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A Computationally Efficient Mixed-Integer
Linear Formulation for the Thermal Unit

Commitment Problem
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Abstract—This paper presents a new mixed-integer linear
formulation for the unit commitment problem of thermal units.
The formulation proposed requires fewer binary variables and
constraints than previously reported models, yielding a significant
computational saving. Furthermore, the modeling framework
provided by the new formulation allows including a precise
description of time-dependent startup costs and intertemporal
constraints such as ramping limits and minimum up and down
times. A commercially available mixed-integer linear program-
ming algorithm has been applied to efficiently solve the unit
commitment problem for practical large-scale cases. Simulation
results back these conclusions.

Index Terms—Mixed-integer linear programming (MILP),
thermal generating units, unit commitment.

NOMENCLATURE

Constants
Coefficient of the piecewise linear production
cost function of unit j.
Coefficients of the quadratic production cost
function of unit j.
Coefficients of the startup cost function of unit j.

Shutdown cost of unit j.

Load demand in period k.

Minimum down time of unit j.

Slope of block of the piecewise linear
production cost function of unit j.
Number of periods unit j must be initially online
due to its minimum up time constraint.
Cost of the interval t of the stairwise startup cost
function of unit j.
Number of periods unit j must be initially offline
due to its minimum down time constraint.
Number of intervals of the stairwise startup cost
function of unit j.
Number of segments of the piecewise linear
production cost function of unit j.
Capacity of unit j.
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Minimum power output of unit j.

Spinning reserve requirement in period k.

Ramp-down limit of unit j.

Ramp-up limit of unit j.

Number of periods unit j has been offline prior
to the first period of the time span (end of period
0).
Shutdown ramp limit of unit j.

Startup ramp limit of unit j.

Number of periods of the time span.

Upper limit of block of the piecewise linear
production cost function of unit j.
Number of periods unit j has been online prior
to the first period of the time span (end of period
0).
Minimum up time of unit j.
Initial commitment state of unit j (1 if it is
online, 0 otherwise).

Variables

Shutdown cost of unit j in period k.

Production cost of unit j in period k.

Startup cost of unit j in period k.

Power output of unit j in period k.

Maximum available power output of unit j in
period k.
Number of periods unit j has been offline prior to
the startup in period k.
Binary variable that is equal to 1 if unit j is online
in period k and 0 otherwise.
Power produced in block of the piecewise linear
production cost function of unit j in period k.

Sets

Set of indexes of the generating units.

Set of indexes of the time periods.

I. INTRODUCTION

THE NEW competitive environment in power systems is de-
manding more efficient and accurate tools to support de-

cisions for resource scheduling. The thermal unit commitment
problem has been traditionally solved in centralized power sys-
tems to determine when to startup or shutdown thermal gen-
erating units and how to dispatch online generators to meet
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system demand and spinning reserve requirements while satis-
fying generation constraints (production limits, ramping limits,
and minimum up and down times) over a specific short-term
time span, so that the overall operation cost is minimized [1].

The generation scheduling problems solved by the indepen-
dent system operator (ISO) in current electricity markets [2]
are similar to the unit commitment problem in centralized non-
competitive power systems, as promoted by FERC’s Standard
Market Design [3]. The main conceptual difference between
both problems is that, rather than minimizing operation costs,
the ISO maximizes a measure of social welfare, which is a func-
tion of market participant bids and offers. Thus, the solution of
the traditional, centralized unit commitment problem is relevant
for the competitive power industry.

For several decades, this large-scale, mixed-integer, com-
binatorial, and nonlinear programming problem has been an
active research topic because of potential savings in operation
costs. As a consequence, several solution techniques have
been proposed such as heuristics [4]–[6], dynamic program-
ming [7]–[9], mixed-integer linear programming (MILP) [10],
[11], Lagrangian relaxation [12]–[18], simulated annealing
[19]–[21], and evolution-inspired approaches [22]–[26]. A
recent extensive literature survey on unit commitment can be
found in [27].

Among the aforementioned methodologies, Lagrangian re-
laxation is the most widely used approach because of its capa-
bility of solving large-scale problems. The main disadvantage of
this method is that, due to the nonconvexities of the unit commit-
ment problem, heuristic procedures are needed to find feasible
solutions, which may be suboptimal.

In contrast, MILP guarantees convergence to the optimal so-
lution in a finite number of steps [28] while providing a flex-
ible and accurate modeling framework. In addition, during the
search of the problem tree, information on the proximity to the
optimal solution is available. Efficient mixed-integer linear soft-
ware such as the branch-and-cut algorithm has been developed,
and optimized commercial solvers with large-scale capabilities
are currently available [29]–[31]. As a consequence, a great deal
of attention has been paid to MILP-based approaches.

In [10], MILP was first applied to solve the unit commitment
problem. The formulation in [10] was based on the definition of
three sets of binary variables to, respectively, model the startup,
shutdown, and on/off states for every unit and every time pe-
riod. This mixed-integer linear formulation was extended in [32]
to model the self-scheduling problem faced by a single gener-
ating unit in an electricity market. Nonconvex production costs,
time-dependent startup costs, and intertemporal constraints such
as ramping limits and minimum up and down times were ac-
counted for at the expense of increasing the number of binary
variables.

For realistic power systems comprising several tens of gen-
erators, the models of [10] and [32] require a large number of
binary variables. Thus, the resulting MILP problems might be
computationally intensive for state-of-the-art implementations
of branch-and-cut algorithms [29]–[31] and current computing
capabilities.

In [33], startup costs and minimum up and down times were
formulated using linear expressions that required a single type

of binary variables. However, the unit commitment model did
not consider ramping limits and their influence on the spin-
ning reserve constraints. In addition, shutdown costs were not
modeled either.

The objective of this paper is to present an alternative
mixed-integer linear formulation of the thermal unit commit-
ment problem, hereinafter denoted by MILP-UC, requiring a
single set of binary variables (one per unit and per period).
Unlike previous MILP approaches [10], [32], the lower number
of binary variables in MILP-UC yields a reduction in the
number of nodes of the search tree used by the branch-and-cut
algorithm, as well as a reduction in the number of constraints,
thus decreasing the computing time required by available
solvers [29]–[31] to tackle realistic cases. Moreover, MILP-UC
accurately models thermal unit commitment states, intertem-
poral constraints, and time-dependent startup costs, thereby
improving the modeling capabilities of [33].

The model proposed in this paper is also applicable to the
scheduling problems arising in electricity markets such as
market-clearing procedures solved by ISOs, self-scheduling
problems solved by generating companies to derive bidding
strategies, and market simulators used to analyze the behavior
of market participants. Therefore, market agents can benefit
from MILP-UC.

The main contributions of this paper are as follows.
1) A new formulation, MILP-UC, requiring fewer binary vari-

ables and constraints to accurately model the thermal unit
commitment problem is presented in order to reduce the
computational burden of existing MILP approaches.

2) Numerical experience is reported by solving a realistic ap-
plication.

The remaining sections are outlined as follows. Section II
provides a detailed description of the proposed MILP-UC for-
mulation. This section includes a precise model of the physical
and intertemporal constraints of the power generators. In Sec-
tion III, numerical results are presented and discussed. In Sec-
tion IV, some relevant conclusions are drawn. Finally, the data
used in the numerical simulations are provided in the Appendix.

II. MILP-UC FORMULATION

The unit commitment problem can be formulated as [1]

Minimize (1)

subject to

(2)

(3)

(4)

where represents the region of feasible production of gen-
erating unit j in time period k.
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Fig. 1. Piecewise linear production cost.

The goal of the unit commitment problem is to minimize
the total operation cost, which is defined as the sum of the
production cost, the startup cost, and the shutdown cost (1). The
production cost is typically expressed as a quadratic function
of the power output, while the startup cost is usually modeled
as a nonlinear (exponential) function of the offline time prior
to the startup [1]. The block of constraints (2) represents power
balances in all periods. Constraints (3) provide spinning reserve
margins. The block of constraints (4) expresses in a compact
way the operating constraints, for every time period, of every
unit, e.g., generation limits, ramp rate limits, and minimum up
and down times. Note that binary variables are used to model
on/off decisions. Although network constraints and losses
can be incorporated in the above formulation, for the sake of
simplicity, we have opted to restrict our analysis to a one-bus
system. For unit consistency, it should be noted that hourly
time periods are considered.

Problem (1)–(4) is a mixed-integer and nonlinear optimiza-
tion problem that is difficult to solve by standard nonlinear pro-
gramming methods. Next, we describe an alternative mixed-in-
teger linear formulation, MILP-UC, suitable for available MILP
software [29]–[31].

A. Objective Function

The three components of the objective function (1) mentioned
above are explained in the following.

1) Production Cost: The quadratic production cost function
typically used in scheduling problems [1] can be formulated as

(5)

As shown in Fig. 1, the cost function in (5) can be accurately
approximated by a set of piecewise blocks [34]. For practical
purposes, the piecewise linear function of Fig. 1 is indistinguish-
able from the nonlinear model if enough segments are used.

Fig. 2. Exponential, discrete, and stairwise startup cost functions.

The analytic representation of this linear approximation is

(6)

(7)

(8)

(9)

(10)

(11)

where .
2) Startup Cost: The dashed line in Fig. 2 shows a typical

exponential startup cost function [1]. Since the time span has
been discretized into hourly periods, the startup cost is also a
discrete function, as shown in Fig. 2 with blackened circles. The
discrete startup cost can be asymptotically approximated by a
stairwise function (solid line in Fig. 2), which is more accurate
as the number of intervals increases.

A mixed-integer linear formulation for the stairwise startup
cost was proposed in [33]

(12)

(13)

Note that (12) and (13) only depend on the binary variables as-
sociated with the on/off state of generating units, .

3) Shutdown Cost: A constant shutdown cost is incurred
if unit j is brought offline due to the waste of fuel [1]. Previously
reported formulations made use of an extra binary variable as-
sociated with the shutdown state [10], [11].

Constraints (14) and (15), however, show an alternative
equivalent formulation for the shutdown cost using only binary
variables

(14)

(15)
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B. Thermal Constraints

The proposed formulation of the set of constraints related to
every generating unit over the time span, , is described
next.

1) Generation Limits and Ramping Constraints: The gener-
ation limits of each unit for each period are set as follows:

(16)

(17)

Constraints (16) bound the generation by the minimum power
output and the maximum available power output of unit j in
period k, , which is a nonnegative variable bounded above
by the unit capacity (17). Note that if unit j is offline in period
k, i.e., , both and are equal to 0.

Variables are also constrained by ramp-up and startup
ramp rates (18), as well as by shutdown ramp rates (19)

(18)

(19)

Furthermore, ramp-down limits are imposed on the power
output

(20)

The above formulation (16)–(20) extends that presented in
[33] by precisely modeling the spinning reserve contribution of
each unit in each period, which can be easily computed as the
difference between and . Note that spinning reserve
constraints (3) include variables and therefore meet the
ramping limitations, yielding an accurate representation of the
actual operation of generating units.

Again, constraints (16)–(20) only include binary variables
as opposed to the equivalent model provided in [32],

which required extra binary variables.
2) Minimum Up and Down Time Constraints: In [32], min-

imum up and down time constraints were first formulated as
mixed-integer linear expressions relying on binary variables as-
sociated with the startup, shutdown, and on/off states of gener-
ating units. Next, an equivalent mixed-integer linear formulation
based only on binary variables is presented.

The new expressions for the minimum up time constraints are
as follows:

(21)

(22)

(23)

where is the number of initial periods during which
unit j must be online. is mathematically expressed as

.
Constraints (21) are related to the initial status of the units

as defined by . Constraints (22) are used for the subsequent
periods to satisfy the minimum up time constraint during all the
possible sets of consecutive periods of size . Constraints
(23) model the final periods in which if unit j is started
up, it remains online until the end of the time span.

Analogously, minimum down time constraints are formulated
as follows:

(24)

(25)

(26)

where is the number of initial periods during which
unit j must be offline. is mathematically expressed as

.
Note that the respective replacement of , and

by and in (24)–(26) yields (21)–(23).
In summary, problem (1)–(3) and (6)–(26) constitutes the pro-

posed MILP-UC, which only requires a single type of binary
variables, namely, , unlike other MILP formulations [10],
[32] based on the definition of extra binary variables. Moreover,
MILP-UC also outperforms the model of [33] by allowing for
an accurate model of ramping limits and individual contribu-
tions to the spinning reserve requirement.

III. NUMERICAL RESULTS

The proposed formulation has been applied to solve a real-
size case study based on the ten-unit system of [22], which has
been replicated ten times so that the case study comprises 100
units. The load demand has been accordingly multiplied by 10.
A spinning reserve requirement of 10% of the load demand has
to be met in each of the 24 hourly periods in which the time span
is divided. For quick reference, the data of the original ten-unit
system of [22] can be found in the Appendix.

Quadratic production costs have been linearized through a
piecewise linear approximation with four segments. Time-de-
pendent startup costs have been modeled by a 15-interval stair-
wise linear function. Once the solution from MILP-UC is ob-
tained, a quadratic-programming-based economic dispatch is
run to facilitate the assessment of the results.

The model has been implemented on a Dell PowerEdge 6600
with two processors at 1.60 GHz and 2 GB of RAM memory
using CPLEX 9.0 [30] to solve MILP-UC and MINOS 5.51 [35]
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TABLE I
COMPARISON OF TOTAL OPERATION COSTS

for the quadratic economic dispatch. Both solvers have been
called from GAMS [36]. In CPLEX, an optimality parameter
can be specified to decide whether to find the optimal solution
or to quickly obtain a suboptimal solution. In this case study,
the execution of CPLEX was stopped when the value of the
objective function was within 0.5% of the optimal solution. With
this stopping criterion, MILP-UC required 123 s to achieve a
solution with a total operation cost of .

The quality of the solution found by MILP-UC has been
assessed through the comparison with the results achieved by
previously reported methods: Lagrangian relaxation (LR) [22],
genetic algorithms (GA) [22], evolutionary programming (EP)
[23], a hybrid of Lagrangian relaxation and genetic algorithms
(LRGA) [37], priority list (PL) [6], and an enhanced adaptive
Lagrangian relaxation (ELR) [18]. As can be seen in Table I,
the superiority of MILP-UC over the other approaches is sub-
stantiated by the achievement of a better total operation cost.

The computational performance of MILP-UC has been
assessed with two equivalent MILP formulations denoted as
MILP-3 and MILP-3R, respectively.

MILP-3 includes two additional sets of binary variables for
the startup and shutdown processes [10], [32]. The logic of star-
tups and shutdowns is enforced in MILP-3 through additional
equality constraints relating the three sets of binary variables
[10], [32]. The new equality constraints in MILP-3 allow re-
laxing the integrality of any one of the three types of binary
variables, since these constraints guarantee that such variables
will always take on the value 0 or 1 when the other two are bi-
nary. MILP-UC has also been tested against the relaxed version
of MILP-3, referred to as MILP-3R, in which one type of binary
variables has been defined as a set of real variables belonging to
the interval [0, 1].

Table II summarizes the computational dimension and the re-
sults for the three MILP-based approaches when an optimality
parameter of 0.5% is specified. The imposition of the same
stopping criterion to the three methods yields similar solutions
in terms of total operation cost, but MILP-UC outperforms
MILP-3 and MILP-3R through the reduction in the computing
time by factors of 2.63 and 3.33, respectively, thus showing the
computational advantage of eliminating the variables related to
startups and shutdowns. For illustration purposes, the produc-
tion schedule found by MILP-UC is shown in Table III.

The performance of the three MILP formulations in terms
of objective function value has been analyzed by allowing the
branch-and-cut algorithm to run for a maximum of 900 s, which
has been considered the limit for a moderate computing time
for this type of short-term scheduling problem. Fig. 3 shows
the evolution with computing time of the best solution found by

TABLE II
COMPARISON OF COMPUTATIONAL DIMENSION AND RESULTS

each MILP formulation. The top figure plots the evolution over
the first 500 s, whereas the solutions found within computing
times ranging from 500 to 900 s are depicted in the bottom
figure.

MILP-UC (solid line) starts the search process from a
better initial solution with respect to MILP-3 (dotted line)
and MILP-3R (dashed line). Moreover, MILP-UC converges
faster (123 s) to a solution within a 0.5% optimality tolerance
in comparison to MILP-3 and MILP-3R, which, respectively,
require 324 and 409 s to reach the same level of solution quality
(see Table II). It is remarkable that MILP-3R is not capable
of achieving significant improvement over the first solution
satisfying the 0.5% optimality tolerance (see Table II), thus
yielding a worse overall performance. In addition, although
a slight improvement of 0.004% over MILP-UC is achieved
by MILP-3 in the interval ranging between 543 and 738 s,
MILP-3 gets stuck at that solution for the remaining time span
analyzed. In contrast, MILP-UC is able to further reduce the
optimality gap down to 0.29% by achieving a better solution
of after 738 s. This solution represents a 0.05%
improvement upon the solution previously found by MILP-UC
within a 0.5% optimality gap (see Table II). In addition, this
solution outperforms the best solutions attained by MILP-3 and
MILP-3R by 0.03% and 0.06%, respectively.

Finally, in order to assess the influence of the problem size
on the computational performance, MILP-UC, MILP-3, and
MILP-3R have also been applied to the original ten-unit system
[22] and to systems comprising up to 90 units that were created
in the same way as the 100-unit case. Table IV shows the
computing times required by each method to find a solution
satisfying a 0.5% optimality tolerance.

As can be seen in Table IV, the three approaches generally
require higher computing times as the number of units increases.
However, several aspects are worth mentioning.

1) An increase ratio in computing time cannot be clearly de-
termined. Computing times of MILP algorithms are de-
pendent on many factors, especially on the problem struc-
ture. This fact may lead to somewhat unexpected results,
such as the computing time taken by MILP-UC for the
100-unit case being less than the computing times required
for the 80- and 90-unit cases. Similar behavior is observed
in MILP-3R for the 50- and 60-unit cases.

2) The advantage of MILP-3R over MILP-3 cannot be in-
ferred from the solution times provided in Table IV since
MILP-3R outperforms MILP-3 for the 30-, 60-, 70-, and
80-unit cases, but MILP-3 is superior for the 90- and 100-
unit cases. Therefore, relaxing the integrality of one set of
binary variables with the subsequent change in the search
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TABLE III
PRODUCTION SCHEDULE BY MILP-UC (MW)

Fig. 3. Evolution of the best solution found by the MILP-based approaches.

tree does not necessarily lead to a faster convergence for a
specific optimality gap.

TABLE IV
INFLUENCE OF PROBLEM SIZE ON COMPUTING TIMES (S)

3) Irrespective of the problem size, MILP-UC reaches a solu-
tion satisfying the specified optimality gap in a shorter time
than MILP-3 and MILP-3R. The reduction factors with
respect to MILP-3 range between 1.62 and 5.42. Analo-
gously, MILP-UC improves the computing times required
by MILP-3R with reduction factors between 2.61 and 4.64.
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TABLE A
SYSTEM DATA I

TABLE B
SYSTEM DATA II

TABLE C
LOAD DEMAND

It should finally be emphasized that although MILP-UC, like
other MILP-based approaches, finds difficulties in determining
that the optimal solution to large-scale cases has been reached,
the quality of the near-optimal solutions attained in moderate
times justifies its practical applicability.

IV. CONCLUSION

This paper has presented a computationally efficient mixed-
integer linear formulation for the unit commitment problem of
thermal units. The salient feature of the proposed approach is
the requirement of a single type of binary variables to accu-
rately model intertemporal constraints, individual contributions
to spinning reserve, and time-dependent startup costs. The re-
duction in the computational burden decreases the computing
time required by available commercial software to solve the
problem. The proposed model has been successfully tested on

a realistic case study. Numerical results have revealed the ac-
curate and computationally efficient performance of the new
formulation. Finally, although the formulation has been used
to solve the unit commitment problem in traditional central-
ized power systems, it is straightforwardly applicable to the new
scheduling problems arising in electricity markets.

APPENDIX

The data of the ten-unit system of [22] are provided in
Tables A–C.

The last column of Table A lists the number of hours each
unit has been online or offline prior to the first period
of the time span.

Finally, note that the startup cost is defined as follows:

if
if

(A1)

which is modeled as a stairwise function with coefficients

if
if

(A2)

ACKNOWLEDGMENT

The authors would like to thank Prof. A. J. Conejo and Dr. N.
Alguacil for their relevant comments.

REFERENCES

[1] A. J. Wood and B. F. Wollenberg, Power Generation, Operation, and
Control, 2nd ed. New York: Wiley, 1996.

[2] M. Shahidehpour, H. Yamin, and Z. Li, Market Operations in Electric
Power Systems: Forecasting, Scheduling, and Risk Management. Pis-
cataway, NJ: IEEE-Wiley-Interscience, 2002.

[3] Remedying Undue Discrimination Through Open Access Transmission
Service and Standard Electricity Market Design, Notice of Proposed
Rulemaking, Docket No. RM01-12-000, Federal Energy Regulatory
Commission, Jul. 2002. [Online]. Available: http://www.ferc.gov/.

[4] F. N. Lee, “Short-term thermal unit commitment—A new method,”
IEEE Trans. Power Syst., vol. 3, no. 2, pp. 421–428, May 1988.

[5] C. Li, R. B. Johnson, and A. J. Svoboda, “A new unit commitment
method,” IEEE Trans. Power Syst., vol. 12, no. 1, pp. 113–119, Feb.
1997.

[6] T. Senjyu, K. Shimabukuro, K. Uezato, and T. Funabashi, “A fast tech-
nique for unit commitment problem by extended priority list,” IEEE
Trans. Power Syst., vol. 18, no. 2, pp. 882–888, May 2003.

[7] W. L. Snyder, H. D. Powell, and J. C. Rayburn, “Dynamic-program-
ming approach to unit commitment,” IEEE Trans. Power Syst., vol. 2,
no. 2, pp. 339–350, May 1987.

[8] W. J. Hobbs, G. Hermon, S. Warner, and G. B. Sheblé, “An enhanced
dynamic programming approach for unit commitment,” IEEE Trans.
Power Syst., vol. 3, no. 3, pp. 1201–1205, Aug. 1988.

[9] Z. Ouyang and S. M. Shahidehpour, “An intelligent dynamic-program-
ming for unit commitment application,” IEEE Trans. Power Syst., vol.
6, no. 3, pp. 1203–1209, Aug. 1991.

[10] T. S. Dillon, K. W. Edwin, H. D. Kochs, and R. J. Tand, “Integer pro-
gramming approach to the problem of optimal unit commitment with
probabilistic reserve determination,” IEEE Trans. Power App. Syst.,
vol. PAS-97, no. 6, pp. 2154–2166, Nov./Dec. 1978.

[11] J. Medina, V. H. Quintana, and A. J. Conejo, “A clipping-off interior
point technique for medium-term hydro-thermal coordination,” IEEE
Trans. Power Syst., vol. 14, no. 1, pp. 266–273, Feb. 1999.

[12] A. Merlin and P. Sandrin, “A new method for unit commitment at Elec-
tricité de France,” IEEE Trans. Power App. Syst., vol. PAS-102, no. 5,
pp. 1218–1225, May 1983.



1378 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 21, NO. 3, AUGUST 2006

[13] F. Zhuang and F. D. Galiana, “Towards a more rigorous and practical
unit commitment by Lagrange relaxation,” IEEE Trans. Power Syst.,
vol. 3, no. 2, pp. 763–773, May 1988.

[14] C. Wang and S. M. Shahidehpour, “Ramp-rate limits in unit commit-
ment and economic dispatch incorporating rotor fatigue effect,” IEEE
Trans. Power Syst., vol. 9, no. 3, pp. 1539–1545, Aug. 1994.

[15] C. Wang and S. M. Shahidehpour, “Optimal generation scheduling with
ramping costs,” IEEE Trans. Power Syst., vol. 10, no. 1, pp. 60–67, Feb.
1995.

[16] A. J. Svoboda, C.-L. Tseng, C.-A. Li, and R. B. Johnson, “Short-term
resource scheduling with ramp constraints,” IEEE Trans. Power Syst.,
vol. 12, no. 1, pp. 77–83, Feb. 1997.

[17] S.-Y. Lai and R. Baldick, “Unit commitment with ramp multipliers,”
IEEE Trans. Power Syst., vol. 14, no. 1, pp. 58–64, Feb. 1999.

[18] W. Ongsakul and N. Petcharaks, “Unit commitment by enhanced adap-
tive Lagrangian relaxation,” IEEE Trans. Power Syst., vol. 19, no. 1, pp.
620–628, Feb. 2004.

[19] F. Zhuang and F. D. Galiana, “Unit commitment by simulated an-
nealing,” IEEE Trans. Power Syst., vol. 5, no. 1, pp. 311–318, Feb.
1990.

[20] A. H. Mantawy, Y. L. Abdel-Magid, and S. Z. Selim, “A simulated
annealing algorithm for unit commitment,” IEEE Trans. Power Syst.,
vol. 13, no. 1, pp. 197–204, Feb. 1998.

[21] G. K. Purushothama and L. Jenkins, “Simulated annealing with local
search—A hybrid algorithm for unit commitment,” IEEE Trans. Power
Syst., vol. 18, no. 1, pp. 273–278, Feb. 2003.

[22] S. A. Kazarlis, A. G. Bakirtzis, and V. Petridis, “A genetic algorithm
solution to the unit commitment problem,” IEEE Trans. Power Syst.,
vol. 11, no. 1, pp. 83–92, Feb. 1996.

[23] K. A. Juste, H. Kita, E. Tanaka, and J. Hasegawa, “An evolutionary
programming solution to the unit commitment problem,” IEEE Trans.
Power Syst., vol. 14, no. 4, pp. 1452–1459, Nov. 1999.

[24] J. M. Arroyo and A. J. Conejo, “A parallel repair genetic algorithm to
solve the unit commitment problem,” IEEE Trans. Power Syst., vol. 17,
no. 4, pp. 1216–1224, Nov. 2002.

[25] C. C. A. Rajan and M. R. Mohan, “An evolutionary programming-
based tabu search method for solving the unit commitment problem,”
IEEE Trans. Power Syst., vol. 19, no. 1, pp. 577–585, Feb. 2004.

[26] I. G. Damousis, A. G. Bakirtzis, and P. S. Dokopoulos, “A solution to
the unit commitment problem using integer-coded genetic algorithm,”
IEEE Trans. Power Syst., vol. 19, no. 2, pp. 1165–1172, May 2004.

[27] N. P. Padhy, “Unit commitment—A bibliographical survey,” IEEE
Trans. Power Syst., vol. 19, no. 2, pp. 1196–1205, May 2004.

[28] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Opti-
mization. New York: Wiley-Interscience, 1999.

[29] R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling,
“MIP: Theory and practice closing the gap,” in System Modeling and
Optimization: Methods, Theory and Applications, M. J. D. Powell and
S. Scholtes, Eds. Norwell, MA: Kluwer, 2000, pp. 19–50.

[30] The ILOG CPLEX Website, 2006. [Online]. Available: http://www.
ilog.com/products/cplex/.

[31] The Dash XPRESS Website, 2006. [Online]. Available: http://www.
dashoptimization.com/home/products/products_optimizer.html.

[32] J. M. Arroyo and A. J. Conejo, “Optimal response of a thermal unit to
an electricity spot market,” IEEE Trans. Power Syst., vol. 15, no. 3, pp.
1098–1104, Aug. 2000.

[33] M. P. Nowak and W. Römisch, “Stochastic Lagrangian relaxation
applied to power scheduling in a hydro-thermal system under uncer-
tainty,” Ann. Oper. Res., vol. 100, pp. 251–272, 2000.

[34] S. P. Bradley, A. C. Hax, and T. L. Magnanti, Applied Mathematical
Programming. Reading, MA: Addison Wesley, 1977.

[35] B. A. Murtagh, M. A. Saunders, W. Murray, P. E. Gill, R. Raman,
and E. Kalvelagen, “ MINOS: A solver for large-scale nonlinear opti-
mization problems,” in GAMS: The Solver Manuals, 2006 [Online].
Available: http://www.gams.com/dd/docs/solvers/minos.pdf., GAMS
Development Corporation Website.

[36] The GAMS Development Corporation Website, 2006. [Online]. Avail-
able: http://www.gams.com/.

[37] C.-P. Cheng, C.-W. Liu, and C.-C. Liu, “Unit commitment by La-
grangian relaxation and genetic algorithms,” IEEE Trans. Power Syst.,
vol. 15, no. 2, pp. 707–714, May 2000.

Miguel Carrión (S’04) received the Ingeniero Industrial degree from the Uni-
versidad de Castilla—La Mancha, Ciudad Real, Spain, in 2003. He is currently
working toward the Ph.D. degree at the Universidad de Castilla—La Mancha.

His research interests are in the fields of power systems economics, stochastic
programming, and electricity markets.

José M. Arroyo (S’96–M’01–SM’06) received the Ingeniero Industrial degree
from the Universidad de Málaga, Málaga, Spain, in 1995 and the Ph.D. degree
in power systems operations planning from the Universidad de Castilla—La
Mancha, Ciudad Real, Spain, in 2000.

From June 2003 through July 2004, he held a Richard H. Tomlinson Post-
doctoral Fellowship at the Department of Electrical and Computer Engineering
of McGill University, Montreal, QC, Canada. He is currently an Associate Pro-
fessor of Electrical Engineering at the Universidad de Castilla—La Mancha.
His research interests include operations, planning, and economics of power
systems, as well as optimization and parallel computation.


