, the rate o f energy approaching the junction must 
equal the rate o f energy leaving the junction. Thus

l i p ^ A W a ,  =  l (p Lh B W ai +  $(PL)2C*u*a2 

or Z XA* =  Z ^  +  Z ^  (9)

where Z  =  (pi)a is called the mechanical impedance.

From equations (6) and (9), we obtain

reflected energy _  (%i ~  ^ ) 2 transmitted energy _  4ZjZ2 
incident energy (Z x +  Z2)2 ’ incident energy (Zt 4- Z2)2

In order to obtain maximum transmission o f energy, the two impedances must match each other. 
In other words, when Z x -  Z2 there is no reflected energy, and transmitted energy is equal to 
incident energy.
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LONGITUDINAL VIBRATION OF BARS
1.21. Derive the differential equation o f motion fo r  the longitudinal vibration o f  uniform 

bars and investigate its general solution.

:w l

dx
dx

F ig .1-25

Let u be the displacement o f any cross section dx  o f  the bar as shown in F ig . 1-25. Then the 
strain ex at any point x is

du
dx

For an elastic bar, the stress is ax =  Y tx, where Y  is the modulus o f  elasticity . Thus the tensile 
force at x is

S  =

0 * ̂   ̂
and the inertia force is pA dx —— where p is the density o f the bar and A  is the area o f  crossdt-
section o f the bar. Balancing the two forces, we have

e  j .  j  e  _l. a  f l 2 u  j  a 2 “  2 3 2 “  ( 1 )
S +  J i dX =  S +  l ,A 9 ^ dx or W  " W  '

where a — \Y/p  is the speed o f wave propagation.

For the solution o f this partial differential equation o f  motion fo r  the longitudinal vibration 
o f  bars, let us look fo r  a solution in the form  o f u(x, t) =  X (x ) T(t). Substituting th is expression 
into equation (1) yields

2 d*X/dx2 _  d2T/dt2 (2)

Since the left-hand side o f equation (2) is a function o f x  alone, and the right-hand side o f  equation
(2) a function o f  t alone, each side must be equal to a constant. L et this constant be —p 2. This 
leads to two ordinary differential equations

dPTldt 2 +  vzT =  0 and <PX/dx2 +  (p/a) *X  =  0 

the solutions o f which are

T(t) — A  "cos pt +  B  sin pt, X(x)  =  C  cos (p/a)x +  D  sin (p/a)x 

where A ,B ,C  and D are arbitrary constants.

A s X(x) is a function o f x  alone and determines the shape o f the normal mode o f  vibration 
under consideration, it is called a normal function. Thus the general solution is

u.(x,t) =  2  (Aj cos +  Bi sin ptf) ( cos — x +  Dj sin — x j  (^)i=  i,2, . . .  \ a a j
where A t and B i are arbitrary constants to be evaluated by the boundary conditions, C{ and D t are 
arbitrary constants to be evaluated by the initial conditions, and pt are the natural frequencies o f 
the system.

1.22. Determine the free longitudinal vibration of a uniform bar of length L  fixed at both 
ends.

For longitudinal vibration o f bars, the general solution is given by equation (3) o f  Problem 1.21.
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The displacements o f  this bar at its ends are equal to zero, i.e. the boundary conditions are 
«(0, t) =  u(L, t) =  0. Substituting these boundary conditions into the general solution, we have

“ (0, f) =  (A jC ospjt +  F jsinp jO C j =  0 or Cs =  0

u(L ,t) =  (A, cos p (t +  Bj sin P jt )^  sin (pjL/a) =  0

or sin(p,L /a) =  0 and p ; =  iVa/L, i =  1 ,2 ..........

The free vibration is
00 V

tt(*. 0  =  2  s*n - r^(A ( cos p4t +  B[ sin p:t)
1=1.2,... "

where .4' and B \  are arbitrary constants to be evaluated by the initial conditions and p{ are the 
natural frequencies o f  vibration o f the bar.

1.23. Determine the free longitudinal vibration of a uniform bar of length L free at both 
ends.

For free longitudinal vibration o f bars, the general solution is given by equation (S) o f  
Problem 1.21.

The forces at the ends o f  this bar during vibration are equal to zero, i.e. the boundary condi­
tions are du/dx =  0 at x =  0 and at x =  L. Substituting these boundary conditions into the 
general solution, we get

t) _  D iPi
dx a

(A ; cosp ^  +  B t sin p-t) =  0 or D { =  0

c h i ( L . t )  P i^  . P i L  .
— ------- = --------- s in ------ (Ai cos sin Pjt) =  0

d x  d  cl

or sin (p^/a) =  0, and p t =  i-a/L, i =  1 ,2 ..........

The free vibration is
30 •

u(x ,t)  =  2  c o s ^ ( A 'i  cosp^  +  B[  sin Pit)1=1,2__  L,
where A ' and B- are arbitrary constants to be evaluated by the initial conditions and pt are the 
natural frequencies.

1.24. Obtain an expression for the free longitudinal vibration of a uniform bar of length 
L, one end of which is fixed and the other end free.

For free longitudinal vibration o f bars, the general solution is given by equation (3) of 
Problem 1.21.

The tensile force at the free end o f this bar is equal to zero while the displacement at the fixed 
end o f the bar is also equal to zero, i.e. the boundary conditions are (u)z=0 =  0, (du/dx)X~ L =  0. 
Substituting these boundary conditions into the general solution, we obtain

«(0, t) =  Ci(A{ cos Pjt +  i?i sin p{t) =  0 or C4 =  0

3u(L, t) Pi^i Pi^1, ■ , D . . A—  =  ------ co s ------ (Ai cos Pit +  i?i sin p4t) =  0
dx a a

or cos (PjL/a) =  0 as D i cannot be equal to zero. Hence p( =  iva/2L where i =  1 ,3 ..........

The free vibration is
00 ♦

u(x, t) =  2  sin TTjr (A\ cos p(t +  B[ sin p4t)i=l,3,... ^
where A\ and B( are arbitrary constants to be evaluated by the initial conditions and Pi are the 
natural frequencies.
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1.25. A bar of length L is fixed at one end and has a concentrated mass 
M attached at the other end as shown in Fig. 1-26. Derive the 
frequency equation for the free longitudinal vibration of this bar.

For free longitudinal vibration o f bars, the general solution is given by 
equation (5) o f Problem 1.21.

There is no displacement at the fixed end o f this bar, and a dynamic force 
in the bar at the free end is equal to the inertia force o f the concentrated mass 
M, i.e. the boundary conditions are

T,

(u)I=0 =  0, AY{%u=, =  — M

□ £ ]

F ig .1-26

where A  is the cross-sectional area of the bar and Y  is the Young’s modulus o f elasticity. 
From the first o f these two boundary conditions,

u(0, t) =  Ci(i4j cos +  B{ sin p-t) =  0 or Ct =  0 
and from  the second boundary condition,

A Y p i  PiL  PiL
-------- co s ------  =  Mpi s in -----

a a a or
PiL PiL
----- ta n ------

a a
A PL

M =  Afbar/M

where a — \/Y/p and p is the density o f the bar.

When Afbar/Af -+ ®, i.e. when the mass M  is small compared to the mass o f the bar, the 
frequency equation becomes cos (p, L/a) =  0. The system becomes that o f a bar fixed at one end 
and free at the other end. (See Problem 1.24.)

When M  is large compared to the mass o f the bar, it can be shown that p x =  V AY/ML. This 
corresponds to the natural frequency o f a simple spring-mass system o f mass M  and spring 
constant AY/L.

VIBRATION OF MEMBRANES 
1.26. Derive the differential equation of motion for the transverse vibration of uniform 

membranes and investigate its general solution.

v

0
dx

Fig. 1-27

Assume an ideal two-dimensional membrane with a completely flexible surface of extremely 
small uniform thickness which offers no resistance to bending or to shear. The tension is assumed 
to remain constant in magnitude and uniform everywhere in all directions, and is not affected by 
the small deflections taking place perpendicular to the membrane. In its rest or equilibrium 
position, the membrane is assumed to be a plane surface, i.e. in the xz plane.

Consider the differential element dx dz of a membrane as shown in Fig. 1-27. The forces acting 
are those resulting from the uniform tension S per unit length of the edge of the element due to 
the deflection of the membrane from the equilibrium xz plane.

As in the case of the flexible string, the total restoring force is equal to the product of the 
mass times the acceleration, i.e. = my.
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The restoring force as shown in Fig. 1-27 is (- S  sin fi +  S  sin a) dz. For small displacements,

slopes are small, sin p  =  tan fi =  JJ and sin a =  tan «  =  | , and the restoring
force is L J 1 = x + dx

s * [ ( S + 3 * ) - £ ]  -

■52-17
Similarly, the restoring force along edges dx is S - ^ d x d z  and the differential equation o f motion 
is given by .

s ( j % + j $ ) dxdz = p-di i dxdz <*>
where pa is the mass per unit area o f the membrane. The two-dimensional wave equation is 
therefore

^y_ , ^y_ _  i  a2v . .
dx2 dz2 o2 dt2

where a =  y/S/pa is the speed o f  wave propagation.

The solution o f  this two-dimensional wave equation can be obtained by the "variables separable" 
method. Since y  is a function o f x, z and t, it can be represented as

y (x .z , t )  =  X (x )Z (z )T ( t )  (3)

T. & v -  d2y -  X T & Z  P y  _  Y 7 <p t
Then dx2 -  Z T  dx2 ’ ~d# -  X T ~d#' W  -  X Z dfi U)

Substituting (4) into (3) gives

*!CTS  + «2xr0  = <s>
• j • a2<FX , a*<PZ _  1 <PTDividing (5) by  XZT,  w

Because X , Z, T are independent o f one another, and because the right-hand side o f  equation
(6) contains only t, both sides o f  (6) must be equal to a certain constant. Let this constant be 
—p2. This then leads to the follow ing two differential equations:

(PT
- j - z  +  P2T =  0 with solution T(t) =  E  sin pt +  F  cos pt (7)
dti

a2 <PX , a2 d2Z  ,  1 d2X  , p2 i  & Z  /o ,
X d *  + ~Zd* -  - p °r X d *  + is -  ~Z w

Now each side o f  equation (8) involves only one variable, and so both sides must be equal to some 
constant. Let this constant be k2. This leads to the follow ing two ordinary differential equations 
in x  and z,

f £  + = ° ’ i f + r a  = 0 <*>
with solutions

X (x )  =  A  sin V (p 2/a2) — k2 x  +  B  cos v iipV o2) — P  *  (10)

Z(z) =  C  sin kz +  D  cos kz (11)

A  solution o f  the two-dim ensional wave equation is therefore given by

y(x , z, t) =  (A  sin v^ pV o2) — k2 x  +  B  cos V (p 2/a2) — k2 x)(C  sin kz +  D  cos kz)(E  sin p t  +  F  cos pt) 

The general solution is the sum o f  an arbitrary number o f  such solution, i.e.

y (x ,z ,  t) =  2  (A i sin V 'f p W )  -  k 2xi—t o » ‘i—1.2___

+  B t cos y/(p2/a2) — k 2. x)(C { sin k{z +  D j cos k{z)(E{ sin p{t +  F^ cos p(t) (12)

where A ^ B ^ C ^ D i  are arb itrary  constants to be evaluated by the boundary conditions, E i and F { 
are arb itrary  constants to be evaluated by  the initial conditions, and are the natural frequencies.
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1,27. A uniform rectangular membrane is rigidly fixed at all its edges as shown in Fig. 
1-28. Determine the general solution for the free transverse vibration of the 
membrane.

The two-dimensional wave equation for  the free transverse vibration o f a uniform membrane is

S fa fy  a fv ] _  d^y
Pa Idx2 dz* J dt2

with general solution given by

y(x, z, t) =  (A sin Vtf^/a2) — k2 x +  B  cos x)(C  sin kz +  D cos kz)(E  sin pt +  F  cos pt) 

where a =  y/S/pa is the speed o f wave propagation.

The four boundary conditions are

(1) y {0 ,z ,t )  =  0, (2) y(L lt z, t) =  0, (3) y(x, 0, t) =  0, (4) y{x, L 2, t) =  0 

i.e. there is no deflection at the edges.

From boundary condition (1) we obtain

y(0, z, t) =  B(C  sin kz +  D  cos kz)(E  sin pt +  F  cos pt) =  0 or B  =  0

From boundary condition (2),

y (L lt z ,t )  =  A  sin y/(p2/ a2) — k2 L }(C sin kz +  D  cos kz)(E  sin pt  +  F  cos pt) — 0

or D  =  0

or sin V (p2/a 2) — k2 L 1 =  0, i.e. V (pVa2) — k2 =  m^/L1 =  y, m =  0 ,1 ,2 , . . .  .

From  boundary condition (3),

y(x, 0 ,t )  =  A  sin yx(E  sin pt  +  F  cos pt)D  =  0 

From  boundary condition (4),

y(x, L 2, t) =  A  sin yx(C  sin kL2)(E  sin pt +  F  cos pt) =  0 or sin kL2 =  0

i.e. k =  rif/L2, n =  0 ,1 ,2 , . . .  . Thus p2 =  a2(mhr-IL\ +  fc2) or pmn =  (oa-/L 1L 2)V^'j » 2 +  L 2m 2, 
m — 1,2, . . . ,  n ~  1,2, . . . ,  and the general solution becomes

y(x, z , t )  =  A  sin yx(C  sin kz)(E  sin p t  +  F  cos pt)

Combine the constants into A C E  =  M  and A C F  =  N. Since there are m any possible solu­
tions, the most general solution will be the superposition o f  all possible solutions,

2  2  sin sin knz(Mmn sin p mnt +  N mn cos pmnt)
= 1,2.. . . n = 1.2,. . .

y(x. z, t) =

where f t f i4in(7Jl.Fnill> N mn A mCnF mn, and ym, kn and pmn are defined as above.

Fig. 1-29 below shows the modes o f  vibration o f  a rectangular membrane fixed at all its edges. 
Shaded and unshaded areas are in opposite phase.
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Fig. 1-29. Modes o f vibration o f a rectangular membrane fixed at all its edges.

1-28. A uniform circular membrane of radius do is rigidly fixed at its circumference as 
shown in Fig. 1-30. Determine the general solution for the free transverse vibration 
of the membrane.

The general two-dimensional wave equation in cartesian 
coordinates for  the free transverse vibration o f uniform 
membranes is

d2y  , d2y  
dx2 dz2 ~  dt2 (i)

where a =  y/S/pa is the speed o f wave propagation, S is the 
tension, and pa is the density per unit area o f the membrane. 
For circular boundary, equation (1) can be transformed into 
polar coordinates as

d2v  | 1 dj/ . 1 d2y _  _1_ d2y  
dr2 r  dr r2 do2 a2 dt2

by using the transformation equations

x — r  cos 6, z =  r  sin e

(2)

Fig. 1-30

Due to the symmetry o f circular membrane with respect to its geometric center, dy/do =  0 
and equation (2) becomes

d2y 
dr2

1 dy _  d2y 
t dr a2 dt2 (3)
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Since y is a function of r and (, the “ririibln  uptnble” method leads to the following form 
of solution

y (r ,t )  =  R{r)T(t )

U)

Since each side of (4) contains only one independent variable, both sides must equal the same 
constant. Let this constant be — p*. Then we have

+ p*r — 0 with solution T(t) =  C sin pt +  D cos pt (5)of*

and ^  +  psR =  0 where P2 =  p*/a*ar* r dr

or +  r ^  +  r2P2R =  0 (*)
a r *  a r

Using the transformation y =  rp, rewrite equation (6) as

v * ™  +  y %  +  ''2R =  0 (7)

which is known as the Bessel differential equation of zero order. The solution is given by

R(y) =  AJ0(r/3) +  BK0{rP) (*)

where A  and B are arbitrary constants, J0 is the Bessel function of the first kind of order zero, 
and K0 is the Bessel function of the second kind of order zero. Therefore the solution of (5) 
becomes

y{r, t) =  [AJ0(r@) +  BK0(rp)](C sin pt +  D cos pt) (9)

where J0(y) =  2  I'g-Mi fr/2)2*

K , M  =

/(* )  =  2  d / » )■ = i.* .,..

The boundary condition implies that the displacement at the center of the membrane must be 
finite, i.e. y(0, t) ¥• 0. Now £To(0) =  InO =  — «*>, so B must be zero. Then

1f(fi t) =  (E sin pt +  F  cos pt)J0(rp) (1°)

where the new constants E  =  AC  and F  =  AD.

The other boundary condition is y(<*o, t) =  0 or J0(dfJi)(E sin pt +  F  cos pt) =  0 from which 
Jfiid^fi) =  0, i.e. do/*i =  2.4, d^p2 ~  6-6. < * o ~  8.7, . . . ,  and since p 2 =  p2/a2, pt =  (o/\/do)
i =  1,2, . . .  .

The complete solution for the free transverse vibration of a circular membrane fixed at its 
edges is therefore given by

m
V(r, t) =  2  ■Vr7Ji)(^i Bin p4t +  F { cos ptt) V*)

i “  1#2# . ..

where pi are the natural frequencies and J0 is the Bessel function of the first kind of order zero. 
E{ and Fi are arbitrary constants to be evaluated by initial conditions.

Fig. 1-31 below shows the modes of vibration of a rigidly stretched uniform circular mem­
brane. Shaded and unshaded areas are in opposite phase.
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TO =  0 
n =  1 

Poi^o =  2.4

w  =  0 
n =  2 

002^0 =  5.5

m — 0 
n — 3 

/?03^0 =  8.7

77t — 1
n =  1 

Pit^o ~  3.8

to =  1 
n =  2

P\2^o =  7.0

to =  1 
n =  3

Piad-Q =  10.2

to =  2 
n =  1

£ 21̂ 0 =  5*1

to =  2 
71 =  2

022^0 =  8.4

TO =  2 
n =  3 

^23^0 =  11.6

Fig. 1-31. Modes o f vibration o f a rigidly stretched circular membrane.

1.29. The displacement amplitude of a driven uniform circular membrane of a microphone 
is given as y =  (Po/k2S)[Jo{kr)/Jo{kro) — 1]. Find the corresponding average dis­
placement 2/av of the surface of the membrane.

The average displacement may be defined as

1/av =  f y(r)dS' (1)
”-r o S f

where S' =  ttt\ is the area o f the surface o f the membrane. Then
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where amplitude of driven force, S = tension of membrane, r0 — radius of membrane,
and J„ ‘ Bessel function of the first kind of order zero.

Rewrite equation (?) as
2p„ r «  2p0 r r° ,

Now | -  zJ, (jr) or j (kr)J0(kr)kdr = (kr)J1(kr). Thus equation (J) becomes

2P0 r *  2P0 /*r# .

r y S J ^ r . )  I  "  J J S s J , ' *  «>*.V =

Performing the indicated integrations, we obtain

r-0k*SJ0(kr0) \_

r0 2Pn
[ > « > ] ;•

» „  = -  *•>** <s) 

From a table of Bessel functions, J2{kr0) = 2J, (&ro)/Ar0 — •̂ o(̂ cro)> then equation (5) can be 
written as

'lP0kr0Jl (hrl)) -  P0rik-J0{kr0) P0 r2Ji(kr0) .  “I P 0 -M ^ o)V̂ J\ (kro) “I _  P0 2̂
L fcr0 yo( ro)J “  WS J0T*k*SJ0(kr0) k2SJ0(kr0) \_ kr0 °v WJ WS J0(krQ)

1.30. A uniform circular membrane of radius r0 is tightly stretched along its circumference. 
A sinusoidal driving force F 0 sin at is acting uniformly over one side of the membrane. 
If the coefficient of the damping force present is c, determine the resulting vibration.

The general differential equation for the free transverse vibration o f a circular membrane in 
polar coordinates is given by

_  „■>(&? , 1
dt- ydr2 r dr J

where a =  \ S/pa and r =  radial distance from center of membrane.

With the presence of the damping force c(dy/dt) and the driving force F 0 sin ut, the equation 
of motion becomes Aiu c  / a».. 1 3.. \ .  n.. j*-,

(1)
d-y _  S (thy , 1 dy\ e &y , .
I f *  ~  —  I ~----TZ I ~  —  7 7  t  —  Sin a t
d f 2 P a  \ d r -  r d r )  p a  d t  pa

Using complex exponential notation, we have

_  idy\ _  £
Sfi p.\dT* r dr J P. dt T p„ W

Assume a steady state solution y = Ye*** and substitute the assumed solution into (2):

dr* r dr ~ ^ ) 1 "  “ *Vp. <*> 

■* £Y
wfcieh can be written as -  -  —  -  k~Y = ~Ft/S W  
where fr* = ij,.- — ie~ • S.

The complete solution of equation 1 -») is the sum of the complementary «nH particular aolutiooA- 
Tbe cottpiemeEtary solution is obtained by solving

(FT 1 dY
r dr ~  0 1,1

wrtk F ti =  AJ1 kr) -  BK^lkr)
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where A  and B  are arbitrary constants, J0 is the Bessel function o f  the first kind o f order zero, and 
A'0 is the Bessel function o f  the second kind o f  order zero. For a stretched circular membrane, 
B =  0. (See Problem 1.28.)

The particular solution is Y(r) =  —F 0/k2S. Thus the complete solution is
F(r) =  A J0(kr) -  F 0/k2S (7)

Now the deflection at the boundary is zero, i.e. Y  =  0 at r  =  r0; then from equation (7), 
Y(rJ  =  AJ0(kr0) — F 0/k-S =  0 or A  =  F 0/k2SJ0(kr0). Hence (7) becomes

F 0J0(kr) F 0
1(r)  =  k2SJ0(kr0) ~  & S eUJt (8)

and the steady state vibration o f the membrane is given by the imaginary part o f equation (8),

1.31. The diaphragm of a condenser microphone is made of a circular sheet of aluminum. 
If its radius is 0.01 m and its thickness is 0.00001 m, find the maximum allowable 
tension in nt/m to which this diaphragm may be stretched. What is the fundamental 
frequency when stretched to this maximum tension? Determine the displacement 
amplitude at the center of the diaphragm when it is acted upon by a sound wave of 
frequency 100 cyc/sec and pressure amplitude 2.0 nt/m2. What is the average dis­
placement amplitude?

The maximum allowable tension Sm3I is equal to the area times allowable stress, i.e. S ma* =  a A. 
I f  allowable stress a — 10s nt/m2, then S max =  10*(0.00001) =  1000 nt/m.

The fundamental frequency o f a uniform circular membrane is

/ ,  -  VS/pa =  7350 cyc/sec

where R  =  0.01 m is the radius, S =  Smax =  1000 nt/m is the tension,
Pa =  2700(10)“ 5 =  0.027 kg/m2 

is mass per unit area o f the membrane, and p -  2700 kg/m 3 is the density o f aluminum.
The displacement amplitude at the center o f the diaphragm is

y(0' l) S I  k2Ja(kR) J
where k =  «/a =  u/VS/pa =  100(2=-)/Vl000/0.027 =  3.26 or Jfc2 =  10.06, J0(0) =  1, J0(kR) =  
J«[(3.26)(0.01)] — J0 (0.0326) - 0.9997 are the Bessel functions o f  the first kind and order zero. 
Hence

-  0.9997 ~|
1000 (_10.06(0.9997)J

/ft 2 T 1 — U.SSWV I
v(o. t) =  |_io.eg/ft I =  6(10) m

The average displacement amplitude is given by
1 f * , „  J*(kr) -  J0(kR) a _  P0 J2(kR)-\

Vav J9(kR) k2S L̂o(*̂)J
where Jt (kR) =  J2(0.0326) =  0.00015 is the Bessel function o f the first kind o f order two and

S =  5m“  =  1000ntm ' ThUS =  2(0.00015) , _ 8
y"  10.06(1000) * *

V IB R A TIO N  O F C IR C U L A R  P L A T E S
L32. A thin uniform circular plate of radius R  and thickness to is rigidly clamped all 

around its circumference. Investigate the free transverse vibration of the plate.
The differential equation for the free transverse vibration o f a thin uniform circular plate is 

given by
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where p = density of the plate, p. = Poisson’s ratio, Y = Young’s modulus, and t0 =  thickness 
of the plate.

Assume a periodic motion in the following form
y =  Ye** (g)

where Y is a complex function of r alone. Then equation (1) reduces to

V4j> _  I W l - M f j y  or (Vj — k*)Y =  0 (3)
Yt*

where k* = 12w2p(l -  Since VJ -  k* = (V j + fc2)(V* -  fc2), the solution of (3) consists of
the sum of the solutions of Vj + ifc* = 0, given by Y = AJ0(kr), and the solution of V j -  fc2 =  0, 
given by Y = BJ0(ikr) = BI0(kr) where /„ is the Bessel hyperbolic function. Thus

?(r) = AJ0(kr) +  BI0(kr) (4)

For a plate rigidly clamped at the edges, the boundary conditions are Y(R) =  0 and dY(R)/dr =  0. 
Substituting these into equation (4) and its derivative, we have

AJ0(kR) + BI0(kR) =  0 (5)

-AkJ^kR) + Bkl^kR) = 0 («)
Divide equation (5) by (6) to obtain

J0(kR) /<>(*«)
Ji(kR) 11 (kR)

where kR = nr, n — 1,2........  Then
Yt\k* _  Yt20(nr/R)*

(7)

“  12p(l -  p2) 12p(l-M2) W
and the free transverse vibration of the plate is

y(r,t) = [AJ0(kr) + BI0(kr)]eiat

L33. The diaphragm of a telephone receiver is a circular steel plate of radius 0.015 m and 
uniform thickness 0.0001 m. If the diaphragm is rigidly clamped at its edges, find 
its fundamental frequency of transverse vibration.

From Problem 1.32, the fundamental frequency of a circular thin plate damped at its edges is
0.47k I Y

* = = 1100cyc/sec 
where =  0.0001 m is the thickness of the plate, R =  0.015 m is the radius of the plate, 
Y =  19.5(10)10nt/m2 is Young’s modulus of steel, p = 7700 kg/m3 is the density of steel, and 
p — 0.28 is Poisson's ratio.

Supplementary Problems
WAVES
1.34. Show that A cos at + A cos (ut + 120°) + A cos (at +  240°) =  0.

1.35. Given two harmonic motions xt =  lOcosut and x2 = cos (ue +  60°), find X  and 4 in 
X  cos (at +  <6) = X, + Xjj. A Tig. X  = 10.6, 4> = 39.5°

1J6. Given two harmonic motions = 20 sin 22t and *2 = 30 sin 23<, find the beat frequency and 
beat period. Ana. f b = 0.16 cyc/sec, Pb = 6.28 sec
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1.37. If Pi and P2 are the periods of two harmonic waves xt and x2 respectively, and mPt — vP2, find 
the period of x 1 +  x2• Ana. P  — mPl =  «P2

1.38. Given u(x, t) =  f(x  — et) +  g(x +  et) and u(0, t) =  u(L, t) =  0. If the waves are confined between 
i  =  0 and x — L, what is the period of the functions /  and g? Ana. P  =  2L/e

VIBRATIONS
1.39. A simply-supported beam of length L is acted upon by a mass Af0 at midspan. If the masB of the 

beam is negligible compared to Af0, find the natural frequency of vibration of the beam.
Ans. <jn =  \f48YI/M0L3 rad/sec

1.40. A homogeneous square plate of side L  and mass M 0 is suspended from the midpoint of one of the 
sides. Find its frequency of vibration. Ana. « n =  V 6^/5L  rad/sec

1.41. A I/-shape tube has a uniform bore of cross-sectional area A. If a column of liquid of length L 
and density p is set into motion, find the frequency of the resultant motion of the liquid column. 
Ans. un =  V 2g/Lp rad/sec

1.42. An electric circuit contains a capacitor C, an inductor L, and a switch in series. The capacitor 
has initially a charge q0 and the switch is open at time t <  0. If the switch is closed at t =  0, 
find the subsequent charge on the capacitor. Ans. q(t) — q0 cos y l/ L C  t

1.43. If a simple spring-mass system is subjected to an impulsive excitation F it find the response of 
the system. Ans. x(t) — (Fi/y/km) sin yfkim  t

VIBRATION OF STRINGS
1.44. Obtain an expression fo r  the potential energy o f  a uniform vibrating string o f length L, con-

1 CLsidering that the tension S is not constant. Ana. P E  =  « I S(dy/dx)2 dx
*

1.45. A  uniform string o f length L is fixed at both ends, and a damping force proportional to the velocity 
o f the string acts upon all points o f the string. Find the free vibration o f  the string.

TsrX

Ans. y (x ,t )  =  2  s in -jp -(e -ct/2 ',)(A i sin Pjt +  cos pj t) where Pi =  Vt2jr2o2/L 2 — c2/4p2i = 1.2__  ^

1.46. A taut uniform string o f  length L  is fixed at both ends and is acted upon by a uniform ly distributed 
sinusoidal excitation F 0 cos ut. Determine the steady state vibration o f the string.

Ans. y ( x , t ) =  (F0/pu2) (  cos— x  +  tan ~  sin - x  — l )  cos at
\ a  2a  a  J

1.47. Find the motion in terms o f traveling waves o f a uniform string o f length L  fixed at both ends. 
The string is displaced a distance h at the center and released without initial velocity.

An. „(,.() = + +

1.48. A  uniform string fixed at both ends is struck at the center so as to obtain an initial velocity which 
varies linearly from  zero at the ends to v 0 at the center. Find the resulting free vibration.

BvqL 1 . i t  . iirx . iiraAns. y(x, t) = A ^  • Q pill _ Sill .  9U1 r
av3 i = it?.. . .  1 2 L L

LONGITUDINAL VIBRATION OF BARS
1.49. Show that the differential equation of motion for the free longitudinal vibration of a bar of variable

. . . . .  , dhi . 1 dA du p dhi cross section A is given by -r-z +  -r —  —  =  £  —~x .axz A dx ox Y dt2

1.50. A uniform bar of length L  is moving in a horizontal plane with velocity v0. If the bar hits a solid 
wall with one end and stops, what will be the free longitudinal vibration of the bar?

8VqL ^  i . ivX . {ya
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1.51. A uniform bar o f length L ia fixed at one end and the free end is stretched uniformly to L0 and 
released at t — 0. Find the resulting free longitudinal vibration o f the bar.
a / 8(L0 — L) ® <\ri_ii/o 1 iirx iira .

A „ .  «<*,») =  | = 12  ( - « * '  t COS2 t (

1.52. What is the effect o f a constant longitudinal force on the natural frequency o f a uniform bar 
undergoing longitudinal vibration? Ans. No effect

1.53. A uniform bar o f length L is free at one end and is forced to follow  a sinusoidal movement 
A  sin ut at the other end. Find the steady state vibration o f the bar.

Ans. u(x ,t) = A (  c o s - x +  tan—  sin - x  ) sin ut 
\ a a a J

VIBRATION OF MEMBRANES
1.54. A rectangular membrane of sides L and 2L is clamped at its edges. W hat are the lowest degenerate 

modes of free transverse vibration of the membrane? Ans. (2,2) and (4,1)

1.55. Show that the fundamental frequency of free transverse vibration o f an equilateral triangle mem­
brane tightly stretched at all its edges is / j  =  4.77VS/Apa where A  is the area o f the membrane.

1.56. A circular membrane of radius 10 cm and density 1.0 kg/m2 is stretched to a uniform tension of 
10,000 nt/m. Compute the three lowest natural frequencies o f transverse vibration o f the membrane. 
Ans. / j  =  380, f 2 — 870, / 3 =  1460 cyc/sec

1.57. A uniform square membrane o f sides L is fixed at two adjacent edges. It has an initial displace­
ment y(x, z, 0) =  y0 sin (2:tx/L) sin (3jtz/L). Obtain an expression for  the free transverse vibration

, , , . . . . 2ttx . 3vz 13rrSof the membrane. Ans. y(x, z, t) =  y0 sin —=— sin -=— cos — = - 1
L  L  paL

1.58. A  uniform rectangular membrane o f sides L j and L2 is firmly fixed at all its edges. The membrane 
is under the action o f a constant force F 0 over its entire surface. I f  the force is suddenly removed, 
find the resulting free transverse vibration of the membrane.

«  ® 16F0 mrX n- z 
Ans. y (x ,z ,t)  = 2  2  ------ sin - y — sin - j— cos pmn t

m =  1, 3, . . .  n =  1, 3, .  . .  m n ir2p ^ n L ii L ,,

VIBRATION OF PLATES

1.59. The diaphragm of an electromagnetic sonar transducer is a circular steel plate o f radius 0.09 m 
and thickness 0.004 m. Find its fundamental frequency o f free transverse vibration.
Ans. fi  =  1230 cyc/sec

1.60. Determine the average displacement amplitude o f a uniform circular plate vibrating transversely 
in its fundamental mode. Ans. j/aT =  0.31y0

1.61. A uniform circular steel plate o f radius 12 inches and thickness 1.0 inch is clamped at the boundary. 
What is the lowest natural frequency? Ans. f : =  700 cyc/sec

1.62. A  uniform rectangular steel plate of lengths 8 X 4 ft  and thickness ^ inch is simply-supported 
at all the edges. Determine its lowest natural frequency. Ans. 25 cyc/sec



Chapter 2

Plane Acoustic W aves

NOMENCLATURE
A = area, m2
AL = acceleration level, db
B — bulk modulus, nt/m2
c = speed of wave propagation, m/sec
e = end correction factor, m
E = energy density, joules/m3
f = frequency, cyc/sec
I = acoustic intensity, watts/m2
IL = intensity level, db
k = wave number
L = length, m
V = acoustic pressure, nt/m2
P = period, sec
PWL = sound power level, db
r = specific acoustic resistance, rayls
s = condensation
SPL = sound pressure level, db
T = absolute temperature
u = instantaneous displacement, m
V = speed of observer, m/sec
V = volume, m3
VL = velocity level, db
w = speed of medium, m/sec
W = power, watts
X =  specific acoustic reactance, rayls
Y = Young’s modulus of elasticity, nt/m2
z =  specific acoustic impedance, rayls
0) = circular frequency, rad/sec
P = density, kg/m3
y =  ratio of the specific heat of air at constant pressure to that at constant volume

= Poisson’s ratio
A =  wavelength, m
a = coefficient of expansion of air

37
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INTRODUCTION
Sound waves are produced when air is disturbed, and travel through a three-dimensional 

space commonly as progressive longitudinal sinusoidal waves. Assuming no variation of 
pressure in the y or z direction, we can define plane acoustic waves as one-dimensional free 
progressive waves traveling in the x direction. The wavefronts are infinite planes per­
pendicular to the x axis, and they are parallel to one another at all time.

In fact, when a small body is oscillating in an extended elastic medium such as air, 
the sound waves produced will spread out in widening spheres instead of planes. The 
longitudinal wave motion of an infinite column of air enclosed in a smooth rigid tube of 
constant cross-sectional area closely approximates plane acoustic wave motion.

WAVE EQUATION
In the analysis of plane acoustic wave motion in a rigid tube, we make the following 

assumptions: (a) zero viscosity, (b) homogeneous and continuous fluid medium, (c) adia­
batic process, and (d) isotropic and perfectly elastic medium. Any disturbance of the 
fluid medium will result in the motion of the fluid along the longitudinal axis of the tube, 
causing small variations in pressure and density fluctuating about the equilibrium state. 
These phenomena are described by the one-dimensional wave equation

flHt 2&u 
dt2 ~ ° dx2

where c = y'B/p is the speed of wave propagation, B the bulk modulus, p the density, and 
u the instantaneous displacement.

Since this partial differential equation of motion for plane acoustic waves has exactly 
the same form as those for free longitudinal vibration of bars and free transverse vibration 
of strings, practically everything deduced for waves in strings and bars is valid for plane 
acoustic waves.

The general solution for the one-dimensional wave equation can be written in progressive 
waves form

u(x, t) -  f i ( x - c t )+ f2(x + ct)

which consists of two parts: the first part fi (x -  ct) represents a wave of arbitrary shape 
traveling in the positive x direction with velocity c, and the second part fi (x + ct) represents 
a wave also of arbitrary shape traveling in the negative x direction with velocity c. In 
complex exponential form, the general solution can be written as

u(x,t) = Aeiiat~kz} + Bei<ut+kx}

where k-^/c is the wave number, i = yf-l, and A and B are arbitrary constants (real 
or complex) to be evaluated by initial conditions. In sinusoidal sine and cosine series, the 
general solution is

u(x,t) = 2  (Aisin—x + Bi cos — x)(Ci sin pit + Di cospif) i = 1,2,.. . \ C C /
where Ai and Bt are arbitrary constants to be evaluated by boundary conditions, Ct and A 
are arbitrary constants to be evaluated by initial conditions, and Pi are the natural fre­
quencies of the system. (See Problems 2.1-2.6.)

WAVE ELEMENTS
Plane acoustic waves are characterized by three important elements: particle displace­

ment, acoustic pressure, and density change or condensation.
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Particle displacements from their equilibrium positions are amplitudes of motion of 
■mall constant volume elements of the fluid medium possessing average identical properties, 
and can be expressed as n(x t) — A eit'tt>~̂ M) •+■

or u(x, t) = A cos (mt -  kx) + B cos (•* + kx)

Acoustic pressure p is the total instantaneous pressure at a point minus the static pres­
sure. This is often referred to as excess pressure. The effective sound pressure Prm, at a 
point is the root mean square value of the instantaneous sound pressure over a complete 
cycle at that point. Thus

p = ~pc2j£  = ipCmiAe**-*'-  Be*****)

or P = -pCuA sin M  ~ kx) + pCmB sin (mt + kx)

Density change is the difference between the instantaneous density and the constant
equilibrium density of the medium at any point, and is defined by the condensation s at such
point as _

s = -— -  = = ikAei("*-kI) -  ikBeKtd+kMi
Po dx

When plane acoustic waves are traveling in the positive x direction, it is clear that 
particle displacement lags particle velocity, condensation and acoustic pressure by 90°. 
On the other hand, when plane acoustic waves are traveling in the negative x direction, 
acoustic pressure and condensation lag particle displacement by 90° while particle velocity 
leads it by 90°. (See Problems 2.7-2.9.)

SPEED OF SOUND
The speed of sound is the speed of propagation of sound waves through the given 

medium. The speed of sound in air is
c = y/yplp m/sec

where y is the ratio of the specific heat of air at constant pressure to that at constant vol­
ume, p is the pressure in newtons/m2, and p is the density in kg/m*. At room temperature 
and standard atmospheric pressure, the speed of sound in air is 343 m/sec and increases 
approximately 0.6 m/sec for each degree centigrade rise. The speed of sound in air is 
independent of changes in barometric pressure, frequency and wavelength but is directly 
proportional to absolute temperature, i.e.

c jc i — y/Ti/Ti

The speed of sound in solids having large cross-sectional areas is

c = V d i + S a - ^ )  m /M C

where Y is the Young's modulus of elasticity in nt/m3, p the density in kg/ma, and /* Poisson’s 
ratio. When the dimension of the cross section is small compared to the wavelength, the 
lateral effect considered in Poisson’s ratio can be neglected and the speed of sound is simply

e = y/Y/p m/sec
The speed of sound in fluids is

c = y/Btp m/sec
where B is the bulk modulus in nt/m1 and p is the density in kg/m*. (See Problems
2.10-2.13.)



INTRODUCTION
Sound waves are produced when air is disturbed, and travel through a three-dimensional 

space commonly as progressive longitudinal sinusoidal waves. Assuming no variation of 
pressure in the y or z direction, we can define plane acoustic waves as one-dimensional free 
progressive waves traveling in the x direction. The wavefronts are infinite planes per­
pendicular to the x axis, and they are parallel to one another at all time.

In fact, when a small body is oscillating in an extended elastic medium such as air, 
the sound waves produced will spread out in widening spheres instead of planes. The 
longitudinal wave motion of an infinite column of air enclosed in a smooth rigid tube of 
constant cross-sectional area closely approximates plane acoustic wave motion.

WAVE EQUATION
In the analysis of plane acoustic wave motion in a rigid tube, we make the following 

assumptions: (a) zero viscosity, (b) homogeneous and continuous fluid medium, (c) adia­
batic process, and (d) isotropic and perfectly elastic medium. Any disturbance of the 
fluid medium will result in the motion of the fluid along the longitudinal axis of the tube, 
causing small variations in pressure and density fluctuating about the equilibrium state. 
These phenomena are described by the one-dimensional wave equation

—  -  r* —
dt2 “  ^ dx2

where c = \B!p is the speed of wave propagation, B the bulk modulus, p the density, and 
u the instantaneous displacement.

Since this partial differential equation of motion for plane acoustic waves has exactly 
the same form as those for free longitudinal vibration of bars and free transverse vibration 
of strings, practically everything deduced for waves in strings and bars is valid for plane 
acoustic waves.

The general solution for the one-dimensional wave equation can be written in progressive 
waves form

u(x, t) = f i (x-ct)  + f2 {x + et)

which consists of two parts: the first part /i (x -  ct) represents a wave of arbitrary shape 
traveling in the positive x direction with velocity c, and the second part fi{x + ct) represents 
a wave also of arbitrary shape traveling in the negative x direction with velocity c. In 
complex exponential form, the general solution can be written as

u(x,t) = Ae"*-** + Beiiat+kx)

where k = a/c is the wave number, t = yf-\, and A and B are arbitrary constants (real 
or complex) to be evaluated by initial conditions. In sinusoidal sine and cosine series, the 
general solution is

u(x, t) = y  (Ai sin—x + Bi co3—x){Ci sin p£ + Di cos Pit)
1 = 1 . 2 . . . .  \  C c /

where Ai and £< are arbitrary constants to be evaluated by boundary conditions, C< and A  
are arbitrary constants to be evaluated by initial conditions, and pi are the natural fre­
quencies of the system. (See Problems 2.1-2.6.)

WAVE ELEMENTS
Plane acoustic waves are characterized by three important elements: particle displace­

ment, acoustic pressure, and density change or condensation.
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Particle displacements from their equilibrium positions are amplitudes of motion of 
small constant volume elements of the fluid medium possessing average identical properties,
and can be expressed as „

u(x,t) = A eiiut~kx) + Be'tut+M

or u(x, t) = A cos (wt — kx) + B cos (wt + kx)

Acoustic pressure p is the total instantaneous pressure at a point minus the static pres­
sure. This is often referred to as excess pressure. The effective sound pressure prms at a 
point is the root mean square value of the instantaneous sound pressure over a complete 
cycle at that point. Thus

V = - Pc2^  = iPcw(Aei(0,t~kx) -  Betu*t+kx')

or p = — pCu>A sin (wt — kx) + pCwB sin (wt + kx)

Density change is the difference between the instantaneous density and the constant 
equilibrium density of the medium at any point, and is defined by the condensation s at such 
point as _

s = -— -  = = ikAeHat~kx' -  ikBe“ “t+kx)
Po dx

When plane acoustic waves are traveling in the positive x direction, it is clear that 
particle displacement lags particle velocity, condensation and acoustic pressure by 90°. 
On the other hand, when plane acoustic waves are traveling in the negative x direction, 
acoustic pressure and condensation lag particle displacement by 90° while particle velocity 
leads it by 90°. (See Problems 2.7-2.9.)

SPEED OF SOUND
The speed of sound is the speed of propagation of sound waves through the given 

medium. The speed of sound in air is

c = VyP/p m/sec
where y is the ratio of the specific heat of air at constant pressure to that at constant vol­
ume, p is the pressure in newtons/m2, and p is the density in kg/m3. At room temperature 
and standard atmospheric pressure, the speed of sound in air is 343 m/sec and increases 
approximately 0.6 m/sec for each degree centigrade rise. The speed of sound in air is 
independent of changes in barometric pressure, frequency and Wavelength but is directly 
proportional to absolute temperature, i.e.

C1/C2 =  yjTi/Tz

The speed of sound in solids having large cross-sectional areas is

c -  J -  m/sec

where Y is the Young’s modulus of elasticity in nt/m2, p the density in kg/m3, and p. Poisson’s 
ratio. When the dimension of the cross section is small compared to the wavelength, the 
lateral effect considered in Poisson’s ratio can be neglected and the speed of sound is simply

c = yjY/p m/sec

The speed of sound in fluids is ___
c = yjB/p m/sec

where B is the bulk modulus in nt/m2 and p is the density in kg/m3. (See Problems
2.10-2.13.)
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ACOUSTIC INTENSITY
Acoustic intensity /  o f a sound wave is defined as the average power transmitted per 

unit area in the direction of wave propagation:

Prm» w a tts/TTla 
pC

where p™. is the effective (root mean square) pressure in nt/ma, p is the density in kg/m a, 
and c is the speed of sound in m/sec.

At room temperature and standard atmospheric pressure, p „nB =  0.00002 nt/m a, 
f> = 1.21 kg/m ’ , c  =  343 m/sec, and so acoustic intensity for  airborne sounds is approxi­
mately 10 watt/m*. (See Problems 2.14-2.18.)

SOUND ENERGY DENSITY
Sound energy density is energy per unit volume in a given medium. Sound waves carry 

energy which is partly potential due to displacement of the medium and partly kinetic 
arising from  the motion of the particles of the medium. If there are no losses, the sum 
o f  these two energies is constant. Energy losses are supplied from  the sound source.

The instantaneous sound energy density is

Eta* =  pi-1 + watt-sec/m3^  c

and the average sound energy density is
Em, — watt-sec/m*

where p is the instantaneous density in kg/m*, p« is the static pressure in nt/m x, x is 
particle velocity in m/sec, and e is the speed o f sound in m/sec. (See Problem s 2.19>2.20.)

SPECIFIC ACOUSTIC IMPEDANCE
Specific acoustic impedance z o f a medium is defined as the ratio (real or com plex) o f 

sound pressure to particle velocity:

z =  pfv kg/m*-sec or rayls

where p is sound pressure in nt/m*. and v is particle velocity in m/sec.

F or bartDcftue plane acoustic waves traveling in the positive z  direction,

z  _  t**»A  _  ^
— i

ax*J f  or  b a n u o x  plane aoMtstae waves traveling in the negative z  direction,
— f&mA ,

* = ~ ~  rayls

wbent * is ike dtmatizj m kg/m*, c is tine speed o f soond in m/sec, and pc is known as the 
cia-mcterMrfic m  remstmmze o f the medium in rayl*. A t standard atmospheric

f-sr the density o f air i* 1-21 kg/m*, the speed of sound is
34X see, ssrf H&e efaaraeSerjstx: jwpedaocae air w 1.Z1&43, or 415 rayls For distilled 
wafier at vtm****** *  pnamr* aad »  C, the deastty is kg/m* and the speed
rf »wa«i a  14M lotee 7t* ilsnetenitK  iwpedaaee is 1 .4 4 1 0 / rayls
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For standing waves, the specific acoustic impedance will vary from point to point in the 
x direction. In general, it is a complex ratio

z = r + ix rayls
where r is the specific acoustic resistance, x is the specific acoustic reactance and i = }/—!•

SOUND MEASUREMENTS
Because of the very wide range of sound power, intensity and pressure encountered in 

our acoustical environment, it is customary to use the logarithmic scale known as the 
decibel scale to describe these quantities, i.e. to relate the quantity logarithmically to some 
standard reference. Decibel (abbreviated db) is a dimensionless unit for expressing the 
ratio of two powers, which can be acoustical, mechanical, or electrical. The number of 
decibels is 10 times the logarithm to the base 10 of the power ratio. One bel is equal to 
10 decibels. Thus sound power level PWL is defined as

PWL = 10 log {W/Wo) db re W0 watts

where W is power In watts, W0 is the reference power also in watts, and re = refer to the 
reference power W0. For standard power reference W0 = 10"12 watt,

PWL = (10 log W + 120) db
The acoustical power radiated by a large rocket, for example, is approximately 107 watts or 
190 db. For a very soft whisper, the acoustical power radiated is 10-10 watt or 20 db.

Sound intensity level IL is similarly defined as

IL = 10 log (///o) db re Io watts/m2
For standard sound intensity reference Io =  10“ 12 watt/m2,

IL = (10 l o g / + 120) db

Sound pressure level SPL is thus defined as
SPL = 20 log (p/po) db re p0 nt/m2

For standard sound pressure reference p0 = 2(10)_5nt/m2 or 0.0002 microbar,
SPL = (20 log p + 94) db

In vibration measurements, the velocity level VL is similarly defined as

VL = 20 log (v/vo) db re v0 m/sec
where v0 =  10-8 m/sec is the standard velocity reference. The acceleration level AL is

AL = 20 log (a/a0) db re a0 m/sec2
where a0 = 10-5 m/sec2 is the standard acceleration reference. (See Problems 2.21-2.29.)

RESONANCE OF AIR COLUMNS
Acoustic resonance of air columns is tuned response where the receiver is excited to 

vibrate by sound waves having the same frequency as its natural frequency. Resonant 
response depends on the distance between sound source and the receiver, and the coupling 
medium between them. It is, in fact, an exchange of energy of vibration between the source 
and the receiver.



The Helmholtz resonator makes use of the principle of air column resonance to detect 
a particular frequency of vibration to which it is accurately tuned. It is simply a spherical 
container filled with air, and having a large opening at one end and a much smaller one at 
the opposite end. The ear will hear amplified sound of some particular frequency from the 
small hole when sound is directed through the larger hole.

Half wavelength resonance of air columns will be observed when the phase change on 
reflection is the same at both ends of the tube, i.e. either two nodes or two antinodes. The 
effective lengths of air column and its resonant frequencies are

L — tA/2, f  -  c/\ -  ic/2L, i =  1, 2, ..  . 

where A is the wavelength and c is the speed of sound.

Quarter wavelength resonance of air columns will be observed when there is no change 
in phase at one end of a stationary wave but 180° phase change at the other end. The 
effective lengths of air column and its resonant frequencies are

L = A(2i — l)/4 , f  = c(2i — 1)/4L, i = 1 , 2 , 3 , . . .

In general, an open end of a tube of air is an antinode, and a closed end a node. (See 
Problems 2.30-2.37.)

DOPPLER EFFECT
When a source of sound waves is moving with respect to the medium in which waves 

are propagated, or an observer is moving with respect to the medium, or both the source 
and the observer have relative motion with respect to each other and to the medium, the 
frequency detected by the observer will be different from the actual frequency of the sound 
waves emitted by the source. This apparent change in frequency is known as the Doppler 
effect.

The observed frequency of a sound depends essentially on the number of sound waves 
reaching the ear per second, and is given by

/ '  =  (c — v)f/(c — u) cyc/sec

where / '  is the observed frequency, c the speed of sound, v the speed of the observer relative 
to the medium, and u the speed of the source. When the source and observer are approach­
ing each other, the observed frequency is increased; while if they are receding from each 
other, the observed frequency is lowered. (See Problems 2.38-2.41.)
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Solved Problems
W A V E  E Q U A T IO N  

2.1. Derive the differential equation of motion for the free longitudinal elastic vibration 
of air columns and discuss its general solution.

An air column may be defined as a sample of air contained by a cylindrical tube of length L 
and of uniform cross-sectional area A. The tube is closed at both ends. Then the mass of the air 
column is ALp, where p is the density of air. Assume the temperature is constant throughout the 
tube, and also negligible air viscosity effects. In short, we have an ideal gas.

While the air column is vibrating, the density of the air in the neighborhood of any section 
changes with time. Also, at any instant, the density of the air varies from point to point along 
the column. Let u be the instantaneous displacement o f any cross section dx of the air column 
as shown in Fig. 2-1. When the column of air is vibrating, the initial and instantaneous section dx 
and (dx + du) will always contain the same mass o f air, Ap dx. Therefore we can write

Ap dx =  A(p +  dp)(dx +  du) (1)

where (p + dp) is the instantaneous density o f air, and (dx +  du) is the instantaneous length o f the 
section of air dx in question.

Expanding equation (1) and neglecting the higher order term dpdu, we obtain

dp =  —p du/dx (2)

Now dp — B dp/p is the change in pressure due to change o f volume and B  is the bulk modulus. 
We can write equation (2) as

dp =  —B du/dx (3)

While the air is vibrating, pressure changes indicated by (J) will exert forces on the section dx. 
Balancing the inertia force and the pressure forces on the section dx, we obtain

r,. . dPu B cPu ...Simplifying, _  =  M)

Since u is a function o f both x  and t, we may use partial differentials to rewrite equation (4) as

where c2 =  B/p.

d2u 2 d2u
iw  = {S)

Equation (5) is therefore the differential equation o f motion for the free longitudinal vibration 
o f an air column inside a closed cylindrical tube and is commonly known as the one-dimensional 
wave equation. It has exactly the same form as the differential equation o f motion for the free 
transverse vibration o f strings and free longitudinal vibration o f bars. (See Problems 1.16 and 1.21.) 
Hence all the theory discussed and problems solved in Chapter 1 for the free transverse vibration 
o f strings and free longitudinal vibration o f bars apply equally well for the vibration o f air columns.
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Z2. Prove that the following expressions are correct solutions for the one-dimensional 
wave equation:
(а) m(j, t) = Ae“ ' sin kx + BeM cos kx

(б) = (CV** + D e-^ e'* '

(а) The one-dimensional wave equation is given by
Pu _  
dt*

Now ^  = k(A cos kx — B sin kx)»M,OX

~  = iu(i4 sin kx + B cos kx)etMl, dt
Equating (2) and (3) gives fc* = u*. But 

this expression for the wave number is used, the required answer follows.

(б) If u(x, t) = {C#‘k* + D«_tt*)*,"rf we proceed as in part (a):

0X **

= iu(Ceu“  + D e-^ e**1, ^  = ~u2(CelkI + De~,lcl)e,ut

and the wave equation becomes j*

-u*(C«u“  + D « -u“ )e("‘ = —e2k2(Ceikz + De~ila)e,ut 

which again yields k = u/e as in part (a). Therefore we conclude this is also a correct solution.
Since the wave equation for plane acoustic waves is linear, i.e. u and its coefficients never 

occur in any form other than that of the first degree, the principle of superposition can be 
applied to obtain solutions in series form. For example, if f t and ft are any two possible and 
correct solutions for the wave equation, a,/, + a j2 is also a possible and correct solution where 
o, and Oj are two arbitrary constants. In short, the most general solution is in series form 
which is the sum of an arbitrary number of all possible solutions.

i
c'ax»

= —k2(A sin kx + B cos kx)e‘“ ' (I)
dx2

^  = —u2(A sin kx + B cos kx)e,at (J)at*
k = u/e is defined aa the wave number. When

(I>

23. If u(x, 0) = Uo(x), u(x,0) = 0 are the initial conditions, find the traveling-wave 
solution for the one-dimensional wave equation.

The traveling-wave solution for the one-dimensional wave equation can be written as

«(*. 0 = /i(*  -  et) + /*(* + et) 
where /, and f t are arbitrary functions.

From the given initial conditions,

u(x,0) = / j ( x ) + / s(x) = U0(x) (j)

*(*■ 0) = -« /!(* )  + c/i (x) = 0 (J)

and from (*), /|(x) = /'(x ) (J)

Integration of (J) gives /,(* ) = /,(*) + c  ^  

Substituting (4) into (1), we obtain

2/i(*) + C = l /0(*) or /j(x) = |[l/0( x ) - q  (a)

From W- fi (*) = i(U«(x) + q
Substituting (5) and («) into the traveling-wave solution,

.<•.<> = « » .< . - « >  + q  + + <#_ q  = « o . ( . - « )  + t,lb  + -))
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2.4. Show that solutions to the one-dimensional wave equation can assume harmonic, 
complex exponential, hyperbolic and exponential forms.

Plane acoustic wave motion is governed by the one-dimensional wave equation

$?« = C2 in
dt2 3x2

Let us look for a solution in the general form of u(x, t) = X(x) T(t), where X  and T are 
functions of x and t respectively. Substituting this expression for u into (J), we obtain

1 d2X
X dx2 c2T dt2 ' ’

Since the right-hand side of (2) is a function of t, and the left-hand side is a function of x alone, 
each side must be equal to the same constant. Let this constant be —p2. This leads to the following 
ordinary differential equations

g  + p2X = 0 and f £ + c V r  = 0

the solutions of which are

X(x) = A cos px + B sin px, T(t.) = C cos cpt + D sin cpt

and so m(x, t) — (A cos px + B sin px)(C cos cpt + D sin cpt) (5)

or X(x) =  Ac' p* + B e -* 1, T(t) = Ceic + D e-w *

and m(x, t) =  (Ae*1 + B e -w ^ C e '^  + D e-''* )  U)

where A ,B ,C ,D  are arbitrary constants.

If we call the constant for equation (2) p2, we obtain
drX , v  .  , d*T 2 n
d x * ~ p'X  =  0 and -  c2p2T =  0

the solutions of which are

X(x) = A cosh px + B sinh px, T(t) =  C cosh cpt +  D sinh cpt

and so u(x, t) =  (A cosh px +  B sinh px)(C cosh cpt +  D sinh cpt) (5)

or X(x) =  A epz + B e-*1, T(t) =  C e^  + De~c

and u(x, f) = (Aepx + Be-r^iCc'f* + D e -'* )  («)

Equations (3) to (6) represent the four different forms of solution for the one-dimensional wave 
equation. These forms of solution — the harmonic, the complex exponential, the hyperbolic and the 
exponential — are all interchangeable and will give rise to standing waves, formed by the super­
position of two sets of waves equal in wavelength and amplitude but moving in opposite directions. 
(See Problem 2.3 for the progressive waves forms of solution for the one-dimensional wave equation.)

2J>. Show that the function u = /(<«£ + kx) represents a progressive wave of fixed profile 
f(kx) moving along the negative x axis with constant velocity c = w/k.

Since u is a linear, single-valued function of x 
and t, we may write

u =  /(ut +  kx) =  kf(ut/k +  x) =  kf(x + ct) 

where c = «/&.

Plotting the function u against x, the wave at 
time t =  0 is u =  fc/(x) or f(kx). As the wave is 
propagated without change of shape, the wave shape 
at a later time t will be identical to that at t =  0 
except that the wave profile has moved a distance ct
in the negative x direction. Fig. 2-2

ct

\ u

X

O' 0
X

X
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Now O' li the new origin, and x  ~  X  — ct as shown In Fig. 2-2. The equation of the wave 
profile referred to this new origin O' li

u =  kf(X ) =  kf(x  + ct)

Similarly, It can be shown that u = /(at -  kx) or u = k/(x -  ct) represents a wave of Axed 
profile /(kx) moving in the positive * direction with constant velocity o =  u/k. If the wave profile 
is harmonic, we have free harmonic progressive waves, e.g. A  sin (wt +  At*), A co »k (x  — ct), A e ,(u,~kx}. 
A harmonic diverging spherical wave is therefore represented by (A/r) cos (ut — kx) or (A/r)ei<ai k,) 
where its amplitude decreases with distance of propagation.

2.6. Use D’Alembert's method of integration to obtain the solution for the one-dimensional 
wave equation.

Let us introduce two new independent variables r and i  such that

r  =  x  — ct, a =  x 4- ct

_  dr . dr da , da
Then dx ~  ' at ~  e ’ dx ’ dt ~  c

Using the chain rule:
du
dx

_  du dr 
~  dr dx + du dt _  du du 

da dx dr da
d*U
dx*

_  d*u dr 
~  dr* dx + 9*u da d*u da d*u dr 

dr da dx da* dx dr da dx
d*u
dr* +  2 ? * “  dr da + d*u

da*

du
dt = du dr du da _  

dr dt da dt ~
du 

C dr
. du

+  e T  da
3*m
dt*

= d*w dr d*u da 
* dr* dt C dr da dt +  c d*u dr 

dr da dt
d*u da 

e da* dt

■  f

(1)

= _  2 * * - ^ -  +  c*—  (g)9f» dr da da* {X)

Substituting (J) and (S) into the wave equation ^  =  c2 yields

B .  -  •
Integrating (S) first with respect to r  gives

du/da = f'2{a) U)

/*(») is an arbitrary function of a. Integration of (4) with respect to  a gives

f 2 (a)ds +  / ,  (r) =  / ,  (r) +  f 2(a) (5)

■ k u * f i ( r) «a aa arbitrary function at r. Thus the general solution is

*(*, t) =  / , ( *  — «<) +  / 2(* +  et) 
where / ,  «sd /*  are arbitrary functions.

W ATS ELEMENTS
2J7. For srauaoida] plane acoustic waves, show that the effective (root mean square) 

value of acoustic pressure Pm, = Find the intensity /  of a plane acoustic 
wave having a peak acoustic pressure of 2 nt/m* at standard atmospheric pressure 
aad temperature.
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Now the period P = 2jt/<j, then
Pima V  ̂  Ppeak P p ea k ^ V ^

and /  = P,«.ak/2pc = 22/f2 (l.21)343] =  0.0024 watt/m2, where p =  1.21 kg/m3 is the density of air 
and e = 343 m/sec is the speed o f sound in air.

Here we have ideal constant wave front propagation, i.e. intensity remains constant for any 
distance from the source because o f plane acoustic waves. This is not true for spherical acoustic 
wave propagation.

2.8. For harmonic plane acoustic wave propagation in the positive x direction, show that 
particle velocity leads particle displacement by 90°. What is the phase relationship 
between acoustic pressure and particle displacement when the waves are traveling 
in the negative .r direction?

For harmonic plane acoustic wave propagation in the positive x direction, particle displace­
ment is expressed as

it(x,t) = A eiiut~kz} or u(x,t) = A cos (ut — kx)

Particle velocity du/dt = iuAeilwt~kxJ = tuu

or du/dt = —<ji4 sin (wt — kx) = <jj4 cos (ut — kx + 90°)

Thus the particle velocity du/dt leads the particle displacement u by 90°.

For harmonic acoustic wave propagation in the negative x direction,

u(x,t) = Aei(at + kx)

Now acoustic pressure p = -pc-(du/dx) = —ipcuAe'lut + kzi = —ipcuu. Therefore the acoustic pres­
sure p lags the particle displacem ent u by 90°.

2.9. Derive an expression for acoustic pressure p  in a free progressive plane acoustic wave 
from measurement of particle velocity du/dt.

In the derivation of the wave equation for plane acoustic waves, the force acting is shown 
equal to the product of mass and acceleration, i.e.

- dp/dx = p(S2u/dt2)

For steady state sinusoidal progressive wave motion, we can write particle displacement, 
velocity, and acceleration respectively as

it = Aeho,~kx\ du/dt = iuAeiiut~kx), dlu/dt* = -« tA e i(“ t" 'ci) = iw(du/dt)

Substitute the above expression for the acceleration into the force equation and obtain 
—dp/dx = p(iv)(dn/dt) or Ap = —iuAxp(du/dt) nt/m2

where i = “  is the frequency in rad/sec, p is the density in kg/m3, Ax is the particle displace­
ment in m, and du/dt is the particle velocity in m/sec.

SPEED OF SOUND
2.10. Calculate the speed of sound in air at 20°C and standard atmospheric pressure. 

e = Vyp/p = 343 m/sec

where y = 1.4 is the ratio of the specific heat of air at constant pressure to that at constant 
volume, p = 1.01(10)5 nt/m2 is the pressure, and p =  1.21 kg/m3 is the density of air.
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2.11. The bulk modulus of water is B = 2.1(10)9 nt/m*. Find the speed of sound in water.
c = \/B/p =  \/2.1(10)9/998 =  1450 m/sec 

when p = 998 kg/m3 is the density of water.

2.12. Young’s modulus of copper is 12.2(10)10 nt/m*, and the density of copper is 8900 kg/m3. 
Calculate the speed of sound in copper.

e ~ y/Wp = Vl2.2(10)‘°/8900 = 3700 m/sec

2.11 Prove that the speed of sound in air is proportional to the square root of the absolute 
temperature.

The speed of sound in air at 0°C is given by

c0 =  Vrp/po

where y is the ratio of the specific heat of air at constant pressure to that at constant volume, p 
is the effective pressure, and po is the density at 0°C. Similarly, the speed o f sound in air at 
t°C is _____

et = Vypfpt

where p, is the density of air at t°C. But p0 =  pt(l +  a*) =  p ,(rt/ r o), where a is the coefficient of 
expansion of air, r 0 and Tt are absolute temperatures. Thus

ct =  JVTj) =  =  V ^ r t/ Tq or ct/c 0 =  y/Tt/Ta

INTENSITY AND ENERGY DENSITY 
214 Derive a general expression for the intensity of harmonic progressive plane acoustic 

waves.
Acoustic intensity is the average rate of flow of sound energy through unit area, or the average 

of the instantaneous power flow through unit area. Instantaneous power per unit area is the 
product of instantaneous pressure p and instantaneous particle velocity v, and the average power 
per unit area or intensity is therefore given by

1 Cp 1 r FI — p j  pvdt =  — J [—pcuA sin (uf — fcr)] [—aA sin (at — kx)] dt

where P  is the period, p is the density, e is the speed of sound, u =  A  cos (at — kx) is the harmonic 
progressive wave, r =  Sujit =  -o A  sin («i* -  lex), and p =  -pc^du/dx) =  -pc^A  sin (at -  kx). 
Thus

=  — p — J  (cos1 kx sin2 at -r sin2 kx cos* ut — ^ sin 2at sin 2kx) dt

=  =  JpftAA*

Sinot ?  =  -o ta A s n  ^ t - k x )  and pm  =  -pCaA, PrmM =  Pmax/ &  the general expression 
far aeoasQc ictensty can be writtai as

1 = pL J Z *  = pL J pc
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2.15. Compare the intensities of sound in air and in water for (a) the same acoustic pres­
sure, and (b) the same frequency and displacement amplitude.
(a) At standard atmospheric pressure and temperature, the density o f air is p =  1.21 kg/m9 and 

the speed o f sound in air is c =  343 m/sec. The characteristic impedance o f air is pe =  1.21(343) =  
415 rayls. Similarly, the characteristic impedance o f distilled water is pe =  998(1480) =  
1.48(10)a rayls.

Intensity I — P?ms/pc and so the ratio is
i iOMnm

=  3560
Avater Prmsf(f^) water 415

This indicates that for the same acoustic pressure, the acoustic intensity in air is 3560 times 
that in water.

^water _  $(pCu2A 2)water (pC)water _  1.48(10)® _  fin 
( } /air “  (̂pCw2A 2)alr "  (pc)alr "  415

For the same frequency and displacement amplitude, the acoustic intensity in water is 3560 
times that in air.

2.16. A plane acoustic wave in air has an intensity of 10 watts/m2. Calculate the force on 
a wall of area 10  m2 due to the impact of the' wave at right angles to the surface of 
the wall.

Acoustic intensity is defined as power per unit area, and power is the product o f force and 
velocity. Acoustic intensity can be expressed as

I =  pe watts/m2
where p is the acoustic pressure in nt/m2, and c is the velocity o f sound wave in air. Thus

p =  He =  10/343 =  0.0292 nt/m2 
where e =  343 m/sec for  air at room temperature and pressure. The force on the wall is therefore

F  -  pA =  (0.0292)(10) =  0.292 nt

2.17. Compute the intensity and acoustic pressure of a plane acoustic wave having an 
intensity level of 10 0  db re 1 0 ~ 12 watt/m2.

From the definition o f sound intensity level, we have

IL =  10 lo g /  +  120 db re 10“ 12 watt/m2 or 100 =  10 lo g /  +  120 

from which log /  =  —2 and I  — 0.01 watt/m2.

Acoustic pressure p =  VTpc =  \/0-01(l-21)343 =  2.04 nt/m2 

where p =  1.21 kg/m3 is the density o f air, and c =  343 m/sec is the speed of sound in air.

If the sound pressure level is assumed equal to the intensity level (see Problem 2.27), then 

SPL =  20 log p +  94 db re 2(10) ~5 nt/m2 or 100 =  20 1ogp +  94 

from which log p =  0.3 and p =  2.00 nt/m2.

2.18. What is the acoustic intensity in water produced by a free progressive plane acoustic 
wave having a sound pressure level of 10 0  db re 1 microbar? Find also the ratio of 
sound pressures produced if an identical sound wave of equal intensity is propagated 
through air and water.

The sound pressure level SPL =  20 log (p/p0) =  20 log (p/0.1) =  100 db re 1 microbar =
0.1 nt/m2. The effective pressure o f the given wave is

Prms =  ° -l  antilog 5 =  104 nt/m2



Since acoustic intensity I = p2ms/pC where p = 998 kg/m3 iB the #
e = 1480 m/sec is the speed of sound in water, then y °* water,

I = (10 )̂2/998(1480) = 77.6 watts/m2
For sound waves of equal intensities,

^water _ (Prtnjp )̂water _ (Prm s)water^ ,4 8 0 ,0 0 0

âir (Prins/Pc)air (Prms)alr/415
where pc is the characteristic impedance. Thus

Pwater/MSO.OOO =  p2ir/4 1 5  Or Pwater/Palr =  60

Sound pressure in water is therefore 60 times greater than sound pressure in air for waves of equal 
intensities.

Find the sound energy density in air and in water of a free progressive plane acoustic 
wave having an intensity level of 80 db re 10~12 watt/m2.

Wave in air:
Intensity level IL = 10 log (///„) where /„ = 10“ 12 watt/m2 is the reference intensity. Thus 

80 = 10 log /  + 120 or /  = 10-4 watt/m2. The sound energy density is
He = 10-V343 = 2.9(10) joules/m3

where c = 343 m/sec is the speed of sound in air.
Wave in water:
The sound intensity is the same but the speed of sound is different. The sound energy density

is therefore „ . . .
He = 10-V1480 = 6.7(10)-® joules/m3

where c = 1480 m/sec is the speed of sound in water.

Derive an expression for the sound energy density of a harmonic plane acoustic wave.
The sound energy density associated with a medium at any instant is the sum of the kinetic 

and potential energies per unit volume. The kinetic energy is \pVx2, where p is the average density,
V the volume of the medium, x the average particle velocity over the volume. The potential 
energy is determined as follows:

The potential energy is equal to the work done by the sound pressure and change in volume of

the medium, i.e. W = -  J ' p' dV' where p' is the instantaneous pressure and V' the instantaneous

volume. But dV' = —V dp'IB where B = pc2 is the bulk modulus of the medium. Let p0 be the 
static sound pressure; then

r p'W -  V/B I P' dp' = V/2B[(p')2 — p2] or W = (V/2B)(2p0p +  p2)

where p = p' ~Po is the excessive pressure.
For harmonic plane acoustic progressive waves, p = pci; hence the total sound energy is the 

sum of kinetic and potential energies,
E = \pVi2 + (V/2B)(2p0p + p2) = V(p*2 + p0i/c)

Then the instantaneous sound energy density is
Eins = E/V = Px2 + p0x/c watt-sec/m3

and the average sound energy density is therefore given by

Eav = 1 /P f  (pi2 + p0x/c) dt
o

averaging over a complete cycle of period P. If x(t) = A cos (at — kx), then x = — uA sin (at — kx), 
and the above expression will yield

Eav = \px2 or p̂u2i42 watt-sec/m3

PLANE ACOUSTIC WAVES
[CHAP. 2
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SOUND MEASUREMENTS
7 91 The power output from a loudspeaker is raised from 5 to 50 watts. What is the 

change in sound power level?
Sound power level is PWL = 10 \og(W/W0) db re W'q watts, where W0 is the reference power 

in watts. Thus
(PWL), = 10 log(5/IV0) db, (PWL), = 10 log (5 0 /^ ) db

and APWL = (PWL)2 -  (PWL), = 10 log (50/W0) -  10 log (5/fV0)
50/1V0

= 10 log-,.- ” = 10 log 10 = 10 db 0/ rr o
Conversely, if the power output is lowered from 50 to 5 watts, the change in power level 

would be —10 db.

232.. Show that the ratio of the acoustic powers of two sounds in decibels is equal to the 
difference of their power levels.

Let and W2 be the acoustic powers of two sounds. The ratio of the powers is W\/W2, and 
in decibels this ratio becomes 10 log(Wrl /W 2) db.

Now the sound power levels are
(PWL), = lO logfH V W V db, (PWL)2 = 10 log (W JW 0) db

where W0 is the reference power.
The difference in sound power level is given by

APWL = (PWL), -  (PWL)2 = 10 log(W VW 0) -  10 log(WVW'o)
w  /w

=  10 log = 10 1og(W VW 2)db

2.23. Determine the acoustic intensity level at a distance of 10 m from a source which 
radiates 1 watt of acoustic power. Use reference intensities of (a) 100, (b) 1 , 
(c) 1 0 -12 and (d) 1 0 “ 13 watts/m2.

The acoustic intensity level is defined as IL = 10 log (I/I0) db re / 0 watts/m2, where / 0 is the 
reference intensity.

First calculate the sound intensity at 10 m from the source:
Power radiated W = (intensity)(area) = 4irr-I

(Here we assume spherical wave propagation.) Then I = W/A = 1/4(3.14)100 = 0.00079 watt/m2.

(a) IL = 10 log (0.00079/100) = 10 log 0.00079 — 10 log 100 = —51 db re 100 watts/m2

(b) IL =  10 log (0.00079/1.0) =  10(—3.1) = -31  db re 1 watt/m2
(c) IL =  10 log (0.00079/10-»2) =  89 db re 10“ '2 watt/m2

(d) IL =  10 log (0.00079/10-«) =  -31  + 130 = 99 db re 1 0 watt/m2

In general, the acoustic intensity level of a sound source at a given distance is given in the 
number of decibels, omitting the reference intensity which is commonly accepted as 10"12 watt/m2.

2.24. An air-conditioning unit operates with a sound intensity level of 73 db. If it is 
operated in a room with an ambient sound intensity level of 68 db, what will be the 
resultant intensity level?

(IL), = 10 log (/,//(,) =  73 db or / ,  = / 0 antilog 7.3 = 4.77(10)7/ 0 watts/m2

(IL)2 = 10 log (/j/Zfl) =  68 db or I2 — / 0 antilog 6.8 = 0.9(10)7/ o watts/m2

The total sound intensity I — / ,  +  I2 =  5.67(10)7/ o watts/m2 and the resultant intensity level is 
IL = 10 log (///„) =  10 log5.67(10)7 = 73.69 db



Calculate the sound pressure level for a sound wave having an effective pressure of 
3.5 nt-'m1. Use reference pressures of (a) 10, (6) 1, (c) 10-4 and (d) 2(10) 4 
miorobars.

The sound pressure level SPL -  20 log(p/p0) db re p0 microbars, where 1 m icrobar =  0.1 nt/m2. 
iai SPL - 20 log 35,10; = 10.8 db re 10 microbars 
l&i SPL -  20 log35 = 30.8 db re 1 microbar 
ici SPL -  20 log;35/10~4) = 110.8 db re 10-< microbar 

irf) SPL = 20 log 35/0.0002) = 104.8 db re 2(10) microbar

In general, reference pressure of 1 microbar is commonly used for underwater sound. For 
audible sound, reference pressure of 0.0002 microbar is being used.

126. If sound pressure is doubled, find the increase in sound pressure level.
Let p be the initial sound pressure. Then (SPL), =  20 log (p/p0) db and sim ilarly (SPL)2 = 

20 log(2p/p0) db. Thus
2p/pn

.iSPL = (SPL), — (SPL). = 20 log — = 20 lo g 2 =  6 db
P/Po

127. For plane acoustic waves, express the intensity level in terms of the sound pressure 
level.

The intensity level is defined as IL = 10 log ( / / /0) db where I  is the intensity and I 0 is the 
reference intensity. Now I = p2/pc and / 0 = p2/(pc)0 where p =  prms =  effective pressure. 
Thus

IL = 10 log / -  10 lo g /0 = 10 log (p2/pc) -  10 log (p2/p0c0)

~ 10 logp2 -  10 log Pc -  10 logpjj +  10 log (pc)0 

= 10 log (p^pjj) +  10 log (p0c0/pc) = SPL +  10 log (p0c0/pc)

If the measured characteristic impedance pc is equal to the reference characteristic impedance 
fpci0 (e.g. measurements are made in the same medium under identical environment), intensity level 
IL will be equal to the sound pressure level SPL.

128. Two sound sources Si and S2 are radiating sound waves of different frequencies. If 
their sound pressure levels recorded at position S as shown in Fig. 2-3 are 75 and 80 db 
respectively, find the total sound pressure level at S due to the two sources together.

By definition, sound pressure level SPL = 20 log (p/p0) db. Then

(SPL)j = 20 log (pi/po) = 75 or pl = 5.6 x 103p0 nt/m2 

(SPL)2 = 20 log (p2/p0) = 80 or p2 = 104p0 nt/m2
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Thus the total sound pressure at S is p =  p 1 +  P2 =  IB-® *  103Po nt/m2 and the total sound 
pressure level is

(SPL)tota, =  20 log (p/po) =  20 log (lB.eOOpo/po) =  20(4.196) =  83.9 db
The total sound pressure level is not at all equal to the arithmetic sum of the individual 

sound pressure levels. It is not necessary to determine the actual sound pressure in the computa­
tion of total sound pressure level.

On the other hand, if the two sound sources are radiating sound waves o f the same frequency, 
the total sound pressure level at S will be different from the one calculated above.

(SPL)! =  20 1ogP! +  94 =  75 or Pj =  0.11 nt/m2 

(SPL)2 =  20 1ogp2 +  94 =  80 or p2 =  0.2 nt/m2

and the total sound pressure p =  Vp* +  P2 — V(0.11)2 +  (0.2)2 =  0.23 nt/m2. Thus

(SPL)tota, =  20 log 0.23 +  94 =  92.7 db

2.29 The pressure amplitude of a plane acoustic wave is kept constant while the tem­
perature increases from 0°C to 20°C. Find (a) the percent change in sound intensity, 
(b) the change in sound intensity level, and (c) the change in sound pressure level.

(a) Sound intensity is /  =  p2/2pc, where p is the pressure amplitude in nt/m2, p is the density of 
air in kg/m3, and c is the speed o f sound in air in m/sec.

Let the sound intensity at 0°C be I (0) =  p2/ 2(1.3)332 =  p2/ 862 watts/m2 and the sound 
intensity at 20°C be / (20) =  p2/2(1.2)343 =  p2/ 824 watts/m2. Then

A / = / (20) -  7(0) =  p2/824 -  p2/862
where p is the constant pressure amplitude. Hence the percent change in sound intensity is 
given by

A / p2/824 -  p2/862 A r/v/
7(0) “  p2/862 -  0.05 or 5 /«

(b) The sound intensity level is IL =  10 log /  — 10 lo g / 0 db where I is the sound intensity and 
/ 0 is the reference intensity. A t 0°C, we have

IL (0) =  10 log (p2/862) — I0 1og/Odb
and at 20°C, IL (20) =  10 log (p2/824) -  10 log /„  db

Then IL(20) -  IL(0, =  10 lo g 862 -  10 lo g 824 =  10(2.936-2.916) = 0.2 db

(c) The sound pressure level is SPL =  20 log (p/p0) db where p is the pressure amplitude and 
p0 is the reference sound pressure amplitude. At 0°C, we have

SPL(O) =  20 log (p (0)/p„) db 

and at 20°C, SPL(20) =  20 log (p(20)/p 0) db

But since the sound pressure amplitude is kept constant, i.e. p(0) = p ,2o) = P, SPL(0) =  SPL(20). 
We find no change in sound pressure level.

RESONANCE OF AIR COLUMNS
2.30. A rigid tube of uniform smooth cross-sectional area is closed at both ends. If the 

tube contains air, find its motion when disturbed.
The one-dimensional wave equation for harmonic progressive plane acoustic wave is (see 

Problem 2.1) a2u/dt2 = c2(32u/dx2) (1)
where c - y/B/p is the speed of sound, B  the bulk modulus and p the density. The general 
solution is

where ylj.B, are arbitrary constants to be determined by initial conditions, C „D , are arbitrary 
constants to be determined by boundary conditions, and p, are the natural frequencies of the system.
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Tfc* boundary conditions an «(0, t) = 0 and «(L, t) = 0 where L Is the length of the tube. 
Proa Ike Ant boundary condition,

C,(A, cot p,t + B, aln p,0 = 0 or C, = 0
and from the second boundary condition,

D, aln (ftL/e)(A, cos p,e + B{ sin p,t) = 0

Becaun D, cannot equal tero all the time, sin (p,L/«) mutt equal «ero. Therefore sin (ptt,/e) =  0 
and Pi = irt/L, i = 1,1 ,... are the natural frequencies of the system.

The normal modea of vibration are given by AT,(«) = sin (iwtc/L) and the general motion of the 
air lnalde the tube la

•*(*. 0 = 3  >ln (<*«/£) (^i coa Pit + B[ sin p{t) (#)
i -  i T . . .

where A'( = A,D,, B[ = B(D{.

The analysis and results of this problem are exactly the same aa for the transverse vibration 
of a uniform string fixed at both ends and the longitudinal vibration of a uniform bar fixed at 
both ends. (See Problems 1.10 and 1.32.) This Is because their differential equations of motion 
are mathematically similar; they are thus equivalent to one another. As a result, there are almost 
complete analogies between the wave motion of uniform strings and plane acoustic waves. The 
analogy between longitudinal vibration of a bar and plane acoustic waves In air columns Is almost 
complete except that the bar Is not a three-dlmenslonally Infinite solid of the same physical con­
stituent As the outer surface of the bar Is free, any longitudinal elongation of the bar will result 
in a transverse linear dilatation -pi, where p Is the Polsson’s ratio for the material of the bar. 
This will in turn afTect the value for Young's modulus which Is one of the two factors governing 
the speed of wave propagation.

Fig. 1-4. Modes o f vibra tion o f a ir eolomn h i a eloaed tube.

2JL A rigid tube of aniform cross-sectional ares and length L Is opened at both ends. 
Investigate the motion of plane acoustic waves inside the tube.

Esfcr to t p i t im  11) aad If) of PraMem 2J0 fo r the one-dimensional wave equation and its 
federal aalr t i—.

TW  l i u h r y  n a lH iw  are 4mJ4m =  -iplB = 9 a t *  =  0 and x = L, i.e. the aeooalk 
a t W«fc eaJa o f the tr te  n rw t eqpaal atmovpherte pressure. From  the firs t boundary

D,(pJ&A, -4- Bt =  ft or D, = 0
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and from the second boundary condition,

—Cj(Pi/c) sin (PjL/c) (Aj cos pft +  sin pft) =  0 or sin (PjL/c) =  0

Hence p( =  ive/L, t =  1, 2..........

The motion for plane acoustic waves inside a tube open at both ends is therefore given by
qo

u(x, t) — 2  COS (ijrx/c) (A\ cos Pit +  B[ sin p4t) 
t = 1.2, . . .

where A\ =  A {Ct and B[ =  BiCi are arbitrary constants to be evaluated by initial conditions, and 
Pi are the natural frequencies.

The motion is equivalent to the free longitudinal vibration of a uniform bar free at both ends.
(See Problem 1.23.)

X/2

flnt harmonic (fundamental)

----------------  X ------------

second harmonic (first overtone)

3X/2

third harmonic (second overtone)

Fig. 2-5. Modes o f vibration o f air column in an open tube.

2.32. A rigid tube containing air is closed at one and open at the other end. It has a 
uniform cross-sectional area and length L. Find the motion of the air inside the 
tube if it is disturbed.

Refer to equations (1) and (2) o f Problem 2.30 for the one-dimensional wave equation and its 
general solution. The boundary conditions are it(0, t) =  0, i.e. no motion at the closed end. 
du(L, t)/dx — 0, i.e. acoustic pressure must equal atmospheric pressure at the open end.

From boundary condition at x =  0,

Ci(At cos +  Bi sin Plt) =  0 or C{ =  0 

and from boundary condition at x  =  L,

Dj (p/c) cos (pjL/c) (A{ cos p^ +  sin pjt) = 0  or cos (ptL/c) =  0 

Hence p( =  iVc/2L, t =  1 ,3 ..........

The motion of air inside a tube open at one end and closed at the other is therefore given by
00

u(x, t) =  f sin (A\ cos p(t +  B\ sin p,t)

where A\ =  A iDi and B[ =  BiDi are arbitrary constants to be evaluated by initial conditions, 
and Pi are the natural frequencies.
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The motion ia equivalent to the free longitudinal vibration of a uniform bar fixed at one end 
and free at the other. (See Problem 1.24.)

X/4

first harmonic (fundamental)

fifth harmonic (second overtone)
Fig. 2-6. Modes of vibration of air column in a tube open at one end 

and closed at the other end.

2.33. A rigid tube of uniform cross-sectional area is closed at one end by a rigid boundary 
and at the other end by a mass M0 free to move along the tube as shown in Fig. 2-7. 
If the tube contains air, find the normal modes of vibration of the air inside the tube.

u

r ■

| K
■ “ i

Fig. 2-7

Refer to equations (1) and (2) of Problem 2.30 for the one-dimensional wave equation and its 
general solution.

Let the fixed boundary be taken as x — 0, and the normal equilibrium position of the movable 
mass M0 be at x = L. The boundary conditions are

u(0,t) =  0, A (p -p 0) =

i.e. at * — 0 the wave motion of the air is zero, and at x = L the force on the surface of the mass 
Af0 due to the excessive pressure inside the tube causes the acceleration of the mass M0. A is the 
area of the surface of the mass M0.

From the first boundary condition,
Cj(Ai cos p  ̂+ Bj sin p(t) = 0 or C( = 0

and from the second boundary condition,
P -P o  = dp = —B{du/dx) -  - pc2(du/dx)

where \M\x-l = 7 (A*coa Pit + B'sin P(t) (Di c03̂ r) • T h e n
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\ j & \  ~ L  =  _ P ‘ * i n ^ C ~  ^  003 Pi< +  B i  Sin Pi<)

where A\ — AjD, and B[ = BjDj. Thus the second boundary condition becomes

or —Ac2p ^  cos (Aj cos p(£ 4- B/ sin p(£) J = M0 p? sin (A\ cos p{t + B[ sin p{t)

and finally we obtain tan (P(L/c) =  Acp/p(M0 which is the frequency equation.
Thus the normal modes of vibration of the air inside the tube are given by

“  pj
u(x, t) =  2  sin — x (i4'j cos ptt + B[ sin p(£) 

i = l,2 ,... C
where A\ and B[ are arbitrary constants to be evaluated by initial conditions and p{ are the natural 
frequencies. The normal modes of vibration are harmonic sine functions.

When M0 = 0, so that the tube is effectively open to the air at one end, we obtain the case 
of a tube closed at one end and open at the other end (see Problem 2.32). When M0 = ®, so that 
the tube is effectively closed at each end, we obtain the case of a tube closed at both ends (see 
Problem 2.30).

The motion is equivalent to the free longitudinal vibration of a uniform bar with a concentrated 
heavy mass attached at the free end (see Problem 1.25).

2.34. Calculate the three lowest frequencies of (a) closed tube, (b) open tube and (c) closed- 
open tube, each of length 0.5 m and at standard atmospheric pressure and temperature.
(a) Wavelength \1 =  2(length of tube) =  2(.5) =  1.0 m

f 1 =  C/ Xl =  343/1.0 =  343, f 2 =  2/, =  686, / 3 =  3 /x = 1029 cyc/sec

(b) Wavelength Xj = 2(length of tube) =  1.0 m

/ j  = 343, f 2 = 686, f 3 — 1029 cyc/sec (same as in part (a))

(c) Wavelength Xj =  4(length of tube) =  4(.5) =  2.0 m

/i  = 343/2 =  171.5, f 2 =  3/j =  514.5, f3 =  5ft =  857.5 cyc/sec

2.35. A resonance tube (a tube open at one end and closed at the other) is employed to find 
the frequency of a tuning fork. If resonance is obtained when the length of air 
column is 0.52 and 2.25 m, what is the frequency of the tuning fork? What is the end 
correction factor for this resonance tube ?

Assume the two measurements of air column represent 
the shortest and the next shortest lengths for resonance as 
shown in Fig. 2-8. The lengths of air column plus the same 
end correction factor e is equal to a quarter and three quarters 
of a wavelength respectively; or the difference of their sums 
equals one half wavelength, i.e.

(2.25 + e) -  (0.52 +  e) =  £X or X =  3.46 m
Since X =  ef, where X is the wavelength, e = 343 m/sec is 
the speed of sound in air and /  is the frequency of the tuning 
fork, then

/  =  c/X =  343/3.46 =  99 cyc/sec

To find the end correction factor, we write 
0.52 + e =  JX, 2.25 +  e =  3X/4

from which e =  0.23/0.67 =  0.34 m.

X/4 V

i

3X/4

w

Fig. 2-8
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1M. In order to determine the speed of sound at room temperature, a resonance tube is 
used. A tuning fork of frequency fi = 200 cyc/sec causes it to resonate when the 
water level is 0.344 m below the reference mark. A second tuning fork of frequency 
ft = 400 cyc/sec obtains resonance when the water level is 0.136 m below the ref­
erence mark. What is the speed of sound in air?

As shown in Problem 2.32, the shortest length for resonance for a tube open at one end and 
closed at the other is equal to one quarter wavelength. Thus

L + 0.344 = X,/4, L + 0.136 = X2/4

where L is the distance from the open end of the tube to the reference mark, Xx =  d f x =  c/200 
and X] = elfi = e/400 are the wavelengths and c is the speed of sound in air at room temperature. 
Substituting these values in the above equations and solving, we obtain c = 334 m/sec.

137. An air column 0.8 m long resonates in a closed cylindrical tube of diameter 0.1m 
with an unmarked tuning fork. Calculate the frequency of vibration of the unmarked 
tuning fork.

Resonance of air column is an exchange of energy of vibration between a tuning fork and a 
closed air column whose natural frequency can be adjusted to that of the tuning fork. This is 
also the maximum acoustic response obtainable.

From Problem 2.32, for a closed tube the wave length X =  4L where L is the effective length 
of the resonant air column. The effective length of the resonant air column is equal to the actual 
length of the air column plus a correction. This correction, found by experiments to be equal to
0.3d0 where d0 is the diameter of the tube, is due to the spherical spread of the reflected plane 
acoustic waves at the open end of the tube. Thus we have

L = 0.8 + (0.3)(0.1) = 0.83 m and X = 4L =  3.32 m 

Now /  = e/\ where e = 343 m/sec is the speed of sound in air. Thus

/  =  343/3.32 =  103 cyc/sec

DOPPLER EFFECT
Z3&. Develop an expression for the Doppler effect, i.e. the apparent change in frequency 

due to relative motion of the sound-producing source and the sound receiver.
We have previously shown that the speed at which sound waves propagate in a medium is 

independent of the source producing it If the source is moving relative to the medium, the speed 
of sound is unchanged, but the wavelength and the frequency as observed by a stationary receiver 
will be changed.

For example, take a square wave whose source is moving toward the stationary receiver R 
with velocity u as shown in Fig. 2-9.

Fig. 2-9

First assume the source S is fixed. The sound waves will fill the distance SR between the 
fixed source S and stationary receiver R in a certain time At. Now let the source S move toward 
the receiver R with velocity u. Then in the Bame time interval At, the same sound waves will be
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compressed into the distance S'R' =  u A t  which is the distance covered b y  the source S in A t. Now 
SR — S ’R ’ =  u M  or X/ A t — X'f A t =  u A t ,  from which X' =  (f\ — u)/f where /  is the frequency 
o f the emitted sound waves, X the original wavelength and X' the apparent wavelength. Since 
e =  f\ = /'X ', we obtain

f  =  f\/\' =  (1) 
c — u

Similarly, if  the source is fixed while the receiver is moving in a straight line with velocity 
v, the apparent frequency is given by

e — v .
f (2)

When both the source and receiver are moving along the same straight line with velocities u 
and v respectively, the apparent frequency becomes

/ '  = c — u (J)

For general plane motion o f the source and receiver 
relative to the medium as shown in Fig. 2-10, the apparent 
frequency observed by the receiver is

p  _  c -  v cos (y ~  P) f
c — u cos a w

Expression (4) will reduce to (1), (2) and (S) under identical 
conditions.

I f  the medium through which sound waves travel moves 
with respect to some inertial reference with velocity w, ex­
pression U) becomes

e — v +  w ./ '  =
c — u +  w

where velocities u, v and w are in the x  direction.

(5)

To summarize, we have

(1) I f  the speed o f  the source u =  e while the receiver is at rest, / '  =  «°, and all the sound waves 
travel with the source and reach the stationary receiver together. I f  u >  c, the sound waves 
emitted are being received in the reversed order. I f  u >  c and the receiver is stationary, 
the Doppler effect develops into what is commonly known as sonic boom. The boom is heard 
on the ground when an a ircra ft in the vicinity exceeds the speed o f  sound.

(2) I f  the receiver has the same speed as sound waves, i.e. v =  c, the apparent frequency f  is 
zero. I f  v =  2c and source is fixed, equation (2) gives / '  =  — whi ch indicates that the 
receiver will hear the sounds in correct time and tune but backward. I f  v >  c and the source 
is stationary, / '  -* —« ;  this means that sound waves produced after the motion o f the receiver 
has begun will never reach the receiver (the person does not hear anything). But fo r  sound 
waves propagated before the motion o f  the receiver, he will gradually overtake the sound 
waves and hear them in the reverse o f  the natural order. Finally, i f  v -* — ®, /'-»<*> and the 
receiver is approaching the source with great speed.

(3) I f  the medium in which sound waves are propagated is m oving with velocity w  with respect to 
some inertial reference, this will be the same as i f  the medium were at rest while the source 
and receiver have a common velocity w  relative to the medium. I f  u =  v, then / '  =  / .  This 
implies the velocity o f  the medium has no effect at all on the observed frequency.

(4) From equation (2), f  will be greater than /  when source and receiver approach each other; 
and / '  will be less than /  when source and receiver separate from  each other. This explains 
the fa ct that the whistle o f  a locom otive is heard high as it approaches, and low as it moves 
away from  a stationary observer at the railw ay station, changing rather abruptly at the 
moment o f  passage. I f  the relative velocity is not in a straight line join ing  the source and 
receiver, the change in apparent frequency is more gradual, from  e f l ( c - u )  to (c — u)f/e.
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U li An automobile emitting sound at a frequency of 100 cyc/sec moves away from a 
stationary observer towards a rigid flat wall with velocity of 10 m/sec. How many 
beets/sec will be heard by the observer?

The lU U on & r? observer bears sound of apparent frequency f [  from the moving source directly, 
alio •ooiid of apparent frequency f't  from the ware* reflected by the wall. Now

/j = cf!\e-v) -  343<100)/l343 -10) = 103 cyc/sec 

/' = efHc + v) = 343(100)/(343 + 10) = 97.2 cyc/sec

where c = 343 m.wtc u  the speed of sound in air, * = 10 m/sec is the velocity of the source and 
f -  100 eye'sec is the frequency of the source.

The beat frequency is / ^  = f[ -  /J = 10S -  97.2 = 5.8 beats/sec.

tm. Train A tr.nl. at 50m/*c in .till .ir while it. whtotle emit. «ound of fr«,aency 
€00 cvc'aec (o| What are the freqoencie. of the emitted .ound observed by a 
auttonary reiver in front of and behind the train? (6) Another train B U paaain* 
train A at 100 mime What are the frequencie. of the emitted .ound from the whutle 
of train A a. oterv«d by p u n te r , in train B before and after they pa» train A? 
” , For a wind velocity of 20 mime in the direction of the motion of the train., 
calculate the results of parts (a) and (b).

(., For a moving soorce and a stationary receiver, the apparent frequency as given by equation 
(j; of Problem 2.38 is

./ _ g / = —M2—  600 = 700 cyc/sec /iromt -  7 Z V  343 -  50

i.e. the apparent frequency will be greater than the actual frequency when source and receiver 
approach each other.

_ ___M?-----600 = 520 cyc/sec"  343 -(-50 ;
Le. the apparent frequency will be leas than the actual frequency when source and receiver 
separate from each other.

Thus the whistle of the train is heard high (/U t = 700 eyc/sec) as it approaches and 
low _  = 520 cyc/sec) as it moves away from a stationary observer at the railway station, 
changiS rtther abruptly (from 700 to 520 cyc/sec) at the moment of passage.

For both moving source and receiver, the apparent frequencies are given by equation (S) of
ProW*m 2J5®' ,49 _  inn

.< _ 5__ -  f  -  _ — 152 600 = 497 cyc/sec
c ~ u 343 — 50

C = 343 -  100_ ggQ _  |j-0 cyc/g^.
••*** 343 -(-50)

(«) When the air moves, the apparent frequencies are given by equation (5) of Problem 2J8. 
Thus

<•) = m - H - f i o 600 =

/ u -  = = 5“  ^

<« = Z ~ - ' S r w m  = m crc/ ,tc

_ 343 -  100 + 20 __
“  343 + 50 -  20 600 “  360 cyc/,ec
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2.41. Considering the same relative velocity in the Doppler effect, we obtain different 
apparent frequencies according as the source or the observer is in motion relative to 
the medium. Prove that this statement is correct.

Let the given relative velocity o f approach be w. I f the observer is approaching the stationary 
source, we obtain

/ ;  =  - ^ f  <i > 

where / '  is the apparent frequency, c the speed o f sound and /  the actual frequency o f the source. 
If the source is approaching the stationary observer,

*  = t H '  <2>

Thu, M i  =  ( H ^ ) /  =  1 -  " , w  ( ,)

Equation (J) shows that unless the relative velocity o f approach w is equal to the speed o f sound c, 
the two apparent frequencies will not be the same.

If the observer is moving away from the stationary source with the same velocity w,

n  =  c-J=̂ L f  w

and if the source is also moving away from the stationary observer with velocity w,

*  =  <5) 

and fa/fi =  1 — «>2/c2 (as in (8)) (6)

Supplementary Problems
WAVE EQUATION
2.42. Prove that u(x,t) =  A (ct — x )~ Bict~z) is a possible solution for the one-dimensional wave equation.

2.43. Use the Fourier transform to obtain the solution for the one-dimensional wave equation.

2.44. Show that the one-dimensional wave equation may be expressed in polar coordinates as

1 d̂ u. _  l j /  du\ 1 B̂ u 
c2 dt2 ~  r d r \ ' d r j  r&He2

2.45. Prove that the following expression is a possible general solution for the one-dimensional wave 
equation.

00

u(x, t) =  2  •Aj cos (ix +  6:) e- '*0’ 1 » = 0,1.2_
2.46. For one-dimensional wave propagation, find the initial conditions such as to cause only a wave 

traveling in the negative x direction. Ans. u(x, 0) =  0, u(x, 0) =  e du/dx

WAVE ELEMENTS
2.47. Show that the maximum particle displacement and maximum pressure at a given point do not 

occur simultaneously in a sound wave.

2.48. Show that the kinetic and potential energies o f a free progressive plane acoustic wave are equal.

2.49. Show that the kinetic and potential energies o f stationary sound waves in a rectangular room have 
a constant sum.



Z.S#. Th« pressure amplitude of a plane acoustic wave is kept constant while the temperature rises from
0 C to UO-'C. Find the percent change in sound intensity and the intensity level.
Atu. 14'v, 0.7 db

SPEED OF SOUND
151. Find the spe«d of sound wave propagation in an aluminum bar. Ana. e = 5100 m/sec

2.52. The planet Jupiter has an atmosphere of methane at a temperature of — 130°C. Find the speed 
of sound there. Ans. e = 310m/sec

2.53. A blow is made by a hammer on a steel rail 1 km from a listener who puts one ear to the rail and 
hears two sounds. Calculate the time interval between the arrivals of the sounds.
.4 ns. f = 2.85 sec

ACOUSTIC INTENSITY AND ENERGY DENSITY
2.54. Prove that intensity at any distance from the sound source for a one-dimensional cylindrical wave 

is inversely proportional to the first power of the radius. (A one-dimensional cylindrical wave is a 
wave radiated outward from the longitudinal axis of a long cylinder expanding and contracting
radially.)

2.55. Show that I = 2v'2f2A2pc watts/m2 is a correct expression for acoustic intensity of a plane wave.

2.56. Compute the intensity of a plane acoustic wave in air at standard atmospheric pressure and tem­
perature if its frequency is 1000 cyc/sec and its displacement amplitude is 10-s  m.
Ans. I = 0.82watt/m2

2.57. Show that the average sound energy density for a standing wave is twice that for a free progres­
sive plane wave and is equal to p2/pc.

SPECIFIC ACOUSTIC IMPEDANCE
2.58. Calculate the characteristic impedances of hydrogen at 0°C and steam at 100°C.

Ans. 114, 242 rayls

2.59. Prove that the characteristic impedance of a gas is inversely proportional to the square root of its 
absolute temperature.

SOUND MEASUREMENTS
2.60. Two electric motors have intensity levels of 58 and 60 db respectively. Find the total sound 

intensity level if both motors run simultaneously. Ans. 62.1 db

2.61. What will be the total sound pressure level of two typewriters if each has sound pressure level 
70 db? Ans. 76 db

2.62. The sound pressure levels of three machines are respectively 90, 93 and 95 db. Determine the 
total sound pressure level if all the machines are turned on. Ans. 97.8 db

2.(3. At standard atmospheric pressure and temperature, show that SPL =  IL +  0.2 db.

2.64. What is the power level of 0.02 watts of power? Ans. PWL = 103 db

2.65. The power levels of two engines are 90 and 100 db respectively. Find the combined power level. 
Ans. 100.4 db

RESONANCE OF AIR COLUMNS
2.66. If two parallel reflecting surfaces are 10 m apart, find the lowest frequency for resonant standing 

waves that can exist between the surfaces. Ans. 172 cyc/sec
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2.67. A resonance box is to be made for use with a tuning fork of frequency 472 cyc/sec. Find the 
shortest length of the box if it is closed at one end. Ans. 0.18 m

2.68. A vertical tube of length 5 m is filled with water. A tuning fork of frequency 589 cyc/sec is held 
over the open top end of the tube while water is running out gradually from the bottom of the 
tube. Find the maximum number of times that resonance can occur. Ans. 3 times

2.69. A closed tube of length 0.25 m and an open tube of length 0.3 m, both made of the same material 
and same diameter, are each sounding its first overtone. What is the end correction for these 
tubes? Ans. e — 0.05 m

2.70. Show that / ( = (2i — 1)/1( i = 1,2, . . . ,  where f x is the fundamental frequency for resonant tubes 
open at one end.

2.71. A cylindrical tube of length 0.2 m and closed at one end is found to be at resonance when a tuning 
fork of frequency 900 cyc/sec is sounded over the open end. Find the end correction.
Ans. t = 0.036 m

DOPPLER EFFECT
2.72. An automobile traveling at 50 m/sec emits sound at a frequency of 450 cyc/sec. Determine the 

apparent frequency as the automobile is approaching a stationary observer.
Ans. f  = 526 cyc/sec

2.73. The frequency of a car is observed to drop from 272 to 256 cyc/sec as the car passes an observation 
post. What is the speed of the car? Ans. 23 mph

2.74. A locomotive is passing by a stationary observer at a railway station with speed v, and is sounding 
a whistle of frequency /. Determine the change in pitch heard by the observer.
Ans. f  =  2e/v/(e2 — r 2)

2.75. Two observers A and B carry identical sound sources of frequency 1000 cyc/sec. If A is stationary 
while B moves away from A at a speed of 10 m/sec, how many beats/sec are heard by A and Bt 
Ans. A, 2.8; B, 3.0 beats/sec



Chapter 3

Spherical Acoustic Waves

NOMENCLATURE
a = radius, m
A = area, m2

B = bulk modulus, nt/m2

e = speed of sound in air, m/sec
D = directivity factor
d r = directivity index, db
Dr = directivity ratio
E< = energy density, joules/m3

f = frequency, cyc/sec
1 = acoustic intensity, watts/m
Jl = Bessel function of the first kind of order one
k = wave number; spring constant, nt/m
fc = constant
KE = kinetic energy, joules
m = mass, kg
P = acoustic pressure, nt/m2

P = period, sec
PE = potential energy, joules
Q = source strength, m3/sec
r =  radial distance, m
Rm = dissipation coefficient, nt-sec/m
Rr =  radiation resistance, kg/sec
s = condensation
u = particle displacement, m; component velocity, m/sec
V =  particle velocity, m/sec
V =  volume, m*
1C =  component velocity, m/sec
W =  power, watts
Xr =  radiation reactance, kg/sec
z =  specific acoustic impedance, rayls
Zm =  mechanical impedance, rayls
Zr =  radiation impedance, rayls
m = circular frequency, rad/sec
A = wavelength, m
p = density, kg/ms

64
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INTRODUCTION
When the surface of a pulsating sphere expands and contracts radially about its mean 

position, a force will be exerted on the fluid medium in contact with the surface. The 
fluid is hence disturbed from its equilibrium position. As a result, a disturbance is produced 
and propagated away from the sphere uniformly in all directions as spherical waves. If 
the fluid medium is air, we have spherical acoustic waves.

Though the spherical wave moves outward with a spherical wavefront in a three-dimen- 
sional homogeneous medium, it is one-dimensional since all points of the wave can be 
related to one distance — the radial distance r of the wavefront from the center of the sphere.

Spherical acoustic waves do not change shape as they spread out, and resemble circular 
waves on a membrane in that they have infinite value at r = 0. Although the wavefront 
of spherical acoustic waves can be assumed plane at great distances from the source, many 
acoustical problems are concerned with diverging spherical acoustic waves radiated from 
a simple source rather than plane acoustic waves.

WAVE EQUATION
The three-dimensional wave equation in rectangular coordinates is

+  &P -  1 a2?
dx2 dy2 dz2 c2 dt2

where p is acoustic pressure, c = yjB/p is the speed of sound, B is the bulk modulus, and p 
is the density. The general solution can be expressed in progressive waves form as

p(x, y, z, t) = f(lx + my + nz — ct) + g(lx 4- my + nz + ct)
where /  and g are arbitrary functions, and I2 + m2 + n2 = 1. In standing waves form, the 
general solution can be written as

P{x. y, z, t) = [(Ai sin ckit + Bi cos ckit){A2 sin fox + B2 cos fax)
(A3 sin k3y + B3 cos k3y)(A4 sin k4z + B4 cos ktz)]

where Ai and Bi are arbitrary constants to be evaluated by initial conditions, and 
Aa, B2, A3, B3, At, Bt are arbitrary constants to be evaluated by boundary conditions.

The three-dimensional wave equation can be written in spherical coordinates as
d2(rp) _  d2(rp) 

dt2 ~ 0 dr2

with solution p(r,t) =  ̂f ( c t - r ) +  ̂g(ct + r)
where r is the radial distance from the source to the wavefront, and f  and g are arbitrary 
functions. (See Problems 3.1-3.8.)

WAVE ELEMENTS
For harmonic progressive spherical acoustic waves, we have

particle displacement u = —( — + ik )
\ r /<»p

particle velocity v = ( -  + ik)
\ r )  t*>p

condensation s = p/pc2 
where p is acoustic pressure and i = \/—1- (See Problems 3.12-3.13.)
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A C O U S T IC  I N T E N S I T Y  A N D  E N E R G Y  D E N S I T Y

Acoustic intensity is the average rate of flow of sound energy through unit area. For 
spherical acoustic waves this becomes

/  - ipofo cos 9 = JpJ/pc watts/m*

where p* is the amplitude of acoustic pressure in nt/m2, Vo is the velocity amplitude in 
m/sec, p is the density in kg/m', and c is the speed of sound in m/sec.

Energy density of a spherical acoustic wave at any instant is the sum of kinetic and 
potential energies per unit volume.

Ei = i(PvJ + pj/pc2) joules/ms
(See Problems 3.9-3.11.)

S P E C I F I C  A C O U S T IC  I M P E D A N C E

Specific acoustic impedance has been defined as the ratio of acoustic pressure over 
velocity at any point in the wave. For harmonic progressive spherical acoustic waves, the 
specific acoustic impedance is given by

2 =  p c k r  [ l  +  f c V  +  t f + f c * r 5]  r a y l s

where the real part is known as the specific acoustic resistance while the imaginary part is 
called the specific acoustic reactance, r is the distance from the source to the wavefront, 
and k = Jc  is the wave number. (See Problems 3.14-3.15.)

R A D IA T IO N  O F  S O U N D

If waves radiated outward from a sound source are symmetric and uniform in all 
directions, the source is an isotropic radiator. The simplest isotropic radiator is a pul­
sating sphere, which is a uniform and homogeneous sphere whose surface expands and 
contracts radially and sinusoidally with time. If the dimensions of a radiator are small 
compared with the wavelength of the sound radiated, the radiator can be approximated by 
a pulsating sphere.

Sound waves produced by the vibration of an extended surface such as a diaphragm will 
not have the symmetric spherical radiation pattern characteristic of an isotropic radiator. 
However, the radiation produced at any point by such a source can be assumed equal to the 
sum of the radiation produced by an equivalent array of isotropic radiators.

In general, sound waves produced by most sources have pronounced directional effects 
known as the directivity of the source. This is due to the following factors: (1) size and 
shape of source, (2) radiation impedance, (3) mode of vibration of the surface of the 
radiator, and (4) reaction of the fluid medium on the surface of the radiator. The presence 
of any large rigid surface known as infinite baffle near the vicinity of a sound source not 
only confines the radiation to one side of the surface but also affects the directivity of the 
source.

The di'recfm'fy pattern of a sound source is therefore a graphical description of the 
response of a radiator as a function of the direction of the transmitted waves in a specified 
plane for a specified frequency.
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The directivity of a sound source is described by the directivity factor D,
_  2Ji(ka sin 9)
~ ka sin 8

where J\ is the Bessel function of the first kind of order one, k is the wave number, a is 
the radius of the source, and 9 is the directional angle from the axial direction of the source. 
Hence a plot of the directivity factor in decibels will yield the relative values of acoustic 
pressure and intensity at points equidistant from the source but at different angles from 
the axial direction of the source.

Radiation of sound will be found equal to zero at certain angles from the axial direction 
of the source, beyond which it will reach a maximum, and so on. The second maximum, 
called the side or minor lobe, is usually much weaker than the first maximum at an earlier 
angle.

The directivity ratio Dr = h/Iref is the ratio of the intensity at any point on the axis 
of the sound source to the intensity that would be produced at the same point by a simple 
source of equal strength. The directivity index or gain dr = 10 log Dr db is simply the 
decibel expression for the directivity ratio. Beam width is defined as the angle at which 
sound intensity drops down to one half of its value at the axial direction of the source. 
(See Problems 3.16-3.20.)

SOURCE STRENGTH
Source strength is the product of the surface area and velocity amplitude v0 of a pul­

sating sphere, i.e. Q — 4ttO?Vo where a is the radius of the sphere. A hemispherical source 
mounted in an infinite baffle, for example, has half the strength of a similar spherical source 
having the same radius and velocity amplitude.

Acoustic doublet is an arrangement of two simple sound sources of identical strength 
and frequency. The directivity pattern of this array of sound sources depends on the 
distance between the two sources and the phase between them. (See Problems 3.21-3.23.)

RADIATION IMPEDANCE
Radiation impedance zT = f/v kg/sec is defined as the ratio of the force f  in newtons 

exerted by the radiator on the medium to the velocity v in m/sec of the radiator. The force
is due to the reaction acting on the radiator given by ^  p dA, where p is acoustic pressure 
acting on the surface A of the radiator.

The total impedance acting on the radiator is therefore the sum of its mechanical 
impedance zm = Rm + i(a>ra — k/ai) and the radiation impedance zr as defined above. Since 
these impedances are functions of frequency a>, the velocity amplitude v0 = f/(zm + zT) will 
not remain constant as the frequency is varied. (See Problem 3.16.)
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Solved Problems
WAVE EQUATION
3.1. Derive the general three-dimensional acoustic wave equation.

The derivation of the general acoustic wave equation in a form valid for discussing any three- 
dimensional type of nondissipative progressive wave is based on the following assumptions and 
procedure.

il) The medium is assumed to be continuous and homogeneous, (2) the process is adiabatic, 
13) a completely elastic medium, and (4) small amplitudes of particle displacements and velocities, 
as well as small changes in pressure and density.

(a) Develop the equation of continuity, (6) derive the dynamic equations from elastic properties 
and force equations, and (c) combine the three dynamic equations to form the general wave equation.

Consider a small element dx dy dz of the fluid as 
having equilibrium coordinates x ,y ,z  as shown in Fig.
3-1. Let u,c,w  be the components of the particle 
velocity in the x, y, z directions respectively and p the 
density of the element. Then the mass flow of fluid 
through the left surface of this element will be

pit -  (pu)r)x 2 dy dz

while the mass flow through the right surface is

d
+  ax  (pl<) t] dy dz

The resultant flow in the x direction is therefore 
equal to the difference of these two flows,

j -  (pu) dx dy dz dx

Similarly, the resultant flows in the y and z directions are

Fig. 3-1

dy (pv) dx dy dz. — (pw) dx dy dz dz

dx dy dz

so that the net flow through the entire element is

£(pu) + ^{pv) +

Thus the equation of continuity is given by equating the net flow per unit mass to the time rate 
change of density

^ (p u ) +  - ( p v )  +  - ( Pw) -  - Tt

To obtain the dynamic equation in the x direction, let p be the pressure at the center of the 
element. Then the pressures at the left and right faces of the element are respectively

dp f  dx 
dx \ 2 P +

Hence the net force acting on the element in the x direction is

dydz =  — (dp/dx) dx dy dz{C P +  |^(dx!2)

For small amplitudes of particle displacement and velocity, the mass of this element can be 
expressed as pdxdydz, and the velocity throughout the element in the x  direction is u. From

Newton’s second law 2  F  =  we haveat
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Similar dynamic equations in the y  and z directions are

- f y  =  * < - >  »

- f ,  =  w  

Now differentiate equations (1), (2), (J) respectively with respect to x,y,z\

(pu) W)

(pv) (5)

(pw) {6)

a2p 3 2

d x 2 d t d x

a2p a2
d y 2 d t  d y

a2p a2
I 22 d t d z

Adding equations (4), (5), (6) yields

32p , 32p d2p \ _  J f i  . . , a , . , 8 . , 
J *  +  d y 2 + M j  ~  d i [ T x (pU) + ^ {pv) + d-z(pW).

(7)

d2P , <PP , <Pp _  <Pp /q\
o r  f lx 2 d y 2  d z 2 9 (2

Now p =  pol1 +  «) and p =  £s. Then ~  =  p0|̂ § , |̂ | =  ^  where p0 is the static 
density, s is the condensation, and B is bulk modulus. Equation (8) can be written as

d2P , <Pp , cPp _  Po d2p 
3x2 dy2 ^  dz2 B dt2

Equation (9) is then the three-dimensional wave equation with acoustic pressure p as the variable.

&2. Obtain solutions for the general two-dimensional wave equation in rectangular 
coordinates.

The general two-dimensional wave equation in rectangular coordinates is

d2P . d2p _  1 d2p (1)
dx2 dy2 c2 dt2

where p is the acoustic pressure and c the speed of sound.

(a) As in the case o f the one-dimensional wave equation, we can write the solution in progressive 
waves form as

p(x, y, t) =  f{m x +  ny — ct) +  g(mx +  ny + ct), m2 +  n2 — 1 (2)

which represents waves o f the same shape moving in opposite directions along x and y axes 
with velocity c. This can be verified by differentiating equation (2) and substituting into (1).

(b) Let us next look for solutions in standing waves form which is represented by p =  X(x) Y(y) T(t) 
where X, Y, and T are functions o f x, y  and t respectively. Substitute this expression for p 
into (I) to obtain

1 <PX 1 cPY 1 d2T , .
X  dx2 Y dy2 c2T dt2 { }

Since the right-hand side of (S) is a function of t alone, and the left-hand side a function 
of x and y, each side must be equal to the same constant. Let this constant be —p2. This leads 
to the following two differential equations:
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with solution T(t) =  A  ain cpt +  B  cos cpt (5)

„ r T(t) =  +  B e -*••» (6)
1 <PX ,  _  1 d2Y

and -  x  dx2 P ~  Y  dy* U

Using the same argument as before, we see that both sides o f  equation (7) equal the same 
constant, —p1 + (j2. So we have

= °  <«>

with solution X(x) — A  cos qx +  B  sin qx  (9)

or X(x) =  A e * x +  B e - * *  (10) 

where the A's and B's are arbitrary constants. Sim ilarly,

0  -  (9* -  P 2 ) Y  =  0 (11)

with solution Y(y) = A  cosh y/q2 - p 2 y +  B  sinh yjq2 -  p2 y  U*)

or Y(y) =  A e v̂ r PFs +  B e“  ^  "  p’ " (IS)

where the A ’s and B ’s are arbitrary constants.

(c) If we replace the constant —p2 in equation (3) by p2, we obtain
tPT -  c V T  =  0 (U)

with solution T(t) =  A  cosh cpt +  B  sinh cpt (15)

or T(t) =  Ae'Pt +  Be~cpt (jg)

Similarly, if  we replace the constant (q2 — p2) in equation (7) by  —(q2 +  p2), w e obtain

=  °  (" )

with solution X (x) =  A  cosh qx +  B  sinh qx (IS)

or X (x) =  A e “x +  B e - «  (19)

Also, ~  +  (q2 +  p2)Y  =  0 (20)

with solution Y(y) =  A cos y/q2 +  p2 y  +  B  sin y/q2 +  p2 y  (21)

or Y(y) =  A e iy/r,2 + qiv +  B e ' ^ ^ + (22)

The complete solution is p (x ,y ,t )  =  X (x) Y (y) T(t)

which is expressed in harmonic terms by equations (5), (9) and (21); in com plex exponential terms 
by equations (6), (10) and (22); ir. hyperbolic terms by equations (12), (15) and (IS); and in  exponential 
terms by equations (IS), (16) and (19).

The theory and solution carried out here fo r  the two-dim ensional w ave equation can be applied 
to the three-dimensional wave equation. Although there are fou r  possible form s o f  solution avail­
able for the wave equations, the harmonic form  o f solution is w idely em ployed. T o  account for the 
change of phase, it is advantageous to use the com plex exponential fo rm  o f  solution.

3.3. Transform the two-dimensional wave equation ^  ^  into polar
coordinates. dx dy c dt

In polar coordinates r and 8, we have
x 2 +  y 2 -  r 2, e =  ta n -1  -
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0 _  0 dr -(y/ x2) _  _  , .
or 2 z - 2 r d x , ^  r - dx i  +  („/x )2 v l ’

Using’ the chain rule,
du _  du dr j du dt 
dx dr dx d8 dx

dhi _  d2u dr +  du&r^ _j_ 
dx2 dr dx dx dr dx2

d2U dt_ du d2t 
dO dx dx dt dx2

d*r
dx2

d2t 
dx2

r -  x(dr/dx) _  2/r3 
r2

- y ( - 2 /r3) =  2xy/r4

82u _  02m dr d2u dt 
dx dr dx2 dx dr dt dx

d 2U  _  d 2U  d r  d 2U  d t

dx dt dt dr dx dt2 dx

Hence dhi _  x2 d2u „ xy d2u , y  ̂dhi . y2 du „ xy du 
dx2 r2 dr2 r3 dr dt r* dt2 r* dr r* dt

A similar expression can be obtained for asdhi 
dl

d2u _  y2 d2u _ xy dhi x2 d2u x2 du _  „ xy du 
dy2 r2 dr2 r3 dr dt r* dt2 r3 dt r4 dt

The wave equation becomes
d2u d*u 
dx2 dy2

d2u , 1 du , 1 d2u _  1 d2u 
dr2 r  dr r2 dt2 c2 dt2

3.4 Find a solution for the general three-dimensional acoustic wave equation in rec­
tangular coordinates.

The general three-dimensional acoustic wave equation in rectangular coordinates is
d*p V p  _  J _ ^ p  . >
dx2 dy2 dz2 c2 dt2

where p is the acoustic pressure, and c  =  y/B/p is the speed of sound waves.

Let us look for a solution in the form of p =  X(x) Y(y) Z(z) T(t) where X, Y,Z, T are functions 
of x, y, z, t respectively. Substituting this expression for p into equation (J), we obtain

1 d?X 1 <PY 1 <PZ _  1 <PT
X  dx2 Y dy2 Z dz2 c2T dt2 { >

Now the right-hand side of (2) is a function o f t alone, and the left-hand side a function of x, y, 
and z. Each side must be equal to a constant. Let this constant be — fc*. This leads to the 
following equations:

^  +  c2&2r  =  o (s)

with solution T{t) =  sin +  B t cos cktt and
\ & X  1<PY 1 &Z _  2
X  dx2 Y dy2 Z dz2 ~  1 w

Equation (4) can be rewritten as

1 <PY 1 d?Z _  2 1 <PX _  . 2 . - 2  /cv
■*" 7 Y  2 — kx +  k2 (5)Y dy2 Z dz2 1 X  dx2

where k,  is another constant.
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Using the same argument as before, we see that both sides of equation (5) must equal the same 
constant, -k[ k*, so we have

—  + k*X -  0dxz + *tx  ~ 0 (tf)
with solution .Y(jt) -  A2 sin ktz + B2 cos ktx and

1 j, I  — —If2 _u I, 2
Y dy1 Z dt* ”  i 2 (?)

We can rewrite (7) as

1 < P Z  -  «,* x  L-2 _  1 ^  -  - L - 2 . r 2 , , 2
z dz2 ~ | 2 y <fi/2 1 2 M

where k3 is an arbitrary constant.
d'iY 2From (8) we obtain + k3Y =  0 ^

with solution = A3 sin k3y 4- B3 cos k3y and

£ §  + (fc* -  k\ -  k\)Z = 0 or g  +  k\z =  0 (J0)

2 2 2 2with solution Z{z) = A4 sin kiz + B4 cos fr4z, fc4 =  ky — k2 — k3.

The general solution for the three-dimensional wave equation is therefore given by 

p{x,y,z,t) =  [(j4 t sin ck^ + B, cos cfc1t)(j42 sin k2x  +  B2 cos k2x)

x (A3 sin k3y +  B3 cos k3y)(A4 sin ktz +  B4 cos fc4z)] 

where A ’s and B’s are arbitrary constants.

15. A rectangular room has rigid walls of 
lengths Li, L2 and L3 as shown in Fig. 
3-2. Find the normal modes of acous­
tic wave oscillation.

The general three-dimensional acoustic 
wave equation is given by

d2p iPp , cftp _  _1_ jftp 
dx2 dy2 d z 2 C2 dt2

where p is the acoustic pressure, c = y/B/p 
is the speed of sound waves. The general
solution is Fig. 3-2

p(x,y,z,t) — [(Aj sin ckxt + Bx cos ck1t)(A2 sin k2x + B2 cos k2x)
x (A3 sin k3y + B3 cos k3y)(A4 sin fe4z + B4 cos fc4z)]

The boundary conditions are that the particle velocities normal to any wall surface must be 
zero, i.e. Vx = 0 at x — 0 and x = Ll 

Vv = 0 at y = 0 and y = L2 

Vj. = 0 at z = 0 and z = L3

ei ) 

(2) 

(J)

But =  p S- r ^ - , — d- r  -  p ~ t t ,  ~  p - ^ T i  and so the boundary conditions ( 1 ) ,  ( 2 ) ,  anddx dt dy at dz dt
(S) become

— = 0 at x = 0 and x = Ly (i)dx

7̂  — 0 at y = 0 and y — L2 dy

= 0 at 2 = 0 and z  —L3
d z

(S)

(*)
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Now (dp/dx)x - 0 =  0 or

v42/cI(i41 sin +  B x cos cAc1f)(A a sin k3y +  B3 cos k3y)(A 4 sin k4z +  B4 cos k4z) =  0

Since k2 cannot always be zero, A 2 =  0 for  the above expression equals zero. Similarly, j43 =  0 
from boundary condition (dp/dy)y=0 =  0; and A 4 =  0 from  boundary condition (dp/dz)t=0 =  0. 
Then the general solution becomes

p(x, V, z, t) =  ( Al s i nc f r , t + By cos cktt)(B2 co sk2x)(B3 cos k3y)(B4 cos k4z)

or P(*> V. z> 0  =  (cos fr2x)(cos k3y)(cos Av)(C, sin ekvt +  C2 cos cAr,f)
where C 1 =  A 1B2B 3B4 and C2 =  B^B2B3B4.

The second parts o f  boundary conditions U), (5) and (6) yield

^ f x ) i= L  =  ~ ^ 2(s n̂ k2Li)(cos k3i/)(cos k4z)(Ci sin cktt +  C2 cos ckjt) =  0

sin k2L, - 0, k2 =  l - !L x where I — 0 ,1 ,2 , . . .

( f f ) y=L =  _fc3(cos fc2x )(sin t 3LL,)(cos k iz)(Cl sincfc,# +  C2 coscfcjf) =  0

sin kaL 2 =  0, k3 =  m-/L2 where m =  0, 1, 2, . . .

( l z ) *  = L =  “ *4(cos fc2x)(cos fc3i/)(sin A\,L3)(C, sin c k j  -I- C2 cos cktt) =  0

sin k4L3 =  0, k4 =  nv/L3 where n =  0, 1, 2, . . .

The natural frequencies o f the system are given by

or

or

or

(J =  ckt =  + ^ 3  +  ^4

and the normal modes o f vibration are

X (x) Y(y) Z(z) =  cos k2x cos k3y cos k4z

(7)

(8)

(9)

( 10)

which has the same form  as the free transverse vibration o f a uniform rectangular membrane 
fixed at the edges. (See Problem 1.27.)

3.6. Write the general acoustic wave equation in cylindrical coordinates and find its 
solution.

The general acoustic wave equation in rectangular 
coordinates fo r  any three-dimensional space is

d2p , d2p , cftp _  1 d2p 
dx2 dy2 dz2 _  c2 dt2 (1)

where p is acoustic pressure and c =  yjBlp the speed of 
sound in air.

In cylindrical coordinates, a point A  in space is de­
scribed by the three coordinates r, 0 and 2 as shown in 
Fig. 3-3 where

x =  r  cos 0, y  =  r  sin 0, z — z (2)

Differentiating acoustic pressure p with respect to r, e 
and z and transforming, we obtain Fig. 3-3

d2p , jpp , &P _  d2p . 1  Bp , 1 d2p , d2p
dx2 dy2 dz2 dr2 r  dr r2 do2 dz2

d2p 1 dp , i_a^p , <Pp _  1 a2p
dr2 r  dr r2 de2 dz2 c2 dt2

V)

U)and so (1) becomes

A  solution o f  the follow ing form  can be found by the method o f separation of variables,

p (r ,0 ,z ,t )  =  R(r) B(e) Z(z) T(t) (5)

where J?, 6 , Z T are functions o f r, a, z and t respectively. Substituting (5) into (4), we obtain



74 SPHERICAL ACOUSTIC WAVES [CHAP. 8

~r <PR %ZT dR RTZdM _  R*Z<PT
*Z T lr*  ^ V  dr * ~ ^ d i *  + * * * ! ?  “  <*>

end dividing by R**ZT.

1 PR I dR 1 1 (PZ _  _1_ d^T
*  iv* "  rft dr r r**dt* Z dz* c*T dt* <7'

Nu» the right-hand side of (7) is a function of t alone, and the left-hand side a function  o f
r * and z Eai:h side must equal a constant. Let this same constant be — fc*. This leads to the 
following equations

w  + M ‘ T =  0 <*'
with solution T(t) =  A j sin cktt +  cos ekxt, and

1 <PR 1 dR J _  1 cPZ _  .2
Rdri + rR dr r*e dt* Z dz* 1 w

I <FR \ dR ^ I <Pe _  .2 1 &Z _  _  2 , .2 
Rewrite (9) as Z  d z *  ~  +  * *  ( , 0 >

where fc2 is another arbitrary constant. Using the same argument as before , w e see that both
sides o f [10) equal the same constant, —fc* +  k\, so we obtain

H + * * Z = 0 <«>

with solution Z(z) = A 2 sin k2z + B2 cos k2z, and

l <PR l dR _  2 k 2 _  J_d^e
ft dr* + rfl dr ~ 1 2 r^e dt* {12)

Multiplying (12) by r* and rearranging,

t*<PR rd R  p  -,2)2  _  _<&> _  +fc20
R l ^  + R d ^ + ( k  ̂ W  ~  dt* + *3e (JJ)

where fc3 is another arbitrary constant.

By the same argument as before, we have

f j t  +  K *  =  0 («>

with solution e($) =  A s sin k3t +  B3 cos k3t, and

™  -  % *  +  -  & «  =  «  w

Equation (15) is Bessel’s equation o f order k3, with solutions /^ ( r V k* — lê  ) and Y ^ r y jk ^  — ). 
is finite and y kj ia infinite when r  =  0, so we usually require only the J fcj solutions.

The final form for the general acoustic wave equation in cylindrical coordinates is  therefore 
given by the solutions o f equations (A), (11), (U ) and (15),

p(r,t,z,t) =  yk](A ( sin cfc,t + cos C/C]0 (A2 sin cos fe2z)(A3 sin +  B 3 coaJtcjf) (16)

where the A ’s and B'a are arbitrary constants.

_ _ D  dl u  d h i  d h i  d h i  2 d h i  .

3.7. rrove +  +  +  ~ m the general three-dimensional wave equation.

Using r* = x* + y* -t- **, dr/dx = z/r and T“ = 7^ , we havedx dr dx r dr

*** _  1 ^  , x  d h i  d r  _  [~ +  z»~| d u  X s  d h i

d x *  r  d r  r *  d r  d x  r  d r *  d x  L r * J ® r  **
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Similarly,
_  f~>* + . v* <?»» __J a*u _  T»* + **"l . **

»*• -  I *  ] e r  + * 9 *  ,nd -  [  H J Sr H dr*

a*t» d*u _  2 dn . d*u Thu* ■=—j  + r - j  + -T—j  = -  — + x~Tdx* dy* df* r dr dr*

jjl, Determine the general solutions fo r  the three-dimensional w ave equation in spherical 
coordinates fo r  (a) waves having spherical sym m etry, (6) waves having circu lar 
symmetry, and (c) waves having no sym m etry.

The general three-dimensional wave equation in rec­
tangular coordinates is

S*P , & £ ±  d*p
dx* dy9 ia* e1 dt* (t )

where p is the acoustic pressure, and e =  y/B/p is the 
speed of sound.

In spherical coordinates, a point in space is de­
scribed by the three coordinates r, 0 and 0 as shown in 
Fi(r. 3-4, where

x =  r sin 9 cos £ 
y =  r sin » sin 0 
x — r  cos 0

1 1 
1

» . i  x “ .... t /
r.,1 f  r.J.

Fig. 3-4

It can be shown that the general three-dimensional wave equation in spherical coordinates is 
given by

. 1 d*p . 1 d*p 2 dp 1 dp _  I_dfp
dr* r* d#2 r* sin* # d^2 r dr r* tan 9 de c* at2 (*)

(a) For waves having spherical symmetry, acoustic pressure p =  p(r, t) is a function o f radial 
distance r and time t. Equation (1) reduces to

or

a*p . 2 <9p _  1 d^jrp) _  1 d*p 
dr* r dr r dr* e3 dt2

d*p _  e2 d*(rp) 
dt* r dr*

W

W)

Since we assume spherical symmetry here, we could derive the wave equation (4) from (1) 
directly as follows:

r* =  x2 +  y* +  z2, dr/dx =  x /r

and so dp _  dp dr _  x  dp 
dx dr dx r dr

Differentiating the last expression with respect to x,
d*p
djT*

1 dp dr , x d*p dr _  _  Xs d̂ p , y2 +  z* dp
r dr r2 dr dx r dr* dx r* dr2  ̂r r3/  dr r1 dr1 r* dr

d*p _  yf d̂ p +  r3 +  r3 dp
r* dr2

, d ^  _  zf d*p x2 -̂  y* dp 
#nd dr3 _  r* dr2 r2 dr

d̂ p _ ^  . * V ]  _  I 2 <ip\ _  efdf;
dM [dx* dy2 dr«J \dr« r dr/ r 6

df(rp)
dr*

Since r is an independent variable which is not a function o f time t, we can write the 
above expression as

d^rp) _  d*p dHrp) _  od^rp)
a#2 ”  df2 °r d i * ~  9f* (5)
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If the term (rpl is considered a single term, the wave equation in spherical coordinates for 
■0)' three-dimensional spare is of the same form as the plane wave equation derived earlier 
in Chapter 2. The general solution is therefore

rp(r, t) = fi (et — r) + f t {ct + r) 

or p(r. t) = £ /,  (et — r) + ^ /2(cf + r) (6)

where the flrst term (c f -r )  represents a spherical wave diverging from the origin o f the 
r x

coordinate with a velocity t, and the second term - / j ( c t  +  r) similarly represents a wave con­
verging on the origin with velocity e. Both waves diminish in amplitude as the distance from  
the source increases. The converging wave has little application in acoustics while the 
diverging wave is frequently produced by a small pulsating sphere completely isolated from 
reflecting surfaces, and has many uses. If the pulsation of the sphere is sinusoidal, the resulting 
waves are diverging harmonic spherical waves designated by

p(r,t) = (7)

where is an arbitrary constant (real or complex), u is the frequency, and k =  u/e is the 
wave number.

(4) If we assume that the waves have circular symmetry, then acoustic pressure p =  p(r, t , t) ia 
function of r. t and t. The general wave equation is reduced to

Pp , 1 3p , I P p  = l f i p  ,,x
dr* r dr r*de* c* dt°- w

which we solve by the method of separation of variables. First we assume a solution o f  the 
form

p(r, e, t) =  R(r) e(f) T(t) 

where if, and T are functions of r, 6 and t respectively. Substituting into (8) yields

_(W ? e r d f i  S T (P e  *R cPT
<fr* r dr r* dta e2 dt2

and dividing through by R$T,

, J_dR ^ = 1 <PT
Rdr* Rr dr rff* c*r df* W

Now the right-hand side of (0) is a function of t  alone, and the left-hand side a function
of r and t. Each side must equal the same constant Let this constant be — k\. This leads 
to the following two equations:

f j r  +  e t j r  =  o (10)

with solution TV) = j4, sindk,* + cos dr, and

r3 (PR r dR f 1 <jp€> _  _,_s 
R dr* T R dr B d#* i*"

r1 <PR r dR 1 d*t» _  .

where It, is another arbitrary constant

Using the same argument as before, we see that both sides of (11) equal the same constant 
+ ij), and so we obtain

0  + k\* = 0 (If )

with solution 9(f) = j4, sin fcj# + Bs cos kjt and
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+  r —  +  k*r2R -  k lR  =

or

dr2 ^ ' dr T  i ~  *2  

(PR 1 dR
* *  +  r *  -  +  * ! *  =  0 <">

which is Bessel’s equation o f  order k2, with solutions J ^ rk^ ) and Yk (rkj). Jk2 is finite and 
Yk2 is infinite when r  =  0, so we usually require only the Jkz solutions.

The final form  o f  solution fo r  the general acoustic wave equation in plane polar coordinates 
is therefore given by the solutions o f {10), (12) and {13),

p{r, 6, t) =  Jk2{A l sincfcjt +  B x cosefcj£)(A2 sin +  Bz coak2e) (H )

where the A ’s and B ’s are arbitrary constants.

(e) I f we assume the waves have no symmetry, then the acoustic pressure p =  p(r, 0,<f>,t) is a 
function o f r, o, <p and t. W e assume the follow ing form  o f  solution and then solve by the 
method o f separation o f  variables.

p(r, 0, <f>, t) =  R{r) B(o) T(t) (15)

where R, B, 4> and T are functions o f r, 0, <p and t respectively. Now (2) can be rewritten as

d2p  2 dp 1 3 /  ■ | 1 32P _  1 d2p .
dr2 r  dr r2 sin $ d$ ^ d$ J r2 sin2 9 d<fP c2 dt2

Substituting {15) into (16),

^rr^& R  . 2 B T *d R  , R * T  d (  . de\  , RTB d2<t> BR* (PT 
<t>T6 H-------------- =----- h n \— -  t :  s m » T r  +  -dr2 r  dr r2 sin 0 do \ do J r2 sin2 0 d<t>2 c2 dt2

and dividing by RBT<t>,

ld 2R , 2 dR . 1 d (  . _de\ , 1 d2<t> _  1 d2T
+  sm *~aZ +  ~  ¥ 7 2 ^ 2  WR dr2 R r dr Br2 sin 0 do y do J 4>r2 sin2 6 d<p2 Tc2 d£2

The right-hand side of (17) is a function of t alone, while the left-hand side is a function 
of r, e and <f>. Each side must equal the same constant. Let this constant be — k\. This leads 
to the following two equations:

£ £  + c*k\T = 0 (IS)

with solution T(t) =  A l sin ck^t +  cos ckxt and

1 d2R 2 dR , 1 d (  . de\  _  _12 _  1 d24>
R dr2 i2r dr 6r2 sin o do \ 3 do J 1 Qr2 sin2 0 d<f>2

Multiplying (19) by r2 sin2 0 and rearranging, 

r2 sin2 o 1 d?R 2_ dR _ 1 _ ±  • t o )  , k2 
R dr2 Rr dr 8r2 sin o do I do) 1

I d 2*  , 2 
4> d 0 2 _  2

where k2 is another arbitrary constant.

Using the same argument as before, we see that both sides of (20) equal to the same

+  k\<b =  0 (gl)
constant k* so we have

d -vu 4 . i 
d<f>2 +  ^

with solution 4>(<?>) =  A 2 sin k2<f> +  B 2 cos k2<f> and

1 d (  . de\ k* _  r 2 d2R  2r dR _  , ,  ,
0 sin o do ySln d o )  sin2 * R dr2 R dr i r ^

As before, if we let both sides of (22) equal the same constant —ks(k3 + 1 ) , then we obtain 
the following two equations:

s i n i  1 »  (  8in * +  +  11 “  *))e  =  0 (**>

^  + f  ̂  + 1*5 “  +1)/r2l* = 0 (*«
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Ecjuaticn ii-Ji is the generalized Legendre equation with solutions
H(») -  P"(cos»)

»Ber* m and k3 = *.
r., s*iive -V we make the substitution R\r) = r 1 2K'(r) and obtain

**■ -  \ d£  -  i**-l fc,+ i )2/r*]R' = 0 (26>

which is the Bessel equation with solution
rt'ir) = Jn,\>(pr) or + i ,2(Pr)

The final form of solution for the general acoustic wave equation in spherical coordinates is 
tnerefore given by the solutions of (IS), (21), (24) and (26),

p<r. t *. ?> - P” <c<ja »Yr ~ lrl\Ai Jn t i.-i(pr)
+ B3Yn + l r2ipr))(A.i sinmv> + B2 cos mfiHA, sin cpt +  B i cos cpt)

where the .4 s and B's are arbitrary constants.

ACOUSTIC INTENSITY AND ENERGY DENSITY
19. Derive an expression for the acoustic intensity of harmonic diverging spherical waves. 

From Problem 2.14, page 48,

I -  ^ r  pvdt = ^ ^ p0 cos (ut — kx)v0 cos (at — kx — e) dt = \Povo cos 8 (■*)

where P = period, p0 = pressure amplitude, v0 = particle velocity amplitude, k =  wave number, 
and t -  cos - 1 (kr!\j 1 + kh-2) is the phase angle between acoustic pressure and particle velocity. 
Since acoustic pressure p = pJ'/2. and particle velocity v =  v^v/2, (1) can be written as

I — pv cos B (2)

Since specific acoustic impedance z = p/v = pc cos 9 for harmonic diverging spherical waves, 
becomes

/  = (J)

where p is the density and c the speed of wave propagation.

110. Derive an expression for the energy density of a harmonic diverging spherical 
acoustic wave.

The energy density of a sound wave at any instant is the sum of kinetic and potential energies 
per unit volume. Now

KE = *PVoV2 = frV0vl (1)

where p is the average density, V0 the average volume, v the average particle velocity over unit 
volume, and v0 the amplitude of particle velocity.

The potential energy is equal to the work done by pressure and change in volume of the 
medium, i.e.

PE = — j*  pdV (2)

where p is the instantaneous pressure and V the instantaneous volume. Since V =  V ( 1 -  v/oc2) 
and dV = -pVndp/Pc\ 0V F

PE = V0/Pei f  pdp = p2y0/2pC2 = p2y0/4pC2 (j)
0

For harmonic diverging spherical waves,

p = (A/r) cos (ut -  kr) = p0 cos (ut -  hr) u)
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and v =  p (l/r  +  ik)/ipa =  (A\/l +  fcWpcfcr*) cob (ut — kx — e) (5)
(*)which yields v0 =  A V l +  kh^tpckr2

The expression for energy density becomes
E d =  (KE +  PE)/V0 =  i  (p v » + p * /p c * )

Substituting expressions for po and vQ from (U) and (6) into (7) gives

where e is the speed of sound, k =  u/c is the wave number, and r is the distance from the Bource 
to the point of interest in the wave.

3.11. A diverging spherical wave has a peak acoustic pressure of 2 nt/m2 at a distance of
1 m from the source at standard atmospheric pressure and temperature. What is its 
intensity at a distance of 10  m from the source?

Assume the source is emitting a constant amount of energy to the sound waves. For diverging 
spherical waves, the area of the wavefront increases as the waves are traveling farther and farther 
from the source. Hence intensity of such waves diminishes with distance of propagation.

where p =  1.21 kg/m3 is the density of air, and c =  343 m/sec is the Bpeed of sound in air at 
standard atmospheric pressure and temperature.

At a distance of 10 m from the source, the effective sound pressure will change but the power 
radiated will remain the same.

3J2. A simple sound source radiates harmonic diverging spherical waves into free space 
with 10 watts of acoustic power at a frequency of 500 cyc/sec. Find the (a) intensity, 
(b) acoustic pressure, (c) particle velocity, (d) particle displacement, (e) energy 
density, (f) condensation and (0) sound pressure level at a radial distance of 1 m 
from the source.
(a) Intensity I =  W/Attt2 =  10/4(3.14)(1)2 =  0.8 watt/m2 

(M Acoustic pressure p - yj2pd — V2(1.21)(343)(0.8) =  25.8 nt/m*

(<•) Particle velocity r - pipe cos 0 =  0.062 m/sec
where p - 25.8 nt/m2 is acoustic pressure, p =  1.21 kg/ms is density of air, c =  343 m/sec is 
speed of sound in air, cos e =  fcr/V 1 +  fc*r* =  0.99 and kr =  ur/e =  2(3.14)(500)(1.0)/343 =  9.18.

(rf) Particle displacement u =  v/u =  0.062/6.28(600) =  1.97(10)_5m

(r) Energy density (see Problem 3.10)

At a distance of 1 m from the source,

I =  pV2Pc =  22/[2(l.21)343] =  0.0048 watt/m*

Thus

W =  4rr27 =  4(3.14)(1)2(0.0048) =  0.062 watt 

/  =  I*74irr* =  0.062/4(3.14)100 =  0.000048 watt/m2

Condensation « -  p/pc* =  25.8/(1.21)(343)* =  1.8(10)“ *

Sound pressure level SPL =  20 log p +  94 =  20 log 25.8 +  94 =  122.3 db
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3-13. Calculate the amplitude of particle displacement ua and the am plitude of particle  
velocity t-0 of spherical acoustic waves in air at standard atm ospheric pressure and 
temperature. The pressure amplitude at a distance 0.01 m from  the source is 
10 nt/m-, and the frequency of the wave is 25 cyc/sec.

For spherical acoustic waves, acoustic pressure is

p0 = pcv cos 6 = pcvkr/y/ 1 + kh-2 nt/m2

where pc = 415 rayls is the characteristic impedance of air at standard atmospheric pressure and 
temperature. Now cos e = ur/c = 6.28(25)(0.01)/343 = 0.0046, and so

d0 = Py/pc cos 6 = 10/[(415)(0.0046)] =  5.23 m/sec 

U0 = Vo/u = 5.23/[(6.28)(26)] = 0.033 m

These values are much greater than the corresponding values for plane acoustic waves under similar
conditions.

SPECIFIC ACOUSTIC IMPEDANCE
3.14. Derive an expression for the specific acoustic im pedance o f a harm onic d iverging  

spherical wave.
Specific acoustic impedance is defined as the ratio of pressure over velocity at any point in 

the wave. For harmonic diverging spherical waves, we have

P = £ .« • * -* >  (1)

_ d p  _  dVx _dp _  SVv __dp __ &VZ
~ d x  ~  p ~d7 ’ dy ~  p ~d7 '  Tz ~  P H 7  ( '

where k is the wave number, Vx, Vy, Vz are velocity components in the x, y, z directions, and p is 
the density. From equations (1) and (2) we obtain

_*P -  to
dr ~  p dt (5)

which shows that the radial pressure gradient is directly proportional to the radial acceleration. 
Integrating (i), we obtain the radial velocity

„ = = ( i + * ) - ? -  U)
p J  dr tpu dr \ r  J  tpu

Hence the specific acoustic impedance is given by

_  V _  *#>“  _ pck r̂2 , pckr trx
2 ~ v (1/r + ik) ~ (1 +  fcV) 1 (1 +  fcV) ( '

which consists of the real part known as the specific acoustic resistance, and the imaginary part 
known as the specific acoustic reactance. From equation (5),

|z| =  pckr/yjl +  fcV2 (6)

3.15. Spherical acoustic waves of frequency 125 cyc/sec are emitted from a small source. 
At a radial distance of 1.5 m from the source, what is the phase angle between acoustic 
pressure and particle velocity? Find the magnitude of the specific acoustic impedance 
at this point.

For harmonic diverging spherical waves, acoustic pressure and particle velocity may be
IMF FITT^n OQ

p = (A/r)ei(“ ‘ - kr>, v =  kp/pU + ip/pru

The phase angle is found from
, _ cpr2k2 + ierpk per2k2 ipcrk

plV ~ l+ r * k 2 ~ l + r*k2 +  1 + r*k2
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or 0 =  ta n -1  (1/Acr) =  ta n ” * (1/3.42) =  16.2°

where Ic = u/e =  126(6.28)/343 = 2.28, hr =  2.28(1.6) = 3.42.

The magnitude o f  the specific acoustic impedance is given by equation (6) o f  Problem 3.14,

* =  p ck rW T T kW  =  1.21(343)(3.4)/VTT3l2 =  397 rayls

RADIATION OF SOUND
3.16. A small circular piston of mass 0.01 kg and radius 0.05 m radiates sound at a fre­

quency of 1000 cyc/sec. It is mounted in an infinite baffle; the stiffness of the sus­
pension is 1000 nt/m and the mechanical resistance is 10  kg/m. If the effective 
driving force is 1 newton, determine (a) the relative acoustic pressure at a point 
equidistant from the piston but at an angle of 30° from the axis of the piston,
(b) the beam width 3 db down, (c) the power output, (d) the directivity factor, and 
(e) the directivity index.

, , p(30°) _  _  2(0.22) _  Q 9g Qr _ 0 4 db
'°  ̂ p(0°) s'n 9

where k =  u/c =  1000(6.28)/343 =  18.3 is the wave number ka =  18.3(0.06) =  0.92, 
ka sin 30“ =  0.46, and J,(0.46) =  0.22 is the Bessel function o f the first kind o f order one.

(6) To compute the angle e°  at which the intensity is 3 db less than the axial intensity at equi­
distance, we write .

, o\ 23i (ka sin 0)
20 log =  - 3  db or p(0o) “  °-707 _  fee sin 6

from which we obtain ka sin # =  1.6, or sin * =  1.6/0.92 =  1.74 which is greater than unity 
This indicates that there is no angle at which the fall-off in acoustic intensity from the axial 
direction is as great as 3 db.

(c) Power output is given by W =  v*Rr, where v is the particle velocity and Rr =  p c^ R ,  is 
the radiation resistance.

In order to determine Rr, we have
R x (2ka) =  1 — 2J1(2ka)/2ka, R x( 1.83) =  0.38

where 2ka =  2(18.3)(0.05) =  1.83. Hence
R r =  p c ^ R i  =  1.21(343)(3.14)(0.05)2(0.38) =  12.3

4 fx  x3 . sc5 _ ■•■1
Now X ^ x) =  ff|_3 “  P (5) 32(5)2(7) ‘ ’ J

and *,(1 .83) =  0.62, X r =  pCna*Xx =  1.21(343)(0.06)2(3.14)(0.62) =  20.2

Then zr =  R r +  iX T or \*v\ =  V(12.3)2 +  (20.2)2 =  23.3 acoustic ohms.

Mechanical impedance zm =  Rm +  t(wm — kfw) =  10 +  i(62.8 — 0.16)

or \zm\ =  V(10)2 +  (62.6)2 =  63.8 ohms where Rm =  10 kg/m, =  6280(0.01) =  62.8, and 
kU  =  1000/6280 =  0.16.

The total impedance o f the Bystem is

z =  |zr| +  \zm\ =  23.3 +  63.8 =  87.1 ohms

from which v =  F 0/z =  1/87.1 =  0.0116 m/sec

and finally W  =  v*RT =  (0.0115)2(12.3) =  1.62(10) “ 3 watts

M  Directivity factor D  =  t =  2 4

where 2ka =  1.83 and Jl (1.83) =  0.582.

(e) Directivity index d =  10 log D  =  10 log 2.4 =  3.8 db
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3,17‘ radl‘lti0n p^ tern of a square plane rigid piston of sides L mounted
flush in an infinite plane baffle as shown in Fig. 3-5.

Fig. 3-5

In general, the radiation produced by the vibration of extended surfaces, such as pistons, 
diaphragms, or cones, do not have symmetrical spherical radiation patterns characteristic o f a 
simple source. It is to be expected that these sources will have definite directional characteristics 
if their linear dimensions are comparable to the wavelength. The radiation produced by these 
sources can, however, be found by considering them to be assemblages of simple sources whose 
pressure at a point is given by

p = (ipckv0/4irr')et(a‘ ~krl)

where r' is the distance from point A to the source, and v0 is the velocity amplitude o f the surface 
of the piston.

An elementary area of the surface of the piston, dxdz, can be considered to be a simple point 
source radiating into half of the infinite space to the right of the bafHe. This amounts to twice the 
effect of the same source radiating into a free space. Then

dp = (ipckv0/2irr')e i ( o t -k r ' ) dxdz

where r’ is now the distance from point A to the dx dz element. The total pressure at A  due to the 
vibration of the entire piston is therefore found by integrating the above expression over the 
surface of the piston. Now

OA' -  x cos a + z cosy 

/  = r — OA' — r — (x cos a + z cosy) 

and at great distance from the piston, r = r', so we have

c Ldp = 2 rr

from which P = nr

> f L dz f L e ik(lcosa + zcosy)dx
- L

2>pckv0L2 J(at_ kr) j~3in (ka cos a)
ka cos a

sin (ka cos y) 
ka cos y

. , • „ j  sin (k® cos a)The radiation in the yz plane can be determined by putting cosy -  sin/3, and — CQ3g—  =  1
as a approaches 90°,

P -
2ipckv0L2

zr
sin (ka sin /?) 

ka sin /?

sin (ka sin ft) . known as the directivity function which determines the directional char-
ka sin ft

acteristics of the radiation of the source.
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The directivity function is plotted for increasing values of ka as ghown in Fig. 3-6 above. It 
is clear that the directional pattern becomes more pronounced with higher frequencies or with 
increasing dimensions o f the arrangement of sources. In other words, the greater the line 
dimensions of the radiator, the more pronounced the directivity will be. At the same time, minor 
lobes develop in addition to major lobes as the dimensions of the piston are increased.

Similar analysis can be applied to any other extended vibrating bodies in space. In general, 
pronounced directional effects will be observed when the frequencies are high enough so that 
wavelengths are comparable to the dimensions of the radiator.

3.18. A dynamic loudspeaker cone of diameter 0.2 m is mounted in an infinite baffle. Find 
the frequency at which the pressure amplitude along the wall is equal to one half 
of its axial value.

The loudspeaker cone may be regarded as a rigid circular piston of the same radius. From 
Problem 3.16, acoustic pressure amplitude ratio is given by

2J1(fcasin0) j 
ka sin 6 2

2Ji(ka) i
For 9 =  90°, we have — ------  =  -  or ka =  2ka 2
where is Bessel function o f the first kind of order one. Thus

<■> =  kc =  (2/0.2)343 =  3430 rad/sec or f  = 546 cyc/sec

3.19. A pulsating sphere of radius a is vibrating with a surface velocity amplitude v̂ . 
Obtain expressions for the radiation resistance and radiation reactance acting upon 
the surface of the sphere.

For harmonic diverging spherical waves, the specific acoustic impp^^cce is given by equation
(5) of Problem 3.14,

_  pck2r2 . pckr 
Z ~  1 +  fc2r 2 + 1 l +  fcV*

where the real part is known as the specific acoustic resistance and the imaginary part is known as 
the specific acoustic reactance.

The radiation resistance acting upon the surface of the sphere is equal to the product of the 
area of the sphere and acoustic resistance o f the medium in co-tact with the surface of the sphere,

d _ a „ o /  Pck2r2 \ 4irpck'-a1
r ~  [ T T k w J  ~  1 +  k-a- acousticohms

Similarly the radiation reactance acting upon the surface of the sphere is given by
v  _  4jrpeka3

— i +  k2a2 acoustlc ohms
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&20. A pulsating sphere of radius 0.2 m is submerged in water. It radiates 200 watts of 
acoustic energy at a frequency of 1000 cyc/sec. Find the velocity amplitude of the 
sphere at the surface.

For harmonic diverging spherical waves, acoustic intensity at the surface of the sphere is 
given by equation (J) of Problem 3.9,

pet2a2v2 
= 2(1 + fc2a2) Watt3/m2

where p = 998 kg/m3 is the density of water, e =  1480m/sec is the speed of sound in water, 
k = a/e = 1000(6.28)/1480 =  4.23 is the wave number, a =  0.2 m is the radius of the sphere, and 
va is the velocity amplitude of the sphere at the surface.

Now acoustic power output at the surface of the sphere is
2irpck2a*v2 

Wa = 4 *a2Ia = x +  k2a2a watts

/(l + k2a2)fVa I (1 +  0.72)200 _
Thus va -  2trpck2a* \  6.28(998)(1480)(4.23)2(0.2)4 m/seC

SOURCE STRENGTH
3J21. Derive expressions for acoustic intensity and power radiated by a harmonic diverging 

spherical wave in terms of source strength.
Source strength of a pulsating sphere is delined as the product of its surface area and the 

velocity amplitude at its surface, i.e.
Q =  Aira2va m3/sec (1)

where o is the radius of the sphere in meters, and va is the velocity amplitude at the surface 
in m/sec.

From equation (3) of Problem 3.9,
pcv2k2a2

Ia = 2(1 + k2a2) (2)

Because of the continuity of velocity at the boundary, v =  va and so

j _______ e ^ 9 1 ____ (S)
‘ a ~  32s-2a2(l +  k2a2) w

l r “ 2 r pck2Q2 . .or in general / r _  ^  W

If the pulsating sphere is small compared with the wavelength, k2a2 is negligible and (4) becomes

7r = 32j-2r2 watts/m2 (5)
The power radiated equals the product of the area of the surface and the intensity,

W - 4;rr2/ r =  pck2Q2/&ir watts (6)

3.22. A hemispherical sound source of radius 0.2 m is mounted in an infinite baffle and 
radiates harmonic diverging spherical waves into water at a frequency o f  500 cyc/sec. 
If the sound pressure level at a distance o f 4 m from  the source is 50 db re 2 microbars, 
determine the surface displacement amplitude o f the source.

Sound pressure level SPL =  20 log (p/p0) =  50 db where p ia the effective pressure and 
p0 = 2 microbars or 0.2 nt/m2 is the reference pressure. Then 20 log p =  50 +  20 log 0.2 and 
p = 63 nt/m2.

From equation (1) of Problem 3.21,
Q =  4Tra2va =  4jra2uQu ma/sec (1)

where u„ = v j u is the surface displacement amplitude of the source. And from equation (5) of 
Problem 3.21,
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_  pck*Q2 = p2_
° 32v2a2 2pe

Substituting- equation (I) into (2) and solving for u „ , we obtain
p »  63

(2)

_______  P  _  ___________________________
apcku apu2 0.2(998X500)2(6.28)2

where k =  u/c is the wave number and p =  998 kg/m 3 is the density o f water.

=  3 .2 (10 )-' m

^  Tw0 simple sound sources Si and S2 spaced a half wavelength apart radiate harmonic 
diverging waves o f equal magnitudes uniformly in all directions. I f  the radiation 
of the sources are in phase with each other, study the sound radiation pattern o f this 
arrangement.

Let the midpoint between S j and S2 shown in 
Fig. 3-7 be the reference point O fo r  the radiation 
pattern. Acoustic pressure at point A lt a great 
distance from the sources, will be the vector sum 
of pressures radiated from  S t and S2.

For harmonic diverging spherical acoustic 
waves.

_ _ A — kr) _ A i(wf — 27rr/A)© — — € — — € r r

which shows that the phase angle o f acoustic pres­
sure decreases linearly with the radial distance 
from the source. Fig. 3-7

Now ft =  e2 =  8, and sound waves from  Sx travel cos e farther than waves from  S2 in 
reaching1 A,. There will be a phase difference o f ^\(cos e)(2ir/\) or n cos 8 rad between the waves. 
In other words, the wave from S , lags that from S2 by ir cos 8 rad. Acoustic pressure at A j becomes

~ TT COS 0 )

When 8 =  0, we have two sound waves o f equal magnitude but 180° out o f phase with each 
other; hence p =  0. When 8 =  90°, we have two sound waves o f same magnitude and phase; 
hence p0 =  2A ir.

Continuing in this fashion with a locus o f points equidistant from the reference point O, we 
obtain a polar plot o f pressure versus angular displacements as shown in Fig. 3-8, which is the 
radiation pattern or directivity o f this particular arrangement o f two simple sound sources.

Fig. 3-8 Fig. 3-9
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The magnitude 0[ the acoustic pressure at any point in this two-dimensional plot is given by 
the radial distance from the origin 0 to the point in question, e.g. at A2, the pressure is 2A/r, given 
by the line 0.4j.

In general, the larger the extent of the radiator (here we mean the spacing between the sources), 
the sharper will be the major lobe and the greater the number of side lobes. The greater the 
number of the sources, the smaller will be the side lobes as shown in Fig. 3-9 above.

Practically all sound radiators have pronounced directional effects. This is particularly true 
when the source is radiating sound waves at high frequencies. The analysis and polar plot are 
similar.

Supplementary Problems
WAVE EQUATION
3.24. Obtain an expression for a two-dimensional wave traveling in the xy plane with velocity c in a 

direction at an angle t to the x axis. Ans. ifi(x,y, t) = f{x cos i +  y sin $ — ct)

3.25. Show that p = f(lx + my + nz — ct) + g(lx + my + nz + ct) represents the standing waves form 
of solution for equation (J) of Problem 3.1, page 68.

A3.25. Prove that p = — cos (at — kr) is a possible solution for the spherical acoustic wave equation 

.equation U'i of Problem 3.8, page 75).

A3.27. Show that p = — (ct -  r) is a possible solution for equation (4) of Problem 3.8.

3.28. Compute the three lowest frequencies of a rectangular room of dimensions 10 X 15 x 20 meters 
Ans. 28, 37, 50 cyc/sec

WAVE ELEMENTS
3.29. Show that the velocity amplitude of a harmonic diverging spherical acoustic wave is not in 

proportional to the distance of the wave from the source. ^

3.30. For plane and spherical acoustic waves of the same frequency, find the ratios of their 
velocity amplitudes and particle displacement amplitudes. j4ns. 1/110 Pftrticle

3.31. Show that acoustic pressure and particle velocity of harmonic diverging spherical w 
essentially in phase at great distances from the source. ves are

3.32. What is the phase angle between particle displacement and particle velocity of harmoni j -  
spherical acoustic waves? Ans. 90° C ,verging

3.33. Prove that the maxima of kinetic and potential energies at any point in a harmonic d' 
spherical acoustic wave are equal. diverging

ACOUSTIC INTENSITY AND ENERGY DENSITY
3.34. A simple underwater sound source radiates 10 watts of acoustic power at a f

500 cyc/sec. Find the intensity and acoustic pressure at a distance of 5 m from r?uUency of 
Ans. I = 0.032 watt/m2, p = 22 nt/m2 e source-

3J5. The minimum audible sound wave (assume harmonic diverging spherical waves) at th
to which the human ear is most sensitive is 3500 cyc/sec at an effective pressure o f 8/1erif l equeney 
Find the corresponding intensity, velocity amplitude, and displacement amplitude ®nt/m2
Ans. I = 1J>5(10)- ® watt/m2, v0 = 2.74(10)“ 8 m/sec, u0 = 1.25(10)~12 m
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3.36. An isolated point source o f sound o f  s tr e n g th  Q0 ra d ia te s  harm on ic d iv e rg in g  sp herical w aves into 
free space. Find the a v e r a g e  e n e r g y  ra d ia te d  and  th e  specific acoustic im pedance.

Ana. Eov, = Qlk2Poe/8w, z -  1/(1 + 1 /ikr)

3 37. An infinite circular cylinder has a uniform membrane at its open end. The membrane vibrates 
with velocity v = vnel<Jt. Determine the reaction due to acoustic pressure on the membrane.
Ana. p = pcv0e~'kz 

SPECIFIC ACOUSTIC IMPEDANCE
3.38. If fcr = 100, what is the ratio between the specific acoustic resistance and the specific acoustic 

reactance of a harmonic diverging spherical wave? Ana. 100

3.39. For harmonic diverging spherical waves, what is the maximum value of the specific acoustic 
resistance? Ana. ^pc

rad iatio n  o f  s o u n d

3.40. Two simple sound sources of equal strength but pulsating with a phase difference of 180° are 
spaced a half wavelength apart. Determine the radiation pattern.
Ans. A figure eight with axis along the 0° line joining the sources

3.41. Determine the radiation pattern of two simple sound sources of equal strength but 90° out of 
phase with each other and separated by one quarter wavelength. Ans. Cardioid

3.42. Derive an expression for acoustic pressure at a point due to n equidistant simple sound sources 
all in a straight line and identical in strength, frequency, and phase angle.

sin [(mrd/X) cos 9]
Ana. p n g j n  cos

3.43. Show that the d ire c tiv ity  in d e x  fo r  a  n o n d irectio n a l sp h e ric a l source is  equal to zero a t  a ll angles.

3.44. Six simple sound sources identical in strength, frequency, and phase angle are spaced a half 
wavelength apart in a straight line. Find the angles at which (a) maxima and (b) zero amplitudes 
occur. Ana. (a) 90°, 60°, 30°; (6) 71°, 49°, 0°

3.43. A piston source of radius 0.1 m radiates sound in still air at a frequency of 1000 cyc/sec. Find 
the beam width for down 6 db. Ana. 90°

3.46. The first lobe of acoustic pressure occurs at ka sin 8X =  3.83, while the second lobe occurs at 
ka sin = 7.02 for pressure distribution by a piston source. Prove that (p# )ma,  > (pe )max.Tl fl + 1

3.47. Derive an expression for acoustic pressure at a point a greet distance r from a circular rigid 
piston source mounted flush in an infinite baffle.

2Ti-t |_ ka sin e J
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Transmission of Sound

NOMENCLATURE
a = radius, m
A -  area, m2
B = bulk modulus, nt/m2
c = speed of sound in air, m/sec
f = frequency, cyc/sec
/« = incident sound intensity, watts/m2
h = transmitted sound intensity, watts/m2
lr = reflected sound intensity, watts/m2
k = wave number
K = complex reflection coefficient
L = thickness, length, m
P = acoustic pressure, nt/m2
R = characteristic impedance, rayls
rn = normal specific acoustic resistance, rayls
s = condensation
SWR = standing wave ratio
TL =  transmission loss, db
u = particle displacement, m
V = particle velocity, m/sec
W = acoustic power, watts
Xn = normal specific acoustic reactance, rayls
Z = specific acoustic impedance, rayls
Zn = normal specific acoustic impedance, rayls
z , = specific acoustic impedance, rayls
0) =  circular frequency, rad/sec
A =  wavelength, m
a =  absorbing coefficient; viscous attenuation constant, nepers/m

a r =  sound power reflection coefficient

at =  sound power transmission coefficient

P =  density, kg/m3
V =  viscosity coefficient, nt-sec/m2
T =  viscous relaxation time, sec

88
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INTRODUCTION
When sound waves are traveling through a medium, they may be reflected or refracted, 

diffracted or scattered, interferred or absorbed. The transmission of sound involves the 
transfer of acoustic energy through the medium in which sound waves travel.

TRANSMISSION THROUGH TWO MEDIA
For the transmission of sinusoidal plane acoustic waves from one fluid medium to 

another at normal incidence along the plane interface of the two media, sound power 
reflection coefficient aT is defined as the ratio of the reflected flow of sound energy to the 
incident flow of sound energy:

p2c2 -  pxc, 2
i?2 — Rl

P2C 2 +  PiC1_ _R 2 +  R\_

Sound power trayismission coefficient at is similarly defined as the ratio of the trans­
mitted sound power to the incident sound power:

4PlClP2C2a* —
&R\R%

(P1C1 +  P2C2 f  (R l  +  ^ Z)2
where the p’s are the densities and the c’s are the speeds of sound. (See Problems 4.1 4.4.)

For normal incidence at surfaces of solids, the reflected and transmitted sound power 
coefficients can be expressed in terms of the normal specific impedance zn =  rn + ixn which 
characterizes the behavior of solids with sound waves:

a_ —
4 PlCir n

(r n +  PlCl)2 +  XV  1 (*\, +  P,Cl)2 +  *n 

where r„ is the resistive component and xn is the reactive component. (See Problems 
4.5, 4.6.)

For the transmission of sound waves from one fluid medium to another at oblique 
incidence, the sound power reflection and transmission coefficients are given by

/?2 cos 8i — R\ cos 0t”|2 ARiR* cos Qi cos 0ta —r
h i2 
hi '. R2 cos Qi +  Ri cos dt J ' * (Rz cos dx +  R 1 cos 6t)2

where 6i is the angle of incidence and 9t is the angle of refraction. (See Problems 4.5, 4.20.)
Sound power reflection and transmission coefficients for sound waves in air impinging 

at oblique incidence on the surface of a normally reacting solid are
_  (r„ cos Bi — Ri)2 +  x^cos2 6\ _  4Rirn cos 6i

ttr (rn cos 8i +  Ri)2 +  x2cos2 Qi'

(See Problems 4.21, 4.22.)

(r„ cos 9i + Ri)2 +  z 2co a 2 ft

TRANSMISSION THROUGH THREE MEDIA
The transmission of sinusoidal plane acoustic waves from one fluid medium through 

a second and into a third fluid medium is similar to transmission through two media. 
Reflected waves will be generated at the plane interfaces of the fluid media, and part of the 
incident wave will be transmitted through the boundaries. The sound power transmission 
coefficient from medium 1 through 2 into medium 3 is given by

a  __
(Ri + R3)2 cos2 kzL +  (R2 + R 1R3/R2)2 sin2 kiL
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where the R’s are the characteristic impedances of the media, fc2 =  utc is the wave number 
of medium 2, and L is the thickness of medium 2. (See Problems 4.10-4.14.)

Transmission loss is the difference in decibels between the sound energy striking the 
surface separating two spaces and the energy transmitted. It cannot be measured directly 
but is computed from sound pressure level measurements on both sides of the partition. 
Transmission loss TL can be expressed as

TL = 10 log(/i//i) db

where U is the incident sound intensity and U is the transmitted sound intensity. (See 
Problems 7.12-7.14.)

REFLECTION OF SOUND
In general, a sound wave will be reflected whenever there is a discontinuity and interface 

of two media in which it is propagated. The reflected wave depends on the incident wave, 
the angle of incidence, the reflecting surface, and the characteristic impedances of the media. 
The reflected flow of sound energy is proportional to the square of the amplitude of the 
reflected sound wave.

Standing wave ratio SWR is defined as the ratio of acoustic pressure at an antinode to 
acoustic pressure at a node or as the ratio of maximum to minimum amplitudes in a standing 
wave. It serves as an indication of the amount of sound energy reflected at the boundary.

CMITO _  Pmax _  Amax _ Pi +  Pr Pr _ SWR 1
&WK ~ pmi„ “  Amln “  Pi -  Pr 0T Pi SWR +  1

For total reflection of sound waves, SWR = ®, or pr/pi =  1. For zero reflection of sound 
waves, SWR = 1 or pT/pt = 0.

Law of reflection: The angle of incidence equals the angle of reflection.

Snell’s law: , , - ^ f°re-  =  , .Ca“ fr-
(s i l l  0)before (S in  0)after

Echo is a definite or distinct, separate or delayed sound heard by an observer as the 
result of reflection of Sound. A reflected sound produced within 1/10 second interval of 
the original sound will not be detected by the human ear and thus merges with the original 
sound to give rise to reverberation or overlapping echo. A  musical echo is the rapid and 
successive reflection of a sound, and flutter echoes are pulses reflecting back and forth from 
one end to the other end of an enclosure with diminishing amplitude.

The phenomenon of echo has many practical applications such as navigation and travel­
ing, direction finding and ranging, detection of submerged vehicles and objects, and ultra­
sonic flaw detection. (See Problems 4.15-4.19.)

REFRACTION OF SOUND

When sound waves arrive at a discontinuity or boundary, some will be reflected and 
the rest cross the boundary to form transmitted waves. When the angle of incidence is 
greater than the critical angle, all the waves are reflected and none crosses the boundary. 
The direction of propagation of the transmitted waves is not the same as that of the 
incident waves. The transmitted waves are bent toward or away from the normal to the 
boundary in accordance with the speeds of sound in the media. This is refraction  of sound. 
(See Chapter 8.)
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Refraction of sound can take place in a single medium such as the earth's atmosphere 
or ft large body of fluid such as the sea because of the effect of wind or temperature varia­
tions from place to place. (See Problems 4.20-4.22.)

DIFFRACTION o f  s o u n d

When sound waves meet an obstacle, they will spread around the edges of the obstacle 
to give rise to diffraction of sound. In other words, sound waves are bent or their directions 
of propagation are changed due to the obstacles placed in their paths. Also, sound waves 
are diffracted rather than reflected if their wavelengths are comparable with the dimensions 
of the reflecting objects. (See Problem 4.23.)

SCATTERING OF SOUND
Sound waves will be scattered in all directions when they strike obstacles of dimensions 

small compared with their wavelengths. This is in contrast with reflection or diffraction 
of sound.

The amplitude of the scattered waves at great distances from the obstacle is directly 
proportional to the volume of the obstacle and inversely proportional to the square of the 
wavelength. Hence sound of long wavelength will have little scattering effect whereas 
sound of short wavelength will have great scattering effect.

Diffuse echo is produced by the scattering of sound by a collection of small obstacles. 
A harmonic echo is the result of the differential scattering of a complex sound or noise of 
different frequencies.

INTERFERENCE
If sound waves of the same frequency and amplitude are superposed, they either 

neutralize or reinforce each other's effects. The phenomenon is described as interference, 
i.e. the resultant effect at each point in the medium is the algebraic sum of the effects of 
the two waves. Destructive interference occurs at points where they meet in opposite 
phase, and constructive interference occurs at points where they meet in phase.

Standing or stationary waves are formed from the interference of two sound waves of 
equal amplitude and frequency propagated through a medium along the same line in opposite 
directions. There will be fixed positions of zero amplitude (nodes) and fixed positions of 
maximum amplitude (antinodes), and the medium is set into steady state vibration.

Beats will be produced, as in the case of mechanical vibrations, from the interference 
of two sound waves of slightly different frequencies. (See Problems 4.15-4.19.)

FILTRATION OF SOUND
Filtration of sound, like any other forms of filtration, is a process employed to eliminate 

some portion of the sound waves of definite frequencies and wavelengths while letting the 
rest pass. In fact, this amounts to a selective passage of sound waves.

Arou-sfiV filters, e.g. mufflers, plenum chambers, resonators, sound traps or silencers, and 
hydraulic filters, are devices used for separating components of a signal or sound on the 
basis of their frequency. They allow components of sound in one or more frequency bands 
to pass relatively unattenuated, but attenuate components of sound in other frequency 
bands. Fig. 4-1 below.) <See Problems 4.24-4.26.!
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at

(a) Broad-band filter

<*(

(b) Hiph-pass filter

(c ) Low-pass filter

Fig. 4-1

ABSORPTION OF SOUND

medium. This loss of^coLti^ l energy t l^ b s o ^ o gadng thr° Uffh * fluid ° r S°Iid

Viscous losses of sound enero-v in flu’j  j- media by the passage of c o m n r o 1 mec*la arise f r°m shear stresses set up in the
are due to flow of heat from the ^lroufi^ me^la- Heat or conduction losses 
expanded portion of the fluid V*/ ^  Warmer comPressed portion to the slightly cooler 
which causes exchanges of energy lJ t^  r ê er9V losses result from thermal relaxation
Absorption of sound energy occur* •f« fn I  6rent *nternal thermal states of the molecules.
that of the sound waves. In air for* 8 ^  ^ 8Se exc^an^es of energy differs from 
with increasing frequency; and* in ^  \  a ŝo^ ,on ° f  sound energy increases rapidly
scattering effect due to nonhomoeenntiea’- a ?orption of s°und energy can be caused by 

Absorption f  vecneitjes in the structure of water.

lattice vibrations, sound waves and efc1*6̂  ^  attractions between sound waves and 
effects. (See Problems 4.27-4.28) ° ^  mo^on' anc  ̂ ferromagnetic and ferroelectric
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Solved Problems
TRANSMISSION THROUGH TWO MEDIA
4.1. For the transmission of sound waves from one fluid medium to another, derive an 

expression for (a) particle displacement, (b) particle velocity, (c) acoustic pressure, 
and (d) condensation.

When sound waves strike at right angles to a plane interface of two different fluid media, a 
wave will be reflected back along the original path in medium 1, and a second wave will be trans­
mitted through the boundary into medium 2.
(<*) Particle displacement.

The waves in medium 1 are given by
U! =  A ieiiut~k‘x} +  i4re'(" t + kil) (l )

where the first term represents an incident wave traveling in the positive x  direction with speed 
ci =  u/A:,, and the second term represents a reflected wave traveling in the negative x direction 
also with speed cl%

The transmitted wave in medium 2 is given by
m2 = (2)

which travels in the positive x  direction with speed c2 =  u/k2.
We assume the transmitted wave always has the same frequency as the incident wave, 

and so we have ignored any Doppler effect. Because the speeds of sound are different in the 
two media, the magnitudes of the wave numbers fc1 and k2 are different, i.e. u =  cik1 =  c jt2.

At the plane interface of the two media, acoustic pressures on both sides o f the boundary 
(x  =  0) are equal, and particle velocities normal to the interface are also equal, i.e. acoustic 
pressure must be continuous, and the two media must remain in contact at the boundary at 
all times.

Acoustic pressures in media 1 and 2 are
duj

p1 =  ~ & i~ ^  — ik1B 1e%at(Aie~ ik ix — A re'k x̂) (3)

p2 =  =  ik2B2eiat (Ate~ ikiz ) U)

and particle velocities are
_  _  iueiut(A e -iklX +  A re'kix) (5)

1 dt

_  ^ 2  _  jueiut(Ate - ik2x) (6)
dt

At the boundary, x — 0, equations (3), (-4), (5), (6) become
p, =  ifc1B1e*‘Jt(Ai — A r) 
p2 =  ik2B2elutA t 
Vj =  ioelat(A t +  A r) 
v2 - iuei<JtA t

Equating acoustic pressures and particle velocities at the boundary, we obtain
B 1k1(Ai - A r) =  (7)

A { +  A r =  A t (*)

Eliminating A t from equations (7) and (5),
A t PiCt — P2c2
A j  Plc l +  Pzc2

and eliminating A r from equations (7) and (8),
A t _  %Pici 
A{ piCi +  p2c2

(9)

(10)



j nf the medium, and c is the 3pee(j
where the bulk modulus B = ^  Bk = pcm, p is the density ^ p la ce m e n t  while A t/A
of sound in the medium. <4,7^ js caned the reflection coefficient 
is the transmission coefficient for displacement amplitude.

, ,  tL . nurely resistive impedance P2c
I sing z.,. the specific acoustic impedance, instead of tn p become 

at the boundary for the terminating medium, equations (9) and (i

Ar Ple t -  z., -  z2 (9)', {loy
T ~  -- --------------- ;— :  l i — I------ > 4 .  R \  +  2  2•A* PlCl +  z2 R | +  z2 A i

coefficients fo r  displacementwhich are known as the complex reflection and transmission — This agrees with
amplitude. For the limiting case Rl — R.,, we have A r =  0 an(* *___^  an(j ^  _  q
the physical situation of a continuous medium. I f  Rz ^  ^i> r 1
Rx >  R,. .4r = and A t =  2A{. (See Problem 4.2,)

<M Particle velocity.

Particle velocities for incident, reflected and transmitted waves are

[CHAP. 4
TRANSMISSION OF SOUND

dUi _  Sur . _
1\ -  dt -  IV =  j j -  =  iuuT, vt =  J j -  -

and hence the reflection coefficient for velocity amplitude from  m edium  1 to  m edium  2 is
IV __ U>UT ^  UT A r p lCl —  P2c 2 

l’ i « j  A j  p jC j +  P2C2

which is the same for particle displacement as given by (9). S im ilarly, th e  transm ission  coeffi­
cient for velocity amplitude is

l i  = _  (12)
v i P lcl +  P2C2

and if the terminating medium 2 is not infinite in extent, w e have the corresponding complex 
reflection and transmission coefficients for velocity amplitude:

( 11 )

l ’ r R 1 — z2 v t 2 R X (11)', (12)’
v i R j -)- z2 ’ fj R i  +  z2

(e) Acoustic pressure.
The acoustic pressure in medium 1 consists of two parts:

Pl =  Pi +  pr =  Piei(“ t- fc>*) +  p re «“ t + k«I ) 

and the acoustic pressure in medium 2 is simply

V i  =  p t e ‘ (u ,- k*l)

Now the pressures at the boundary x — 0 are equal,

(Pi)x=o =  (^2)1=0 or Pi +  Pr =  P,

We have defined the ratio of acoustic pressure in a medium to the associated particle 
velocity as the specific acoustic impedance, i.e. 2 =  p/v, then

= Pj/pjCj, vT = - P r/PlCj, vt =  Pt/P2c2 

Since the velocities at the boundary are also equal, we have

(Vi)x=0 + (vr)z=0 =  (vt)i=0

Or Pi/pl^l -  *VPlcl = *VP2C2 ^

Eliminating Pt from equations (IS) and (14),

Pr _  P2e2 ~  PlCl _  R2 ~  R 1 (15)
Pi P2C2 +  PlCl +  R l

and eliminating PT from equations (IS) and (14),

Pf 2P2C2 _  2R2 (16)
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Equation (IB) is the reflection coefficient for pressure amplitude while (18) is the transmission 
coefficient for pressure amplitude. If the terminating medium 2 is not infinite in extent, we 
obtain the corresponding complex reflection and transmission coefficients for pressure amplitude:

P r Zn — Rl P  g 2R2
PT -

Thus we may write the reflection coefficients for displacement, velocity, and pressure as
A r Rl — R2 _  vr Pr
Aj R j +  fij *1 P\

We see that particle displacement /md particle velocity in the reflected wave are in phase with 
each other, but 180° out of phase with acoustic pressure of the reflected wave.

The acoustic pressure of the reflected wave at the boundary is therefore either in phase or 
180° out of phase with that of the incident wave at the boundary, depending on the values of 
the characteristic impedances of the media. If the second medium is very dense, R2 is much 
greater than R lt and PT =  P{. The pressure amplitude at the boundary is an antinode, and no 
phase change takes place between the reflected and incident wave. If the second medium is a 
rarefied medium, R2 is much less than Ru and Pr =  — P(. The pressure amplitude at the 
boundary is a node, and a phase difference of 180° exists between the incident and reflected 
waves.

(d) Condensation.
The incident, reflected, and transmitted condensations are

duj 9ur dut
* i =  - 3 7  =  * 1« 1. «r =  - J Z  =  - * I « r .  =  * * “ «

*
Therefore the reflection coefficient for condensation amplitude from medium 1 to medium 2 
is given by

* r  _  _  — Mr _  ~ A r  _  ~  P 1^1

*i “ i A.t p?Ct +  plel

and the transmission coefficient for condensation amplitude from medium 1 to medium 2 ia 
similarly given by

*t _ _ (u/cj)At _ 2pi<) {18)
«i * 1 “ ! fciAj -  (u/ cjJAj “  ej(p,e, +  pjCj)

If the terminating medium 2 is not infinite in extent, the complex reflection and transmission 
coefficients for condensation amplitude become

®r ** -  *t 2J?,e,
«{ z* +  J?, ’ t { e,(*j + J?,) (17)', (18)’

42. Derive expressions for the transmission of sound energy from one fluid medium to 
another.

The avenge power per nnit area for the incident, reflected, and transmitted waves is 
respectively

Wi =  f a c t A * * ,  W r =  fa C i A l J .  W, =  (1)

where the A ’s are displacement amplitudes, u is the angular frequency of the sound wave, i =  R t 
and pjfj =  fi] are the characteristic impedances of the media.

Therefore the ratio of the reflected flow of energy to the incident flow of energy is

wr aj rp.*i-Pr^r1 r* i-*n*  
wt !̂ |C, w

Since intensity /  =  pV2#c, and sound energy is proportional to its intensity, we can n p i —  
equation <•» as

{r Pj/UlCx _  _  rg l ~
** pf L*i ^ ®*J

where is the aoond pew  RflectMS fm fciw it or amply rt flection m ii im L
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Similarly, the sound power transmission coefficient is the ratio of the transmitted flow o f sound 
energy to the incident flow of sound energy:

or

Wt R2A2t 4R\R2 4RlR2
“  R,(R, +  R2)2 ~ {Ri+Rz)* tt)

_  I, _  P*/2RS f i , r  2R2 -j2 _  4RjR2
Ii P*/2Rt i?2L ( « i + « 2)J (Bi +  R2)2 (5)

. ,. . „ 5„  water is incident normally on a boundary
43. A plane sinusoidal longitudinaliTmprfium can be assumed to be infinite in extent, 

between water and ice. If each Ut/Uif (c) Vr/Vi, (d) vt/vu
compute the following amphtu e ■ ^  where u, v, p, s and I are respec-
(e) pr/pt. (f) Pt/Pi, (9) sr/s„ velocity acoustic pressure, condensation and 
tively the particle displacement. *and t indicate whether these terms 
intensity amplitudes, and w ere respective phase angles, are reflected, incident or transmitted. Find also

At standard temperature and atmospheric pressure, we
(pe)w.ur = <*>, = (998KU80) = 1,480,000 r.yls 
<*)w  =  M .  =  W (3 2 0 W  =  2.9« - <,0°  

where ,  is the density in kg/m» and « i. the speed of sound in m/sec.

ur (pch -  (pc)2 _  (1.48 — 2.94)106 _  _ 0 33
(а) ^  = (pch +  (pc)2 -  (1.48 +  2.94)106 

ur is 180° out o f phase with u4.

Mf 2 (pc), _  2(1.48)106
(б) ^  -  (P C ), +  (Pc)2 “  (1-48 +  2.94)10®

« t is in phase with m(.

v, =  {fCh -  (pc), =  _ 0 33 as ln (a)
Vi (pe)i + (pc)2 
vT is 180° out o f phase with v{.

(d) — =  =  0.67 as in (6).
(ptf)l +  (Pc>2

=  0.67

(•)

vt is in phase with v{.

Pr _  (pc)2 -  (Pc) 1 _  (2.94 -  1.48)10B _
=  0.33

=  1.33

Pi (pc)z +  (Pc)i (2.94 +  1.48)106 
pr is in phase with

{f) _  2(pc)2 2(2.94)108
Pi (pc)2 +  (pe)1 ~  (2.94 +  1.48)106 
Pt is in phase with pj.

»r (pc)2 -  (pC)j
— =  , . - : , ' =  0.33 as m (c)®i 0>c)2 +  (pc)i

sr is in phase with 8j.

(h) -  =  2(̂ c t> 2(1.48)(1480)10fl 0 „
8i C2(P1C! +  P2c2) 3200(1.48 +  2.94)10« 

is in phase with

(?)

(0 V / ,  =  (m A )2 =  (-0 .33)2 =  0.109, see (a) 
l r is in phase with / {.

(J) IJIi =  1 -  l Tlli =  1 -  0.109 =  0.891
It is in phase with It.
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4.4. A beam of sound waves is incident normally on a plane interface of air and an 
infinite body of fluid of unknown impedance. If half of the sound energy is reflected, 
find the unknown impedance.

Sound energy reflected is described by the sound power reflection coefficient given by equation 
(£) of Problem 4.2,

where R  ̂ — PlCj =  1.21(343) =  415 rayls is the characteristic impedance of air, and z2 is the char­
acteristic impedance o f the fluid.

4.5. Derive an expression for the sound power 
reflection coefficient for plane acoustic waves 
in air impinging at oblique incidence on the 
surface of a normally reacting solid.

The normal specific acoustic impedance zn is 
defined as the ratio o f the acoustic pressure to the 
particle velocity at the surface o f the solid. For 
oblique incidence and at x  =  0,

=  r„ +  ix„ -  ~

v>i 'V
P r y

«r f

Air (fl,) \ /  X
m w / z m m w r n m m m m m  w

Solid (zn)

Fig. 4-2

or Pi +  Pr
" Vj cos -I- vT cos (180° — eT) 

where “  M cos»i -  an(j Pr =  A rei(<Jt “  -  k*vcoser) ,

NOW V; = P>
Pic i

and vr =
~ P r  
Pi ci ’

Ar
A  i

then
Pic i(A i  +  A t)

= zn cos et or
A i - A r 

(rn cos -  p,cj) +  ixn cos e,
(rn cos +  pjCj) +  ixn cos 9t

Hence the sound power reflection coefficient is given by

(rn cos Bj ~  Plct)2 +  x\ cos2 0j 
(r„ cos 9t +  P(C,)2 +  x2 cos2 0iA ?

Similarly, the sound power transmission coefficient is
4p,c1r„ cos 8{

“ t - (rn cos +  PiCi)2 +  x2 cos2 8i

Since for most solids rn >  pxclt the magnitude of the sound power transmission coefficient will 
reach a minimum when rn cos 0{ =  PiC\.

An acoustic tile panel has a normal specific acoustic impedance of 1000 — 1300i rayls. 
Compute the sound power reflection and transmission coefficients for plane acoustic 
waves in air incident normally on the surface of the panel.

The normal specific acoustic impedance of a solid is the ratio of the acoustic pressure acting 
on the surface of the solid to the particle velocity of the fluid normal to the surface of the solid, 
i.e. zn =  rn +  ixn, where rn is the resistive component and xn is the reactive component.

For normal incidence 8t 90°, the sound power reflection coefficient is (see Problem 4.5)

<rn ~PiCi)2 +  x j  _  (1000-4 1 5 )2 4 13002 
(rn +  PjC>  + x2 (1000 +  415)* +  13002 ~

where Plc, =  1.21(343) =  415 raylB is the characteristic impedance of air.
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4.7.

4A

Sim ilarly, the sound power transm ission coefficient is

4p,<V, _  4(415)1000 __
_  <r* + Pici)' + *1 U000 +  415)2 +  13002

or simply a, ~ 1 — *»r = 1 — 0.55 -  0.45.

Plane acoustic waves in air strike the surface of an acoustic tile panel having a normal 
specific acoustic impedance of 1000 — 1300i rayls. Find the angle of incidence so that 
the sound power reflection coefficient will be a minimum. Find also the reflection
coefficient for an angle of incidence of 80°.

The sound power reflection coefficient w ill be a m inim um  w hen (see P rob lem  4.5)

r „  cos =  Ple l

where z , -  rn 4- ixn =  1000 — 1300t rayls,

r„ = 1000 rayls is the normal specific acoustic resistance,
=  cos “ 1 (piCi/rn) is the angle o f  incidence,

^  — 1.21 k g /m 3 is the density o f  air,
= 343 m/sec is the speed of sound in air. Hence e t =  cos_ , (415/1000) =  65.5°.

The sound power reflection coefficient fo r  ffj =  80° is

(r„ cos^i -  f l , )2 +  x ;  cos-tfi _  [(1000)0.174 -  415]2 +  13002(0.174)2 _  ^  

iXr ~  (r n cos Si +  R ,r 2 +  x l  cos- 6 i  ~  [(1000)0.174 +  415]2 +  13002(0.174)2

Derive a general expression for the specific acoustic impedance for propagation of 
plane acoustic waves in a homogeneous and isotropic fluid medium where reflection 
is present.

The total acoustic pressure and total particle velocity at a point in terms o f  incident and
reflected waves are ->

p =  p{e 5 +  Prellat + kx)

v =  Viei(ut~kx) +  vre i(at + kx>

Now the complex reflection coefficients for  acoustic pressure and particle velocity are given by

K — —  — z2 ~  v  __ v r __ ~  z2 _  Tjr
p Pi z2 +  R i ’ v -  ~  ie1 +  z2 “

The total acoustic pressure and total particle velocity can now be expressed as
p =  p .{eilut-kzi + K p e «ut + kz>)

v =  — K pei(<Jt + k l))

Since specific acoustic impedance is defined as the ratio o f the total acoustic pressure to the total 
particle velocity at a point, we have

_  p _  Pi e~ ikx +  K eikx _  ( e ~ikx +  K e'kx\
v ' e~ ikx — K eikx pC \ e ~ ikx — K eikxJ

This ratio gives the specific acoustic impedance at any point o f  the medium as a function of the 
characteristic impedance pc of the medium, the reflection coefficient at the boundary, and the 
distance x from the point in question to the boundary. In short, it  controls the t r a n s m i s s i o n  of 
sound energy from one medium to another.

If there is no reflection at the boundary, K  =  0, and the specific acoustic impedance zs will t>e 
reduced to the characteristic impedance pc of the medium.

It is interesting to note that at a distance L from  the boundary in the first medium, x  — — 
and if K = 1,

/  eikL +  e~ ikL\
Z* ~  PC [ l i k L -  e -ikL J =  - {PC C0t k L

which corresponds to the driving impedance of a flexible string.
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4.9. Determine the impedance o f (a) a quarter-wavelength fluid column, and (6) a half­
wavelength fluid column for the propagation of plane acoustic waves.

(a) Q u a rte r-w a v e le n g th .

The specific acoustic impedance of a fluid column of finite length is given by
^-ikx 4. Xe'kI 

*• “  pC -  Ke**
where pc is the characteristic impedance of the fluid medium, K — Kp is the complex reflection 
coefficient for acoustic pressure, and k = <j/c is the wave number. (See Problem 4.8.)

Now k  = u/e = 2jt/\ and kx = (2ir/X)(—X/4) = —r/2 (the minus Bign is needed because 
x = 0 at the boundary). Hence

fUTr/2) +  _  f  I -  K \
-  Pc e Unm ~  K e -i(ir/2) -  pC\\ +  K J

If K = 1, (e.g. R2 ► Hi, or z2 -* «  for rigid terminating boundary) z, =  0; i.e. the 
input impedance is zero.

If K = — 1, (e.g. >  R2, or with a rarefied terminating medium) z, -* » ;  i.e. the input 
impedance is very large.

If K = 0, (e.g. continuous medium, or matching impedances) z, — pc; i.e. the input 
impedance is equal to the characteristic impedance of the medium.

If the column is terminated by a medium infinite in extent, K  =  (R2 — Rl)/(R2 +  R i) and 
zs = pcRx!R2 = R^IR .̂ The input impedance is therefore inversely proportional to the ter­
minating impedance R2.

(b) Half-wavelength.

If K  = 1, z, = •. If K  = -1 , z, =  0. If K =  0, z, =  Pc.

If the column is terminated by a medium infinite in extent, K  =  (R2 — R\)l(Rz +  R\), 
z, = pcR2/R, =  R2. This means that the input impedance of a half-wavelength fluid column 
equals its terminating impedance.

TRANSMISSION THROUGH THREE MEDIA
4.10. Derive an expression for the transmission coefficient of plane acoustic waves through 

three homogeneous and isotropic media.

^ i c o t - k . x )
y .

A tei(" t_k3l)

A re'(‘*’t + k'r) + k>1)

medium 1 medium 2 medium 3 X

0 L

Fig. 4-3

As shown in Fig. 4-3, the incident wave Aje1*"1 k|I) is traveling in the positive * direction and 
the reflected wave at boundary I (x — 0) is A rei(“ t + fclI). Then the wave in medium 1 is represented by

u, =  A ie‘(“ ,_k*I) +  A rei(" ‘ + ,c>1) (J)

Now the transmitted wave at boundary I is BteUat~k,x), and the reflected wave at boundary 
II (x = L) is Bre1<1,'t + k‘l ) . Then the wave in medium 2 is given by

t*2 =  Btei(a,t~k,x) +  Breiiat + ktX* (g)
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Part o f the wave incident norm ally on boundary II w ill be transm itted  in to  m ed ium  3 as

_ ( 3 )

w here the A ’s and B ’s are amplitudes o f sound waves, and k x =  u /c j, k2 — u /c 2 ®n<i k 3 u /c 3 
are the wave numbers.

U nder steady state condition, we have the follow ing two bou ndary  con d ition s  a t b ou n d a ry  
I and II.

1 1) the acoustic pressures at both sides o f the boundary are equal,

•;2i the particle velocities normal to the boundary are equal.

Thus at boundary /  (jr =  0)
P, = P2 or - B , —  = - B 2 —

where B is the bulk modulus o f the medium and k — u/c the w ave num ber. S u b stitu tin g  (1) and 
(.'I into the above conditions, we obtain

~ B x{.-iklA if<at +  iklA reiur) =  - B 2(—ik2B tciut +  ik2B rcilJt) 

or PjC^Ai -  A r) =  p.,c2(B t - B r) U)

where c — \ Bip is the speed o f sound and k — u/c.

du, du>,
At x = 0, — i =  —f- or A ; +  A r =  B t +  B r (5)

dt dt

Sim ilarly at boundary II the acoustic pressures are equal, i.e., at x =  L ,
cIk, du,
dx dx

or -B , ( - i 'f c 2B tc i(u,,_k2L) +  ik2BTeiiu, + klL)) = - B 3( - i f c 3A tei“ t)

which reduces to p2c2(B te_lklL — BTelk,lL) =  p3c3A t

and the particle velocities normal to boundary II are also equal, i.e., at x =  L,

0T Bte~ ik*L +  £ re ik»L =  A t (7)
ot Bt

Solving: equations (-4) to (7) simultaneously, we obtain
2piCjP2Co

A i P2c2(psca +  Pic i) cos k2L +  i(p2c* +  pjCjpiCj) sin A:2L
(®>

We assume medium 3 extends to infinity, and write z3 =  p3e3 =  R 3, p2c2 =  R 2, PiCt =  Ri~. then 
equation (8) becomes

A t _ ____________________2R2R x___________________
A j f l2(ft3 +  R j) cos k2L +  i(Rj  + R3R,)  sin fc2L

Now the sound energy transmission coefficient is

/ 3 (P,)23/2R3 R j A'1 R t
h  = = 3r,(w

a t =  ----------------------------------------4R *R \___________________________
(R3 +  Ri)2 cos2 k2L +  (R2 +  B3R ,/R 2)2 sin2 k-L

In the following cases we can further simplify the sound energy transmission coefficient given 
in equation (10):

a, -  — -

and from equation (9),

(а) When medium 3 is the same as medium 1, we have R3 =  R x and

~ 4 cos2 k2L + (RJRl +  R t/R2)2 sin2 k2L (13)

(б) For sound transmission from a rarefied medium through a dense medium into the same rarefied 
medium, such as sound waves from air in one room through a solid wall into air in an adjacent
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room, we have R2 ^  R\, and so (1 1 ) yields
_  4 

a* ”  4 cos2 k2L +  (R2/Rx)* sin2 k2L (li)
R2 sin k^L

(e) When the rarefied medium is air, we have ------5------->  2 cos k2L. Except for a very thick
medium 2 (i.e. large L) and high frequency sound, we have k2L <  1 and sin k2L -  k2L. We 
obtain the simplest expression for sound energy transmission coefficient from equation (10),

4 R\

where L is the thickness o f medium 2, Aj =  R 3 are the characteristic impedances of the media, 
and k2 — w/c2 is the wave number.

ill. A plane sinusoidal acoustic wave in water is incident normally on the surface of a 
large steel plate of thickness 0.02 m. If the frequency of the wave is 3000 cyc/sec, 
find the transmission loss through the steel plate into water on the opposite side.

The sound energy transmission coefficient is defined as

_  ______________ 4______________
a* 4 cos2 k2L +  (R2/Rl )2 sin2 k2L

where k2 = u/c =  3000(6.28)/5050 =  3.74 is the wave number for steel, k2L =  3.74(0.02) = 0.075, 
R2 = 39 x 10® rayls is the characteristic impedance o f steel, and JZX =  1.48 X 10® rayls is the 
characteristic impedance of water.

Now k j j  =  0.075 =  0.075(180°)/3.14 =  4.3°, cos k2L =' cos 4.3° =  1.0, sinfc2L =  sin 4.3° = 0.075, 
and the transmission coefficient is

* 4 +  (39/1.48)2(0.075)2 

The transmission loss is TL =  10 log (l /a t) =  3.02 db.

412. Maximum transmission of plane acoustic waves from water into steel is required. 
What should be the optimum characteristic impedance of the material to be placed 
between the water and the steel ? If the thickness of the layer of material to be used 
is 0.02 m and the frequency of sound transmitted is 1000 cyc/sec, find the speed of 
sound in the material and the density of the material.

The sound energy transmission coefficient for transmission through three media at normal 
incidence is given by

_  ^R\R^
at (Rx +  R 3)2 cos2 k2L +  (R2 +  R lRitR^)2’ sin2 k2L

where RVR2,R 3 are the characteristic impedances of the media, k2 =  u/c2 is the wave number of 
medium 2, and L the thickness o f medium 2.

If k2L =  (2n — 1)tt/2 where n =  l ,2 , . . . ,  then sin k2L = 1 and cos k2L = 0, and the trans­
mission coefficient becomes

4R\R$
“  (R2 +  fl ,f l3AR2)2

For maximum transmission of acoustic power, R2 =  V R 1R3 where Ri =  1,480,000 and R3 = 
47,000,000 rayls at standard temperature and atmospheric pressure; hence R2 = 8,350,000 rayls. 
Therefore 100% transmission of sound occurs only for bands of frequencies centered about the 
particular frequencies for which

/  =  < 2 n -l)e 2/4L

or c2 = 4Lf =  4(0.02)1000 =  800 m/sec, and p =  R 2/c2 =  8,350,000/800 = 10,500 kg/m3.
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4.13. Show that a very thin layer of solid material of appropriate characteristic impedance 
may be employed to prevent two fluid media from mixing with each other and yet not 
interfere with the transmission of sound of low frequencies between them.

The sound power transmission coefficient from medium 1 through the thin layer into m edium 
3 is (see Problem 4.10, equation (10))

4i?ji?3
£ff (R3 +  ft,)2 cos2 k2L +  (R2 +  /?3/? j/i?2)2 sin2 k2L

where the R's are the characteristic impedances o f the three media, k2 =  w/c2 is the w ave num ber 
fo r  medium 2, and L is the thickness o f medium 2.

I f  u) is small, i.e. low frequency sound, k., is small. We have k2L  -* 0, cos k2L  == 1, and
sin k.,L =  0. Hence cos-k .X  — 1, sin2 k.,L =  0, and

4RtR3
a< ~  (R3 +  RO 2

which is the same sound power transmission coefficient as for sound waves m oving d irectly  from  
medium 1 into medium 3. See Problem 4.2, equation (4).

4.14. A beam of plane sinusoidal acoustic waves in water is normally incident on a steel 
plate o f thickness 0.04 m and emerges into water on the opposite side. I f  the 
frequency of the wave is 5000 cyc/sec, find the phase angle between the incident and 
transmitted waves.

The amplitude ratio of the incident and transmitted waves fo r  sound transm ission  through 
three media is

Ai (/?3 +  R j) cos k2L (R2 +  R 3R\) sin k2L  
A t 2R3 2R3R2

where the R ’s are the characteristic impedances of the media, L  is the thickness o f  m edium  2 and 
k2 =  u/c., is the wave number of medium 2. The phase angle between the incident and transm itted 
waves is therefore

9  =  tan - l - (R l+ R .R ,)
I R ^  +  R , )  t a n  z L =  17.6c

where k* =  « /e 2 =  5000(6.28)/6100 =  5.15, k2L =  5.15(0.04) =  0.206, tan k2L  =  tan 0.206 =  
tan 10.5° =  0.181, R { =  R3 =  1,480,000 rayls, R2 =  47,000,000 rayls. The incident w ave at x  =  0 
therefore leads the transmitted wave at x =  0.04 m by 17.6°.

REFLECTION OF SOUND

4.15. Plane sinusoidal acoustic waves in air are incident normally on a plane surface of 
characteristic impedance 785 rayls. Find the standing wave ratio.

A t standard atmospheric pressure and temperature, the reflection coefficient fo r  acoustic 
pressure amplitude is ^  =  =  ^  _  R ^/(R  ̂+  =  0 3 l

where R  ̂ =  p,Cj = 415 rayls is the characteristic impedance o f air.

Standing wave ratio SWR =  (1 +  PTIP\)I( 1 — PriP j) — 1.9.

4.16. A ship is steaming toward a cliff with constant speed in the fog  and the siren on the 
ship is sounded every minute. The echo of the first whistle is heard after 20 seconds 
and that of the second after 16.5 seconds. Compute the original distance o f  the ship 
from the cliff and her speed. What is the minimum distance for the observance

j* . _ __Oo f an echo?
Let 8 in meters and v in m/sec be the distance and speed o f  the ship A lso  1 

sound be 343 m/s ec. The first echo is heard after the ship has advanced 20v nr * sPeed o f
343(20) =  2 a -  20v

(1)
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The second echo is heard after the ship has moved ahead v(16.5 +  60) m:

343(16.5) =  2s -  76.5v (2 )
Solving, 8 =  3640 m, v =  21 m/sec.

Sound waves emitted from the source will take a definite length o f time to reach the surface 
and reflect back. Since the human ear is unable to distinguish separate sounds unless the time 
interval between the two sounds is more than 1/10 second, an echo will be observed when the time 
interval from emission to the arrival o f sound is equal to or greater than 1/10 second. Then

2a =  vt or s =  vt/2 =  343(l/10)/2 =  17.2 m
and so the minimum distance is 17.2 m.

4.17. A plane sinusoidal acoustic wave of effective pressure 100 nt/m2 and frequency 
1000 cyc/sec is incident normally on the plane surface of the water. Calculate 
(a) the acoustic pressure of the wave transmitted from water into air, (b) the 
intensity of the incident wave in water and of the transmitted wave in air, and
(c) the ratio of the intensity of the transmitted wave in air to that of the incident 
wave in water.
(a) The transmission coefficient for acoustic pressure amplitude is

&  =  2 P2c 2 =  _____ 2(416)--------  =  5.6 3 x 1 0 -4
P i  P2C2 P i c \ 1>480,000

where Plc, =  1,480,000 and p2c2 =  415 rayls are the characteristic impedances of water and 
air respectively at standard temperature and atmospheric pressure. Thus the pressure of the 
transmitted wave in air is

pt =  5.63 X 1 0 - 4(100) =  5.63 X 1 0 '2 nt/m2

(b) The intensity of the incident wave in water is

I  =  —  =  . =  6 .7 8 X 1 0 - 3 watt/m2II Plc1 1,480,000

and the intensity o f the transmitted wave in air is
p2 [5.63(10)- 2]2 c ( „

r  J-S- =  i------1—1— L  =  7 .6 X 1 0 -6 watt/m2
P2c2

(c) J  =  g g j io p *  =  1.13 X i o 3 or 10 lo g (1 .1 3 X 1 0 -3 ) = -2 9 .5  db

4.18. For normal incidence of plane sinusoidal acoustic waves from hydrogen to oxygen, 
find the ratio of the reflected sound energy to the incident sound energy.

The ratio of the reflected sound energy to the incident sound energy is

=  \P'C' T  g >T  =  0.36
L P l e l ' P2e 2_

where pj - Phydrogen ~ 0.09 kg/m®, P2 — Poxygen 1.43 kg/m®, Cj ĥydrogen 1269 m /sec and 

c2 =  Coxygen =  317 m/ aec-

Since el/e2 =  VpVpi* we can express the sound power reflection coefficient as

c i — c2VP2 ~  V pi”|2— -----—  =  0.36 or
VP2 +  W l  -I ct c2

2
= 0.36

4.19. Derive general expressions for the reflection and transmission coefficients of plane 
acoustic waves incident normally on the plane interface of two absorbing media.

Assuming linear absorbing media, the particle displacements o f the incident, reflected, and 
transmitted waves can be expressed as
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ttj =  A,e~aiX eUt,t~klX) 

ur =  A re~aiX e i(lJt + klJ)

Uf =  A te~a,x e Uwt~ktl}

where the A ’s are the amplitudes of the waves, and a2 are the linear absorbing coefficients 
the two media, k x — (1j/c1 and k2 — u/c2 are the wave numbers.

o f

A i(- a lX e ^ t-k .x )
y

A  e- a sr c iCut-k2i>

A re~ a 11 +

medium 1 (ptct) medium 2 (P2c2) X

0

dUi duT 
~dt +  ~dt

Fig. 4-4

The boundary conditions are:
(1) The particle velocities normal to the interface are always equal, i.e., at x  =  0,

dut
I t

or Ai +  A r = A t

(2) Acoustic pressure on both sides of the interface is the same, i.e., at x — 0,

du; dur du,
- B x ~  -  B l =  - B 2 —  ̂

dx dx dx

or (aj +  ik1)B iA i +  (ax — ik^ByAj. =  («2 +  ik2)B 2A t

where B is the bulk modulus.

Elimination of A t from equations (1) and (2) gives

A r B2(ol2 ^ 2) — ^ i(ai "t” ^ 1)
B 2(a2 +  ik2) — # i(a i — i k j

and elimination o f A r from equations (1) and (2) yields

A t 2 ik1B 1

(1)

(2)

B2(ct2 4" ik2) B^ai iky)

(3)

(4)

I f  we write =  Pl< ,̂ B2 =  p2e2, B xkx =  Plc lU and B 2k2 =  P2c2w, (3) and (4) becom e

A r _  (P2C2a2 +  ip2c2 )̂ ~  (Plc i« l  +  *Plc l“ )
T{ ~

A t
Ai

(P2C2a2 +  ip2C2u) ~  (p iC ja j — ip jC ju )

2ip1c1u

(P2c2a2 +  ip2c2“ ) — (Plci a l ~  V lc l«)

I f the absorbing coefficients a, and a2 are equal to zero, equations (5) and (6) reduce to (0) 
(10) o f Problem 4.1 for the nondissipative case.

Now the average incident, reflected, and transmitted acoustic pow ers per un it area 
respectively

Wi =  WT =  $Plc lU2A 2, W t =  f a c ^ A *

Hence the ratio of the reflected to incident sound power is

__ _  (Plc i ttl ~ P 2C2a2)2 +  (Plc l^ "" P2C2U)2
W\ (P2c2“ 2 — Plci “ j)2 +  (piCtu +  P2C2W)2

and the ratio of the transmitted to the incident sound power is

_______________  4 p 2c2p jC j

(5)

(S>

and

are

“ t -

W t
(p,e, +  p2c2)2 +  [(P2c\a2lw) -  (pjCj aj/w)]2

(7)

(*)
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If a, = fl2 =  o, equations (7) and («) reduce to the reflection and transmission coefficients for 
the nondissipative case o f Problem 4.1.

If ai/a2 -  P2cl/Plc the sound power reflection and transmission coefficients o f equations (7) 
and (8) also reduce to those for the nondissipative media.

REFRACTION OF SOUND 
420. Derive general expressions for the sound power reflection and transmission coeffi­

cients for the transmission of plane acoustic waves from one fluid medium to another 
at oblique incidence.

The acoustic pressures for plane sinusoidal 
longitudinal waves at normal incidence are 

Pi =

pT =  p r*«“‘ + M> 

pt =  Ptei(“‘ -k *r) 

and at oblique incidence,
_  p  i(ut — kiicosSi -  kill sin 0,)

Pi — r i e
_  p  i(ut + k ii cos — ki» sin 0r)

Pr ~  r r e

pt =  PtCi(ut _ M c°s9t ~ k2y sin9t) Fig. 4-5

where is the angle of incidence, or the angle of reflection, and et the angle of refraction as shown 
in Fig. 4-5.

At the plane interface of the two media (x =  0), the acoustic pressure must be continuous, i.e.

Pi +  Pr =  Pt

or p .g - ik iy  sinfli _|_ p ^ g -ik ,l/s in 0 r _  e~ik2V sin#t

From the laws of reflection and refraction of plane waves, we have the angle of incidence e{ is equal 
to the angle of reflection eT. And from Snell's law, we have (sin ^ /(sin  et) =  cj/c2 =  k2/kl. The 
previous boundary condition of continuity of acoustic pressure becomes

Pi +  P r  =  P t

The second boundary condition states that the particle velocities normal to the interface must 
be equal, i.e.

v{ cos 6i +  vT cos (180° — er) =  vt cos 6t 

°r in terms of acoustic pressure and characteristic impedance,

(Pi/Rj) cos — (Pr/Rl) cos eT = (Pt/R2) cos et 

where Rx =  PlCl( are characteristic impedances of the two media.

Solving for the ratios o f PT/Pi and PJPi from the two boundary conditions,

PT R2 cos 8{ — Rl cos et 
Pi R2 cos 9i +  Ri cos «t

&nd so the sound power reflection coefficient is

[Pr! 2 ~R2 cos «i — Ri cos et~
_R2 cos «i + Ri cos 8t

ing Bound power transmission coefficient iB

4R\R2 cos 0j cos 6t
(R2 COS $i + Ri COS 8t)2
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If the angle of refraction is 90°, we have from Snell’s law,

sin «i ct
-T—-  = — or sin*i =  sin 8C =  — sin 9t ct c ct

Since no acoustic energy is transmitted for angle of incidence greater than oc, we call $c the 
critical angle of incidence.

If the angle of incidence approaches 90°, cos 0 ^ 0  and

Ri cos 9t
=  1u r  — n

|_ COS

Again, no acoustic energy is transmitted. This is known as the condition of grazing incidence.

4.21. The density of a given solution is 800 kg/m3 
and the speed of sound is 1300 m/sec. 
(a) Find the critical angle of incidence for 
plane acoustic waves traveling from the 
given solution into water, (b) If the angle 
of incidence in the given solution is 40°, 
what is the sound transmission coefficient 
into water?
(a) The critical angle of incidence is given by

ŝolutionC1Sin 0r = — =
‘'water

(b) The sound transmission coefficient is

1300
1480

= 0.879 or

Fig. 4-6

9C =  61.5°

4R{R2 cos 0; cos et 
(R2 cos 0* +  cos fle)2

=  0.96

where -  p,c, = 800(1300) is the characteristic impedance of the given solution, R2 =  p2c2 =  
998(1480) is the characteristic impedance of water, =  40° is the angle of incidence, 
ot -  47° is the angle of refraction, obtained from Snell’s law of refraction.

4.22. If the velocity of sound in oil changes suddenly from 1350 m/sec to 1340 m/sec along 
a horizontal plane at a certain depth while the density of oil remains constant at 
850 kg/m3, calculate the sound reflection coefficient for plane acoustic waves incident 
from above the plane interface where velocity changes take place at angles of 
incidence of (a) 88°, (b) 80°, and (c) at normal incidence.

The sound reflection coefficient for plane acoustic waves is given by

'R2 cos Oj -  Rj cos 0,"12r*2
cos 6t + Jij cos

where A, =  p,c, =  850(1350) rayls and R2 -  p2c2 = 850(1340) rayls are the characteristic imped­
ances of oil above and below the plane interface where velocity changes take place, 0, is the angle 
of incidence, and et is the angle the transmitted wave makes with the normal.

e, sin J; 1340 sin R8°
(a) sin et =  ----------  -  -----——----- = 0.988 or 9t = 82°, and aT = 0.36.c j 1350

(b) sin et =  C-2 Sm 8{ =  1340 ^ ' " 80° = 0.98 or •, =  78°, and ar =  8.7 X  10“ 3.
Ci 1350

(c) Since =  0 for normal incidence, et = 0 and or = 1.9 X  10 ~5.
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423. Sketch the diffraction of high frequency and low frequency sound waves around bends.
Figure 4-7 shows the diffraction o f  sound waves around bends. It is clear that low frequency 

sound waves readily diffract around bends where bend openings are small compared to wavelength. 
High frequency sound waves, as shown in F ig. 4-1 (b) do not easily diffract around bends where 
bend openings are large compared to wavelength. Moreover, multiple reflections occur at the bend 
resulting in scattering and cancellation o f  high frequency sound waves.

DIFFRACTION o f  so u n d

(o) (b)

Fig. 4-7. Diffraction o f sound waves around bends

FILTRATION OF SOUND
124. A rigid smooth pipe of radius 0.04 m has a hole of radius 0.02 m in its thin wall. 

Find the sound power transmission coefficient for plane acoustic waves along the 
pipe at the following frequencies: 100, 400, 800 cyc/sec. If a similar hole is drilled 
directly across the first hole, what will be the sound power transmission coefficient 
at a frequency of 400 cyc/sec ?

The sound power transmission coefficient fo r  a hole drilled in the thin wall o f the main pipe 
is given by ^

=  1 +  ( w a V l A L k ) *

where o is the radius o f the hole, A  is the area o f  the cross section o f the pipe, L  =  1.7a, k =  2rf/e 
is the wave number, and c =  343 m/sec is the speed o f sound in air. Now a2 =  (0.02)2 =  0.0004 m*, 
L =  1.7a =  0.034 m, A  =  3.14(0.04)* =  0.0051m2; and fo r  /  =  100 cyc/sec, k =  6.28(100)/343 =  1.83. 
Substituting values, we find at =  0.21.

For /  =  400 cyc/sec, k =  6.28(400)/343 =  7.31, and at =  0.81. For /  =  800 cyc/sec, k =  
6.28(800)/343 =  14.7, and at =  0.94. In other words, sound power transmits better at higher fre­
quencies for plane acoustic waves in air along rigid smooth pipes with holes.

When a similar hole is drilled directly across the first hole, the result will be equivalent to two 
identical impedances in parallel. The sound power transmission coefficient for /  =  400 cyc/sec

therefore become. t + ^ 2/ A L k ) 2 =

The plot of the transmission coefficient versus frequency for the transmission o f plane acoustic 
waves through an acoustic line with an orifice as a branch is shown in Fig. 4-8. at is zero for 
/  =  0, and increases to unity as /  approaches infinity.

Fig. 4-8
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4.25. A section of pipe of length 1 m and cross-
sectional area 0.8 m2 is inserted into a main ^ (
transmitting pipe of cross-sectional a r e a _____________________ — _
0.2 m2 as shown in Fig. 4-9. Compute the ~ |___________| —

. 1 Asound power transmission coefficient at A 2
(a) 0 cyc/sec, (6) 100 cyc/sec, (c) 200 cyc/sec,
(d) 512 cyc/sec.

The sound power transmission coefficient for pipes with expanded sections is

_________ 4__________
"  4 + [(A2/Aj)2 — 2] sin2 kL

where A., = 0.8 m2 is the cross-sectional area of the expanded pipe, A l — 0.2 m2 is the cross- 
sectional area of the main pipe, k — u/e is the wave number, c — 343 m/sec is the speed of sound, 
and L -  1 m is the length of the expanded pipe.

(а) /  = 0, k = 0, sin kL ~ 0, and at = 1.0.

(б) /  = 100, k = 100(6.28)/343 = 1.83, sin2 kL = sin21.83 =  0.95, and at =  0.23.

(c) /  = 200, k = 200(6.28)/343 = 3.68, sin2 kL = sin2 3.68 = 0.28, and a, =  0.49.

(d) f  = 512, Jfc = 512(6.28)/343 = 9.4, sin2 kL = sin2 9.4 = 0, and a, =  1.0.

Thus a plot of transmission coefficients versus <>t} 
fret, encies has the following general form of selec­
tive transmission or filtration of sound. Note that 
the result for a constriction is theoretically identical 
with that for an expansion.

For A, < A 2, the incident and reflected waves 
are in opposite phase. This corresponds to the pas­
sage of sound from a dense to a rare medium. Fig. 4-10

For A, > A2, the incident and reflected waves are in phase with each other. This corresponds 
to the passage of sound from a rare to dense medium.

For A, = A2, there is no reflected wave, and the transmitted wave is always in phase with 
the incident wave.

426. A plenum chamber designed to trap and absorb sound is installed in a ventilating 
system of radius 0.2 m. (a) Find the minimum length of the chamber that will most 
effectively filter out fan-induced sound of frequency 10,000 rpm. (6) What will be the 
sound transmission coefficient if the radius of the chamber is 0.5 m? (c) What will be 
the reduction in sound level? (d) If a 30 db sound reduction is desired, how many 
chambers are required?

The sound power transmission coefficient for pipes with expansion type of acoustic filters is

4
4 cos2kL + (A2/A, +  A ,/A2)2 sin2 kL

where the A’s are the cross-sectional areas of the pipes, k = u/c is the wave number, and L is the 
length of the expanded pipe.

(a) When sound is effectively filtered, there is a minimum transmission of sound through the 
plenum chamber. This occurs at kL = v/2. Now k = u/c =  2vf/c. Hence the minimum lengt 
of the chamber is Lmln = c/4/ = 0.52 m, where c =  343 m/sec is the Bpeed of sound in air 
and /  =  10,000/60 cyc/sec is the frequency of sound.

(2A!A2)2
(b) at = ^4 + ^  + 2A\A2 =  01 Ŵ ere = 0,^6ir Rn<* = 0•04,̂ •

(e) The reduction in sound level is 10 log (l/at) = 10 db.

(d) Three chambers are required.
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2̂7. Plane acoustic waves of frequency 10,000 cyc/sec are being propagated in a water- 
filled pipe of radius 0.01 m. Determine the attenuation constant a in nepers/m due 
to the effects of viscous and heat conduction losses at the walls of the pipe. What is 
the attenuation in a 10 m length of this pipe ?

The attenuation constant due to the effects of viscous and heat conduction is

a =  (l/a c)V W 2p  =  0.012 nepers/m

where a = 0.01 m is the radius of the pipe, c =  1480 m/sec is the speed of Bound in water, 
il = 0.001 nt-sec/m2 is the coefficient o f viscosity for water, p =  998 kg/m3 is the density of water, 
snd u = 62,800 rad/sec is the frequency of Bound.

The attenuation in a 10 m length of this pipe is 8.7(10)0.012 =  1.05 db.

ABSORPTION o f  s o u n d

128. Compute the viscous relaxation time and the viscous attenuation constant in air at 
20°C and standard atmospheric pressure.

The relaxation time is defined as the time required for a process to proceed to within 1/e of 
its equilibrium value. For viscous relaxation time,

r =  4i)/3ptP sec
where v is the coefficient of viscosity in nt-sec/m2, p is density in kg/m3, and e is the speed of sound 
in m/sec.

For air at 20°C and standard atmospheric pressure, i? =  1.8 X  10-5  nt-sec/m2, p =  1.21 kg/m3, 
c = 343 m/sec, and so t =  1.7 X  10-10 sec.

The viscous attenuation constant is given by

a =  2w2ij/3pc3 =  9.86 x 104 nepers/m
where /  = 100 megacycles/sec.

MISCELLANEOUS PROBLEMS
429. Plane acoustic waves are propagated in a 

pipe in the longitudinal direction as shown 
in Fig. 4-11. The pipe is frictionless and 
its cross section changes abruptly from 
Ai = 1.00 m1 to Aj = 0.80 m2. Find the
sound power transmission and reflection A'
coefficients. Fig. 4-11

At the junction i  =  0, the acoustic pressure and the volume velocity must be continuous:

Pi +  Pr =  Pt. A ^V i +  v J  =  A 2v t

where the subscript t refers to incident waves to the left of the junction, r refers to reflected waves 
to the left of the junction, and t refers to transmitted waves to the right of the junction. These 
boundary conditions yield

Pi +  Pr _  A\ /P t\
Vi +  v r ~  A t \ v t )

Substituting Vj = P(/pC> vr =  -p jp c ,  vt =  p(/Pc,

pc(P< +  Pr) A jP t pcA , pr A l —A i
P i - P r  A 2(pt/pc) A , 0r Pi A ,+  Aj 

Then the 100114 p o „ „  c„ Bdent „

= ~  A tl* _  f l.O ~  0.8~|2 _  nnio
l_Ai + AjJ Ll-0 + 0.8 J °-012
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Similarly, the sound power transmission coefficient is
A, — A2

=  1 - i4j + A2 =  0.988

Note that the magnitudes of these two coefficients remain the same whether A l is greater than 
A2 or A2 is greater than At. No sound waves are reflected when Aj equals A 2.

Pic i> A j 1 P2, c2, A 2

4JO. Two pipes of cross-sectional areas Ax and A2 
contain fluid media of characteristic impedances 
p1cl and p2c2 respectively. The pipes are con­
nected as shown in Fig. 4-12, and the two fluid 
media are separated by means of a thin dia­
phragm. Determine the sound power trans- ~~
mission coefficient for plane acoustic waves --------------------- '
traveling from pipe Ai to pipe A2, and the
condition for 100% sound power transmission. Fig. 4-12

At the junction x = 0, the acoustic pressure and the volume velocity must be continuous:

Pi +  Pr A t f f
Pi +  Pr =  Pt. Aj(Vi +  Vr) =  A 2Vt or

Vi +  vT A 2vt

where the subscript i refers to incident waves to the left of the junction, r refers to reflected waves 
also to the left of the junction, and t refers to transmitted waves to the right o f the junction.

Now Vj = Pi/Ri, vT = -pJRx, vt = pt/J?2 where = Plev R2 =  p2c2.

Pi +  Pr fti(Pi +  Pr) AiPt A J t2

Then

from which

+ vr Pi -  pr A2vt

Pt A ,fi2 — A2R\
Pi A^R2 "F A 2R̂  

and hence the sound power reflection coefficient is

«r = (P/Pi)2 =

The sound power transmission coefficient is

a t =  1 -  af  =

A\R2 A 2R i 
A 1R2 +  A 2Ri

AA^A2R^R2
(AlR2 +  A ^ j} 2

The condition for 100% power transmission is obtained by having zero power reflection or 
ar = 0, i.e. AjJ?2 = Ajflj; and if Rl = R2, this condition becomes A x =  A 2.

431. Harmonic plane acoustic waves of pressure amplitude Po are propagated into a pipe 
of constant cross-sectional areas Ax = 2A2 as shown in Fig. 4-13. Determine the 
pressure amplitude acting on the closed end of the pipe.

V

---------------  X/4 ------------ *-

Pi * --------- X

 ̂ Pr P r -* ---------

Fig. 4-13
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For harmonic progressive plane acoustic w aves, the incident, reflected, transm" * 
secondary reflected waves are jjiven respectively by

p. =  p o€i«*t-kz>t Pr =  p re 1(“ t + fcx), Pt =  P t e " 0* - * 1' , Pr =  P ' e i(at+Iu)

where P 0, P r, P t, P'r are the pressure am plitudes o f  the w aves, u is the frequency o f  the 
in rad/sec, and k =  u/c  =  2n7\ is the w ave number.

At x  =  0 (at the junction of the pipes) the boundary condition of continuity of acoustic 

pressure yields p, +  pr =  P, +  V,

Substituting the expressions for acoustic pressures into the above boundary condit' •

Po +  Pr =  P, +  P ’r (,)

At i  =  the forces acting are
A i (P i “  Pr) =  A.2(pt — P'r)

and from expressions fo r  acoustic pressure, we obtain

A ,(P o  — Pr) =  M P , ~  P'r) W

At the closed end, p t =  p'T or
E> — k X /4 )  _  p i  t ( « t  +  k \ /4 >  _  q
X (  V 4  f

Since k =  2WX, we can reduce the above expression to
p ^ - u n  — P\eivn -  0

Using « - / «  =  cos W2 — t sin v/2 =  - i ,  and «<«* =  cos „ /2  +  i sin , / 2  =  «, equation (J) becomes
/ l\

~ P t =  Pr
Substituting (4) into (1) and (2), we have

P 0 +  P r =  0, A ^ P o - P r )  =  2^2** t

from which Pt =  (A i/A2)P o

Now the sound wave in the small pipe is
, a\ — p  M ot-kx) _  p >. Kut + kx)

p ( * , t )  =  P te f T «

Since z =  X/4 at the closed end and P t =  - P r  by equation (A), we m ay rewrite (6) as

p(X/4, t) = —2iPt etot

The pressure amplitude at the closed end is therefore equal to

2P t = 2(A1/A2)P0 = 2(2Aj/A2)P0 = 4P0

i.e. four times that o f the incident wave.

<*>

(5)

(*)

4.32. An infinitely long rigid smooth pipe 
of cross-sectional area A b =  1.0 m2 is 
connected with another infinitely long 
rigid smooth pipe as shown in Fig. 
4-14. If the cross-sectional area of 
the main pipe is A =  4.00 m2, find the 
sound power transmission coefficient 
in the main pipe and the branch pipe.

Pi
Pr

i * 
i i

Fig. 4-14

-►Pt

When plane acoustic waves approach the junction, there is a change in acoustic impedance 
because of the branch pipe. The equivalent acoustic impedance at the junction is

vb +  v p/zb +  p/z l/zb +  1 It
Zbz

*  +  Zb
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where p is the common acoustic pressure at the junction because o f  continu ity  o f  pressure, v  is 
the particle velocity in the main pipe, vb is the particle velocity in the branch pipe, z and z b are the 
acoustic impedances to the right o f the junction into the main pipe and the branch pipe respectively.

(see Problem  4.1)

Since z =  pc/A for an infinitely long main pipe, we obtain

Pr zen ~  z zbzl(z +  zb ) ~ z _  —pc/2A 
Pi ~  z eq + 2 ~  zbzKz +  zb) +  2 pC/2A +  Z b

and so the sound power reflection coefficient is

(Pc/2A )2 _  (,Pcl2 A )2
(J>r,p'}' (pc/2A +zb)* ~  (pC/2A +  R b)* +  X 2b

For a branch pipe of infinite length, zb =  R b =  pc/Ab and

______________ 1 L _  =  1 =  0.012
(Pc/2A + pc/Ab)* ~  (2A +  A b)2 (8 +  l ) 2

The sound power transmission coefficient for sound waves going into the m ain pipe from  the 
junction is similarly given by

R i +  x i  (pc)v a I 4A2
0.79

(pc/2A +  R b)2 +  r 2 (pc/2A +  pc/Ab)2 (2 A  +  ,4 b)2

and finally the sound power transmission coefficient for sound waves goin g  into the branch  pipe 
from the junction is

=  4 A ^  -  =  0.198
(Pe/2A +  Rb)2 +  X\ (pc/2A +  Pc/A b)2 (2A  +  A b)2

i.e. (at)b =  l - a t - a r = l  -  0.79 -  0.012 =  0.198.

Supplementary Problems
4.33. Find the sound power transmission and reflection coefficients fo r  sinusoidal plane acoustic waves 

traveling from steel into air. Ans. at =  10- ®, aT =  1

4.34. For normal incidence o f plane acoustic waves, determine the percent o f  sound energy  passing into 
steel from water, and into water from air. Ans. 14%, 12%

4.35. Show that a 2 to 1 mismatch o f characteristic impedances between two media in contact w ill cause 
a sound transmission loss of 2.5 db.

4.36. A compound rod is formed by joining the ends o f two rods o f constant cross-sectional areas A\ 
and A 2. For normal incidence o f plane acoustic waves at the junction o f  the com pound rod, find 
the condition for no reflection of sound waves. Ans. A J A 2 =  (p2E 2/PlE j )1/2

4.37. For maximum transmission of sound energy, two media should have matching im pedances. W hy?

4.38. The free vibrations of a steel bar decay much more rapidly when immersed in w ater than in air. 
Explain.

4.39. A pipe of cross-sectional area A , is connected to a second pipe o f cross-sectional area A 2. For 
propagation o f plane acoustic waves from pipes A t to A 2, find the standing wave ratio in piPe 
A r i f  A j is smaller than A 2. Ans. SWR =  A ^ A t
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4.4t. Plane acoustic waves travel from  the open end o f a pipe to the other end o f the pipe where a piston 
of mass M is free to move within the pipe. Determine the sound power transmission and reflection 
coefficients for the pipe.

AlU' “ * ~  1 +  i2M2/4p2 ’ ar =  1 +  4p2/i2M2 ’ t =  1»2>3> --

4.41. Determine the specific acoustic impedance at a distance L  to the left o f the interface of two media 
of characteristic impedances zx and z2.

(z, +  z2)eikL — (zj — z2)e~ ikL
Ans. z =  z. —-------=—;--------— ------i---------

(2i +  z2)eikL +  (Zj — z2)e ifc1,

4.42. Determine the input specific acoustic impedance o f a fluid column of length L if the absorption 
factor of the fluid is y. Ans. z — pc(evL +  K e~yL)/(evL — K e~vL)

4.43. The sound from an aircraft flying at a great altitude from  an observer on the ground is found to 
be limited to the lowest frequencies in the emitted complex noise. Explain.

4.44. For transmission o f plane acoustic waves from  one medium to another at oblique incidence, find 
the angle o f incidence (known as the angle o f intromission) for 100% transmission.

Ans. $i --- c o t 'i
c2 -  e 2 C1 2

0>2C2 -  P\C

4.45. A pipe o f length 1 m and cross-sectional area A 2 is inserted into a main pipe o f  cross-sectional 
area Aj. If A 2/A 1 =  10 and /  =  100 cyc/sec, find the sound power transmission coefficient.
Ana. at =  0.185

4.46. A hole of radius 3.4a^w/c is drilled into the wall o f a pipe o f radius a0. Find the sound power 
transmission coefficient fo r  plane acoustic waves o f frequency 2irf in the pipe.
Ans. at =  0.5

•̂47. An infinitely long pipe o f radius 0.5 m is submerged in water. It has a hole o f radius 0.1 m in its 
wall. Plane acoustic waves o f frequency 1000 cyc/sec and 1.0 watt power are being propagated 
through the pipe. Determine the sound power transmitted through the pipe.
Ans. W  =  0.93 watt

4.48. Plane acoustic waves are being propagated in a pipe closed at one end. The measured standing 
wave ratios o f pressure at the open end and at a point 1.0 m from the open end are 10 and 9.6 
respectively. Determine the attenuation constant in nepers/m. Ans. a =  0.0045 neper/m

4.49. Derive an expression fo r  the sound power transmission coefficient for  plane acoustic waves through 
a pipe of cross-sectional areas A 1,A 2 and A 3. See Fig. 4-15.

Ans. a. =  ---------------------------------- ---------------------------------------1 (A j/A j +  l ) 2 cos2 kL +  (Aa/Aj +  A 3/A 2)2 sin2kh

Fig. 4-15 Fig. 4-16

4.59. A closed pipe is attached as a branch to the main transmitting pipe as shown in Fig. 4-16. If 
both pipes are made of the same material and have the same cross section, find an expression for 
the sound power transmission coefficient for plane acoustic waves through the main pipe.

Ana. a, =  ---- ------------sec2 kx +  3



Chapter 5
Loudspeaker and Microphone

NOMENCLATURE
a = radius, m 
A = area, m2
B = magnetic flux density, webers/m2; bulk modulus, nt/m2
c = speed of sound in air, m/sec
C = capacitance, farads
Co = acoustical compliance, m5/nt
d = spacing, m
E = voltage, volts
El = voltage generated in the load resistor, volts
f  = frequency, cyc/sec; force, nt
f e = cut-off frequency, cyc/sec
f T = resonant frequency, cyc/sec
k = resistance constant, ohms/m
i, I = current, amperes
k = wave number; spring constant, nt/m
ka = acoustical stiffness, kg-m2/sec2
L = length, m; inductance, henrys
m = flare constant of horns; mass, kg
M = sensitivity, volts/nt/m2
Af„ = acoustical inertance or mass, kg/m4
no = sound pressure level gain, db
p = acoustic pressure, nt/m2
Q = quality factor
Ra = acoustical resistance, nt-sec/m5
Re = resistance of voice coil, ohms
Rm = mechanical resistance, kg/sec
R0 = internal impedance of microphone, ohms
Rr =  radiation resistance, kg/sec
s = stiffness of the suspension, nt/m
t = thickness, m
T =  tension, nt
u =  displacement along the x axis, m 
v =  voltage, volts 
V = volume, m3 
W =  power, watts 
X  = volume displacement, m3

114
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X = volume velocity, m3/sec 
X = volume acceleration, m3/sec2 
XT = radiation reactance, kg/sec 
ZE = total electrical impedance, ohms 
Zi = input electrical impedance, ohms 
Zm = total mechanical resistance, kg/sec
o, = circular frequency, rad/sec 
A, =  wavelength, m 
p = density, kg/ms
y = m/2; ratio of the specific heat of gas at constant pressure 

to that at constant volume 
r = transmission coefficient 
j) = electroacoustic efficiency

INTRODUCTION
A loudspeaker is an electroacoustic transducer which converts electrical energy to 

acoustical energy. A microphone is also an electroacoustic transducer, but it converts 
acoustical energy to electrical energy. In general, loudspeakers are used to reproduce and 
amplify sound while microphones are used to record sound and to make acoustical 
measurements.

ELECTROACOUSTIC AL ANALOGY
Like mechanical systems, acoustical systems are represented and analyzed by their 

equivalent electroacoustical analogues which are easier to construct than models of the 
corresponding acoustical systems and from which experimental results are more con­
veniently taken than from the acoustical models.

The equivalent electrical analogues are obtained by comparing the differential equations 
of motion for both systems. The acoustical and electrical systems are analogous if their 
differential equations of motion are mathematically the same. When this happens, the cor­
responding terms in the differential equations of motion are analogous to one another. The 
equivalent electrical circuits can then be constructed using Kirchhoff’s laws of voltage 
and current.

There are two electrical analogies for mechanical systems: the voltage-force or mass- 
mductance analogy and the current-force or mass-capacitance analogy, as given in Table 
5-1 below. Similarly, there are two electrical analogies for acoustical systems: the voltage- 
pressure analogy and the current-pressure analogy, as given in Table 5-2 below.

Acoustical inertance Ma is defined as
M  _  _______acoustic pressure_______  _  p _  i / « . i

“ -  rate of change of volume velocity ~ dX/dt ~ m
Acoustical resistance Ra is defined as

_ acoustic pressure p
*■ = volume velocity = VUdt "  nt-sec/m 

Acoustical compliance Ca is defined as
q _  volume displacement _  X _  5/ 

acoustic pressure — IT -  m
(See Problems 5.1-5.7.)
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Table 5-1

Mechanical System
Electrical System

Voltage-force Analogy Current-force Analogy

D’Alembert’s principle Kirchhoff’s voltage law Kirchhoff’s current law

Degree of freedom Loop Node

Force applied Switch closed Switch closed

F Force (lb) V Voltage (volt) i Current (ampere)

m Mass (lb-sec2/in) L Inductance (henry) C Capacitance (farad)

X Displacement (in) <7 Charge (coulomb) <*> -  j v  d t

•
X Velocity (in/seci i Loop current (ampere) V Node voltage (volt)

e Damping (lb-sec/in) R Resistance (ohm) 1 /R Conductance (mho)

k Spring (lb/in) 11C 1/Capacitance ML 1/Inductance

Coupling element Element common to two loops Element between nodes

Table 5-2

Acoustical System
Electrical System

Voltage-pressure Analogy Current-pressure Analogy

p Pressure (nt/m2)

Af„ Inertance (kg/m4)

X  Volume displacement (m3) 
•

X  Volume velocity (m3/sec) 

Ra Resistance (nt-sec/m5)

Ca Compliance (m5/nt)

Za Impedance (ohm)

v Voltage (volt)

L Inductance (henry) 

q Charge (coulomb) 

t Current (ampere)

R Resistance (ohm)

C Capacitance (farad) 

Z Impedance (ohm)

i Current (ampere)

C Capacitance (farad) 

$ v dt impulse (volt-sec) 

v Voltage (volt)

HR  Conductance (mho) 

L Inductance (henry) 

HZ Admittance (mho)

LOUDSPEAKERS
The loudspeaker is the prime source of sound in the sound reproduction system. It 

provides mechanical vibrations of its own as it is energized, and vibrates the air in contact 
with it. As an important source of sound, loudspeakers must have high efficiency, good 
power-handling capacity, uniform frequency response, and minimum distortion.

The most widely used dynamic loudspeaker has the voice coil immersed in a fixed 
magnetic field generated by a powerful permanent magnet. Current flowing through the 
voice coil reacts with the magnetic field to produce motion which in turn actuates the 
diaphragm into vibration to produce sound. This type of speaker has low impedance and 
offers little resistance to the flow of current through it.

The electrodynamic loudspeaker operates like the dynamic loudspeaker and is thus 
current sensitive. Unlike the dynamic loudspeaker, the magnetic field of an electrodynamic 
speaker is electrically energized from an external power source.

The condenser or electrostatic loudspeaker is a voltage sensitive device and has high 
impedance. It transfers electrical signals into mechanical motion of the diaphragm through 
electrostatic attraction or repulsion force at the electrodes energized by voltage to produce 
variation in capacitance. Hence this type of loudspeaker is not suitable for low frequency 
operation because of the close spacing of the electrodes.
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The crystal or piezoelectric loudspeaker has limited application because of its restricted 
low frequency response and low power output. It operates on the theory that crystal 
nuterial will expand or contract when alternating electric current is applied to the surfaces 
of the crystal.

Acoustic power output of loudspeakers is given by
tfRJ* tfRrE*

W = z2 - or z2 z z watts

where <j> = BL, B is the magnetic flux density in webers/m2, L the length of voice coil in 
meters, Rr the radiation resistance in kg/sec, Zm the total mechanical resistance in kg/sec,
1, the total input electrical impedance in ohms, I the current in amperes, and E the applied
voltage in volts.

For multispeaker system, the speakers must be matched in efficiency to produce smooth 
overall response, and their ranges must also overlap to ensure no holes in the response 
curve. (See Problems 5.8-5.13.)

LOUDSPEAKER ENCLOSURES
In general the shape, size, and construction of the loudspeaker enclosure affect its 

overall performance. The loudspeaker enclosure generally directs the sound waves, deter­
mines the frequency response of the system, and controls sound intensity. Closed enclosure 
also stops f ront-to-end cancellation of sound waves and at the same time raises the response 
frequency of the system. A back-enclosed cabinet will increase the stiffness of the suspen­
sion system of the speaker cone by

,  = „t/m

where p is the density of air in kg/m3, c the speed of sound in m/sec, A the area of the piston 
in m2, and V the volume of the cabinet in m3. (See Problems 5.10-5.12.)

HORNS
Loudspeaker horns, like loudspeaker enclosures, are designed to achieve various pat­

terns of sound distribution and to act as acoustic transformers to couple high impedance 
at the throat to low impedance at the mouth of the horn. Moreover, horns usually 
increase the electroacoustic efficiency of the speakers and provide better reproduction of 
sound.

Basically there are three types of horn: (1) the conical horn, (2) the exponential horn, 
and (3) the hyperbolic horn. The cross-sectional area of the conical horn expands the most 
rapidly while that of the hyperbolic horn expands the slowest, as shown in Fig. 5-1.

low preMure

Fig. 5-1
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The equation of motion for plane acoustic waves in horns is
SHl _  2 dhi c2 dAdu 
dt2 “  C dx2 A dx dx

with solution u(x,t) = e~yx[CeUot~*z) + Deiiat + Px)]

where u = displacement along the x axis, y = m/2, m = flare constant of the horn, 
c = speed of sound in air, k = Jc is the wave number, /3 = Ĵk2 — m2/4. (See Problems 
5.14-5.17.)

Transmission coefficient or radiating efficiency of a horn is the ratio of the actual acous­
tic power radiated out of a given horn to the acoustic power radiated by the same diaphragm 
which moves at the same velocity into a cylindrical tube of infinite length and having the 
same cross-sectional area as the throat of the given horn. For the exponential horn, the 
transmission coefficient is

V i  -  ( /< //) '

where /  is the frequency of sound and fc is the cutoff frequency.
Cutoff frequency of horns is the minimum frequency below which propagation of sound 

waves inside the horn is not possible. For the exponential horn, the cutoff frequency is
fe = roc/2ir cyc/sec 

where m is the flare constant of the horn and c is the speed of sound in air.
A multicellular is a group of horns; each radiates sound as a separate and distinct horn 

but they are driven by a common source. To achieve wide distribution of sound waves, 
different arrays of obstacles are built into the acoustic lens, a horn designed to control the 
directional spread of sound. A diffraction horn is a narrow horn that expands uniformly 
in the vertical direction but is unflared in the horizontal direction. Thus a diffraction horn 
approximates a point source.

MICROPHONES
As dynamic air pressure transducers, microphones can be classified into two appropriate 

groups: (1) the constant-velocity, e.g. moving-coil, velocity-ribbon, and magnetostriction; 
(2) the constant-amplitude, e.g. carbon, condenser, and crystal. Depending on the nature 
of the operational force obtained from sound pressure to drive the diaphragm, microphones 
are either pressure-operated, pressure-gradient operated, or phase-shift operated. This 
determines whether the microphone will accept or discriminate against sounds from a 
particular direction.

PRESSURE-OPERATED MICROPHONES
Basically pressure-operated mi­

crophones utilize the cyclic variation 
in air pressure resulting from the vi­
bration of an elastic body. The pres­
sure inside the casting is maintained 
at atmospheric level, hence the force 
acting on the diaphragm is propor­
tional to sound pressure and is inde­
pendent of frequency, as shown in 
Fig. 5-2. Fig. 5-2
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PRESSURE GRADIENT MICROPHONES
Because both front and back faces of the dia­

phragm are exposed to sound pressure as shown in 
Fig. 5-3, a pressure gradient microphone experiences 
a phase difference in sound pressure. This pressure 
difference or gradient causes the diaphragm to move 
and produce a force that is proportional to frequency 
and path length d. A pressure gradient microphone 
thus discriminates against sounds arriving at an angle 
to the axis of the microphone. Fig. 5-3

SENSITIVITY

Sensitivity or open-circuit voltage response of microphones is the voltage output for a 
sound pressure input of one microbar, i.e. 74 db re 0.0002 microbar. For carbon micro­
phones, for example, the sensitivity is expressed as

Mc = volts per nt/m2 or 20 log (Mc/10) db

where E0 is the voltage of the battery in volts, h the resistance constant in ohms/m, A the 
area of the diaphragm in m2, R0 the internal impedance of the microphone in ohms and 8 
the effective stiffness in nt/m. (See Problems 5.18-5.23.)

DIRECTIVITY

Directivity or directional response characteristics of microphones is the variation of 
microphone output with different angles of incidence, and is usually represented by a polar 
graph or directivity characteristics as shown in Fig. 5-4.

Fig. 5-4

The directional response characteristics of an uni-directional or cdrdioid microphone, 
for instance, is the combination of the response characteristics of an omni-directional and 
a bi-directional microphones. It discriminates against sounds from its sides and back, but 
will receive sounds from its front. Other uni-directional response characteristics may be 
obtained by the combination of different sizes of omni-directional and bi-directional response 
characteristics.

DIRECTIONAL EFFICIENCY
Directional efficiency of a microphone is the ratio of energy output due to simultaneous 

sounds at all angles to energy output which would be obtained from an omni-directional 
microphone of the Bame axial sensitivity. (See Problems 5.27-5.28.)
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RESONANCE
The effects of resonance on microphone performances may be controlled and made 

negligible by: (1) resistance control: heavy damping is built-in to reduce the amplitude of 
vibration of the diaphragm; (2) mass control: the resonant frequency is made much lower 
than the working frequency; (3) compliance control: the resonant frequency is made much 
higher than the working frequency.

CALIBRATION
Microphones can be calibrated by one of the following methods: direct known sound 

source, comparison, Rayleigh disc, radiometer, hot-wire microphone, motion of suspended 
particles, and the reciprocity technique. Calibration can be carried out either in a free 
field with purely progressive waves as in an anechoic chamber or in a closed chamber such 
as a reverberation chamber where acoustic intensity and energy are constant throughout. 
(See Problems 5.24-5.25.)

The choice of microphone is therefore determined by the environmental conditions such 
as temperature, humidity, range of pressure level, and frequency response. Microphones 
should have high sensitivity, favorable directivity, uniform frequency response, minimum 
phase distortion, and very little inherent or external noise.

Solved Problems

ELECTRO-MECHANICAL ANALOGY
5.1. Investigate the electrical analogues of the single-degree-of-freedom vibratory system 

as shown in Fig. 5-5(a).

Fig. 5-5

Employing Newton’s law of motion, the differential equation of

_  d?z , dx
dfi + c Tt + kx = m

motion is given by

(1)

For an electrical network as shown in Fig. 5-5(6), an equation of th* • *
written: e following form can be

C&v I d v  1 _  di(e)
dP Rdt L ~  (f)

where C =  capacitance; J ,
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R =  resistance; (i =  v/R),

L =  inductance; ■' =  z f v dt +  i(0)

i(t) =  current source, 

v =  voltage.
Since equations (1) and (2) are of the same form, i.e. they are identical mathematically, the two 

systems represented by these two equations are analogous.
Using Kirekhoff'a voltage law, the voltage equation for the electrical network as shown in 

Fig. 5-5(e) is given by
+  Ri +  id t  =  v(t) (3)

Rewrite equation (1) as ^
m -^  +  cx +  k \ x d t  =  f(t) (U)

where dx/dt is replaced by x, and i  by J  i  dt. Now equations (3) and (4) are of the same form,

which means that the two systems represented by these two equations are analogous. In other words, 
the excitation voltage v(t) is analogous to the excitation force /(£), the loop current i is analogous to 
the mass velocity x, and so on. This is known as the maaa-inductance or voltage-foree analogy.

Integrating equation (2) once with respect to time, we obtain the current equation for the 
network shown in Fig. 5-5(6):

c f t + 1 + i f vdt = «» <5> 
(Equation (5) can also be obtained by Kirchhoff’s current law.)

Now equations (4) and (5) are of the same form; which means that the two systems represented 
by these two equations are analogous. Hence the excitation current i(t) is analogous to the excitation 
force f(t), the network voltage v is analogous to the mass velocity *, and so on. This is known as the 
mats-capaciUince or current-foree analogy.

52. A two-degrees-of-freedom spring-mass system is shown in Fig. 5-6(a). Use both the 
voltage-force and current-force analogy to set up the equivalent electrical circuits 
for the system.

(ft)
Fig. 5-6

The equations of motion given by 2 F  =  ma are
d?Xy dxl fa }

m i‘ dP" +  <'Cl +  e*, ~H7 +  (fci +  fc2)*i “  c2—  -  k2x2 =dt 
dx«

m

<Px2 dx2 dx j 
w*~dp +  e2~dt +  k2*2 ~ °2~di-----*2Xl =  0
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Using the voltage-force analogy given in Table 6.1, the analogous electrical equations are

+ [ £ + £ ] /  < ■ * -* » * • - i f  i*'il = •<«

L^ * Rth +  k $ i * ' "  “  R‘h “  =  0  

and the analogous electrical circuit is shown in Fig. 6-6(6).

Using the current-force analogy as shown in Table 6.1, the analogous electrical equations are

c - £  + [ r , + £ ]  '■+ [ i + k ] $  - 1  -  h S  * *  =  <(t)

c ‘ i£  + r 1 + U v' d t ~ Vi ~ £ J ' ’ ' i t = 0
and the analogous electrical circuit is shown in Fig. 6-6(«).

Fig. 5-6(c)

ELECTRO-ACOUSTICAL ANALOGY

A rigid enclosure of volume V with a small opening of radius a and length L is sub­
jected to harmonic plane acoustic waves as shown in Fig. 5-7. Investigate the motion 
of the air in the enclosure.

p ( t ) ^

Helmholtz
resonator

&
/(*) m

Mechanical
analogue

Fig. 5-7

Electrical
analogue

The mass of air in the neck of the enclosure is AL h 
cross-sectional area of the neck. This volume of air * Ho * P- ** <*ens*ty °* a' r an  ̂ A t*ie 
provides the mass element of the system Can considered to move as a unit and thus

• iht force required to move this mass is PA L x.
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Neglecting viscous forces, the resistance element o f the system is due to the radiation of 
sound at the opening in the form o f acoustic energy dissipation, i.e. resistance resulting from 
radiation of sound from a simple source. This is pc2k2A 2/2ir, where c is the speed of sound in air 
and k -  du is the wave number.

The volume o f air inside the enclosure acts like a spring to provide the stiffness element of 
the system. When it is compressed the pressure increases, and when it is expanded the pressure 
decreases.

Now acoustic pressure p =  pc2s, and * =  dV/V is the condensation. Then the force acting 
on area A of the opening due to acoustic pressure is

/  =  pA =  Pc2A dV/V =  pc2A 2x/V 

and thus the effective spring stiffness is

k =  f/x =  pc2A 2/V 

The driving force o f the system is due to harmonic acoustic pressure, i.e.

f(t) =  A P 0 sin at 

where P0 is the amplitude o f the pressure.

Summing all the forces,

and dividing by A,

ApL'x +  =  A P 0 sin at

e k { A 'x) +  P ^ ( A x )  +  ^ f ( A x )  =  Po sin at

or MaX  +  RaX  +  kaX  =  P 0 sin at

where Af0 =  PL/A is the acoustical mass, Ra =  pc2k2/2v is the acoustical resistance, ka — pC2/V 
is the acoustical stiffness (Ca =  l/ka =  V/pc2 is the acoustical compliance), and X  =  A x  is the 
volume velocity.

Thus we have reduced a simple acoustic system to an analogous simple oscillator, i.e. a 
mechanical system having lumped mechanical elements o f  mass, resistance and stiffness. The 
final equation o f motion corresponds to the equation o f motion for  a forced oscillation of a 
mechanical system with damping.

The steady state acoustical oscillation is therefore given by

X{t) =  Ra +  -  l/uC«) 

where the denominator represents the acoustic impedance.

Resonance or maximum volume velocity (air flow) in the neck occurs at a frequency which 
makes the total reactance zero, i.e.

uMa ----- -pr =  0 or

This basic acoustic system is represented by the Helmholtz resonator and its mechanical and 
electrical analogues as shown in Fig. 5-7. Because o f the restoring force due to the volume o f air 
inside the resonator opposite to the displacement o f the volume o f air in the neck, the air in the 
neck has harmonic motion. The Helmholtz resonator plays an important role in musical acoustics.

The resonant frequency f r and the quality factor Q o f  the three systems are

Acoustical: f T =  -----* cyc/sec, Q =  uM JRa
2ir\MaCa

Mechanical: f T =  -----y— cyc/sec, Q =  am/c
2irvm/k

Electrical: f r =  — L _  cyc/sec, Q =  uL/R
2 ryfLC
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5.4 An air column of length 0.2 m and diameter 0.02 m is exposed to standard atmospheric 
pressure. For small adiabatic changes in length, find its spring constant.

For adiabatic changes, the relation between the absolute pressure and the volume is 
pV 1 = constant, where y is the ratio of the specific heat of the gas at constant pressure to the 
specific heat at constant volume.

Using d(un) = nun~l du, we have

Vi* dp + lApV**dV = 0 or dp/dV = -lA p/V

But the bulk modulus for fluid is defined as B - - V  dp/dV = -V(-1.4p/V) =  1.4p and so the spring 
constant is

k = AB/L = rr*(1.4p)/L = 3.14(0.01)2(1.4)(1.01)(10)V0.2 =  223 nt/m

5J. Using both the voltage-pressure and the current-pressure analogy, set up the electrical 
analogue circuits for the low-pass acoustic filter as shown in Fig. 5-8(a).

Pi Pi

Fig. 5-8(o)

The differential equations of motion of air inside the low-pass filter are given by

X x -  X2 
M{X j -I------ -------  = Pi cos ut

m2x 2 +

Cl

X2 - X j  I x 2 - x ;
=  0

X3 -  X , x 3 -  x 4

X4 -  X 3 
M4X4 -I- — j,------ =  p2 c°s <■><

where the M’s are the inertances in kg/m4, X ’s are the volume displacements, and C’s are the 
compliances in m5/nt.

Using the voltage-pressure analogy, the electrical analogue equations are

L^  +  h
j" (j'l — *2)dt =  Vi cos ut

l 'T t  +  £ j
f  (h -  *i) dt + j j - j '  (t2 — i3) dt =  0

L*dt + C2J
f a - i j d t  +  (i3- i 4)dt =  0

L ^ + ± {  
4 dt + CSJ

(i4 — i^dt =  v2 cos ut

where i’s are the currents in amperes, L’a are the inductances in henrys, C’a are the capacitances 
in farads, and v ’a are the voltages in volts. The corresponding electrical analogue circuit is shown 
in Fig. 5-8(6).

Fig. 5-8(6)
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Using the current-pressure analogy, the electrical analogue equations are
dv,

c ' i T +  .Li
S

(Vi--  v2) dt = i'x cos ut

dv9
+  .Li X(v2 -- dt +  L<2 J* (v2 -  v3) dt =  0

„  dv3 c r
C3Ht +  .l 2J(w3 -- v2) dt +  l 3I J (v3 -  v4) dt =  0

dv4 c
+ L 3J(v4-~ 1>3) dt = %2 COS u)t

where v’s are the voltages in volts, C’s are the capacitances in farads, L ’s are the inductances in 
henrys, and i's are the currents in amperes. The corresponding electrical analogue circuit is 
shown in Fig. 5-8(c).

*2

A Helmholtz resonator has a volume of 0.001 m3 and a neck of radius 0.01 m and 
length 0.002 m. Find (a) the frequency at resonance, (6) the quality factor, and 
(c) the sound pressure level gain.
(a) The resonant frequency o f the Helmholtz resonator is

"• =  =  343 0.002(0^001) =  4300 ra<i/aeC
where e =  343 m/sec is the speed o f sound in air, A =  3.14(0.01)2 m2 is the cross-sectional 
area of the neck, L =  0.002 m is the effective length o f the neck, and V  =  0.001 m3 is the 
volume of the resonator.

When used as a band filter, e.g. a Helmholtz resonator constructed around a ventilating 
duct, this resonator will most effectively filter sound at a frequency of 4300 rad/sec or 
685 cyc/sec.

(b) The quality factor is an indication of the sharpness o f resonance of a Helmholtz resonator and 
can be obtained by

Q =  2ir

(c) The sound pressure level gain is acoustic pressure amplification at resonance in decibels, i.e.
n0 =  20 log(P/P0) =  20 log Q =  20 log 10 =  20 db

A small hole is drilled in the sphere of a Helmholtz resonator of radius 0.05 m. (a) If 
the frequency of resonance is 300 cyc/sec, what is the radius of the hole? (6) If the 
internal pressure of the resonator at resonance is 30 microbars, find the pressure 
amplitude of an incident plane acoustic wave that produced it. (c) Find also the 
resonant frequency if two additional holes of the same size are drilled in the sphere.
(o) The resonant frequency of a Helmholtz resonator is

H J v  _  / 8(10)-»(0.001) _
V A 3 3.143(10)-12 =  10

«o — c^A/LV  rad/sec
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where e =  343 m/sec is the speed of sound in air, A =  n-r2 m2 is the area o f the hole, 
L — 16r/3ir m is the effective length of the hole, V =  4n-r3/3 m3 is the volume o f the resonator, 
and <i>o — 2t(300) rad/sec. Substituting values into the above expression, we find r  — 0.0093 m.

(b) The acoustic pressure amplification of the resonator at resonance is

P/Pq = 2 iy/L3V/A3 = 67.1 or P0 = 0.446 microbar 
where L = 16(0.0093)/3r m, V = 4ir(0.0093)3/3 m3, A = *(0.0093)2 m2, and P  =  30 microbars.

(c) For a total of three holes of the same size, the area is three times the original area while the 
effective length and volume of the resonator remain the same.

«o = cy/3A/LV = 343(9.76) rad/sec or / 0 =  535 cyc/sec

LOUDSPEAKERS
5.8. A direct-radiator dynamic loudspeaker has a total mass of 0.01 kg (the cone and 

voice coil) and operates in a magnetic field of flux density 1 weber/m2. The radius 
of the speaker is 0.1 m, its mechanical resistance is 1 kg/sec, its radiation resistance 
is 2 kg/sec, its radiation reactance is 2 kg/sec, and the stiffness of the cone system is 
2000 nt/m. The length of the voice coil is 7.5 m, its inductance is 0.0005 henry, and 
its resistance is 10 ohms. Compute the following quantities at a frequency of 
200 cyc/sec: (a) the frequency of mechanical resonance, (b) the electroacoustic effi­
ciency, and (c) the acoustic power output W for an input current of 2 amperes.
(o) The frequency / 0 of mechanical resonance is determined by

(Xr +  uqWi — s/uq) =  0
where X T =  2 kg/sec is the radiation reactance, m =  0.01 kg *s the mass, s — 2000 nt/m 
is the stiffness. Substitute values and solve for «0 =  360 rad/sec or / 0 =  57.3 cyc/sec.

(b) The electroacoustic efficiency is
*2Rr

v =  -=-------- ^--------— rr =  0.058 or 5.8%
t*(Rr + R J  + REZ2m

where &  =  (BL)2 =  (1.0)*(7.5)2 =  56.1,
B =  1.0 weber/m2 is the magnetic flux density,
L =  7.5 m is the length of voice coil,
Rr =  2 kg/sec is the radiation resistance,
Rm =  1 kg/sec is the mechanical resistance,

RE =  10 ohms is the resistance of voice coil,

Zm =  yJ{Rr +  Rm)2 +  (Xr + um -  »/«)2 =  y/vn kg/sec 
is the total mechanical impedance,

u = 200(6.28) rad/sec.

*2« r /2 56.1(2)4
(c) W =  - r j -  =  -rp p jr- =  2.6 watts

m

5.9. For the direct-radiator dynamic loudspeaker of Problem 5.8, compute the acoustic 
power output produced by a driving voltage of 20 volts and the rms displacement 
amplitude of the speaker cone at resonance.

The acoustic power output is
W =  *2RrE2/Z2mZ] =  1.86 watts

where 4? =  (BL)2 =  56.1,
Rr =  2 kg/sec is the radiation resistance,

E -  20 volts is the driving voltage,

Zm -  v^177 kg/sec is the total mechanical impedance,

Zl =  yJ(RE + Rm)2 + (“Le + **)* =  VdO + 0.95)2 + [(57.3)(6.28)(0.0005) -  4.14)2 
=  11.7 ohms is the total input electrical impedance.
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For an applied voltage E 0, the current in the voice coil is

4 =  v F W j  =  1 4  a m p e r e s
where ZE =  10 +  i(0.628) ohms is the total electrical impedance of the voice coil, or its magnitude 
is VlO2 +  (0.628)2 =  10.1 ohms.

Now the velocity o f the voice coil is v0 =  BLi/Zm and so the displacement amplitude 
u0 = Vq/u =  BLi/uZm =  0.00215 m. Thus the root mean square displacement amplitude of the 
speaker cone at resonance is 0.00215 m.

5.10. If the loudspeaker of Problem 5.8 is mounted in a back-enclosed cabinet of volume 
0.1 m3, compute the frequency of mechanical resonance and the acoustic power output.

The increase in the suspension stiffness due to the back-enclosed cabinet is 

.  =  =  3160nt/m 

The total stiffness constant o f the suspension system is 3160 +  2000 =  5160 nt/m.

The frequency o f mechanical resonance is obtained from
(X r 4- « 0m — a/u0) =  (O.Olw2 +  2u0 — 5160) =  0 

which gives u0 =  625 rad/sec or /„  =  99.8 cyc/sec.

The acoustic power output for an input current o f 2 amperes is

<p2R jl2 56 If2 4̂ 
W  =  — j — =  =  3-72 watts or 42-5% increase

m
where

Z* =  (Rr +  R J 2 +  (Xr +  -  « /« )2 =  (2 +  1)2 +  [2 +  200(6.28)0.01 -  5160/1256]2 =  121 ohms2

By mounting the loudspeaker in a back-enclosed cabinet, an increase in power output is achieved. 
For loudspeakers operating in the low frequency ranges, this effect is much greater.

5J1. A direct-radiator dynamic loudspeaker of radius 0.1 m and mass of the cone 
0.01 kg has a suspension system of stiffness 1500 nt/m. If the loudspeaker is mounted 
in a back-enclosed rigid-walled cabinet of inside dimensions 0.4 x 0.5 x 0.6 m and wall 
thickness 0.02 m, find the resonant frequency of the cabinet which can be considered 
as a Helmholtz resonator. What is the resonant frequency of the loudspeaker cone?

The resonant frequency of the Helmholtz resonator is

«0 =  cyjA/LV =  343\/0.0314/0.189(0.12) =  406 rad/sec 

where c =  343 m/sec is the speed of Bound in air,

A = rr2 =  0.0314 m2 is the cross-sectional area of the opening,
L =  0.02 +  16r/3r =  0.189 m is the effective length of the opening,

V =  0.4(0.5)(0.6) =  0.12 m3 is the volume of the resonator.

By considering the loudspeaker and the cabinet as a system, the effective mass is the sum of 
the mass of the cone and the fluid in the opening, and so the acoustic inertance is

Af„ =  ml A2 =  (pLA +  0.01)M2 =  17.43 kg/m4 where p — 1.2 kg/m3

The effective stiffness of the system is the sum of the stiffness of the cone and of the cabinet.
Hence the acoustic compliance of the system is

Ca =  VA2/(pc2A2 + sV) =  3.7 X 10-7 sec2m4/kg where « =  1500 nt/m

The resonant frequency of the loudspeaker cone iB

/o =  (l/6.28)\/\/MaCa = 62.4 cyc/sec
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5.12. A  direct-radiator dynamic loudspeaker, mounted in an infinite baffle, has a radius 
o f  0.1 m and a frequency o f mechanical resonance o f 20 cyc/sec. W hen m ounted in 
a back-enclosed cabinet o f volume 0.1 m3, the same loudspeaker has a frequ ency  o f  
mechanical resonance o f 40 cyc/sec. Find the mass o f  the speaker cone and the 
stiffness constant o f  its suspension system.

A  back-enclosed cabinet will increase the stiffness of the suspension system of the speaker 
cone by

8 =  pc2A 2/V — 1420 nt/m

where p — 1.21 kg/m 3 is the density of air, c =  343 m/sec is the speed of sound in air, 
A  =  3.14(0.01) m2 is the area of the piston, and V =  0.1 m3 is the volume of the back-enclosed 
cabinet.

Now the frequency / 0 of mechanical resonance is determined from (X r +  2irf0m  — s /2 ir /0) =  0, 
where X T — 1.0 kg/sec is the radiation reactance acting on one side of the speaker. Two such 
equations can be written for two frequencies / 0j and /q.2 of mechanical resonance, i.e.

1.0 +  126m -  s/126 =  0

1.0 +  252m -  (# +  1420)/252 =  0 

Solving these two equations, we obtain s =  555 nt/m, m =  0.027 kg.

5.13. Tw o identical loudspeakers are radiating acoustic power o f 0.1 w att separately at a 
frequency o f 50 cyc/sec. I f they are brought together to a distance o f  0.5 m  between 
their centers and if they radiate sound waves in opposite phase, find, the total acoustic 
power output.

Assume the sound radiation coming from each loudspeaker possesses hemispherical symmetry. 
Apply the acoustic doublet theory

W d/Ws =  k2L 2/3

where W d is the acoustic power output of two identical sources radiating in opposite phase, W s is 
the acoustic power output of one such source, k =■ u/c =  50(6.28)/343 =  0.92 is the wave number, 
c =  343 m/sec is the speed of sound in air, and L =  0.5 m is the distance between the centers 
of the two sound sources. Then

W d =  (0.92)2(0.5)2(0.1)/3 =  0.007 watt

HORNS
5.14. Investigate the propagation o f plane acoustic waves along the axis o f  an infinite 

exponential horn.

An infinite exponential horn is a pipe whose cross-sectional area A  increases exponentially 
with distance from its throat.

Consider an incremental section of air PQ  of length dx, and its displaced position P'Q '. W e  
have shown that

dhi _  dp
Po at2 “  du

where p0 is the density of air and p is the acoustic pressure.



But the mass of air in PQ is the same as that In P'Q', i.e.

PoA(x)dx  =  PA(x +  u)(dx + du)

or M x) +
dx l + £dx

Neglecting higher order terms, we have

Po —

We can express the density of air as

_  I . du u dA ,
'  '  ',t|1 J = »

The equation of motion for the incremental section becomes

d2u 
Po dt2

dp dp _
dp dxJZ -  c"Po dx

1 ~

where c2 =  dpt dp. Thus the equation of motion is

d2u _  232u , c2 dA du 
dt2 C dx2 A dx dx

which has the same form as the equation of motion for the free longitudinal vibration of a bar 
with variable cross section.

For an infinite exponential horn, the cross-sectional area varies with the distance according to

A(x) =  A 0emx

where A0 is the throat area. Substituting this expression into the equation of motion, we obtain

d2u
dt2

= /.2 d2u
dx2

du+ m —  dx

and the solution is u(x,t) =  e - y ^ A e ^ - ^  +  Bei(“ t+Pl))

where y -  m/2, /? = yjk2 — m2/4, k =  u/c. The first term on the right represents a wave going 
outwards and the second a wave coming inwards. The plane waves decrease in amplitude because 
of the attenuation factor e~yx as a result of the spreading of waves over an increasing cross- 
sectional area within the horn. Since sound waves travel outward with a velocity c which is 
approximately independent o f the frequency and with an attenuation factor which is also independ­
ent of the frequency, good reproduction of whatever waves are generated at the narrow end of the 
exponential horn is possible. Other forms of horn such as the conical, hyperbolic, etc., in general 
will not give rise to the same behavior.

5.15. Determine an expression for the cutoff frequency of an infinite exponential horn. 
The motion of sound waves in an infinite exponential horn is (see Problem 5.14)

u(x,t) =  e -y x (Aeu“ t- ‘ix) + BeUat + l>z)) 

which represents waves traveling in opposite directions with velocity v = u//?. Since /3 = yjk2 -  m2/4,
the velocity of sound propagation can be expressed as

w/kv =
yjk2 — m2/ 4 \/l — m2/4k2 

where the quantity under the radical sign cannot be negative. Then

1 — m2/4k2 or k — u/c =  m/2

and the cutoff freqiuncy is f c = uc/2ir = mc/4ir. This is the minimum frequency, below which 
p r.p «.t,on  „ { ,„„„d  ln>ide „  m riiu  expo„ ential horn i3 „ ot p0M J  De'° *  »'>“*
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5.16. An infinite exponential horn of length 0.75 m has a radius of 0.02 m at the throat 
and a radius of 0.2 m at its mouth. Find (a) the flare constant of this horn and its 
cutoff frequency, (b) the peak volume velocity at the throat for 0.5 watt acoustic 
output of the horn, (c) If the radius of the driving diaphragm is 0.03 m, find the 
peak displacement amplitude in ofder to produce the above volume velocity at the 
throat of the horn.

(a) For infinite exponential horns, the cross-sectional area at a distance L from the throat is

Al = A0emL

where is the throat area and m is the flare constant. Thus

(0.2)2 = (0.02)2e07Sm or 100 =  e0-7*"1 

Taking natural logarithms, we obtain the flare constant m = 6.15.

The cutoff frequency of infinite exponential horns is f c =  mc/iv =  167 cyc/sec.

(b) Acoustic output for an infinite exponential horn can be expressed as

W = Rrv2 = (AlR0)v2 =  Al(pc/A0)v2 watts 

Since volume velocity at the throat is F0 = A0v, we have IV =  V\(pc/A0) or 

V„ = \IWAJpc = V0.5r(0.02)*/415 =  0.00123 mVsec

(c) The peak velocity at the throat is v0 = VJvA\ =  0.979 m/sec. Thus the peak displacement 
amplitude at the throat is

u0 = = 0.979/[167(6.28)] = 0.000928 m

The volume displacement at the throat must equal the volume displacement at the driving 
diaphragm, i.e. u^Aa -  and hence the peak displacement amplitude at the driving
diaphragm is

ud = u^o/Aa = [0.000464r(0.02)2]/[jr(0.03)2] =  0.00021 m

5.17. Investigate the propagation of sound waves 
along the axis of a conical horn as shown 
in Fig. 5-10.

The equation of motion for horns with variable 
cross-sectional area A is

dhi _  , dhi c2 8A du 
dt2 C dx2 A dx dx

where u is the displacement along the axis and c 
is the speed of sound in air. Rewriting,

dhi , d2u , du d In A
~ * i ?  + * T x - ) r

From the geometry of the conical horn,

Fig. 5-10

— = T or aL L
jto.
va,

*_
L2

where AL is the area of cross section at the mouth, Az is the area of cross section at a length x 
from the throat, and the area at the throat is assumed to be negligible. Taking the natural 
logarithm of the last expression,

ln/tj. = 21nx + In (AJL2)

or
d In Ax

dx
2
x

Putting the above expression into the general equation of motion,

—  = 2 ( ,  2 8u 
dt2 C I dx2 * dx
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*2(*tt) _  . , * 2(xu)
This can be written as ~ ~ d W  ~  d x 2

which ifl similar to the equation governing the propagation o f spherical acoustic waves from a point 
source. Thus we conclude that spherical instead o f plane acoustic waves will be propagated in a 
conical horn with a velocity e independent o f frequency, and with attenuation of intensity in 
accordance with the inverse square law. (See Problem 3.8.)

microphones

5.18. A crystal microphone has a sensitivity of —50 db re 1 volt/microbar and an internal 
capacitive impedance of 150,000 ohms at 500 cyc/sec. Plane acoustic waves of fre­
quency 500 cyc/sec and acoustic pressure 0.5 microbar are incident on the microphone. 
Determine the voltage generated in a load resistor of 400,000 ohms connected across 
the output terminals of the microphone. What power will be generated ill this load 
resistor?

The sensitivity of the microphone is

Mc =  20 log (E/p) =  20 log (E/0.5) =  -5 0

or the output voltage of the microphone is E — 0.5 antilog (—2.5) =  0.00161 volt. Hence the volt­
age generated in the load resistor is

• »  _  ER l 0.00161(400,000) _
-  tL L R l +  R ~  400,000 +  150,000 _  0 00117 volt

The power generated by the load resistor is W L =  E\/Rl =  3.42 x 10-12 watt.

519 A carbon microphone diaphragm of radius 0.01 m and effective stiffness 108 nt/m is 
connected to a 12-volt battery. If the internal impedance of this microphone is 
120 ohms and its resistance constant is 7.5 x 108 ohms/m, find the microphone 
sensitivity. Find also the ratio of the second harmonic to fundamental voltage 
developed in this microphone for an incident plane acoustic wave of 150 microbars 
pressure amplitude.

The sensitivity of the carbon microphone is

Mc =  E0hA/Ro8 =  12(7.5 X  108)(0.000314)/1.2(10)8 =  2.35 X  10~2 volt/nt-m2

where E0 = 12 volts is the voltage of the battery,

h =  7.5 x  108 ohms/m is the resistance constant,

A = 0.000314 m2 is the area of the diaphragm,

R0 =  120 ohms is the internal impedance of the microphone,

t =  10« nt/m is the effective stiffness.

The response of the microphone can be expressed as a decibel level relative to one volt/microbar 
or one volt per 0.1 nt/m2, i.e. 20 log (M^IO) =  -52.6  db re 1 volt/microbar.

The ratio of the second harmonic voltage to fundamental voltage is hy^2Ra, where y0 is the 
displacement amplitude at the center of the diaphragm due to sound pressure and is given by

Vo =  P0A/a =  4.7 X  10-» m

where P0 = 150 microbars or 15 nt/m2 is the pressure amplitude of the incident sound waves. 
Thus the ratio of the second harmonic to the fundamental is hy0/2R0 =  0.015.

It is interesting to note that both the microphone response and the ratio of second harmonic 
distortion depend on the factor h/R0. By increasing h/R0 either by increasing the value for h or 
decreasing the internal impedance R0, we obtain better microphone sensitivity but greater distort' 
and vice versa. For very intense sound waves, the output will have considerable harmonic distorti0" '
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5.20. A moving-coil microphone has a moving element of radius 0.05 m, 0.002 kg mass,
50.000 nt/m stiffness, and 20 kg/sec mechanical resistance. The coil is 0.3 m long 
and moves in a magnetic field of 1.5 webers/m2 flux density. What is the open-circuit 
response at 1000 cyc/sec frequency? Find the amplitudes of the velocity and displace­
ment of the diaphragm when it is subjected to an acoustic pressure of 1.0 nt/m2. 
What is the open-circuit voltage generated in the coil?

The open-circuit response is
Mm = BLA/Zm = 1.75 X  10-4 volt per nt/m2 = 1.75 X  10-5 volt/microbar

where B = 1.5 webers/m2 is the flux density,

L = 0.3 m is the length of the coil,

A = z-a2 = 3.14(0.06)* = 7.84 X  10-3 m2 is the cross section,

Zm = yjRn + (um — l/uCm)2 = 20.6 ohms is the impedance,

« = 1000(2r) = 6280, urn -  6280(0.002) = 12.56,

Cm -  1/s = 1/50,000 = 2 X  10“ 5 is the compliance in m/nt, 1 /uCm = 8.0,

Rm -  20 kg/sec is the mechanical resistance.

Using one volt per microbar as reference, the open-circuit response in decibels is
Mm = 20 log 1.75 X  10"5 = -95  db

The amplitude of velocity of the diaphragm is v0 = F/Zm =  1/20.6 =  0.0485 m/sec. Hence the 
amplitude of displacement of the diaphragm is u0 = Vfju = 7.72 X  10-6 m. The open-circuit 
voltage generated in the coil is V = BLv0 = 0.0218 volt.

5.21. A condenser microphone diaphragm of radius 0.02 m is stretched to a tension of
20.000 nt/m. The spacing between diaphragm and the backing plate is 0.00001 m, 
and the polarizing voltage of the microphone is 400 volts, (a) What is the open- 
circuit voltage response of the microphone? (b) Find the amplitude of the average 
displacement of the diaphragm when it is acted upon by a sound wave of 15 nt/m2 
pressure amplitude, (c) Determine the voltage generated in a load resistor of 
3 megohms if the frequency of the incident sound waves is 150 cyc/sec.
(a) The open-circuit voltage response of the condenser microphone is

where E0 = 400 volts is the polarizing voltage, a is the radius of the diaphragm in meters, 
d =  0.00001 m is the spacing between diaphragm and backing plate, and T =  20,000 nt/m 
is the tension.

The response in decibels is Mc = 20 log 0.01 = -40  db re 1 volt/microbar.

(b) The amplitude of the average displacement of the diaphragm is

j/av = P0a2/iT = 15(0.02)2/8(20,000) = 3.75 X  10-* m

(c) The voltage drop across the load resistor is

Af,
E0a2 _  400(0.0004)

0.1 volt per nt/m2 =  0.01 volt/microbar8 dT 8(0.00001)(20,000)

EnC,R

where C„ = (27.8o2/d) x lQi* = [(27.8)(0.0004)/0.00001]10i2 = 1120 x 1012 farads,

C, = C0P0a2/MT = =  4.2 X 1012 fa r a d s ,

E0 = 400 volts,

RL = 3 megohms = 3 X  10® ohms.
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5.22. A velocity-ribbon microphone has an aluminum strip of width 0.004 m, length 
0.03 m and mass 3 x l 0 _6kg. The strip moves in a magnetic field of flux density
0.3 weber/m2 inside a circular baffle of radius 0.05 m. If a plane acoustic wave of 
frequency 300 cyc/sec and pressure 2.5 nt/m2 is incident normally on the face of the 
ribbon, find (a) the voltage generated in the ribbon, (b) the sensitivity of the micro­
phone Mv at this frequency, and (c) the amplitude of the velocity and displacement 
of the ribbon.

(a) Voltage generated is
E =  BLcLAP0/cm =  1.31 x 10-* volt 

where B =  0.3 weber/m2 is the flux density of the magnetic field,

Lc =  0.03 m is the length of the ribbon,

L =  0.05 m is the radius of the circular baffle,

A =  0.004(0.03) =  1.2 x  10-4 m2 is the area of the strip,

P0 =  2.5 nt/m2 is the acoustic pressure amplitude, 

e =  343 m/sec is the velocity of sound, 

m =  3 X  1 0 kg is the mass of the ribbon.

(b) Af„ = (2BLcA/tm) sin (\kL  cos 0) =  5.35 X  10“ 5 volt/(nt/m2) =  —85.4 db re 1 volt/microbar where 
k = u/e =  300(6.28)/343 =  5.49, kL =  5.49(0.05) =  0.274, cos e =  1 at normal incidence, 
sin (\kL) =  sin 7.85° =  0.14.

(c) The amplitude of velocity of the ribbon is v0 =  EIBLC — 0.0146 m/sec, and hence the amplitude 
of displacement of the ribbon is u0 =  v ju  — 7.76 x 10-6 m.

523. If the diaphragm of the condenser microphone of Problem 5.21 is made of steel of 
thickness 0.00001 m, compute the fundamental frequency of the diaphragm. What 
is the internal impedance of the condenser microphone?

The fundamental frequency of a flexible circular diaphragm stretched to a high tension at the
edges is given by .—-—

fi  =  (2.4/2ira) V T/pa =  9780 cyc/sec
where a =  0.02 m is the radius of the diaphragm, T =  20,000 nt/m is the tension, p0 = pt = 
7700(0.00001) =  0.077 kg/m2 is the density per unit area of the diaphragm, and t =  0.00001 m is 
the thickness of the diaphragm.

The internal impedance = 1 /uC0 =  t/150(6.28)27.8a2 =  0.95 X  10“ 6 ohm.

5.24. In a reciprocity type of calibration of two identical reversible microphones spaced 
1.5 m from each other, the measured open-circuit voltage output of one microphone 
is 0.01 volt when a driving current of 0.15 ampere is supplied to the other microphone 
at a frequency of 1500 cyc/sec. Calculate the sensitivity of the microphones.

The open-circuit voltage response of the microphones calibrated by the reciprocity method is

M« = Mb = \/2dEJPfIb =  V2(1.5)(0.01)/(1.21)(1500)(0.15) = 0.0106 volt/(nt/m2)
= —59.94 db re 1 volt/microbar

where d — 1.5 m is the spacing between the two identical microphones, Ea = 0.01 volt is the 
measured open-circuit voltage output of one of the microphones, p =  1.21 kg/m3 is the density of
driving current7^"*0 ^  frequency of the driving current, and Ib =  0.15 ampere is the



134 LO U D SPE A K E R  A N D  M ICROPH ONE [C H A P . 5

5JS5. A  reversible electroacoustic transducer and a loudspeaker are used in the reciprocity 
calibration of a microphone. The open-circuit voltages in the transducer and the 
microphone are 0.16 and 0.64 volts respectively when they are placed the same dis­
tances from  the loudspeaker. When the microphone is 2.0 m from  the transducer 
which acts as the source, an open-circuit voltage of 0.02 volt is generated in the 
microphone while the transducer is supplied with a driving current o f  12 amperes at 
a frequency o f 1500 cyc/sec. Determine the open-circuit response o f the microphone 
and the acoustic pressure p  acting on the microphone.

The open-circuit response o f  microphones calibrated by the reciprocity  m ethod is g iven  by 
(see Problem 5.24)

M a -  V 2dEaE'a/pfIbE b =  \/2(2)(0.64)(0.02)/(1.21)(1500)(12)(0.l6) =  0.0038 vo lt/(n t/m 2)

=  — 88 db re 1 volt/m icrobar

and so p =  E'JM a =  0.02/0.0038 =  5.3 nt/m 2.

5.26. A microphone o f impedance 100 ohms and frequency 1000 cyc/sec is connected to an 
amplifier by 25 m o f coaxial cable having a capacitance o f 0.01 m icrofarad per meter 
o f cable. If the impedance of the microphone is entirely reactance, find the voltage 
loss in decibels due to the capacitance of the cable.

The capacitance o f the microphone is Cm =  l/uXc =  1/6280(100) =  1.6 m icro fa ra d s , and the 
capacitance o f  the coaxial cable is Cc =  25(0.01) =  0.25 m icrofarad . H ence v o ltag e  loss is 
20 log  (1.6 -I- 0.25)/1.6 =  1-24 db.

Cables connecting microphones to amplifiers should be short in length, w ell screened, and o f  
low  capacitance. Otherwise the voltage output o f the m icrophone w ill be affected.

5.27. Find an expression for the ratio of the pressure gradient in spherical acoustic waves 
and the pressure gradient in plane acoustic waves for a first-order pressure gradient 
microphone.

F or harmonic spherical acoustic waves, the instantaneous pressure p  at a d istan ce r  from  
the source is „

P„
p =  —  cos (ut — kr)

T

where k =  u/c is the wave number and P 0 is the maximum pressure am plitude. The pressure 
gradient is therefore given by

dp _ P 0k p Q
dr ~  —  ain M  — k r ) ------ -  cos (ut — kr)

\  •]
and hence the rms value o f the pressure gradient is

P n 1 I
k sin («t — kr) — -  cos (ut — kr)

o
r

d ? )  =  ^ V * ( f r 2 +  l / r 2) =  M V i  +  1/r2k2
V 2

Similarly, fo r  harmonic plane acoustic waves o f the same amplitude the instantaneous pressure 
p  at a distance r  from  the source is

p =  P'0 cos (ut -  kr)
where the amplitude P Q - P 0/r  remains constant. F or the pressure gradient we have

=  r>’ v • / * i v  p okdT “ ok sin (ut kr) — —— sjn (u£ _

and the rms value is P 0kfry/2.
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Thus the ratio o f the first-order pressure gradient is

_  (P0k/rV2)  V(l + l/r2fc2)
P 0k/ry/2

This ratio indicates that pressure gradient microphones favor spherical acoustic waves (e.g. close 
sound sources) but discriminate against plane acoustic waves (e.g. distant ambient noises). This is 
based on the assumption that the path length o f the microphone is very small compared with the 
wavelength (this is true for low frequencies but inaccurate at high frequencies).

It can be shown in a similar manner that the ratio o f pressure gradient for second-order 
pressure gradient microphones is V l  +  4/fc4r4. As in the previous case, plane acoustic waves are 
being discriminated against while spherical acoustic waves are being favored.

Vl + l/r2k2

5.28. An array of n pressure-sensitive microphones are connected in series and equally 
spaced a distance d meters as shown in Fig. 5-11. If the microphones have identical 
response and sensitivity, determine an expression for the output of the array for 
plane acoustic waves with angle of incidence 9.

Fig. 5-11

Since sound waves arrive with angle of incidence 6, the wavefront reaches different micro­
phones at different times and the output from each unit will vary in phase. Let AB  and BC 
represent the outputs of microphones M x and Af2 respectively. If the angle of incidence 0 =  0, 
AC' would represent the total output of microphones Mx and M2. Now the output BC from 
microphone Af2 lags the output AB  from microphone Mt by an angle <f> =  kd sin 8 as shown in 
Fig. 5-12, where k =  u/c =  2ir!\ is the wave number.

Fig. 5-12

Triangle. OAB and OBC . M l . ,  ill0« « le.  „

* -  180° -  iCBO -  IOBA  and # =  IBOA - LBOC
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5.29.

5.30.

The output for  microphone, M, and M , i» therefore AC  =  2A D  =  2AO  sin *. Thus fo r  an array 
o f  n identical units, the total output is

E n =  2AO sin (n<f>/2)

But AO  =  AE/sin (0/2) where 2A E  =  is the output o f one microphone. Then

2AE  . , _  sin {n<f>/2) ^
E * ~  sin (0/ 2) Sm  ̂ sin (0/ 2) 1

A t low frequencies the wavelength X =  e lf  is considerably larger than the spacing  distance d ; 
hence 0 =  JW sin 0 =  (2r/\)d sin 9 and so

sin (n<p/2) ^  n$/2 _  n gmajj vaiues Qf  $ 
sin (0/ 2) 0/2

In other words, the total output o f an array o f n microphones at an angle o f  incidence $ is 
=  n E j, which is the same for an array at an angle o f incidence e =  0.

A t high frequencies the values for 0 are no longer small. Consequently the output depends on 
the angle o f incidence 9, i.e. the array is highly directional.

For an array o f 10 microphones spaced evenly at a distance 0.12 m apart, fo r  exam ple, the 
angles o f incidence for zero output for sound waves at a frequency o f 343 cyc/sec are given  by

sin (n</>/2) =  0 or 100/2 =  v or 0 =  W5 

Now 0 =  (2ird/X) sin 9 or 2(3.14)0.12 sin 6 =  (3.14/5)X

where u/c =  2jt/X and X =  2?rc/343(6.28) =  1.0. Hence sin 9 =  0.83 and 9 — 56°, 124°.

Supplementary Problems
Determine the equivalent electrical circuit for the acoustical system consisting o f  a series o f  Helm ­
holtz resonators as shown in Fig. 5-13.

Find an equivalent electrical circuit for the acoustical system shown in Fig. 5-14.

_nr
Ans. ----- ------------- ----- W ------ — 'TRP------

j  ̂ L

Fig. 5-14



CHAP. 6] LOUDSPEAKER AND MICROPHONE 137

5J,- For the acoustical system shown in Fig. 6-16, find the equivalent electrical circuit.
Ans.

Fig. 5-15

5.J2. An acoustic filter as shown in Fig. 5-16 is subjected to steady harmonic sound pressure Po sin ut. 
Find the amplitude ratio of the steady state response. Ans. p/p0 = 1/(1 -  u2/u2n)

Po sin wt p sin ut

Fig. 5-16

5.JJ. Determine the equivalent electrical circuit for the mechanical-acoustical system shown in Fig. 5-17.
Ans.

544. A high-pass acoustic filter is shown in Fig. 5-18. Find its equivalent electrical circuit.

Ans. k =  (1.4p/V)M 74)2 Fig. 5-19
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MICROPHONES
5J& Calculate the lowest natural frequency of a conical horn of radius 1 meter open at its wide end. 

An*. 166 cyc/sec

5J7. What is the sound loss in decibelB for a bi-directional pressure gradient microphone if  the sound 
on the is moved to an angle of 50°? Ans. 3.8 db

5.38. Obtain an expression for the force acting on the diaphragm of a pressure gradient microphone 
when it is exposed to an acoustic pressure p0 sin ut. Ana. F  =  2Ap0 sin kd

5.39. For a second-order pressure gradient microphone, derive an expression for the ratio o f pressure 
gradients for spherical and plane acoustic waves. Ans. (1 +  4/fcV*)1/2

5.4*. If the directional response characteristics of a second-order pressure gradient microphone is pro­
portional to cos2 #, find an expression for the pressure gradient for spherical and plane acoustic waves. 
An*. (6 + 20/JtV‘)1/a

5.41. Compute the directional efficiency of bi-directional and uni-directional microphones.
An*. 1/3,1/3

5.42. An array of n identical microphones are spaced evenly in a distance L. For incident acoustic waves 
of wavelength \ = nL, show that the output of the array at 9 =  90° is 1 In o f the output at the 
axis of the array.

5.43. An array of 10 identical microphones are spaced equally at 1/9 meter apart. For incident sound 
waves of frequency 343 cyc/sec, determine the angles of incidence that will give zero output.
An*. # = 64°, 116°

5.44. Plane acoustic waves are incident at an angle 9 to the axis of a multi-tube microphone as shown 
in Fig. 5-20. Find the phase angle between acoustic pressures for adjacent tubes, and the result­
ant pressure on the diaphragm.
a fcL f  sin (n^/2)l

A"  * =  *  =  p»L‘ 5 ? W 2 )J

5.45. A cardioid microphone has response of 2M at the axis, compute its responses at angles of 30° 60° 
90°, 130° and 160°. An*. 1.866M, 1.6Af, M, 0.6M, 0.134AT



Chapter 6
Sound and Hearing

NOMENCLATURE

/ = frequency, cyc/sec
HL - hearing loss, db
1 — sound intensity, watts/m2
IL — intensity level, db
ISL — intensity spectrum level, db
LL - loudness level, phons
V — acoustic pressure, nt/m2
PBL - pressure band level, db
PSL — pressure spectrum level, db
SIL — speech interference level, db
SL — sensation level, db
SPL — sound pressure level, db
ut — circular frequency, rad/sec
p — density, kg/m3

INTRODUCTION
Noise, music and speech are the three basic categories of sound. The human voice as 

the natural sound source and the human ear as the natural sound receiver constitute the 
fundamental natural sound system. Basic understanding of sound and the human ear is 
therefore essential for acoustical studies and measurements.

NOISE
Noise is simply anything that we hear, and is subjectively defined as unpleasant or 

unwanted sound. Technically noise is the combined result of single-frequency sounds or 
pure tones, and has essentially a continuous frequency spectrum of irregular amplitude and 
waveform. Airborne noise is due to the fluctuations of air pressure about the mean atmos­
pheric pressure, structural-borne noise results from mechanical vibrations of elastic bodies, 
and liquid-borne noise is caused by pulsations of liquid pressure about the mean static 
pressure. Ultrasound is noise of frequency greater than 20,000 cyc/sec while infrasound 
is noise of frequency less than 20 cyc/sec (below the normal lower audible limit of the 
human ear).

PHYSIOLOGICAL AND PSYCHOLOGICAL EFFECTS OF NOISE
Noise interferes with work, sleep and recreation. It also causes strain and fatigue, 

loss of appetite and indigestion, irritation and headache. High intensity noise has adverse 
cumulative effect on the human hearing mechanism, producing temporary or permanent 
deafness. Psychologically, noise adversely affects the output of workers, decreases their 
efficiency, and increases their liability to error because of distraction from work. Noise 
from machines causes wear and damage to the machines.

139
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LOUDNESS
Loudness of a sound is the magnitude of the auditory sensation produced by the 

amplitude of the disturbances reaching the ear. Vibrational energy of sound is a physical 
property while loudness is a mental interpretation. Loudness of a sound is therefore a 
subjective quantity and cannot be measured exactly with any instrument. No absolute 
scale has been established for the measurement of loudness of a sound. A relative scale, 
based on the logarithm of the ratio of two intensities, is used.

The sone is an acoustic unit used to measure loudness of a sound. It is used to rank 
and compare loudness of sounds on a common basis as the ear hears them. A pure tone of 
frequency 1000 cyc/sec at a sound intensity level of 40 db is defined as having a loudness 
of one sone. A loudness of 0.001 sone or 1 millisone corresponds to the threshold of hearing. 
Unlike the phon, a loudness of 2 sones is twice as loud as a loudness of 1 sone.

The phon is an acoustic unit used to measure the overall loudness level of a noise. A 
pure tone of frequency 1000 cyc/sec at a sound intensity level of 1 db is defined as having a 
loudness level of 1 phon. All other tones will have a loudness level of n phons if they are 
judged by the ear to sound as loud as a pure tone of frequency 1000 cyc/sec at a sound 
intensity level of n db.

Like the decibel, a tone with a loudness level of 30 phons does not sound half as loud as 
a tone with a loudness level of 60 phons. A tone of frequency 500 cyc/sec at a loudness 
level of 40 phons, however, sounds exactly as loud to the ear as any other 40 phons tone 
at any other frequency.

Loudness level of a sound is defined as
LL = 10 log phons

where I is sound intensity in watts/m2.
Figure 6-1 shows contours of equal loudness level in phons over the entire band of audible 

frequencies against intensity level in db or intensity in watts/m2. The upper contour of 
120 phons represents the threshold of feeling while the lower contour of zero phons rep­
resents the threshold of hearing. At low intensity levels the human ear is most sensitive 
to frequencies between 1000 and 5000 cyc/sec, and at very high intensity levels the response 
is more uniform.

Frequency, cyc/sec 
Fig. 6-1
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Figure 6-2 is a plot of loudness level versus loudness in phons and sones respectively. 
(See Problems 6.1-6.6.)

Loudness Level, phons 

Fig. 6-2

The noy has been suggested as a possible acoustic unit to rank and compare the noisiness 
or annoyance of noises as the ear hears them. A noise, for example, may be judged sub­
jectively by the ear to be louder but not necessarily more annoying than another noise half 
as loud.

Perceived-noise-level PNdb is a subjective scale developed to measure the unwantedness 
or noisiness of a noise, especially noises from jet aircraft. It not only represents the 
intensity of the noise but also its frequency spectrum. The noise spectrum is mathematically 
divided into a number of frequency bands and the sound pressure levels in these bands are 
determined. These are combined in some fashion after suitable weighting factors have 
been applied to each frequency band measurement. The result is perceived-noise-level in 
decibels.

NOISE ANALYSIS
In noise analysis the overall sound pressure level of a noise can be accurately measured 

by a sound level meter and a sound analyzer, while an audio frequency spectrometer and a 
level recorder plot the pressure spectrum level of the noise over the entire band of audible 
frequencies.

An octave is the interval between two frequencies having the ratio 2:1. The 
commonly used octave bands are 37.5-75, 75-150, 150-300, 300-600, 600-1200, 1200-2400, 
2400-4800, 4800-9600 cyc/sec. A one-third octave band is a band of frequencies in which 
the ratio of the extreme frequencies is equal to the cube root of 2. A narrow band is a 
band whose width is less than one-third octave but not less than one percent of the center 
frequency.

Intensity spectrum level ISL at any particular frequency /  of a noise is defined as the 
intensity level of the given noise contained within a band of frequencies 1 cyc/sec wide, 
centered on the frequency /.

ISL = 10 log = IL — 10 log Af db

Wh* ? .^ v SZ ?  “  watt8/m’ ' 7» =  10‘ ,J watt/m« is the reference intensity, IL18 intensity level in decibels, and A/ is the bandwidth in cyc/sec.
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Pressure spectrum level PSL can be similarly defined as the sound pressure level con­
tained within a band of frequencies 1 cyc/sec wide.

PSL = SPL -  10 log A / db 
where SPL is sound pressure level in decibels in the band of A/  cyc/sec width.

Pressure band level PBL is similarly given by

PBL = PSL + 10 log A / db
(See Problems 6.7-6.12.)

White noise has a constant spectrum level over the entire band of audible frequencies, 
and need not be random or time-dependent. The amplitude of a random noise occurs, as a 
function of time, according to a Gaussian distribution curve. A random noise does not 
have a uniform frequency spectrum. Pink noise is characterized by equal energy per octave 
from 20 to 20,000 cyc/sec.

PITCH AND TIMBRE
Loudness, pitch and timbre are the three fundamental quantities which characterize a 

tone. From the physical point of view, pitch is the frequency of vibration of a pure tone. 
For a complex sound, pitch is characterized by its frequencies, and to some extent by the 
sound pressure and the wave form. To the human ear, pitch is that attribute of auditory 
sensation in terms of which sounds may be ranked and compared. In short, pitch is the 
mental counterpart of modes of vibration.

Sound intensity significantly affects pitch at very low and very high audio frequencies. 
When sound pressure is increased, the pitch of a low frequency tone will decrease whereas 
the pitch of a high frequency tone will increase. The mel is an acoustic unit used to describe 
the pitch of a sound. A pure tone of frequency 1000 cyc/sec and loudness level 40 phons is 
defined to have a pitch of 1000 mels.

Timbre or tone quality may be described as the instantaneous cross section of the tone,
i.e. in terms of the number, intensity, distribution and phase of the harmonics. Intensity 
of overtones can produce changes in timbre whose subjective behavior is much more 
complex than that of loudness or pitch.

MUSIC
Music can be described as a highly subjective and complex mental sensation derived 

from listening to a succession or combination of different sounds produced by various 
vibrating bodies such as strings, membranes and air columns. Unlike noise, musical tones 
have simple harmonic structure with regular waveforms and shapes, and consist of a 
fundamental and harmonics of integral-related frequencies. Musical acoustics involves 
psychological and physical laws as well as aspects and phenomena of tone production.

SPEECH
Speech sounds are complex audible acoustic waves that provide the listeners with 

numerous clues. Speech concerns the structure of language and is characterized by the 
interpretive aspect, loudness, pitch, timbre and tempo. Intelligibility of speech is an indica­
tion of how well speech is recognized and understood. This depends on acoustic power 
delivered during the speech, speech characteristics, hearing acuity, and ambient noises.
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Sound articulation is the percentage of the total number of speech sounds correctly 
recorded and identified. Syllable articulation is the number of syllables heard correctly 
from 100 speech syllables announced. Articulation generally increases rapidly with speech 
level until 70 db.

Speech interference level SIL in decibels is the arithmetic average of readings in the 
three octave frequency bands, i.e. 600-1200, 1200-2400, and 2400-4800 cyc/sec. A voice 
speech spectrogram shows a time series of frequency versus amplitude plots.

The masking of a sound can be described as the shift of the threshold of hearing of the 
host sound due to the presence of the masking sound. It is the reduction of the ability of 
a listener to hear one sound in the presence of other sounds. For a given frequency, the 
decibel difference between the background noises and the normal threshold of audibility 
is defined as the degree of masking.

In general, pure tones are used as the masked sounds. A tone of high pitch can easily 
be masked by a tone of low pitch. A continuous bland background noise tends to dull the 
edges of intermittent harsh sounds.

THE HUMAN VOICE

The mechanism of the human voice is a very low efficiency sound-producing system. It 
has four main parts: (1) a power generator that includes diaphragm, lungs, bronchi, 
trachea and associated muscles, (2) a vibrator called the larynx, (3) resonators (nose, 
mouth, throat and other voids) and sounding boards (chest, head and palate), and (4) artic­
ulators such as lips, tongue, teeth and palate.

The loudness of the human voice is dictated by the stream of air forced through the 
vocal cords from the lungs. The frequency of the human voice is controlled by the elasticity 
and vibration of the vocal cords, while the resonators govern the quality of the sound 
produced.

THE HUMAN EAR
The human hearing mechanism is essentially a very sensitive electroacoustic transducer 

responding to sound waves of a wide range of frequencies, intensities and waveforms. It 
translates acoustic pressure fluctuations into pulses in the auditory nerve. These pulses 
are carried into the brain which interprets and identifies them, and converts them into 
sensations -  the perception of sound.

As the response of the human ear is a purely subjective quantity, it cannot be measured 
directly like other physical quantities. The response of the human ear varies with both 
frequency (20-20,000 cyc/sec) and sound intensity (10-12-1 watt/m2) at all values. However, 
the human ear is more sensitive to changes in frequency than to changes in sound intensity 
and more sensitive to sounds of low intensity than to those of high intensity. Because of 
its nonlinear responses to sound waves, the human ear actually creates sounds of various 
frequencies.

Hearing loss HL can be defined as the decibel difference between a patient’s threshold 
of audibility and that for a person having normal hearing at a given frequency. It is 
actually a shift in sensation level.

HL -  10 log j- db
i o

where / is the threshold sound intensity for the patient’s ear and h  is the threshold sound 
intensity for the normal ear.
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Sensation level SL of a tone is the number in decibels by which it exceeds its threshold 
of hearing.

SL = 10 log y  db it
where I is the intensity of the tone and U is the intensity at the threshold of hearing.

The hearing mechanism is highly resilient to intensity changes and can be overloaded. 
Deafness is usually rated by the amount of hearing loss in decibels. Conductive deafness 
is hearing impairment due to abnormality or obstruction in the middle ear. Nerve 
deafness is the loss of hearing caused by nerve defect.

Hearing test employs an audiometer, an attenuator, an interrupter switch, and an 
earphone to determine the threshold of hearing, hearing defect and deterioration.

The ability of the human ear to identify and locate the direction of a source of sound 
with great accuracy is termed binaural audition or auditory localization. This is due to 
the difference in sound intensity at the two ears due to diffraction, and to the phase dif­
ference in sound arriving in different times at the two ears. (See Problems 6.13-6.16.)

Solved Problems
LOUDNESS
6.1. A pure tone of frequency 200 cyc/sec has an intensity level of 60 db. Determine its 

loudness level and loudness. To what intensity level must this pure tone be raised 
in order to increase its loudness to twice the original value?

The loudness level can be found from Fig. 6-1. The intersection o f lines representing a fre ­
quency o f 200 cyc/sec and an intensity level o f 60 db yields a loudness level o f 52 phons.

From Fig. 6-2, a loudness level of 52 phons corresponds to a loudness o f 2.3 sones.

For a pure tone of twice the loudness, i.e. 4.6 sones, the corresponding loudness level is seen 
to be 60 phons. And from Fig. 6-1, a pure tone o f frequency 200 cyc/sec and loudness level 
60 phons corresponds to an intensity level 65 db.

6.2. The loudness level of a 1000 cyc/sec pure tone is 60 phons. How many such tones 
must be sounded together in order to produce a loudness level twice that produced 
by one tone?

The loudness level required is 120 phons. Then at a frequency o f 1000 cyc/sec, the intensity 
level is 120 db. Using

IL =  10 log (7/10_12) db
the intensity o f one such tone is

60 =  log (7/10-12), I =  10~12 antilog 6 = 1 0 -6 watt/m 2 

and the intensity of all the tones together would be

120 — log (7/10 12), 7 =  10-12 antilog 12 =  1.0 watt/m 2 

Thus the number of tones required =  1/10_ 6 =  10a.
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A pure tone of intensity level 60 db and frequency 1000 cyc/sec is mixed with another 
pure tone of intensity level 50 db and frequency 1000 cyc/sec. Find the loudness 
level of this combination.

From Fig. 6-1, the first pure tone has loudness level 60 phons, and the second pure tone has 
loudness level 50 phons.

Since loudness level LL =  10 log (7/10 _12) phons, where I is the sound intensity in watts/m2, 
(LL)j =  10 lo g ( / /1 0 -12) =  60 or Ix =  IO” 12 antilog 6 =  10“ 8 watt/m2 
(LL)., =  10 log (//10 -12) = 50 or / 2 =  10-12 antilog5 = 10~5 watt/m2

Thus the sound intensity of the combination is /  =  +  / 2 =  1.1 X IO-8 watt/m2, and the loud­
ness level of the combination is LL = 10 log (1.1 X 10-fl/10-12) =  60.44 phons.

A pure tone of frequency 1000 cyc/sec has intensity level 60 db. Find the loudness 
level produced by two such tones operating simultaneously.

From Fig. 6-1, the loudness level of the tone is 60 phons. Then
10 log (7/10— 12) =  60 phons or I — 10-6 watt/m2

The intensity of two such tones is 2 X 10~9 watt/m2, and the loudness level of two such tones 
is 10 log (2 X 10-6 /10-12) =  63 phons.

Given three pure tones with the following frequencies and intensity levels: 100 cyc/sec 
at 60 db, 500 cyc/sec at 70 db, and 1000 cyc/sec at 80 db. (a) Compute the total loud­
ness in sones of these three pure tones. (6) What is the combined intensity level of 
these three pure tones? (c) Find the intensity level of a single 2000 cyc/sec pure 
tone which has the same loudness as all the three pure tones combined.
(a) The loudness level and loudness of a pure tone with known frequency in cyc/sec and intensity 

level in db can be found from Fig. 6-1 and Fig. 6-2. For the given pure tones, we have

Frequency
cyc/sec

Intensity Level 
db

Loudness Level 
phons

Loudness
sones

100 60 37 0.8
500 70 71 9.5

1000 80 80 18.5

The total loudness of these three pure tones is 0.8 +  9.5 +  18.5 = 28.8 sones.

(6) The intensity level is defined as IL = 10 log (//10 -12) db, where I is the intensity in watts/m2. 
The intensities of the three pure tones are found to be respectively 10~6, 10-5 and 10-4 watts/m2. 
Then the total intensity is 111 X 10-6 watt/m2, and the combined level of these three pure 
tones is 10 log (111 x 10-e/10~12) =  80.47 db.

(c) The total loudness of the combined tones (28.8 sones) corresponds to a loudness level of 87 phons. 
A pure tone of frequency 2000 cyc/sec and loudness level 87 phons has an intensity level of 
86 db.

The frequencies and sound pressure levels of three pure tones are 200 cyc/sec at 
64 db, 500 cyc/sec at 70 db, and 1000 cyc/sec at 74 db. (a) Which tone is the loudest? 
(b) What is their total loudness level in phons ?

Sound pressure level in decibels relative to 0.0002 microbar can be expressed as
SPL =  20 log p -I- 94 db

where p is the acoustic pressure in nt/m2. Then the acoustic pressures of the three pure tones are 
found to be p, = 3.15 X 10~2, p2 =  6.3 x IO"2, p3 =  0.1 nt/m2.
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Now intensity I = pVpc, where Pe = 415 rayls is the characteristic impedance of air. Thus 
the intensities of the three pure tones are =  2.38 x 10-6, / 2 =  9.56 X 10-8 , I3 =  24.1 x 10~® 
watts/m2. The corresponding intensity levels in decibels are (IL^ = 63.8 db, (IL)2 = 69.8 db, 
(IL)j = 73.8 db.

(а) From Fig. 6-1 and Fig. 6-2, the loudness levels of the three pure tones and the corresponding 
loudness in sones are: 200 cyc/sec at 59 phons and 3.8 sones, 500 cyc/sec at 69 phons and
8.0 sones, and 1000 cyc/sec at 74 phons and 10 sones. Thus the loudest tone has a loudness of 
10 sones, i.e. the pure tone of 1000 cyc/sec and intensity level 74 db.

(б) The total loudness is 3.8 + 8.0 + 10 = 21.8 sones. The total loudness level in phons is 
therefore 83.

NOISE ANALYSIS
6.7. The sound intensity U of each one-cycle band of a noise is 10-5/ /  watts/m2, where f  

is the center frequency of the band in cyc/sec. Determine the intensity spectrum 
level of the noise at 2000 cyc/sec and the intensity level of the noise between 1500 
and 2500 cyc/sec.

The intensity spectrum level

ISL = 10 log = 10 log ■ °~05y  = 37 db

where I is the intensity in watts/m2 and A/ = 1 cyc/sec is the bandwidth of the filter.

IL = ISL + 10 log A/ = 37 + 10 log 1000 = 67 db 

where /  = 2000 cyc/sec and A/  = 2500 -  1500 = 1000 cyc/sec.

6.8. The acoustic pressure in each one-cycle band of a noise is expressed as 10// nt/m2, 
where /  is the center frequency of the band in cyc/sec. Compute the pressure spec­
trum level of the noise at 1000 cyc/sec and the sound pressure level of a 50 cyc/sec 
bandwidth centered on a frequency of 2000 cyc/sec.

The pressure spectrum level of a noise is defined by

PSL = 20 log - B -  db 
VoM

where p is the pressure in nt/m2, p0 = 0.0002 microbar is the reference pressure, and A/ =  1 cyc/sec

is the bandwidth of the filter. Thus at 1000 cyc/sec, PSL = 20 log =  db; and at
2000 cyc/sec, PSL = 48 db. 2X10

The sound pressure level SPL = PSL + 10 log A/ = 48 + 10 log 50 = 65 db.

63. Figure 6-3 below shows the pressure spectrum levels of an office noise. Determine 
the overall pressure level of the office noise.

The mean pressure spectrum level in the frequency band 20-50 cyc/sec is approximately 63 db, 
so the corresponding pressure band level is

PBL = PSL + 10 log A/ = 63 + 10 log 30 = 77.79 db

where sound pressure level SPL = 20 logp + 94 db re 0.0002 microbar. Thus the sound p re ss u re  
for this frequency band 20-50 cyc/sec is given by

77.79 = 20 lo g p + 94 or p = 0.154 nt/m2 

and the corresponding intensity is /  = pVpe = (0.154)2/415 = 5.68 X 10~5 watt/m2.
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Frequency, cyc/sec 

Fig. 6-3

The procedure is repeated for  the other frequency bands, and the results are:

Frequency Band 
cyc/sec

Spectrum Level 
db

Band Level 
db

Pressure
nt/m2

Intensity
watts/m2

20-50 63 77.79 0.154 5.68 X 10-*

50-100 72 89.00 0.560 0.75 x lO -3

100-200 74 94.00 1.000 2.41 X 10-3

200-500 72 96.90 1.390 0.0046

500-1000 66 93.10 0.9000 0.0019

1000-2000 60 90.000 0.630 9.5 X 10-4

2000-5000 50 84.80 0.350 2.9 X 10-*

5000-10,000 37 74.00 0.100 2.4 X 10-5

10,000-20,000 26 66.00 0.040 3.7 X 10"«

The intensity o f the noise is the sum o f the intensities o f all bands of frequency and is found 
to be 0.0195 watt/m2. The acoustic pressure o f the noise is therefore given by

p2 — 415(0.0195) =  8.15 or p =  2.85 nt/m2

Finally, the overall pressure level o f the noise is

SPL =  20 log 2.85 +  94 =  103.14 db

This overall pressure level of a noise for the entire band o f frequency, usually measured directly 
by means of sound level meters, is conveniently used for the rating of noise.

6.10. Figure 6-4 represents the frequency spectrum of white noise generated by an aircraft. 
Each line spectra has the same intensity level of 90 db. What is the intensity level 
of the white noise?

Fig. 6-4



(а) Assume each line spectra represents a single discrete frequency component; then the intensity

level of the white noise is
(IL), = 10 log* +  IL = 10 log 1000 + 90 =  120 db

where n is the number of tones having the same intensity level and IL is the intensity level 

of the tone in db.
(б) The intensity level of the white noise is also equal to the area under the intensity-frequency 

curve shown in Fig. 6-4, i.e.

(IL), = 10 log I 10u * d f =  10 Iogl0"io(/2- / , )  =  L +  10 log ( /2 - / , )  

h
-  90+ 10 log l000  =  120 db 

where L is the intensity level of each line spectra.

, A microphone with sensitivity -40 db relative to 1 volt per microbar is used to 
measure the spectrum level of a noise. If the open-circuit voltage is 0.01 volt and 
the bandwidth of the filter used with the microphone is 100 cyc/sec, find the pressure 
spectrum level PSL of the noise.

The sensitivity of the microphone is 2 0 1og(E/p) — —40 db re 1 volt/microbar or E/p =  
0.01 volt/microbar, where p is the acoustic pressure exerted on the microphone in microbars and 
E  ia the open-circuit voltage of the microphone in volts. Then p =  £70.01 =  0.01/0.01 =  1 microb

or 0.1 nt/m*. ar
The sound pressure level of the noise is therefore

SPL = 20 log (0.1/0,00002) =  74 db

Thus PSL = SPL — 10 log A/ = 74 - 1 0  log 100 =  64 db, where A/ is the bandwidth of th

filter used with the microphone in cyc/sec. he
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2. The noise spectrum of a certain machine is shown in Fig. 6-5. Compute the 
sound intensity and the sound pressure level in the 150-300 cyc/sec band.

total

Fig. 6-5

l6M00 „ c ltK  band. th, „ m e  — a 101 “ th 1 cyc' ” c ia

* '  , ,  = 10-SW t) +  W » l /U »  =  » * > » “

J  =  l i  -  ( 9  X  60) =  0.135 watt/m2.

= Since the characteristic impedance pc must
TVjH  Z vSm  = 6-51 »«”'* “ d SPL = »  »•* X »»-) =

_  jaine, Ptoui j0 4(15) +  0.5(75)yi60 =  0.45 nt/m* is the average sound pressure for be , u  where Pi i
10S-88
U *  1 e7</
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THE H U M AN  E A R

6.13. Two pure tones of frequencies fi  = 300 and / 2 = 305 cyc/sec are introduced simul­
taneously into the human ear. Determine the beats observed.

We hear a beat between the two fundamentals (305 — 300 =  5 cyc/sec) which varies from loud 
to soft and back to loud, five times a second.

Due to the nonlinear response o f the ear, sounds o f 2f x — 600 cyc/sec (second harmonics) and 
2/2 = 610 cyc/sec (second harmonics) are also produced. In addition to this 5 cyc/sec beat, we 
are aware o f a 10 cyc/sec beat that arises from  the beating o f the second harmonics. Moreover, we 
hear beats o f 15 cyc/sec, 20 cyc/sec, 25 cyc/sec, . . .  which come from the beating o f the pairs of 
third, fourth, fifth, . . .  harmonics.

The higher harmonics, as a rule, have very little energy. Also the beats of the higher harmonics 
are too high to recognize.

6.14. Two pure tones of frequencies /1 = 1400 and U — 800 cyc/sec are introduced simul­
taneously into the human ear. Find the first, second and third order aural 
harmonics.

When two pure tones o f different frequencies fi  and f 2 are introduced simultaneously into the 
human ear, aural combination tones or aural harmonics will be produced in the ear and will be 
detected as the combination o f the sums or differences o f the two tones.

First order:
Summation tone: /1 +  /2 = 1400 +  800 = 2200 cyc/sec

Difference tone: / 1 - / 2 - 1400 -  800 = 600 cyc/sec

Second order:
Summation tones: 2 A  +  f 2 = 2800 +  800 = 3600 cyc/sec

2/2 +  /1 - 1600 +  1400 — 3000 cyc/sec

Difference tones: 2 /i — /2 - 2800 -  800 = 2000 cyc/sec

2/2 -  /1 - 1600 -  1400 = 200 cyc/sec

Third order:
Summation tones: 3 /, +  / 2 - 4200 +  800 = 5000 cyc/sec

2 fx +  2/2 = 2800 +  1600 4400 cyc/sec
3/a +  fi = 2400 +  1400 - 3800 cyc/sec

Difference tones: 3 /i — / 2 -- 4200 -  800 — 3400 cyc/sec
2f i  ~  2/2 - - 2800 -  1600 - 1200 cyc/sec
3/2 _  f i = 2400 -  1400 1000 cyc/sec

Other tones of multiple frequencies, e.g. 2 /,, 3f v 4 /,, . . 2/ 2, 3/ 2, 4 /2, . . .  are possible but are 
weak in comparison with the other tones.

6.15. If the nonlinear response of the human ear is expressed as r = aip + a2p2 where 
P = Pj cos u>jt + P2 cos <»2t is the sum of two harmonic sound waves, determine the 
amplitudes and frequencies of the response.

The nonlinear response is 

T — 0|(PI COSWjt +  P2 COS <d20  "I" <*2(̂ *1 COS «(£ +  P2 COS <i>2t)2

=  cosujt +  ®iP2 cos <j2£ +  fl2(Pj cos2Ult +  P 2 cos2<i>2£ +  2P i P2 cosujt cos u2<)

Now employing trigonometric identities

cos2Ul£ =  £ +  £ c o s 2 Ul«, 2 cos cos u2t =  cos (uj +  u2)t +  cos («! — u2)t 
the response can be expressed as

r =  ^(P2 P2)o2 +  OjPjCosui* +  a,P2 cosu2t +  ^a2PjCos2u1i
+  £a2P 2 cos 2<i)2C +  o2P iP 2 cos (ui — u2)t +  a2PiP2 cos (uj +  u2)t



«.l«. Find the sensation levels of a pure tone of intensity level 40 db at 10,000, 5000, 2000, 
1000, 500, 200 and 100 cyc/sec.

Th, sensation level of a tone is defined as the numter of <‘. f ^ s , bJ which i‘  « «e d s  its 
threshold of hearing. From Fi». 6-1 and for a pure tone of .ntensrty level. MMft at 10 000 cyc/sec, 
its intensity level is seen to exceed the threshold of heanng by 27 db. Thus the sensaHon level at
10,000 cyc/sec ia 27 db.

The sensation levels at other frequencies are similarly found to be

Frequency, cyc/sec 6000 2000 1000 500 200 100

Sensation level, db 37 42 40 34 20 2

The sensation level at 10,000 cyc/sec can also be determined by
SL = 10 log (I/It) = 10 log(10-s/2 x 10~n) = 27 db

where I is the intensity in watts/m2 of the tone at a particular frequency, and It is the threshold 
intensity also in watts/m2 at the same frequency.

Supplementary Problems
LOUDNESS
6.17. A pure tone of frequency 1000 cyc/sec has intensity level 50 db. What loudness level will be 

produced by two such tones together? Ana. 53 phons

6.18. A pure tone of frequency 1000 cyc/sec has intensity level 50 db; another pure tone of frequency 
1000 cyc/sec has intensity level 40 db. What loudness level will be produced by two such tones? 
Ans. 50.4 phons

6.19. A pure tone of frequency 1000 cyc/sec has intensity level 60 db. How many such tones, if all sound 
simultaneously, will produce a loudness level twice as great as that produced by one tone?
Ans. 10«

6J®. Find the difference in intensity of two pure tones at 1000 cyc/sec if one is twice as loud as the 
other. Ans. 3 db

6.21. The loudness of one pure tone is twice that of another. What is the difference in energy?
Ant. 100 times

6.22. If the energy of a pure tone is increased 1000 times, how much is the loudness increased?
Ans. 3 times

6.23. If the intensity of & pure tone at 1000 cyc/sec is increased 10 times, find the change in loudness. 
The initial loudness level of the tone is 40 phons. Ans. 1 sone

6.24. Show that a reduction of loudness level from 72 to 40 phons gives a noise one-tenth as loud.

6.25. If one sone corresponds to 40 phons, 2 sones to 50 phons, 4 sones to 60 phons, etc., show that 
10 log* = (p -  40) log2, where a is the number of sones and p the number of phons.
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NOISE ANALYSIS
(.26. Find the limiting sound pressure level in air. Ana. 194 db

6.27. A noise is generated by combining 100 identical pure tones. Each pure tone has intensity level 
60 db. Determine the intensity level of the noise. Ana. 80 db

6.28. Show that a tone of sound pressure 1 nt/m2 has 108 times more energy than a tone of the same 
frequency but having sound pressure 0.001 nt/m2.

6.29. Show that the total intensity level o f n identical pure tones, each at an intensity level of IL db, is 
(IL)t = 10 log n +  IL db.

THE HUMAN EAR
6.30. Find the sensation level of a tone of intensity 10-8  watt/m2 and frequency 50 cyc/sec.

Ana. 9 db

6.31. What is the minimum variation in sound pressure detected by the human ear?
Ana. 10" 6 atmosphere (0.01 nt/m2)

6.32. The nonlinear response of the human ear can be expressed as r =  aj> +  a2p2 +  a3P3, where 
p =  P0 cos at is the harmonic acoustic pressure exerted on the ear. Determine the amplitudes 
and frequencies of the response.
Ans. r =  +  (“ 1^0 +  f ^ o )  cosut +  cos2wt +  Jo3Po cos 3at



Chapter 7

Architectural Acoustics

NOMENCLATURE
a = sound absorption, sabins or metric sabins
c — speed of sound in air, m/sec
E0 -  sound energy density, joules/m3
I -  sound intensity, watts/m2
IL = intensity level, db
L = mean free path, m
Lt = space average sound pressure level, db
m — 2 a ,  absorption coefficient for air, nepers/m
p = acoustic pressure, nt/m2
R =  room acoustics, ft2 or m2
RF = noise reduction factor, db
S = area, m2
SPL = sound pressure level, db
T =  reverberation time, sec
TL = transmission loss, db
V =  volume, m3
W  = sound power, watts
<o = circular frequency, rad/sec
P =  density, kg/m3
a = sound absorption coefficient
a =  average sound absorption coefficient
ae = effective sound absorption coefficient
r = sound transmission coefficient

INTRODUCTION

Architectural acoustics deals basically with reverberation control, noise ‘ i f  
reduction, and sound distribution and absorption. It strives for*th e  i &n^
speech, the freedom from external unwanted noises, and the richness o f  m u sic^  ^

REVERBERATION

Reverberation  is the persistence of sound in an enclosure as th
reflections o f sound at the walls after the sound source has been tu 8 Fj SU continuous
free vibration with damping, reverberation depends on the size and ^  resonan*
as well as the frequency of the sound. 8 a^e the enclosure

152
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Reverberation time T at a specific frequency is the time in seconds for the sound pres­
sure to decrease to 10-8 of its original value (or a 60 db drop) after the source is turned off.

T = 0.16lWa seconds (metric units)

T = 0.049F/a seconds (English units)

where V is the volume of the enclosure in m3 or ft3 and a is the total sound absorption of the 
enclosure in metric sabins or sabins. If reverberation time is too short, the sound may not 
be sufficiently loud in all portions of the enclosure. If it is too long, echoes will be present. 
Though the best intelligibility would be obtained with the shortest possible reverberation 
time, shorter reverberation time decreases sound intensity in the enclosure which in turn 
decreases intelligibility. Reverberation time is therefore an important measure of good 
room acoustics.

Reverberation chamber (or live room) is a specially constructed room with paddle-like 
turning vanes to cause uniform sound diffusion and with room surfaces having practically 
no sound absorption. The walls are highly reflective of sound waves, and consequently 
sound waves suffer very little loss at each reflection. These reflections will produce uniform 
sound energy distribution so that at any point in the room (not too close to the wall or the 
source) the sound appears to come equally from all directions. A reverberation chamber is 
used to measure the total sound power output of equipment, to establish the noise reduction 
coefficient, to test the sound control efficiency of materials and structures, and to calibrate 
microphones.

The growth of sound intensity in a reverberation chamber is given by

l{t) = ^  (l -  e_(oc/4vr)t) watts/m2

and the decay of sound intensity is similarly given by
I(t) = iE 0ce-(ac/4V)t watts/m2

where W is the sound power output in watts, a is the total sound absorption in metric 
sabins, c is the speed of sound in m/sec, V is the volume of the room in m3, and E0 is the 
sound energy density in joules/m3 when the source is shut off. (See Problems 7.1-7.6.)

NOISE INSULATION AND REDUCTION
When noise at the source cannot be economically reduced below the objectionable range, 

noise insulation or soundproofing is required. This can be accomplished either by absorption 
or by reduction of the transmission of sound.

In buildings, airborne noise leaks through holes and cracks, weak or poorly-fitting doors 
and windows, air intakes and exhausts. It also sets panels and walls into vibration. 
Airborne noise can be reduced by breaking its transmission path, by using absorptive 
materials and directly surrounding the source with effective sound-absorbing devices or 
enclosures (e.g. sound barriers and silencers).

Transmission loss TL is airborne noise reduction. It is defined as the difference in 
decibels between the sound energy striking the surface separating two spaces and the 
sound energy transmitted. It cannot be measured directly, but is computed from sound 
pressure levels on both sides of the surfaces.

■y1 g
TL = 10 log = (SPL)i -  (SPL)2 db

2 ,  S t

where S is the area of the surface in m2 and r is the sound transmission coefficient.
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Structural-borne noise is vibration of elastic bodies. It travels through walls, floors, 
columns, beams, pipes, ducts, and other solid structures. Since the amount of energy it 
carries is much greater than that of airborne noise, structural-borne noise should be sup­
pressed at its source. Its transmission paths should be interrupted by resilient mounting 
insertions and sound plenums or traps. Walls should have discontinuities which are filled 
with air or absorptive materials.

Machine noise generally indicates poor balance, excessive clearance, turbulent flow or 
other improper working of some components of the machine. Most machine noises can be 
reduced and attenuated by proper redesign or using soundproofing enclosures lined with 
absorptive materials. Acoustical filters such as mufflers, plenum chambers, resonators, 
hydraulic filters, and sound traps should be employed wherever necessary. Sources should 
be properly isolated and vibration-mounted to reduce sound and vibration transmission.

Impact noise can be reduced by using carpets to cushion the impact areas of floors which 
are isolated from supporting structures by resilient mountings.

Space average sound pressure level L, is defined as

Pi + v\ + • • • + Pl
L. = 10 log —— —— -------- -  db

np\

where p» are sound pressures in nt/m2 and Po = 0.00002 nt/m2 is the reference sound 
pressure.

Background noise requires similar acoustical treatments described for airborne noise. 
(See Problems 7.7-7.15.)

SOUND ABSORPTION
Sound absorption is a process in which sound energy is converted partly into heat 

(by frictional and viscous resistance of the pores and fibers of acoustical materials) and 
partly into mechanical vibration of the materials.

Unwanted sounds can be absorbed by draperies, carpets, suspended space absorbers, and 
interchangeable absorptive panels in rooms and buildings. Thin panels with air trapped 
behind them are employed to absorb sounds at low frequencies. Helmholtz resonators and 
resonator-panel absorbers are most efficient for sound absorption at their resonant fre­
quencies. Mufflers impede the transmission of sound but permit the free flow of air.

The sound absorption coefficient a of a material is defined as the decimal fraction of 
perfect absorption that it has; e.g. a = 0.6 means 60% absorption. It is the efficiency of 
a material in absorbing sound energy at a specified frequency, and varies with the angle of 
incidence and the thickness of the material. An open space is sometimes taken as a 
standard of unity absorption coefficient.

a is obtained by statistically averaging the ratio of absorbed to incident energy over all 
possible angles of incidence. The average sound absorption coefficient a is determined by 
averaging the absorption coefficients over all the absorbing areas of the room.

Sound absorption a in sabins is the total area in square feet of perfectly absorbing 
material. Similarly, 1 metric sabin is one square meter of material having perfect sound 
absorption.

Noise reduction factor RF is given by
RF = TL + 10 log (afS) db

where TL is transmission loss in decibels, a is the total sound absorption in sabins, and S 
is the area of the partition in ft2.



CHAP. 7] ARCHITECTURAL ACOUSTICS 155

The difference in noise level can be expressed as
( d b ) b e f ore -  ( d b ) a f t e r  = 10 log d b

{^before

where the a’s are sound absorption in sabins.
Acoustical materials used for sound absorption are characterized by reduction efficiency, 

porosity, flow resistance, propagation constant, and structure factor. Other factors such 
as flame resistance, light reflection, paintability, weather exposure, non-hygroscopicity, 
heat insulation, weight, ease of installation, and appearance should also be taken into 
consideration.

In general, sound intensity in an enclosure is inversely proportional to the amount of 
sound absorption present. If the enclosure is very large while the total sound absorption 
is small, the absorption of sound in air must be considered.

Anechoic chamber (or dead room) is characterized by highly absorptive wedges or long 
pyramids mounted to the walls of the room to absorb all incident sound energy. It simulates 
a free field or unbounded space. Complete soundproofing can be achieved by construction 
of an anechoic chamber with a floating floor vibration-mounted to another room. Accurate 
and consistent measurements of acoustic characteristics of equipment, absolute calibration 
of microphones, and sound radiation patterns of loudspeakers can be made inside the 
anechoic chamber.

The decay of sound intensity in an anechoic chamber is given by
I(t) — / 0g<Sr.4l’) ln.-l-5)t Watts/m2

where h is the sound intensity in watts/m2 when the source is shut off, 5 is the total wall 
area in m2, c is the speed of sound in air in m/sec, V is the volume of the room in m3, and a 
is the average sound absorption coefficient of the room. (See Problems 7.16-7.23.)

SOUND DISTRIBUTION

Sound distribution describes how the sound pressure level varies with position in an 
enclosure. To insure smooth grow’th and decay of sound, rooms and buildings are designed 
to have sound as evenly as possible distributed or diffused over the entire area by acoustical 
treatments such as the scattering effects of objects, irregularities of wall surface, random 
mounting of absorptive material, and reflecting surfaces and diffusers.

Model analysis with light rays, ultrasonic waves, or ordinary audio frequency sound 
is used to study sound distribution. Graphical construction of first reflections of the sound 
waves at various cross sections can also be used as in Fig. 7-1. (See Problems 7.24-7.26.)

ceiling

Fig. 7-1. Reflection of sound waves
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ROOM ACOUSTICS
An acoustically well-designed room has good intelligibility of sounds of sufficient 

intensity (optimum reverberation time), freedom from extraneous and unwanted noises 
(soundproofing and reduction), and good sound distribution.

Sound that reaches a listener via two paths differing greatly in length produces an 
unpleasant fluttering effect called echoing. Room flutter occurs between a pair of parallel 
opposite walls that are smooth and highly reflective. The sound is reflected back and forth 
between the pair to produce multiple echoes. Sound focusing is concentration of sound 
at a point in an enclosure due to reflection of sound from curved or circular surfaces. The 
result is unequal distribution of sound. Dead spot is a region of deficiency of sound, i.e. 
practically nothing can be heard from there, and is due to destructive interference of two 
pr more sound waves. Because of diffraction of sound, i.e. sound waves bending around an 
pbstacle, the obstacle may prove to be an effective barrier if its size is comparable with 
the wavelength of sound. An acoustic shadow is formed on the other side of the obstacle.

Acoustical design of rooms should also encourage oblique waves because they decay 
ifnost rapidly, but should discourage axial waves because they are most persistent.

Percentage articulation, which is sometimes used as an intelligibility rating of rooms, 
is determined from the shape and noise of the room, reverberation and loudness. Room 
constant R is another way to indicate and compare the acoustics of a room:

where S is the total wall area of the room in ft2, and a is the average sound absorption 
coefficient. (See Problems 7.27-7.30.)

Solved Problems
R EVERBERATIO N
7.1. Derive an expression for the rate of absorption of sound energy by the walls o f an 

enclosure.
Consider the radiation of sound energy from an elemen­

tary volume dV within the enclosure toward an elementary 
surface area dS of the wall as shown in Fig. 7-2. dV is at a 
distance r from the elementary surface area dS, where r makes 
an angle 8 with the normal to dS.

Now dV is radiating sound energy equally in all directions 
with velocity e, and the differential amount of energy striking 
dS is

dEd — (dV Ed dS cos e)/4s-r2

where E d is the sound energy density in the enclosure, E ddV is the amount o f energy in dV, 4vr2 
is the surface area of a sphere of radius r surrounding dV, and dS cos 8 is the projected area o f 
dS on any portion of the sphere.

Fig. 7-2
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Using1 spherical coordinates (r, e, </>), dV — r2 sin 6 dr de d<p and the expression for the dif­
ferential amount o f energy striking dS can be rewritten as

dEd =  (Ed dS cos 8 sin 8 dr de d<fi)/4ir

so the total differential amount o f  sound energy contribution to dS o f  a hemispherical shell of 
radius r and thickness dr is given by

E d dS r 2n / " r/2
dE d — — — J  J  sin g cos 0 de d<f> dr =  \ E d dS dr

But this total energy travels toward dS with velocity e =  dr/dt. Hence the rate at which sound 
energy arrives at dS is

d E J d t  =  ±E d dS dr(c/dr) =  \E dcdS

or \E dc  per unit area. The intensity I  o f  such diffuse sound energy at the walls is therefore 
/  =  \cEd.

I f  the enclosure has areas S',, S2, S 3, . . .  having absorption coefficient at, a2, a3, . . ., then the 
rate at which sound energy is being absorbed by all these surfaces is ^cE^a^S^ +  a ^ 2 +  or 
£acEd, where a is the total sound absorption o f  the enclosure.

12. Derive expressions for the growth and decay of sound in a reverberation chamber.
In general, the rate of sound energy radiated from the source inside a reverberation chamber 

or live room must equal the rate o f increase of sound energy in the medium throughout the interior 
of the room plus the rate of sound energy absorbed by the walls of the room. This condition can 
be expressed by the fundamental differential equation of growth of sound energy,

V dEJdt +  \acEd =  W  (1)

where V is the volume of the room, E d is the sound energy density, a is the total absorption of the 
room, e is the speed o f sound in air, and W  is the rate of sound energy being produced. The first 
term represents the rate sound energy increases in the medium, and the second term is the rate 
of sound absorption obtained by the classical ray theory. (See Problem 7.1.)

Solution of (1) can be written as
Ed(t) =  +  C e -m / w t (2)

For growth o f sound, the initial sound energy is zero, i.e. E d(0) =  0. Then from (2),

E d(0) =  4 W/ae +  C =  0 or C =  -IW /ac 

and the expression for the growth o f sound energy in a live room is
E d{t) =  (4W7ac)(l -  «-<«e/4v>t) (j)

Since I  =  Edc/A and E d =  p2/pc2, we can express the growth of sound intensity and of acoustic 
pressure in a live room as

I(t) =  — (1 -  e - (ac/4V)t), P 2( t )  =  U ^ ( l - e - < a c /4 V ) t) 
d ®

As time t increases, the expressions for  the growth o f sound energy, sound intensity, and sound 
pressure approach their ultimate values o f the steady state condition. These are

E d =  AWfae, I  =  W/a, p2 =  4 WPc/a

For decay o f sound the source is shut off at time t =  0, and assume energy density at t =  0 
equals E 0. From (2) with W  =  0,

E d(0) =  E q =  C

so E d(t) =  C e-'™ '*™  =  £ 0e-<ac/4V)t ^ )

The corresponding expressions fo r  the decay o f sound intensity and sound pressure in a live room 
are similarly given by

I ( t )  =  l E 0 e e ~ ^ ' * v n ) p 2 ( t )  =  2  pCE 0 e - ^ * v n
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7.3. Derive an expression for the reverberation time in a live room.
In Problem 7.2 we showed how sound grows and decays in a live room based on ex p r gSSjon

o f  homogeneous sound energy density and continuous sound absorption by the wa s. 
fo r  decay o f  sound is E d(t) =  £ 0e -(ac/4V)t.

Now reverberation time is defined as the time interval during which the sound ene g y  y
falls from  its steady state value to 1/10® o f this value, or a 60 db drop. W e t en ave

E d/E0 =  «  —(«c/4 V)T =  10-6 f i n e - ( a c / 4 n T =  In 10~ 6 

or — (ae/4V)T = 2.3 lo g lO - ®, and so the reverberation time T is T — -4 1  (2.3 log  10 )/

In metric units (c =  343 m/sec at 20°C) T =  0.161V/a sec, and in E nglish  units (c 
1130 ft/sec at 20° C) T =  0.049Via sec, where V is the volume o f the enclosure either in m or 
ft3, and a is the total sound absorption o f the enclosure either in m etric sabins or sabins.

7.4. A room of volume 86 m3 has a total sound absorption of 10 metric sabins. A  sound 
source having 10 microwatts sound power output is turned on. (a) W hat is the 
sound intensity level inside the room at the end of 0.2 sec? (b) Determine the m axi­
mum sound intensity level attainable, (c) Find the decay rate of the sound intensity 
level when the source is turned off.

(a) For growth o f sound in a live room,

WI =  — (1 — e ~ <-ac/iV')t) =  86.5 x  10-8  w att/m 2 
a

where W  =  10 x  10~a watt is the rate o f sound energy produced in the room , a =  10 m etric 
sabins is the total sound absorption o f the room, c =  343 m /sec is the speed o f  sound in a ir, 
and V  =  86 m3 is the volume o f the room. Then the sound intensity level

IL =  10 log —  =  ^ -4  db re 10-12 w att

(b) ^mu =  w /a =  10-6  w att/m 2. Then (IL)max =  10 log 10~6/ 1 0 - 12 =  60 db re 1 0 " 12 w att.

(c) For decay o f sound in a live room, the sound intensity at any time t is

7(0 =  \E0ce-i"'*v>t

When the source is shut off, 7(0) =  \E0c and 7(t)/7(0) =  € -(ac/4V)t. The change in in tensity  
level is thus

10 lo g e ~ iae/4V)t =  (10/2.3) In c -c « /4 V »  =  - i . 09a c f/V  =  43 db /sec 

Hence it takes 1.4 sec for  the sound to die out completely a fter the source is turned off.

7.5. The internal dimensions of a reverberation chamber are 5 x 6 x 8 ft  and its average 
sound absorption coefficient is 0.04. (a) A sound source of 1.0 m icrowatt output is 
tested inside the chamber. Find the maximum sound pressure level produced. 
(6) A man goes into the chamber to make measurements. What will be the new sound 
pressure level if the equivalent sound absorption of the man is 9.41 sabins?

(a) Maximum sound pressure level will be obtained when steady state condition is reached inside 
the chamber. This condition is represented by a sound pressure o f

p =  V4W pela nt/m 2

where W  is the acoustic power output in watts, Pc =  415 rayls is the chararfei-i.fi,. ;  ̂
o f  air, and a is the total sound absorption in metric sabins. im pedance
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Now total sound absorption is a — o 2 S  =  0.04[2(30) +  2(40) +  2(48)] =  9.41 sabins or 
9.41/10.76 =  0.88 metric sabins. Thus

pniax =  V4(10-6 )416/0.88 =  0.0435 nt/m*
(SPL)max =  20 log 0.0435/2(10-5) =  66.8 db

(b) When the man is inside the chamber, the total sound absorption becomes 9.41 +  9.41 =  
18.82 sabins or 1.76 metric sabins. This will change the sound pressure to

pmax =  V4(10_e)(415)/1.76 =  0.0308 nt/m*

and so (SPL)inax =  20 log 0.0308/2(10-5) =  63.8 db

A 3 db drop in sound pressure level is observed because o f the additional sound absorption. 
Since the sound pressure level inside the chamber can be accurately measured by a sound 
level meter, this procedure can be reversed to determine the amount o f sound absorption of the 
man or sound absorption materials. In fact, reverberation chambers are often used to deter­
mine the sound absorption coefficients o f different types o f building materials.

7.6. A classroom is 4 x 6 x 10 m and has a reverberation time of 1.5 sec. (a) What is the 
total sound absorption a of the classroom? (6) Forty students are in the classroom, 
and each is equivalent to 0.5 metric sabin sound absorption. Find the new rever­
beration time of the classroom, (c) If a speaker lectures with an acoustic power 
output of 10 microwatts, determine the sound pressure level in the classroom with 
and without the students.
(a) a =  0.161 W T  =  0.161(240)/1.5 =  25.8 metric sabins

(t>) T =  0.161 Via  =  0.161(240)/(25.8 +  20) =  0.85 sec

(c) Using p =  V 4Wpc/a where W  =  10“ 5 watts and pc =  415 rayls, the sound pressures pro­
duced by the speaker with and without the students are respectively 0.0191 and 0.0254 nt/m2. 
The corresponding sound pressure levels are

SPL =  20 log 0.0191/(2 X  IO’ 5) =  59.64 db 

SPL =  20 lo g 0.0254/(2 X  IO "5) =  62.12 db

NOISE INSULATION AND REDUCTION
7.7. Sound transmission loss through solid 

panels can be evaluated in a specially con­
structed room as shown in Fig. 7-3. The 
sound energy produced in the source room 
travels through the test sample into the 
receiver room lined with absorptive mate­
rials. Derive an expression for the trans­
mission loss. Fig. 7-3

Assume sound energy density is constant in the source room having sound pressure level (SPL)^ 
Now sound energy transmitted through the test piece (here we assume this is the only possible path 
for the transmission o f sound from  the source room to the receiver room) must therefore be equal 
to that absorbed by the wall surface o f the receiver room at sound pressure level (SPL)2.

Since transmission loss can be defined as the ratio between the sound power striking the panel 
on one side and the sound power being transmitted from the other side o f the panel,

TL =  10 1og (W ,/W 2) db
where W x =  I xSi watts, W 2 =  I 3S 2 watts, Sr is the area o f the test sample in m2, S2 is the area 
of the wall surface o f the receiver room in m2, I x is the intensity in the source room in watts/m2 r 
and / 2 is the intensity in the receiver room in watts/m2. Then

h  S i  (P ? /p « )S i  P ?S i
TL =  101oe7 ^  =  10 log (72/ Pc)S2 =  101°e ^  =  101og(Pl/P2)2 +  101° s ( s i /s 2)
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where
Di/pn Pi Do

10 log ( p ^ ) 2 =  20 log (Pl/P2) = 20 log = 20 log -  -  20 log — =  (SPL)! -  (SPL)2
Pz'Po Po Po

Thus the expression for transmission loss becomes

TL = (SPL)! -  (SPL)2 + 10 log ( S ^ )  db

If <  S2, then 10 log(S i/52) — 0 and TL = (SPL), — (SPL)2 db. Hence by measuring the 
sound pressure levels with a sound level meter, the transmission loss of a given panel can be 
determined.

7.8. A 1 x 2.5 m door is located in a 4 x 7 m wall. The door has a transmission loss of 
20 db while the wall has a transmission loss of 30 db. What is the transmission loss 
of the combination?

Using TL = 10 log(l/r), we have for the door 10 1og(l/Td) = 20 or rd =  0.01, and for 
the wall 10 log(l/Tu;) = 30 or t̂ , = 0.001. Hence the transmission loss of the combination is

Ofl
TL = 10 log (2 S/2 Sr) = l0 1og u m y T K ^ m j  =  27.47 db

7.9. The space under a solid door is 1/100 of the total area of the door. If the noise level 
outside the room is 90 db, find the noise level inside the room with the door closed.

Assume the solid door does not transmit sound and that the space under the door is the only 
open space for sound transmission. The transmission loss through the space under the door is

iai 25 _ S + 0.01S _ onJ,
TL -  10 log 2 Sr 10 log 0(S) + i.o(o.oiS)

where 5 is the area, and tw =  0 and r = 1.0 are the transmissivities of the door and open space 
respectively. The noise level inside the room with the door closed is therefore 90 — 20 =  70 db, i.e. 
only a 20 db drop in noise level.

If there is no space under the door, the theoretical noise level drop will be 90 db as there is no 
sound transmission at all. On the other hand, if the space under the door is reduced, say, to 1/1000 
of the total area of the door, the transmission loss will be 30 db and the noise level inside the room 
will be 60 db.

7.10. An office is separated by a partition of area 100 m2 having a transmission loss of 
40 db. A door of area 2.5 m2 having a transmission loss of 30 db is added to the 
partition. If the room adjoining the office has a noise level of 75 db, what will be the 
noise level in the office when the door is closed and when the door is open ?

Transmission loss TL = 10 log (1/r) db, where r is the transmissivity of the material. For 
the partition alone, we find 40 = lO log U /rJ  or Tu, = 0.0001; and for the door alone, 30 =  
10 log (1 /rd) or rd =  0.001. Hence for the partition with the door built-in,

TL =  =  10 lot 5(0.0001)'+ 2.8i0.00l) =  381 db

where is sometimes called the transmittance of the material. Thus the noise level in the 
office with the door closed is 75 — 39.1 = 35.9 db.

With the door open, the transmissivity for the open space is 1.0 and the transmission loss 
becomes

TL =  10 108 97.5(0.0001) +  2.6(1.01 =  16'5 db

Thus the noise level in the office with the door open is 75 —16.5 = 58.5 db.
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7.11. A small fan radiates 20 microwatts of sound energy into a soundproof room having 
10 metric sabins sound absorption. Assuming sound energy absorbed equals sound 
energy generated, calculate the sound intensity level in the room.

/ = w/a -  20(10-«)/10 =  2 X  10-6  watt/m2 

IL =  10 log(2 x  1 0 -« ) /1 0 -12 =  63 db re 10~ 12 watt/m2

7.12. When the air conditioner is operating, the noise level in a room is observed to be 
70 db. Additional acoustical materials of 50 metric sabins sound absorption are 
mounted to the ceiling of the room. What is the new noise level if the initial sound 
absorption of the room is 15 metric sabins?

Let the sound power output from the air conditioner be W  watts. Then the sound intensities 
in the room before and after the addition o f acoustical materials are 7, =  W/a , and 72 = 
W/a2 watts/m2, where a, =  15 and a2 =  15 +  50 =  65 metric sabins.

Since the initial noise level is 70 db, we have

(IL)! =  10 1og(/1/ / 0) =  70 or Ix =  70 antilog 7 watts/m2 

where / 0 is the reference intensity in watts/m2.
Now W =  a j t  — a j 0 antilog 7, and so I2 =  W/a2 =  (a ja^)l0 antilog 7. Then (IL)2 =  

10 log (12/10) =  70 + 10 log (a ,/a2) =  63.62 db.
The same result is obtained i f  we assume noise reduction is proportional to sound absorption, i.e.
•MIL) =  10 log (a2/a j) =  10 log (65/15) =  6.38 db and (IL)2 =  70 -  6.38 =  63.62 db

7.13. Two adjoining rooms have sound intensity levels of 73 and 64 db respectively. 
What is the attenuation through the wall?

Attenuation =  (IL)! — (IL)2 =  73 — 64 — 9 db

or 10 log ( / , /12) =  9 db, where / j  and / 2 are the respective sound intensities.

7.14. A room has 100 metric sabins sound absorption and a total wall area of 200 m2. If 
the average sound transmissivity is 0.05, find the noise-insulation factor.

The noise-insulation factor is 10 log (a /5  Sr) =  10 log 20^ 5} =  10 db'

7.15. A room of dimensions 3 x 5 x 7 m has a reverberation time of 0.85 sec and 15 metric 
sabins sound absorption. A standard tapping machine is used at four different 
positions to excite the floor. The sound pressure level readings in octave bands are 
82.3, 85.1, 79.8, and 80.4 db re 0.0002 microbar. Find the space average sound pres­
sure level and the normalized impact sound level.

The space average sound pressure level is

p\ +  p\ +  p \ +  p \
Ls =  10 l o g ------------— 2------------ db

4P0
Now (SPL), =  82.3 =  20 log p,/(2  X  I O '5) or p, =  0.264 nt/m2. Similarly, p2 =  0.362, 

P3 -  0.19, p4 =  o.2 nt/m2. Then Ls =  82.16 db, where p0 =  0.00002 nt/m2 is the reference’ 
pressure.

This differs from the average sound pressure level ^(82.3 +  85.1 +  79.8 +  80.4) =  81.9 db by
0.26 db. This is a small difference. However, for large rooms the difference will be significant.

The normalized impact sound level =  L +  10 log (a/a0) =  82.16 +  10 log (15/10) =  83.94 db.
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7.16. Derive expressions for the decay of sound and reverberation time in dead rooms.
By geometrical analysis involving classical ray theory, the average distance traversed by a 

sound wave between two successive reflections in an enclosure is found to be

L = 4V/S

where L is the mean free path, V is the volume of the enclosure, and S is the total wall area of the 
enclosure.

Traveling at speed c, the number of reflections the sound wave makes with the walls in any
time t will be . . .  cn = ct/L -  Set/4V

Assuming an average sound absorption coefficient a of the enclosure, the sound wave loses a 
fraction a of its intensity at each reflection. The intensity after n reflections is therefore

/„  = / 0( l - f i ) «  = / 0( l - 5 ) (Sc/*V)t

or the decay of sound in dead rooms is
/ ( f )  =  / „ € > " (  l - 5 ) ( S c / 4 V ) t  -  / 0<, K S c / 4 V ) l n ( l - f i ) ] (

where the decaying factor is —(Sc/4Vr)[—In (1 — a)]t.

Comparing with the decay of sound in live rooms (see Problem 7.2), we have

ae/4V = (Sc/4V)ae or ae — — In (1 — a)

where ae is the effective absorption coefficient

The reverberation time in dead rooms can be obtained from that for live rooms by putting
ae =  -In  (1 -  5), i.e.

„  _  0.049V  ̂ 0.161V . w u
T -  "57— i—n— rrr in metric units = —:—rz— -rr in English units o [— In (1 -  a)J S[— In (1 — a)]

SOUND ABSORPTION

7.17. A small reverberation chamber 8 x 9 x 10 ft is employed to measure the effective 
sound absorption coefficient of certain acoustical tile. The observed reverberation 
time is 5 sec or 1.0 sec when 40 ft2 of acoustical tile is used to cover part of one 
wall of the chamber. Find the effective sound absorption coefficient of the tile.

The volume of the chamber is V = 720 ft3, and the total area of the wall surfaces is 
S = 2(8)9 + 2(8)10 +  2(9)10 =  484 ft2.

Since reverberation time in a reverberation chamber is T =  0.049V/Sa sec, the sound absorp­
tion coefficient of the chamber wall is

= 0.049V/Sr! =  0.049(720)/[484(5)] =  0.01B

When acoustical tile of total sound absorption S ^  is added to part of one wall of the chamber 
(where S2 is the area in ft2 of the tile and is the effective sound absorption coefficient of the tile), 
the new reverberation time of the chamber becomes

T2 =  0.049V/(Siaj + S2a2) 9ec
where S! — S — S2 — 484 — 40 = 444 ft2 is the new area of the wall surfaces of the chamber. 
Thus

 ̂ _  0.049V -  _  0.049(720) _  444(0.015X1.0) ' „
S2r2 iofToj---------- = °-71

7.18. Find the reverberation time of an office which has a volume of 1600 m3 and a total 
sound absorption of 80 metric sabins. What is the sound absorption required for an 
optimum reverberation time of 1.2 sec?

Reverberation time T = 0.161 V/a *  0.161(1600)/80 = 3.22 sec.
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For an optimum reverberation time o f 1.2 sec,
a =  0.161V/T =  0.161(1600)/1.2 =  216 metric sabins

i.e. additional sound absorption required =  216 — 80 =  136 metric sabins.

7.19. Ten persons are talking in a room with total sound absorption of .975 metric sabins. 
If each person produces an acoustic power output of 10 microwatts, compare the 
background sound pressure level of the reverberant sound with the direct sound 
pressure level at a distance 0.3 m from the closest speaker.

The sound pressure in the live room is

pT =  V4 peW/a =  V4(415)(10-4)/0.975 =  0.41 nt/m2

where pr is the background reverberant sound pressure, a =  0.975 metric sabin is the total sound 
absorption of the room, pc =  415 rayls is the characteristic impedance of air, and W =  10-4 watt 
is the total acoustic power output. Then the reverberant sound pressure level becomes

(SPL)r =  20 log (0.41/0.00002) =  86.4 db

For the direct sound pressure, we have I =  W/Anr2 =  p2d!pc or

pd =  V Wpc/Avr2 =  V 10_5 (415)/[4jt(0.3)2] =  0.061 nt/m2 

and so (SPL)d =  20 log (0.061/0.00002) =  69.6 db

It is apparent that the background reverberant sound presents an unpleasant high level noise 
which, for all practical purposes, completely masks the intelligibility of conversation. The situation 
can be remedied by reducing the acoustic power output o f each person (i.e. speak softly), thereby 
lowering the background reverberant sound.

7.20. The observed reverberation time at 5000 cyc/sec in a reverberation chamber filled 
with dry air is 16 sec. With moist air, the reverberation time is 6 sec. If 
a//2 = 1.4(10-11) for dry air, determine the absorption coefficient (or attenuation 
constant) for the moist air.

We have shown that the intensity of a plane acoustic wave decreases according to
I(t) =  I0e~2ax =  l ne~ m*

where m = 2a in nepers/m is the absorption coefficient for air. But the decay of sound in a live 
room is I(t) =  Z0e_act/4V, and when the effect of air absorption is incorporated we have

I(t) =  / 0e-<°/4v + m)ct

and AIL =  10 log ( // /„ )  =  (10/2.3) In «-(«/4v  + m>ct =  -4.34(a/4V +  m)ct

which represents the change in intensity level in decibels. The decay rate is therefore
D =  4.34(a/4V +  m)c db/sec

Now reverberation time is the period required for the level of the sound in the room to decay 
by 60 db, or

r  =  60/D =  4.34(a/4V +  m)c =  0.161V/(. +4Vm ) sec

where c = 343 m/sec is the speed of sound in air, V is the volume of the room in m3 and a is the 
total sound absorption in metric sabins. Also

T =  0.049V/(a +  4Vm) sec
where V is the volume of the room in ft3 and a is the total sound absorption in sabins.

Since the volume and total sound absorption due to the wall surface of the room are constant, 
we can write expressions for the reverberation time for dry and moist air,

„  0.049V 0.049V -  Ta . ,T =  —  ...— or m =  ------ - = ------ for dry aira +  4Vm 4V r
0.049V , 0.049V -  T’a .  . . .

T =  a V W m ' or m =  ------4V T ------  for mo,8t air
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Combining,
0.01225(1— D  

m -  m = -------- Yfi 

Now a/P = 1.4 X lO” 11 or a = 1.4 X 10"n X (5000)2 =  3.5 x 10"4 neper/ft. Thus 

m' =  0 ° 12f /5i l 6 ~  6) + 7 X lO "4 = 19.7 X 10"“ neper/ft

7.21. A room has an average sound absorption coefficient 0.5 and mean free path 10 m. 
Calculate the reverberation time of the room.

With an average sound absorption coefficient a = 0.5, the sound waves lose a fraction a of 
their intensity at each reflection. The number of reflections required for the intensity to decrease 
to 1 0 of its original value is therefore 0.5" = 10—®, from which n = 20.

Since we know the average free path is 10 m, the number of reflections made by a sound wave 
per sec is n = et/L = 343(1.0)710 = 34.3. Thus the reverberation time is T -  34.3/20 =  1.72 sec.

Conversely, we can measure reverberation time directly and use the information to calculate 
the number of reflections and the free mean path.

722. The volume of a room is 324 m3. The wall has area 122 m2 and average sound 
absorption coefficient 0.03. The ceiling has area 98 m2 and average sound absorption 
coefficient 0.8. The floor has area 98 m2 and average sound absorption coefficient 
0.06. Compute the reverberation time for this room.

The average sound absorption coefficient of the room is

_ _  a,S, +  ajS2 + a3S3 0.03(122) + 0.8(98) +  0.06(98) 
a Sj +  S2 + S3 “  122 + 98 + 98

Then the total sound absorption of the room a =  0.27(318) = 86 metric sabins.

Reverberation time T =  0.161V/a =  0.161(324)/86 = 0.6 sec.

7.23. An office with a noise level of 72.5 db has originally 100 metric sabins sound absorp­
tion. Sound absorption material with a coefficient of 0.85 is applied to the ceiling 
of dimensions 20 x 40 m. What will be the resultant noise level ?

Since the original sound absorption is 100 metric sabins, and 20(40)(0.85) =  680 metric sabins 
are added, the total sound absorption is 680 metric sabins. (Here we assume the original sound 
absorption of 100 metric sabins is entirely due to the ceiling.) Sound reduction is therefore

(db)i -  (db), = 10 log (680/100) = 8.34 db

and the resultant noise level is 72.5 -  8.34 = 64.16 db. A reduction of 5-10 db is considered 
satisfactory for most offices.

SOUND DISTRIBUTION
7.24. An electric motor is tested on a large hard surface inside an anechoic chamber. At 

a radius of 1 m from the motor, five readings of the noise level are taken near the 
centers of five equal areas on a hemispherical surface. These readings are 73, 72, 69, 
70 and 68 db. What is the sound power output of the motor?

The noise level is 10 log (7//0) db where 70 =  10” 12 watt/m2 is the reference intensity. 
Then 7, = 7„ antilog 7.3 =  1.99 X 10"*, I2 =  1.68 x 10"*, 7a = 7.94 X 10-*. 74 =  10-», 7S = 
6.28 X 10-a watt/m2.
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The area of a hemispherical surface is 2vr2 =  6.28 m2, and the area of each of the five 
segments is 1.26 m2. The total acoustic power through all five segments is the acoustic output of 
the motor.

Now Wt =  1.26(1.99 X  10-5 ) =  25.2 X  10-9 , W2 =  20.1 X  10-9, Ws =  10.1 X  10"9, W4 = 
12.7 X  10-9, W5 =  8.0 X  10-6  watt, and thus

W  =  Wt +  W2 +  W3 +  W4 +  Ws =  76.1 X  10-" watt

7.25. The sound pressure level of a machine in a reverberation chamber 3 x 4 x 5 m is 70 db 
re 0.00002 nt/m2. The reverberation time is 4 sec. Find the acoustic power output 
of the machine.

The maximum sound pressure level in a reverberation chamber is obtained when steady state 
condition is reached, i.e. pmax =  V 4 Wpel a nt/m2 where W  is the acoustic power output in watts, 
p =  1.21 kg/m3 is the density of air, e =  343 m/sec is the speed of sound in air, and a is the total 
sound absorption in metric sabins.

Reverberation time T =  55.2V/ac sec, where V = 60 m3 is the volume of the chamber.

Upon eliminating the constant a from these two expressions,
13.8p2V 13.8(0.063)2(60) _  r _____ _ .. .

W =  - c2T =  i 21(343)2(4) ~  X 10 9 watt or 5.84 microwatts

since SPL =  20 logp/(2 X  10-5 ) or p — 0.063 nt/m2.

7.26. A room has dimensions 4 x 5 x 8 m. Determine (a) the mean free path of a sound 
wave in this room, (b) the number of reflections per sec made by sound waves with 
the walls of this room, and (c) the decay rate of sound in this room.
(a) The mean free path L is the average distance a sound wave travels through the air between 

two successive encounters with the walls of the room.

L =  4 V/S =  4(160)/184 =  3.48 m
where V =  4(5)8 =  160 m3 is the volume of the room, and S =  2(4)5 +  2(4)8 + 2(5)8 =  184 m* 
is the total wall surface area of the room.

(b) n = e/L =  343/3.48 =  98.5, where c =  343 m/sec is the speed of sound in air.

(c) The decay rate of sound depends on the total sound absorption of the room. If we assume a 
fairly dead room with an average sound absorption coefficient a =  0.6, then

D =  1.085c In (1 — a) =  1.08(184)343 In 0.4 = 1?9 db/aec

ROOM ACOUSTICS
7.27. Compute the lowest characteristic frequencies associated with the axial sound waves, 

the tangential sound waves, and the oblique sound waves in a rectangular room of 
dimensions 3 x 5 x 7 m.

The frequency equation for harmonic acoustic wave motion in a rectangular room is

fxyz =  i cy/(nx/Lx)2 +  (ny/Ly)2 +  (nz/Lz)2 cyc/sec

where c = 343 m/sec is the speed of sound in air, the n’s are the modeB of vibration, and the L’b 
are the lengths of the sides of the room.

The axial sound waves are those moving parallel to either one of the three rectangular axes,
i.e. two of the n’s are zero. The lowest characteristic frequency associated with the axial waves
in the z direction is . ____,

/ooi — (343/2)(l/7) = 24.4 cyc/sec
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The tangential waves are those .moving parallel to the surfaces of either one of the walls, i.e. 
one of the n’s is zero. The lowest characteristic frequency associated with the tangential wave in
the yz plane is ^  _  (343/2)^ (1/5)2 + (1/7)2 = 42 cyc/sec

The oblique waves are those striking all six walls of the room, i.e. none of the n’s is zero. The 
lowest characteristic frequency associated with the oblique waves is

f lu = (343/2) V d/3)2 + (1/5)2 + (1/7)2 = 66.1 cyc/sec

It is apparent that axial waves are the most persistent while oblique waves decay most rapidly. 
Wall irregularities as well as irregular room shapes are therefore preferred because they discourage 
axial sound waves and encourage oblique sound waves.

7.28. Compute the characteristic frequencies associated with the first six principal modes 
of vibration in a rectangular room of dimensions 3 x 5 x 7 m.

The frequency equation for harmonic wave motion in a rectangular enclosure is

fiyz =  £CV (nJL z)2 + (ny/Ly)2 + (nz/Lz)2 cyc/sec

For the first principal mode in the x direction, ny = nt =  0; in the y direction, nx =  nz =  0; 
in the z direction, nx = ny =  0. Hence

f l00 = (343/2)11/3, = 57.2, / 010 = (343/2)(l/5) = 34.3, f m  =  (343/2)(l/7) =  24.2 cyc/sec

Similarly, for the second principal mode in the i  direction, nx =  2, ny =  nz =  0; in the y 
direction, nx -  0, ny ~ 2, nz = 0; and in the z direction, nx =  ny =  0, nz =  2. Hence

/ 200 = (343/2X2/3) = 114.4, fm  = (343/2)(2/5) =  68.6, / 002 =  (343/2)(2/7) =  49 cyc/sec

7.29. For the fundamental mode of vibration, calculate the directional angles for the axial, 
tangential, and oblique waves in a rectangular enclosure of dimensions 3 x 5 x 7 m.

Let the rectangular enclosure be the xyz coordinates with sides Lx =  5, Ly =  3, Lz — 7 m. 
The directional angles 8Z, ey, 8Z are the angles formed by the wave vector and the coordinate axes.

(1) Axial waves: x-axial, for the (1,0,0) mode, nx = 1, ny =  nz =  0; y-axial, for the (0,1 ,0) 
mode, nx =  0, n„ = 1, nz =  0; for the (0,0,1) mode, nx =  n„ =  0, nt =  1; the directional 
angles are respectively

8X =  0, 8y = ez = 90°; ex = 8z =  90°, 8y =  0; 8X-  8y =  90°, 8Z =  0

(2) Tangential waves: i]/-tangential, (1,1,0) mode, nx =  ny =  1, nz = 0;

8Z =  tan ~HLJLy) =  59°, eu =  tan- ' (L y/Lx) =  31°, ez =  90° 

yz-tangential, (0,1,1) mode, nx =  0, ny = nz =  1;

«z = 90°, ey -  ta n -» (V L z) = 25.3°, ez =  tan-> (£,/£„) =  64.7° 

zx-tangential, (1,0,1) mode, nx = nz = 1, =  0;

8X = tan -H LJL,) = 35.5°, ey = 90°, 8t =  tan - ' (L z/Lx) =  54.5°

(3) aryz-oblique waves: (1,1,1) mode, nz = ny = nz =  1;

»z = tan -HLJy/Ll + lZ + L l )  =  tan (6/9.1) =  28.9°

8y = tan-i (3/9.1) = 18.3°, 8Z =  ta n 'i (7/9.1) = 37.6°

For higher modes of vibration, e.g. the (3,2,0) mode, the procedure for obtaining the direc­
tional angles is the same:

ex =  tan-'(ZLJ2LJ = 48.9°, 8y = tan “ * (2V 3L ,) =  41.1°, ez =  90°
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7.30. What is the room constant of an enclosure having a total surface area of 400 ft2 
and an average sound absorption coefficient of (a) a = 0.2, (b) a = 0.8?

Room constant R =  Sa/( 1 — a) f t2 where S is the total wall area of the room in ft* and a is 
the average sound absorption coefficient. Substituting values, we find (a) R — 100 ft2, (6) R =  
1600 ft2. The greater the room constant the better the room acoustics.

Supplementary Problems
REVERBERATION
7.31. A room 20 x 40 x 60 ft  has an average sound absorption coefficient 0.24. What is the reverberation 

time? Ans. T =  1.0 sec

7.32. What is the theoretical reverberation time i f  the sound absorption coefficient is (a) a =  1.0,
(b) a =  0? Ans. (a) T =  0, (b) T =  *

7.33. Show that Sabine’s equation for  the reverberation time T =  0.049Wa will not be applicable for 
sound absorption coefficient a >  0.2.

0.049V7.34. Show that Eyring’s expression for  reverberation time in a dead room, T =  n , yields 
identical value as given by Sabine’s equation, T =  0.049V/a, for  a =  0. L n

7.35. The volume of a room is 1000 m3 and its total wall area is 400 m2. Calculate the reverberation 
time if 5% of incident sound energy is being absorbed at each reflection at the wall.
Ans. T = 6.5 sec 

t

7.36. Derive an expression for the decay rate in db/sec of sound energy in a live room.
Ans. 372a/V (metric units), 1230a/V (English units)

7.37. A room of volume 400 ft3 has 20 sabins absorption. Determine the reverberation time for both 
dry and humid air having a relative humidity o f 40% at 75° F. The attenuation constant at 
1500 cyc/sec is given as m =  0.002. Ans. 0.98, 0.85 sec

NOISE INSULATION AND REDUCTION
7.38. An office is planned in a building having an average noise level o f 70 db. I f  the noise level in the 

office should be 45 db, what is the noise reduction required? Ans. 25 db

7.39. If the noise level outside a room is 65 db and its noise insulation is 30 db, find the noise level 
inside the room. Ans. 35 db

7.40. A wall 10 X 20 m with an initial transmission loss o f 50 db has four windows built into it. The 
area of each window is 5 m2 and its sound transmission coefficient is 0.01. What will be the new 
transmission loss of the wall with windows? Ans. 25.5 db

7.41. Sound waves of power level 70 db are incident on a concrete wall. Assuming 1/10,000 o f the 
incident energy is transmitted through the wall, find the transmission loss of the wall and the 
reduced sound poVer level. Ans. TL =  40 db, SPL =  30 db

7.42. The noise level reduction o f a noisy machine employing a partial enclosure is approximately given 
by 10 log (At/A0) db, where A t is the total area o f the enclosure and A 0 is the open area of the 
enclosure. Find the noise level reduction by an enclosure 20% opened. Ans. 7 db
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7.43. Prove that if the total sound absorption in an enclosure is doubled, the average noiBe level will be 
decreased by 3 db.

SOUND ABSORPTION

7.44. An office has a noise level of 70 db with 10 metric sabins sound absorption. How much more absorp­
tion is needed to reduce the noise level to 60 db? Ans. 90 metric sabins

7.45. Derive an expression for the noise reduction level in dead rooms.

Ans.

SOUND DISTRIBUTION
7.46. Compute the sound pressure level drop for a tenfold increase of distance from the source. Assume 

spherical acoustic wave propagation. Ans. 20 db

7.47. Show that the sound pressure level drop at each reflection by a sound wave in an enclosure is griven 
by 10 log 1/(1 — a) db.

7.48. If a sound system has efficiency 6%, find the power required to produce a sound pressure level 
of 100 db in an enclosure of volume 10,000 ft3 and having a reverberation time 1.1 sec.
Ans. 1.85 watts

ROOM ACOUSTICS
7.49. Derive the expression for mean free path, L = 4V/A, by energy considerations.

7.50. Show that the sound pressure level in an enclosure can be obtained from the expression 
SPL =  PWL +  6.5 -  10 logo.

7.51. The dimensions of a rectangular room are 10 X 15 X 20 m. Determine the characteristic frequency 
associated with the lowest degenerate normal mode of vibration of sound waves.
Ans. 55 cyc/sec



Chapter 8

Underwater Acoustics
NOMENCLATURE

a — absorption coefficient, db/m
A - - transmission anomaly, db
c - speed of sound in air, m/sec
d depth, m; directivity
D — diameter, m
E — voltage, volts
f frequency, cyc/sec
9 — velocity gradient, m/sec/m
H — transmission loss, db
I — sound intensity, watts/m2
I. — intensity level, db
k — wave number
L — length, m
V acoustic pressure, nt/m2
r — distance, m
S = area, m2
SPL = sound pressure level, db
V = velocity, m/sec
W — sound power, watts
Y Young’s modulus, nt/m2
0> = circular frequency, rad/sec
p density, kg/m3
A. — wavelength, m
a — absorption coefficient, nepers/m
a — cavitation number

INTRODUCTION
Underwater acoustics deals with transmission of sound waves through water, taking 

into consideration the transmission losses, sound generation and reception, divergence and 
absorption, reflection and refraction, noises and reverberation.

UNDERWATER SOUND
As a medium for communication, water transmits sound waves far better than optical, 

radio or magnetic waves. The transmission of sound waves in water depends on variables 
such as temperature and pressure gradients, marine organisms, air bubbles, salt conten 
and other nonhomogeneities.

169
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Sound transmission losses in sea water are chiefly due to the following. (1) Divergence: 
outgoing spherical acoustic waves decrease in intensity according to the inverse square 
law. (2) Absorption: the dissipation of acoustic energy into the medium or boundaries 
because of viscous losses, heat conduction losses and molecular action. (3) Irreversible 
attenuation: losses caused by refraction, scattering, diffraction, interference, etc., commonly 
known as transmission anomaly A in decibels. The total transmission loss H in decibels is 
therefore given by

H -  20 log r + ar + A db

where r is the distance in meters between source and receiver, a is the absorption coefficient 
in db/m, and A is the transmission anomaly in decibels. (See Problems 8.13-8.15.)

REFRACTION
Refraction is the bending of sound waves because of velocity changes accompanying 

temperature and pressure changes. Since the velocity of sound is a function of temperature 
which varies linearly with depth, sound waves will be refracted downward in a circular 
arc. Because of the downward bending of sound waves, no sound waves will reach the 
surface of the sea, forming a shadow zone as shown in Fig. 8-1.

wtter surface water surface

Fig. 8-1 Fig. 8-2

At great depths where the temperature is constant, sound velocity increases linearly 
with depth because of pressure. Here sound waves will be refracted upward and follow 
an arc of a circle. (See Problems 8.3-8.7.)

Sound channels are formed at great depths in the sea where the temperature is constant. 
Sound waves emitted at this constant temperature level will be refracted upward or down­
ward along a narrow channel as shown in Fig. 8-2. This is due to temperature and pressure 
gradients. As a result, sound waves within sound channels spread out in a circle rather 
than a sphere, and propagate to much greater distances. (See Problems 8.8-8.11.)

REVERBERATION
Transmitted acoustic energy that returns to the listening hydrophone without inter­

cepting an object or target is reverberation. Unlike ambient noise, reverberation or back­
ground scattering is directly related to the acoustic energy projected into water by the 
sound source. It is in general an unwanted signal and tends to interfere with the returned 
echo.

Volume reverberation is caused by the scattering of sound in the bounded and non- 
homogeneous volume of the sea, while surface and bottom reverberation are due to reflections 
at the sea surface and bottom respectively.
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Echo-sounding is based on the reflection of sound and the production of an echo. It 
locates submerged objects by sending out a sound wave and receiving the returned echo. 
Passive listening is used to detect sounds from an unknown direction by collecting sound 
waves while maintaining complete silence. This has greater detection range than echo- 
ranging, without the risk of revealing one’s own position. (See Problems 8.12-8.17.)

AMBIENT NOISE
Ambient or background noise in the sea is a function of the state of agitation of the sea 

by natural agents such as wind and rain, and is often very unpredictable. Moreover, 
biological noises, man-made noises, noises from ships, and self-noise from sound systems 
all tend to mask the wanted signal.

UNDERWATER TRANSDUCERS
Hydrophone is an electroacoustic transducer that responds to sound waves in water 

and produces equivalent electric waves. Like microphones and other electroacoustic trans­
ducers, hydrophones should have good stability, high sensitivity and linear responses. They 
must be rugged to withstand high hydrostatic pressures and be independent of temperature. 
To meet high power and small displacement requirements, their faces should be large.

Hydrophone sensitivity in volts/microbar is the voltage generated at its terminals by 
unit sound pressure. It is a function of the angle measured from the acoustic axis of the 
hydrophone (or the axis of maximum sensitivity) and of the frequency of the signal 
generated.

Hydrophone directivity is an indication of the fraction of the total signal the hydro­
phone is permitted by its sensitivity pattern to convert into electrical energy. A hydrophone 
equally sensitive in all directions has a directivity factor of one and a directivity index 
zero. (See Microphone sensitivity and directivity of Chapter 5.)

Underwater sound projector, or simply projector, is an electroacoustic transducer used 
to generate sound in water. A projector converts electrical energy into acoustical energy 
in water through either magnetostrictive or piezoelectric effects. (For magnetostrictive 
or piezoelectric transducers, see Chapter 9.)

Sonars and passive sonars are underwater sound systems, usually consisting of hydro­
phones, power amplifiers and readout devices. They are used to detect sounds in water. 
The sonar, for example, scans the water until its sound beam hits a target and produces an 
echo, whose reception at the sonar can be made to give information about the target. (See 
Problems 8.18-8.23.)

CAVITATION
If the existing pressure is reduced to less than the vapor pressure of the water, bubbles 

filled with water vapor are formed. These bubbles collapse when they are forced to move 
into a region of higher pressure. Their collapse or local boiling produces noises with 
accompanying vibration which is detrimental to the transmission of sound. This phe­
nomenon is called cavitation.

A cavitation number <r is defined as
2(p0 -  Pv)

<J — ---------n-----
pV2

where p0 is the ambient pressure in nt/m2, pv is the vapor pressure of water in nt/m2, p is 
the density of water in kg/m3, and v is the speed of the vehicle in m/sec. (See Problems 
8.24-8.25.)
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Solved Problems
UNDERWATER SOUND
8.1. What is the ratio of particle velocity in air to that in water if (a) acoustic pressure 

in air and in water are the same, (b) acoustic intensity in air and in water are the 
same?
(a) Particle velocity v = p/pe m/sec where p is acoustic pressure in nt/m2, and pc is the char­

acteristic impedance of the medium in rayls. Then

*>air _  P/(pc)»lr _  (P^water _  1,480,000 _  
v water PAp®)water (p®) air 415

(b) Acoustic intensity I =  p*/2pc watts/m2. Then p =  y/2Ipc, and

Pair _  W ^ b c!p e\B|r _  V(pc)water _  1,480,000 _  Rg R

v water [^27pc/pc]water V(pC)air 415

wtter surface
8JL Prove that the path of a sound wave through 

wa *r having a constant positive velocity gra- 
diei.- g m/sec per meter is an arc of a circle of 
constant radius R = c jg  meters.

Let R be the radius of an arc ABC of a circle as 
shown in Fig. 8-3. Then

= i?(l — cos j), d2 = fl(l — cos S2)

Ad =  d2 — dt ' =  i?(cos8i — cose2)

Since the water has a constant positive velocity 
gradient, the velocity of sound increases with depth.

e2 =  ®i — g Ad or Ad — —(c2 — cj/g 
where e2 is the speed of sound at point C, and ct is the
speed of sound at point B. Fig. 8-3

Now Snell’s law for a sound wave in a medium in which the velocity changes with depth is 
given by

co/(cos0o) =  cj/(cos0i) =  c2/(COS $2) 

where c0 is the speed of sound at A.

From the expressions for Ad and Snell’s law, R = c jg  =  c j (g  cos en).

83. Determine the path of a sound ray in a layer of water where the velocity of sound 
increases with depth.
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Assume a sound ray at A has initial velocity cx and its path makes an angle 8X with the horizon­
tal. At point B, assume the velocity of sound becomes c2 and its path makes an angle e2 with the 
horizontal. Using Snell’s law,

Cx C2 C . ) C O S ®i  
or cos fl2 = ----------cos ex cos 82

and so in general co s«n + 1 = ^ ^ - ^ c o s f l n

Now cn + 1 is greater than c„ because the velocity of sound increases with depth. Thus

cos«n + 1 > cos 8n or en + l < en

In words, the path of a sound ray traveling in water with constant positive velocity gradient is 
bending upward as shown in Fig. 8-4.

Finally at C the sound path becomes horizontal, and beyond this point cn + 1 is smaller than c„. 
So we have

cosfln + 1 < cos6n or en + i > en

i.e. the sound ray will continue to be refracted upward.

As long as the water has a constant positive velocity gradient, sound waves traveling in it will 
be refracted upward. This is true for any initial position of the sound ray.

A narrow beam of sound is produced horizontally in water having a constant velocity 
gradient of - g  m/sec per meter. Derive an expression for the horizontal distance 
traveled by the sound beam after it has reached a depth d meters.

In view of the negative constant velocity gradient, 
the water will refract sound. The narrow beam of sound 
will therefore follow the path of an arc of a circle whose 
radius is R — c jg ,  where c0 is the velocity of sound and 
g is the velocity gradient. (See Problem 8.2.)

The sound beam at a depth d is tangent to the circle 
at point B and makes an angle 8X with the horizontal.
From Fig. 8-5,

x2 + (R -  d)2 =  R2 or i 2 =  2dR -  d2

where x is the horizontal distance traveled by the sound 
beam in reaching the depth d. Replacing R by c jg ,  this
beCOmeS 9 O J ! J9x2 = 2 d cjg  — d2

In general, the horizontal distance traveled by the sound 
beam is very much greater than the depth it reached, i.e. 
x >  d, so the term d2 can be neglected. Thus

= \/2c0d/g Fig. 8-5

The velocity of sound in sea water decreases uniformly from a value of 1500 m/sec 
at the surface to 1450 m/sec at a depth of 100 m. Determine (a) the velocity gradient,
(b) the horizontal distance required for a horizontal sound ray at the surface to reach 
a depth of 100 m, and (c) the angle of such a sound ray upon reaching this level.
(а) Velocity gradient g -  (c2 — cj/d =  (1450 -  1500)/100 = -0.5 m/sec per meter

(б) Horizontal distance x = yjlcxdlg — V2(1500)(—100)/(-0.5) = 775 m

(c) Since ax =  0, the downward angle *2 = cos~1(c2/cx) -  cos-1 (!450/1500) = 10°
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8.6. Given an isothermal layer of sea water at 20°C and thickness 50 m. (a) If a sound 
ray leaves a sonar transducer at a depth of 10 m in a horizontal direction, what is 
the horizontal distance traveled by this ray before it reaches the surface of the water? 
(b) Find the downward angle of a sound ray that will become horizontal at the bottom 
of the isothermal layer and the horizontal distance this ray has traveled in reaching 
this position.
(а) Assume the speed o f sound in water at the given temperature to be 1500 m /sec. Since the 

temperature is constant and the pressure is not, the speed o f sound will increase 0.017 m /sec 
per meter increase in depth. In other words, the velocity gradient is due to hydrostatic pressure 
and is approxim ately g — 0.017 m/sec per meter. Hence the horizontal distance traveled is 
isee Problem 8.4) ____________________

x =  V 2c0d/g =  \/2(1500.17)(10)/0.017 =  1330 m

(б) Since costf, =  1 and c, =  1500 + 50(0.017), the required downward angle is

6{) =  co s~ l (c0/c1) =  cos- 1 (1500.17/1500.85) =  1.5°

and x =  yj2exd!g -  v/2(1500.85)(40)/0.017 =  2660 m

8.7. A destroyer is searching for an enemy submarine in water having a constant velocity 
gradient of -0 .1  m/sec per meter. Its sonar transducer is at a depth o f 10 m where 
the velocity of sound is 1500 m/sec. The sonar detects a submarine at a horizontal 
distance of 800 m and at a downward angle of 10°. What is the depth of the 
submarine?

Fig. 8-6

From  Fig. 8-6, the apparent depth CB o f the submarine from  the sonar is 800 tan 10° =  141 m. 
and so the apparent depth is 10 +  141 =  151 m below the surface o f the water.

Because o f the constant negative velocity gradient o f  the water, the narrow  sound beam A B  
from  the sonar will actually bend downward in an arc o f a circle o f radius

R  =  co/(~ 0 ) =  1500/0.1 =  15,000 m

The inclination o f the sound beam at point B' is 02, which is greater than 0, because o f  re fra c­
tion by water. Then

A C  =  R sintf2 ~  TZsintf, =  800 

- in ,  _  800 +  R sin *i .  800 +  15,000 sin 10“ ____ _
-  s ----------------------- r ^ o o o ---------------- o r  =  1 3 2

The depth between the sonar transducer and the submarine is
CB' =  R  cos* , - R  cos =  15,000(0.985-0.973) -  180 m

Hence the true depth o f the submarine below the surface o f the water is 180 +  10 -- 190 m- 
This value is considerably different from that obtained earlier without taking refraction  into 
consideration. On the other hand, if  the constant velocity gradient is positive, the sound beam will 
bend upward. The true depth o f the submarine is then less than its apparent depth.
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8A A surface sound channel is formed by a water layer of thickness 100 m and velocity 
gradients as shown in Fig. 8-7 below. Determine (o) the maximum angles with 
which a sound ray may cross the axis of the sound channel and remain within the 
channel and (b) the horizontal distance these sound rays cross the axis of the channel.

SOUND CHANNELS

Sound Velocity, m jttc

Fig. 8-7

(a) The constant velocity gradient in the upper channel is g' =  (1480 —1600)/20 =  —1.0 m/sec 
per meter, and in the lower channel is g "  =  (1500 — 1480)/80 =  0.25 m/sec per meter.

In water with constant velocity gradient, the horizontal distance traveled by a sound ray 
in reaching a depth d is x =  \/2c0d/g. For the upper and lower channels, we obtain respectively

j 0 = V ^ < V W  =  V2(1500)(20)/1.0 =  246 m, * , =  yj2.cxdxlg "  =  V2(1500)(80)/0.25 =  980 m

The radius R o f the arc o f a circle traveled by the Bound ray is R =  c<Jg. Thus in the 
upper and lower channels respectively, Ji0 =  e j g '  — 1500 m, R t =  cxtg "  =  6000 m.

But sin 90 = Xq/Rq =  246/1500 or 90 =  9.4°, and sin*! =  x xIRx =  980/6000 or 9X =  9.4°. 
Therefore the maximum angle with which a sound ray may cross the axis of the channel in 
either direction and still remain within the channel is the same and is 9.4°. Also, a sound 
ray that once crosses the axis o f the sound channel at t 0 =  9.4° will continue to recross the 
axis at this same angle.

(b) The horizontal distances at the first and second crossings o f the axis of the channel are

Xy =  2 # 0 sin «0 =  492 m, X 2 =  2RX sin 90 =  1960 m

8.9. Referring to Problem 8.8, find (a) the time required for a sound ray to travel to the 
second crossing if it crosses the axis of the channel at the maximum angle, (b) the 
time required for a sound ray to travel the same distance as in part (a) along the 
axis of the channel, and (c) the difference in the time required.

(а) Along the axis of the channel the velocity o f sound is at its minimum value of 1480 m/sec, so 
the time required to travel to the second crossing is t, =  x/em =  (492 +  1960)/1480 =  1.66 s«c.

(б) The mean horizontal velocity o f the sound ray crossing the axis o f the channel at angle 0O is 
(see Problem 8.11)

cx =  em(l +  « l l 6) =  1480(1 +  0.1642/6) =  1486.67 m/sec 

where 90 =  9.4° =  0.164 rad. Hence t2 =  (492 +  1960)/1486.67 =  1.65 sec.

(c) The time difference for such a short distance is =  0.01 sec. It is clear that for great
distances the difference will be appreciable. Moreover, at 26.7 m below the axis of the channel 
and at 6.67 m above the axis o f the channel, the speed o f sound will equal the mean horizontal 
velocity of the sound ray crossing the axis at 9.4°.
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8.10. Figure 8-8 shows the velocity pro­
file of a portion of the sea. Deter­
mine the path of a sound wave 
traveling in it.

Assume the sound wave is initially 
horizontal at the surface of the sea. For 
the first layer of water from 0 to 200 m 
depth, the velocity of sound decreases lin­
early with depth. The velocity gradient is

=  (1450 -  1500V200 = -0.25 (m/sec)/m 

and the radius of the path is 

Rt = co/i-gy) = 1500/0.25 = 6000 m

Since 0O = 0, the angle this sound 
ray makes with the horizontal at the depth 
o f 200 m is 8i =  cos" ' 1450/1500 = 15° 
and the horizontal distance it travels in 
reaching the second layer is

xj = Ri sin =  6000 sin 15° = 1550 m

Similarly for the second layer of water, 

g2 =  (1400- 1450)/800 = -0.0625 (m/sec)/m, R2 =  c0/{-g2) =  1500/0.0625 =  24,000 m

e2 =  cos_ , c2/c0 = cos- 1 1400/1500 =  21° 

and x2 =  # 2(sin 21° — sin 15°) =  2400 m

Below this depth of 1000 m, the temperature is constant. The velocity o f sound, however, 
increases at a constant rate of 0.017 m/sec per meter increase in depth because of increasing hydro­
static pressure. The sound ray therefore bends along a radius

R3 =  co/i-gj =  1500/(—0.017) =  -88,200 m

Thus the sound ray will become horizontal at a depth of (1500 —1400)/0.017 +  1000 =  6890 m, 
and

x3 =  R3 sin*2 =  88,200 sin 21° =  31,800 m

Upon reaching this maximum depth of 6890 m and a velocity of 1500 m/sec, the sound ray begins 
an upward path similar to the downward path as shown in Fig. 8-9. The total horizontal distance 
traveled by this sound ray is

x = 2(x, + x2 +  x3) = 2(1550 +  2400 + 31,800) =  72,000 m

Sound Velocity, m/sec

Fig. 8-8

Fig. 8-9
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n • • r + maqti horizontal velocity of sound rays crossing the8,11. Derive an expression for the mean norizonuw
axis of a sound channel at an angle 60.

Fig. 8-10

At the axis of the sound channel, the velocity of sound is a minimum, i.e. c =  cm. At any 
other point in the sound channel, the velocity o f sound is, by Snell’s law, c =  (em cos ff)/(cos Sq) and 
its horizontal component is ex — c cos 8 =  (cm cos2 ®)/(cos Hence the average value is

Cm r e° 1 , ,c, -  -------  I — cos2 8 de —cos 80 J 80
$8 +  £ sin 8 cos 8

Bin 80

2 \cosfl0 808 0 COS 8 o

From their series expansions, sin 80 =  8C — 8%/6, cos 80 =  1 — 8\l2, and so

ex =  cm(l +  *2/6)

where 90 is in radians. Thus the mean horizontal velocity of sound rays crossing the axis of the 
sound channel is always greater than the minimum velocity of sound cm at the axis of the channel.

I0UND TRANSMISSION LOSSES
.12. For propagation of spherical acoustic waves through an unbounded and homog­

eneous body of sea water, derive an expression for the transmission loss in decibels 
due to divergence and absorption.

Because of divergence and absorption, the sound pressure amplitudes at distances r1 and r2 
from the sound source can be written as

P PPi =  —  e - “ ri, p2 =  — e ~ aT* 
r l r2

where P is the pressure amplitude at the sound source, and a is the absorption coefficient in 
nepers/m.

The sound pressure levels at these two points are

(SPL), =  20 lo g — db, (SPL), =  20 log —  db 
Po Po

where p0 is the reference sound pressure.

The difference in sound pressure level between these two points is

(SPL), -  (SPL)2 = 20 log —  e - “ ri -  20 log —  e~ar*
r iPo r2p o

=  20 log Ty  +  20 log ea(r» - ri>

=  20 log — +  8.7a(r, — r.) db

If r, = 1 m, then the transmission loss from r, to r2 or simply a distance r meters is 

(SPL), — (SPL)2 =  20 1ogr2 +  8.7a(r2 — 1) db

or H =  20 log r +  ar db

where a is the absorption constant in db/m for sound waves in sea water.
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The spatial rate of transmission loss is

dH _  20 d(ln r) . 8.7
dr ~ 2 2 ~ d T  + « -  —  +  a

When the rate of transmission loss caused by divergence is equal to the rate of transmission loss 
caused by absorption, we have

dH -  n 8.7-j— — 0 or r — ~ — dr

where rc is sometimes known as the crossover range.

ECHO-SOUNDING
8.13. Derive an expression for the intensity level of the returning wave in underwater 

echo ranging.

Underwater echo ranging is a process in which a sonar transducer scans the water until the 
emitted sound beam hits a submerged object. The object then produces an echo whose reception at 
the source can be made to give information about the object.

Let I', be the intensity at a distance of 1 m from the sound source; then the intensity at a 
distance of r meters from the same sound source is I's/r2 watts/m2.

If the underwater object is at a distance r meters from the sound source with a perfectly 
reflecting surface of cross-sectional area S m2, the sound energy received by the object will be at 
the rate of I'sS/r2 watts. Assume the sound energy received by the object will be radiated back 
equally well in all directions, i.e. a sphere of area 4irr2. The sound intensity of the returning waves 
at th, source is ^  { ,

Ie  =  l^ 2"  =  ^ (Z>/4)2 W 8 t t s /m 2

where D is the diameter of the underwater object in meters, and S =  wr% m2. In decibel notation,

Ie =  10 l o g / ; / /o .+ 10 log (Z?/4)2 — logr4 = Is +  20 log D/4 — 40 log r

where 7, is the intensity level of the transmitted signal at 1 m from the sound source, 20 log D/4 
represents the transmission gain or target strength due to the reflection of the underwater object, 
and 40 log r is the loss due to divergence.

The effects of directivity d, refraction 2A and absorption 2ar can be incorporated into the 
expression for the intensity level of the returning echo signal:

Ie = I, +  20 log D/4 + d -  40 log r -  2A — 2ar db

8.14. Determine the intensity level and sound pressure level of the returned echo from a 
submerged object of average diameter 40 m at a distance of 3000 m from a trans­
mitting source. The sound source radiates 1500 watts of acoustic power at a fre­
quency of 20 kc/sec in a beam of 20 db directivity index. The transmission anomaly 
is 10 db.

The intensity level of the returned echo from a submerged object in underwater echo ranging 
is given by (see Problem 8.13)

l e = / ,  + 20 log D/4 + d -  40 logr - 2  A -  lar -  24.8 db

where Jf = 1500/4r = 120 watts/m2 or 140 db re 10-12 watt/m2, 20 log D/4 =  20 log 40/4 =  20 db, 
d =  20 db, 40 logr = 40 log3000 = 139.2 db is the loss due to divergence, 2A =  10 db, 2ar = 
2(0.001)3000 =  6 db is the absorption loss at 20 kc/sec frequency.

p = y/J^ =  V(3.08x 10-i°)(l,480,000) = 2.14 X  10"2 nt/m2

where 24.8 = 10 lo g ///0 or I = 10-12 antilog 2.48 = 3.08 x 10_ ,° watt/m2. Hence

SPL = 20 log (2.14 x 10_2)/(2 x 10-4) = 82.1 db re 1 microbar
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&15. A sonar transducer has a source level of 100 db re 1 microbar. Calculate the sound 
pressure level produced by the transducer at a distance of 4000 m.

At 1 m from the source, I =  W/Aw =  pVpe watts/m2, where p is the effective sound pressure 
in nt/m2, W is the total acoustic power output in watts, and pe =  1,480,000 rayls is the char­
acteristic impedance o f water. Thus p =  y/pcW/Air = 344W lri nt/m2 and SPL =  20 log lOp = 
20 log 344IV1'2 =  71 +  10 log W  db or W  =  794 watts.

At r — 4000 m, we have I =  W/Arr2 - 3.95 X  10_6 watt/m2, p = y/pcl =  2.41 nt/m2, and 
SPL = 20 log 24.1 = 27.6 db re 1 microbar.

If other losses are neglected, we have transmission loss due to divergence H — 20 log r  = 
20 log4000 = 72 db, and SPL = 100 -  72 =  28 db at r =  4000 m.

8.16. A sonar transducer has an intensity level of 125 db re 1 microbar and generates 
output pulses of 0.05 second duration. It has a receiving directivity of 20 db while 
radiating acoustic energy at a frequency of 20 kc/sec. Compute the reverberation 
level produced by scatterers of a density and size no  =  10~5 per meter at a range of 
2000 m from a submerged object.

The reverberation level produced by scatterers in sea water is

Ih = I, +  10 log n<r +  lOlog^cAt — d — 20 log r — 2ar =  —11.3 db re 1 microbar

where I, = 125 db, 10 log n<r =  -5 0  db, 10 log =  10 log £(1480)(0.05) =  15.7 db, d =  20 db, 
20 log r = 20 log 2000 =  66 db, and 2or =  2(0.004)(2000) =  16* db.

8J7. A sonar transducer produces an axial sound pressure level of 50 db re 1 microbar 
at a distance of 1000 m in sea water. If the absorption constant has a value of 
0.01 db/m, find the axial sound pressure level at 1 m and at 2000 m. At what distance 
will the axial sound pressure level be reduced to Odb? At what distance will the 
transmission loss caused by spherical divergence be equal to that caused by absorption ?

Assume the transmission anomaly A =  0; then transmission loss in sea water due to spherical 
divergence and absorption is

H  =  20 log r +  ar db

and at a distance o f 1000 m, H  =  20 log 1000 +  0.01(1000) =  70 db where a =  0.01 db/m is 
the absorption constant. Thus

(SPL)1 =  70 +  50 =  120 db re 1 microbar 

At 2000 m, H =  20 log 2000 +  0.01(2000) =  86 db and so

(SPL)2000 -  120 — 86 =  34 db re 1 microbar

When the axial sound pressure level iB zero, we have the total transmission loss o f 120 db, i.e.
120 = 20 log r +  O.Olr or r — 4700 m.

Transmission loss caused by spherical divergence is 20 lo g r  while transmission loss caused by 
absorption is ar. I f  they are equal, we have 20 lo g r  =  O.Olr or r =  7800 m.

When the rate o f transmission loss due to spherical divergence equals the rate o f transmission 
loss resulting from absorption, we have

dH _ 20 d(ln r) , „ „ ,
“  2^  ~ d T  +  a =  8.7/r  +  a -  0

Thus re =  6.7/a =  8.7/0.01 =  870 m.
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8.18. In order to collect more sound underwater, two microphones Mx and M2 are used with 
their tubes leading into the common tube C as shown in Fig. 8-11. If sound waves 
come from the left, find an expression for the length of tube A for maximum sound 
intensity received at C.

UNDERWATER TRANSDUCERS

Fig. 8-11

Since sound waves come from the left, microphone will be excited first; sound propagates 
down tube A toward C with velocity ca of sound in air. The remaining sound waves travel through 
water with velocity ĉ , of sound in water and excite microphone M2- The resulting sound waves 
then travel down tube B toward C with velocity ca.

For maximum sound intensity received at C, sound waves coming from microphones M x and M 2 
should arrive at C in phase, i.e.

A _  A +  B B_

where Xa and \w are the wavelengths of sound in air and in water respectively. Thus

B(\a +  \u.) B(ca +  cw)
A =  x - A  ° r A =  c_ -  e ~

where ea =  f\a and ew =  f\w.

8.19. A sonar transducer has a maximum detection range of 4000 m operating at 20 kc/sec 
frequency on a given submerged object. Determine its new maximum detection range 
if (a) the source level is increased by 30 db, (b) the operating frequency is reduced 
to 10 kc/sec.

(а) The general expression for returned echo signal level is

Ie =  I, +  T -  2H db

where rs is the source strength, T is the target strength, and H — 20 lo g r  +  ar is the loss 
due to divergence and absorption. For the initial 4000 m range,

It =  / ,  +  T -  2[20 log 4000 + 0.00373(4000)] =  7, +  T -  2(86.9) db

where o =  0.00373 db/m is the absorption coefficient at 20 kc/sec.

Now the source strength I, is increased by 30 db while the echo and target strengths remain 
the same. Then 2H =  2(86.9) +  30 and

H  =  20 log r +  0.00373r =  86.9 +  15 =  101.9 or r =  6700 m

(б) A t 10 kc/sec, the absorption coefficient is found to be a =  0.001 db/m. Then

H =  20 logr +  O.OOlr = 86.9 or r -  8100 m
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8.20. Sound waves are produced at a 
depth d below the surface of the sea. 
Derive an expression for the inten­
sity at point P  a distance L from the 
source S as shown in Fig. 8-12.

For a homog'eneous medium, sound 
waves reach P via two paths: SP  directly 
from the source S, and SOP  a fter reflection 
at 0  on the boundary surface. From the 
acoustic mirror phenomenon, the sound ray 
OP appears to come from  the acoustic 
image I  directly opposite the source S. The 
total effect at P  is therefore the sum o f the 
direct and reflected waves. Fig. 8-12

Let p { be the acoustic pressure at P  due to the direct wave alone,

p l =  P , cos (a t  -  tfj) nt/m 2

where P , is the pressure amplitude, and =  a L / c  is the phase difference between the pressure 
at S and that at P. Sim ilarly let p2 be the acoustic pressure at P  due to the reflected wave alone,

p 2 =  P 2 cos ( a t  — 02 ~  180°) nt/m 2
where $2 =  a(lP)/c is the phase difference between the pressure at the image I and the receiver 
P,  and 180° is the phase change due to reflection at the interface (from  water to air). The resultant 
Pressure at P is therefore

P =  Pi ■+• p2 =  P i COS ( a t — $i) +  P 2 COS (wt 82 180°)

Now P i cos ( a t  — ®i) =  P j cos a t  cos 8\ +  P j sin a t  sin 8y
P 2 cos (cj£ — $2 — 180°) =  P 2 cos a t  cos (o2 +  180°) +  P 2 sin a t  sin (e2 +  180°)

cos (82 +  180°) =  — cos b2 
sin (02 +  180°) =  — sin e2 

^  e have p =  c o s  u t ( P 1 cos — P 2 cos 82) +  sin a t ( P x sin 8j — P 2 sin e2)

or p =  P  cos ( a t  — <p)

where P  =  V A 2 +  B 2, <p =  ta n -1  (B/A), A  =  P t cos — P 2 cos e2, and B =  P x sin 0, — P 2 sin tf2. 

The intensity o f the resultant radiation at P  becomes

I  - p2/2pc -  (A 2 +  B2)/2pc w atts/m 2 

where pc is the characteristic impedance o f water in rayls.

But A 2 =  P j cos2 8j +  P 2 cos2 82 — 2 P jP 2 cos 0j cos 82

B 2 =  P j s i n 2 ffi +  P 2 sin2 e2 — 2P l P 2 sin 8X sin e2 

A 2 +  B 2 =  P\ +  P 22 -  2P 1P 2 cos (8 i - 8 2)

T _  ~  2P tP 2 cos (<?, — g2)and finally
2 pc

It is convenient to express this intensity in terms o f the intensity 70 =  p\/2pc produced at P 
by the direct radiation from  source S. Then

r>2 ^ P 2
1 y  i  a  v  w o  i v  i  i r < ) i  i

70[1 +  R2 ~  2R cos (0, — 02)|2 pc
P 2

—- +  —-  — 
P\ P\ P i

where R =  P 2tP x is the ratio o f the pressure amplitudes due to reflected and direct waves.

Depending on the values o f the phase angles 0, and fl2, c o s (0 ,— »2) will fluctuate between —1 
and +1. The resultant intensity is seen to fluctuate between / tt(l  +  R)2 and I0(l — R)2. Further­
more, i f  the source and the receiver are close together near the surface, the phase angles are
essentially zero and R  approximates unity; then the resultant intensity will fluctuate between zero 
and 4 /u.
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621. An underwater magnetostrictive sound transducer has a nickel rod of radius 0.01 m 
and length 0.1 m. What is the frequency of vibration of the transducer?

When magnetostrictive effect is employed for transducer action, the rod is driven to vibrate 
longitudinally at ita fundamental natural frequency,

/ 0 =  UlLyfYTp =  24,500 cyc/sec

where L = 0.1 m is the length of the rod, Y =  2.1 X  1011 nt/m* is Young’s modulus for nickel, 
and p =  8.78 X  10* kg/m3 is the density of nickel. (Transducers are usually driven at their funda­
mental resonant frequencies, i.e. those of the rod, in order to obtain maximum efficiency.)

622. Obtain an expression for the resultant voltage E generated by two small omni­
directional hydrophones whose electrical outputs are connected in series as shown in 
Fig. 8-13. Sound waves are incident on a perpendicular plane through the center 
of the line connecting the hydrophones.

Fig. 8-13

For an angle of incidence #, the phase difference of the hydrophones is given by (see Fig. 8-13)

 ̂ =  (2rd/\) sin 8 =  kd sin 8 

where k =  u/e =  2r/\ is the wave number, and X is the wavelength.

Now the voltage generated is Et =  E0 cos \<t>, where E0 is the voltage generated when 0 =  0.
Thus _  „  11 i *Ee =  E0 cos $kd sin 8

This result can also be obtained from the general expression for voltage E e generated by a 
line aiTay consisting of n equally spaced small omnidirectional hydrophones whose electrical 
outputs are connected in series as (see Problem 5.28)

sin tyknd sin 8)
E ~ E9 n sjn Qknd sin 0)

Here « =  2 and so E =  E0 9|n r = cos sin 8)v 2 sin (\kd sin 8) 3

since sin (kd sin #) =  sin 2(\kd. sin 8) =  2 sin (^kd sin 8) cos (^kd sin 0).

8J3. The observed frequency of a returned echo signal from a submarine is 40,400 cyc/sec 
while the driving frequency supplied to the sonar transducer aboard a destroyer is 
40,000 cyc/sec. If the destroyer is speeding at 40 knots, find the speed of the 
submarine.

Because of the Doppler effect, we can express the observed frequency as

/ '  =  f (l  + 2vl/r/e) cyc/sec

where /  is the actual frequency produced at the source in cyc/sec, vt/r is the relative speed between 
source and receiver in m/sec, and e =  1500 m/sec is the speed of sound in water. Then

40,400 =  40,000(1 + 2vl/r/1500) or v,lT =  7.5 m/sec

and the speed of the submarine is vr = vt — v(/r =  20.4 — 7.5 = 12.9 m/sec or 25.2 knots.
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CAVITATION
gj54. Compute the maximum sound pressure level allowed in water without causing 

cavitation.
Cavitation results from negative instantaneous pressure in water. Because water supports 

very little tension, it will break away forming turbulences and eddies when pressure becomes 
negative. Now total pressure at a point in water is equal to atmospheric plus the hydrostatic 
pressure of the water. Atmospheric pressure is approximately p =  105 nt/m2 or pr]ns =  105/\/2 = 
0.7 X 105 nt/m2, and so SPL =  20 log (0.7 X 105/0.0002) =  116.9 db re 1 microbar.

In order to prevent cavitation, a hydrophone should not produce sound pressure amplitude 
greater than the instantaneous pressure (atmospheric +  hydrostatic) it is subjected to. The mini­
mum value is 116.9 db re 1 microbar at the surface of the water and increases with depth because 
of increasing hydrostatic pressure. On the other hand, cavitation is sometimes deliberately induced 
for the destruction o f liquid-borne organisms, in the dispersion of liquid-borne particles, the produc­
tion of colloidal suspensions and emulsions, and the cleaning o f metal parts.

8̂ 5. A vehicle in water is at a depth of 30 m and moves at a speed of 30 knots. What is 
the required cavitation number such that cavitation will not take place ?

^ , 2<Po-  P»)Cavitation number a — -------- ,----- — o.l4
pVz

where p0 =  105 +  30(3.28)3(62.4)/0.225 =  392,000 nt/m2 is the ambient pressure (atmospheric + 
hydrostatic pressure), p„ =  2400 nt/m2 is the vapor pressure of water at 20°C, p =  1061 kg/m3 
is the density of water at 20°C, and v =  30 knots or 15.3 m/sec is the speed of the vehicle in water.

Supplementary Problems
UNDERWATER TRANSMISSION
8.26. A simple underwater sound source radiates 10 watts o f acoustic power at a frequency of 500 cyc/sec. 

Find the acoustic intensity and sound pressure at a distance o f 5 m from the source.
Ans. I -  0.032 watt/m2, p =  22 nt/m2

8.27. For plane acoustic waves in water, show that SPL =  IL if  the pressure fluctuations and particle 
displacements are in phase.

8.28. Show that low frequency sound waves are better than high frequency sound waves for underwater 
communications.

8.29. Sound pressure level for underwater acoustics is usually given 1 microbar as the reference pres­
sure. Compared to the usual sound reference pressure of 0.00002 nt/m2, what will be the sound 
pressure level? Ans. 74 db higher

8.30. Transmission anomaly produced by increased divergence at layer depth is often given by
sin 8i +  sin

A =  20 l o g ------------------- - db■ 2 sin
where 0, is the angle o f incidence and $2 is the angle o f transmittance. If c t =  1500 m/sec, 
e2 = 1450 m/sec, and =  5°, find the value o f transmission anomaly. A tis. 6 db

REFRACTION
Wl. Prove that in water having a constant negative velocity gradient, the path of sound waves will be 

refracted downward.

A submarine is at a depth o f 180 m where the velocity o f sound is 1500 m/sec. Its sonar transducer 
detects a surface vessel at an upward angle o f 10° with the horizontal. What is the horizontal 
range of the vessel from the submarine? Ans. 800 m
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8.33. A sonar transducer operating at a 50 kc/sec frequency has a source strength of 140 db. What 
will be the echo signal strength returned from a spherical object of 40 m radius at a distance of 
1000 m? Ans. 16 db

UNDERWATER TRANSDUCERS
8.34. Three hydrophones A ,B ,C  shown in Fig. 8-14 are used to detect the location of a submerged object 

in water. By observing the time of arrival of sound from the object O, show that the position of 
the object is given by the intersection of two hyperbolas with A and B, B and C as foci respectively.

O

Fig. 8-14 Fig. 8-15

8.35. Prove that the resultant voltage Ee generated by a line array consisting of n equally spaced small 
omnidirectional hydrophones whose electrical outputs are connected in series is given by

sin (%nkd sin 6)
n sin (%kd sin 6)

where E0 is the voltage generated when d = 0 and k is the wave number. (See Fig. 8-15.)

8.36. If sound waves of frequency 10 kc/sec are incident at an angle of 10° to the normal o f a line 
array of six omnidirectional hydrophones spaced equally at 0.1 m apart, what will be the electrical 
phase difference between the signals produced in adjacent hydrophones? The electrical outputs 
of all hydrophones are connected in series. i4ns. 40°

8.37. Show that the Doppler effect will give rise to the following expression for frequency received 
from a submerged object by the sonar transducer aboard a surface vessel:

/ '  = f(l + 2V/c)
where / '  is the observed frequency, f  the actual frequency, V the speed between the object and the 
sonar transducer, and c the speed of sound in water.

8.38. Given the velocity Vd of a destroyer and the angle ed it makes 
with the line to a submarine as shown in Fig. 8-16. The speed of 
sound in water is c, and the frequencies of the source and the 
returning echo are / d and / ,  respectively. Find an expression for 
the velocity of the submarine
. _  2fdv d costfd -  e(fs - f d) V•
nS' 3 ~ 2/rf cos $„ Fig. 8-16

8.39. The sonar transducer aboard a destroyer radiates sound waves of frequency 20 kc/sec. I f  the 
relative speed between the destroyer and a submarine is 7.5 m/sec, find the frequency observed by 
the sonar transducer. Ans. f  = 20,200 cyc/sec

CAVITATION
8.40. Compute the minimum power per unit area required to produce cavitation at (a) the surface of 

the sea, (6) a depth of 30 m. Ans. (a) 3000 watts/m2, (b) 50,000 watts/m2

8.41. In order to prevent cavitation, a hydrophone should not produce sound pressure amplitude greater 
than the hydrostatic pressure it is subjected to. For a hydrostatic pressure o f 100,000 nt/m2, 
compute the highest sound intensity allowed. Ans. I =  1690 watts/m2
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Ultrasonics
n o m e n c l a t u r e

a = acceleration, m/sec2 
A = area, m2
B -  flux density, webers/m2
c -  speed of sound in air, m/sec
Co = capacitance, farads
dn = piezoelectric strain coefficient, m/volt
E = voltage, volts
ew = piezoelectric stress coefficient, coulombs/m2
f = frequency, cyc/sec
I = sound intensity, watts/m2
k = coefficient of electromechanical coupling
K = proportional material constant, m4/weber2
L =  length, m; inductance, henrys
p = acoustic pressure, nt/m2
Q = quality factor
r = radius, m
R = resistance, ohms
s22 = compliance coefficient, m2/nt
S -  area, m2
t = thickness, m; time, sec
Y = Young’s modulus of elasticity, nt/m2
W = sound power, watts
Z = impedance, rayls
io = circular frequency, rad/sec
P =  density, kg/m3
A. = wavelength, m
«, = sound power transmission coefficient
<7 = stress, nt/m2
<f> =  transformation factor, coulomb/m 
tz = clamped dielectric constant 
<0 = permittivity of free space, farads/m 
M = Poisson’s ratio
^  = incremental permeability of the material, henrys/m 
/i0 = permeability of free space, henrys/m 
A = magnetostriction constant
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INTRODUCTION
Ultrasonics is the study of sound waves of frequencies higher than the upper hearing 

limit o f the human ear (frequency region above 20 kc/sec) and has become synonymous with 
the applications and effects of ultrasonic vibration for other purposes than the excitation 
o f the hearing mechanism. In fact, ultrasonic energy has been applied to gases, liquids and 
solids to produce desired changes and effects or to improve a product or a process.

The upper frequency limit for the propagation of ultrasonic waves is thermal lattice 
vibrations beyond which the material cannot follow the input sound. The smallest wave­
length o f sound is therefore twice the interatomic distance, and for  metal this is approxi­
mately equal to 2 x l0 ~ 10m. This occurs at a frequency o f 1.25 x 1013 cyc/sec which 
corresponds to the twenty-first harmonic of a 10-megacycle quartz crystal. A t such high 
frequencies, ultrasonic wave periods become comparable with relaxation time.

High-amplitude ultrasonic waves are sometimes called sonic, and hypersound  refers to 
waves having frequencies greater than 1013 cyc/sec.

W AVE TYPES
Rayleigh surface -waves propagate over a surface without influencing the bulk o f the 

medium below the surface. They are produced from unbalanced forces at the surface o f a 
solid and generate an elliptical motion of the medium whose amplitude decreases exponen­
tially as the depth below the surface increases. Ultrasonic Rayleigh waves can be propagated 
along the surface of the test object to detect flaws or cracks on or near the surface o f the 
test object.

Waves produced in a thin plate whose thickness is comparable to the wavelength are 
known as Lamb waves. They are very complex waves, moving in asymmetrical or sym­
metrical modes, and are employed to locate nonbonded areas in laminated structures, 
radial cracks in tubing, and for quality control of sheet and plate stock.

ULTRASONIC TRANSDUCERS
Basically there are three types of ultrasonic transducers: (1) gas-driven transducers, 

e.g. whistles, sirens; (2) liquid-driven transducers, e.g. hydrodynamic oscillators, vibrating 
blade transducer; and (3) electromechanical transducers, e.g. piezoelectric and magneto­
strictive transducers. They are classified according to the form  of energy used to excite 
them into mechanical vibration and the medium into which the wave is to be propagated.

The quality factor Q (or the quality of resonance) of a system determines the frequency 
responses of the system, i.e. for a low Q the frequency bandwidth is wide and for  a high 
Q the frequency bandwidth is narrow. The magnification of ultrasonic transducer is 
approximately equal to the quality factor Q. (For water, quartz, and water, Q =  7.)

PIEZOELECTRIC TRANSDUCERS
If an alternating electric field is applied along the axis of a piezoelectric crystal, the 

latter will expand and contract along the axis (see Fig. 9-1). As the frequency o f the 
applied electric field approaches the natural frequency of any longitudinal mode o f vibration 
o f the crystal, the amplitude of the resulting mechanical vibration o f the crystal becomes 
significantly large. These types of mechanical vibration from piezoelectric crystals have 
been utilized to produce ultrasonic vibrations at frequencies ranging from  5 kc/sec to 
200 kc/sec.
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Piezoelectric transducers are usually made from 
quartz, tourmaline, Rochelle salt, ammonium dihydro­
gen phosphate, barium titanate, and ceramics having 
strong ferroelectric properties.

These transducers provide stable ultrasound of 
narrow bandwidth over a wide range of frequencies.
Some piezoelectric materials, however, are hygroscopic 
and are incapable of sustaining high power densities 
without fracture, and some exhibit instabilities. (See 
Problems 9.1-9.8.)

MAGNETOSTRICTIVE TRANSDUCERS
When a rod of magnetizable material is exposed to a magnetic field which varies in 

magnitude, the rod changes in length. An alternating current passing through a coil sur­
rounding such a rod will cause it to vibrate longitudinally. These small forced vibration 
amplitudes will increase very greatly if the frequency of the applied current coincides with 
one of the normal longitudinal modes of vibration of the rod. Ultrasonic sound of this 
frequency is radiated.

Magnetostrietive transducers are usually made from alloys of iron, nickel, and cobalt. 
They are mechanically rugged and capable of producing large acoustical power with fairly 
good efficiency, e.g. 60rr. Their deficiencies are low upper frequency limit because of 
extreme length required and conversion losses due to hysteresis -and eddy-currents. (See 
Problems 9.9-9.12.)

ELECTROMAGNETIC TRANSDUCERS
Electromagnetic transducers, like most of the loudspeakers, generate ultrasound from 

the movement of a coil carrying a varying voltage in a magnetic field of constant intensity. 
(See Chapter 5.)

ABSORPTION
The absorption of ultrasonic energy by gases is due to viscosity effect and heat conduc­

tion. However, the delay in attainment of equilibrium between translational, rotational 
and vibrational energy of molecules also plays an important role in the absorption of 
ultrasonic energy.

In solids, the absorption of ultrasonic waves may be attributed to lattice imperfection, 
ferromagnetic and ferroelectric properties, electron-photon interactions, thermal effects, 
grain boundary losses, thermoelastic and structural relaxation, acoustoelectric effect, and 
nuclear magnetic resonance.

Ultrasound can be propagated to much greater distances in water and at much higher 
frequencies than in gases and solids. Attenuation and absorption of ultrasonic waves in 
water are comparatively low.

APPLICATIONS
As one of the important nondestructive testing methods, ultrasonics plays an essential 

part in flaw detection, process improvement, control and monitoring, and measurement of 
mechanical, physical, chemical and metallurgical properties of materials.

E
\

Fie. 9-1. Piezoelectric transducer
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By means of a transducer, ultrasonic energy is converted into high frequency mechanical 
vibration of the medium through a proper coupling element such as a horn.

In industry, ultrasonics is widely used for metal processing such as solidification, 
precipitation, agglomeration, emulsification, dispersion. Many different types of ultrasonic 
devices, generators and detectors are currently being used.

In medicine, ultrasonics is employed for tumor detection, biological measurements and 
diagnostic work.

In underwater applications, ultrasonics is employed to measure water depth in the 
mapping of the ocean floor, and to detect submerged objects such as fish, submarines and 
mines.

Ultrasonics is also used for traffic control, fabric cleaning, aging of wines, packing of 
cement, counting and sorting, and dispersion of fog. (See Problems 9.14-9.17.)

Solved Problems
PIEZOELECTRIC TRANSDUCERS
9.1. An A'-cut quartz crystal of thickness 0.001 m is vibrating at resonance. Find the 

fundamental frequency.
For longitudinal wave motion, c =  y/Y!p — V " .9 X 1010/2650 — 5460 m/sec. Since t =

/ ,  =  c/2t = 5460/0.002 =  2730 kc/sec

9.2. An X-cut quartz piezoelectric transducer is to be operated in contact with water and 
with air. Determine the maximum intensity at resonance.

The maximum intensity at resonance is given by
12

-  ipc
J p c ) q

watts/m2

where pc is the characteristic impedance o f the medium in contact with the transducer, <Tir,MX =  
7600 nt/m 2 is the maximum stress allowable for quartz, and (pc)Q =  14.5 X 106 rayls is the char­
acteristic impedance o f X-cut quartz.

When in contact with water, p c  =  1.48 x  106 and / max = 0.2 watt/m 2.

When in contact with air, pc =  415 rayls and / rnax =  0.58 watt/cm 2.

9.3. Determine the maximum acceleration and displacement of a quartz ultrasonic trans­
ducer radiating sound of 5 watts/cm2 intensity and 20,000 cyc/sec frequency into 
w fttpr

Sound intensity I =  p2/2t>c watts/m- 

or sound pressure p =  yj2pcl =  \/2( 1 .48 x  106)(5 X 1 0 1) = 3.85 > 105 nt/m2.

Since force =  pA  =  ma =  tpAa, the maximum acceleration is

“ max =  P/p* =  (3.85 x  105)./2650(0.001) -  1.45 * 105 m /sec2 

where t =  0.001 m is the thickness of the quartz.
The corresponding maximum displacement is

=  a/u2 =  (1.45 x 105)/[(6.28)(20,000)]2 = 9.4 x 10"« m
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9.4. A plated X-cut quartz crystal of dimensions Lx = 0.001 m, Ly = 0.02 m, Lz -  0.005 m 
is used as a longitudinal ultrasonic transducer. Find the longitudinal strain in the 
unstrained crystal when 120 volts is applied between the plated surfaces. If the 
crystal is constrained so that it cannot move longitudinally, find the resulting stress.

The simplified equation for longitudinal piezoelectric vibrators is given by
di)/dy — —822F y/Sy +  dl2Ex/Lx

dy/dy =  the longitudinal strain,

*22 = 1.27 X  10-11 m2/nt is the compliance coefficient,
=  the compressional force in newtons in the y direction,

Sy = LXLZ =  0.000005 m2 is the cross-sectional area,
dl2 = 2.3 X  10“ 12 m/volt is the piezoelectric strain coefficient,

Ex = 120 volts is the applied voltage.

For the unconstrained crystal, F y =  0; the longitudinal strain is
bn/Bi/ =  (2.3 X  10-12)(120)/0.001 =  2.76 X  10"7 

and when the crystal is constrained the resulting stress is
Fy/Sy =  (2.76 X  10-7 )/(1.27 x  1 0 -“ ) = 2.18 X 104 nt/m2

9.5. If the crystal of Problem 9.4 is fastened to a rigid backing plate at one end and 
radiating sound into water at the other end, find its fundamental frequency of 
longitudinal vibrations. Determine the acoustic power radiated when the crystal 
is driven at its fundamental frequency by an rms voltage of 120 volts.

The fundamental frequency / j  =  cy/ALy =  68,100 cyc/sec and the acoustic power radiated 
W = <pE'2lpcSy =  1.6 X  10~3 watts, where cy =  5450 m/sec is the longitudinal wave velocity of 
sound in quartz, Ly — 0.02 m and Lz =  0.005 m are the dimensions of the crystal, <p = di2Lz/22 =
9.1 X 10 _4 coulomb/m is the transformation factor for the crystal, E  =  120 volts, c =  1.48 X  106 rayls 
is the characteristic impedance of water, and Sy =  5 X  1 0 "6 m2 is the cross-sectional area of the 
crystal.

9.6. Compare the quality factor Q of a longitudinally vibrating quartz crystal radiating 
ultrasound into water and into air.

a-(pe)quart2 _  3.14(1.45 X  107) _
Wwaler “  4(Pc)water 4(1.48X10®)

"-(pc)cuartz _  3.14(1.45 X  107) _

Wair 4(pc)air 4(415)

The very large value of Qair indicates that the resonance curve of a quartz crystal driven in 
air should be sharply peaked.

Hh

ft C [t 
— nAA/v------ 1|" -'T5V'—

9.7. An A'-cut quartz crystal has dimensions
Lz = 0.001 m, Ly = 0.02 m, Lz — 0.005 m. c<j
The crystal is used in an air-back electro­
acoustic ultrasonic transducer. Find the 
elements of the equivalent circuit.

The circuit components near resonance for an 
air-back quartz electroacoustic transducer are deter­
mined as follows (see Fig. 9-2). Fig. 9-2

C0 = « ;t0LyLz/Lx =  4.45(8.85 X  1 0 -12)(0.02)(0.005)/0.001 = 3.94 X  lO"*2 farads
where tx = 4.45 is the clamped dielectric constant, e„ = 8.85 X  10-12 farads/m is the permittivity 
of free space.
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R — PocoSy/̂ >2 = 2500 ohms

where p0c„ = 415 rayls is the characteristic impedance of air, <t> = dnLJs22 =  9.1 x 10 coulomb/m 
is the transformation factor, dl2 = 2.3 X 10-12 m/volt is the piezoelectric strain coefficient,
8,2 = 1.27 X  10~n m2/nt is the compliance coefficient, and Sy = 0.001(0.005) m2 is the cross- 
sectional area.

C = Stfi28i2La/v'2Sy = 3.44 x l0 ~ 14 farads and L = LySy = 2<p2 = 160 henrys 

where p = 2650 kg/m:) is the density of quartz.

9.8. The dimensions of an air-back barium titanate transducer are Lz = 0.01 m, 
Ly = 0.02 m, L: = 0.03 m. Determine the fundamental frequency of this transducer 
and the acoustic power produced into water if 100 volts is applied.

The fundamental frequency is /] = ex!2Lz = 5200/[2(0.01)] = 260 kc/sec and the acoustic 
power produced is H' = <piE'*/pcSx -  41.4 watts, where <t> = 2eilSx/Lx = 1.92 coulombs/m is the 
transformation factor, pc -  1.48 < 10B rayls is the characteristic impedance of water, en -  
16 coulombs m- is the piezoelectric stress coefficient for barium titanate, and Sx =  0.02(0.03) m2 
is the area.

MAGNETOSTRICTIVE TRANSDUCERS
9.9. A magnetostrictive transducer is made 

of a duraluminum rod of length 0.13 m 
and diameter 0.015 m. It is supported at 
its center as shown in Fig. 9-3. Find 
its fundamental frequency of longitudinal 
vibration.

2 _/ IY
The fundamental frequency / ,  = — —j j — y j -  = 250 kc/sec where  ̂ = 0.31 is Poisson's

ratio, Y = 21 < 1010 nt/m- is Young’s modulus, r = 0.0075 m is the radius of the rod, L =  0.13 m 
is the length of the rod, and p = 8800 kg/m3 is the density of the rod.

9.10. A magnetostrictive hydrophone is made of a nickel rod of length 0.2 m clamped at 
the center. Compute its fundamental frequency of longitudinal vibration.

Since the rod is clamped at the center and is vibrating at the fundamental mode, there must be 
a node at the center and antinodes at the free ends.

Wavelength \ = 2L =  2(0.2) = 0.4 m, and speed of wave propagation e =  f\. Then =  
c/X, = 4900/0.4 = 12,250 cyc/sec.

9.11. A magnetostrictive steel vibrator is used as a drilling driver. The cross-sectional 
area is 0.0004 m2 and the maximum allowable strain is 8 x 10-4. What is the maxi­
mum driving force at the end of the driver?

Maximum driving force = AY(dt/dx) = 0.0004(19.5 X 10IO)(8 X 10-4) = 624 nt 

where Y =  19.5 x IO10 nt/m2 is Young’s modulus for the steel.

9.12. A longitudinal magnetostrictive ultrasonic transducer is constructed from a nickel 
tube of length 0.05 m, inner radius 0.005 m, and wall thickness 0.0002 m. If the 
proportional material constant is given as K = - 1.0 x 10"4 m4/weber2 and a polarizing 
flux density B0 = 0.3 weber/m2 is applied to the tube, find (a) the magnetostriction
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constant of the tube, (b) the permanent change in length of the tube, and (c) the 
coefficient of electromechanical coupling, (d) For an additional magnetic flux density 
of 0.03 weber/m2, what will be the new length of the tube ?
(а) Magnetostriction constant A =  2Y K B 0 =  —12.6 X 10® where Y — 21 X 1010 nt/m2 is Young’s 

modulus of the nickel.

(б) Since static strain produced is proportional to the square of the polarizing flux density, i.e. 
(dt/dx)m =  KB2 — — 9 X  10-6 , then the permanent change in length o f the tube is AL =  
L(dt/dx)m =  —4.5 x  10 ~ 7 m (contraction).

(c) The coefficient o f electromechanical coupling is k =  V HiPo 2̂/ Y  =  0.31 where =  100 henrys/m 
is the incremental permeability o f the material, and fi0 =  1.26 X 10-6  henrys/m is the perme­
ability of free space.

(d) For additional application o f magnetic flux density Bt =  0.03 weber/m2, the force equation 
becomes =  — SY(dt/dx)i +  ASBi', and with no restraining force, the strain is (de/dx)t =  
\BylY =  —1.8 X  10~6. Thus L — L(dt/dx)i =  — 9 X  10-8  m (contraction). The new length of 
the nickel tube will be [0.05 — (4.5 X  10-7  +  9 X 10-8 )] m.

ELECTROMAGNETIC TRANSDUCERS
9.13. An electromagnetic transducer consisting of a steel rod of length 0.1 m and radius 

0.05 m and carrying electric current in a magnetic field is employed to generate ultra­
sound. If the rod is elastically supported at its center to allow radial vibrations, 
determine its frequency at half-wave resonance.

1 _  /12jr2r2 p y
Frequency at half-wave resonance =  -----\ ~  =  kc/sec

where fi =  0.28 is the Poisson’s ratio, r  =  0.05 m is the radius o f the rod, L  =  0.1 m is the 
length of the rod, Y  =  19.5 X 1010 nt/m 2 is Young’s modulus for  the steel, and p =  7700 kg/m3 is 
the density o f the steel.

APPLICATIONS
9.14. Delay time of t =  10-  6 second is designed for a computer for storing information 

to be extracted. If a copper wire of diameter 10-6 m is used as the ultrasonic delay 
line, find its length.

When an electrical signal is converted into an ultrasonic wave, the latter will be propagated 
through the copper wire at a speed o f c =  3700 m/sec. A t the end of the wire, the wave ia 
reconverted back into its original forma. Thus the length required =  ct =  0.0037 m.

9.15. Compute the transmitted pressure ratio and the sound power transmission coefficient 
for sound waves from water into lucite at normal incidence.

Transmitted pressure ratio pt/p { =  2p2c2/(P2c2 +  Pic i) =  1-4

where pt =  998 kg/m3 is the density o f water, p2 =  1200 kg/m3 is the density of lucite, 
q  = 1480 m/sec is the speed o f  sound in water, and e2 =  2650 m/sec is the speed of sound in lucite.

4p]CjP2 2̂
Sound power transmission coefficient a, =  7------- :------- rs =  0.87(piCj +  p2c2)2

The acoustic pressure is seen to increase by 40% when it crosses the boundary while the 
intensity drops 13%. This is partly due to the crowding o f energy into a smaller cross Bection 
of wavefront and partly due to change in density or velocity o f sound.



9.16. The ultrasonic pulse-echo method is employed to detect possible defects in a steel bar 
of thickness 0.2 m. If the pulse arrival times are 30 and 80 microseconds, determine 
the defect.
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transducer

pulse signal

Fig. 9*4

In the pulse-echo method, a pulse of ultrasonic energy (commercial flaw-detector uses 
1000 pulses/sec of 1.6 Mc/sec ultrasound) is sent out from the transducer into the test object as 
shown in Fig. 9-4. The sound wave is reflected back from the boundary of a defect as a reflected 
pulse, properly detected by the transducer and displayed by an oscilloscope.

Now the time taken by the reflected pulse from the boundary is tb =  80 X 10~6 sec =  2(0.2)/c, 
from which c = 5000 m/sec. Hence the depth of the defect from the surface of the steel bar is 
d =  5000(15 X 10-8 ) = 0.075 m. The size of the defect can be mapped by moving the transducer 
around in the area where the initial indication of the defect is found.

In the similar transmission method for flaw-detection, a pulse of ultrasonic energy is sent 
into the test object through the source transducer and detected by the receiver transducer on the 
opposite side of the test object. If there is a defect in the test object, the receiver transducer will 
detect its presence from the reduced strength in the pulse.

Another way to detect flaws by ultrasonics 
is the resonance method. Here ultrasonic waves 
of various frequencies are sent into the test ob­
ject by the transducer until a standing wave is 
set up in the test object as shown in Fig. 9-5.
This indicates that the frequency of the oscil­
lator driving the transducer coincides with a 
resonant frequency of the test object, resulting 
in a momentary increase in the energy drawn 
by the transducer. Large defects and unbonded 
areas in composite materials can set up stand­
ing wave patterns and thus be detected. Fig. 9-5

t ra ns du ce r

s tand i ng  wa v e

9.17. An ultrasonic transducer is employed to measure the thickness of a steel plate. If 
the difference of two adjacent harmonics is found to be 56,000 cyc/sec, find the 
thickness of the plate.

t ransducer

[
4 -

■f
[

t =■ \

[
- t  =  1.5\ ■

Fig. 9-6

As shown in Fig. 9-6, the fundamental frequency at which thickness resonance vibration will 
be produced is given by f x ~ c/2t where / j  is the fundamental frequency in cyc/sec, c =  5050 m/sec 
is the speed of sound in steel, and t is the thickness of the steel plate in meters.
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Thickness resonance also occurs at all harmonics of the fundamental frequency, Le. / .  =  i f  i. 
fs = 3/,......... f a =  n/j. Since the frequency difference between two adjacent harmonics is numer­
ically equal to the fundamental frequency,

e 5050
'  =  2 ( 7 ^ 7 ^  =  2(56*00) =  °-046“

Supplementary Problems
PIEZOELECTRIC TRANSDUCERS
1H. For an X-cut quartz rod excited at the X  faces and vibrating along Y  with a node at the center, 

show that the fundamental frequency is given by 2720l y  kc/sec, where y  is length in mm.

I l l  For vibration in the direction o f its thickness, what thickness must a free quartz plate have in 
order to obtain a fundamental frequency o f 50 Mc/sec? Ana. 0.055 mm

JJ1 An X-cut quartz crystal is radiating ultrasonic waves of frequency 1 Mc/sec into water on one Bide 
and into air on the other. If the radiating surface has a diameter o f 0.05 m, determine the 
radiation resistance. Ana. RL =  50,000 ohms

MAGNETOSntlCTIYE TRANSDUCERS
IS. Show that when a polarizing flux is present in a rod o f magnetostrictive material, its fundamental 

frequency of longitudinal vibration is reduced.

IB. A rod free at both ends is vibrating vigorously at its fundamental longitudinal frequency by 
magnetostriction. Find the breaking point o f the rod.
Am . At the center (node or zero displacement)

18. The thickness vibration o f a barium titanate generator is in a form of a circular bowl. If its 
thickness is 0.0064 m, find its approximate frequency of thickness vibration.
Ana. f  = 400 kc/sec

121 One end of a magnetostrictive transducer is connected to a diaphragm while the other end is free. 
Show that the ratio of the particle velocity at the free end o f the rod to that of the mass for the 
fundamental mode of vibration is sech fcxL.

APPLICATIONS
IS . Only little energy can enter the human body when exposed to ultrasonic waves. Why?

Ana. Mismatching impedances

18. Show that the maximum rate o f decrease in intensity o f ultrasound is 6 db for each doubling of 
the distance from the source.

127. For an amplitude of 10 ~3 m, compute the values of acoustic intensity at a frequency of 1 Mc/sec 
in water and in air. Ana. 0.293, 8.45 X 10“ 5 watt/cm2

18. For ultrasound waves traveling from steel to water at normal incidence, determine the pressure 
amplitude ratios. Ana. p jp i  =  0.935, pt/p r =  0.061

18. In ultrasonic cleaning, the transducer of impedance is coupled to the volume liquid in the tank 
of impedance Z2 so as to reduce loss of efficiency due to mismatching of impedances (Z1 > Z% in 
general). For maximum efficiency, what should be the impedance of the coupling element?
Aiu. Z — yJZxZt
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Absorption coefficient, air, 163 
Absorption of sound, 92, 109, 187 
Acoustic compliance, 115 
Acoustic doublet, 67, 128 
Acoustic filter, 91-92, 107-108 
Acoustic inertance, 115 
Acoustic intensity, 40, 66, 78-79 
Acoustic pressure, 39 
Acoustic resistance, 115 
Analogue, electroacoustic, 116, 122-125 

electromechanical, 115-116, 120-122 
Anechoic chamber, 155 

decay of sound, 155, 162 
Architectural acoustics, 152 
Attenuation of sound, in air, 92, 109 
Aural harmonics, 149

Baffle, for loudspeaker, 117 
Bar, transverse vibration, 6

longitudinal vibration, 5-6, 24-26 
Beam width, 67, 81 
Beats, 11, 91 
Binaural localization, 144

Cabinet, loudspeaker, 117 
Carbon microphone, 118, 131 
Cardioid microphone, 119 
Cavitation, 171. 183
Characteristic frequencies of a room, 166 
Characteristic impedance, of medium, 40 
Combination tones, 149 
Compliance, acoustic, 115 
Condensation, 39, 65 
Condenser microphone, 132-133 
Continuity, equation of, 68 
Critical angle, 90, 106 
Crystal microphone, 131 
Cutoff frequency, 118, 129

Damped vibrations, 13 
Damping, critical, 13 
Decay modulus, 14
Decay of sound, in dead rooms, 155, 162 

in live rooms, 153 
Decibel scales, 41 
Diaphragm, circular, 29 
Difference tones, 149 
Diffraction of sound, 107 
Direct radiator loudspeaker, 116, 126-128 
Directivity factor, 66, 67, 81 
Directivity functions, 66, 82-83 
Directivity index, 66-67, 81 
Doppler effect, 42, 58-63 
Doublet, acoustic, 67, 128 
Dynamic loudspeaker, 83

Ear, 143-144

Echo, 90-91, 102 
Echo-ranging, 171
Electroacoustic analogue, 115-116, 122-124 
Electroacoustical reciprocity theorem, 133-134 
Energy density, plane waves, 50 

spherical waves, 78 
Exponential horn, 117, 128-130

Filter, acoustic, 91-92, 107-108 
Forced vibration, 4, 15-16

Growth o f sound in live room, 153, 156-158

Harmonic distortion, 131 
Hearing, loss, 143 

response, 149 
Helmholtz resonator, 123, 125 
Horn, 117-118 

exponential, 128-130 
conical, 130 

Hydrophone, ceramic, 171 
line array, 135 
magnetostrictive, 187 
piezoelectric, 186, 188

Image source, 181
Impedance, characteristic o f  medium, 40 

specific acoustic, 40-41 
Inertance, acoustic, 115 
Intensity, acoustic, 48-49, 51 
Intensity level, 41, 146-148, 161 
Instensity spectrum level, 141, 146

Law of reflection, 90 
Layer effect, 175 
Lissajou figure, 10 
Live room, 153 
Lobe, side or minor, 67 
Loudness, 140, 144-145 
Loudness level, 140, 144-145 
Loudspeaker, 115-116

direct-radiator dynamic, 126-128 
enclosure, 117

Magnetostrictive hydrophone, 187 
Magnetostrictive transducer, 187, 190 
Mel, 142
Membrane, vibration, 6 

circular, 29-31 
forced vibration, 32 
rectangular, 28 

Microphone, 118 
calibration, 120 
carbon, 131 
cardioid, 119 
crystal, 131
directional efficiency, 119

194
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Microphone (cont.) 
directivity, 119 
pressure-gradient, 119, 134 
pressure-operated, 118 
response, 135 
sensitivity, 119 
velocity-ribbon, 133

Noise, 139
physiological and psychological effects, 139 
pink, 142 
random, 142 
underwater, 171 
white, 142 

Noise reduction factor, 154 
Normal specific impedance, 89 
Noy, 141

Oblique incidence, 89, 97-98, 105 
Octave, 141 
Octave bands, 141

Particle displacement, 39 
Perceived-noise-level, 141 
Phon, 140
Piezoelectric transducer, 186, 188 
Pipe, branch, 111 

filtering effect, 108 
transmission, 109 

Piston, directivity, 82-83 
radiation from, 82 

Pitch, 142
Plane waves, acoustic, 37 
Plate, circular, 6, 33-34 
Point source, 82 
Pressure, acoustic, 39 
Pressure band level, 142 
Pressure spectrum level, 142, 146 
Pulsating sphere, 83-84

Quality factor, 189 
Quartz, 188-189

Radiation impedance, 67 
Radiation of sound, 66 
Radiation pattern, 82, 85 
Radiation, resistance, 83 

reaction, 83 
Rayl, 40
Reciprocity calibration o f microphone, 133-134 
Reflection of sound, 90, 102-105 
Refraction of sound in sea water, 170, 172 
Resonance, mechanical, 4, 15 
Resonator, Helmholtz, 122 
Reverberation, in sea water, 170 
Reverberation chamber, 153 

decay of sound in, 153, 157 
growth of sound in, 153, 157 

Reverberation time, 153, 158-159, 162, 1C4 
Room, modes of vibration, 72, 166-167 

acoustics, 156, 165

Sabin, 154

Sabine’s equation, 153
Shadow zone, 170
Simple harmonic motion, 2
Simple harmonic vibrations, 12
Simple source, 82
Snell’s law, 90
Sonar, 171
Sone, 140
Sound channel, 170, 175-177 
Sound power reflection and transmission 

coefficients, 89, 109, 110-112 
Sound pressure level, 41, 62, 53 
Source strength, 67, 84 
Space average sound pressure level, 164, 161 
Specific acoustic impedance, 40, 66, 80 
Speed of sound, 39, 47-48, 62, 66 
Sphere, pulsating, 83-84 
Spherical wave, 64 
Standing wave ratio, 90, 102 
Steady state, 4
String, energy of vibration, 22-23 

free vibration, 5, 20 
plucked, 20 
wave equation, 19-22

Temperature effect on sound velocity, in air, 39 
in sea water, 174 

Threshold of hearing, 140 
Threshold of feeling, 140 
Timbre, 142 
Transient, 4
Transmission, through two media, 89, 93-96, 

103
through three media, 89, 99-102 

Transmission anomaly, 170 
Transmission coefficient, 89-90 
Transmission loss, 90, 153, 159-160 

in sea water, 170, 177 
Transmissivity, 160 
Transmittance, 160

Ultrasonic pulse-echo method, 192 
Ultrasonic resonance method, 192 
Ultrasonic transducer, 186 
Underwater transducers, 171, 180-182

Velocity of sound, 39-40 
Vibration, of bar, 5-6, 24-26 

of membrane, 26-27, 33, 36 
of plate, 6, 33-34, 36 
of simple oscillator, 4, 12-14 
of string, 5, 18-23, 35 

Volume displacement and velocity, 123

Wave, addition, 7-11 
elements, 38, 46-47 
equation, cylindrical, 73 

three-dimensional, 68, 71, 75-78 
two-dimensional, 69-70 

harmonic, 3
harmonic progressive, 3 
standing, 5
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