بك ناه فدا

درس الكترومغناطيس
 www.IranMadar.tk

دو قطبى الكتر يكى

 محاسبب كنيم بسيار كوجكتر است) در اينصورت ميدان الكتريكى در فاصلة آاز مركز دو تطبى بصورت زير خوأهل بود.
$\mathbf{E}=\frac{q d}{\psi \pi \varepsilon r^{r}}\left(r \cos \theta \mathbf{a}_{r}+\sin \theta \mathbf{a}_{\theta}\right)$

جنانتكه ملاحظه مى شود شدت ميدان الكتريكى با فاصله بصورت بار نتطهانى كه بصورت
أكر از روّابط كفته شُده در تسمت قبل استفاده نماييم معادلُ خطوط ميدانذ الكتريكى يكى دو تطبى

$$
\begin{gathered}
\text { حصورت } r=K \sin ^{〔} \theta \text { بدست شار الكتريكى اهد آمد. }
\end{gathered}
$$

 خصوصيات محيط بستگى ندارد و بصررت زير تعريف مى شود:
$\mathbf{D}=\varepsilon \mathbf{E}$
 برابر إست با مقدار بار داخلح آن سطع يعنى داريم:
$\oint \mathbf{D} \cdot \mathbf{d s}=Q$
بلافاصله مىتوان تنتجه كرفت كه:
$\nabla \cdot \mathbf{D}=\rho$

يتانسيل الكتريكى

$$
W=Q V_{B A}=Q[V(B)-V(A)]
$$

غالبأ يك نقطه در بينهايت دور را بعنوان بتانسيل مرجع انتخاب میى كنند و به آن بتانسيل صغر نسبت
 با توجه به مقدار شدت ميدان در اطراف يك بار نقطهاى با محاسبن انتكرال بالا نتيجه ميكيريمكه
 $V(A)=\frac{q}{\mu \pi \varepsilon r}$
خواهد بود. اين نتيجه را طبق اصل برهم نهى میتوان برای مجموعن جند بار كسسته تميم داد: $V(A)=\sum_{i=1}^{n} \frac{q_{i}}{f \pi \varepsilon r_{i}}$
در مواردى كه توزيع بيوستهاى از بار داشته باشيم مجموع فوق به انتكرال تبديل مى شود و خواهيم
$V=\int \frac{d q}{\psi \pi \varepsilon r}$

 رابطة بين بتانسيل و شدت ميدان الكتريكى بصورت
$\mathbf{E}=-\nabla V$

خواهد بود. در خيلى از موارد براى بدست آوردن شدت ميدان مىتوان ابتدا بـتانسيل را بـدست
 نتيجه كرفت كه
$\nabla \times \mathbf{E}=\cdot$
$\oint_{s} \mathbf{E} \cdot \mathbf{d} \mathbf{l}=\cdot$
و بنابر قضيهُ استوكس نتيجه مىيكيريم:

به نوعي بيان كنتده: قانون ولتازء كيرشهف (KVL) ميباشد.
انرزى الكتر يكى
 مى شود، به عبارتى ديگر مىتوان كفت براى تشكيل هنين سيستهى بايد انزرزى حرف نهود كه مقدار $W=\frac{1}{r} \sum_{i=1}^{N} q_{i} V_{i}$ اين انرڭرى از رابطهُ

بدست می آيد كه در اين رابطه برايى هر بار

 $W=\frac{1}{r} \int_{v} \rho V d v$

بدست آورد. V در رإبطة فوق نشانگر تـتانسيل مى. حجم 'Vكه در آن نأحيه بار وجود داد كرفته مىشود.

كميت ديكرى كه مىتوان تعريف نمود جكالى انرؤى الكتريكى wمى باشد و مىتوان معدار آن رالز روابط زير بدست آورد:
$w=\frac{1}{\gamma} \mathbf{D} \cdot \mathbf{E}$
$w=\frac{1}{r} \varepsilon|\mathbf{E}|^{r}$
$w=\frac{1}{r} \frac{\mathbf{D} \|^{r}}{r}$
با انتقرالنيري از w روى حجم مورد نظر مىتوان مقدأر كل انرڭى را محاسبه نمود يعنى:
$W=\int_{V^{\prime}} w d v$

 مورد نظر انتگرال كُرفت. يس
= $=W_{\curlyvee}-W_{\curlyvee}$

> | ww.IranMadar.tk |
| :---: |
| ايران مدار |

