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Preface

This text, like its previous three editions, is an introduction to communication sys-
tems written at a level appropriate for advanced undergraduates and first-year grad-
uate students in electrical or computer engineering. New features in this edition
include the introduction of two other authors, Professors Rutledge and Crilly, to pro-
vide additional expertise for topics such as optical links and spread spectrum.

An initial study of signal transmission and the inherent limitations of physical
systems establishes unifying concepts of communication. Attention is then given to
analog communication systems, random signals and noise, digital systems, and
information theory. However, as indicated in the table of contents, instructors may
choose to skip over topics that have already been or will be covered elsewhere.

Mathematical techniques and models necessarily play an important role
throughout the book, but always in the engineering context as means to an end.
Numerous applications have been incorporated for their practical significance and
as illustrations of concepts and design strategies. Some hardware considerations are
also included to justify various communication methods, to stimulate interest, and to
bring out connections with other branches of the field.

PREREQUISITE BACKGROUND

The assumed background is equivalent to the first two or three years of an electrical
or computer engineering curriculum. Essential prerequisites are differential equa-
tions, steady-state and transient circuit analysis, and a first course in electronics.
Students should also have some familiarity with operational amplifiers, digital logic,
and matrix notation. Helpful but not required are prior exposure to linear systems
analysis, Fourier transforms, and probability theory.

CONTENTS AND ORGANIZATION

A distinctive feature of this edition is the position and treatment of probability, ran-
dom signals, and noise. These topics are located after the discussion of analog sys-
tems without noise. Other distinctive features are the new chapter on spread spec-
trum systems and the revised chapter on information and detection theory near the
end of the book. The specific topics are listed in the table of contents and discussed
further in Sect. 1.4.

Following an updated introductory chapter, this text has two chapters dealing
with basic tools. These tools are then applied in the next four chapters to analog com-
munication systems, including sampling and pulse modulation. Probability, random
signals, and noise are introduced in the following three chapters and applied to ana-
log systems. An appendix separately covers circuit and system noise. The remaining

xi




xii

Preface

six chapters are devoted to digital communication and information theory, which
require some knowledge of random signals and include coded pulse modulation.

All sixteen chapters can be presented in a year-long undergraduate course with
minimum prerequisites. Or a one-term undergraduate course on analog communica-
tion might consist of material in the first seven chapters. If linear systems and prob-
ability theory are covered in prerequisite courses, then most of the last eight chap-
ters can be included in a one-term senior/graduate course devoted primarily to
digital communication.

The modular chapter structure allows considerable latitude for other formats.
As a guide to topic selection, the table of contents indicates the minimum prerequi-

sites for each chapter section. Optional topics within chapters are marked by the
symbol %k.

INSTRUCTIONAL AIDS

Each chapter after the first one includes a list of instructional objectives to guide stu-
dent study. Subsequent chapters also contain several examples and exercises. The
exercises are designed to help students master their grasp of new material presented
in the text, and exercise solutions are given at the back. The examples have been
chosen to illuminate concepts and techniques that students often find troublesome.

Problems at the ends of chapters are numbered by text section. They range from
basic manipulations and computations to more advanced analysis and design tasks.
A manual of problem solutions is available to instructors from the publisher.

Several typographical devices have been incorporated to serve as aids for stu-
dents. Specifically,

+ Technical terms are printed in boldface type when they first appear.

+ Important concepts and theorems that do not involve equations are printed
inside boxes. -

+  Asterisks (*) after problem numbers indicate that answers are provided at the
back of the book.

»  The symbol 1 identifies the more challenging problems.

Tables at the back of the book include transform pairs, mathematical relations,
and probability functions for convenient reference. An annotated bibliography is
also provided at the back in the form of a supplementary reading list.

Communication System engineers use many abbreviations, so the index lists
common abbreviations and their meanings. Thus, the index additionally serves as a
guide to many abbreviations in communications.
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2 CHAPTER 1 ° Introduction

Aﬁenﬁon, the Universe! By kingdoms, right wheell” This prophetic phrase represents the first telegraph message
on record. Samuel F. B. Morse sent it over a 16 km line in 1838. Thus a new era was born: the era of electri-
cal communication.

Now, over a century and a half later, communication engineering has advanced to the point that earthbound TV
viewers watch astronauts working in space. Telephone, radio, and television are integral parts of modern life. Long-
distance circuits span the globe carrying text, data, voice, and images. Computers talk to computers via inferconti-
nenfal nefworks, and control virtually every electrical appliance in our homes. Wireless personal communication
devices keep us connected wherever we go. Certainly great strides have been made since the days of Morse.
Equally certain, coming decades will usher in many new achievements of communication engineering.

This textbook introduces electrical communication systems, including analysis methods, design principles, and hard-
ware considerations. We begin with a descriptive overview that establishes a perspective for the chapters that follow.

1.1  ELEMENTS AND LIMITATIONS
OF COMMUNICATION SYSTEMS

A communication system conveys information from its source to a destination some
distance away. There are so many different applications of communication systems
that we cannot atternpt to cover every type. Nor can we discuss in detail all the indi-
vidual parts that make up a specific system. A typical system involves numerous
components that run the gamut of electrical engineering—-circuits, electronics, elec-
tromagnetics, signal processing, microprocessors, and communication networks, to
name a few of the relevant fields. Moreover, a piece-by-piece treatment would
obscure the essential point that a communication system is an integrated whole that
really does exceed the sum of its parts.

We therefore approach the subject from a more general viewpoint. Recognizing
that all communication systems have the same basic function of information trans-
fer, we’ll seek out and isolate the principles and problems of conveying information
in electrical form. These will be examined in sufficient depth to develop analysis
and design methods suited to a wide range of applications. In short, this text is con-
cerned with communication systems as systems.

Information, Messages, and Signals

Clearly, the concept of information is central to communication. But information is
a loaded word, implying semantic and philosophical notions that defy precise defi-
nition. We avoid these difficulties by dealing instead with the message, defined as
the physical manifestation of information as produced by the source. Whatever form
the message takes, the goal of a communication system is to reproduce at the desti-
nation an acceptable replica of the source message.

There are many kinds of information sources, including machines as well as
people, and messages appear in various forms. Nonetheless, we can identify two
distinct message categories, analog and digital. This distinction, in turn, determines
the criterion for successful communication.



1.i  Elements and Limitations of Communication Systems

Input Output
Source Input Communication | signal OQutput Destination
— f—i
transducer system transducer
Figure 1.1-1 Communication system with input and output transducers.

An ahalog message is a physical quantity that varies with time, usually in a
smooth and continuous fashion. Examples of analog messages are the acoustic pres-
sure produced when you speak, the angular position of an aircraft gyro, or the light
intensity at some point in a television image. Since the information resides in a time-
varying waveform, an analog communication system should deliver this waveform
with a specified degree of fidelity.

A digital message is an ordered sequence of symbols selected from a finite set
of discrete elements. Examples of digital messages are the letters printed on this
page, a listing of hourly temperature readings, or the keys you press on a computer
keyboard. Since the information resides in discrete symbols, a digital communica-
tion system should deliver these symbols with a specified degree of accuracy in a
specified amount of time.

Whether analog or digital, few message sources are inherently electrical. Con-
sequently, most communication systems have input and output transducers as
shown in Fig. 1.1-1. The input transducer converts the message to an electrical sig-
nal, say a voltage or current, and another transducer at the destination converts the
output signal to the desired message form. For instance, the transducers in a voice
communication system could be a microphone at the input and a loudspeaker at the
output. We'll assume hereafter that suitable transducers exist, and we’ll concentrate
primarily on the task of signal transmission. In this context the terms signal and
message will be used interchangeably since the signal, like the message, is a physi-
cal embodiment of information.

Elements of a Communication System

Figure 1.1-2 depicts the elements of a communication system, omitting transducers
but including unwanted contaminations. There are three essential parts of any com-
munication system, the transmitter, transmission changel, and receiver. Each part
plays a particular role in signal transmission, as follows.

The transmitter processes the input signal to produce a transmitted signal
suited to the characteristics of the transmission channel. Signal processing for trans-
mission almost always involves modulation and may also include coding.

The transmission channel is the electrical medium that bridges the distance
from source to destination. It may be a pair of wires, a coaxial cable, Or a radio wave
or laser beam. Every channel introduces some amount of transmission loss or atten-
uation, so the signal power progressively decreases with increasing distance.



CHAPTER 1 [ Introduction

Input Transmitted Received Output
signal signal signal signal
Transmission . -
Source —! Transmitter channel ) Receiver —— Destination

| ..
i Noise, interference, |

| anddistortion |

Figure 1.1-2 Elements of a communication system.

The receiver operates on the output signal from the channel in preparation for
delivery to the transducer at the destination. Receiver operations include amplifica-
tion to compensate for transmission loss, and demodulation and decoding to
reverse the signal-processing performed at the transmitter. Filtering is another
important function at the receiver, for reasons discussed next.

Various unwanted undesirable effects crop up in the course of signal transmis-
sion. Attenuation is undesirable since it reduces signal strength at the receiver.
More serious, however, are distortion, interference, and noise, which appear as alter-
ations of the signal shape. Although such contaminations may occur at any point,
the standard convention is to blame them entirely on the channel, treating the trans-
mitter and receiver as being ideal. Figure 1.1-2 reflects this convention.

Distortion is waveform perturbation caused by imperfect response of the sys-
tem to the desired signal itself. Unlike noise and interference, distortion disappears
when the signal is turned off. If the channel has a linear but distorting response, then
distortion may be corrected, or at least reduced, with the help of special filters called
equalizers.

Interference is contamination by extraneous signals from human sources—
other transmitters, power lines and machinery, switching circuits, and so on. Interfer-
ence occurs most often in radio systems whose receiving antennas usually intercept
several signals at the same time. Radio-frequency interference (RFI) also appears in
cable systems if the transmission wires or receiver circuitry pick up signals radiated
from nearby sources. Appropriate filtering removes interference to the extent that the
interfering signals occupy different frequency bands than the desired signal.

Noise refers to random and unpredictable electrical signals produced by natural
processes both internal and external to the system. When such random variations are
superimposed on an information-bearing signal, the message may be partially cor-
rupted or totally obliterated. Filtering reduces noise contamination, but there
inevitably remains some amount of noise that cannot be eliminated. This noise con-
stitutes one of the fundamental system limitations.

Finally, it should be noted that Fig. 1.1-2 represents one-way or simplex (SX)
transmission. Two-way communication, of course, requires a transmitter and
receiver at each end. A full-duplex (FDX) system has a channel that allows simulta-
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neous transmission in both directions. A half-duplex (HDX) system allows trans-
mission in either direction but not at the same time.

Fundamental Limitations

An engineer faces two general kinds of constraints when designing a communica-
tion system. On the one hand are the technological problems, including such
diverse considerations as hardware availability, economic factors, federal regula-
tions, and so on. These are problems of feasibility that can be solved in theory, even
though perfect solutions may not be practical. On the other hand are the fundamen-
tal physical limitations, the laws of nature as they pertain to the task in question.
These limitations ultimately dictate what can or cannot be accomplished, irrespec-
tive of the technological problems. The fundamental limitations of information
transmission by electrical means are bandwidth and noise.

The concept of bandwidth applies to both signals and systems as a measure of
speed. When a signal changes rapidly with time, its frequency content, or spec-
trum, extends over a wide range and we say that the signal has a large bandwidth.
Similarly, the ability of a system to follow signal variations is reflected in its usable
frequency response or transmission bandwidth. Now all electrical systems contain
energy-storage elements, and stored energy cannot be changed instantaneously.
Consequently, every communication system has a finite bandwidth B that limits the
rate of signal variations.

Communication under real-time conditions requires sufficient transmission
bandwidth to accommodate the signal spectrum; otherwise, severe distortion will
result. Thus, for example, a bandwidth of several megahertz is needed for a TV
video signal, while the much slower variations of a voice signal fit into B = 3 kHz.
For a digital signal with r symbols per second, the bandwidth must be B = /2. In
the case of information transmission without a real-time constraint, the available
bandwidth determines the maximum signal speed. The time required to transmit a
given amount of information is therefore inversely proportional to B.

Noise imposes a second limitation on information transmission. Why is noise
unavoidable? Rather curiously, the answer comes from kinetic theory. At any tem-
perature above absolute zero, thermal energy causes microscopic particles to exhibit
random motion. The random motion of charged particles such as electrons generates
random currents or voltages called thermal noise. There are also other types of
noise, but thermal noise appears in every communication system.

‘We measure noise relative to an information signal in terms of the signal-to-
noise power ratio S/N. Thermal noise power is ordinarily quite small, and S/N can
be so large that the noise goes unnoticed. At lower values of S/N, however, noise
degrades fidelity in analog communication and produces errors in digital commu-
nication. These problems become most severe on long-distance links when the
transmission loss reduces the received signal power down to the noise level. Ampli-

fication at the receiver is then to no avail, because the noise will be amplified along
with the signal.



CHAPTER 1 ® Introduction

Taking both limitations into account, Shannon (1948)" stated that the rate of
information transmission cannot exceed the channel capacity.

C = Blog (1 + S/N)

This relationship, known as the Hartley-Shannon law, sets an upper limit on the

performance of a communication system with a given bandwidth and signal-to-
noise ratio.

1.2 MODULATION AND CODING

Modulation and coding are operations performed at the transmitter to achieve effi-
cient and reliable information transmission. So important are these operations that
they deserve further consideration here. Subsequently, we’ll devote several chapters
to modulating and coding techniques.

Modulation Methods

Modulation involves two waveforms: a modulating signal that represents the mes-
sage, and a carrier wave that suits the particular application. A modulator systemat-
ically alters the carrier wave in correspondence with the vaniations of the modulating
signal. The resulting modulated wave thereby “carries” the message information. We
generally require that modulation be a reversible operation, so the message can be
retrieved by the complementary process of demodulation.

Figure 1.2-1 depicts a portion of an analog modulating signal (part a) and the
corresponding modulated waveform obtained by varying the amplitude of a sinu-
soidal carrier wave (part b). This is the familiar amplitude modulation (AM) used
for radio broadcasting and other applications. A message may also be impressed
on a sinusoidal carrier by frequency modulation (FM) or phase modulation (PM).
All methods for sinusoidal carrier modulation are grouped under the heading of
continuous-wave (CW) modulation.

Incidentally, you act as a CW modulator whenever you speak. The transmission
of voice through air is accomplished by generating carrier tones in the vocal cords
and modulating these tones with muscular actions of the oral cavity. Thus, what the
ear hears as speech is a modulated acoustic wave similar to an AM signal.

Most long-distance transmission systems employ CW modulation with a carrier
frequency much higher than the highest frequency component of the modulating sig-
nal. The spectrum of the modulated signal then consists of a band of frequency com-
ponents clustered around the carrier frequency. Under these conditions, we say that
CW modulation produces frequency translation. In AM broadcasting, for example,
the message spectrum typically runs from 100 Hz to 5 kHz; if the carrier frequency is
600 kHz, then the spectrum of the modulated carrier covers 595-605 kHz.

TReferences are indicated in this fashion throughout the text. Complete citations are listed alphabeti-
cally by author in the References at the end of the book.
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Figure 1.2-1 (a) Modulating signal; (b} sinusoidal carrier with amplitude modulation;
(¢} pulse-train carrier with amplitude modulation.

Another modulation method, called pulse modulation, has a periodic train of
short pulses as the carrier wave. Figure 1.2—1¢ shows a waveform with pulse ampli-
tude modulation (PAM). Notice that this PAM wave consists of short samples
extracted from the analog signal at the top of the figure. Sampling is an important
signal-processing technique and, subject to certain conditions, it’s possible to
reconstruct an entire waveform from periodic samples.

But pulse modulation by itself does not produce the frequency translation
needed for efficient signal transmission. Some transmitters therefore combine pulse
and CW modulation. Other modulation techniques, described shortly, combine
pulse modulation with coding.

Modulation Benefits and Applications

The primary purpose of modulation in a communication system is to generate a mod-
ulated signal suited to the characteristics of the transmission channel. Actually, there
are several practical benefits and applications of modulation briefly discussed below.

Modulation for Efficient Transmission  Signal transmission over appreciable distance
always involves a traveling electromagnetic wave, with or without a guiding medium.
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The efficiency of any particular transmission method depends upon the frequency of
the signal being transmitted. By exploiting the frequency-translation property of CW
modulation, message information can be impressed on a carrier whose frequency has
been selected for the desired transmission method.

As a case in point, efficient line-of-sight ratio propagation requires antennas
whose physical dimensions are at least 1/10 of the signal’s wavelength. Unmodulated
transmission of an audio signal containing frequency components down to 100 Hz
would thus call for antennas some 300 km long. Modulated transmission at 100 MHz,
as in FM broadcasting, allows a practical antenna size of about one meter. At frequen-
cies below 100 MHz, other propagation modes have better efficiency with reasonable
antenna sizes. Tomasi (1994, Chap. 10) gives a compact treatment of radio propaga-
tion and antennas.

For reference purposes, Fig. 1.2-2 shows those portions of the electromagnetic
spectrum suited to signal transmission. The figure includes the free-space wave-
length, frequency-band designations, and typical transmission media and propaga-
tion modes. Also indicated are representative applications authorized by the U.S.
Federal Communications Commission.

Modulation to Overcome Hardware Limitations The design of a communication
system may be constrained by the cost and availability of hardware, hardware whose
performance often depends upon the frequencies involved. Modulation permits the
designer to place a signal in some frequency range that avoids hardware limitations.
A particular concern along this line is the question of fractional bandwidth,
defined as absolute bandwidth divided by the center frequency. Hardware costs and
complications are minimized if the fractional bandwidth is kept within 1-10 per-
cent. Fractional-bandwidth considerations account for the fact that modulation units
are found in receivers as well as in transmitters.

It likewise follows that signals with large bandwidth should be modulated on
high-frequency carriers. Since information rate is proportional to bandwidth,
according to the Hartley-Shannon law, we conclude that a high information rate
requires a high carrier frequency. For instance, a 5 GHz microwave system can
accommodate 10,000 times as much information in a given time interval as a 500
kHz radio channel. Going even higher in the electromagnetic spectrum, one optical
laser beam has a bandwidth potential equivalent to 10 million TV channels.

Modulation to Reduce Noise and Interference A brute-force method for combating
noise and interference is to increase the signal power until it overwhelms the con-
taminations. But increasing power is costly and may damage equipment. (One of the
early transatlantic cables was apparently destroyed by high-voltage rupture in an
effort to obtain a usable received signal.) Fortunately, FM and certain other types of
modulation have the valuable property of suppressing both noise and interference.
This property is called wideband noise reduction because it requires the trans-
mission bandwidth to be much greater than the bandwidth of the modulating signal.
Wideband modulation thus allows the designer to exchange increased bandwidth for
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decreased signal power, a trade-off implied by the Hartley-Shannon law. Note that a
higher carrier frequency may be needed to accommodate wideband modulation.

Modulation for Frequency Assignment When you tune a radio or television set to a
particular station, you are selecting one of the many signals being received at that
time. Since each station has a different assigned carrier frequency, the desired signal
can be separated from the others by filtering. Were it not for modulation, only one
station could broadcast in a given area; otherwise, two or more broadcasting stations
would create a hopeless jumble of interference.

Modulation for Multiplexing Multiplexing is the process of combining several sig-
nals for simultaneous transmission on one channel. Frequency-division multiplex-
ing (FDM) uses CW modulation to put each signal on a different carrier frequency,
and a bank of filters separates the signals at the destination. Time-division multi-
plexing (TDM) uses pulse modulation to put samples of different signals in nonover-
lapping time slots. Back in Fig. 1.2-1c, for instance, the gaps between pulses could
be filled with samples from other signals. A switching circuit at the destination then
separates the samples for signal reconstruction. Applications of multiplexing include
FM stereophonic broadcasting, cable TV, and long-distance telephone.

A variation of multiplexing is multiple access (MA). Whereas multiplexing
involves a fixed assignment of the common communications resource (such as fre-
quency spectrum) at the local level, MA involves the remote sharing of the resource.
For example, code-division multiple access (CDMA) assigns a unique code to each
digital cellular user, and the individual transmissions are separated by correlation
between the codes of the desired transmitting and receiving parties. Since CDMA
allows different users to share the same frequency band simultaneously, it provides
another way of increasing communication efficiency.

Coding Methods and Benefits

We’ve described modulation as a signal-processing operation for effective transmis-
sion. Coding is a symbol-processing operation for improved communication when
the information is digital or can be approximated in the form of discrete symbols.
Both coding and modulation may be necessary for reliable long-distance digital
transmission.

“The operation of encoding transforms a digital message into a new sequence of
symbols. Decoding converts an encoded sequence back to the original message
with, perhaps, a few errors caused by transmission contaminations. Consider a com-
puter or other digital source having M >> 2 symbols. Uncoded transmission of a
message from this source would require M different waveforms, one for each sym-
bol. Alternatively, each symbol could be represented by a binary codeword con-
sisting of K binary digits. Since there are 2% possible codewords made up of X
binary digits, we need K = log, M digits per codeword to encode M source symbols.
If the source produces r symbols per second, the binary code will have Kr digits per
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second and the transmission bandwidth requirement is K times the bandwidth of an
uncoded signal. v

In exchange for increased bandwidth, binary encoding of M-ary source symbols
offers two advantages. First, less complicated hardware is needed to handle a binary
signal composed of just two different waveforms. Second, contaminating noise has
less effect on a binary signal than it does on a signal composed of M different wave-
forms, so there will be fewer errors caused by the noise. Hence, this coding method
is essentially a digital technique for wideband noise reduction.

Channel coding is a technique used to introduce controlled redundancy to fur-
ther improve the performance reliability in a noisy channel. Error-control coding
goes further in the direction of wideband noise reduction. By appending extra check
digits to each binary codeword, we can detect, or even correct, most of the errors
that do occur. Error-control coding increases both bandwidth and hardware com-
plexity, but it pays off in terms of nearly error-free digital communication despite a
low signal-to-noise ratio.

Now, let’s examine the other fundamental system limitation: bandwidth. Many
communication systems rely on the telephone network for transmission. Since the
bandwidth of the transmission system is limited by decades-old design specifica-
tions, in order to increase the data rate, the signal bandwidth must be reduced. High-
speed modems (data modulator/demodulators) are one application requiring such
data reduction. Source-coding techniques take advantage of the statistical knowl-
edge of the source signal to enable efficient encoding. Thus, source coding can be
viewed as the dual of channel coding in that it reduces redundancy to achieve the
desired efficiency.

Finally, the benefits of digital coding can be incorporated in analog communi-
cation with the help of an analog-to-digital conversion method such as pulse-code-
modulation (PCM). A PCM signal is generated by sampling the analog message,
digitizing (quantizing) the sample values, and encoding the sequence of digitized
samples. In view of the reliability, versatility, and efficiency of digital transmission,
PCM has become an important method for analog communication. Furthermore,
when coupled with high-speed microprocessors, PCM makes it possible to substi-
tute digital signal processing for analog operations.

11

1.3 HISTORICAL PERSPECTIVE AND
SOCIETAL IMPACT

In our daily lives we often take for granted the powerful technologies that allow us
to communicate, nearly instantaneously, with people around the world. Many of us
now have multiple phone numbers to handle our home and business telephones, fac-
simile machines, modems, and wireless personal communication devices. We send
text, video, and music through electronic mail, and we “surf the Net” for informa-
tion and entertainment. We have more television stations than we know what to do
with, and “smart electronics” allow our household appliances to keep us posted on
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their health. It is hard to believe that most of these technologies were developed in
the past 50 years.

Historical Perspective

The organization of this text is dictated by pedagogical considerations and does not
necessarily reflect the evolution of communication systems. To provide at least
some historical perspective, a chronological outline of electrical communication is
presented in Table 1.3-1. The table lists key inventions, scientific discoveries,
important papers, and the names associated with these events.

Table 1.3-1

A chronology of electrical communication

Year

Event

1800-1837

1838-1866

1345
1864
1876-1899

1887-1907

1892-1899
1904-1520

1920-1928

1923-1938

1927

Preliminary developments Volta discovers the primary battery; the mathematical
treatises by Fourier, Cauchy, and Laplace; experiments on electricity and magnetism

by Oersted, Ampere, Faraday, and Henry; Ohm's law (1826); early telegraph systems
by Gauss, Weber, and Wheatstone.

Telegraphy Morse perfects his system; Steinheil finds that the earth can be used for
a current path; commercial service initiated (1844); multiplexing techniques devised;
William Thomson (Lord Kelvin) calculates the pulse response of a telegraph line
(1855); transatlantic cables installed by Cyrus Field and associates.

Kirchhoff’s circuit laws enunciated.
Maxwell’s equations predict electromagnetic radiation.

Telephony Acoustic transducer perfected by Alexander Graham Bell, after earlier
attempts by Reis; first telephone exchange, in New Haven, with eight lines (1878);
Edison’s carbon-button transducer; cable circuits introduced; Strowger devises auto-
matic step-by-step switching (1887); the theory of cable loading by Heaviside, Pupin,
and Campbell.

Wireless telegraphy Heinrich Hertz verifies Maxell’s theory; demonstrations by
Marconi and Popov; Marconi patents a complete wireless telegraph system (1897);
the theory of tuning circuits developed by Sir Oliver Lodge; commercial service
begins, including ship-to-shore and transatlantic systems.

Oliver Heaviside's publications on operational calculus, circuits, and electromagnetics.

Communication electronics Lee De Forest invents the Audion (triode) based on
Fleming’s diode; basic filter types devised by G. A. Campbell and others; experi-
ments with AM radio broadcasting; transcontinental telephone line with electronic
repeaters completed by the Bell System (1915); multiplexed carrier telephony intro-
duced; E. H. Armstrong perfects the superheterodyne radio receiver (1918); first
commercial broadcasting station, KDKA, Pittsburgh.

Transmission theory Landmark papers on the theory of signal transmission and noise
by J. R. Carson, H. Nyquist, J. B. Johnson, and R. V. L. Hartley.

Television Mechanical image-formation system demonstrated by Baird and Jenkins;
theoretical analysis of bandwidth requirements; Farnsworth and Zworykin propose

electronic systems; vacuum cathode-ray tubes perfected by DuMont and others; field
tests and experimental broadcasting begin.

Federal Communications Commission established.
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Table 1.3-1 A chronology of electrical communication (continued)

Year Event

1931 Teletypewriter service initiated.

1934 H. S. Black develops the negative-feedback amplifier.

1936 Armstrong’s paper states the case for FM radio.

1937 Alec Reeves conceives pulse-code modulation.

1938-1945 World War II Radar and microwave systems developed; FM used extensively for
military communications; improved electronics, hardware, and theory in all areas.

1944-1947 Statistical communication theory Rice develops a mathematical representation of
noise; Weiner, Kolmogoroff, and Kotel’nikov apply statistical methods to signal
detection.

1948-1950 Information theory and coding C. E. Shannon publishes the founding papers of
information theory; Hamming and Golay devise error-correcting codes.

1948-1951 Transistor devices invented by Bardeen, Brattain, and Shockley.

1950 Time-division multiplexing applied to telephony.

1953 Color TV standards established in the United States.

1955 J. R. Pierce proposes satellite communication systems.

1956 First transoceanic telephone cable (36 voice channels).

1958 Long-distance data transmission system developed for military purposes.

1960 Maiman demonstrates the first laser.

1961 Integrated circuits go into commercial production; stereo FM broadcasts begin in the
US.

1962 Satellite communication begins with Telstar 1.

1962-1966 High-speed digital communication Data transmission service offered commercially;
Touch-Tone telephone service introduced; wideband channels designed for digital
signaling; pulse-code modulation proves feasible for voice and TV transmission;
major breakthroughs in theory and implementation of digital transmission, including
error-control coding methods by Viterbi and others, and the development of adaptive
equalization by Lucky and coworkers.

1963 Solid-state microwave oscillators perfected by Gunn.

1964 Fully electronic telephone switching system (No. 1 ESS) goes into service.

1965 Mariner IV transmits pictures from Mars to Earth.

1966-1975 Wideband communication systems Cable TV systems; commercial satellite relay
service becomes available; optical links using lasers and fiber optics.

1969 ARPANET created (precursor to Internet)

1971 Intel develops first single-chip microprocessor

1972 Motorola develops cellular telephone; first live TV broadcast across Atlantic ocean
via satellite

1980 Compact disc developed by Philips and Sony

1981 FCC adopts rules creating commercial cellular telephone service; IBM PC is intro-
duced (hard drives introduced two years later).

1982

AT&T agrees to divest 22 local service telephone companies; seven regional Bell
system operating companies formed.

(continued)

13
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Table 1.3-1 A chronology of electrical communication {continued)

Year Event

1985 Fax machines widely available in offices.

1988-1989 Installation of trans-Pacific and trans-Atlantic optical cables for light-wave commu-
] nications.

1990-2000 Digital communication systems Digital signal processing and communication sys-

tems in household appliances; digitally tuned receivers; direct-sequence spread spec-
trum systems; integrated services digital networks (ISDNs); high-definition digital

television (HDTV) standards developed; digital pagers; handheld computers; digital
cellujar.

1994-1995 FCC raises $7.7 billion in auction of frequency spectrum for broadband personal
communication devices

1998 Digital television service launched in U.S.

Several of the terms in the chronology have been mentioned already, while oth-
ers will be described in later chapters when we discuss the impact and interrelation-

ships of particular events. You may therefore find it helpful to refer back to this table
from time to time.

Societal Impact

Our planet feels a little smaller in large part due to advances in communication. Mul-
tiple sources constantly provide us with the latest news of world events, and savvy
leaders make great use of this to shape opinions in their own countries and abroad.
Communication technologies change how we do business, and once-powerful com-
panies, unable to adapt, are disappearing. Cable and telecommunications industries
split and merge at a dizzying pace, and the boundaries between their technologies and
those of computer hardware and software companies are becoming blurred. We are
able (and expected) to be connected 24 hours a day, seven days a week, which means
that we may continue to receive work-related E-mail, phone calls, and faxes, even
while on vacation at the beach or in an area once considered remote.

These technology changes spur new public policy debates, chiefly over issues
of personal privacy, information security, and copyright protection. New businesses
taking advantage of the latest technologies appear at a faster rate than the laws and
policies required to govern these issues. With so many computer systems connected
to the Internet, malicious individuals can quickly spread computer viruses around
the globe. Cellular phones are so pervasive that theaters and restaurants have created
policies governing their use. For example, it was not so long ago that before a show
an announcement would be made that smoking was not allowed in the auditorium.
Now some theaters request that members of the audience turn off cell phones and
beepers. State laws, municipal franchises, and public utility commissions must
change to accommodate the telecommunications revolution. And the workforce
must stay current with advances in technology via continuing education.
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With new technologies developing at an exponential rate, we cannot say for cer-
tain what the world will be like in another 50 years. Nevertheless, a firm grounding
in the basics of communication systems, creativity, commitment to ethical applica-
tion of technology, and strong problem solving skills will equip the communications
engineer with the capability to shape that future.
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This text provides a comprehensive introduction to analog and digital communica-
tions. A review of relevant background material precedes each major topic that is
presented. Each chapter begins with an overview of the subjects covered and a list-
ing of learning objectives. Throughout the text we rely heavily on mathematical
models to cut to the heart of complex problems. Keep in mind, however, that such
models must be combined with physical reasoning and engineering judgment.

Chapters 2 and 3 deal with deterministic signals, emphasizing time-domain and
frequency-domain analysis of signal transmission, distortion, and filtering. Chapters
4 and 5 discuss the how and the why of various types of CW modulation. Particular
topics include modulated waveforms, transmitters, and transmission bandwidth.
Sampling and pulse modulation are introduced in Chapter 6, followed by analog
modulation systems, including receivers, multiplexing systems, and television sys-
tems in Chapter 7. Before a discussion of the impact of noise on CW modulation
systems in Chapter 10, Chapters 8 and 9 apply probability theory and statistics to the
representation of random signals and noise.

Digital communication starts in Chapter 11 with baseband (unmodulated)
transmission, so we can focus on the important concepts of digital signals and spec-
tra, noise and errors, and synchronization. Chapter 12 then draws upon previous
chapters for the study of coded pulse modulation, including PCM and digital multi-
plexing systems. A short survey of error-control coding is presented in Chapter 13.
Chapter 14 analyzes digital transmission systems with CW modulation, culminating
in a performance comparison of various methods. An expanded presentation of
spread spectrum systems is presented in this edition in Chapter 15. Finally, an intro-
duction to information theory in Chapter 16 provides a retrospective view of digital
communication and returns us to the Hartley-Shannon law.

Each chapter contains several exercises designed to clarify and reinforce the
concepts and analytic techniques. You should work these exercises as you come to
them, checking your results with the answers provided at the back of the book. Also
at the back you’ll find tables containing handy summaries of important text material
and mathematical relations pertinent to the exercises and to the problems at the end
of each chapter.

Although we mostly describe communication systems in terms of “black
boxes” with specified properties, we’ll occasionally lift the lid to look at electronic
circuits that carry out particular operations. Such digressions are intended to be
illustrative rather than a comprehensive treatment of communication electronics.



16

CHAPTER 1 ° Introduction

Besides discussions of electronics, certain optional or more advanced topics are
interspersed in various chapters and identified by the symbol Y. These topics may
be omitted without loss of continuity. Other optional material of a supplementary
nature is contained in the appendix.

Two types of references have been included. Books and papers cited within
chapters provide further information about specific items. Additional references are
collected in a supplementary reading list that serves as an annotated bibliography
for those who wish to pursue subjects in greater depth.

Finally, as you have probably observed, communications engineers use many
abbreviations and acronyms. Most abbreviations defined in this book are also listed
in the index, to which you can refer if you happen to forget a definition.
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lectrical communication signals are time~varying quantities such as voliage or current. Although a signal physically
exists in the time domain, we can also represent it in the frequency domain where we view the signal as con-
sisting of sinusoidal components at various frequencies. This frequency-domain descripfion is called the spectrum.

Spectral analysis, using the Fourier series and transform, is one of the fundamental methods of communication
engineering. It allows us to treat entire classes of signals that have similar properties in the frequency domain, rather
than getting bogged down in detailed time-domain analysis of individual signals. Furthermore, when coupled with
the frequency-response characteristics of fillers and ofher system components, the spectral approach provides valu-
able insight for design work.

This chapter therefore is devoted to signals and spectral analysis, giving special aftention fo the frequency-
domain interpretation of signal properties. We'll examine line spectra based on the Fourier series expansion of peri-
odic signals, and continuous spectra based on the Fourier transform of nonperiodic signals. These fwo fypes of spec-
tra will ultimately be merged with the help of the impulse concept.

As the first step in spectral analysis we must write equations representing signals as functions of time. But such
equations are only mathematical models of the real world, and imperfect models at that. In fact, a completely faithful
description. of the simplest physical signal would be quite complicated and impractical for engineering purposes.
Hence, we try to devise models that represent with minimum complexity the significant properties of physical signals.
The study of many different signal models provides us with the background needed to choose appropriate models for
specific applications. In many cases, the models will apply only to particular classes of signals. Throughout the chap-
ter the major classifications of signals will be highlighted for their special properties.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Sketch and label the one-sided or two-sided line spectrum of a signal consisting of a sum of sinusoids (Sect. 2.1).
2. Calculate the average value, average power, and total energy of a simple signal (Sects. 2.1 and 2.2).

3. Write the expressions for the exponential Fourier series and coefficients, the trigonometric Fourier series, and the
direct and inverse Fourier transform (Sects. 2.1 and 2.2).

4.  Identify the time-domain properties of a signal from its frequency-domain representation and vice versa (Sect. 2.2).

5. Sketch and label the spectrum of a rectangular pulse train, a single rectangular pulse, or a sinc pulse (Sects. 2.1
and 2.2).

6. State and apply Parseval’s power theorem and Rayleigh’s energy theorem (Sects. 2.1 and 2.2).

7.  State the following transform theorems: superposition, time delay, scale change, frequency translation and modu-
lation, differentiation and integration (Sect. 2.3).

8.  Use transform theorems to find and sketch the spectrum of a signal defined by time-domain operations (Sect. 2.3).

Set up the convolution integral and simplify it as much as possible when one of the functions is a rectangular pulse
(Sect. 2.4).

10.  State and apply the convolution theorems (Sect. 2.4).
11.  Evaluate or otherwise simplify expressions containing impulses (Sect. 2.5).

12.  Find the spectrum of a signal consisting of constants, steps, impulses, sinusoids, and/or rectangular and triangular
functions (Sect. 2.5).
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2.1 LINE SPECTRA AND FOURIER SERIES

This section introduces and interprets the frequency domain in terms of rotating
phasors. We’ll begin with the line spectrum of a sinusoidal signal. Then we’ll invoke
the Fourier series expansion to obtain the line spectrum of any periodic signal that
has finite average power.

Phasors and Line Spectra

Consider the familiar sinusoidal or ac (alternating-current) waveform v(¢) plotted in

Fig. 2.1-1. By convention, we express sinusoids in terms of the cosine function and
write

v(t) = A cos (wpt + @) (1]

where A is the peak value or amplitude and wj is the radian frequency. The phase
angle ¢ represents the fact that the peak has been shifted away from the time origin
and occurs at t = —¢/w,. Equation (1) implies that v(¢) repeats itself for all time,

with repetition period T, = 27/wq. The reciprocal of the period equals the cyclical
frequency

a1l o

Jo T, 2 -
measured in cycles per second or hertz.

Obviously, no real signal goes on forever, but Eq. (1) could be a reasonable
model for a sinusoidal waveform that lasts a long time compared to the period. In
particular, ac steady-state circuit analysis depends upon the assumption of an eternal
sinusoid—usually represented by a complex exponential or phasor. Phasors also
play a major role in the spectral analysis.

The phasor representation of a sinusoidal signal comes from Euler’s theorem

e =cosh * jsin @ (3]

Figure 2.1-1 A sinusoidal waveform v{t) = A cos [wof + ¢).
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where £\/—1and#@isan arbitrary angle. If we let 8 = wyt + ¢, we can write
any sinusoid as the real part of a complex exponential, namely

Acos (wgt + ¢) = ARe [e/@9)] (4]
= Re [Ae/Pei™]

This is called a phasor representation because the term inside the brackets may be
viewed as a rotating vector in a complex plane whose axes are the real and imagi-
nary parts, as Fig. 2.1-2a illustrates. The phasor has length A, rotates counterclock-
wise at a rate of f, revolutions per second, and at time ¢ = ( makes an angle ¢ with
respect to the positive real axis. The projection of the phasor on the real axis equals
the sinusoid in Eq. (4).

Now observe that only three parameters completely specify a phasor: amplitude,
phase angle, and rotational frequency. To describe the same phasor in the frequency
domain, we must associate the corresponding amplitude and phase with the particular
frequency f,. Hence, a suitable frequency-domain description would be the line spec-
trum in Fig. 2.1-2b, which consists of two plots: amplitude versus frequency and
phase versus frequency. While this figure appears simple to the point of being trivial,
it does have great conceptual value when extended to more complicated signals. But
before taking that step, four conventions regarding line spectra should be stated.

1. In all our spectral drawings the independent variable will be cyclical frequency
S hertz, rather than radian frequency w, and any specific frequency such as f;
will be identified by a subscript. (We’ll still use @ with or without subscripts as
a shorthand notation for 27f since that combination occurs so often.)

2. Phase angles will be measured with respect to cosine waves or, equivalently,
with respect to the positive real axis of the phasor diagram. Hence, sine waves
need to be converted to cosines via the identity

sin wt = cos (wt — 90°) (51
» A
=
;;‘*
. o<
3 . 0 F f
> 5 ’
g A i
B |
g : 3
A A E |
Real axis A cos {(wgt + ¢) 0 fo d
(a) (b)

Figure 2.1-2 Representations of A cos (wet + ¢). (a) Phasor diagram; (b line spectrum.
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 We regard amplitude as always being a positive quantity. When negative signs
appear, they must be absorbed in the phase using

—A cos wt = A cos (wt = 180°) [6]

It does not matter whether you take +180° or —180° since the phasor ends up
in the same place either way.

4. Phase angles usually are expressed in degrees even though other angles such as
wt are inherently in radians. No confusion should result from this mixed nota-
tion since angles expressed in degrees will always carry the appropriate symbol.

To illustrate these conventions and to carry further the idea of line spectrum,
consider the signal

w(t) = 7 — 10 cos (407t — 60°) + 4 sin 1207¢

which is sketched in Fig. 2.1-3a. Converting the constant term to a zero frequency or
dc (direct-current) component and applying Egs. (5) and (6) gives the sum of cosines

w(z) = 7 cos 20t + 10 cos (2720t + 120°) + 4 cos (2w60t — 90°)

whose spectrum is shown in Fig. 2.1-3b.

Drawings like Fig. 2.1-3p, called one-sided or positive-frequency line spectra,
can be constructed for any linear combination of sinusoids. But another spectral rep-
resentation turns out to be more valuable, even though it involves negative frequen-
cies. We obtain this representation from Eq. (4) by recalling that Re[z] = 3(z + z*),
where z is any complex quantity with complex conjugate z*. Hence, if 7 = Ae/®e/®
then z* = Ae™ /%7 and Eq. (4) becomes

A L A . .
A cos ((,()Dt + qﬁ) = Eeld’eﬂ”of + Ee—jd)e—jwot (7]

so we now have a pair of conjugate phasors.

The corresponding phasor diagram and line spectrum are shown in Fig. 2.1-4.
The phasor diagram consists of two phasors with equal lengths but opposite angles
and directions of rotation. The phasor sum always falls along the real axis to yield
A cos (wot + ¢). The line of spectrum is two-sided since it must include negative
frequencies to allow for the opposite rotational directions, and one-half of the origi-
nal amplitude is associated with each of the two frequencies *f;. The amplitude
spectrum has even symmetry while the phase spectrum has odd symmetry because
we are dealing with conjugate phasors. This symmetry appears more vividly in
Fig. 2.1-5, which is the two-sided version of Fig. 2.1-35.

1t should be emphasized that these line spectra, one-sided or two-sided, are just
pictorial ways of representing sinusoidal or phasor time functions. A single line in the
one-sided spectrum represents a real cosine wave, whereas a single line in the two-
sided spectrum represents a complex exponential and the conjugate term must be
added to get a real cosine wave. Thus, whenever we speak of some frequency interval
such as f; to f; in a two-sided spectrum, we should also include the corresponding
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Figure 2.1-4 {a} Conjugate phasors; b} two-sided spectrum.
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Figure 2.1-5

negative-frequency interval —f; to —f,. A simple notation for specifying both inter-
valsisfy < [f| = .
Finally, note that

Putting this another way, the amplitude spectrum displays the signal’s frequency
content.

23

Construct the one-sided and two-sided spectrum of v(#) = — 3 — 4 sin 307t.

EXERCISE 2.1-1

Periodic Signals and Average Power

Sinusoids and phasors are members of the general class of periodic signals. These
signals obey the relationship

v(r £ mTy) = v(r) —oo <t < oo (8]

where m is.any integer. This equation simply says that shifting the signal by an integer
number of periods to the left or right leaves the waveform unchanged. Consequently, a
periodic signal is fully described by specifying its behavior over any one period.

The frequency-domain representation of a periodic signal is a line spectrum
obtained by Fourier series expansion. The expansion requires that the signal have
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finite average power. Because average power and other time averages are important
signal properties, we’ll formalize these concepts here.
Given any time function v(?), its average value over all time is defined as

N L
(v()) = lim — J u(t) dt (9]
T—o0 T ~1/2

The notation (v(#)) represents the averaging operation on the right-hand side, which
comprises three steps: integrate v(f) to get the net area under the curve from ~7/2 <
t = T/2; divide that area by the duration 7 of the time interval; then let 7 — oo to
encompass all time. In the case of a periodic signal, Eq. (9) reduces to the average
over any interval of duration 7. Thus

((1)) = % JH "o(e) dt = Tij o(t)dt [10]

Otl OTO

where the shorthand symbol [ stands for an integration from any time £, to ¢, + T.

If v(¥) happens to be the voltage across a resistance R, it produces the current
i(t) = v(t)/R and we could compute the resulting average power by averaging the
instantaneous power v(?)i(t) = v*(t)/R = Ri*(¢). But we don’t necessarily know
whether a given signal is a voltage or current, so let’s normalize power by assuming
henceforth that R = 1 . Our definition of the average power associated with an
arbitrary periodic signal then becomes

P= (@ = —Tl— L [v(2)|? dt (]

0
where we have written [v(#)[? instead of v?(¢) to allow for the possibility of complex
signal models. In any case, the value of P will be real and nonnegative.

When the integral in Eq. (11) exists and yields 0 < P < co, the signal v(?) is
said to have well-defined average power, and will be called a periodic power signal.
Almost all periodic signals of practical interest fall in this category. The average
value of a power signal may be positive, negative, or zero.

Some signal averages can be found by inspection, using the physical interpreta-
tion of averaging. As a specific example take the sinusoid

v(t) = Acos (wyt + @)
which has

W) =0 P= A-2—2 [12]

You should have no trouble confirming these results if you sketch one period of v(z)
and [v(®)].
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Fourier Series

The signal w(?) back in Fig. 2.1-3 was generated by summing a dc term and two
sinusoids. Now we’ll go the other way and decompose periodic signals into sums of
sinusoids or, equivalently, rotating phasors. We invoke the exponential Fourier
series for this purpose.

Let v(¢) be a power signal with period T, = 1/f;. Its exponential Fourier series
expansion is

u(t) = 2 c el n=0,1,2,... [13]

n=-00

The series coefficients are related to v(¢) by

1

c, = —
T
0

J v(t)e ITmhe gt [14]

Ty

so ¢, equals the average of the product v(t)e 72™/!_ Since the coefficients are com-
plex quantities in general, they can be expressed in the polar form

C" = |Cn| eja.rgc,,

where arg ¢, stands for the angle of c¢,. Equation (13) thus expands a periodic power
signal as an infinite sum of phasors, the nth term being

C"eJZ-:mfot — |Cn| e’/ s c,,eJan]‘l)t

The series convergence properties will be discussed after considering its spectral
implications.

Observe that v(?) in Eq. (13) consists of phasors with amplitude |c,| and angle
arg ¢, at the frequencies nf, = 0, =f;,, *2f;, . . . . Hence, the corresponding
frequency-domain picture is a two-sided line spectrum defined by the series coeffi-
cients. We emphasize the spectral interpretation by writing

c(nfy) £ ¢,

so that |c(nfy)| represents the amplitude spectrum as a function of f, and arg c(nfy)

represents the phase spectrum. Three important spectral properties of periodic
power signals are listed below.

1. All frequencies are integer multiples or harmonics of the fundamental fre-
quency f, = 1/7;. Thus the spectral lines have uniform spacing f;.

2. The dc component equals the average value of the signal, since setting » = 0 in
Eq. (14) yields

c(0) = TL [ u(t) dt = (v(t)) [15]

OTD

25
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Calculated values of ¢(0) may be checked by inspecting v(f)-—a wise practice
when the integration gives an ambiguous result.

3. If v(#) is a real (noncomplex) function of time, then
Cop = ck=|c,| e 78 [16d]
which follows from Eq. (14) with n replaced by —n. Hence
le(=nf)| = lc(nf)|  arg c(—nfy) = —arg c(nfy) éb)

which means that the amplitude spectrum has even symmetry and the phase
spectrum has odd symmetry.

When dealing with real signals, the property in Eq. (16) allows us to regroup the

exponential series into complex-conjugate pairs, except for ¢,. Equation (13) then
becomes

o
u(t) = co + D, |2¢c,| cos (2mnfyt + arg c,) (7]
n=1
which is the trigonometric Fourier series and suggests a one-sided spectrum. Most
of the time, however, we’ll use the exponential series and two-sided spectra.
One final comment should be made before taking up an example. The integra-
tion for ¢, often involves a phasor average in the form

L [7 1 ;

- jemft gy — JfT . o= nfT 18

TJ_me -j27rfT(e e ) (18]
= of T sin wf T

Since this expression occurs time and again in spectral analysis, we’ll now introduce
the sinc function defined by

A sin A
TA

sinc A [19]
where A represents the independent variable. Some authors use the related sampling
function defined as Sa (x) £ (sin x)/x so that sinc A = Sa (7). Figure 2.1-6 shows

that sinc A is an even function of A having its peak at A = 0 and zero crossings at all
other integer values of A, so

: F A=0
sinc A =
0 A= X1, 22, ...

Numerical values of sinc A and sinc? A are given in Table T.4 at the back of the book,

while Table T.3 includes several mathematical relations that you’ll find helpful for
Fourier analysis.



2.1 Line Spectra and Fourier Series 27
sinc A
N A
"~ D —
5 43
Figure 2.1-6 The function sinc A = (sin wA)/7A.
Rectangular Pulse Train EXAMPLE 2.1~1

Consider the periodic train of rectangular pulses in Fig. 2.1-7. Each pulse has height
or amplitude A and width or duration 7. There are stepwise discontinuities at each
pulse-edge location ¢ = *=7/2, and so on, so the values of v(z) are undefined at these
points of discontinuity. This brings out another possible difference between a phys-
ical signal and its mathematical model, for a physical signal never makes a perfect
stepwise transition. However, the model may still be reasonable if the actual transi-
tion times are quite small compared to the pulse duration.

To calculate the Fourier coefficients, we’ll take the range of integration in
Eq. (14) over the central period —7,/2 < t =< T,/2, where

_JA |t| < 7/2
vlt) = {0 ]| > /2

Thus
To/2 ' 1 (72 4
c, = — J v(t)e /bt g = — J’ Ae ~i¥mmht gy

To —Ty/2 To -1/2

— A e —janfor _ e +j’:Tflf0T)
—Jj2mnfo Ty

A sinmnfyT
T, wnfy

Multiplying and dividing by 7 finally gives

AT
¢, = ——sincnfy T [20]
T,

which follows from Eq. (19) with A = nfy 7.
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v(®)

.
+ ( + '
T T
T -3 0 5 T,
Figure 2.1-7 Rectangular pulse train.
The amplitude spectrum obtained from |c(nfy)| = |c,| = Afy 7lsinc nfy 7| is

shown in Fig. 2.1-8a for the case of /T, = f; T = 1/4. We construct this plot by
drawing the continuous function Af; T|sinc fr| as a dashed curve, which becomes the
envelope of the lines. The spectral lines at *4f,, =8f;, and so on, are “missing”
since they fall precisely at multiples of 1/7 where the envelope equals zero. The dc
component has amplitude ¢(0) = AT/T, which should be recognized as the average
value of v(?) by inspection of Fig. 2.1-7. Incidentally, 7/7, equals the ratio of “on”
time to period, frequently designated as the duty cycle in pulse electronics work.

The phase spectrum in Fig. 2.1-8b is obtained by observing that ¢, is always
real but sometimes negative. Hence, arg c(nf;) takes on the values 0° and %=180°,
depending on the sign of sinc nf; 7. Both +180° and —180° were used here to bring
out the odd symmetry of the phase.

Having decomposed the pulse train into its frequency components, let’s build it
back up again. For that purpose, we’ll write out the trigonometric series in Eq. (17),

le(rfo)

A fgr
A fyrlsinc frl

arg [c(fo)l
T S . [
i i i i 1 2 3 4
) ] ) ! T T T T
0 I ! i !
| ! I !
~180° 4 [ - L -
{b)

Figure 2.1-8 Spectrum of rectangular pulse train with fr = 1/4. (a) Amplitude; [b) phase.
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still taking /Ty = fo 7 = 1/4 s0 ¢; = A/4 and |2c,| = (2A/4) |sinc n/4| =
(2A/mn)|sin wn/4|. Thus

V2 A

a

A A

U(I)ZZ-F cos wot+;‘_—0032w0t+ cos 3wyt + -+
Summing terms through the third harmonic gives the approximation of v(f) sketched
in Fig. 2.1-9a. This approximation contains the gross features of the pulse train but
lacks sharp corners. A more accurate approximation shown in Fig. 2.1-95 comprises
all components through the seventh harmonic. Note that the small-amplitude higher
harmonics serve primarily to square up the corners. Also note that the series is con-
verging toward the midpoint value A/2 at t = *7/2 where v(?) has discontinuities.
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Sketch the amplitude spectrum of a rectangular pulse train for each of the following
cases: T = T,/5, 7 = Ty/2, T = T,. In the last case the pulse train degenerates into a
constant for all time; how does this show up in the spectrum?

EXERCISE 2.1-2

Convergence Conditions and Gibbs Phenomenon

We’ve seen that a periodic signal can be approximated with a finite number of terms
of its Fourier series. But does the infinite series converge to v(¢)? The study of con-
vergence involves subtle mathematical considerations that we’ll not go into here.
Instead, we’ll state without proof some of the important results. Further details are
given by Ziemer, Tranter and Fannin (1998) or Stark, Tuteur and Anderson (1988).

The Dirichlet conditions for Fourier series expansion are as follows: If a peri-
odic function v(#) has a finite number of maxima, minima, and discontinuities per
period, and if v(#) is absolutely integrable, so that v(¢) has a finite area per period,
then the Fourier series exists and converges uniformly wherever v(#) is continuous.
These conditions are sufficient but not strictly necessary.

An alternative condition is that v(t) be square integrable, so that [u(?)[* has
finite area per period—equivalent to a power signal. Under this condition, the series
converges in the mean such that if

N
u(t) = D cn el
=-N

then

Jim J lu(t) — vy(t)|*dt =0

Ty

In other words, the mean square difference between v(#) and the partial sum v (%)
vanishes as more terms are included.
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Figure 2.1-9 Fourier-series reconstruction of a rectangular pulse train.
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Regardless of whether v(f) is absolutely integrable or square integrable, the
series exhibits a behavior known as Gibbs phenomenon at points of discontinuity.
Figure 2.1-10 illustrates this behavior for a stepwise discontinuity at t = #,. The partial
sum vy(#) converges to the midpoint at the discontinuity, which seems quite reason-
able. However, on each side of the discontinuity, v,(f) has oscillatory overshoot with
period To/2N and peak value of about 9 percent of the step height, independent of N.
Thus, as N — oo, the oscillations collapse into nonvanishing spikes called “Gibbs
ears” above and below the discontinuity as shown in Fig. 2.1-9¢. Kamen and Heck
(1997, Chap. 4) provide Matlab examples to further illustrate Gibbs phenomenon.

Since a real signal must be continuous, Gibbs phenomenon does not occur and
we’re justified in treating the Fourier series as being identical to v(¥). But idealized
signal models like the rectangular pulse train often do have discontinuities. You
therefore need to pay attention to convergence when working with such models.

Gibbs phenomenon also has implications for the shapes of the filters used with
real signals. An ideal filter that is shaped like a rectangular pulse will result in dis-
continuities in the spectrum that will lead to distortions in the time signal. Another
way to view this is that multiplying a signal in the frequency domain by a rectangu-
lar filter results in the-time signal being convolved with a sinc function. Therefore,
real applications use other window shapes with better time-frequency characteris-
tics, such as Hamming or Hanning windows. See Oppenheim, Schafer and Buck
(1999) for a more complete discussion on the effects of window shape.

Parseval’s Power Theorem

Parseval’s theorem relates the average power P of a periodic signal to its Fourier
coefficients. To derive the theorem, we start with

P= %O L lu(®)|* dt = TL J v(t)v*(t) dt

0 Jr,

Figure 2.1-10 Gibbs phenomenon at a step discontinuity.
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Now replace v*(f) by its exponential series

o0 % o0
U*(f) — |i z CnejZTrnﬁ,t} — E C;;.:e—j?,mlfot

n=-co n=-co

so that

fl

1 a .
P —J U(t)l: 2 c"',:e_ﬂ”"f“}(dt
T 7,

n=-co

o0

1 J .
= = | v(r)e dt] ¢
AR

n=-—c0
and the integral inside the sum equals c,. Thus

[s0) oo

P= D cct= D |cl [21]

n=-:0co n=-—oQ

which is Parseval’s theorem.
The spectral interpretation of this result is extraordinarily simple:

Observe that Eq. (21) does not involve the phase spectrum, underscoring our prior
comment about the dominant role of the amplitude spectrum relative to a signal’s
frequency content. For further interpretation of Eq. (21) recall that the exponential
Fourier series expands v(¢) as a sum of phasors of the form ¢, /2™, You can easily
show that the average power of each phasor is

(len ™h2) = |c,[? [22]

Therefore, Parseval’s theorem implies superposition of average power, since the
total average power of v(f) is the sum of the average powers of its phasor components.

Several other theorems pertaining to Fourier series could be stated here. How-
ever, they are more conveniently treated as special cases of Fourier transform theo-
rems covered in Sect. 2.3. Table T.2 lists some of the results, along with the Fourier
coefficients for various periodic waveforms encountered in communication systems.

EXERCISE 2.1-3

Use Eq. (21) to calculate P from Fig. 2.1-5.
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2.2 FOURIER TRANSFORMS AND
CONTINUOUS SPECTRA

Now let’s turn from periodic signals that last forever (in theory) to nonperiodic sig-
nals concentrated over relatively short-time durations. If a nonperiodic signal has

finite total energy, its frequency-domain representation will be a continuous spec-
trum obtained from the Fourier transform.

Fourier Transforms

Figure 2.2-1 shows two typical nonperiodic signals. The single rectangular pulse
(Fig. 2.2-1a) is strictly timelimited since v(¢) is identically zero outside the pulse
duration. The other signal is asymptotically timelimited in the sense that v(z) = 0
as t = =* oo. Such signals may also be described loosely as “pulses.” In either case,
if you attempt to average v(?) or [v(?)[? over all time you’ll find that these averages
equal zero. Consequently, instead of talking about average power, a more meaning-
ful property of a nonperiodic signal is its energy. '

If v(z) is the voltage across a resistance, the total delivered energy would be

found by integrating the instantaneous power v*(¢)/R. We therefore define normal-
ized signal energy as

E= J lo(e)|? dt : 1

-0

v(®)

—1/2 0 T/2

Figure 2.2~1
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Some energy calculations can be done by inspection, since E is just the total area
under the curve of |v(#)|>. For instance, the energy of a rectangular pulse with ampli-
tude A is simply E = A?r.

When the integral in Eq. (1) exists and yields 0 < E < o0, the signal v(?) is said
to have well-defined energy and is called a nonperiodic energy signal. Almost all
timelimited signals of practical interest fall in this category, which is the essential
condition of spectral analysis using the Fourier transform.

To introduce the Fourier transform, we’ll start with the Fourier series represen-
tation of a periodic power signal

[o.0]

D c(nfy)e st (2]

n=-—oo

= |1 - .
2 i:__ J' v(l,)e—],_'n'nfot dt:|e]27mf0t
Ty

n=--00 TO

v(t)

i

where the integral expression for c(nfy) has been written out in full. According to the
Fourier integral theorem there’s a similar representation for a nonperiodic energy
signal that may be viewed as a limiting form of the Fourier series of a signal as the
period goes to infinity. Example 2.1-1 showed that the spectral components of a
pulse train are spaced at intervals of nfy = n/T,, so they become closer together as
the period of the pulse train increased. However, the shape of the spectrum remains
unchanged if the pulse width 7 stays constant. Let the frequency spacing f, = Tq
approach zero (represented in Eq. 3 as df) and the index »n approach infinity such
that the product nf; approaches a continuous frequency variable f. Then

u(t) = ro [Joov(t)e"ﬂ”f’dt}eﬂ"f'df [3]

-—0Q ade o}

The bracketed term is the Fourier transform of v(f) symbolized by V(f) or F[v(#)]
and defined as ‘

(o]
V(f) = Flu()] & J u(t)e 72 dr [4]
le o}
an integration over all time that yields a function of the continuous variable f.
The time function v(¢) is recovered from V(f) by the inverse Fourier transform

AN

o) = F A2 | WP 5

-0
an integration over all frequency f. To be more precise, it should be stated that
F V()] converges in the mean to v(¢), similar to Fourier series convergence,
with Gibbs phenomenon occurring at discontinuities. But we’ll regard Eq. (5) as

being an equality for most purposes. A proof that #~{V(f)] = v(¢) will be outlined
in Sect. 2.5.
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Equations (4) and (5) constitute the pair of Fourier integrals’. At first glance,
these integrals seem to be a closed circle of operations. In a given problem, however,
you usually know either V(f) or v(?). If you know V(f), you can find v(#) from
Eq. (5); if you know v(#), you can find V(f) from Eq. (4).

Turning to the frequency-domain picture, a comparison of Egs. (2) and (5) indi-
cates that V(f) plays the same role for nonperiodic signals that c(nfy) plays for peri-
odic signals. Thus, V(f) is the spectrum of the nonperiodic signal v(t). But V(f) is
a continuous function defined for all values of f whereas c(nf;) is defined only for
discrete frequencies. Therefore, a nonperiodic signal will have a continuous spec-
trum rather than a line spectrum. Again, comparing Eqgs. (2) and (5) helps explain
this difference: in the periodic case we return to the time domain by summing
discrete-frequency phasors, while in the nonperiodic case we integrate a continuous
frequency function. Three major properties of V(f) are listed below.

1. The Fourier transform is a complex function, so |V(f)| is the amplitude spec-
trum of v(¢) and arg V(f) is the phase spectrum.

2. The value of V(f) at f = 0 equals the net area of v(¢), since

V(0) = ro u(z) dt (61

which compares with the periodic case where ¢(0) equals the average value of
v(d).
3. Ifv(?)is real, then
V(=f) = V*(f) [7al
and _
V(=N = V()] argV(=f) = —arg V() [76]

so again we have even amplitude symmetry and odd phase symmetry. The term
hermitian symmetry describes complex functions that obey Eq. (7).
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Rectangular Pulse

In the last section we found the line spectrum of a rectangular pulse train. Now con-
sider the single rectangular pulse in Fig. 2.2-1a. This is so common a signal model
that it deserves a symbol of its own. Let’s adopt the pictorial notation

H(Z‘/T)é{l ll‘|<’T/2

0 lt| > 7/2 8}

1 Other definitions take w for the frequency variable and therefore include 1/2# or 1/V 27 as multi-
plying terms.

EXAMPLE 2.2-1
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which stands for a rectangular function with unit amplitude and duration 7 centered
at t = 0. The pulse in the figure is then written

v(t) = AIl(¢/7) [9a]
Inserting v(?) in Eq. (4) yields
/2 ' A
V(f) = J' Ae ™ dt = — sin wfr [95]
-7/2 7Tf
= Ar sinc fr

so V(0) = A7, which clearly equals the pulse’s area. The corresponding spectrum,
plotted in Fig. 2.2-2, should be compared with Fig. 2.1-8 to illustrate the similari-
ties and differences between line spectra and continuous spectra.

Further inspection of Fig. 2.2-2 reveals that the significant portion of the spec-
trum is in the range |f| < 1/7 since |V(f)| << |V(0)| for |f] > 1/r. We therefore may
take 1/7 as a measure of the spectral “width.” Now if the pulse duration is reduced
(small 7), the frequency width is increased, whereas increasing the duration reduces
the spectral width. Thus, short pulses have broad spectra, and long pulses have nar-
row spectra. This phenomenon, called reciprocal spreading, is a general property
of all signals, pulses or not, because high-frequency components are demanded by
rapid time variations while smoother and slower time variations require relatively
little high-frequency content.

WO

AT

~1/7 0 VT 2T 3T 4T
arg V(f)
180°
f
=1/r 1T 2/ 3/ 4/
-180° +

Figure 2.2-2 Rectangular pulse spectrum V{f] = A7 sinc fr.
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Symmetric and Causal Signals

When a signal possesses symmetry with respect to the time axis, its transform inte-
gral can be simplified. Of course any signal symmetry depends upon both the wave-
shape and the location of the time origin. But we’re usually free to choose the time
origin since it’s not physically unique—as contrasted with the frequency-domain
origin which has a definite physical meaning.

To develop the time-symmetry properties, we’ll write w in place of 27f for
notational convenience and expand Eq. (4) using e™2™* = cos wt — j sin wt. Thus, in
general

V(f) = V() +iVo(f) 1104
where
V) = Jm V() cos wt dt [105]

>

V(f) = — r" v(t) sin wt dt

-

which are the even and odd parts of V(f), regardless of v(#). Incidentally, note that
if v(®) is real, then

Re V()] =V(f) Im[W(f)] = V()

so V¥(f) = V.(f) — jV,(f) = V(—f), as previously asserted in Eq. (7).
‘When v(?) has time symmetry, we simplify the integrals in Eq. (10) by apply-
ing the general relationship

Jm w(t) dt = me(t) dt + JO w(t) dt AR)

—c0 0 —00

Z{OOW(I) dt w(t) even

0 w(t) odd
where w(?) stands for either v(¢) cos wt or v{(?) sin wt. If v(¢) has even symmetry so that
v(—rt) = v(t) (124

then v(#) cos wt is even whereas v(f) sin wt is odd. Hence, V (f) = 0 and
V(f) =V.(f) = ZJ v(t) cos wr dt (12b]
0

Conversely, if v(¢) has odd symmetry so that

v(—1) = —v(t) [13d]
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then

V(f) =jV,(f) = —jZJ u(t) sin wt dt [135]
0
and V,(f) = 0.

Equations (12) and (13) further show that the spectrum of a real symmetrical
signal will be either purely real and even or purely imaginary and odd. For instance,
the rectangular pulse in Example 2.2-1 is a real and even time function and its spec-
trum was found to be a real and even frequency function.

Now consider the case of a causal signal, defined by the property that

v(t) =0 t <0 (144]

This simply means that the signal “starts” at or after ¢ = 0. Since causality precludes

any time symmetry, the spectrum consists of both real and imaginary parts com-
puted from

V(f) = J v(t)e 2 dt (145]
0

This integral bears a resemblance to the Laplace transform commonly used for the
study of transients in linear circuits and systems. Therefore, we should briefly con-
sider the similarities and differences between these two types of transforms.

The unilateral or one-sided Laplace transform is a function of the complex vari-
able s = 0 + jw defined by

Llv()] & [ v(t)e ™ dt
0
which implies that v(#) = O for t < 0. Comparing EL{v(¢)] with Eq. (14b) shows that
if v(¢) 1s a causal energy signal, you can get V(f) from the Laplace transform by let-
ting s = j2mf. But a typical table of Laplace transforms includes many nonenergy
signals whose Laplace transforms exist only with o > 0 so that [v(f)e™| = (e~ —
0 as t — co. Such signals do not have a Fourier transform because s = o + jw falls
outside the frequency domain when o # 0. On the other hand, the Fourier transform

exists for noncausal energy signals that do not have a Laplace transform. See Kamen
and Heck (1997, Chap. 7) for further discussion.

EXAMPLE 2.2-2

Causal Exponential Pulse

Figure 2.2-3a shows a causal waveform that decays exponentially with time con-

stant 1/b, so
Ae™” >0
v(t) {O F<0 [154]
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The spectrum can be obtained from Eq. (145) or from the Laplace transform £[v(f)] =
A/(s + b), with the result that

A

W= g

[15b]

which is a complex function in unrationalized form. Multiplying numerator and
denominator of Eq. (15b) by b — j27f yields the rationalized expression

b —Jjlnf
W5 = b? + (27f)>

v(®)

0 1/b
(a)

V(I

S
arg V(f)

4 90°
<] L 45°
i : f
—45° L __>> .
—g0° L

{b)

Figure 2.2-3 Causal exponential pulse. (a] Waveform; (b} spectrum.
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and we see that

bA
Vi(f) = Re[V(f)] = b+ (2nf )
_ _ 2mfA
Vo(f) = Im [V(f)] - b2 + (27Tf)2
Conversion to polar form then gives the amplitude and phase spectrum
A
VA = VVAF) + VIS) =
V() D40 = oy
arg V(f) = arctan%%% = -a:ctanZ%f

which are plotted in Fig. 2.2--3b.

The phase spectrum in this case is a smooth curve that includes all angles from
—90° to +90°. This 1s due to the signal’s lack of time symmetry. But V(f) still has
hermitian symmetry since v(¢) is a real function. Also note that the spectral width is

proportional to b, whereas the time “width” is proportional to the time constant
1/b—another illustration of reciprocal spreading.

EXERCISE 2.2-1

Find and sketch V(f) for the symmetrical decaying exponential v(f) = Ae™" in
Fig. 2.2-1b. (You must use a definite integral from Table T.3.) Compare your resulit
with V,(f) in Example 2.2-2. Confirm the reciprocal-spreading effect by calculating
the frequency range such that |V(f)| = (1/2)|V(0)|.

Rayleigh’s Energy Theorem

Rayleigh’s energy theorem is analogous to Parseval’s pOWer theorem. It states that
the energy E of a signal v(?) is related to the spectrum V(f) by

(o]

B= [ vovina= | more e

-0 iee)

Therefore,
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The value of Eq. (16) lies not so much in computing E, since the time-domain
integration of [u(¢)|? often is easier. Rather, it implies that |V(f)|? gives the distribu-
tion of energy in the frequency domain, and therefore may be termed the energy
spectral density. By this we mean that the energy in any differential frequency band
df equals |V(f)|? df, an interpretation we’ll further justify in Sect. 3.6. That interpre-
tation, in turn, lends quantitative support to the notion of spectral width in the sense
that most of the energy of a given signal should be contained in the range of fre-
quencies taken to be the spectral width.

By way of illustration, Fig. 2.2—4 is the energy spectral density of a rectangular
pulse, whose spectral width was claimed to be |f| < 1/7. The energy in that band is
the shaded area in the figure, namely

1/r

1/r
f V()P df = J (A7)? sinc? fr df = 0.924%r

-1/T -1/7

a calculation that requires numerical methods. But the total pulse energy is E = A?r,
so the asserted spectral width encompasses more than 90 percent of the total energy.

Rayleigh’s theorem is actually a special case of the more general integral rela-
tionship

J v(t)w*(t) dt = J VI YW*(f) df [17]
where v(f) and w(f) are arbitrary energy signals with transforms V(f) and W(f).
Equation (17) yields Eq. (16) if you let w(¢) = v(¢) and note that [ v(H)v*(¢) dt =
E. Other applications of Eq. (17) will emerge subsequently.
The proof of Eq. (17) follows the same lines as our derivation of Parseval’s
theorem. We substitute for w*(¢) the inverse transform

wi = | | ZW(f)e"“” o - O;W*(f)e"""’ &

V(R

x . e f

B 20 Ut Y ur 2r e

Figure 2.2-4 Energy speciral density of a rectangular pulse.
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Interchanging the order of time and frequency integrations then gives

ro v(t)w*(t) dt = ro v(t)[ ro WH( f)e It df} dt

ale ) e el —00

= J { J u(t)e 7 dt}W*(f) df
-0 ~0
which completes the proof since the bracketed term equals V(f).

The interchange of integral operations llustrated here is a valuable technique in
signal analysis, leading to many useful results. However, you should not apply the tech-
nique willy-nilly without giving some thought to the validity of the interchange. As a
pragmatic guideline, you can assume that the interchange is valid if the results make
sense. If in doubt, test the results with some simple cases having known answers:.

EXERCISE 2.2-2

Calculate the energy of a causal exponential pulse by applying Rayleigh’s theorem
to V(f) in Eq. (15b). Then check the result by integrating |[v(£)|%.

Duality Theorem

If you reexamine the pair of Fourier integrals, you’ll see that they differ only by the
variable of integration and the sign in the exponent. A fascinating consequence of
this similarity is the duality theorem. The theorem states that if v(¢) and V(f) con-

stitute a known transform pair, and if there exists a time function z() related to the
function V(f) by

(1) = V(1) [18al
then

F(z()] = v(=f) [18h)
where v(—f) equals v(f) with t = —f.
Proving the duality theorem hinges upon recognizing that Fourier transforms
are definite integrals whose variables of integration are dummy variables. Therefore,
we may replace fin Eq. (5) with the dummy variable A and write

u(t) = Joo V(A)e/>™ dx

~—00

Furthermore, since ¢ is a dummy variable in Eq. (4) and since z(f) = V(¢) in the
theorem,

Flz(t)] = J Z(A)e 2 gy = J V(/\)ej%'r/\(—f) dA

—oQ 0

Comparing these integrals then confirms that F[z(¢)] = v(—f).
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Although the statement of duality in Eq. (18) seems somewhat abstract, it turns
out to be a handy way of generating new transform pairs without the labor of inte-
gration. The theorem works best when v(f) is real and even so z(¢) will also be real

and even, and Z(f) = F[z(0)] = v(—f) = v(f). The following example should clar-
ify the procedure.
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Sinc Pulse

A rather strange but important time function in communication theory is the sinc
pulse plotted in Fig. 2.2-5a and defined by

z(t) = A sinc 2Wt [194]
We’ll obtain Z(f) by applying duality to the transform pair
v(t) = BII(¢/7) V(f) = Bt sinc fr
Rewriting Eq. (19a) as

2w

brings out the fact that z(f) = V(¢) with 7 = 2W and B = A/2W. Duality then says
that F[z(t)] = v(—f) = BII(—fiT) = ARW)IL(—f2W) or

zZ(f) = A <i> [19b]

2(t) = (i)(zm sinc ¢(2W)

2w 2w

since the rectangle function has even symmetry.

The plot of Z(f), given in Fig. 2.2-5b, shows that the spectrum of a sinc pulse
equals zero for |f| > W. Thus, the spectrum has clearly defined width W, measured
in terms of positive frequency, and we say that Z(f) is bandlimited. Note, however,
that the signal z(#) goes on forever and is only asymptotically timelimited.

EXAMPLE 2.2-3

Find the transform of z(#) = B/[1 + (27£)?] by applying duality to the result of Exer-
cise 2.2-1.

EXERCISE 2.2-3

z(B) 2

Al2W

TN TN s t f

T o S 0
—-12W 12w i w

{a] (b)
Figure 2.2-5 A sinc pulse and its bandlimited spectrum.
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Transform Calculations

Except in the case of a very simple waveform, brute-force integration should be
viewed as the method of last resort for transform calculations. Other, more practical
methods are discussed here.

When the signal in question is defined mathematically, you should first consult
a table of Fourier transforms to see if the calculation has been done before. Both
columns of the table may be useful, in view of the duality theorem. A table of
Laplace transforms also has some value, as mentioned in conjunction with Eq. (14).

Besides duality, there are several additional transform theorems covered in
Sect. 2.3. These theorems often help you decompose a complicated waveform into
simpler parts whose transforms are known. Along this same line, you may find it
expedient to approximate a waveform in terms of idealized signal models. Suppose
Z(#) approximates z(#) and magnitude-squared error |z(r) — Z()|? is a small quantity. If
Z(f) = Flz(®)] and Z(f) = F[Z(#)] then

[Ttz - zppar= | 1o - 2ora 20
-0 -0
which follows from Rayleigh’s theorem with v(¢) = z(¢#) — Z(¢). Thus, the integrated
approximation error has the same value in the time and frequency domains.

The above methods are easily modified for the calculation of Fourier series
coefficients. Specifically, let v(f) be a periodic signal and let z(¢) = v(HII(HTy), a
nonperiodic signal consisting of one period of v(#). If you can obtain

Z(f) = FO T/ T)] 21
then, from Eq. (14), Sect. 2.1, the coefficients of v(f) are given by

Cp = TLZ(nfo) [21b]
0

This relationship facilitates the application of transform theorems to Fourier series
calculations.

Finally, if the signal is defined in numerical form, its transform can be found via
numerical calculations. For this purpose, the FFT computer algorithm is especially
well suited. For details on the algorithm and the supporting theory of discrete
Fourier transforms, see Oppenheim, Schafer and Buck (1999).

2.3 TIME AND FREQUENCY RELATIONS

Rayleigh’s theorem and the duality theorem in the previous section helped us draw
useful conclusions about the frequency-domain representation of energy signals.
Now we’ll look at some of the many other theorems associated with Fourier trans-
forms. They are included not just as manipulation exercises but for two very practical
reasons. First, the theorems are invaluable when interpreting spectra, for they express
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relationships between time-domain and frequency-domain operations. Second, we
can build up an extensive catalog of transform pairs by applying the theorems to
known pairs—and such a catalog will be useful as we seek new signal models.

In stating the theorems, we indicate a signal and its transform (or spectrum) by
lowercase and uppercase letters, as in V(f) = F[v(1)] and v(®) = F~[V(f)]. This is
also denoted more compactly by v(¢) <> V(f). Table T.1 at the back lists the theo-
rems and transform pairs covered here, plus a few others.

Superposition

Superposition applies to the Fourier transform in the following sense. If a; and a,
are constants and

u(t) = awy(t) + a,vy(2)
then

Flu(t)] = aFlv,(t) ] + a,F[vy(1)]

Generalizing to sums with an arbitrary number of terms, we write the superposition
(or linearity) theorem as

Daut) & D a Vil f) [1]

This theorem simply states that linear combinations in the time domain become lin-
ear combinations in the frequency domain.

Although proof of the theorem is trivial, its importance cannot be overempha-
sized. From a practical viewpoint Eq. (1) greatly facilitates spectral analysis when
the signal in question is a linear combination of functions whose individual spectra
are known. From a theoretical viewpoint it underscores the applicability of the
Fourier transform for the study of linear systems.

Time Delay and Scale Change

Given a time function v(¢), various other waveforms can be generated from it by
modifying the argument of the function. Specifically, replacing ¢ by ¢ — ¢, produces
the time-delayed signal v(t — t,). The delayed signal has the same shape as v(¢) but
shifted ¢, units to the right along the time axis. In the frequency domain, time delay
causes an added linear phase with slope —2mt,, so that

o(t — t,) <> V(f)e 72 [2]

If ¢, is a negative quantity, the signal is advanced in time and the added phase has
positive slope. The amplitude spectrum remains unchanged in either case, since

[V(F)e 24| = V()| e = [V(f)].

45
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Proof of the time-delay theorem is accomplished by making the change of

variable A =t — t,1n the transform integral. Thus, using w = 2mf for compactness,
we have

Flo(t— )] = va(t — t)e " dt

—00

=j v(A)e TG gy

—00

= [ fo v(A)e A dz\]e‘f“”d

The integral in brackets is just V(f), so Flv(t — t)] = V(f)e 7“4,

Another time-axis operation is scale change, which produces a horizontally
scaled image of v(#) by replacing t with at. The scale signal v(at) will be expanded
if || < 1 or compressed if || > 1; a negative value of a yields time reversal as well
as expansion or compression. These effects may occur during playback of recorded
signals, for instance.

Scale change in the time domain becomes reciprocal scale change in the fre-
quency domain, since

1
v(at) < — (i) a#+0 [3)
] "~ \ex
Hence, compressing a signal expands its spectrum, and vice versa. If @ = —1, then

v(—t) <> V(—f) so both the signal and spectrum are reversed.
We’ll prove Eq. (3) for the case @ < 0 by writing @ = —|a| and making the
change of variable A = ~|a|t. Therefore, t = Ma, dt = —dM|a), and

ff

Flo(—|ealt)] J v(—|e|t)e 7" dt

=00

—1 T )
= J v(A)e N dA
+oo

|

+o0
lJ v(,\)e—jzw(f/a))td,\

s

Observe how this proof uses the general relationship

|
1
|

-b

Jabx(z\) d(=2) = —J

—a

x(A) d\ = J w:c(/\) dA

Hereafter, the intermediate step will be omitted when this type of manipulation occurs.
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The signal in Fig. 2.3—1a has been constructed using two rectangular pulses O(t) =
ATI(#/7) such that

zo(t) = vt — 1) + (=1)vlt = (¢ + T)]
Application of the superposition and time-delay theorems yields
Z(f) = V(e P + (=1)W(f)e 7>/ ttT)
= V( f)[e—ﬂwftd — e—ﬂﬂf(fﬁT)]
where V(f) = AT sinc fT.
The bracketed term in Z,(f) is a particular case of the expression e/*%1 = ¢/%:

which often turns up in Fourier analysis. A more informative version of this expres-
sion is obtained by factoring and using Euler’s theorem, as follows:

R R P e I R AL 4]

B { 2 cos (6, — 6,)e/0+%)
— Lj2 sin (6; — 6,)e/@*®D

The upper result in Eq. (4) corresponds to the upper (+) sign and the lower result to
the lower (—) sign.
In the problem at hand we have 8, = —7ft;and 6, = —7wf(t; + T),s0 0, — 0, =

7fT and 8, + 0, = —2aft, where ty = t; + T/2 as marked in Fig. 2.3—1a. Therefore,
after substituting for V(f), we obtain :

Z(f) = (A7 sinc f7)(j2 sin wf T e 127/

Note that Z,(0) = 0, agreeing with the fact that z,(f) has zero net area.
Ifty = 0 and T = 7, z,(f) degenerates to the waveform in Fig. 2.3—-1b where

e = AH(t +TT/2> - AH(t —:/2)

2,0 T IR

zp(8)

ty+T

EXAMPLE 2.3-1

g
~
YN DS J

0

—A —-A

(a) {b)

Figure 2.3-1 Signals in Example 2.3-1.
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The spectrum then becomes
Z(f) = (A7 sinc f7)(j2 sin 7f 1)
= (j2ufT)AT sinc* fr

This spectrum is purely imaginary because z,(f) has odd symmetry.

EXERCISE 2.3-1

Let v(f) be a real but otherwise arbitrary energy signal. Show that if
z(t) = ayu(t) + a,u(—1)
then
Z(f) = (a + ag)Ve(f) +j(ar — a3)Vo(f)
where V,(f) and V_(f) are the real and imaginary parts of V(f).

[5d]

[5b]

Frequency Translation and Modulation

Besides generating new transform pairs, duality can be used to generate transform

theorems. In particular, a dual of the time-delay theorem is

v(t)e’ <> V(f— f) w, = 27f,

[6]

We designate this as frequency translation or complex modulation, since multiply-
ing a time function by e/’ causes its spectrum to be translated in frequency by +f..
To see the effects of frequency translation, let v(f) have the bandlimited spec-
trum of Fig. 2.3-2a, where the amplitude and phase are plotted on the same axes
using solid and broken lines, respectively. Also let f, > W. Inspection of the trans-

lated spectrum V(f — f,) in Fig. 2.3-2b reveals the following:

V(f—fc)

Wi

f N

(b}

Figure 2.3-2 Frequency translation of a bandlimited spectrum.

\\
~

s
0 fc'—W fc \\\ fC+W
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1. The significant components are concentrated around the frequency f,.

2. Though V(f) was bandlimited in W, V (f — f.) has a spectral width of
2W. Translation has therefore doubled spectral width. Stated another way, the
negative-frequency portion of V(f) now appears at positive frequencies.

3. V(f—f£.) is not hermitian but does have symmetry with respect to translated ori-
ginatf =f,.

These considerations may appear somewhat academic in view of the fact that
v(t)e’™" is not a real time function and cannot occur as a communication signal.
However, signals of the form v(#) cos (w.t + ¢) are common—in fact, they are the
basis of carrier modulation—and by direct extension of Eq. (6) we have the follow-
ing modulation theorem:

j ~j®
0{t) cos (w1 + 8) S V(f = £) + =W+ 1) 7

In words, multiplying a signal by a sinusoid translates its spectrum up and down in
frequency by f.. All the comments about complex modulation also apply here. In
addition, the resulting spectrum is hermitian, which it must be if v(#) cos (vt + ¢)
is a real function of time. The theorem is easily proved with the aid of Euler’s theo-
rem and Eq. (6).
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RF Pulse

Consider the finite-duration sinusoid of Fig. 2.3-3a, sometimes referred to as an RF
pulse when f, falls in the radio-frequency band. (See Fig.1.1-2 for the range of fre-
quencies that supports radio waves.) Since

z(t) = AH(%) cos w, t

we have immediately

Z(f) = %sinc (f—for + %sinc(f%—fc)r.

obtained by setting v(z) = AIL(#/7) and V(f) = A~ sinc fr in Eq. (7). The resulting
amplitude spectrum is sketched in Fig. 2.3-35 for the case of f, > 1/1 so the two
translated sinc functions have negligible overlap.

Because this is a sinusoid of finite duration, its spectrum is continuous and con-
tains more than just the frequencies f = *f.. Those other frequencies stem from the
fact that z(¢) = O for |¢| > 7/2, and the smaller 7 is, the larger the spectral spread
around *f—reciprocal spreading, again. On the other hand, had we been dealing
with a sinusoid of infinite duration, the frequency-domain representation would be a
two-sided line spectrum containing only the discrete frequencies *f,.

EXAMPLE 2.3-2
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(b)

Figure 2.3-3  {a] RF pulse; (b) amplitude spectrum.

Differentiation and Integration

Certain processing techniques involve differentiating or integrating a signal. The
frequency-domain effects of these operations are indicated in the theorems below. A
word of caution, however: The theorems should not be applied before checking to
make sure that the differentiated or integrated signal is Fourier-transformable; the
fact that v(#) has finite energy is not a guarantee that the same holds true for its
derivative or integral.

To derive the differentiation theorem, we replace v() by the inverse transform
integral and interchange the order of operations, as follows:

G000 =51 | wperma]

= J V(f)(zeﬂ"f‘> dof

| tmrwpyieras

—00

Referring back to the definition of the inverse transform reveals that the bracketed
term must be F[dv(t)/dt], so

d i
g;v(f) < j2mfV(f)

and by iteration we get
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n

E0() o (27 V) 0

which is the differentiation theorem.

Now suppose we generate another function from v(#) by integrating it over all
past time. We write this operation as [, v(A) dA, where the dummy variable A is
needed to avoid confusion with the independent variable ¢ in the upper limit. The
integration theorem says that if

V(0) = J o) dr = 0 [9a]

i o]

then

‘ 1
J v(A) dA (—é‘% V(f) [9b]

-

The zero net area condition in Eq. (9a) ensures that the integrated signal goes to zero
as t — co. (We’ll relax this condition in Sect. 2.5.)
To interpret these theorems, we see that

Spectral interpretation thus agrees with the time-domain observation that differenti-
ation accentuates time variations while integration smoothes them out.
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Triangular Pulse

The waveform z,(f) in Fig. 2.3-1b has zero net area, and integration produces a tri-
angular pulse shape. Specifically, let

w(t) = % J— ) dh = A(l - @) | < 7

0 lt]| > 7

which is sketched in Fig. 2.3—4a. Applying the integration theorem to Z,(f) from
Example 2.3-1, we obtain

1

W(f) = — —— Z,(f) = Arsinc* fr

1
jwf
as shown in Fig. 2.3-4b. A comparison of this spectrum with Fig. 2.2-2 reveals that
the triangular pulse has less high-frequency content than a rectangular pulse with

EXAMPLE 2.3-3
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w(t) W)
AT
A
t . f
-7 0 T ' VS U
{a) (bl

Figure 2.3-4 A triangular pulse and its spectrum.

amplitude A and duration T, althbugh they both have area At. The difference is
traced to the fact that the triangular pulse 1s spread over 27 seconds and does not have
the sharp, stepwise time variations of the rectangular shape.

This transform pair can be written more compactly by defining the triangular
function

4

1 —--—= It <7
A 1) = T [0l
T 0 lt| > =
Then w(t) = AA{/7) and
AA<£> > AT sinc® fr 111

It so happens that triangular functions can be generated from rectangular functions

by another mathematical operation, namely, convolution. And convolution happens
to be the next item on our agenda.

EXERCISE 2.3-2

A dual of the differentiation theorem is
1 d"
(—j2m)" df"
Derive this relationship for n = 1 by differentiating the transform integral F[v(f)]
with respect to f.

t"u(t) <> V() {121

24 CONVOLUTION

The mathematical operation known as convolution ranks high among the tools used
by comrmunication engineers. Its applications include system analysis and probabil-

ity theory as well as transform calculations. Here we are concerned with convolution
in the time and frequency domains.
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Convolution Integral

The convolution of two functions of the same variable, say v(¢) and w(?), is defined by

vew(l) 2 J v(M)w(t — A) dA [
The notation v * w(t) merely stands for the operation on the right-hand side of Eq. (1)
and the asterisk (%) has nothing to do with complex conjugation. Equation (1) is the
convolution integral, often denoted v * w when the independent variable is unam-
biguous. At other times the notation [v(#)] * [w(?)] is necessary for clarity. Note care-
fully that the independent variable here is ¢, the same as the independent variable of
the functions being convolved; the integration is always performed with respect to a
dummy variable (such as A) and ¢ is a constant insofar as the integration is concerned.
Calculating v * w(¢) is no more difficult than ordinary integration when the two
functions are continuous for all ¢. Often, however, one or both of the functions is
defined in a piecewise fashion, and the graphical interpretation of convolution
becomes especially helpful.
By way of illustration, take the functions in Fig. 2.4—1a where

v(t) = Ae™* 0 <<
w(t) = t/T 0<:<T
For the integrand in Eq. (1), v(A) has the same shape as v(¢) and

t— A
W= =——/= 0<t-A<T

But obtaining the picture of w(t — A) as a function of A requires two steps: first, we
reverse w(?) in time and replace ¢ with A to get w(— A); second, we shift w(—A) to the
right by ¢ units to get w[—(A — )] = w(t — A) for a given value of . Figure 2.4-15
shows v(A) and w(t — A) with ¢ < 0. The value of ¢ always equals the distance from
the origin of v(A) to the shifted origin of w(—A) indicated by the dashed line.

As v * w(r) is evaluated for —oco <t < oo, w(t — A) slides from left to right with
respect to v(A), so the convolution integrand changes with ¢. Specifically, we see in

Fig. 2.4-1b that the functions don’t overlap when ¢ < 0; hence, the integrand equals
zero and

vEw(t) =0 t<0

When O <t < T asin Fig. 2.4-1c, the functions overlap for 0 < A <, so t becomes
the upper limit of integration and

t 3 t“‘
JAe "( A) dA
, T

A -t
=Z(—1+e) 0<:i<T

v w(t)

33



54 CHAPTER 2 ®  Signals and Spectra

U(t) W(f)
A
1.0
t t
0 0 T
(a)
w(t - A) §
| b(Y)
’ A
¢ 0
{b)
A
L A
0 t-T t
(d)
Figure 2.4-1 Graphical interpretation of convolution.

Finally, when ¢ > T as in Fig. 2.4-1d, the functions overlap for t — 7' << A <t and

Lo (t—A
Mw@=JAe<L—>M
t—T T

A
==(T -1+ e D t>T
T
The complete result plotted in Fig. 2.4-2 shows that convolution is a smoothing oper-
ation in the sense that v * w(?) is “smoother” than either of the original functions.
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A
=(T-1+et
T( )

AT 14 et)ett-n
T

{ t
0 T

Figure 2.4-2 Result of the convolution in Fig. 2.4-1.

Convolution Theorems

The convolution operation satisfies a number of important and useful properties.
They can all be derived from the convolution integral in Eq. (1). In some cases they
are also apparent from graphical analysis. For example, further study of Fig. 2.4-1
should reveal that you get the same result by reversing v and sliding it past w, so
convolution is commutative. This property is listed below along with the associa-
tive and distributive properties.

UV*W = W%V [2d]
ve(wxz) = (U*w) =g [2b]
ve(wtz)=(v*w) + (v*2) (2]

All of these can be derived from Eq. (1).

Having defined and examined the convolution operation, we now list the two
convolution theorems:

vxw(t) < V()W) (3]
v(t)w(t) « V= W(f) [4]

These theorems state that convolution in the time domain becomes multiplication in

the frequency domain, while multiplication in the time domain becomes convolution

in the frequency domain. Both of these relationships are important for future work.
The proof of Eq. (3) uses the time-delay theorem, as follows:

Flvxw(t)] = JOO { va()\)w(t —\) d/\}e‘f“" dt

-0 —oQ

_ J °°vu>[ me(r — A)e dr} 2

-

[ otwene ) an

—co
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_ { J T (e dA]W(f) = V()W)

-0

Equation (4) can be proved by writing out the transform of v(9)w(#) and replacing
w(?) by the inversion integral %~ W(/)].

EXAMPLE 2.4.1

Trapezoidal Pulse

To illustrate the convolution theorem—and to obtain yet another transform pair—

let’s convolve the rectangular pulses in Fig. 2.4-3a. This is a relatively simple task

using the graphical interpretation and symmetry considerations. If 7; > 7,, the prob-
lem breaks up into three cases: no overlap, partial overlap, and full overlap.

Fig. 2.4-3b shows v(A) and w(t — A) in one case where there is no-overlap and

v * w(f) = 0. For this region

.
f+2< -2
2 2
or
(1 + 1)
2

<

There is a corresponding region with no overlap where t — 7,/2 > 1,/2,0rt > (1, +
7,)/2. Combining these together yields the region of no overlap as |f| > (1, + 7)/2.
In the region where there is partial overlap t + 7,/2 > —7,/2 and t — 1,/2 < —1,/2,

~ which yields

+ T+ T T+ T T, T
v*w(t)=JT AlAzd)\=A1A2(t+ 12 2) - ‘2 2t < - 12 2
3

By properties of symmetry the other region of partial overlap can be found to be

m

2 T+ T TN T TtT
U*W(t)'-"JTAlAzd/\=A1A2<—t+1 2) 12 o L2

% 2 2

Finally, the convolution in the region of total overlap is

412
2
U * W(t) = J r AlAzd/\. = A1A2'1—2 lt( <

)

T, — T

2

The result is the trapezoidal pulse shown in Fig. 2.4-3¢, whose transform will be the
product V(/)W(f) = (A7, sinc f7,) (A,7, sinc f7,).

Now let 7, = 7, = T s0 the trapezoidal shape reduces to the triangular pulse
back in Fig. 2.3-4a with A = A 4,7. Correspondingly, the spectrum becomes (A7
sinc fr) (Ay7 sinc fr) =AT sinc? fr, which agrees with our prior result.
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v(®) w(?)
A;
Ay
t t
‘ T1 | T2
(a)
v(A) w(t — A)
Ay +
Ay
A + A
-T2 /2 t—Tpf2 T t+1y2
(bl
v = w(l)
t
Figure 2.4-3 Convolution of rectangular pulses.
Ideal Lowpass Filter EXAMPLE 2.4~2

In Section 2.1 we mentioned the impact of the discontinuities introduced in a signal
as a result of filtering with an ideal filter. We will examine this further by taking the
rectangular function from Example 2.2-1 v(¢) = ALl(#/+) whose transform, V(f) =
AT sinc fr, exists for all values of f. We can lowpass filter this signal at f = 1/7 by
multiplying V(f) by the rectangular function
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z(®)

Figure 2.4-4

W(f) = H(%;) <« %Sim(%)

z2(r) = v(t) = w(r) = w(t) = v(r) = ij %smc%d)\

The output function is

This integral cannot be evaluated in closed form; however, it can be evaluated

numerically using Table T.4 to obtain the result shown in Fig. 2.4-4. Note the simi-
larity to the result in Fig. 2.1-9b.

EXERCISE 2.4-1

Let v(¢) = A sinc 2Wt, whose spectrum is bandlimited in W. Use Eq. (4) with w(f) =
v(#) to show that the spectrum of v*(f) will be bandlimited in 2W.

2.5 IMPULSES AND TRANSFORNIS IN THE LIMIT

So far we’ve maintained a distinction between two spectral classifications: line
spectra that represent periodic power signals and continuous spectra that represent
nonperiodic energy signals. But the distinction poses something of a quandary when
you encounter a signal consisting of periodic and nonperiodic terms. We’ll resolve
this quandary here by allowing impulses in the frequency domain for the represen-
tation of discrete frequency components. The underlying notion of transforms in
the limit also permits the spectral representation of time-domain impulses and other
signals whose transforms don’t exist in the usual sense.

Properties of the Unit Impulse

The unit impulse or Dirac delta function &(¢) is not a function in the strict mathe-
matical sense. Rather, it belongs to a special class known as generalized functions
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or distributions whose definitions are stated by assignment rules. In particular, the
properties of 6(¢) will be derived from the defining relationship

rv(z) (1) di = {U(O) <0<t »

) 0 otherwise
1

where v(f) is any ordinary function that’s continuous at ¢ = 0. This rule assigns a
number—either v(0) or 0—to the expression on the left-hand side. Equation (1) and
all subsequent expressions will also apply to the frequency-domain impulse 6(f) by
replacing ¢ with f.

Ifv(®) = 1in Eq. (1), it then follows that

J 8(t) dr = J 8(t)dt =1 - {2
with € being arbitrarily small. We interpret Eq. (2) by saying that 6(¢) has unit area
concentrated at the discrete point + = 0 and no net area elsewhere. Carrying this
argument further suggests that

8(t) =0 t# 0 (3]

Equations (2) and (3) are the more familiar definitions of the impulse, and lead to
the common graphical representation. For instance, the picture of A 6(t — 1) is
shown in Fig. 2.5-1, where the letter A next to the arrowhead means that A 6(t — ¢,)
has area or weight A located at ¢ = 1,

Although an impulse does not exist physically, there are numerous conventional
functions that have all the properties of 6(¢) in the limit as some parameter € goes to
zero. In particular, if the function 6 (¢) is such that

1ir% J v(t) 8.(¢) dt = v(0) [4q]
then we say that
lir% 8.(t) = 8(¢) {4b]
A
t

Oi 1

Figure 2.5-1  Graphical representation of A8(t — tj.
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Two functions satisfying Eq. (4a) are

8(t) = éH (é) [5]

1 t
5e(f) = E sinc _E— [6]

which are plotted in Fig. 2.5-2. You can easily show that Eq. (5) satisfies Eq. (4a) by
expanding v(?) in a Maclaurin series prior to integrating. An argument for Eq. (6)
will be given shortly when we consider impulses and transforms.

By definition, the impulse has no mathematical or physical meaning unless it

appears under the operation of integration. Two of the most significant integration
properties are

v(t) * 8(r — 1) = vt — ty) [7]

[ v(e) 8(t — t,) dr = v(ty) (8]
—00
both of which can derived from Eq. (1). Equation (7) is a replication operation,
since convolving v(¢) with 8(t — t,) reproduces the entire function v(¢) delayed by ¢,.
In contrast, Eq. (8) is a sampling operation that picks out or samples the value of
v(?) at t = t;— the point where 8(¢ — t,) is “located.”
Given the stipulation that any impulse expression must eventually be integrated,

you can use certain nonintegral relations to simplify expressions before integrating.
Two such relations are

u(r) 8(t — t5) = v(z,) (¢ — t,) [9q]
&(at) = |—i~| a(t) a#0 [95]
iﬂ(%) 1 — sinc — 1
7 4
_£0 e -2 2¢
2 2

Figure 2.5-2 Two functions that become impulses as € — 0.
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which are justified by integrating both sides over —co < t < co. The product relation
in Eq. (9a) simply restates the sampling property. The scale-change relation in
Eq. (9b) says that, relative to the independent variable ¢, 8(ct) acts like 8(¢)/|c|. Set-
ting « = —1 then brings out the even-symmetry property 6(—¢) = 8(%).
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Evaluate or simplify each of the following expressions with v(¢) = (¢ — 3)

(@) | ole) s+ 4) a6 v(0) = 00 + 435 (0) () 80 + 4% ) w() = 8=1/4).

-

EXERCISE 2.5-1

Impulses in Frequency

Impulses in frequency represent phasors or constants. In particular, let v(f) = A be a
constant for all time. Although this signal has infinite energy, we can obtain its
transform in a limiting sense by considering that

v(t) = lim A sinc2Wt = A [10d]
W0

Now we already have the transform pair A sinc 2Wt «<>(A2W)IL(f72W), so

A f
T = lim — | =
Flv(1)] Lim, W I1 (2W> A 8(f) [10b]
which follows from Eq. (5) with € = 2W and ¢ = f. Therefore,
A<>AS8(f) [11]

and the spectrum of a constant in the time domain is an impulse in the frequency
domain at f = 0.

This result agrees with intuition in that a constant signal has no time variation
and its spectral content ought to be ¢onfined to f = 0. The impulsive form results
simply because we use integration to return to the time domain, via the inverse
transform, and an impulse is required to concentrate the nonzero area at a discrete
point in frequency. Checking this argument mathematically using Eq. (1) gives

FHAS(S)] = J A 8(f)el*™ dt = Ae*™t o =A
which justifies Eq. (11) for our purposes. Note that the impulse has been integrated
to obtain a physical quantity, namely the signal v(t) = A.
As an alternative to the above procedure, we could have begun with a rectangu-
lar pulse, AIl(#/), and let 7 — oo to get a constant for all time. Then, since
F[ATL(#/7)] = AT sinc fr, agreement with Eq. (11) requires that

lim A7 sincfr = A 8(f)
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And this supports the earlier assertion in Eq. (6) that a sinc function becomes an
impulse under appropriate limiting conditions.

To generalize Eq. (11), direct application of the frequency-translation and mod-
ulation theorems yields

Ael* <> A §(f ~ £.) [12]
eid

2

Ae/® A
A cos (0.t + ) = = 8(f — f.) + == 8(f + £ nal
Thus, the spectrum of a single phasor is an impulse at f = f. while the spectrum of a
sinusoid has two impulses, shown in Fig. 2.5-3. Going even further in this direction,
if v(#) is an arbitrary periodic signal whose exponential Fourier series is

o0

v(t) = D c(nfy)e?H [14a]
then its Fourier transform is
V() = 2 clnfo) 3(f — nfo) [14b]

where superposition allows us to transform the sum term by term.

By now it should be obvious from Egs. (11)—(14) that any two-sided line spec-
trum can be converted to a “continuous” spectrum using this rule: convert the spec-
tral lines to impulses whose weights equal the line heights. The phase portion of the
line spectrum is absorbed by letting the impulse weights be complex numbers.
Hence, with the aid of transforms in the limit, we can represent both periodic and
nonperiodic signals by continuous spectra. That strange beast the impulse function
thereby emerges as a key to unifying spectral analysis.

But you may well ask: What'’s the difference between the line spectrum and the
“continuous” spectrum of a period signal? Obviously there can be no physical dif-
ference; the difference lies in the mathematical conventions. To return to the time
domain from the line spectrum, we sum the phasors which the lines represent. To

return to the time domain from the continuous spectrum, we integrate the impulses
to get phasors.

A, e % eid

_fc 0

o

Figure 2.5-3 Spectrum of A cos |wt + ¢).
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The sinusoidal waveform in Fig. 2.5-4a has constant frequency f, except for the
interval —1/f. < t < 1/f, where the frequency jumps to 2f.. Such a signal might be
produced by the process of frequency modulation, to be discussed in Chap. 5. Our
interest here is the spectrum, which consists of both impulsive and nonimpulsive
components.

For analysis purposes, we’ll let 7 = 2/f, and decompose v(¢) into a sum of three
terms as follows:

v(t) = A cos w.t — AIl(t/7) cos w .t + ATL(t/7) cos 2w, t

The first two terms represent a cosine wave with a “hole” to make room for an RF
pulse at frequency 2f_ represented by the third term. Transforming v(¢) term by term
then yields

4
2

V(f) =5 8(f —f) + 8(f + £)]

L Lsine (1 = £ + sine (£ + £)r]

+ %Z [sinc (f — 2f.)7 + sinc (f + 2f.)7]

where we have drawn upon Eq.(13) and the results of Example 2.3-2. The ampli-
tude spectrum is sketched in Fig. 2.5-4b, omitting the negative-frequency portion.
Note that |V(f)| is not symmetric about f = f. because the nonimpulsive component
must include the term at 2f,.

v(®)

A

, ANANIWAN ANV
VAR VAVILVAVEA VAV

(a)

WA A2

(b]

Figure 2.5-4 Waveform and amplitude spectrum in Example 2.5-1.

EXAMPLE 2.5-1
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Step and Signum Functions

We’ve seen that a constant for all time becomes a dc impulse in the frequency
domain. Now consider the unit step function in Fig. 2.5-5a which steps from “off”
to “on” at ¢ = O and is defined as

1 t>0
u(t) £ {O <0 [15]

This function has several uses in Fourier theory, especially with regard to causal
signals since any time function multiplied by %(f) will equal zero for t < 0. However,
the lack of symmetry creates a problem when we seek the transform in the limit,
because limiting operations are equivalent to contour integrations and must be
performed in a symmetrical fashion—as we did in Eq. (10). To get around this prob-
lem, we’ll start with the signum function (also called the sign function) plotted in
Fig. 2.5-5b and defined as

A{+1 t>0

>80 -1 t<0 el

which clearly has odd symmetry.

The signum function is a limited case of the energy signal z(f) in Fig. 2.5-6
where v(f) = e~ ?u(r) and

=00 {70120

u(t)

(a)

sgn ¢

(b}

Figure 2.5-5 {a) Unit step function; {b) signum function.
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z2(5)

1 v(r)

~1/b
0 /b
—-v(-1) )

Figure 2.5-6

so that z(¢) — sgn ¢ if b — 0. Combining the resuits of Example 2.2-2 and Exercise
2.3-1 yields

: —jAnf
Flz(t)] = Z(f) = j2Vo(f) = Pt (2l
Therefore,
: —J
el co = = <
Flsgnt} = lim Z(f) = — "
and we have the transform pair
sgn t<——>,L -n71

jmf
We then observe from Fig. 2.5-5 that the step and signum functions are related by
u(t) =3(sgn t + 1) =3sgns + 3

Hence,

L L (18]

u(t) <> -
2nf 2

since F[1/2] = 18(f).

Note that the spectrum of the signum function does not include a dc impulse.
This agrees with the fact that sgn ¢ is an odd function with zero average value when
averaged over all time, as in Eq. (9), Sect. 2.1. In contrast, the average value of the
unit step is <u()> = 1/2 so its spectrum includes 8(f)—just as the transform of a
periodic signal with average value ¢(0) would include the dc term c(0) 8(f).

An impulsive dc term also appears in the integration theorem when the signal
being integrated has nonzero net area. We derive this property by convolving u(r)
with an arbitrary energy signal v(?) to get \

vxu(t) = J'Oov()\)u(t — A)dA (19]

-0
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= J[ v(A) dA

hate o)

since u(t — A) = O for A > ¢. But from the convolution theorem and Eq. (18)

Fo * )] = V)| 35+ 390
SO

1

~ V(0) 8(f) (201

M) + 3

t
1
v(A) dA <——>
| smane s
where we have used V(f) 8(f) = V(0) 6(f). Equation (20) reduces to our previous
statement of the integration theorem when V(0) =

EXERCISE 2.5-2

Apply the modulation theorem to obtain the spectrum of the causal sinusoid v(t) =
Au(r) cos wt.

Impulses in Time

Although the time-domain impulse 8(¢) seems a trifle farfetched as a signal model,
we’ll run into meaningful practical applications in subsequent chapters. Equally
important is the value of 6(¢) as an analytic device. To denve its transform, we let
7 — 0 in the known pair

4 H(—t—) <> Asinc fr
T T

which becomes

AS() <> A [21]

Hence, the transform of a time impulse has constant amplitude, meaning that its
spectrum contains all frequencies in equal proportion.

You may have noticed that A 5(f) <> A is the dual of A <> A (). This dual rela-
tionship embraces the two extremes of reciprocal spreading in that

Applying the time-delay theorem to Eq. (21) yields the more general pair

A8t — ty) > Ae™ /M [22]
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It’s a simple matter to confirm the direct transform relationiship F[AS8(t — t)] =
Ae™*™; consistency therefore requires that &~ ![Ae 7*™%] = A §(t — t,), which
leads to a significant integral expression for the unit impulse. Specifically, since

=5}
G}-l[e"jz"’"ftd] — J' e—j2-n'ftdej2‘n'ft df
—o0

we conclude that

J eI ) gf = §(1 — 1) [23]
Thus, the integral on the left side may be evaluated in the limiting form of the unit
impulse—a result we’ll put immediately to work in a proof of the Fourier integral
theorem.
Let v(¢) be a continuous time function with a well-defined transform V(f) =
F[v(n)]. Our task is to show that the inverse transform does, indeed, equal v(¢). From
the definitions of the direct and inverse transforms we can write

FUV(A] = ro Hmu()\)e"mfA d)\]eﬂ”f‘ af

= [ u()\)U e J2mE=Nf df] dr
But the bracketed integral equals 6(¢t — A), from Eq. (23), so
F V()] = J v(A) 8(t — A) dh = v(r) * 8(¢) [24]

Therefore F~! [V(f)] equals v(?) in the same sense that v(f) * 8(f) = v(¢). A more
rigorous proof, including Gibbs’ phenomenon at points of discontinuity, is given by
Papoulis (1962, Chap. 2).

Lastly, we relate the unit impulse to the unit step by means of the integral

! 1 t >ty
oA — dr = 25
Lx, ( ta) dA {0 <ty (25]
= u(t — ty)

~Differentiating both sides then yields

d
8(t—ty) = % u(t — t,) [26]

which provides another interpretation of the impulse in terms of the derivative of a
step discontinuity.

Equations (26) and (22), coupled with the differentiation theorem, expedite cer-
tain transform calculations and help us predict a signal’s high-frequency spectral
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rolloff. The method is as follows. Repeatedly differentiate the signal in question
until one or more stepwise discontinuities first appear. The next derivative, say the

nth, then includes an impulse A, 8(+ — #) for each discontinuity of height A, at t =
te, SO

cft" v(t) = w(t) + D A8t — 1) [274]
k

where w(¢) is a nonimpulsive function. Transforming Eq. (27a) gives

(2mf)Y'V(f) = W(f) + D) Age > [27b]
k

which can be solved for V(f) if we know W(f) = F [w(1)].

Furthermore, if |W(f)| — 0 as f— oo, the high-frequency behavior of |V(f)| will
be proportional to |f|™ and we say that the spectrum has an rth-order rolloff. A
large value of n thus implies that the signal has very little high-frequency content—
an important consideration in the design of many communication systems.

EXAMPLE 2.5-2

Raised Cosine Pulse

Figure 2.5~7a shows a waveform called the raised cosine pulse because

o) = %(1 + cos ”{)n(é)

We’ll use the differentiation method to find the spectrum V(f) and the high-
frequency rolloff. The first three derivatives of v(¢) are sketched in Fig. 2.5-7b, and

we see that
av(t) <7T> A | Tt < t )
= ~| — | = sin —II{ —
dt T) 2 T 2T

which has no discontinuities. However, d?v(¢)/d¢? is discontinuous at t = =7 so

a? T\ A | ot t T\ A T\ A
EU([) = (‘;) ESIHTH<;> + (‘;) 55(1‘ + T) — (;*) —2—3(2‘— T)

This expression has the same form as Eq. (27a), but we do not immediately know
the transform of the first term.

Fortunately, a comparison of the first and third derivatives reveals that the first
term of @v(r)/df> can be written as w(t) = —(w/7)? dv(¢)/dt. Therefore, W(f) =
— (w27 )V(f) and Eq. (27b) gives

() = =(Z ) pmpvis) + (T ) & ermr - ooy

T



v(f)

&
i
SIE]
(SN

-7 0 T
{a)
d%v
" N
2 @l @
-7 0 T
(5)%
(b)
Ar
W
AT e ‘\“ AT

0 1727 1/ 3/271 2/7

c)

Figure 2.5~7 Raised cosine pulse. (a) Waveform; (b) derivatives; (c) amplitude spectrum.
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Routine manipulations finally produce the result
_ JA sin 21 fr _ AT sinc 2f7
j2mf + (r/my(j2mf) 1= @fr)

whose amplitude spectrum is sketched in Fig. 2.5-7¢ for f= 0. Note that [V(f)| has
a third-order rolloff (n = 3), whereas a rectangular pulse with [V(f)| = |sinc f7| =
|(sin 7fr)/(7fr)| would have only a first-order rolloff.

V(f)

EXERCISE 2.5-3

Let v(r) = RA/)IL({/7). Sketch dv(¢)/dt and use Eq. (27) to find V(f).

2.1-1

2.1-2

2.1-3
2.1-4
2.1-5

2.1-6

2.6 PROBLEMS

Consider the phasor signal v(f) = Ae/®e?™0", Confirm that Eq. (14) yields just one
nonzero coefficient ¢, having the appropriate amplitude and phase.

If a periodic signal has the even-symmetry property v(—t) = v(f), then Eq. (14)
may be written as

5 (T2
€= T J u(t) cos (2mnt/Ty) dt
To J;

Use this expression to find ¢, when v(#) = A for |¢| < Ty/4 and v(f) = —A for T4 <
|t} < Ty/2. As a preliminary step you should sketch the waveform and determine c,
directly from (v(t)}. Then sketch and label the spectrum after finding c,.

Do Prob. 2.1-2 with v(f) = A — 2A|{/T, for || < Ty2.
Do Prob. 2-1-2 with v(#) = A cos Qmt/Ty) for |f| < Ty/2.

If a periodic signal has the odd-symmetry property v(—1) = ~v(f), then Eq. (14)
may be written as

T,/2
= —jo J u(t) sin (2mnt/T,) dt
Ty J,

Use this expression to find ¢, when v(f) = A for 0 < ¢t < Ty2 and v(f) = —A for
—To/2 <t < 0. As a preliminary step you should sketch the waveform and deter-
mine ¢y directly from (v (£)). Then sketch and label the spectrum after finding c,.

Do Prob. 2.1-5 with v(t) = A sin(2m#/Ty) for || < Ty/2.

*Indicates answer given in the back of the book.
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Consider a periodic signal with the half-wave symmetry property (v(t+7y/2) =

——U(t)), so the second half of any period looks like the first half inverted. Show that
¢, = 0 for all even harmonics.

Use Parseval’s power theorem to calculate the average power in the rectangular
pulse train with /7, = 1/4 if all frequencies above |f| > 1/ are removed. Repeat
for the cases where all frequencies above |f| > 2/7 and |f| > 1/27 are removed.

Let v(¢) be the triangular wave with even symmetry listed in Table T.2, and let v'(¥)
be the approximating obtained with the first three nonzero terms of the trigonomet-
ric Fourier series. (@) What percentage of the total signal power is contained in v’(#)?
(b) Sketch v'(¢) for |f| < Ty/2.

Do Prob. 2.1-9 for the square wave in Table T.2.

Calculate P for the sawtooth wave listed in Table T.2. Then apply Parseval’s power
theorem to show that the infinite sum 1/12 + 1/22 + 1/3% + - - - equals 7%/6.

Calculate P for the triangular wave listed in Table T.2. Then apply Parseval’s power
theorem to show that the infinite sum 1/1* + 1/3* + 1/5* + - - - equals 7*/96.

Consider the cosine pulse v(r) = Acos(w#/T)II(¢/T). Show that V(f) = (A1/2)

[sinc(fr — 1/2) + sinc(fr + 1/2]. Then sketch and label |V(f)| for f = 0 to verify
reciprocal spreading.

Consider the sine pulse v(f) = AsinQw#/T)II(#/T). Show that V(f) = —jAT/2)

[sinc(fr — 1) — sinc(fr + 1)]. Then sketch and label |V(f)| for f = O to verify recip-
rocal spreading.

Find V(f) when v(f) = (A — Alz|/7)I1(#/27). Express your result in terms of the sinc
function.

Find V(f) when v(?) = (A#/7)11(¢/21). Express your result in terms of the sinc function.
Use Rayleigh’s theorem to calculate the energy in the signal v(f) = sinc2Wz.

Let v(?) be the causal exponential pulse in Example 2.2-2. Use Rayleigh’s theorem
to calculate the percentage of the total energy contained in |f| < W when W = b/27
and W = 2b/m.

Suppose the left-hand side of Eq. (17) had been written as

Jm v(t)w(t) dt

—Cc0

Find the resulting right-hand side and simplify for the case when v(?) is real and

w(t) = v(®).

Show that F[w'(f)] = W *(—f). Then use Eq. (17) to obtain a frequency-domain
expression for [%° v(f)z(t)dt.

Use the duality theorem to find the Fourier transform of v(f) = sinc2t/7.

Apply duality to the result of Prob. 2.2-1 to find z(¢) when Z(f) = Acos(mfl2W)
LI(f72W).
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Apply duality to the result of Prob. 2.2-2 to find z(#) when Z(f) = —jAsin(mf/W)
II(f/72W).

Use Eq. (16) and a known transform pair to show that
J (a* + x*) % dx = w/da’
0

Let v(r) be the rectangular pulse in Fig. 2.2-1a. Find and sketch Z(f) for z(¢) =
vt — T + vt + T)taking 7 << T.

Repeat Prob. 2.3-1 for z(¢) = v(t — 27) + 2v(®) + v(t + 27).
Repeat Prob. 2.3-1 for z(Y) = v(t — 27) — 2v(¥) + v(t + 27).
Sketch v(?) and find V(f) for

v(t) = AH(t _TT/2> + BH(#)

Sketch v(¢) and find V(f) for

t — 2T t - 2T
o(t) A[( - ) Bn( - )

Find Z(f) in terms of V(f) when z(f) = v(at — t,).

Prove Eq. (6) (p- 48).

Use Eq. (7) to obtain the transform pair in Prob. 2.2-1.

Use Eq. (7) to obtain the transform pair in Prob. 2.2-2.

Use Eq. (7) to find Z(f) when z(f) = Ae M cos w,t.

Use Eq. (7) to find Z(f) when z(f) = Ae™' sin w.t for t = 0 and z(t) = 0 for ¢t < 0.
Use Eq. (12) to do Prob. 2.2-4.

Use Eq. (12) to find Z(f) when z(f) = Ate™?M.

Use Eq. (12) to find Z(f) when z(f) = A2e~* for t = 0 and z(¢) = 0 for ¢ < 0.

Consider the Gaussian pulse listed in Table T.1. Generate a new transform pair by:
(a) applying Eq. (8) with n = 1; (b) applying Eq. (12) with n = 1.

Find and sketch y(r) = v"w(f) when v(t) = tfor 0 < ¢ < 2 and w(¢) = A for t > 0.
Both signals equal zero outside the specified ranges.

Do Prob. 2.4-1 with w(t) = A for 0 <t < 3.
Do Prob. 2.4~-1 with w(t) = Afor 0 <t < 1.

Find and sketch y(t) = v'w(r) when v(t) = 2I1(5%), w(z) = A for ¢t = 4, and
w(t) = 0 otherwise.
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Do Prob. 2.4-4 with w(f) = ¢~ % for ¢t > 0 and w(¢) = 0 otherwise.
Do Prob. 2.4-4 with w(t) = A(%).
Find y(£) = v*w(?) for v(t) = Ae~% for t > 0 and w(f) = Be™¥ for ¢t > 0. Both signals
equal zero outside the specified ranges.

Do Prob. 2.4-7 with w(¢) = sin 7¢ for 0 < t < 2, w(f) = 0 otherwise. (Hint: express
sinusoid as a sum of exponentials)

Prove Eq. (2a) from Eq. (1) (p. 53).

Let v(¢) and w(?) have even symmetry. Show from Eq. (1) that v*w(¢) will have even
symmetry.

Let v(¢) and w(?) have odd symmetry. Show from Eq. (1) that v™w(¢) will have odd
symmetry.

Find and sketch v*v"v when v(¢) = I1(;). You may use the symmetry property
stated in Prob. 2.4-10.

Use Eq. (3) to prove Eq. (2b) (p. 55).
Find and sketch y(£) = v*w(f) when v(¢) = sinc 4¢ and w() = 2 sinc 3.

Consider the signal z(#) and its transform Z(f) from Example 2.3-2. Find z(#) and
Z(fast —0.

Let v(#) be a periodic signal whose Fourier series coefficients are denoted by c¢,(nfy).
Use Eq. (14) and an appropriate transform theorem to express c,(nfy) in terms of
c,(nfy) when w(t) = v(t — t).

Do Prob. 2.5-2 with w(¥) = dv()/d:.
Do Prob. 2.5-2 with w(f) = v() cos mwyt.

Let v() = A for 0 <t <2t and v(t) = 0 otherwise. Use Eq. (18) to find V(f). Check
your result by writing v(#) in terms of the rectangle function. ’

Let v(f) = A for |[f| > 7 and v(f) = 0 otherwise. Use Eq. (18) to find V(f). Check
your result by writing v(¥) in terms of the rectangle function.

Letv(f) = A fort < —T, and v(¢) = —A for ¢t > T, and v(f) = 0 otherwise. Use Eq.
(18) to find V(f). Check your result by letting 7 — O.

Let

w(t) = Jr v(A) dA

—Cco

with v(¢) = (1/€)ll(#/€). Sketch w(f) and use Eq. (20) to find W(f). Then let e = 0
and compare your results with Eq. (18).

Do Prob. 2.5-8 with v(t) = (1/€)e" u(?).

Obtain the transform of the signal in Prob. 2.3-1 by expressing z(¢) as the convolu-
tion of v(#) with impulses.
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Do Prob. 2.5-10 for the signal in Prob. 2.3-2.
Do Prob. 2.5-10 for the signal in Prob. 2.3-3.
8

Find and sketch the signal v(r) = > sin (2mt)6(t — 0.57) using Eq. (9a).
n=0
10

Find and sketch the signal v(t) = >, cos (2m¢)8(r — 0.1n) using Eq. (9a).

n=-10
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Signol fransmission is the process whereby an electrical waveform gets from one location to another, ideally arriv-
ing without distortion. In contrast, signal filtering is an operation that purposefully distorts @ waveform by dlfering
its spectral content. Nonetheless, most transmission systems and filters have in common the properties of linearity and
time invariance. These properties allow us to model both tfransmission and filtering in the time domain in terms of the
impulse response, or in the frequency domain in terms of the frequency response.

This chapter begins with a general consideration of system response in both domains. Then we'll apply our
results to the analysis of signal transmission and distortion for a variety of media and systems such as fiber optics
and satellites. We'll examine the use of various types of filters and filtering in communication systems. Some related

topics—notably transmission loss, Hilbert transforms, and correlation—are included as starting points for subse-
quent development.

OBJECTIVES

After studying this chdpter and working the exercises, you should be able to do each of the following:

1. State and apply the input—output relations for an LTT system in terms of its impulse response h(z), step response
g(®), or transfer function H(f) (Sect. 3.1).

2. Use frequency-domain analysis to obtain an exact or approximate expression for the output of a system (Sect. 3.1).

3. Find H(f) from the block diagram of a simple system (Sect. 3.1).

4. Distinguish between amplitude distortion, delay distortion, linear distortion, and nonlinear distortion (Sect. 3.2).

5. Identify the frequency ranges that yield distortionless transmission for a given channel, and find the equalization
needed for distortionless transmission over a specified range (Sect. 3.2).

6. Use dB calculations to find the signal power in a cable transmission system with amplifiers (Sect. 3.3).

7. Discuss the characteristics of and requirements for transmission over fiber optic and satellite systems (Sect. 3.3).

8. Identify the characteristics and sketch H(f) and A(¢) for an ideal LPF, BPF, or HPF (Sect. 3.4).

9.  Find the 3-dB bandwidth of a real LPF, given H(f) (Sect. 3.4).

10.  State and apply the bandwidth requirements for pulse transmission (Sect. 3.4).
11.  State and apply the properties of the Hilbert transform (Sect. 3.5).

12.  Define the crosscorrelation and autocorrelation functions for power or energy signals, and state their properties
(Sect. 3.6).

13.  State the Wiener-Kinchine theorem and the properties of spectral density functions (Sect. 3.6).

14.  Given H(f) and the input correlation or spectral density function, find the output correlation or spectral density
(Sect. 3.6).

3.1 RESPONSE OF LTI SYSTEMS

Figure 3.1-1 depicts a system inside a “black box” with an external input signal
x(t) and an output signal y(¢). In the context of electrical communication, the sys-
tem usually would be a two-port network driven by an applied voltage or current at
the input port, producing another voltage or current at the output port. Energy stor-



—

e

3.1 Response of LTI Systems

Black box
Input Output

x(f) —{ System — y(¥)

Figure 3.1-1

age elements and other internal effects may cause the output waveform to look quite
different from the input. But regardless of what’s in the box, the system is character-
ized by an excitation-and-response relationship between input and output.

Here we’re concerned with the special but important class of linear time-
invariant systems—or LTI systems for short. We’ll develop the input—output rela-
tionship in the time domain using the superposition integral and the system’s

impulse response. Then we’ll turn to frequency-domain analysis expressed in terms
of the system’s transfer function.

Impulse Response and the Superposition Integral

Let Fig. 3.1-1 be an LTT system having no internal stored energy at the time the

input x(¢) is applied. The output y(z) is then the forced response due entirely to x(z),
as represented by

&) = F[x(t)] (1]

where Fx(#)] stands for the functional relationship between input and output. The
linear property means that Eq. (1) obeys the principle of superposition. Thus, if

X(I) = E ag xk(t) [20}
k
where a, are constants, then

y(t) = Eak [x(t)] [2b]

The time-invariance property means that the system’s characteristics remain fixed
with time. Thus, a time-shifted input x(¢z — z,) produces

Flx(t — )] = y(t — 1) [3]

so the output is time-shifted but otherwise unchanged.
Most LTI systems consist entirely of lumped-parameter elements (such as
resistors capacitors, and inductors), as distinguished from elements with spatially
distributed phenomena (such as transmission lines). Direct analysis of a lumped-

parameter system starting with the element equations leads to the input—output rela-
tion as a linear differential equation in the form

d"y(t) bt g ay(t) '"x(t) . dx(t)

—+ t + b——— + by x(t
a, di" ao)’( b, i U 0 x(2)
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where the a’s and b’s are constant coefficients involving the element values. The
number of independent energy-storage elements determines the value of n, known
as the order of the system. Unfortunately, Eq. (4) doesn’t provide us with a direct
expression for y(#).

To obtain an explicit input—output equation, we must first define the system’s
impulse response

h(t) 2 F[8()] [5]

which equals the forced response when x(¢) = 8(¢). But any continuous input signal
can be written as the convolution x(¢) = x(t) * 8(¢), so

y() = F{ ro x(A)é(r — A) dAjl

- Jw HA)F[8(t — A)] dA

in which the interchange of operations is allowed by virtue of the system’s linearity.
Now, from the time-invariance property, F[8(¢t — A)] = h(t — A) and hence

(1) = ro x(A)h(t — A) dA [6al
= J ) R(M)x(t — A) dA [6b]

where we have drawn upon the commutivity of convolution.

Either form of Eq. (6) is called the superposition integral. It expresses the
forced response as a convolution of the input x(f) with the impulse response h(%).
System analysis in the time domain therefore requires knowledge of the impulse
response along with the ability to carry out the convolution.

Various techniques exist for determining A(f) from a differential equation or
some other system model. But you may be more comfortable taking x(¢) = u(¢) and
calculating the system’s step response

g(t) & Flu(t)] [7c]
from which o
dg(t
=" 7
h(t) ” [7b]

This derivative relation between the impulse and step response follows from the
general convolution property

%[v * ()] = v(r)» {dy:zit)}

Thus, since g(t) = h = u(f) by definition, dg(¥)/dt = h(f) = [du()/dt) = h(t) * () = (D).
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Time Response of a First-Order System

The simple RC circuit in Fig. 3.1-2 has been arranged as a two-port network with
input voltage x(#) and output voltage y(#). The reference voltage polarities are indi-
cated by the +/— notation where the assumed higher potential is indicated by the +
sign. This circuit is a first-order system governed by the differential equation

Similar expressions describe certain transmission lines and cables, so we’re particu-
larly interested in the system response.

From either the differential equation or the circuit diagram, the step response is
readily found to be

g(r) = (1 — e™Yu(r) [8a]

Interpreted physically, the capacitor starts at zero initial voltage and charges toward
y(oo) = 1 with time constant RC when x(¢) = u(¢). Figure 3.1-3a plots this behav-
ior, while Fig. 3.1-3b shows the corresponding impulse response

— L ~t/RC
h(t) RC¢ u(t) (8b]

obtained by differentiating g(¢). Note that g(¢) and h(¢) are causal waveforms since
the input equals zero for ¢t < 0.

The response to an arbitrary input x(f) can now be found by putting Eq. (8b) in
the superposition integral. For instance, take the case of a rectangular pulse applied
att = 0, so x(t) = A for 0 < t < 1. The convolution y(¢) = h * x(¢) divides into
three parts, like the example back in Fig. 2.4-1 with the result that

0 <0
y(t) =< A(l — e™7RC) 0<t<r [9]
A(]. _ e—T/RC)e—(t—-r)/RC E> T

as sketched in Fig. 3.1—4 for three values of 7/RC.

Figure 3.1-2 RC lowpass filter.

EXAMPLE 3.1-1
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(b)
Figure 3.1-3 Output of an RC lowpass filter. (] Step response; (b} impulse response.
Al A ,
0
(a)
(c}
Figure 3.1-4 Rectangular pulse response of an RC lowpass filter. {a) 7 >> RC; [b) T = RC;
{¢) 7 << RC.

Let the resistor and the capacitor be interchanged in Fig. 3.1-2. Find the step and

impulse response.

Transfer Functions and Frequency Response
Time-domain analysis becomes increasingly difficult for higher-order systems, and

EXERCISE 3.1-1
the mathematical complications tend to obscure significant points. We’ll gain a dif-




Lt

3.1 Response of LTI Systems

ferent and often clearer view of system response by going to the frequency domain.
As a first step in this direction, we define the system transfer function to be the
Fourier transform of the impulse response, namely,

H(f) & F[h()] = ro h(t)e ¥ dt [10]

—cQ

This definition requires that H(f) exists, at least in a limiting sense. In the case of an
unstable system, A(f) grows with time and H(f) does not exist.
When A(?) is a real time function, H(f) has the hermitian symmetry

H(=f) = H¥(f) [11d]
so that
\H(=f)| = |H(f)|  argH(—f) = —arg H(f) [11b]

We’ll assume this property holds unless otherwise stated.

The frequency-domain interpretation of the transfer function comes from
¥(t) = h* x(¢t) with a phasor input, say

x(t) = A e/®gi¥mh! —o0 <t <0 (124

The stipulation that x(#) persists for all time means that we’re dealing with steady-

state conditions, like the familiar case of ac steady-state circuit analysis. The steady-
state forced response is

y(t) = J h(A)Axej‘i’xéjZﬂfo(t—A) dA

-2

= |: J h(/\)e—jZﬁfoAd/\il Axej‘i’* ej21-rfo:

-0

= H(fO)Ax eI p i 2fet

where, from Eq. (10), H(f;) equals H(f) with f = f,. Converting H(f;) to polar
form then yields

y(t) = A, e/® el —00 <t < 00 [12b]
in which we have identified the output phasor’s amplitude and angle
A, = |H(f))|Ax ¢, = ag H(fo) + ¢, (13]
Using conjugate phasors and superposition, you can similarly show that if
x(t) = A, cos 2mfyt + ¢ )
then
¥(t) = A, cos 27fot + ¢,)
with A, and ¢, as in Eq. (13).
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Since A,/A, = |H(f,)| at any frequency f;, we conclude that |H(f }| represents
the system’s amplitude ratio as a function of frequency (sometimes called the
amplitude response or gain). By the same token, arg H(f) represents the phase
shift, since ¢, — ¢, = arg H(f;). Plots of |H(f)| and arg H(f) versus frequency
give us the frequency-domain representation of the system or, equivalently, the sys-
tem’s frequency response. Henceforth, we’ll refer to H(f) as either the transfer
function or frequency-response function. _

Now let x(f) be any signal with spectrum X(f). Calling upon the convolution
theorem, we take the transform of y(¢) = & * x(¢) to obtain

Y(f) = H(f)X(f) 114]

This elegantly simple result constitutes the basis of frequency-domain system analy-
sis. It says that

The corresponding amplitude and phase spectra are

|Y()] = [H(AHONX()
arg Y(f) = arg H(f ) + arg X(f)

which compare with the single-frequency expressions in Eq. (13). If x(¢) is an
energy signal, then y(f) will be an energy signal whose spectral density and total
energy are given by

i

IY(A)I> = |H(F)PIX(A)IP [15a]
E, J \H(f)PIX(f )P af [15b]

as follows from Rayleigh’s energy theorem.

Equation (14) sheds new light on the meaning of the system transfer function
and the transform pair hA(t) <> H(f). For if we let x(¢) be a unit impulse, then
X(f) =1 and Y(f) = H(f)—in agreement with the definition y(¢t) = h(t) when
x(t) = 8(t). From the frequency-domain viewpoint, the “flat” input spectrum
X(f) = 1 contains all frequencies in equal proportion and, consequently, the output
spectrum takes on the shape of the transfer function H(f).

Figure 3.1-5 summarizes our input-output relations in both domains. Clearly,
when H(f) and X(f) are given, the output spectrum Y(f) is much easier to find than
the output signal y(#). In principle, we could compute y(¢) from the inverse transform

) = 5 HX] = |

e e}

H(f)X(f )e?™ df

But this integration does not necessarily offer any advantages over time-domain
convolution. Indeed, the power of frequency-domain system analysis largely
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Input System Output
x(8) k() (&) = h % x(2)
X9 H(f) Y(f)=H(OHX( )
Figure 3.1-5 Inpui~output relations for an LTl system.
depends on staying in that domain and using our knowledge of spectral properties to
draw inferences about the output signal.

Finally, we point out two ways of determining H(f) that don’t involve A(f). If
you know the differential equation for a lumped-parameter system, you can imme-
diately write down its transfer function as the ratio of polynomials

b(jmf)™ + - + b(j27f) + b
H(f) = ( )" 1(] f) 0 [16]
0 (J2mf) + o+ a(j2mf) + ag
whose coefficients are the same as those in Eq. (4). Equation (16) follows from
Fourier transformation of Eq. (4).

Alternatively, if you can calculate a system’s steady-state phasor response,

Eqgs. (12) and (13) show that
t) .
H(f) = ) when  x(t) = /™! [17]
x(t)

This method corresponds to impedance analysis of electrical circuits, but is equally
valid for any L'TT system. Furthermore, Eq. (17) may be viewed as a special case of
the s domain transfer function H(s) used in conjunction with Laplace transforms.
Since s = o + jw in general, H(f) is obtained from H(s) simply by letting s = j2f.
These methods assume, of course, that the system is stable.
Frequency Response of a First-Order System EXAMPLE 3.1-2

The RC circuit from Example 3.1-1 has been redrawn in Fig. 3.1-6a with the
impedances Zz = R and Z; = l/jwC replacing the elements. Since y(£)/x(t) =
Zl(Ze + Zg) when x(f) = &, Eq. (17) gives

(1/j2mfC) 1
H(f) =7 =T
(1/j2mfC) + R 1 + j2wfRC
1
= ———C [184]
1+ j(f/B)
where we have introduced the system parameter
a1
= 18b
B 27RC 18]
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Identical results would have been obtained from Eq. (16), or from H(f) = F[h(t)].
(In fact, the system’s impulse response has the same form as the causal exponential
pulse discussed in Example 2.2-2.) The amplitude ratio and phase shift are

1

lH(f)} = W arg H(f) = ~arctan£ [18¢]

as plotted in Fig. 3.1-65 for f = 0. The hermitian symmetry allows us to omit
f < 0 without loss of information.

The amplitude ratio |H(f)| has special significance relative to any frequency-
selective properties of the system. We call this particular system a lowpass filter
because it has almost no effect on the amplitude of low-frequency components, say
| f| << B, while it drastically reduces the amplitude of high-frequency components,
say |f| => B. The parameter B serves as a measure of the filter’s passband or
bandwidth.

To illustrate how far you can go with frequency-domain analysis, let the input x(¢)
be an arbitrary signal whose spectrum has negligible content for | f| > W. There are
three possible cases to consider, depending on the relative values of B and W:

1. IfW << B,asshowninFig. 3.1-7a, then |H(f)| =~ 1 and arg H(f) = O over the
signal’s frequency range | f| < W.Thus, Y(f) = H(f)X(f) = X(f) and y(¢) =
x(#)so we have undistorted transmission through the filter.

2. If W= B, as shown in Fig. 3.1-7b, then Y(f ) depends on both H(f) and X(f).
We can say that the output is distorted, since y(t) will differ significantly from
x(¢), but time-domain calculations would be required to find the actual waveform.

H(HI

o

0.707

AR ] o*

1
{ & ]
<
(]
w ey o
\

{a)

Figure 3.1-6 RC lowpass filter.(a) circuit; {b) transfer function.



e

J———

3.1 Response of LTI Systems

X!
0 w f 0 w f 0 w 4
HH( !
— /
0 02; f
YA
/
0 w f 0 w f 0 W f
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Figure 3.1-7 Frequency-domain analysis of a firstorder lowpass filter. (o) B> W, (b) B =
Wi [d) B << W.

3. If W>> B, as shown in Fig. 3.1-7¢, the input spectrum has a nearly constant
value X(0) for |f| < Bso Y(f) = X(0)H(f). Thus, y(t) = X(0)A(z), and the
output signal now looks like the filter’s impulse response. Under this condition,
we can reasonably model the input signal as an impulse.

Our previous time-domain analysis with a rectangular input pulse confirms
these conclusions since the nominal spectral width of the pulse is W = 1/7. The
case W << B thus corresponds to 1/7 << 1/27RC or 7/RC >> 1, and we see in

Fig. 3.1-4a that y(t) = x(t). Conversely, W >> B corresponds to 7/RC << 1 as in
Fig. 3.1~4¢ where y(t) looks more like A(z).
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Find H(f ) when Z; = jwL replaces Z . in Fig. 3.1-6a. Express your result in terms

of the system parameter f, = R/2+L, and justify the name “highpass filter” by
sketching |H( f )| versus f.

EXERCISE 3.1-2
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Block-Diagram Analysis

More often than not, a communication system comprises many interconnected
building blocks or subsystems. Some blocks might be two-port networks with
known transfer functions, while other blocks might be given in terms of their time-
domain operations. Any LTI operation, of course, has an equivalent transfer func-
tion. For reference purposes, Table 3.1-1 lists the transfer functions obtained by
applying transform theorems to four primitive time-domain operations.

Table 3.1-1
Time-Domain Operation Transfer Function
Scalar multiplication ¥(t) = £Kx(2) H(f) = *K

- dx(1)
Differentiation ) = ~ H(f) = j2uf

! 1

Integration y() = J_wx(/\) dA H(f) = ot
Time delay y(t) = x(t — t,) H(f) = e /*fu

When the subsystems in question are described by individual transfer functions, it
is possible and desirable to lump them together and speak of the overall system trans-
fer function. The corresponding relations are given below for two blocks connected in
parallel, cascade, and feedback. More complicated configurations can be analyzed by
successive application of these basic rules. One essential assumption must be made,
however, namely, that any interaction or loading effects have been accounted for in the
individual transfer functions so that they represent the actual response of the subsys-
tems in the context of the overall system. (A simple op-amp voltage follower might be
used to provide isolation between blocks and prevent loading.)

Figure 3.1-8a diagrams two blocks in parallel: both units have the same input
and their outputs are summed to get the system’s output. From superposition it fol-
lows that Y( ) = [H(f) + Hy)(f)]X(f) so the overall transfer function is

H(f) = H,(f) + H(f) Parallel connection [194]

In the cascade connection, Fig. 3.1-85, the output of the first unit is the input to the
second, 50 ¥(f) = Hy(f )[Hy(f)X(f)] and

H(f) = H{(f)H(f) Cascade connection [19b]

The feedback connection, Fig. 3.1-8c, differs from the other two in that the output
is sent back through H,( f) and subtracted from the input. Thus,

Y(f) = Hi(HIX(S) — H()Y(f)]
and rearranging yields Y(f) = {H\(f)/[1 + H\(f )H.(f ) }X(f) so
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H\(f)X(f)
Hi(f)
X(f) YOF) = [H () + H(H] X(f)
4
Hy(f)
Hy(f) X(f)
{a)
X(f) H(F)X(f) | Y(f) = Hy( f)Hof) X(f)
H(f) H(f) —
(b)
X(f) + H\(f)
+ H Nf)=—FF X
\ 1) N P AT N
L Hy(f)
Hy(f) Y(F)
(c) -
Figure 3.1-8 (c) Parallel connection; |b) cascade connection; (c) feedback connection.
H(f) = Hi(/) Feedback connection [194]
1+ Hy(f )HAf)
This case is more properly termed the negative feedback connection as distin-
guished from positive feedback, where the returned signal is added to the input
instead of subtracted.
Zero-Order Hold EXAMPLE 3.1-3

The zero-order hold system in Fig. 3.1-9a has several applications in electrical com-
munication. Here we take it as an instructive exercise of the parallel and cascade
relations. But first we need the individual transfer functions, determined as follows:
the upper branch of the parallel section is a straight-through path so, trivially,
H,(f) = 1, the lower branch produces pure time delay of T seconds followed by
sign inversion, and lumping them together gives H,(f) = —e?™7; the integrator
in the final block has H4(f) = 1/j27f. Figure 3.1-95 is the equivalent block dia-
gram in terms of these transfer functions.

Having gotten this far, the rest of the work is easy. We combine the parallel
branches in H,(f) = H(f) + Hy(f) and use the cascade rule to obtain
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x(7) 1* / 78]
—— e —
Delay - _

{a)

Y(f)
A s
= —e 27 fT
(b)
Figure 3.19  Block diagrams of a zero-order hold. {q] Time domain; (5] frequency domain.

H(f) = Ho(H)H(f) = [H\(f) + Hy(F)]1H5(f)

= [1 — e—J'waT] 1
j2mf
JmfT . —jufT ]
_€ . e o =IT — sin 7wf T oIfT
j2nf i

= T sinc fTe /™7

Hence we have the unusual result that the amplitude ratio of this system is a sinc
function in frequency!

To confirm this result by another route, let’s calculate the impulse response h(%)
drawing upon the definition that y(t) = h(f) when x(¢) = (). Inspection of Fig. 3.1-9a
shows that the input to the integrator then is x(¢) — x(t — T) = 8() — &(t — T), so

h(t) = J [6(A) = 8(A = T)]dA = u(t) —u(t — T)

ie ol

which represents a rectangular pulse starting at ¢z = 0. Rewriting the impulse

response as h(t) = I1[(r — T/2)/T] helps verify the transform relation
h(t) <> H(f).

EXERCISE 3.1-3

Let x(¢t) = ATl(#/7) be applied to the zero-order hold. Use frequency-domain analy-
sistofind y(t) whent << 7,7 = T,and 7 > T.
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3.2 SIGNAL DISTORTION IN TRANSMISSION

A signal transmission system is the electrical channel between an information
source and destination. These systems range in complexity from a simple pair of
wires to a sophisticated laser-optics link. But all transmission systems have two
physical attributes of particular concern in communication: internal power dissipa-
tion that reduces the size of the output signal, and energy storage that alters the
shape of the output.

Our purpose here is to formulate the conditions for distortionless signal trans-
mission, assuming an LTI system so we can work with its transfer function. Then

we’ll define various types of distortion and address possible techniques for mini-
mizing their effects.

Distortionless Transmission

Distortionless transmission means that the output signal has the same “shape” as the
input. More precisely, given an input signal x(¢), we say that

Analytically, we have distortionless transmission if

¥(t) = Kx(t — t,) (1l
where K and ¢, are constants.

The properties of a distortionless system are easily found by examining the out-
put spectrum

Y(f) = Fly()] = Ke7"X(f)
Now by definition of transfer function, Y(f) = H(f)X(f), so

H(f) = KeJou [2]

In words, a system giving distortionless transmission must have constant amplitude
response and negative linear phase shift, so

\H(f)| = |K|  argH(f) = —2mt,f = ml180° [2b]

Note that arg H(f) must pass through the origin or intersect at an integer multiple of
*180°. We have added the term % m180° to the phase to account for K being posi-
tive or negative. In the case of zero time delay, the phase is constant at O or =180°.
An important and rather obvious qualification to Eq. (2) should be stated imme-
diately. The conditions on H(f) are required only over those frequencies where the
input signal has significant spectral content. To underscore this point, Fig. 3.2-1
shows the energy spectral density of an average voice signal obtained from labora-
tory measurements. Since the spectral density is quite small for f < 200 Hz and
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IX(Hr
- — f
0200 3200
Figure 3.2-1 Energy spectral density of an average voice signal.

f > 3200 Hz, we conclude that a system satisfying Eq. (2) over 200 < |f| = 3200
Hz would yield nearly distortion-free voice transmission. Similarly, since the human
ear only processes sounds between about 20 Hz and 20,000 Hz, an audio system that
is distortion free in this range is sufficient.

However, the stringent demands of distortionless transmission can only be sat-
isfied approximately in practice, so transmission systems always produce some
amount of signal distortion. For the purpose of studying distortion effects on various
signals, we’ll define three major types of distortion:

1.  Amplitude distortion, which occurs when
|H(f)| # |K|
2. Delay distortion, which occurs when
arg H(f) # —2rty,f = ml180°

3. Nonlinear distortion, which occurs when the system includes nonlinear ele-
ments

The first two types can be grouped under the general designation of linear distor-
tion, described in terms of the transfer function of a linear system. For the third type,
the nonlinearity precludes the existence of a transfer function. '

EXAMPLE 3.2-1

Suppose a transmission system has the frequency response plotted in Fig. 3.2-2.
This system satisfies Eq. (2) for 20 = | f| = 30 kHz. Otherwise, there’s amplitude

distortion for |f| <20kHz and |f|> 50kHz, and delay distortion for
| 7] > 30 kHz.
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Figure 3.2-2

Linear Distortion

Linear distortion includes any amplitude or delay distortion associated with a linear
transmission system. Amplitude distortion is easily described.in the frequency
domain; it means simply that the output frequency components are not in correct
proportion. Since this is caused by | H(f)| not being constant with frequency, ampli-
tude distortion is sometimes called frequency distortion.

The most common forms of amplitude distortion are excess attenuation or
enhancement of extreme high or low frequencies in the signal spectrum. Less com-
mon, but equally bothersome, is disproportionate response to a band of frequencies
within the spectrum. While the frequency-domain description is easy, the effects in
the time domain are far less obvious, save for very simple signals. For illustration, a
suitably simple test signal is x(t) = cos wyt — 1/3 cos 3wgt + 1/5 cos Swyt, a
rough approximation to a square wave sketched in Fig. 3.2-3. If the low-frequency
or high-frequency component is attenuated by one-half, the resulting outputs are as

shown in Fig. 3.2-4. As expected, loss of the high-frequency term reduces the
“sharpness’ of the waveform.

Figure 3.2-3 Test signal x{f) = cos wet — 1/3 cos Swet + 1/5 cos Swpt.

A
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1+

Figure 3.2-4

WM, A

S

{a) (b}

Test signal with amplitude distortion. (a) Low frequency attenuated; (b high frequency attenuated.

Beyond qualitative observations, there’s little more we can say about amplitude
distortion without experimental study of specific signal types. Results of such stud-
ies are usually couched in terms of required “flat” frequency response—meaning
the frequency range over which |H(f)| must be constant to within a certain toler-
ance so that the amplitude distortion is sufficiently small.

We now turn our attention to phase shift and time delay. If the phase shift is not
linear, the various frequency components suffer different amounts of time delay, and
the resulting distortion is termed phase or delay distortion. For an arbitrary phase
shift, the time delay is a function of frequency and can be found by writing
arg H(f) = —2mft,(f) with all angles expressed in radians. Thus

arg H(f)
27f

which is independent of frequency only if arg H(f) is linear with frequency.

A common area of confusion is constant time delay versus constant phase
shift. The former is desirable and is required for distortionless transmission. The lat-
ter, in general, causes distortion. Suppose a system has the constant phase shift 8
not equal to 0° or xm180°. Then each signal frequency component will be delayed
by 6/21 cycles of its own frequency; this is the meaning of constant phase shift. But
the time delays will be different, the frequency components will be scrambled in
time, and distortion will result.

That constant phase shift does give distortion is simply illustrated by returning
to the test signal of Fig. 3.2-3 and shifting each component by one-fourth cycle, 6 =
—90°. Whereas the input was roughly a square wave, the output will look like the
triangular wave in Fig. 3.2-5. With an arbitrary nonlinear phase shift, the deteriora-
tion of waveshape can be even more severe.

You should also note from Fig. 3.2--5 that the peak excursions of the phase-
shifted signal are substantially greater (by about 50 percent) than those of the input
test signal. This is not due to amplitude response, since the output amplitudes of the
three frequency components are, in fact, unchanged; rather, it 1s because the compo-
nents of the distorted signal all attain maximum or minimum values at the same
time, which was not true of the input. Conversely, had we started with Fig. 3.2-5 as

tAf)=— [3]
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Figure 3.2-5 Test signal with constant phase shift § = —90°.

the test signal, a constant phase shift of +90° would yield Fig. 3.2--3 for the output
waveform. Thus we see that delay distortion alone can result In an increase or
decrease of peak values as well as other waveshape alterations.

Let’s take a closer look at the impact of phase delay on a modulated signal. The
transfer function of an arbitrary channel can be expressed as

H(f) = Aef('"ZWf"g+¢0) = (Aef¢o)e—j277ﬁg (4]

where arg H(f) = —2mft, + ¢oleadstor,(f) = t, — ¢o/27f from Eq. (3). If the
input to this bandpass channel is

x(t) = x,(f) cos wt — x,(t) sin wt (5]

then by the time delay property of Fourier transforms, the output will be delayed by
t,. Since e/® can be incorporated into the sine and cosine terms, the output of the
channel is

¥(1) = Axy(t — t,) cos [w(t — 1,) + ¢o] — Axy(t — t,) sin [w(t — t;) + ¢o]
We observe that arg H(f,) = —wt, + ¢, = —w.l,s0 that
¥(t) = Axy(t — t,) cos [0t — t,)] — Axy(t — ¢t,) sin [w(t — t,)] (6]

From Eq. (6) we see that the carrier has been delayed by ¢, and the signals that mod-
ulate the carrier, x; and x,, are delayed by ¢,. The time delay ¢, corresponding to the
phase shift in the carrier is called the phase delay of the channel. This delay is also
sometimes referred to as the carrier delay. The delay between the envelope of the
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input signal and that of the received signal, t,, is called the envelope or group delay
of the channel. In general, ¢, # ¢,.

This leads to a set of conditions under which a linear bandpass channel is dis-
tortionless. As in the general case of distortionless transmission described earlier,
the amplitude response must be constant. For the channel in Eq. (4) this implies
{H(f)| = |A|. In order to recover the original signals x; and x,, the group delay
must be constant. Therefore, from Eq. (4) this implies that ¢, can be found directly
from the derivative of arg H(f) = 6(f) as

1 do(f)
t,= —7 L (7]
2w df
Note that this condition on arg H(f) is less restrictive than in the general case pre-

sented earlier. If ¢, = O then the general conditions of distortionless transmission
are met and ¢; = ¢,.

EXERCISE 3.2-1

Use Eq. (3) to plot ¢,(f) from arg H(f) given in Fig. 3.2-2.

Equalization

Linear distortion—both amplitude and delay—is theoretically curable through the use
of equalization networks. Figure 3.2-6 shows an equalizer H,(f) in cascade with a
distorting transmission channel Ho(f). Since the overall transfer function is
H(f) = He(f)H.,(f) the final output will be distortionless if He(f)He(f) =
Ke 7% where K and ¢, are more or less arbitrary constants. Therefore, we require that

Ke /et
Bll) = )

[8]

wherever X(f) # 0.

Rare is the case when an equalizer can be designed to satisfy Eq. (8) exactly—
which is why we say that equalization is a theoretical cure. But excellent approxi-
mations often are possible so that linear distortion can be reduced to a tolerable
level. Probably the oldest equalization technique involves the use of loading coils on
twisted-pair telephone lines. These coils are lumped inductors placed in shunt across
the line every kilometer or so, giving the improved amplitude ratio typicaily illus-

trated in Fig. 3.2-7. Other lumped-element circuits have been designed for specific
equalization tasks.

Channel Equalizer

0 men Hf) —20
L

Figure 3.2-6 Channel with equalizer for linear distortion.

i
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Figure 3.2-7 Amplitude ratio of a typical telephone line with and without loading coils for
equalization.

More recently, the tapped-delay-line equalizer, or transversal filter, has
emerged as a convenient and flexible device. To illustrate the principle, Fig. 3.2-8
shows a delay line with total time delay 2A having taps at each end and the middle.
The tap outputs are passed through adjustable gains, c¢_,, ¢g, and ¢;, and summed to
form the final output. Thus '

() = c_x(t) + cox(t — A) + ¢ x(t — 24) [9d]
and
Heq(f) =c, T ¢ et + Cle—jm2A
= (c_1e7P + ¢y + creTIO8)e IR [9b]
Generalizing Eq. (9b) to the case of a 2MA delay line with 2M + 1 taps yields
M . .
= 3 cue o

which has the form of an exponential Fourier series with frequency periodicity 1/A.
Therefore, given a channel Hq(f) to be equalized over |f| < W, you can approxi-
mate the right-hand side of Eq. (8) by a Fourier series with frequency periodicity
1/A = W (thereby determining A), estimate the number of significant terms (which
determines M), and match the tap gains to the series coefficients.

Tapped delay line

Input T A A
Adjust

jus able c§
gains

Figure 3.2-8 Transversal filter with three taps.
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In many applications, the tap gains must be readjusted from time to time to com-
pensate for changing channel characteristics. Adjustable equalization is especially
important in switched communication networks, such as a telephone system, since
the route between source and destination cannot be determined in advance. Sophisti-
cated adaptive equalizers have therefore been designed with provision for automatic
readjustment.

Adaptive equalization is usually implemented with digital circuitry and micro-
processor control, in which case the delay line may be replaced by a shift register
or charge-coupled device (CCD). For fixed (nonadjustable) equalizers, the trans-

versal filter can be fabricated in an integrated circuit using a surface-acoustic-wave
(SAW) device.

EXAMPLE 3.2-2

Multipath Distortion

Radio systems sometimes suffer from multipath distortion caused by two (or more)
propagation paths between transmitter and receiver. Reflections due to mismatched
impedance on a cable system produce the same effect. As a simple example, sup-
pose the channel output is

¥(t) = Kyx(t — t;) + Ky x(t — 1)
whose second term corresponds to an echo of the first if £, > ¢;. Then
Ho(f) = Ke™* + K,e ™/ {111
= Ke (1 + ke ™/®b)
where k = K,/K,;andt, = t, — t,.

If we take K = K, and t; = ¢, for simplicity in Eq. (8), the required equalizer
characteristic becomes

1

oo = L ke e
e

He(f) =

The binomial expansion has been used here because, in this case, it leads to the form
of Eq. (10) without any Fourier-series calculations. Assuming a small echo, so that
k* << 1, we drop the higher-power terms and rewrite H.o(f) as

Heq(f) o~ (e+jwt° -k + kZe —jwto)e'—jwto

Comparison with Eqgs. (95) or (10) now reveals that a three-tap transversal filter will
dothejobifc_, = 1,¢4 = —k, c; = k% and A = ¢,

EXERCISE 3.2-2

Sketch |H,(f)| and arg oq(f) needed to equalize the frequency response in
Fig.3.2-2 over 5 =< | f| = 50 kHz. Take K = 1/4 and ¢, = 1/120 ms in Eqg. (8).
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Nonlinear Distortion and Companding

A system having nonlinear elements cannot be described by a transfer function.
Instead, the instantaneous values of input and output are related by a curve or func-
tion y(z) = T[x(¢)], commonly called the transfer characteristic. Figure 3.2-9 is a
representative transfer characteristic; the flattening out of the output for large input
excursions is the familiar saturation-and-cutoff effect of transistor amplifiers. We’ll
consider only memoryless devices, for which the transfer characteristic is a com-
plete description.

Under small-signal input conditions, it may be possible to linearize the transfer
characteristic in a piecewise fashion, as shown by the thin lines in the figure. The
more general approach is a polynomial approximation to the curve, of the form

}’(t) = alx(l‘) + azxz(t) + 03x3(t) 4o [124]

and the higher powers of x(¢) in this equation give rise to the nonlinear distortion.
Even though we have no transfer function, the output spectrum can be found, at

least in a formal way, by transforming Eq. (12a). Specifically, invoking the convolu-
tion theorem,

Y(f) = a1 X(f) + @, X+ X(f) + as X+ X+ X(f) + [12b]

Now if x(¢) is bandlimited in W, the output of a linear network will contain no fre-
quencies beyond |f| < W. But in the nonlinear case, we see that the output
includes X * X(f), which is bandlimited in 2W, X * X % X(f), which is bandlimited
in 3W, and so on. The nonlinearities have therefore created output frequency com-
ponents that were not present in the input. Furthermore, since X * X(f) may contain
components for | f| < W, this portion of the spectrum overlaps that of X(f). Using
filtering techniques, the added components at | f| > W can be removed, but there is
no convenient way to get rid of the added components at | f| < W. These, in fact,
constitute the nonlinear distortion.

y=Tix]

Figure 3.2-9 Transfer characteristic of a nonlinear device.
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A quantitative measure of nonlinear distortion is provided by taking a simple
cosine wave, x(t) = cos wpt, as the input. Inserting in Eq. (12a) and expanding

yields
a 3a 3a
y(l‘)z (22_{_?4_{_ )-4— (al-{—TB'f' > Cos wyt?

+ =+ -+ ) cos 2wyt + -+

Therefore, the nonlinear distortion appears as harmonics of the input wave. The

amount of second-harmonic distortion is the ratio of the amplitude of this term to
that of the fundamental, or in percent:

@2 + ad + -

Second-harmonic distortion =
a1 + 3(13/4 + et

l X 100%

Higher-order harmonics are treated similarly. However, their effect is usually much
less, and many can be removed entirely by filtering.

If the input is a sum of two cosine waves, say cos w;# + co0s w,t, the output will
include all the harmonics of f; and f,, plus crossproduct terms which yield f, — fi,
L+ fi, /2 — 2f;, etc. These sum and difference frequencies are designated as inter-
modulation distortion. Generalizing the intermodulation effect, if x(£) = x,(£) + x,(2),
then y(¢) contains the crossproduct x;(H)x,(f) (and higher-order products, which we
ignore here). In the frequency domain x;(#)x,(¢) becomes X; * X,(f); and even though
X,(f) and X,(f) may be separated in frequency, X, * X,(f) can overlap both of them,
producing one form of cross talk. This aspect of nonlinear distortion is of particular
concern in telephone transmission systems. On the other hand the crossproduct term is
the desired result when nonlinear devices are used for modulation purposes.

It is important to note the difference between cross talk and other types of inter-
ference. Cross talk occurs when one signal crosses over to the frequency band of
another signal due to nonlinear distortion in the channel. Picking up a conversation
on a cordless phone or baby monitor occurs because the frequency spectrum allo-
cated to such devices is too crowded to accommodate all of the users on separate fre-
quency carriers. Therefore some “sharing” may occur from time to time. While
cross talk resulting from nonlinear distortion is now rare in telephone transmission
due to advances in technology, it was a major problem at one time.

The crossproduct term is the desired result when nonlinear devices are used for
modulation purposes. In Sect. 4.3 we will examine how nonlinear devices can be
used to achieve amplitude modulation. In Chap. 5, carefully controlled nonlinear
distortion again appears in both modulation and detection of FM signals.

Although nonlinear distortion has no perfect cure, it can be minimized by care-
ful design. The basic idea is to make sure that the signal does not exceed the linear
operating range of the channel’s transfer characteristic. Ironically, one strategy
along this line utilizes two nonlinear signal processors, a compressor at the input
and an expander at the output, as shown in Fig. 3.2-10.
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—| Compressor Channel Expander |—

Figure 3.2-10 Companding system.

A compressor has greater amplification at low signal levels than at high signal
levels, similar to Fig. 3.2-9, and thereby compresses the range of the input signal. If
the compressed signal falls within the linear range of the channel, the signal at the
channel output is proportional to Ty [x(£)] which is distorted by the compressor but
not the channel. Ideally, then, the expander has a characteristic that perfectly comple-
ments the compressor so the expanded output is proportional t0 Texp{ Teomp[x()]} =
x(1), as desired.

The joint use of compressing and expanding is called companding (surprise?)
and is of particular value in telephone systems. Besides reducing nonlinear distor-
tion, companding tends to compensate for the signal-level difference between loud
and soft talkers. Indeed, the latter is the key advantage of companding compared to
the simpler technique of linearly attenuating the signal at the input (to keep it in the
linear range of the channel) and linearly amplifying it at the output.

99

3.3 TRANSMISSION LOSS AND DECIBELS

In addition to any signal distortion, a transmission system also reduces the power
level or “strength” of the output signal. This signal-strength reduction is expressed
in terms of transmission power loss. Although transmission loss can be compensated
by power amplification, the ever-present electrical noise may prevent successful sig-
nal recovery in the face of large transmission loss.

This section describes transmission loss encountered on cable and radio com-
munication systems. We’ll start with a brief review of the more familiar concept of
power gain, and we’ll introduce decibels as a handy measure of power ratios used by
communication engineers.

Power Gain

Let Fig. 3.3-1 represent an LTI system whose input signal has average power P;,. If
the system is distortionless, the average signal power at the output will be propor-
tional to P,,. Thus, the system’s power gain is

8 é Pout/Pin [”

a constant parameter not to be confused with our step-response notation g(f). Sys-
tems that include amplification may have very large values of g, so we’ll find it con-
venient to express power gain in decibels (dB) defined as

8dB £10 logyo & (2]
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Pp 8 —_—’Pout=gPin
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Figure 3.3-1 [T} system with power gain g.

The “B” in dB is capitalized in honor of Alexander Graham Bell who first used
logarithmic power measurements.

Since the decibel is a logarithmic unit, it converts powers of 10 to products of
10. For instance, g = 10™ becomes gqg = m X 10 dB. Power gain is always posi-
tive, of course, but negative dB values occur when g =< 1.0 = 10° and hence

gss = 0 dB. Note carefully that 0 dB corresponds to unity gain (g = 1). Given a
value in dB, the ratio value is

g = 10(&/10) (3]

obtained by inversion of Eq. (2).
While decibels always represent power ratios, signal power itself may be
expressed in dB if you divide P by one watt or one milliwatt, as follows:

P P '
PdBW =10 10g10’1_V'V_ PdBm =10 10glom [4]
Rewriting Eq. (1) as (P,,/1 mW) = g(P;,/1 mW) and taking the logarithm of both
sides then yields the dB equation
PoutdgngdB-i_P'

Ngpm

Such manipulations have particular advantages for the more complicated relations
encountered subsequently, where multiplication and division become addition and
subtraction of known dB quantities. Communication engineers usually work with
dBm because the signal powers are quite small at the output of a transmission system.

Now consider a system described by its transfer function H(f). A sinusoidal
input with amplitude A, produces the output amplitude A, = |H(f)|A,, and the
normalized signal powers are P, = A2/2 and P, = A2/2 = |H(f)|*P,. These nor-
malized powers do not necessarily equal the actual powers in Eq. (1). However,
when the system has the same impedance level at input and output, the ratio P,/P,
does equal P,,/P;,. Therefore, if H(f) = Ke /%, then

g = |H(f)|* = K? 5]

In this case, the power gain also applies to energy signals in the sense that £, = gE..
When the system has unequal input and output impedances, the power (and energy)
gain is proportional to K>,

If the system is frequency-selective, Eq. (5) does not hold but | H(f) ]2 still tells
us how the gain varies as a function of frequency. For a useful measure of frequency
dependence in terms of signal power we take
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|H(f)|as £ 101og,e | H(f)[? [6]

which represents the relative gain in dB.
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(@) Verify that Py, = Pagw + 30 dB. (b) Show that if |H(f)|s = —3 dB then

|H(f)| = 1/V/2 and |H(f)|* = 3. The significance of this result is discussed in the
section on real filters.

EXERCISE 3.3-1

Transmission Loss and Repeaters

Any passive transmission medium has power loss rather than gain, since Py, < Pj,.
We therefore prefer to work with the transmission loss, or attenuation
A
L= l/g = Pin/PouL
Lig = —gs = 10 10%10 Pin/Pout (7]
Hence, P, = Pi,/Land Py, = Py, — Lgp.

In the case of transmission lines, coaxial and fiber-optic cables, and wave-
guides, the output power decreases exponentially with distance. We’ll write this
relation in the form

Pout = 10_(ae/10)Pin

where £ is the path length between source and destination and « is the attenuation
coefficient in dB per unit length. Equation (7) then becomes

L =100 1. =qaf [8]
Table 3.3-1 Typical values of transmission loss
Transmission Medium Frequency Loss dB/km
Open-wire pair (0.3 cm diameter) 1kHz 0.05
Twisted-wire pair (16 gange) 10 kHz 2

100 kHz
300 kHz

Coaxial cable (1 cm diameter) 100 kHz

1 MHz
3 MHz

3
6
1
2
4
Coaxial cable (15 cm diameter) 100 MHz 1.5
Rectangular waveguide (5 X 2.5 cm) 10 GHz 5
Helical waveguide (5 cm diameter) 100 GHz 1.
2.
0.
0

W W

Fiber-optic cable 3.6 X 10'* Hz
2.4 X 10% Hz
1.8 X 10¥ Hz .

o
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showing that the dB loss is proportional to the length. Table 3.3-1 lists some typical
values of « for various transmission media and signal frequencies.

Attenuation values in dB somewhat obscure the dramatic decrease of signal
power with distance. To bring out the implications of Eq. (8) more clearly, suppose
you transmit a signal on a 30 km length of cable having « = 3 dB/km. Then
Lg =3 X30=290dB,L = 10° and P,, = 107° P,. Doubling the path length
doubles the attenuation to 180 dB, so that L = 10'® and P,,, = 1078 P, This loss is
so great that you’d need an input power of one megawatt (10® W) to get an output
power of one picowatt (102 W)!

Large attenuation certainly calls for amplification to boost the output signal. As
an example, Fig. 3.3—-2 represents a cable transmission system with an output ampli-
fier and a repeater amplifier inserted near the middle of the path. (Any preamplifi-
cation at the input would be absorbed in the value of P;,.) Since power gains multi-
ply in a cascade connection like this,

§28
Pow = (81828384)Pin = 21;3 Py [9d]
which becomes the dB equation
Pou = (&2 + 84) — (L1 + L3) + Py [9b]

We’ve dropped the dB subscripts here for simplicity, but the addition and subtrac-
tion in Eq. (9b) unambiguously identifies it as a dB equation. Of course, the units of
P, (dBW or dBm) will be the same as those of P;,.

The repeater in Fig. 3.3-2 has been placed near the middle of the path to pre-
vent the signal power from dropping down into the noise level of the amplifier.
Long-haul cable systems have repeaters spaced every few kilometers for this reason,
and a transcontinental telephone link might include more than 2000 repeaters. The
signal-power analysis of such systems follows the same lines as Eq. (9). The noise
analysis is presented in the Appendix.

Fiber Optics

Optical communication systems have become increasingly popular over the last two
decades with advances in laser and fiber-optic technologies. Because optical sys-
temns use carrier frequencies in the range of 2 X 10'* Hz, the transmitted signals can
have much larger bandwidth than is possible with metal cables such as twisted-wire

1 1 '
Y L1=§1— —’ LB:E (g4/ Py

Cable Repeater Cable Output
section amplifier section amplifier

Figure 3.3-2 Cable transmission system with a repeater amplifier.
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pair and coaxial cable. We will see in the next chapter that the theoretical maximum
bandwidth for that carrier frequency is on the order of 2 X 10" Hz! While we may
never need that much bandwidth, it is nice to have extra if we need it.

In the 1960s fiber-optic cables were extremely lossy, with losses around
1000 dB/km, and were impractical for commercial use. Today these losses are on
the order of 0.2 to 2 dB/km depending on the type of fiber used and the wavelength
of the signal. This is lower than most twisted-wire pair and coaxial cable systems.
There are many advantages to using fiber-optic channels in addition to large band-
width and low loss. The dielectric waveguide property of the optical fiber makes it
less susceptible to interference from external sources. Since the transmitted signal is
light rather than current, there is no electromagnetic field to generate cross talk and
no radiated RE energy to interfere with other communication systems. In addition,
since moving photons do not interact, there is no noise generated inside the optical
fiber. Fiber-optic channels are safer to install and maintain since there is no large
current or voltage to worry about. Furthermore, since it is virtually impossible to tap
into a fiber-optic channel without the user detecting it, they are secure enough for
military applications. They are rugged and flexible, and operate over a larger tem-
perature variation than metal cable. The small size (about the diameter of a human
hair) and weight mean they take up less storage space and are cheaper to transport.
Finally, they are fabricated from sand, which is a plentiful resource. While the up-
front installation costs are higher, it is predicted that the long-term costs will ulti-
mately be lower than with metal-based cables.

Most optical communication systems are digital since system limitations on the
amplitude of analog modulation make it impractical. The system is a hybrid of elec-
trical and optical components, since the signal sources and final receivers are still
made up of electronics. Optical transmitters use either LEDs or solid-state lasers to
generate light pulses. The choice between these two is driven by design constraints.
LEDs, which produce noncoherent (multiple wavelengths) light, are rugged, inex-
pensive, and have low power output (~0.5 mW). Lasers are much higher in cost and
have a shorter lifetime; however they produce coherent (single wavelength) light
and have a power output of around 5 mW. The receivers are usually PIN diodes or
avalanche photodiodes (APD), depending on the wavelength of the transmitted sig-
nal. In the remainder of this discussion we will concentrate our attention on the
fiber-optic channel itself.

Fiber-optic cables have a core made of pure silica glass surrounded by a
cladding layer also usually made of silica glass, but sometimes made of plastic.
There is an outer, thin protective jacket made of plastic in most cases. In the core the
signal traverses the fiber. The cladding reduces losses by keeping the signal power
within the core. There are three main types of fiber-optic cable: single-mode fibers,
multimode step-index fibers, and multimode graded-index fibers. Figure 3.3-3a
shows three light rays traversing a single-mode fiber. Because the diameter of the
core is sufficiently small (~8 wum), there is only a single path for each of the rays to
follow as they propagate down the length of the fiber. The difference in the index of
refraction between the core and cladding layers causes the light to be reflected back
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Figure 3.3-3 {a) Light propagation down a single-mode step-index fiber. (b} Light propaga-
tion down a multimode step-index fiber. (¢} Light propagation down a multi-
mode graded-index fiber.

into the channel, and thus the rays follow a straight path through the fiber. Conse-
quently, each ray of light travels the same distance in a given period of time, and a
pulse input would have essentially the same shape at the output. Therefore single-
mode fibers have the capacity for large transmission bandwidths, which makes them
very popular for commercial applications. However, the small core diameter makes
it difficult to align cable section boundaries and to couple the source to the fiber, and
thus losses can occur.

Multimode fibers allow multiple paths through the cable. Because they have a
larger core diameter (~50 wm) it is easier to splice and couple the fiber segments,
resulting in less loss. In addition, more light rays at differing angles can enter the
channel. In a2 multimode step-index fiber there is a step change between the index of
refraction of the core and cladding, as there is with single-mode fibers. Fig. 3.3-3%
shows three rays entering a multimode step-index fiber at various angles. It is clear
that the paths of the rays will be quite different. Ray 1 travels straight through as in
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the case of the single-mode fiber. Ray 2 is reflected off of the core-cladding boun-
dary a few times and thus takes a longer path through the cable. Ray 3, with multi-
ple reflections, has a much longer path. As Fig. 3.3—-35 shows, the angle of incidence
impacts the time to reach the receiver. We can define two terms to describe this
channel delay. The average time difference between the arrivals of the various rays
is termed mean-time delay, and the standard deviation is called the delay spread.
The impact on a narrow pulse would be to broaden the pulse width as the signal
propagates down the channel. If the broadening exceeds the gap between the pulses,
overlap may result and the pulses will not be distinguishable at the output. Therefore
the maximum bandwidth of the transmitted signal in a multimode step-index chan-
nel is much lower than in the single mode case.

Multimode graded-index fibers give us the best of both worlds in performance.
The large central core has an index of refraction that is not uniform. The refractive
index is greatest at the center and tapers gradually toward the outer edge. As shown
in Fig. 3.3-3c, the rays again propagate along multiple paths; however since they are
constantly refracted there is a continuous bending of the light rays. The velocity of
the wave is inversely proportional to the refractive index so that those waves farthest
from the center propagate fastest. The refractive index profile can be designed so
that all of the waves have approximately the same delay when they reach the output.
Therefore the lower dispersion permits higher transmission bandwidth. While the
bandwidth of a multimode graded-index fiber is lower than that of a single-mode
fiber, the benefits of the larger core diameter are sufficient to make it suitable for
long-distance communication applications.

With all of the fiber types there are several places where losses occur, including
where the fiber meets the transmitter or receiver, where the fiber sections connect to
each other, and within the fiber itself. Attenuation within the fiber results primarily
from absorption losses due to impurities in the silica glass, and scattering losses
due to imperfections in the waveguide. Losses increase exponentially with distance
traversed and also vary with wavelength. There are three wavelength regions where
there are relative minima in the attenuation curve, and they are given in Table 3.3-1.
The smallest amount of loss occurs around 1300 and 1500 nm, so those frequencies
are used most often for long-distance communication systems.

Current commercial applications require repeaters approximately every 40 km.
However, each year brings technology advances, so this spacing continues to
increase. Conventional repeater amplifiers convert the light wave to an electrical sig-
nal, amplify it, and convert it back to an optical signal for retransmission. However,
light wave amplifiers are being developed and may be available soon.

Fiber-optic communication systems are quickly becoming the standard for
long-distance telecommunications. Homes and businesses are increasingly wired
internally and externally with optical fibers. Long-distance telephone companies
advertise the clear, quiet channels with claims that listeners can hear a pin drop.
Underwater fiber cables now cover more than two-thirds of the world’s circumfer-
ence and can handle over 100,000 telephone conversations at one time. Compare
that to the first transoceanic cable that was a technological breakthrough in 1956 and
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carried just 36 voice channels. While current systems can handle 90 Mbits/sec to
2.5 Gbits/sec, there have been experimental results as high as 1000 Gbits/sec. At
current transmission rates of 64 kbits/sec, this represents 15 million telephone con-
versations over a single optical fiber. As capacity continues to expand, we will no
doubt find new ways to fill it.

Radio Transmission

Signal transmission by radiowave propagation can reduce the required number of
repeaters, and has the additional advantage of eliminating long cables. Although
radio involves modulation processes described in later chapters, it seems appropriate
here to examine the transmission loss for line-of-sight propagation illustrated in
Fig. 3.3—4 where the radio wave travels a direct path from transmitting to receiving
antenna. This propagation mode is commonly employed for long-distance commu-
nication at frequencies above about 100 MHz.

The free-space loss on a line-of-sight path is due to spherical dispersion of the
radio wave. This loss is given by

2 4fl 2
e (1) o (4
A c
in which A is the wavelength, f the signal frequency, and ¢ the speed of light. If we

express £ in kilometers and f in gigahertz (10° Hz), Eq. (10a) becomes
LdB =924 + 20 IoglofGHz + 20 loglo ekm [IOb]

We see that L gg increases as the logarithm of ¢, rather than in direct proportion to path
length. Thus, for instance, doubling the path length increases the loss by only 6 dB.

Furthermore, directional antennas have a focusing effect that acts like amplifi-
cation in the sense that

Pout = gTLgR Pin [”]

Figure 3.3-4 Line-of-sight' radio transmission.
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where gr and g represent the antenna gains at the transmitter and receiver. The
maximum transmitting or receiving gain of an antenna with effective aperture area

A,is
4mA, 4AmA, f?

A2 c?

g = 12]
where ¢ = 3 X 10° km/s. The value of A, for a horn or dish antenna approximately
equals its physical area, and large parabolic dishes may provide gains in excess of
60 dB.

Commercial radio stations often use compression to produce a transmitted sig-
nal that has higher power but doesn’t exceed the system’s linear operating region. As
mentioned in Sect. 3.2, compression provides greater amplification of low-level sig-
nals, and can raise them above the background noise level. However since your
home radio does not have a built-in expander to complete the companding process,
some audible distortion may be present. To cope with this, music production com-
panies often preprocess the materials sent to radio stations to ensure the integrity of
the desired sound.

Satellites employ line-of-sight radio transmission over very long distances.
They have a broad coverage area and can reach areas that are not covered by cable
or fiber, including mobile platferms such as ships and planes. Even though fiber-
optic systems are carrying an increasing amount of transoceanic telephone traffic
(and may make satellites obsolete for many applications), satellite relays still han-
dle the bulk of very long distance telecommunications. Satellite relays also make it
possible to transmit TV signals across the ocean. They have a wide bandwidth of
about 500 MHz that can be subdivided for use by individual transponders. Most
satellites are in geostationary orbit. This means that they are synchronous with
Earth’s rotation and are located directly above the equator, and thus they appear
stationary in the sky. The main advantage is that antennas on Earth pointing at the
satellite can be fixed.

A typical C band satellite has an uplink frequency of 6 GHz, a downlink fre-
quency of 4 GHz, and 12 transponders each having a bandwidth of 36 MHz. The
advantages in using this frequency range are that it allows use of relatively inexpen-
sive microwave equipment, has low attenuation due to rainfall (the primary atmo-
spheric cause of signal loss), and has a low sky background noise. However, there
can be severe interference from terrestrial microwave systems, SO many satellites
now use the Ku band. The Ku band frequencies are 14 GHz for uplink and 12 GHz
for downlink. This allows smaller and less expensive antennas. C band satellites are
most commonly used for commercial cable TV systems, whereas Ku band is used
for videoconferencing. A newer service that allows direct broadcast satellites (DBS)
for home television service uses 17 GHz for uplink and 12 GHz for downlink.

By their nature, satellites require multiple users to access them from different
locations at the same time. A variety of multiple access techniques have been devel-
oped, and will be discussed further in a later chapter. Personal communication
devices such as cellular phones rely on multiple access techniques such as time
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division multiple access (TDMA) and code division multiple access (CDMA). Prop-
agation delay can be a problem over long distances for voice communication, and
may require echo cancellation in the channel.

Current technology allows portable satellite uplink systems to travel to where
news or an event is happening. In fact, all equipment can fit in a van or in several
large trunks that can be shipped on an airplane. For a more complete but practical
overview of satellites, see Tomasi (1994, Chap. 18). '

EXAMPLE 3.3-1

Satellite Relay System

Figure 3.3-5 shows a simplified transoceanic television system with a satellite relay
serving as a repeater. The satellite is in geostationary orbit and is about 22,300 miles
(36,000 km) above the equator. The uplink frequency is 6 GHz, and the downlink
frequency is 4 GHz. Equation (105) gives an uplink path loss

L,=924 + 201og,06 + 201og,;3.6 X 10* = 199.1 dB
and a downlink loss

L; =924+ 20log,p4 + 20log;p3.6 X 10* = 195.6 dB

since the distance from the transmitter and receiver towers to the satellite is approx-
imately the same as the distance from Earth to the satellite. The antenna gains in dB
are given on the drawing with subscripts identifying the various functions—for
example, gz stands for the receiving antenna gain on the uplink from ground to
satellite. The satellite has a repeater amplifier that produces a typical output of
18 dBW. If the transmitter input power is 35 dBW, the power received at the satellite

8amp

87« (20 dB) ﬁf—@—k@ 874 (16 dB)

u Ld

36,000 km

8Tu SRd
(55dB) (51 dB)

mn f out

5000 km

Figure 3.3-5 Satellite relay system.
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is 35dBW + 55dB — 199.1dB + 20dB = —144.1 dBW. The power output at
the receiver is 18 dBW + 16dB — 195.6dB + 51 dB = —110.6 dBW. Inverting
Eq. (4) gives

P, = 10010610 % 1w =87 x 1072 W

Such minute power levels are typical for satellite systems.
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A 40 km cable system has P, = 2 W and a repeater with 64 dB gain is inserted
24 km from the input. The cable sections have o = 2.5 dB/km. Use dB equations to
find the signal power at: (a) the repeater’s input; (b) the final output.

EXERCISE 3.3-2

3.4 FILTERS AND FILTERING

Virtually every communication system includes one or more filters for the purpose
of separating an information-bearing signal from unwanted contaminations such as
interference, noise, and distortion products. In this section we’ll define ideal filters,
describe the differences between real and ideal filters, and examine the effect of fil-
tering on pulsed signals.

Ideal Filters

By definition, an ideal filter has the characteristics of distortionless transmission
over one or more specified frequency bands and zero response at all other frequen-
cies. In particular, the transfer function of an ideal bandpass filter (BPF) is

Hp) = {0 =M=k

1
0 otherwise i)

as plotted in Fig. 3.4-1. The parameters f, and f, are the lower and upper cutoff fre-

quencies, respectively, since they mark the end points of the passband. The filter’s
bandwidth is

B = fu - f{’

which we measure in terms of the positive-frequency portion of the passband.

In similar fashion, an ideal lowpass filter (LPF) is defined by Eq. (1) with
fe = 0, so B = f,, while an ideal highpass filter (HPF) has f, > 0 and f, = 0.
Ideal band-rejection or notch filters provide distortionless transmission over all
frequencies except some stopband, say f, < | f| < f,, where H(f) = 0.

But all such filters are physically unrealizable in the sense that their character-
istics cannot be achieved with a finite number of elements. We’ll skip the general

proof of this assertion. Instead, we’ll give an instructive plausibility argument based
on the impulse response.
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L K \H(f)I
Passband
e f
—fu _ff 0 \\\ f(? fu
gy | BB HOD
Figure 3.4-1 Transfer function of an ideal bandpass filter.
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Figure 3.4-2 |deal lowpass filter. {a) Transfer function; (b} impulse response.

Consider an ideal LPF whose transfer function, shown in Fig. 3.4-2q, can be
written as

— —jewty i
H(f) = Ke H(zzs) [2a]

Its impulse response will be
h(t) = F'[H(f)] = 2BK sinc 2B(t — t,) [2b]

which is sketched in Fig. 3.4-2b. Since A(r) is the response to &(¢) and A(#) has
nonzero values for ¢ < 0, the output appears before the input is applied. Such a fil-
ter is said to be anticipatory or noncausal, and the portion of the output appearing
before the input is called a precursor. Without doubt, such behavior is physically

impossible, and hence the filter must be unrealizable. Like results hold for the ideal
BPF and HPF.



[a——

3.4 Filters and Filtering

Fictitious though they may be, ideal filters have great conceptual value in the

study of communication systems. Furthermore, many real filters come quite close to
ideal behavior.
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Show that the impulse response of an ideal BPF is
h(t) = 2BK sinc B(t — t;) cos w,(t — t,)
where w, = w(f; + f.)-

EXERCISE 3.4-1

Bandlimiting and Timelimiting

Earlier we said that a signal v(#) is bandlimited if there exists some constant W such
that

ViF)=0 [fl>Ww

Hence, the spectrum has no content outside | f| > W. Similarly, a timelimited sig-
nal is defined by the property that, for the constants #; < ¢,,

v(t) =0 t<tandt >t

Hence, the signal “starts” at t = ¢, and “ends” at ¢ = ¢,. Let’s further examine these
two definitions in the light of real versus ideal filters.

The concepts of ideal filtering and bandlimited signals go hand in hand, since
applying a signal to an ideal LPF produces a bandlimited signal at the output. We’ve
also seen that the impulse response of an ideal LPF is a sinc pulse lasting for all
time. We now assert that any signal emerging from an ideal LPF will exist for all
time. Consequently, a strictly bandlimited signal cannot be timelimited. Conversely,
by duality, a strictly timelimited signal cannot be bandlimited. Every transform pair
we’ve encountered supports these assertions, and a general proof is given in Wozen-
craft and Jacobs (1965, App. 5B). Thus,

This observation raises concerns about the signal and filter models used in the
study of communication systems. Since a signal cannot be both bandlimited and
timelimited, we should either abandon bandlimited signals (and ideal filters) or else
we must accept signal models that exist for all time. On the one hand, we recognize
that any real signal is timelimited, having starting and ending times. On the other
hand, the concepts of bandlimited spectra and ideal filters are too useful and appeal-
ing to be dismissed entirely.
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The resolution of our dilemma is really not so difficult, requiring but a small
compromise. Although a strictly timelimited signal is not strictly bandlimited, its
spectrum may be negligibly small above some upper frequency limit W. Likewise, a
strictly bandlimited signal may be negligibly small outside a certain time interval
t; =t = t,. Therefore, we will often assume that signals are essentially both band-
limited and timelimited for most practical purposes.

Real Filters

The design of realizable filters that approach ideal behavior is an advanced topic
outside the scope of this book. But we should at least look at the major differences
between real and ideal filters to gain some understanding of the approximations
implied by the assumption of an ideal filter. Further information on filter design and
implementation can be found in texts such as Van Valkenburg (1982).

To begin our discussion, Fig. 3.4-3 shows the amplitude ratio of a typical real
bandpass filter. Compared with the ideal BPF in Fig. 3.4-1, we see a passband
where |H(f)| is relatively large (but not constant) and stopbands where |H(f)| is
quite small (but not zero). The end points of the passband are usually defined by

|H(F))| = ~\1/—-2- B e = % F= ok al

so that |H(f)[* falls no lower than K?/2 for f, < |f|=/f,. The bandwidth
B = f, — f; is then called the half-power or 3 dB bandwidth. Similarly, the end
points of the stopbands can be taken where |H(f)| drops to a suitably small value
such as K/10 or K/100.

Between the passband and stopbands are tramsition regions, shown shaded,
where the filter neither “passes” nor “rejects” frequency components. Therefore,
effective signal filtering often depends on having a filter with very narrow transition
regions. We’1l pursue this aspect by examining one particular class of filters in some
detail. Then we’ll describe other popular designs.

The simplest of the standard filter types is the nth-order Butterworth LPF,
whose circuit contains 7 reactive elements (capacitors and inductors). The transfer
function with K = 1 has the form

HCI

Stopband Stopband

0

Figure 3.4-3 Typical amplitude ratic of a real bandpass filter.
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_ 1
~ P,(if/B)

where B equals the 3 dB bandwidth and P,(jf/B) is a complex polynomial. The
family of Butterworth polynomuials is defined by the property

|PLif/B)f =1+ (f/B)™"

H(f) {44]

so that
1

|H(f)] ZW

Consequently, the first n derivatives of |H(f)| equal zero at f = 0 and we say that
|H(f)| is maximally flat. Table 3.4-1 lists the Butterworth polynomials for n = 1
through 4, using the normalized variable p = jf/B.

A first-order Butterworth filter has the same characteristics as an RC lowpass
filter and would be a poor approximation of an ideal LPF. But the approximation
improves as you increase n by adding more elements to the circuit. For instance,
the impulse response of a third-order filter sketched in Fig. 3.4—4a bears obvious
resemblance to that of an ideal LPF—without the precursors, of course. The
frequency-response curves of this filter are plotted in Fig. 3.4-4b. Note that the
phase shift has a reasonably linear slope over the passband, implying time delay
plus some delay distortion.

[4b]

h(t)

IH(f)I
0 : t 0 } —f
1 B 2B 3B
2B
arg H(f)
{a) (b)

Figure 3.4-4 Third-order Butterworth LPF. [a) Impulse response; [b) transfer function.
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Table 3.4-1 Butterworth polynomials

n P.(p)

1 1+p

2 1+V2p+p?

3 (1 +p)(1 +p+pY)

4 (1 +0.765p + pH)(1 + 1.848p + p?)

A clearer picture of the amplitude ratio in the transition region is obtained from a
Bode diagram, constructed by plotting | H(f )| in dB versus f on a logarithmic scale.
Figure 3.4-5 shows the Bode diagram for Butterworth lowpass filters with various val-
ues of n. If we define the edge of the stopband at |H(f)| = —20 dB, the width of the
transition region whenn = 11is 10B — B = 9B but only 1.25B — B = 0.25B when
n = 10. Clearly, |H(f)| approaches the ideal square characteristic in the limit as
n — co. At the same time, however, the slope of the phase shift (not shown) increases
with n and the delay distortion may become intolerably large.

In situations where potential delay distortion is a major concern, a Bessel-
Thomson filter would be the preferred choice. This class of filters is characterized
by maximally linear phase shift for a given value of #n, but has a wider transition

0.1B B 108
0 f
.
2 o+
>
5
20+

Figure 3.4-5 Bode diagram for Butterworth LPFs.
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region. At the other extreme, the class of equiripple filters (including Chebyshev
and elliptic filters) provides the sharpest transition for a given value of r; but these
filters have small amplitude ripples in the passband and significantly nonlinear
phase shift. Equiripple filters would be satisfactory in audio applications, for
instance, whereas pulse applications might call for the superior transient perfor-
mance of Bessel-Thomson filters.

All three filter classes can be implemented with active devices (such as opera-
tional amplifiers) that eliminate the need for bulky inductors. Switched-capacitor
filter designs go even further and eliminate resistors that would take up too much
space in a large-scale integrated circuit. All three classes can also be modified to
obtain highpass or bandpass filters. However, some practical implementation prob-
lems do arise when you want a bandpass filter with a narrow but reasonably square
passband. Special designs that employ electromechanical phenomena have been
developed for such applications. For example, Fig. 3.4-6 shows the amplitude ratio
of a seventh-order monolithic crystal BPF intended for use in an AM radio.

1.0 J-
Mechanical
filter
(7th order)
0.707 +
, AN Tuned
,/ AN circuit
= / N (2d order)
S / '
= /
/
/ N\
4% i : . f, kHz
0 448 455 462
Figure 3.4-6 Amplitude ratio of a mechanical filter.
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The circuit in Fig. 3.4-7 is one implementation of a second-order Butterworth LPF
with

EXAMPLE 3.4-1
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L
+ C— LY L 2 O +

x() R C ‘IL ¥
—C & L

O -

Figure 3.4~7 Second-order Butterworth LPF.

We can obtain an expression for the transfer function as

Zge
H = -
(f) Zrc t+ jwL
where
R/jwC R
ZRC = : = A
R + 1/joC 1+ jwRC
Thus
1
H(f) =

1 + jwL/R — w’LC
2mL -l
= [1 +j—;—f— (277\/LCf)2]

From Table 3.4-1 with p = jf/B, we want
_ 2L (LY
u) = |1+ V2L - (L))

The required relationship between R, L, and C that satisfies the equation can be
found by setting

2nk _ % = V227 VLC

R
. . L
which yields R = /| —.
2C
EXERCISE 3.4-2 Show that a Butterworth LPF has |H(f)|ss = —20n log,, (f/B) when f > B.

Then find the minimum value of n needed so that {H(f)| = 1/10 for f= 2B.

Pulse Response and Risetime

A rectangular pulse, or any other signal with an abrupt transition, contains signifi-
cant high-frequency components that will be attenuated or eliminated by a lowpass
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filter. Pulse filtering therefore produces a smoothing or smearing effect that must be
studied in the time domain. The study of pulse response undertaken here leads to
useful information about pulse transmission systems.

Let’s begin with the unit step input signal x(z) = u(¢), which could represent
the leading edge of a rectangular pulse. In terms of the filter’s impulse response h(?),
the step response will be

g(t) & J ) A(Nu(t — A) dA = f t h(A) dA [5]

=0 -0

since u(t — A) = 0 for A > t. We saw in Examples 3.1-1 and 3.1-2 for instance,
that a first-order lowpass filter has

g(t) = (1 = e u(r)
where B is the 3 dB bandwidth.
Of course a first-order LPF doesn’t severely restrict high-frequency transmis-
sion. So let’s go to the extreme case of an ideal LPF, taking unit gain and zero time
delay for simplicity. From Eq. (2b) we have A(¢) = 2B sinc 2Bt and Eq. (5) becomes

t
g(t) = J 2B sinc 2B\ dA

-0

0 2Bt
=[ sinc,ud,u%—J sinc w dp
-0 0
where w = 2BA. The first integral is known to equal 1/2, but the second requires

numerical evaluation. Fortunately, the result can be expressed in terms of the tabu-
lated sine integral function

g _: 8/
Si(6) = [ sn;a da = 'rr{ sinc w du [6]
0 0

which is plotted in Fig. 3.4-8 for & > 0 and approaches the value 7/2 as 6 — co.
The function is also defined for 8 < 0 by virtue of the odd-symmetry property
Si(—60) = —Si(h). Using Eq. (6) in the problem at hand we get

Si (27Bt) 7]

Q|-

+

N | =

g(t) =

obtained by setting 6/ = 2Bt.

For comparison purposes, Fig. 3.4-9 shows the step response of an ideal LPF
along with that of a first-order LPF. The ideal LPF completely removes all high fre-
quencies | f| > B, producing precursors, overshoot, and oscillations in the step
response. (This behavior is the same as Gibbs’s phenomenon illustrated in Fig.
2.1-10 and in Example 2.4-2.) None of these effects appears in the response of the
first-order LPF, which gradually attenuates but does not eliminate high frequencies.

117



118

CHAPTER3 @  Signal Transmission and Filtering

Si(8)
1.85
T2 e N T - = - 2D -~
1.42
+ ~ t +— ]
0 a2 T 21 37
Figure 3.4-8 The sine integral function.
(D)
Ideal
1.0 ~——
09+
05 1st order
-1
2B =1 0.1
et - I I3
—_— \y 0 I i
2B B

Figure 3.4-9 Step response of ideal and firstorder LPFs.

The step response of a more selective filter—a third-order Butterworth LPF, for exam-
ple—would more nearly resemble a time-delayed version of the ideal LPF response.

Before moving on to pulse response per se, there’s an important conclusion to be
drawn from Fig. 3.4-9 regarding risetime. Risetime is a measure of the “speed” of a
step response, usually defined as the time interval z, between g{(¢) = 0.1 and
g(t) = 0.9 and known as the 10-90% risetime. The risetime of a first-order lowpass
filter can be computed from g(¢) as ¢, = 0.35/B, while the ideal filter has 7, =~ 0.44/B.
Both values are reasonably close to 0.5/B so we’ll use the approximation

1
t, = (8]
" 2B
for the risetime of an arbitrary lowpass filter with bandwidth B.
Our work with step response pays off immediately in the calculation of pulse
response if we take the input signal to be a unit-height rectangular pulse with dura-
tion 7 starting at ¢+ = 0. Then we can write
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Br =2

Br =172

Br =1/4

Figure 3.4-10 Pulse response of an ideal LPF.

x(t) = u(t) — u(t — 1)

and hence

¥e) = g(t) — gt — 7)
which follows from superposition.
Using g(z) from Eg. (7), we obtain the pulse response of an ideal LPF as

y(t) = %_—{Si (2mwBt) — Si[2#wB(t — 7)]} (9]

which is plotted in Fig. 3.4-10 for three values of the product Br. The response has a
more-or-less rectangular shape when Bt = 2, whereas it becomes badly smeared and
spread out if B+ =< % The intermediate case Br = 1 gives a recognizable but not rec-
tangular output pulse. The same conclusions can be drawn from the pulse response of
a first-order lowpass filter previously sketched in Fig. 3.1-3, and similar results would
hold for other input pulse shapes and other lowpass filter characteristics.

Now we’re in a position to make some general statements about bandwidth

requirements for pulse transmission. Reproducing the actual pulse shape requires a
large bandwidth, say

1

’T .
min

B >

where 7, represents the smallest output pulse duration. But if we only need to
detect that a pulse has been sent, or perhaps measure the pulse amplitude, we can get
by with the smaller bandwidth

[10]

an important and handy rule of thumb.
Equation (10) also gives the condition for distinguishing between, or resolving,
output pulses spaced by 7, or more. Figure 3.4—11 shows the resolution condition
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|~ Input
Output

Figure 3.4-11 Pulse resolution of an ideal LPF. 8 = 1/2r.

for an ideal lowpass channel with B = 37. A smaller bandwidth or smaller spacing
would result in considerable overlap, making it difficult to identify separate pulses.
Besides pulse detection and resolution, we’ll occasionally be concerned with
pulse position measured relative to some reference time. Such measurements have
inherent ambiguity due to the rounded output pulse shape and nonzero risetime of

leading and trailing edges. For a specified minimum risetime, Eq. (8) yields the
bandwidth requirement

1

B= [11]
another handy rule of thumb.

Throughout the foregoing discussion we’ve tacitly assumed that the transmis-
sion channel has satisfactory phase-shift characteristics. If not, the resulting delay
distortion could render the channel useless for pulse transmission, regardless of the
bandwidth. Therefore, our bandwidth requirements in Eqs. (10) and (11) imply the
additional stipulation of nearly linear phase shift over | f| = B. A phase equaliza-
tion network may be needed to achieve this condition.

EXERCISE 3.4-3

A certain signal consists of pulses whose durations range from 10 to 25 us; the pulses
occur at random times, but a given pulse always starts at least 30 us after the starting

~ time of the previous pulse. Find the minimum transmission bandwidth required for

pulse detection and resolution, and estimate the resulting risetime at the output.

3.5 QUADRATURE FILTERS AND HILBERT
TRANSFORMS

The Fourier transform serves most of our needs in the study of filtered signals since,
in most cases, we are interested in the separation of signals based on their frequency
content. However, there are times when separating signals on the basis of phase is
more convenient. For these applications we’ll use the Hilbert transform, which we’ll
introduce in conjunction with quadrature filtering. In Chap. 4 we will make use of
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Hy(f)

J

Figure 3.5-1 Transfer function of a quadrature phase shifter.

the Hilbert transform in the study of two important applications: the generation of
single-sideband amplitude modulation and the mathematical representation of band-
pass signals.

A quadrature filter is an allpass network that merely shifts the phase of posi-
tive frequency components by —90° and negative frequency components by +90°.
Since a =90° phase shift is equivalent to multiplying by e */*” = =j, the transfer
function can be written in terms of the signum function as

—j >0
Hy(f) = —jsgnf= {4 ];< 0

which is plotted in Fig. 3.5—-1. The corresponding impulse response is

[14]

1

We obtain this result by applying duality to F[sgnt] = 1/jmf which yields
F[1/jmt] = sgn (—=f) = —sgnf,so F Y —jsgnf] = j/jmt = 1/mt.
Now let an arbitrary signal x(f) be the input to a quadrature filter. The output

signal y(t) = x(t) % hp(t) will be defined as the Hilbert transform of x(z), denoted
by x(¢). Thus

A 11 [ x(4)
) =x(t) s —=— dA 2
w0 Ex e = | T 2
Note that Hilbert transformation is a convolution and does not change the domain,

so both x(¢) and x(¢) are functions of time. Even so, we can easily write the spectrum
of x(t), namely

F[x(1)] = () sgnf)X(f) [3]

since phase shifting produces the output spectrum Hy(f)X(f).

The catalog of Hilbert transform pairs is quite short compared to our Fourier trans-
form catalog, and the Hilbert transform does not even exist for many common signal
models. Mathematically, the trouble comes from potential singularities in Eq. (2) when
A = tand the integrand becomes undefined. Physically, we see from Eq. (1b) that hQ(t)
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is noncausal, which means that the quadrature filter is unrealizable—although its
behavior can be approximated over a finite frequency band using a real network.

Although the Hilbert transform operates exclusively in the time domain, it has a
number of useful properties. Those applicable to our interests are discussed here. In
all cases we will assume that the signal x(¢) is real.

1. A signal x(f) and its Hilbert transform x(¢) have the same amplitude spectrum.
In addition, the energy or power in a signal and its Hilbert transform are also
equal. These follow directly from Eq. (3) since |—j sgn f| = 1 for all f.

2. If x(¢) is the Hilbert transform of x(z), then —x(¢) is the Hilbert transform of
x(t). The details of proving this property are left as an exercise; however, it fol-
lows that two successive shifts of 90° result in a total shift of 180°.

3. A signal x(¢) and its Hilbert transform x(¢) are orthogonal. In Sect. 3.6 we will
show that this means

f x(¢)x(¢) dt = 0O for energy signals

-0

and
1 (T
lim — J x(£)x(¢) dt = 0 for power signals
T—oo 27T -7
EXAMPLE 3.5-1 Hilbert Transform of a Cosine Signal

The simplest and most obvious Hilbert transform pair follows directly from the
phase-shift property of the quadrature filter. Specifically, if the input is
x(t) = A cos (wgt + ¢)

then

X(f) = —jsenfX(f) = %A [8(f — fo) + 8(f + fo)] senf

= L 18- ) + 87 + )]
J

and thus x(¢) = A sin (wgt + ¢).

This transform pair can be used to find the Hilbert transform of any signal that
consists of a sum of sinusoids. However, most other Hilbert transforms involve per-
forming the convolution operation in Eq. (2), as illustrated by the following example.

EXAMPLE 3.5-2 Hilbert Transform of a Rectangular Pulse

Consider the delayed rectangular pulse x(¢) = A[u(t) — u(t — 7)]. The Hilbert
transform is
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(b)
Figure 3.5-2 Hilbert transform of a rectangular pulse. {a) Convelution; {b) result.
. AT 1
x(t) = —~J dA
™ 0 tr— A

whose evaluation requires graphical interpretation. Figure 3.5-2a shows the case
0 <t < 7/2 and we see that the areas cancel out between A = Oand A = 2t, leaving

ﬂo:—JI?A=%UM~0—mg—ﬂ]

A —t A t
™ t— T T T—1t

This result also holds for 7/2 <t < 7, when the areas cancel out between
A =2t — vand A = 7. There is no area cancellation fort < Qort > T, and

A(t)_éjf dr _ A, t
* Wot—/\—’ﬂ'n t— 1T

These separate cases can be combined in one expression

(4]

which is plotted in Fig. 3.5-2b along with x(?).
The infinite spikes in x(¢) at t = 0 and ¢t = 7 can be viewed as an extreme man-
ifestation of delay distortion. See Fig. 3.2—5 for comparison.
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The inverse Hilbert transform recovers x(¢) from x(¢). Use spectral analysis to show
that x(¢) = (—=1/7t) = x(2).

EXERCISE 3.5-1
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3.6 CORRELATION AND SPECTRAL DENSITY

This section introduces correlation functions as another approach to signal and sys-
tem analysis. Correlation focuses on time averages and signal power or energy. Taking
the Fourier transform of a correlation function leads to frequency-domain representa-
tion in terms of spectral density functions, equivalent to energy spectral density in
the case of an energy signal. In the case of a power signal, the spectral density function
tells us the power distribution over frequency.

But the signals themselves need not be Fourier transformable. Hence, spectral
density allows us to deal with a broader range of signal models, including the impor-
tant class of random signals. We develop correlation and spectral density here as
analytic tools for nonrandom signals. You should then feel more comfortable with
them when we get to random signals in Chap. 9.

Correlation of Power Signals

Let v(#) be a power signal, but not necessarily real nor periodic. Our only stipulation
is that it must have well-defined average power
A

P, & (WOF) = (u(0)w*() = 0 U

The time-averaging operation here is interpreted in the general form
1 (™2
(z(t)) = lim_ = J 1) dt
-T2

where z(¢) is an arbitrary time function. For reference purposes, we note that this
operation has the following properties:

(2*(2)) = (z(2))* [2a]
(2(t = t2)) = (2(t))  anyt, [2b]
(a12,(t) + axzy(t)) = a1(z4(2)) + ax{zo(t)) [2d]

We’ll have frequent use for these properties in conjunction with correlation.

If v() and w(z) are power signals, the average (v(¢)w*(z)) is called the scalar
product of v(¢) and w(®). The scalar product is a number, possibly complex, that
serves as a measure of similarity between the two signals. Schwarz’s inequality
relates the scalar product to the signal powers P, and P,, in that

[{o@w*)[* = PP, )

You can easily confirm that the equality holds when v(t) = aw(t), with a being an
arbitrary constant. Hence, |(v()w*(¢}}| is maximum when the signals are propor-
tional. We’ll soon define correlation in terms of the scalar product.

First, however, let’s further interpret (v(z)w*(¢)) and prove Schwarz’s inequal-
ity by considering

z(t) = v(t) — aw(r) ~ [4d]
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The average power of z(f) is
P, = (2()z*(t)) = ([v(t) — aw(®)][o*(r) — a*w*(s)]) (4b]
= (o(t)0*()) + aa*(w(thw*(r)) — a*(u(AwH(E)) — alv*(Ow(D))
= P, + aa*P,, — 2 Re [a*(v(t)w*(¢))]

I

where Egs. (2a) and (2¢) have been used to expand and combine terms. If a = 1,
then z(¢#) = v(¢) — w(t) and

P, =P, + P, — 2Re (u()w*(?))

A large value of the scalar product thus implies similar signals, in the sense that the
difference signal v(¢) — w(¢) has small average power. Conversely, a small scalar
product implies dissimilar signals and P, = P, + P, -

To prove Schwarz’s inequality from Eq. (4b), let a = (v(t)w*(¢t))/P,, so

aa*P, = a*(u(t)w*(1)) = [(v(O)wH(1)) /P,

Then P, = P, — [{v(t)w*(¢))*/P,, = 0, which reduces to Eq. (3) and completes the
preliminary work. ’
Now we define the crosscorrelation of two power signals as*

R,(T) & ((E)w*(t — 7)) = (v(t + T)w*(r)) (5]

This is a scalar product with the second signal delayed by 7 relative to the first or,
equivalently, the first signal advanced by 7 relative to the second. The relative dis-
placement 7 is the independent variable in Eq. (5), the variable ¢ having been
washed out in the time average. General properties of R, (T) are

IR (T)[> = P,P, [6d]

Ry(7) = R§,(—7) (6]

Equation (6a) simply restates Schwarz’s inequality, while Eq. (6b) points out that
Rypu(7) # Ryu(T).

We conclude from our previous observations that R, (7) measures the similarity

between v(f) and w(t — 7) as a function of 7. Crosscorrelation is thus a more sophis-

ticated measure than the ordinary scalar product since it detects time-shifted simi-
larities or differences that would be ignored in (v(¢)w*(¢)).

But suppose we correlate a signal with itself, generating the autocorrelation
function

Ro(r) 2 Roulr) = (0(O)*(t = 7)) = (u(t + 7)o*(0)) 7]

This autocorrelation tells us something about the time variation of v(f), at least in an
averaged sense. If |R,(7)| is large, we infer that v(¢ — 7) is very similar to v(f) for

TAnother definition used by some authors is (v*(f)w(t + 7)), equivalent to interchanging the sub-
scripts on R,,(7) in Eq. (3).
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that particular value of 7; whereas if |R,(7)| is small, then v(¢) and v(z — 7) must
look quite different.

Properties of the autocorrelation function include

R,(0) =P, [8d]
IR,(T)| = R,(0) [85]
R,(=7) = RY(7) (8¢l

Hence, R,(7) has hermitian symmetry and a maximum value at the origin equal to
the signal power. If v(?) is real, then R, () will be real and even. If v(¢) happens to
be periodic, R () will have the same periodicity.

Lastly, consider the sum or difference signal

(1) = v(r) = w(r) [94]
Upon forming its autocorrelation, we find that
RAm) = Ry(1) + Ry(1) £ [Ru(7) + Ru(1)] [96]

If v(#) and w(z) are uncorrelated for all T, so
Ru(T) = Ry(r) =0
then R(7) = R,(7) + R,(7) and setting T = 0 yields
P,=P,+ P,

Superposition of average power therefore holds for uncorrelated signals.

EXAMPLE 3.6-1

Correlation of Phasors and Sinusoids

The calculation of correlation functions for phasors and sinusoidal signals is expe-
dited by calling upon Eq. (18), Sect. 2.1, written as

jo b, — jaw,t ; 1 & j (w1 —wa)t
(e/Me™) = lim — e/l gy [10]
T—00 ~1
= lim sinc ————(wl — )T = {0 Wy # @
T—00 27T 1 w2 - wl

We’ll apply this result to the phasor signals
v(t) = G/ w(r) = C,e [114]

where C, and C,, are complex constants incorporating the amplitude and phase
angle. The crosscorrelation is

Ry (1) = ([Co™ ][ e 7))

— Cva: ejw“,T(ejw,te “jwwr)
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B {0 w, ¥ 0, (116]
C,C¥e/™ w,=w

w v

Hence, the phasors are uncorrelated unless they have identical frequencies. The
autocorrelation function is

R,(7) = |C,[%e"

which drops out of Eq. (115) when w(z) = v(t).
Now it becomes a simple task to show that the sinusoidal signal

[11¢

z(t) = A cos (wot + @) [124]
has
2
R(r) = A? COS wqT (125]

Clearly, R,(r) is real, even, and periodic, and has the maximum value
R, (0) = A%/2 = P,. This maximum also occurs whenever w,r equals a multiple of
27 radians, so z(t = 1) = z(¢). On the other hand, R (t) = 0 when z(¢ = 7) and
z(¢) are in phase quadrature.

But notice that the phase angle ¢ does not appear in R (7), owing to the aver-

aging effect of correlation. This emphasizes the fact that the autocorrelation func-
tion does not uniquely define a signal.
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Derive Eq. (12b) by writing z(¥) as a sum of conjugate phasors and applying Egs. (9)
and (11).

EXERCISE 3.6-1

Correlation of Energy Signals

Averaging products of energy signals over all time yields zero. But we can mean-
ingfully speak of the total energy

E, & J u(t)u*(t) dt = 0 [13]

—Co

Similarly, the correlation functions for energy signals can be defined as

R,,(T) = J v(t)w*(t — 7) dt [144q]
Ry(r) = Ryf7) (14b]

. . . . o0 - .
Since the integration operation [__z(¢) df has the same mathematical properties as
the time-average operation (z(t)), all of our previous correlation relations hold for



128

CHAPTER 3 @  Signal Transmission and Filtering

the case of energy signals if we replace average power P, with total energy E,. Thus,
for instance, we have the property

IR,.(T)]? = E,E [15]

vw
as the energy-signal version of Eq. (6a).

Closer examination of Eq. (14) reveals that energy-signal correlation is a type

of convolution. For with z(t) = w*(—t) and ¢ = A, the right-hand side of Eq. (144)
becomes

J v(A)z(T = A) dXx = v(T) * z(1)

-G

and therefore
va('r) = U(T) * W*(—T) {16]
Likewise, R,(T) = v(1) * v*(—T).

Some additional relations are obtained in terms of the Fourler transforms
V(f) = F[v(t)], etc. Specifically, from Egs. (16) and (17), Sect. 2.2,

R = £, |

TR

oo

Rol) = | v a= | v o

-0 —

Combining these integrals with |R,,(0)|* < E,E, = R,(0)R,(0) yields

[Tvwoww g = | more] more  on

-0 _

Equation (17) is a frequency-domain statement of Schwarz’s inequality. The equal-
ity holds when V(f) and W(f) are proportional.

EXAMPLE 3.6-2

Pattern Recognition

Crosscorrelation can be used in pattern recognition tasks. If the crosscorrelation of
objects A and B is similar to the autocorrelation of A, then B is assumed to match A.
Otherwise B does not match A. For example, the autocorrelation of x(f) = I1(¢) can be
found from performing the graphical correlation in Eq. (14b) as R(7) = A(7). If we
examine the similarity of y(#) = 2I1(¢) to x(¢) by finding the crosscorrelation R(7) =
2A(7), we see that R, (7) is just a scaled version of R,(7). Therefore y(f) matches x(z).
However, if we take the crosscorrelation of z(f) = u(t) with x(¢), we obtain

1 forr < —1/2
R (r)=4q1/)2 — 7 for-1/2=7=1/2
0 forr > 1/2

and conclude that z(¢) doesn’t match x(¢).
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This type of graphical correlation is particularly effective for signals that do not
have a closed-form solution. For example, autocorrelation can find the pitch (funda-
mental frequency) of speech signals. The crosscorrelation can determine if two speech
samples have the same pitch, and thus may have come from the same individual.
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Letv(t) = Alu(?) — u(t — D)] and w(t) = v(t — ty). Use Eq. (16) with z(7) = w*(—71)
to sketch R,,(7). Confirm from your sketch that |R,,(7)|* < E,E, and that
|RUW(T)|3HEIX = EUEW atT = ~ZLLi'

EXERCISE 3.6-2

We next investigate system analysis in the “7 domain,” as represented by
Fig. 3.6-1. A signal x(¢) having known autocorrelation R (7) is applied to an LTI
system with impulse response h(f), producing the output signal

(1) = ht) = x(t) = ro RA) x(t — A) dA

-

We’ll show that the input-output crosscorrelation function is

R (7) = k() x R(T) = J R(A) R (1 — A) dA [18]
and that the output autocorrelation function is
Rfr) = h(-7) s Ryl) = | (R - py e 09

Substituting Eq. (18) into (19a) then gives
R(7) = hW*(—7) % h(T) » R () [195]

Note that these 7-domain relations are convolutions, similar to the time-domain
relation.

For derivation purposes, let’s assume that x(¢) and y(f) are power signals so we
can use the compact time-averaged notation. Obviously, the same results will hold
when x(f) and y(#) are both energy signals. The assumption of a stable system
ensures that y(f) will be the same type of signal as x(#).

Starting with the crosscorrelation R (1) = (y(t)x*(z — 7)), we insert the
superposition integral A(f)x*(f) for y(f) and interchange the order of operations to get

R, (1) = J R(A)(x(t — A)x*(z — 7)) dA

—cQ

x(2) ¥(®)

_— h(z)

Ry(r) Ry(7)

Figure 3.6-1
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But since (z(¢)) = {z(¢ + A)) for any A,
(x(t = Mx*(t— 7)) = (x(t + A = )x*@ + A — 7))

= (x(0)x*[t = (7 = A)])
= Rt — A)

Hence,

R, (7) = Jm R(MR( — A) dA

Proceeding in the same fashion for R () = (y(¢)y*(t — 7)) we arrive at

Ryr) = J REA)(y(e)x*(t — 7 — A))dA
in which (y(t)x*(t — 7 — A)) = R,(r + A). Equation (19a) follows from the
change of variable u = —A.

Spectral Density Functions

At last we're prepared to discuss spectral density functions. Given a power or energy
signal v(?), its spectral density function G,(f) represents the distribution of power
or energy in the frequency domain and has two essential properties. First, the area
under G,(f) equals the average power or total energy, so

| e = r0) 20
Second, if x(¢) is the input to an LTI system with H(f) = F[h(z)], then the input
and output spectral density functions are related by

G(f) = |H()*Gf) [21]

since |H(f)|* is the power or energy gain at any f. These two properties are com-
bined in
(e 0]

R0 = | HIPGL) af 22

which expresses the output power or energy R,(0) in terms of the input spectral
density.
Equation (22) leads to a physical interpretation of spectral density with the help

of Fig. 3.6-2. Here, G,(f) is arbitrary and | H(f)|* acts like a narrowband filter with
unit gain, so

_ Y &
Gy(f): Gx(f) fc 9 <f<fc-'_ 7

0 otherwise
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G

0 2 !

IH(f)P?

Figure 3.6-2 Interpretation of spectral density functions.

If Af is sufficiently small, the area under G,(f) will be R (0) = G,(f.)Af and
Gif) = R,(0)/Af

We conclude that at any frequency f = f., G,(f.) equals the signal power or energy
per unit frequency. We further conclude that any spectral density function must be
real and nonnegative for all values of f.

But how do you determine G,(f) from v(f)? The Wiener-Kinchine theorem

states that you first calculate the autocorrelation function and then take its Fourier
transform. Thus,

Gu(f) = F[Ry(7)]

J R (T)e 7™ dr [234d]

-

where & stands for the Fourier transform operation with 7 in place of #. The inverse
transform is

1>

Ro() = FUGF)] J " G, (f)e i af (238

-

so we have the Fourier transform pair

Ry (1) > Gy(f)

All of our prior transform theorems therefore may be invoked to develop relation-
ships between autocorrelation and spectral density.

131
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If v(t) is an energy signal with V(f) = F[uv(t)], application of Egs. (16) and
(23a) shows that

G,(f) = [V(f)IP (24]

and we have the energy spectral density. If v(#) is a periodic power signal with the
Fourier series expansion

o0

v(t) = D clnfy)el* ™ [254]

n=-—0c0

the Wiener-Kinchine theorem gives the power spectral density, or power spec-
trum, as

G(f) = > |c(nfo)P8(f ~ nfy) (25b]

n=-c0
This power spectrum consists of impulses representing the average phasor power
|c(nf,)|* concentrated at each harmonic frequency f = nf;. Substituting Eq. (25b)
into Eq. (20) then yields a restatement of Parseval’s power theorem. In the special
case of a sinusoidal signal
z(t) = A cos (wyt + ¢)

we use R (1) from Eq. (12b) to get

Gy(f) = F.[(A%/2) cos 2mfyr]

AZ A2

= Za(f—fo) + 25(f+fo)

which is plotted in Fig. 3.6-3.

All of the foregoing cases lend support to the Wiener-Kinchine theorem but do
not constitute a general proof. To prove the theorem, we must confirm that taking
G,(f) = F,[R,(7)] satisfies the properties in Egs. (20) and (21). The former
immediately follows from the inverse transform in Eq. (23b) with 7 = 0. Now recall
the output autocorrelation expression

Ry(7) = W*(—7) % B(7) * Ry(7)

GLf)

A%4 A%4

-Jfo 0 fo

Figure 3.6-3 Power spectrum of z{f} = A cos {wof + ¢).
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Since
F[h(r)] = H(f)  F[h*(—7)] = HXS)
the convolution theorem yields
F[R/()] = H*(f)H(f)F[RT)]
and thus G(f) = |H(f)|*G(f) if we take F,[R (7)] = G,(f), etc.
The signal x(¢) = sinc 10z is input to the system in Fig. 3.6-1 having the transfer EXAMPLE 3.6~3

function
H(f) = 311 (%)e’““f
We can find the energy spectral density of x(#) from Eq. (24)
1 f
= X 2 == —— -
and the corresponding spectral density of the output y(z)

G(f) = |H()PGF)
= [on(@) am ()
9 f
=767(3)

since the amplitudes multiply only in the region where the functions overlap. There
are several ways to find the total energies E, and E,. We know that

B~ | )P Jmle(f)lzdf= E@(f) f

-0 -

5
1 1
= ——d —_
L 00" 10

Or we can find R (1) = F'{G,(f)} = $5 sinc 10z from which E, = R(0) = 35
Similarly,

£=| bopa=| more=| ona

— 0 —

9 9
= ——_df = =
Lmo f =55
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And correspondingly R (1) = %F;'{G,(f)} = 25 sinc 4¢ which leads to the same
result that E, = R (0) = 3. We can find the output signal y(¢) directly from the
relationship

1) = X(PH(G) = = n({z’)e-ﬂwf

by doing the same type of multiplication between rectangular functions as we did
earlier for the spectral density. Using the Fourier transform theorems,
¥(t) = $sinc 4(z —~ 2).

EXAMPLE 3.6-4

Comb Filter
Consider the comb filter in Fig. 3.6—4a. The impulse response is

h(t) = 8(¢) — 6(t — T)
SO

H(f) = 1~ 7T
and
H()P =2 = T — oot
= 4sin® 27 (f/f.) f. =2/T

The sketch of [H(f)|? in Fig. 3.6-4b explains the name of this filter.

If we know the input spectral density, the output density and autocorrelation can
be found from

G(f) = 4sin® 27 (f/f,) G f)

H(f )P
4
=0 ~(D—= 0
Delay ‘
T : — — f
-f14 0 fua g2 3fi4 f,
{a] (b)

Figure 3.6-4 Comb filter.
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Ry(r) = FG(f)]

If we also know the input autocorrelation, we can write

Ry(r) = FH(F)P]*RAS)

where, using the exponential expression for | H(f)|?,

FH)] = 25(r) ~ 8(r = T) — 8(r + T)

Therefore,

Ry(T) = 2RX(T) - Rx(T - T) - Rx(T + T)
and the output power or energy is R,(0) = 2R,(0) — R (—T) — R(T).

Let u(f) be an energy signal. Show that % [v*(—7)] = V*(f). Then derive EXERCISE 3.6-3
G,(f) = [V(f)|* by applying Eq. (23a) to Eq. (16).

3.1-1

3.1-2
3.1-3*
3.1-4
3.1-5
3.1-6

3.1-7
3.1-8
3.1-9*

3.1-10

3.1-11

3.1-12

3.1-13

3.7 PROBLEMS

A given system has impulse response h(z) and transfer function H(f). Obtain
expressions for y(¢) and Y(f) when x(t) = A[8(t + t;) — 8(t — 1,)].

Do Prob. 3.1-1 with x(t) = A[8(¢ + 1,) + ()]
Do Prob. 3.1-1 with x(t) = Ah(t — t,).
Do Prob. 3.1-1 with x(¢) = Au(t — t,).
Justify Eq. (7b) from Eq. (14) with x(¢) = u(z).

Find and sketch |H(f)| and arg H(f) for a system described by the differential
equation dy(t)/dt + 4my(t) = dx(t)/dt + 167x(t).

Do Prob. 3.1-6 with dy(t)/dt + 167y(t) = dx(t)/dt + 4mx(¢).
Do Prob. 3.1-6 with dy(t)/dt — 4my(t) = — dx(t)/dt + 4mx(2).

Use frequency-domain analysis to obtain an approximate expression for y(f) when
H(f) = B/(B + jf) and x(f) is such that X(f) = O for |f| < W with W > B,
Use frequency-domain analysis to obtain an approximate expression for y(f) when
H(f) = jf/(B + jf) and x(¢) is such that X(f) = O for |f| > W with W << B.
The input to an RC lowpass filter is x(¢) = 2 sinc 4Wt. Plot the energy ratio E,/E,
versus B/W.

Sketch and label the impulse response of the cascade system in Fig. 3.1-8b when
the blocks represent zero-order holds with time delays T}, > T5.

Sketch and label the impulse response of the cascade system in Fig. 3.1-85 when

H,(f) =[1+j(f/B)]"" and the second block represents a zero-order hold with
time delay T >> 1/B.



136

3.1-14*
3.1-15

3.1-16%

3.2-1

3.2-2

3.2-3*

3.2-4

3.2-5

3.2-6

3.2-7

3.2-8*
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Find the step and impulse response of the feedback system in Fig. 3.1-8¢ when
H,(f) is a differentiator and H,(f) is a gain K.

Find the step and impulse response of the feedback system in Fig. 3.1-8¢ when
H,(f) is a gain K and H,(f) is a differentiator.

If H(f) is the transfer function of a physically realizable system, then h(f) must be
real and causal. As a consequence, for t = O show that

h(t) = 4roH,(f) cos wtdf = 4JmHi(f) cos wt df
0 0

where H,(f) = Re[H(f)] and H(f) = Im[H(f)].

Show that a first-order lowpass system yields essentially distortionless transmission
if x(f) is bandlimited to W << B,

Find and sketch y(f) when the test signal x(t) = 4 cos wgt + § cos 3wyt +
24—5 cos Swyt, which approximates a triangular wave, is applied to a first-order low-
pass system with B = 3f;,.

Find and sketch y(f) when the test signal from Prob. 3.2-2 is applied to a first-order
highpass system with H(f) = jf/(B + jf) and B = 3f;.

The signal 2 sinc 40z is to be transmitted over a channel with transfer function H(f).

The output is y(¢) = 20 sinc (40t ~ 200). Find H(f) and sketch its magnitude and
phase over | f| = 30.

Evaluate 1,(f) at f= 0, 0.5, 1, and 2 kHz for a first-order lowpass system with
B = 2kHz.

A channel has the transfer function

AT1 ({6>e 30 for| f| = 15Hz

H(f) =
41'1(%)(5‘]"/2 for| f| > 15Hz

Sketch the phase delay z,(f) and group delay #,(f). For what values of f does
tf) = £(f)?

Consider a transmission channel with Ho(f) = (1 + 2a cos wT)e /T, which has
amplitude ripples. (a) Show that y(t) = ax(t) + x(t — T) + ax(t — 27T), so the

output includes a leading and trailing echo. (b) Let x(t) = II(¢/7) and a = 1/2.
Sketch y(¢) for 7 = 27T/3 and 477/3.

Consider a transmission channel with H-(f) = exp{—j(wT — « sin wT)], which has

phase ripples. Assume |a| << 77/2 and use a series expansion to show that the out-
put includes a leading and trailing echo.



3.2-9
3.2-10
3.2-11

3.2-12
3.3-1*

3.3-2
3.3-3

3.3-4

3.3-5
3.3-6*

3.3-7
3.3-8

3.3-9

3.4-1

3.4-2*

3.4-3
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Design a tapped-delay line equalizer for H (f) in Prob. 3.2-8 with o = 0.4.
Design a tapped-delay line equalizer for H,(f) in Prob. 3.2-7 with o = 0.4.
Suppose x(f) = A cos wyt is applied to a nonlinear system with y(¢) = 2x(f) — 3x3(z).

Write y(f) as a sum of cosines. Then evaluate the second-harmonic and third-
harmonic distortion when A = 1 and A = 2.

Do Prob. 3.2-11 with y(t) = 5x(¢) — 2x%(t) + 4x°(¢).
Let the repeater system in Fig. 3.3-2 have P, = 0.5 W, o = 2 dB/km, and a total

path length of 50 km. Find the amplifier gains and the location of the repeater so that
P, = 50 mW and the signal power at the input to each amplifier equals 20uW.

Do Prob. 3.3-1 with P,, = 100 mW and P, = 0.1 W.

A 400 km repeater system consists of m identical cable sections with & = 0.4 dB/km

and m identical amplifiers with 30 dB maximum gain. Find the required number of
sections and the gain per amplifier so that P, = 50 mW when P,; = 2W.

A 3000 km repeater system consists of m identical fiber-optic cable sections with
a = 0.5 dB/km and m identical amplifiers. Find the required number of sections and

the gain per amplifier so that P, = P;, = 5 mW and the input power to each ampli-
fier is at least 67 uW.

Do Prob. 3.34 with ¢ = 2.5 dB/km.

Suppose the radio link in Fig. 3.3-4 has f = 3 GHz, ¢ = 40 km, and P, = SW. If
both antennas are circular dishes with the same radius r, find the value of r that
yields P, = 2 uW. _

Do Prob. 3.3-6 with f = 200 MHz and ¢ = 10 km.

The radio link in Fig. 3.3—4 is used to transmit a metropolitan TV signal to a rural
cable company 50 km away. Suppose a radio repeater with a total gain of g,
(including antennas and amplifier) is inserted in the middle of the path. Obtain the
condition on the value of g, so that P, is increased by 20 percent.

A direct broadcast satellite (DBS) system uses 17 GHz for the uplink and 12 GHz
for the downlink. Using the values of the amplifiers from Example 3.3-1, find P,

assuming P;, = 30 dBW.
Find and sketch the impulse response of the ideal HPF defined by Eq. (1) with
f. = co.

Find and sketch the impulse response of an ideal band-rejection filter having

H(f) =0 for f, — B/2 < |f| < f. + B/2 and distortionless transmission for all
other frequencies.

Find the minimum value of n such that a Butterworth filter has |H(f)| = —1 dB for
|| < 0.7B. Then calculate |H(3B)| in dB.
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3.4-4

34-5

34-6

3.4-7
3.4-8*

3.4-9

3.4-10%

3.4-11%

3.5-1

3.5-2*

3.5-3
3.5-4
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Find the minimum value of n such that a Butterworth filter has |[H(f)| = ~1 dB for
|f| < 0.9B. Then calculate |H(3B)| in dB.

The impulse response of a second-order Butterworth LPF is A(f) =

2be ¥ sin bt u(t) with b = 2wB//2. Derive this result using a table of Laplace
transforms by taking p = s/27B in Table 3.4-1.

Let R = VL/C in Fig. 3.4-7. (a) Show that |H(¥)|* = [1 — (f/f)* + (ff,)*] ™!
with f = 1/ 2aVLC. (b) Find the 3 dB bandwidth in terms of f;. Then sketch
|H(f)| and compare with a second-order Butterworth response.

Show that the 10~-90% risetime of a first-order LPF equals 1/2.87B.

Use A(#) given in Prob. 3.4~5 to find the step response of a second-order Butterworth
LPE. Then plot g(¢) and estimate the risetime in terms of B.

Let x(#) = A sinc 4Wt be applied to an ideal LPF with bandwidth B. Taking the dura-
tion of sinc at to be T = 2/a, plot the ratio of output to input pulse duration as a
function of B/W.

The effective bandwidth of an LPF and the effective duration of its impulse
response are defined by

| IECE:
Bt = T0m0) T ()

Obtain expressions for H(0) and |A(¢)| from F[A(¢)] and F [ H(F)], respectively.
Then show that 7.z = 1/2 B .

Let the impulse response of an ideal LPF be truncated to obtain the causal function
h(t) = 2KB sinc 2B(t — t,) 0<t<2t

and h(t) = 0 elsewhere. (a) Show by Fourier transformation that
K _.
H(f) = —e ™ {Si [27(f + B)t,] — Si[27(f — B)ta]}

(b) Sketch A(?) and |H(f)| for t; >> 1/Band t, = 1/2B.

Let x(t) = 8(¢). (a) Find x(¢) from Eq. (2) and use your result to confirm that
F Y —jsgnf] = 1/wt. (b) Then derive another Hilbert transform pair from the
property x(£)*(—1/7wt) = x(¢).

Use Eq. (3), Sect. 3.1, and the resuits in Example 3.5-2 to obtain the Hilbert trans-
form of AIl(z/7). Now show that if () = A for all time, then 0(¢) = 0.

Use Eq. (3) to show that if x(¢) = sinc 2W¢ then (t) = #Wt sinc® Wt.

Find the Hilbert transform of the signal in Fig. 3.2-3 using the results of Example
3.5-1.
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Find the Hilbert transform of the signal
x(t) = 4 cos wyt + § cos 3wyt + 35 oS Swyt.

Show that the functions that form the Hilbert transform pair in Prob. 3.5-3 have the
same amplitude spectrum by finding the magnitude of the Fourier transform of each.
(Hint: Express the sinc? term as the product of a sine function and sinc function.)
Show that f:c x(#)x(t)dt = O for x(t) = A cos wyt.

Let the transfer function of a filter be written in the form H(f) = H,(f) + jH,(f),
as in Eq. (10), Sect. 2.2. If the filter is physically realizable, then its impulse
response must have the causal property h(t) = 0 for ¢+ < 0. Hence, we can write
h(t) = (1 + sgnt)h,(r) where hr) = 3h(|¢]) for —oo <t < co. Show that
F(h,(t)] = H,(f) and thus causality requires that H,(f) = —H,(f).

Prove Eq. (6b).

Let v(?) be periodic with period T,. Show from Eq. (7) that R (7) has the same peri-
odicity.

Derive Eq. (8b) by taking w(¢t) = v(¢r — 1) in Eq. (3).

Use the method of pattern recognition demonstrated in Example 3.6-2 to determine
whether y(t) = sin 2wyt is similar to x(¢) = cos 2wqt.

Use Eq. (24) to obtain the spectral density, autocorrelation, and signal energy when
v(t) = ATI[(z — t,)/D].

Do Prob. 3.6-5 with v(¢) = A sinc 4W(¢t + t,).

Do Prob. 3.6-5 with v(¢) = Ae ~"'u(t).

Use Eq. (25) to obtain the spectral density, autocorrelation, and signal power when
v(t) = Ay + A sin (wpt + ).

Do Prob. 3.6-8 with v(z) = A cos (wgt + ¢ ;) + A,sin 2wyt + ¢ ).

Obtain the autocorrelation of v(r) = Au(t) from Eq. (7). Use your result to find the
signal power and spectral density.

The energy signal x(¢) = II(10¢) is input to an ideal lowpass filter system with
K = 3, B = 20, and #; = 0.05, producing the output signal y(f). Write and simplify
an expression for R (7).
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142 CHAPTER 4 ®  Linear CW Modulation

he several purposes of modulation were itemized in Chap. 1 along with a qudlitative description of the process.

To briefly recapitulate: modulation is the systematic alteration of one waveform, called the carrier, according to
the characteristics of another waveform, the modulating signal or message. The fundamental goal is to produce an
information-bearing modulated wave whose properties are best suited fo the given communication task.

We now embark on a tour of continuous-wave (CW) modulation systems. The carrier in these sys-
tems is o sinusoidal wave modulated by an analog signal—AM and FM radio being familiar examples. The abbre-
viation CW dlso refers to on-off keying of a sinusoid, as in radio telegraphy, but that process is more accurately
termed inferrupfed continuous wave (ICWV].

This chapter deals specifically with linear CW modulation, which involves direct frequency translation of the
message spectrum. Double-sideband modulation [DSB) is precisely that. Minor modifications of the translated spec-
trum yield conventional amplitude modulation [AM), single-sideband modulation (SSB), or vestigial-sideband modu-
lation [VSB). Each of these variations has its own distinct advantages and significant practical applications. Each will
be given due consideration, including such matters as waveforms and specira, modulation methods, transmitters, and

demodulation. The chapter begins with a general discussion of bandpass signals and systems, pertinent to alt forms
of CW modulation. '

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

L Given a bandpass signal, find its envelope and phase, in-phase and quadrature components, and lowpass equiva-
lent signal and spectrum (Sect. 4.1).

2. State and apply the fractionai-bandwidth rule of thumb for bandpass systems (Sect. 4.1).

3. Sketch the waveform and envelope of an AM or DSB signal, and identify the spectral properties of AM, DSB,
SSB, and VSB (Sects. 4.2 and 4.4).

4, Construct the line spectrum and phasor diagram, and find the sideband power and total power of an AM, DSB,
SSB or VSB signal with tone modulation (Sects. 4.2 and 4.4).

5. Distinguish between product, power-law, and balanced modulators, and analyze a modulation system (Sect. 4.3).
6. Identify the characteristics of synchronous, homodyne, and envelope detection (Sect. 4.5).

4.1 BANDPASS SIGNALS AND SYSTEMS

Effective communication over appreciable distance usually requires a high-frequency
sinusoidal carrier. Consequently, by applying the frequency translation (or modula-
tion) property of the Fourier transform from Sect. 2.3 to a bandlimited message sig-
nal, we can see that most long-haul transmission systems have a bandpass fre-
quency response. The properties are similar to those of a bandpass filter, and any
signal transmitted on such a system must have a bandpass spectrum. Our purpose
here is to present the characteristics and methods of analysis unique to bandpass
systems and signals. Before plunging into the details, let’s establish some conven-
tions regarding the message and modulated signals.
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Analog Message Conventions

Whenever possible, our study of analog communication will be couched in terms of
an arbitrary message waveform x(f)—which might stand for a sample function from
the ensemble of possible messages produced by an information source. The one
essential condition imposed on x(¢) is that it must have a reasonably well-defined
message bandwidth W, so there’s negligible spectral content for | f| > W. Accord-
ingly, Fig. 4.1-1 represents a typical message spectrum X(f) = %[x(¢)] assuming
the message is an energy signal.

For mathematical convenience, we’ll also scale or normalize all messages to
have a magnitude not exceeding unity, so

| x()] =1 [
This normalization puts an upper limit on the average message power, namely
S,={x)) =1 (2]

when we assume x(¢) is a deterministic power signal. Both energy-signal and power-
signal models will be used for x(¢), depending on which one best suits the circum-
stances at hand. '

Occasionally, analysis with arbitrary x(#) turns out to be difficult if not impossi-

ble. As a fall-back position we may then resort to the specific case of sinusoidal or
tone modulation, taking

x(t) = A, cos w,t A, =1 fa < W [3]

Tone modulation allows us to work with one-sided line spectra and simplifies power
calculations. Moreover, if you can find the response of the modulation system at a
particular frequency f,,, you can infer the response for all frequencies in the message

band—barring any nonlinearities. To reveal potential nonlinear effects, you must
use multitone modulation such as

x(t) = Ay cos wit + A, cOs wot + -

with A; + A, + -+ = 1 to satisfy Eq. (1).

X!
N

arg X(f)

Figure 4.1-1 Message spectrum with bandwidth W.
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Bandpass Signals

We next explore the characteristics unique to bandpass signals and establish some
useful analysis tools that will aid our discussions of bandpass transmission. Con-
sider a real energy signal v,,(¢) whose spectrum V,,(f) has the bandpass character-
istic sketched in Fig. 4.1-24. This spectrum exhibits hermitian symmetry, because
Upy(t) is real, but V},(f) is not necessarily symmetrical with respect to xf,. We
define a bandpass signal by the frequency domain property

Vi(f) =0 lf’<fc“W [4]
fI>f+W

which simply states that the signal has no spectral content outside a band of width
2W centered at f,. The values of f, and W may be somewhat arbitrary, as long as they
satisfy Eq. (4) with W < £. '

The corresponding bandpass waveform in Fig. 4.1-2b looks like a sinusoid at
frequency f, with slowly changing amplitude and phase angle. Formally we write

Upp(t) = A(t) cos [w.t + (1)] (5]

where A(?) is the envelope and ¢(z) is the phase, both functions of time. The enve-
lope, shown as a dashed line, is defined as nonnegative, so that A(¢) = 0. Negative
“amplitudes,” when they occur, are absorbed in the phase by adding % 180°.

pr(f)
lpr(f)l

{b)

Figure 4.1-2 Bandpass signal. (a) Spectrum; (b) waveform.,
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Figure 4.1-3a depicts v,,(t) as a complex-plane vector whose length equals A(?)
and whose angle equals w.t + ¢(¢). But the angular term w.f represents a steady
counterclockwise rotation at f, revolutions per second and can just as well be sup-
pressed, leading to Fig. 4.1-3b. This phasor representation, used regularly hereafter,
relates to Fig. 4.1-3a 1n the following manner: If you pin the origin of Fig. 4.1-3b
and rotate the entire figure counterclockwise at the rate f., it becomes Fig. 4.1-3a.

Further inspection of Fig. 4.1-3a suggests another way of writing v,,(z). If we let

v ) £ A®R) cos () v,(t) 2 A(F) sin $() l6]
then

Up(t) = v(f) cos w.t — v (t) sin w,t 7]

= v,() cos wt + v,(t) cos (w.t + 90°)

Equation (7) is called the quadrature-carrier description of a bandpass signal, as
distinguished from the envelope-and-phase description in Eq. (5). The functions
v;(t) and v,(t) are named the in-phase and quadrature components, respectively.
The quadrature-carrier designation comes about from the fact that the two terms in
Eq. (7) may be represented by phasors with the second at an angle of +90° com-
pared to the first.

While both descriptions of a bandpass signal are useful, the quadrature-carrier

version has advantages for the frequency-domain interpretation. Specifically,
Fourier transformation of Eq. (7) yields

Vol £) = ST~ £) + VU + Y+ AV -0 = v+ )
where

Vi(£) = Fu)] V() = Flu,0)]

pr(t)

A V(D)
A

t+ (1) R
w ¢
{ \ c v \ X0 b

—
v®
la) {b)

Figure 4.1-3 (o) Rotating phasor; (b) phasor diagram with rotation suppressed.
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To obtain Eq. (8) we have used the modulation theorem from Eq. (7), Sect. 2.3,
along with e */®” = +j. The envelope-and-phase description does not readily con-
vert to the frequency domain since, from Eq. (6) or Fig. 4.1-35,

A1) = Vui(t) + vie) () = arctanyﬁ (9]

which are not Fourier-transformable expressions.
An immediate implication of Eq. (8) is that, in order to satisfy the bandpass con-
dition in Eq. (4), the in-phase and quadrature functions must be lowpass signals with

Vi) =Vf)=0 [f[>W

In other words,

We’ll capitalize upon this property in the definition of the lowpass equivalent
spectrum

Veo(f) = %[Vl(f) + JVo(f)] [104]

= pr(f+fc)u(f+fc) “0b]

As shown in Fig. 4.1-4, V,,(f) simply equals the positive-frequency portion of
Vip(f) translated down to the origin.

Going from Eq. (10) to the time domain, we obtain the lowpass equivalent signal

Vg(r) = FT[Ve,(f)] = z[vit) + jug(1)] (11al

Thus, v,(t) is a fictitious complex signal whose real part equals 3v,(¢) and whose
imaginary part equals 3v 4(1). Alternatively, rectangular-to-polar conversion yields

V()

Ve (£

arg Vep(f)

Figure 4.1-4 Lowpass equivalent spectrum.
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4.1 Bandpass Signals and Systems

ve(t) = %A(t)e”s(’) [115]

where we’ve drawn on Eq. (9) to write ng(t) in terms of the envelope and phase
functions. The complex nature of the lowpass equivalent signal can be traced back to
its spectrum V,,(f ), which lacks the hermitian symmetry required for the transform
of a real time function. Nonetheless, v,,(¢) does represent a real bandpass signal.

The connection between v,,(t) and v,,(t) is derived from Egs. (5) and (110) as
follows:

V() = Re {A(r)e/le+ 40} (2]
= 2Re [2A(t)e /e /#V]
= 2 Re [vg,(t)e’*']

This result expresses the lowpass-to-bandpass transformation in the time domain.
The corresponding frequency-domain transformation is

Vi f) = Ve(f = f2) + VE(=f — 1) [13d]

whose first term constitutes the positive-frequency portion of V,,(f) while the sec-
ond term constitutes the negative-frequency portion. Since we’ll deal only with real
bandpass signals, we can keep the hermitian symmetry of V,,(f ) in mind and use
the simpler expression

V(f) = Ve(f —=f)  f>0 [135]
which follows from Figs. 4.1-2a and 4.1-4.
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Letz(t) = vgp(t)ef“" and use 2 Re [2(1)] = z(£) + z*(¢) to derive Eq. (13a) from Eq. (12).

EXERCISE 4.1-1

Bandpass Transmission

Now we have the tools needed to analyze bandpass transmission represented by
Fig. 4.1-5a where a bandpass signal x,,(t) applied to a bandpass system with trans-
fer function H,,(f) produces the bandpass output y,,(t). Obviously, you could
attempt direct bandpass analysis via Y,,(f) = H,,(f)X,,(f). Butit’s usually easier
to work with the lowpass equivalent spectra related by

Yeo(f) = He(f) Xep(f) [14d]
where
He(f) = Hyp(f + fulf + 12) (14b]

which is the lowpass equivalent transfer function. .
Equation (14) permits us to replace a bandpass system with the lowpass equiva-
lent model in Fig. 4.1-5b. Besides simplifying analysis, the lowpass model provides
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Xpp(l) == Hy,(f) Yop(t)  Xg, () Ye,(8)
— p P

(al (b)

Figure 4.1-5 [a) Bandpass system; {b) lowpass model.

valuable insight to bandpass phenomena by analogy with known lowpass relation-
ships. We move back and forth between the bandpass and lowpass models with the
help of our previous results for bandpass signals.

In particular, after finding Y,,(f) from Eq. (14), you can take its inverse Fourier
transform

Ye(t) = F [ Ye()] = F T Heo(f )X op(f)]

The lowpass-to-bandpass transformation in Eq. (12) then yields the output signal

Ypp(t). Or you can get the output quadrature components or envelope and phase
immediately from y,,(z) as

yi{t) = 2Re [ye(t)]  y4(t) = 2Im [yg,(1)] [15]
A1) = 2 |yg(t)] b, (1) = arg [yg,(1)]

which follow from Eq. (10). The example below illustrates an important application
of these techniques.

EXAMPLE 4.1-1

Carrier and Envelope Delay

Consider a bandpass system having constant amplitude ratio but nonlinear phase
shift 6(f) over its passband. Thus,

H,(f) = K™D f, < |f] <f,
and
Hy(f) = KT u(f+ £y  fo—f.<fF<f. —Tf.

as sketched in Fig. 4.1-6. Assuming the phase nonlinearities are relatively smooth,
we can write the approximation

0(f + fo) = =27 (tofe + 0.f)

where

, 8 _6(f) A 1 do(f) [16]
0 27, ! 27 df |rr.

This approximation comes from the first two terms of the Taylor series expansion of

0(f + 1o)-
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pr(f) Hep(f)
IHyp (I
. K - K
//\\ £ 8( + ,-C //\\\ :
W8 e . f+5) 8 .
° fo £ fe=tfe |0 N fute
{a) (b)
Figure 4.1-6 (a) Bandpass transfer function; (b) lowpass equivalent.

To interpret the parameters f, and ¢, let the input signal have zero phase so that
xp(t) = AL(t) cos w.t and xg,(2) = 3A,(¢). If the input spectrum Xpp(f) falls
entirely within the system’s passband, then, from Eq. (14),

Yo (f) = Ke je(f+f‘)Xep(f) ~ Ke —jlﬂf(fofcﬂlf)Xep(f)
= K¢ _j“’cro[Xep(f)e"‘jz"Tfﬁ]

Recalling the time-delay theorem, we see that the second term corresponds to xg,(t)
delayed by ;. Hence,

yolt) = KeTong(t ~ 1) = Ke 7@ JA(t — 1))
and Eq. (12) yields the bandpass output

ybp(t) = KAx(t - tl) cos wc(t - tO)

Based on this result, we conclude that z is the carrier delay while ¢, is the envelope
delay of the system. And since ¢, is independent of frequency, at least to the extent
of our approximation for 6(f + f.), the envelope has not suffered delay distortion.
Envelope delay is also called the group delay.

We’ll later describe multiplexing systems in which several bandpass signals at
different carrier frequencies are transmitted over a single channel. Plots of df/df
versus fare used in this context to evaluate the channel’s delay characteristics. If the

curve 1s not reasonably flat over a proposed band, phase equalization may be
required to prevent excessive envelope distortion.
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Suppose a bandpass system has zero phase shift but |H,,(f)| = K, + (K\/f) (f = f)

fOI'fe <f <fu) where KO > (Kl/]cc)(ff - fc) Sketch H{’p(f) ta-kingff <fc andf;t >]CC

Now show that if xpp(1) = A, (1) cos w,t then the quadrature cormponents of y,,(z) are
K, dAD)

2af, dt

provided that X,,(f) falls entirely within the bandpass of the system.

yi(t) = KOAx<t) yq(t) =

EXERCISE 4.1-2
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The sumplest bandpass system is the parallel resonant or tuned circuit repre-

sented by Fig. 4.1-7a. The voltage transfer function plotted in Fig. 4.1-7b can be
written as

1

[174]
AL _ f9)
1+JQ<& f

in which the resonant frequency f; and quality factor Q are related to the element

values by
1 C
" omVIC L

The 3 dB bandwidth between the lower and upper cutoff frequencies is

_h
Q

Since practical tuned circuits usually have 10 < Q < 100, the 3 dB bandwidth falls
between 1 and 10 percent of the center-frequency value.

A complete bandpass system consists of the transmission channel plus tuned
amplifiers and coupling devices connected at each end. Hence, the overall frequency
response has a more complicated shape than that of a simple tuned circuit. Nonethe-
less, various physical effects result in a loose but significant connection between the
system’s bandwidth and the carrier frequency f.—similar to Eq. (17b).

For instance, the antennas in a radio system produce considerable distortion
unless the frequency range is small compared to f.. Moreover, designing a reason-
ably distortionless bandpass amplifier turns out to be quite difficult if B is either

H(f) =

B=f,—~1 [175]

1.0 Jr—
75 0.707 + :
= z |
+ + B .
R R SR S f
Uin L C T Ugut 0 f€ f() f
u
— o_; — ® o p—
90°
= ol
(q) :j 45 fO fu
= 0 ! S
P TLNE fe
-90° +
(b}

Figure 4.1-7 (@) Tuned circuit; {b) transfer function.
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very large or very small compared to f.. As a rough rule of thumb, the fractional
bandwidth B/f, should be kept within the range

0.01 <? < 0.1 , (18]

[

I Otherwise, the signal distortion may be beyond the scope of practical equalizers.
From Eq. (18) we see that

This observation is underscored by Table. 4.1-1, which lists selected carrier fre-
‘ quencies and the corresponding nominal bandwidth B = 0.02f, for different fre-
' quency bands. Larger bandwidths can be achieved, of course, but at substantially
greater cost. As a further consequence of Eq. (18), the terms bandpass and narrow-

l band are virtually synonymous in signal transmission.

i Table 4.1-1 Selected carrier frequencies and nominal bandwidth
' Frequency Band Carrier Frequency Bandwidth
Longwave radio 100 kHz 2 kHz
- Shortwave radio 5 MHz 100 kHz
l VHF 100 MHz 2MHz
Microwave 5GHz 100 MHz
"- Millimeterwave 100 GHz 2GHz
I Optical 5% 10" Hz 10" Hz
l : Bandpass Pulse Transmission

EXAMPLE 4.1-2

We found in Sect. 3.4 that transmitting a pulse of duration r requires a lowpass band-
' l width B = 1/27. We also found in Example 2.3-2 that frequency translation converts
‘ a pulse to a bandpass waveform and doubles its spectral width. Putting these two

observations together, we conclude that bandpass pulse transmission requires

| B=1/r

Since Eq. (18) imposes the additional constraint 0.1f, > B, the carrier frequency
._i must satisfy

f.>10/7
These relations have long served as useful guidelines in radar work and related
E fields. To illustrate, if 7 = 1 us then bandpass transmission requires B = 1 MHz

and f. > 10 MHz.
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4.2 DOUBLE-SIDEBAND AMPLITUDE MODULATION

There are two types of double-sideband amplitude modulation: standard amplitude
modulation (AM), and suppressed-carrier double-sideband modulation (DSB).
We’ll examine both types and show that the minor theoretical difference between
them has major repercussions in practical applications.

AM Signals and Spectra

The unique property of AM is that the envelope of the modulated carrier has the
same shape as the message. If A, denotes the unmodulated carrier amplitude, mod-
ulation by x(t) produces the modulated envelope

Al) = A1 + px(t)] 1)

where u is a positive constant called the modulation index. The complete AM sig-
nal x(z) is then

x(t) = AJ1 + px(t)] cos wt [2]
= A, cos w.t + A, ux(t) cos w.t
Since x(t) has no time-varying phase, its in-phase and quadrature components are
xo{t) = A(f) xoff) = 0

as obtained from Egs. (5) and (6), Sect. 4.1, with ¢(¢) = 0. Actually, we should
include a constant carrier phase shift to emphasize that the carrier and message
come from independent and unsynchronized sources. However, putting a constant
phase in Eq. (2) increases the notational complexity without adding to the physical
understanding.

Figure 4.2-1 shows part of a typical message and the resulting AM signal with
two values of u. The envelope clearly reproduces the shape of x(z) if

> W wp=1 3]

When these conditions are satisfied, the message x(¢) is easily extracted from x(t)
by use of a simple envelope detector whose circuitry will be described in Sect. 4.5.

The condition f, > W ensures that the carrier oscillates rapidly compared to
the time variation of x(z); otherwise, an envelope could not be visualized. The con-
dition u = 1 ensures that A [1 + ux(¢)] does not go negative. With 100-percent
modulation (. = 1), the envelope varies between A, = 0 and A, = 24.. Over-
modulation (i > 1), causes phase reversals and envelope distortion illustrated
by Fig. 4.2-1c.

Going to the frequency domain, Fourier transformation of Eq. (2) yields

XAF) = SABG - 1) + EAX( - £)  F>0 g
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4.2 Double-Sideband Amplitude Modulation

Phase reversal

()

w=jgure 4.2-1 AM waveforms. {a) Message; (B} AM wave with w < 1; {¢) AM wave with & > 1.

where we’ve written out only the positive-frequency half of X (f). The negative-
frequency half will be the hermitian image of Eq. (4) since x,{f) is a real bandpass
signal. Both halves of X Af) are sketched in Fig. 4.2-2 with X(f) from Fig. 4.1-1.
The AM spectrum consists of carrier-frequency impulses and symmetrical side-
pands centered at *f;. The presence of upper and lower sidebands accounts for
‘the name double-sideband amplitude modulation. It also accounts for the AM

transmission bandwidth

Note that AM requires twice the bandwidth needed to transmit x(¢) at baseband

without modulation.
Transmission bandwidth is an important consideration for the comparison of

modulation systems. Another important consideration is the average transmitted

power
Sr & (x4e))
Upon expanding x2(t) from Eq. (2), we have
S = 3AN1 + 2ux(t) + pix(2)) + 3AX[1 + wx(t) ] cos 2w, 1)
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X
Carrier
Lower Upper
sideband sideband
N
0 f c™ w f ct W

Figure 4.2-2 AM specirum.

whose second term averages to zero under the condition f, > W. Thus, if
(x(t)) = Oand (x*(t)) = S, then
Sy = 3AX1 + u2S,) [6]

The assumption that the message has zero average value (or no dc component)
anticipates the conclusion from Sect. 4.5 that ordinary AM is not practical for trans-
mitting signals with significant low-frequency content.

We bring out the interpretation of Eq. (6) by putting it in the form
Sp= P, + 2P,
where
P, =347 Py = 3AWS, = 3uS.P, (7]
The term P, represents the unmodulated carrier power, since S; = P. when
M = 0; the term P, represents the power per sideband since, when n # 0, Sy con-

sists of the power in the carrier plus two symmetric sidebands. The modulation con-
straint |ux(f)| = 1 requires that S, < 1, so Py, = 3P, and

c:ST_ZPst%ST Psbs%ST (8]

Consequently, at least 50 percent of the total transmitted power resides in a carrier
term that’s independent of x(#) and thus conveys no message information.

DSB Signals and Spectra

The “wasted” carrier power in amplitude modulation can be eliminated by setting

@ = 1 and suppressing the unmodulated carrier-frequency component. The result-
ing modulated wave becomes

x (1) = Ax(t) cos w,t [9]
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which is called double-sideband-suppressed-carrier modulation—or DSB for
short. (The abbreviations DSB-SC and DSSC are also used.) The transform of Eq.
(9) is simply

X{f) =:AX(f-f) f>0

and the DSB spectrum looks like an AM spectrum without the unmodulated carrier
impulses. The transmission bandwidth thus remains unchanged at By = 2W.
Although DSB and AM are quite similar in the frequency domain, the time-

domain picture is another story. As illustrated by Fig. 4.2-3 the DSB envelope and
phase are

0 x(t) >0

+180° x(r) < 0 ol

A0 = Al 60 = §

The envelope here takes the shape of |x(t) , rather than x(¢), and the modulated wave
undergoes a phase reversal whenever x(f) crosses zero. Full recovery of the mes-
sage requires knowledge of these phase reversals, and could not be accomplished by
an envelope detector. Suppressed-carrier DSB thus involves more than just “ampli-
tude” modulation and, as we’ll see in Sect. 4.5, calls for a more sophisticated
demodulation process.

However, carrier suppression does put all of the average transmitted power into
the information-bearing sidebands. Thus

Sy = 2P, = 3A%S, [11)

which holds even when x(¢) includes a dc component. From Egs. (11) and (8) we see
that DSB makes better use of the total average power available from a given trans-
mitter. Practical transmitters also impose a limit on the peak envelope power AZ,..

x(8)

Phase reversal

Figure 4.2-3 DSB waveforms.
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We’ll take account of this peak-power limitation by examining the ratio Py /A2,
under maximum modulation conditions. Using Eq. (11) with A_,, = A, for DSB
and using Eq. (7) with A_,, = 24, for AM, we find that

S./4  DSB

12
S./16 AMwithp = 1 12

Psb/A%nax = {

Hence, if A2, is fixed and other factors are equal, a DSB transmitter produces four
times the sideband power of an AM transmitter.

The foregoing considerations suggest a trade-off between power efficiency and
demodulation methods.

EXAMPLE 4.2-1

Consider a radio transmitter rated for Sy =< 3 kW and A2, < 8 kW. Let the modu-
lating signal be a tone with A,, = 1 so S, = A%/2 = 1. If the modulation is DSB,
the maximum possible power per sideband equals the lesser of the two values deter-
mined from Eqgs. (11) and (12). Thus

P, =3S;=15kW P, =4A2, =10kW

which gives the upper limit Py = 1.0 kW.

If the modulation is AM with w =1, then Eq. (12) requires that
P,, = A%, /32 = 0.25 kW. To check on the average-power limitation, we note from
Eq. (7) that Py = P./4 so S; = P_+ 2P, = 6P,, and P, = S;/6 = 0.5 kW.
Hence, the peak power limit again dominates and the maximum sideband power is
P, = 0.25 kW. Since transmission range is proportional to Py, the AM path length
would be only 25 percent of the DSB path length with the same transmitter.

EXERCISE 4.2-1

Let the modulating signal be a square wave that switches periodically between
x(t) = +1and x(t) = —1. Sketch x(t) when the modulation is AM with u = 0.5,
AM with u = 1, and DSB. Indicate the envelopes by dashed lines.

EXERCISE 4.2-2

Suppose a voice signal has |x(t)| .. = 1 and S, = 1/5. Calculate the values of Sr

and A2, needed to get P, = 10 W for DSB and for AM with u = 1.

sl
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Amplitude
Amplitude

ey T Ay, 11 7 BAnA
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Figure 4.2-4 Line spectra for tone modulation. {c) DSB; (b] AM.

Tone Modulation and Phasor Analysis
Setting x(t) = A,, cos w,tin Eq. (9) gives the tone-modulated DSB waveform
x(t) = AA,, cOs w,,t COS w,t [134]

AAn
=, cos (we — W)t +

Am

cos (w, + w,)t

where we have used the trigonometric expansion for the product of cosines. Similar
expansion of Eq. (2) yields the tone-modulated AM wave

AcpAn

A

x(t) = A, cos wt + cos (w, — w,)t + cos (w, + w,,)t [13h]

Figure 4.2-4 shows the positive-frequency line spectra obtained from Egs. (13a)
and (13b).

It follows from Fig. 4.2—4 that tone-modulated DSB or AM can be viewed as a
sum of ordinary phasors, one for each spectral line. This viewpoint prompts the use
of phasor analysis to find the envelope-and-phase or quadrature-carrier terms. Pha-
sor analysis is especially helpful for studying the effects of transmission distortion,
interference, and so on, as demonstrated in the example below.

157

Let’s take the case of tone-modulated AM with wA,, = % for convenience. The pha-
sor diagram is constructed in Fig. 4.2—-5a by adding the sideband phasors to the tip
of the horizontal carrier phasor. Since the carrier frequency is f,, the sideband pha-
sors at f, = f,, rotate with speeds of =f,, relative to the carrier phasor. The resultant
of the sideband phasors is seen to be colinear with the carrier, and the phasor sum
equals the envelope A, (1 + § cos w,,t).

But suppose a transmission channel completely removes the lower sideband, so
we get the diagram in Fig. 4.2-5b. Now the envelope becomes

Af) = [(A, + 34, cos w,t)* + (A, sin w,t)*]Y/?

= AC\/% + % COS w,t

EXAMPLE 4.2-2
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A, A0
Fo

{a)

1 .
3 A sinw,?

(b]
Figure 4.2-5 Phasor diagrams for Example 4.2-2.

from which the envelope distortion can be determined. Also note that the transmis-
sion amplitude distortion has produced a time-varying phase ¢(t).

EXERCISE 4.2-3

Draw the phasor diagram for tone-modulated DSB with A,, = 1. Then find A(¢) and
¢(r) when the amplitude of the lower sideband is cut in half.

4.3 MODULATORS AND TRANSMITTERS

The sidebands of an AM or DSB signal contain new frequencies that were not pres-
ent in the carrier or message. The modulator must therefore be a time-varying or
nonlinear system, because LTI systems never produce new frequency components.
This section describes the operating principles of modulators and transmitters that
employ product, square-law, or switching devices. Detailed circuit designs are given
in the references cited in the Supplementary Reading. '

Product Modulators

Figure 4.3-1a is the block diagram of a product modulator for AM based on
the equation x(t) = A, cos wt + wx(t)A, cos w.t. The schematic diagram in
Fig. 4.3~1b implements this modulator with an analog multiplier and an op-amp
summer. Of course, a DSB product modulator needs only the multiplier to produce
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Multiplier
px(®) CH—()— 20
A cosw,t
{a)
x(t) o——
x x1)
N
@
(b}
Figure 4.3-1 {a} Product modulator for AM; (b} schematic diagram with analog multiplier.
Figure 4.3-2 Circuit for variable transconductance multiplier.

x(t) = x(t)A, cos w.t. In either case, the crucial operation is multiplying two ana-
log signals.

Analog multiplication can be carried out electronically in a number of different
ways. One popular integrated-circuit design is the variable transconductance mul-
tiplier illustrated by Fig. 4.3-2. Here, input voltage v, is applied to a differential
amplifier whose gain depends on the transconductance of the transistors which, in
turn, varies with the total emitter current. Input v, controls the emitter current by
means of a voltage-to-current converter, so the differential output equals Kv,v,.
Other circuits achieve multiplication directly with Hall-effect devices, or indirectly
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Nonlinear
element

x(t) Filter —»

+ O—
x(8)
x(t) —
-~ O— T -0 =
(b)
Figure 4.3-3 (a) Square-law modulator; [b) FET circuit realization.

with log and antilog amplifiers arranged to produce antilog (log v, + log v,) =

v,U,. However, most analog multipliers are limited to low power levels and rela-
tively low frequencies.

Square-Law and Balanced Modulators

Signal multiplication at higher frequencies can be accomplished by the square-law
modulator diagrammed in Fig. 4.3-3a. The circuit realization in Fig. 4.3-3b uses a
field-effect transistor as the nonlinear element and a parallel RL.C circuit as the fil-
ter. We assume the nonlinear element approximates the square-law transfer curve

_ 2
Uow = Q1Vip T ayli;

Thus, with v,() = x(t) + cos w.t,

2a
Vou(t) = ax(t) + ax*(t) + a, cos*w,t + al[l + —a—zx(t)} cos w,t  [1]
1

The last term is the desired AM wave, with A, = a; and u = 2a,/a,, provided it
can be separated from the rest.

As to the feasibility of separation, Fig. 4.3-4 shows the spectrum
Voulf) = F[v,w (t)] taking X(f) as in Fig. 4.1-1. Note that the x(¢) term in Eq. (1)
becomes X * X(f ), which is bandlimited in 2W. Therefore, if f, > 3W, there is no
spectral overlapping and the required separation can be accomplished by a bandpass
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Figure 4.3—4 Spectrol components in Eq. (1}
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Figure 4.3-5 ~ Y x() . AM
Balanced mod A [1-"%x(®)] cos w.t
modulator.

filter of bandwidth By = 2W centered at f,.. Also note that the carrier-frequency
impulse disappears and we have a DSB wave if a; = 0—corresponding to the per-
fect square-law curve vy, = a, V%,

Unfortunately, perfect square-law devices are rare, so high-frequency DSB is
obtained in practice using two AM modulators arranged in a balanced configuration
to cancel out the carrier. Figure 4.3—-5 shows such a balanced modulator in block-
diagram form. Assuming the AM modulators are identical, save for the reversed sign
of one input, the outputs are A, [1 + 3x(¢)] cos w,t and A[1 — 3x(¢)] cos w,t. Sub-
tracting one from the other yields x.(t) = x(¢)A, cos w.t, as required. Hence, a bal-
anced modulator is a multiplier. You should observe that if the message has a dc
term, that component is not canceled out in the modulator, even though it appears at
the carrier frequency in the modulated wave.

Another modulator that is commonly used for generating DSB signals is the
ring modulator shown in Fig. 4.3-6. A square-wave carrier c¢(f) with frequency f,
- causes the diodes to switch on and off. When ¢(¢) > 0, the top and bottom diodes
} are switched on, while the two inner diodes in the cross-arm section are off. In this

case, Uy = x(t). Conversely, when ¢(¢) < 0, the inner diodes are switched on and
E the top and bottom diodes are off, resulting in vy, = —x(¢). Functionally, the ring

modulator can be thought of as multiplying x(¢) and c(¢). However because c(z) is a
periodic function, it can be represented by a Fourier series expansion. Thus

4 4
E Voult) = —x(t) COS Wt — 3—x(t) cos 3wt + S—x(t) cos Sw,t — -

H
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+G —p-

o 38 <

-~ —pt N
+@—

Figure 4.3-6 Ring modulator.

Observe that the DSB signal can be obtained by passing v,,(t) through a bandpass
filter having bandwidth 2W centered at f,.. This modulator is often referred to as a
double-balanced modulator since it is balanced with respect to both x(¢) and c(¢).
A balanced modulator using switching circuits is discussed in Chap. 6 under the
heading of bipolar choppers. Other circuit realizations can be found in the literature.

EXERCISE 4.3-1

Suppose the AM modulators in Fig. 4.3-5 are constructed with identical nonlinear
elements having vy, = av;, + avi + asvi,. Take v, = =x(t) + A, cos et and
show that the AM signals have second-harmonic distortion but, nonetheless, the
final output is undistorted DSB.

Switching Modulators

In view of the heavy filtering required, square-law modulators are used primarily for
low-level modulation, i.e., at power levels lower than the transmitted value. Sub-
stantial linear amplification is then necessary to bring the power up to S;. But RF
power amplifiers of the required linearity are not without problems of their own, and
it often is better to employ high-level modulation if S is to be large.

Efficient high-level modulators are arranged so that undesired modulation prod-
ucts never fully develop and need not be filtered out. This is usually accomplished
with the aid of a switching device, whose detailed analysis is postponed to Chap. 6.
However, the basic operation of the supply-voltage modulated class C amplifier is
readily understood from its idealized equivalent circuit and waveforms in Fig. 4.3-7.

The active device, typically a transistor, serves as a switch driven at the carrier
frequency, closing briefly every 1/f, seconds. The RLC load, called a tank circuit,
is tuned to resonate at f,, so the switching action causes the tank circuit to “ring”
sinusoidally. The steady-state load voltage in absence of modulation is then
v(t) = V cos w, t. Adding the message to the supply voltage, say via transformer,
gives v(t) = [V + Nx(t)] cos w, ¢, where N is the transformer turns ratio. If V and
N are correctly proportioned, the desired modulation has been accomplished with-
out appreciable generation of undesired components.
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Figure 4.3-7 Class C amplifier with supply-voltage modulation. (a) Equivalent circuit; (b) out-
put waveform.

Antenna

Modulating | Audio Modulator
signal amp
A Carrier
( : )’ " amp
Crystal osc

Figure 4.3-8 AM transmitter with high-level modulation.

A complete AM transmitter is diagrammed in Fig. 4.3—-8 for the case of high-
level modulation. The carrier wave is generated by a crystal-controlled oscillator to
ensure stability of the carrier frequency. Because high-level modulation demands
husky input signals, both the carrier and message are amplified before modulation.
The modulated signal is then delivered directly to the antenna.
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4.4 SUPPRESSED-SIDEBAND AMPLITUDE
MODULATION

Conventional amplitude modulation is wasteful of both transmission power and
bandwidth. Suppressing the carrier reduces the transmission power. Suppressing
one sideband, in whole or part, reduces transmission bandwidth and leads to single-
sideband modulation (SSB) or vestigial-sideband modulation (VSB) discussed in
this section.

SSB Signals and Spectra

The upper and lower sidebands of DSB are uniquely related by symmetry about
the carrier frequency, so either one contains all the message information. Hence,
transmission bandwidth can be cut in half if one sideband is suppressed along with
the carrier.

Figure 4.4-1a presents a conceptual approach to single-sideband modulation.
Here, the DSB signal from a balanced modulator is applied to a sideband flter that
suppresses one sideband. If the filter removes the lower sideband, the output spectrum

Bal | DSB | Sideband

(0 | mod filter SSB
COS w !
{a)
X(f)
ﬂ USSB ,/\
. V ;
- £ 0l LN LW
(b) — W —
XA f)
m N ﬂ
—f\ ol fo-W d

« — W

Figure 4.4-1 Single-sideband modulation. {a] Modulater; (b] USSB spectrum; {c] LSSB

spectrum.
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X (f) consists of the upper sideband alone, as illustrated by Fig. 4.4~15. We’ll label
this a USSB spectrum to distinguish it from the LSSB spectrum containing just the
lower sideband, as illustrated by Fig. 4.4—1c. The resulting signal in either case has

Br=W  S;p=P,=1A%s (1]

which follow directly from our DSB results.

Although SSB is readily visualized in the frequency domain, the time-domain
description is not immediately obvious—save for the special case of tone modula-
tion. By referring back to the DSB line spectrum in Fig. 4.44a, we see that remov-
ing one sideband line leaves only the other line. Hence,

x(t) = 3A.A,, cos (0, = w,)t [2]

in which the upper sign stands for USSB and the lower for LSSB, a convention
employed hereafter. Note that the frequency of a tone-modulated SSB wave is offset

from f, by *f,, and the envelope is a constant proportional to A,,. Obviously, enve-
lope detection won’t work for SSB.

To analyze SSB with an arbitrary message x(t), we’ll draw upon the fact that the
sideband filter in Fig. 4.4-1a is a bandpass system with a bandpass DSB input
xp(t) = A x(t) cos wt and a bandpass SSB output y,,(f) = x,(f). Hence, we’ll
find x.(¢) by applying the equivalent lowpass method from Sect. 4.1. Since x,,(t)
has no quadrature component, the lowpass equivalent input is simply

xfp(t) = %Ac"c(t) Xfp(f) = %ACX(f)

The bandpass filter transfer function for USSB is plotted in Fig. 4.4-2a along with
the equivalent lowpass function

He(f) = Hyp(f + f)u(f + fo) = u(f) —u(f~ W)
The corresponding transfer functions for LSSB are plotted in Fig. 4.4-2b, where
He(f) = u(f+ W) — u(f)
Both lowpass transfer functions can be represented by
Hy(f) =320 = sgn f)  |fl=W [3]

You should confirm for yourself that this rather strange expression does include both
parts of Fig. 4.4-2.

Multiplying Hg,(f) and X,,(f) yields the lowpass equivalent spectrum for
either USSB or LSSB, namely

Yo(f) = 341 = sgnf)X(F) = A [X(F) = (sqnf)X(f)]

Now recall that (—j sgn f)X(f) = F[x(¢)], where x(¢) is the Hilbert transform of
x(f) defined in Sect. 3.5. Therefore, ¥ ![(sgn f)X(f)] = jx(¢) and

Yeplt) = 3A[x(t) = j3(1)]
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Figure 4.4-2 |deal sideband filters and lowpass equivalents. (a} USSB; (b) LSSB.

Finally, we perform the lowpass-to-bandpass transformation x.(t) = y,(t) =
2 Re[yg,(t)e’®¢] to obtain
x,(t) = $A[x(¢) cos w.t F x(¢) sin w, t] (4]

This is our desired result for the SSB waveform in terms of an arbitrary message
x(0).

Closer examination reveals that Eq. (4) has the form of a quadrature-carrier
expression. Hence, the in-phase and quadrature components are

Xa(t) = 2AX(0)  xeft) = £IAX(D)

while the SSB envelope is

At) = 5A.VxHt) + 340 (5]

The complexity of Eqgs. (4) and (5) makes it a difficult task to sketch SSB wave-
forms or to determine the peak envelope power. Instead, we must infer time-domain
properties from simplified cases such as tone modulation or pulse modulation.

EXAMPLE 4.4-1

SSB with Pulse Modulation

Whenever the SSB modulating signal has abrupt transitions, the Hilbert transform
x(¢) contains sharp peaks. These peaks then appear in the envelope A(#), giving rise
to the effect known as envelope horns. To demonstrate this effect, let’s take the rec-
tangular pulse x(#) = u(¢) — u(¢t — 7) so we can use x(¢) found in Example 3.5-2.
The resulting SSB envelope plotted in Fig. 4.4-3 exhibits infinite peaks at t = 0 and

= 7, the instants when x(¢) has stepwise discontinuities. Clearly, a transmitter
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Homs

Smear

Figure 4.4-3 Envelope of SSB with pulse modulation.

couldn’t handle the peak envelope power needed for these infinite horns. Also note
the smears in A(¢) before and after each peak.
We thus conclude that
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Show that Egs. (4) and (5) agree with Eq. (2) when x(¢) = A,, cos w,, t s0 X(t) =
A,, sin w,, t.

EXERCISE 4.4-1

SSB Generation

Our conceptual SSB generation system (Fig. 4.4-1a) calls for the ideal filter func-
tions in Fig. 4.4-2. But a perfect cutoff at f = f. cannot be synthesized, so a real
sideband filter will either pass a portion of the undesired sideband or attenuate a por-
tion of the desired sideband. (Doing both is tantamount to vestigial-sideband modu-
lation.) Fortunately, many modulating signals of practical interest have little or no
low-frequency content, their spectra having “holes” at zero frequency as shown in
Fig. 4.4—4a. Such spectra are typical of audio signals (voice and music), for exam-
ple. After translation by the balanced modulator, the zero-frequency hole appears as
a vacant space centered about the carrier frequency into which the transition region
of a practical sideband filter can be fitted. Figure 4.4—4b illustrates this point.

As a rule of thumb, the width 283 of the transition region cannot be much
smaller than 1 percent of the nominal cutoff frequency, which imposes the limit
feo < 2008. Since 213 is constrained by the width of the spectral hole and f;, should
equal f,, it may not be possible to obtain a sufficiently high carrier frequency with a
given message spectrum. For these cases the modulation process can be carried out
in two (or more) steps using the system in Fig. 4.4-5 (see Prob. 4.4-5).
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Figure 4.4-4 {a) Message specirum with zero-frequency hole; (b] practical sideband filter.

: D
x(@) —=(x}—=| BPF-1 BPF2 <

A f

Figure 4,.4-5 Two-step SSB generation.

Another method for SSB generation is based on writing Eq. (4) in the form
AC AC A~
x(t) = 7x(t) cos w .t * 7x(r) cos (w .t — 90°) [6]

This expression suggests that an SSB signal consists of two DSB waveforms with
quadrature carriers and modulating signals x(¢) and x(). Figure 4.4-6 diagrams a
system that implements Eq. (6) and produces either USSB or LSSB, depending
upon the sign at the summer. This system, known as the phase-shift method,
bypasses the need for sideband filters. Instead, the DSB sidebands are phased such
that they cancel out on one side of f. and add on the other side to create a single-
sideband output. '

However, the quadrature phase shifter H,(f) is itself an unrealizable network
that can only be approximated — usually with the help of additional but identical
phase networks in both branches of Fig. 4.4—6. Approximation imperfections gener-
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Figure 4.4-7 Weaver’s SSB modulator.
ally cause low-frequency signal distortion, and the phase-shift system works best
with message spectra of the type in Fig. 4.4—4a. A third method for SSB generation
that avoids both sideband filters and quadrature phase shifters is considered in
Example 4.4-2.
Weaver’s $SB Modulator EXAMPLE 4.4-2

Consider the modulator in Fig. 4.4-7 taking x(¢) = cos 27 f,, t with f,, < W.Then
x(t) = v, * v, where vy is the signal from the upper part of the loop and v, is from
the lower part. Taking these separately, the input to the upper LPF is
cos 277 f,, t cos 27 5. The output of LPF1 is multiplied by cos 27(f. = %),
resulting in v, = [ cos 2a(f. = ¥ — Z + f)t + cos2m(f. = ¥ + ¥ - f)1).
The input to the lower LPF is cos 27 f,, sin 27 % ¢ . The output of LPF2 is multi-
plied by sin2m(f *= %)z, resulting in v, = Ycos2w(f. = ¥ — ¥ + £
t —cos2m(f.=¥+¥ £ Y] Taking the upper signs, x(t) =2 X j cos
27(f. + 5 —¥+F)t= 3% cos (w, + w,,)t, which corresponds to USSB. Similarly,

we achieve LSSB by taking the lower signs, resulting in x(t) = % cos (0, — w,,)t.
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EXERCISE 4.4-2

Take x(t) = cos w,,  in Fig. 4.4-6 and confirm the sideband cancellation by sketch-
ing line spectra at appropriate points. ”

VSB Signals and Spectra

Consider a modulating signal of very large bandwidth having significant low-
frequency content. Principal examples are television video, facsimile, and high-speed
data signals. Bandwidth conservation argues for the use of SSB, but practical SSB
systems have poor low-frequency response. On the other hand, DSB works quite well
for low message frequencies but the transmission bandwidth is twice that of SSB.
Clearly, a compromise modulation scheme is desired; that compromise is VSB.

VSB is derived by filtering DSB (or AM) in such a fashion that one sideband is
passed almost completely while just a trace, or vestige, of the other sideband is
included. The key to VSB is the sideband filter, a typical transfer function being that
of Fig. 4.4-8a. While the exact shape of the response is not crucial, it must have odd
symmetry about the carrier frequency and a relative response of 1/2 at f,. Therefore,
taking the upper sideband case, we have

Hf)y=u(f—f) —Hf~f) f>0 (7l

H(f)

er

(b)

Figure 4.4-8 V3B filter characteristics.
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where

Hy(—f) = —Hg(f) and  Hgf)=0 [f|>B [7b]

as shown in Fig. 4.4-8b.

The VSB filter is thus a practical sideband filter with transition width 28.
Because the width of the partial sideband is one-half the filter transition width, the
transmission bandwidth is

B,=W+pB~W [8]

However, in some applications the vestigial filter symmetry is achieved primarily at
the receiver, so the transmission bandwidth must be slightly larger than W + .

When 8 << W, which is usually true, the VSB spectrum looks essentially like
an SSB spectrum. The similarity also holds in the time domain, and a VSB wave-
form can be expressed as a modification of Eq. (4). Specifically,

x(t) = 3A.[x(t) cos w.t — x,(t) sin w,1] [94]
where x,(¢) is the quadrature message component defined by

x,(t) = x(t) + xg(t) [95]
with

B
x4(2) =j2f Hg(f)X(f)e’* df [9¢]
-8
If 8 < W, VSB approximates SSB and x4(¢) = 0; conversely, for large 8, VSB

approximates DSB and X(z) + xg(¢) = 0. The transmitted power Sy is not easy to
determine exactly, but is bounded by

1AZS =585, = 1A%, [10]

depending on the vestige width .

Finally, suppose an AM wave is applied to a vestigial sideband filter. This mod-
ulation scheme, termed VSB plus carrier (VSB + C), is used for television video
transmission. The unsuppressed carrier allows for envelope detection, as.in AM,
while retaining the bandwidth conservation of suppressed sideband. Distortionless
envelope modulation actually requires symmetric sidebands, but VSB + C can
deliver a fair approximation.

To analyze the envelope of VSB + C, we incorporate a carrier term and modu-
lation index w in Eq. (9) which becomes

x(t) = AA[1 + px(t)] cos w.t — wx,(t) sin ot} [11]
The in-phase and quadrature components are then
xci(t) = Ac[l + ,be(l‘)] xcq(t) = AC,Lqu(f)

so the envelope is A(f) = [x%(t) + x2,(¢)]/* or
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A) = AJ1 + ,u,x(t)]{l + [J@—T}W 2]

1 + ux()
Hence, if w is not too large and 3 not too small, then |wx,(f)| << 1 and
A(t) = AJ1 + pa(n)]

as desired. Empirical studies with typical signals are needed to find values for w and
B that provide a suitable compromise between the conflicting requirements of dis-
tortionless envelope modulation, power efficiency, and bandwidth conservation.

4.5 FREQUENCY CONVERSION AND DEMODULATION

Linear CW modulation—be it AM, DSB, SSB, or VSB-—produces upward transla-
tion of the message spectrum. Demodulation therefore implies downward fre-
quency translation in order to recover the message from the modulated wave.
Demodulators that perform this operation fall into the two broad categories of syn-
chronous detectors and envelope detectors.

Frequency transiation, or conversion, is also used to shift a modulated signal to
a new carrier frequency (up or down) for amplification or other processing. Thus,
translation is a fundamental concept in linear modulation systems and includes
modulation and detection as special cases. Before examining detectors, we’ll look
briefly at the general process of frequency conversion.

Frequency Conversion

Frequency conversion starts with multiplication by a sinusoid. Consider, for exam-
ple, the DSB wave x(t) cos w,t. Multiplying by cos w,t, we get

x() cos w;t cos wyt = 3x(z) cos (w; + w,)t + 3x(¢) cos (W, — wy)t 1]

The product consists of the sum and difference frequencies, f, + f, and |f; — f3l,
each modulated by x(z). We write |f; — f,| for clarity, since cos (w, — w,)t =
cos (w; — w,)t. Assuming f, # f;, multiplication has translated the signal spectra to
two new carrier frequencies. With appropriate filtering, the signal is up-converted or
down-converted. Devices that carry out this operation are called frequency con-
verters or mixers. The operation itself is termed heterodyning or mixing.

Figure 4.5-1 diagrams the essential components of a frequency converter.
Implementation of the multipiier follows the same line as the modulator circuits dis-
cussed in Sect. 4.3. Converter applications include beat-frequency oscillators,
regenerative frequency dividers, speech scramblers, and spectrum analyzers, 1n
addition to their roles in transmitters and receivers.

EXAMPLE 4.5-1

Figure 4.5-2 represents a simplified transponder in a satellite relay that provides
two-way communication between two ground stations. Different carrier frequencies,

s R i L
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Multiplier

Input —»@——» Filter (—»

Oscillator
Figure 4.5~1 Frequency converter.
6 GHz | 2 GHz l 4 GHz
11" ~
4 GHz / 6 GHz
Figure 4.5-2 Satellite transponder with frequency conversion.

6 GHz and 4 GHz, are used on the uplink and downlink to prevent self-oscillation due
to positive feedback from the transmitting side to the receiving side. A frequency

converter translates the spectrum of the amplified uplink signal to the passband of the
downlink amplifier.

173

Sketch the spectrum of Eq. (1) for f, < fi,f, = fi,and f, > fi, taking X(f) as in Fig.
4.1-1.

EXERCISE 4.5-1

Synchronous Detection

All types of linear modulation can be detected by the product demodulator of
Fig. 4.5-3. The incoming signal is first multiplied with a locally generated sinusoid
and then lowpass-filtered, the filter bandwidth being the same as the message band-
width W or somewhat larger. It is assumed that the local oscillator (LLO) is exactly
synchronized with the carrier, in both phase and frequency, accounting for the name
synchronous or coherent detection.

For purposes of analysis, we’ll write the input signal in the generalized form
x(t) = [K. + K, x(t)] cos w .t — K, x,(t) sin w,t [2]

which can represent any type of linear modulation with proper identification of
K.,K,, and xq(t)—i.e., take K. = O for suppressed carrier, xq(t) = () for double
sideband, and so on. The filter input is thus the product
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xc(t) _>®2}£)—> BL_PF;V yD(t)
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Figure 4.5-3 Synchronous product detection.

x(t)A;o cos w .t
I T 2wt — in 2
= {[K:. + K, x(t)] + (K, + K, x(t)] cos 2w.t — K, x,(t) sin 20}

Since f, > W, the double-frequency terms are rejected by the lowpass filter, leaving
only the leading term

yo(t) = Kp[K, + K, x(t) ] [3]

where K, is the detection constant. The DC component K, K, corresponds to the
translated carrier if present in the modulated wave. This can be removed from the
output by a blocking capacitor or transformer—which also removes any DC term in
x(t) as well. With this minor qualification we can say that the message has been fully
recovered from x(¢).

Although perfectly correct, the above manipulations fail to bring out what goes
on in the demodulation of VSB. This is best seen in the frequency domain with the
message spectrum taken to be constant over W (Fig. 4.5-4a) so the modulated spec-
trum takes the form of Fig. 4.5-4b. The downward-translated spectrum at the filter
input will then be as shown in Fig. 4.5-4c. Again, high-frequency terms are elimi-

() XA

T, oo

- ! w _fc fc f4‘+ w
(a) (b}

N XL /1

-z}c bW 2ch
e)

Figure 4.5-4 VSB spectra. [a) Message; [b) modulated signal; (c] frequency-translated signal
before lowpass filtering.
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Figure 4.5-5 Homodyne detection.

nated by filtering, while the down-converted sidebands overlap around zero fre-
quency. Recalling the symmetry property of the vestigial filter, we find that the por-
tion removed from the upper sideband is exactly restored by the corresponding ves-
tige of the lower sideband, so X(f) has been reconstructed at the output and the
detected signal is proportional to x(t).

Theoretically, product demodulation borders on the trivial; in practice, it can be
rather tricky. The crux of the problem is synchronization—synchronizing an oscil-
lator to a sinusoid that is not even present in the incoming signal if carrier is sup-
pressed. To facilitate the matter, suppressed-carrier systems may have a small
amount of carrier reinserted in x(¢) at the transmitter. This pilot carrier is picked
off at the receiver by a narrow bandpass filter, amplified, and used in place of an LO.
The system, shown in Fig. 4.5-5, is called homodyne detection. (Actually, the
amplified pilot more often serves to synchronize a separate oscillator rather than
being used directly.)

A variety of other techniques are possible for synchronization, including
phase-lock loops (to be covered in Sect. 7.3) or the use of highly stable, crystal-
controlled oscillators at transmitter and receiver. Nonetheless, some degree of asyn-
chronism must be expected in synchronous detectors. It is therefore important to
investigate the effects of phase and frequency drift in various applications. This
we’ll do for DSB and SSB in terms of tone modulation.

Let the local oscillator wave be cos (w .t + w't + ¢'), where ' and ¢’ repre-
sent slowly drifting frequency and phase errors compared to the carrier. For double
sideband with tone modulation, the detected signal becomes

yp(t) = Kp cos w,t cos (w't + ¢') (4]

Ko
=< 2
Kp cos w, t cos ¢ w =0

[cos (w,, + @)t + cos (v, — w')t] ' =0

Similarly, for single sideband with x(¢) = cos (0w, = w,,)t, we get

yplt) = Kp cos [w,t * (w't + ¢')] (5]

B {KD cos (w, ¥ w')t ¢ =
K, cos (w,t + ¢) w' =0
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All of the foregoing expressions come from simple trigonometric expansions.

Clearly, in both DSB and SSB, a frequency drift that’s not small compared to W
will substantially alter the detected tone. The effect is more severe in DSB since a
pair of tones, f,, + f' and f,, — f', is produced. If f' << f,, this sounds like war-
bling or the beat note heard when two musical instruments play in unison but
slightly out of tune. While only one tone is produced with SSB, this too can be dis-
turbing, particularly for music transmission. To illustrate, the major triad chord con-
sists of three notes whose frequencies are related as the integers 4, 5, and 6. Fre-
quency error in detection shifts each note by the same absolute amount, destroying
the harmonic relationship and giving the music an East Asian flavor. (Note that the
effect is not like playing recorded music at the wrong speed, which preserves the
frequency ratios.) For voice transmission, subjective listener tests have shown that
frequency drifts of less than =10 Hz are tolerable, otherwise, everyone sounds
rather like Donald Duck.

As to phase drift, again DSB 1s more sensitive, for if ¢’ = %90° (LO and car-
rier in quadrature), the detected signal vanishes entirely. With slowly varying ¢', we
get an apparent fading effect. Phase drift in SSB appears as delay distortion, the
extreme case being when ¢’ = =90° and the demodulated signal becomes x(¢).
However, as was remarked before, the human ear can tolerate sizeable delay distor-
tion, so phase drift is not so serious in voice-signal SSB systems.

To summarize,

Envelope Detection

Very little was said earlier in Sect. 4.5 about synchronous demodulation of AM for
the simple reason that it’s almost never used. True, synchronous detectors work for
AM, but so does an envelope detector, which is much simpler. Because the enve-
lope of an AM wave has the same shape as the message, independent of carrier fre-
quency and phase, demodulation can be accomplished by extracting the envelope
with no worries about synchronization.

A simplified envelope detector and its waveforms are shown in Fig. 4. 5 6,
where the diode is assumed to be piecewise-linear. In absence of further circuitry,
the voltage v would be just the half-rectified version of the input v;,. But R;C; acts
as a lowpass filter, responding only to variations in the peaks of v;, provided that

W< < f (6]

1-1




4.5 Frequency Conversion and Demodulation

R, Uout [ ’ \ I vavirtvis

{b)

Figure 4.5-6 Envelope detection {a) Circuit; (b) waveforms.

Thus, as noted earlier, we need f. >> W so the envelope is clearly defined. Under
these conditions, C, discharges only slightly between carrier peaks, and v approxi-
mates the envelope of vy,. More sophisticated filtering produces further improve-
ment if needed. Finally, R,C, acts as a dc block to remove the bias of the unmodu-
lated carrier component. Since the dc block distorts low-frequency message
components, conventional envelope detectors are inadequate for signals with impor-
tant low-frequency content.

The voltage v may also be filtered to remove the envelope variations and pro-
duce a dc voltage proportional to the carrier amplitude. This voltage in turn is fed
back to earlier stages of the receiver for automatic volume control (AVC) to com-
pensate for fading. Despite the nonlinear element, Fig. 4.5-6 is termed a linear
envelope detector; the output is linearly proportional to the input envelope. Power-
law diodes can also be used, but then v will include terms of the form vZ, v, and so
on, and there may be appreciable second-harmonic distortion unless p << 1.

Some DSB and SSB demodulators employ the method of envelope recon-
struction diagrammed in Fig. 4.5-7. The addition of a large, locally generated car-
rier to the incoming signal reconstructs the envelope for recovery by an envelope
detector. This method eliminates signal multiplication but does not get around the

synchronization problem, for the local carrier must be as well synchronized as the
LO in a product demodulator.
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x.(8) < ) .| Envelope
‘ detector

........... Apgcosw t

Figure 4.5-7 Envelope reconstruction for suppressed-carrier modulation.

EXERCISE 4.5-2

Let the input in Fig. 4.5-7 be SSB with tone modulation, and let the LO have a
phase error ¢’ but no frequency error. Use a phasor diagram to obtain an expression
for the resulting envelope. Then show that A(f) = A g + A, A,, cos (w,t = ¢')
ifAg > ALA,.

e e o
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4.1-1

4.1-2
4.1-3

4.1-4*

4.1-5

4.1-6

4.1-7

4.6 PROBLEMS

Use a phasor diagram to obtain expressions for uyt), v,(t), A(t), and ¢(z) when
Uyp(t) = vy(t) cos w.t + v,(t) cos (w.t + a). Then simplify A(¢) and ¢(¢) assum-
ing {vy(r)] << |u,(1)].

Do Prob. 4.1-1 with v,,(t) = v,(t) cos (w, — wp)t + vx(t) cos (w, + wy)t.

Let v(t) and v,(¢) in Eq. (7) be lowpass signals with energy E, and E,, respectively,
and bandwidth W < f.. (a) Use Eq. (17), Sect. 2.2, to prove that

J Upp()dt = 0

-0
(b) Now show that the bandpass signal energy equals (E; + E,)/2.
Find ve,(t), v(t) and v,(r) when f. = 1200 Hz and

1 -900s[f]< 1300
Y =
wlf) {O otherwise
Do Prob. 4.1-4 with
1 11005|f\<1200
pr(f) =41/2 1200 = | £} < 1350
0 otherwise

Let v,,(t) = 22(t) cos [(w. = wy)t + a]. Find v(¢) and v,(¢) to obtain
vene) = 2(0) exp J(Ewyt + )

Derive Eq. (170) by obtaining expressions for fy and f, from Eq. (17a).
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4.2-]
4.2-2
4.2-3*
4.2-4
4.2-5
4.2-6

4.2-7

4.6 Problems 179

Let f = (1 + 8)fyin Eq. (17a) and assume that |§| << 1. Derive the handy approx-
imation

H(f) = 1/[1 + j20(f ~ fo)/fo]
which holds for f > O and |f — f;| < f,.

A stagger-tuned bandpass system centered at f = f, has H(f) = 2H,(f)H,(f),
where H,(f) is given by Eq. (17a) with f; = f. — b and Q = f,/2b while Hy(f) is
given by Eq. (17a) with f; = f. + band Q = f,/2b. Use the approximation in Prob.
4.1-8 to plot |[H(f)| for f. — 2b < f < f. + 2b and compare it with a simple tuned
circuit having f; = £, and B = 2bV/2.

Use lowpass time-domain analysis to find and sketch y,,(f) when x,(t) =

A cos ot u(®) and H,,(f) = 1/[1 + j2(f — f.)/B] for f > 0, which corresponds
to the tuned-circuit approximation in Prob. 4.1-8.

Do Prob. 4.1-10 with H,,(f) = II[(f — f.)/BJe 7 for f > 0, which corresponds
to an ideal BPE. Hint: See Eq. (9), Sect. 3.4.

The bandpass signal in Prob. 4.1-6 has z(¢) = 2u(t) and is applied to an ideal
BPF with unit gain, zero time delay, and bandwidth B centered at f.. Use lowpass

frequency-domain analysis to obtain an approximation for the bandpass output sig-
nal when B << f,,.

Consider a BPF with bandwidth B centered at f,, unit gain, and parabolic phase shift
8(f) = (f — £.)*/b for f> 0. Obtain a quadrature-carrier approximation for the
output signal when |b| >> (B/2)? and x,,(t) = z(t) cos w.t, where z(?) has a band-
limited lowpass spectrum with W = £,

Let x(t) = cos 27f,,t u(t) with f,, << f.. Sketch x(¢) and indicate the envelope
when the modulation is AM with u < 1, AM with & > 1, and DSB. Identify loca-
tions where any phase reversals occur.

Do Prob. 4.2-1 with x(¢) = 0.5u(t) — 1.5u(t = T) with T > 1/f,.
If x(t) = cos 2007rt, find B and S for the AM modulated signal assuming A, = 10
and u = 0.6. Repeat for DSB transmission.

The signal x(¢) = sinc? 40¢ is to be transmitted using AM with u < 1. Sketch the
double-sided spectrum of x.(¢) and find B.

Calculate the transmitted power of an AM wave with 100 percent tone modulation
and peak envelope power 32 kW.

Consider a radio transmitter rated for 4 kW peak envelope power. Find the maxi-
mum allowable value of u for AM with tone modulation and Sy = 1 kW.

The multitone modulating signal x(t) = 3K(cos 87t + 2 cos 2077¢) is input to an
AM transmitter with ;& = 1 and f, = 1000. Find KX so that x(#) is properly normal-
ized, draw the positive-frequency line spectrum of the modulated wave, and calcu-
late the upper bound on 2P,,/St.
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Do Prob. 4.2-7 with x(¢) = 2K(cos 87t + 1) cos 207t

The signal x(¢) = 4 sin 7t is transmitted by DSB. What range of carrier frequencies
can be used?

The signal in Prob. 4.2-9 is transmitted by AM with u = 1. Draw the phasor dia-

gram. What is the minimum amplitude of the carrier such that phase reversals don’t
occur?

The signal x(t) = cos 2740z + 2 cos 27790t is transmitted using DSB. Sketch the
positive-frequency line spectrum and the phasor diagram.

The signal x() = 5 cos 270t + % cos 277120z is input to the square-law modulator
system given in Fig. 4.3-3a (p. 160) with a carrier frequency of 10 kHz. Assume
Vot = @1V3y + G505 (a) Give the center frequency and bandwidth of the filter such
that this system will produce a standaxd AM signal. (b) Determine values of a; and
a,suchthat A, = 10and & =

A modulation system with nonlinear elements produces the signal x.(t) =
ak*(v(t) + A cos w.t)? — b(v(t) — A cos wt)? If the carrier has frequency £, and
v(z) = x(¢), show that an appropriate choice of K produces DSB modulation with-
out filtering. Draw a block diagram of the modulation system.

Find K and v(?) so that the modulation system from Prob. 4.3-2 produces AM with-
out filtering. Draw a block diagram of the modulation system.

A modulator similar to the one in Fig. 4.3-3a (p. 160) has a nonlinear element of the
form vg, = ay, + asvi,. Sketch V,,(f) for the input signal in Fig. 4.1-1 (p. 143).
Find the parameters of the oscillator and BPF to produce a DSB signal with carrier
frequency f,.

Design in block-diagram form an AM modulator using the nonlinear element from
Prob. 4.3—4 and a frequency doubler. Carefully label all components and find a
required condition on f, in terms of W to realize this system.

Find the output signal in Fig. 4.3-5 (p. 161) when the AM modulators are unbal-
anced, so that one nonlinear element has v, = av, + a3 + asvi, while the
other has vy, = byvy, + b + byl

The signal x(z) = 20sinc® 400t is input to the ring modulator in Fig. 4.3-6 (p. 162).
Sketch the spectrum of v, and find the range of values of f, that can be used to
transmit this signal.

Derive Eq. (4) from y,,(z).
Take the transform of Eq. (4) to obtain the SSB spectrum

X(f) =3AA[1 = sen(f = f)IX(F = £) + [1 F sen(f + £)1X(f + ) }-

Confirm that the expression for X (f) in Prob. 4.4-2 agrees with Figs. 4.4-1b and
4.4-1c (p. 164).
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4.6 Problems 181

Find the SSB envelope when x(¢) = cos w,,¢ + § cos 3w, ¢ which approximates a
triangular wave. Sketch A(¢) taking A, = 81 and compare with x(¢).

The system in Fig. 4.4-5 produces USSB with f, = f; + f, when the lower cutoff
frequency of the first BPF equals f; and the lower cutoff frequency of the second
BPF equals f,. Demonstrate the system’s operation by taking X(f) as in Fig. 4.4-4a

and sketching spectra at appropriate points. How should the system be modified to
produce LSSB?

Suppose the system in Fig. 4.4--5 is designed for USSB as described in Prob. 4.4-5.
Let x(f) be a typical voice signal, so X(f) has negligible content outside
200 < |f| < 3200 Hz. Sketch the spectra at appropriate points to find the maxi-
mum permitted value of f, when the transition regions of the BPFs must satisfy
28 = 0.01f,,.

The signal x(¢) = cos 27w100¢ + 3 cos 277200z + 2 cos 2m400¢ is input to an
LSSB amplitude modulation system with a carrier frequency of 10 kHz. Sketch the

double-sided spectrum of the transmitted signal. Find the transmitted power S and
bandwidth Bj.

Draw the block diagram of a system that would generate the LSSB signal in Prob.
4.4-7, giving exact values for filter cutoff frequencies and oscillators. Make sure
your filters meet the fractional bandwidth rule. ‘

Suppose the carrier phase shift in Fig. 4.4—6 is actually —90° + &, where 6 is a
small angular error. Obtain approximate expressions for x(¢) and A(?) at the output.

Obtain an approximate expression for x(¢) at the output in Fig. 4.4-6 when
x(t) = cos w,t and the quadrature phase shifter has |Hy(f,)| =1 — € and

arg Hy(f,,) = —90° + &, where € and & are small errors. Write your answer as a
sum of two sinusoids.

The tone signal x(¢) = A,, cos 27f,t is input to a VSB + C modulator. The result-
ing transmitted signal is
x,(t) = A, cos 27 fit + 5 aA, A, cos [27(f. + f.)t]
+5(1 — )AL, A, cos [27(f. — f.)t].
Sketch the phasor diagram assuming a > 3. Find the quadrature component Xeq(2).

Obtain an expression for VSB with tone modulation taking f,, < ( so the VSB fil-

ter has H(f, = f,,) = 0.5 = a. Then show that x.(z) reduces to DSB when a = 0
or SSB when a = =0.5.

Obtain an expression for VSB + C with tone modulation taking f,, > . Construct
the phasor diagram and find A(z).

Given a bandpass amplifier centered at 66 MHz, design a television transponder that
receives a signal on Channel 11 (199.25 MHz) and transmits it on Channel 4 (67.25
MHz). Use only one oscillator.
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Do Prob. 4.5—~1 with the received signal on Channel 44 (651.25 MHz) and the trans-
mitted signal on Channel 22 (519.25 MHz).

The system in Fig. 4.4-5 becomes a scrambler when the first BPF passes only the
upper sideband, the second oscillator frequency is f, = f; + W, and the second BPF
is replaced by an LPF with B = W. Sketch the output spectrum taking X(f) as in
Fig. 4.44a, and explain why this output would be unintelligible when x(1) is a voice
signal. How can the output signal be unscrambled?

Take x.(t) as in Eqg. (2) and find the output of a synchronous detector whose local
oscillator produces 2 cos (w.t + ¢), where ¢ is a constant phase error. Then write
separate answers for AM, DSB, SSB, and VSB by appropriate substitution of the
modulation parameters.

The transmitted signal in Prob. 4.4-11 is demodulated using envelope detection.
Assuming 0 = g = 1, what values of a minimize and maximize the distortion at the
output of the envelope detector?

The signal x(t) = 2 cos 4t is transmitted by DSB. Sketch the output signal if
envelope detection is used for demodulation.

Suppose the DSB waveform from Prob. 4:5-6 is demodulated using a synchronous
detector that has a square wave with a fundamental frequency of f, as the local oscil-
lator. Will the detector properly demodulate the signal? Will the same be true if peri-
odic signals other than the square wave are substituted for the oscillator?

Sketch a half-rectified AM wave having tone modulation with pd,, = 1 and
fn = W. Use your sketch to determine upper and lower limits on the time constant
R,C, of the envelope detector in Fig. 4.5-6. From these limits find the minimum
practical value of f,/W.
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wo properties of linear CW modulation bear repetition af the outset of this chapter: the modulated spectrum is

basically the translated message spectrum and the transmission bandwidth never exceeds twice the message
bandwidth. A third property, derived in Chap. 10, is that the destination signakHo-noise ratio {S/N)p is no better than
baseband transmission and can be improved only by increasing the transmitted power. Exponential modulation
differs on all three counts.

In contrast to linear modulation, exponential modulation is a nonlinear process; therefore, it should come as no
surprise that the modulated spectrum is not related in a simple fashion to the message spectrum. Moreover, it turns out
that the transmission bandwidth is usually much greater than twice the message bandwidth. Compensating for the
bandwidth liability is the fact that exponential modulation can provide increased signaHonoise ratios without
increased transmitied power. Exponential modulation thus allows you to trade bandwidth for power in the design of
a communication system.

We begin our study of exponential modulation by defining the two basic types, phase modulation (PM] and
frequency modulation (FM). Wa'll examine signals and spectra, investigate the transmission bandwidih and distor-
tion problem, and describe typical hardware for generation and detection. The andlysis of interference at the end of the
chapter brings out the value of FM for radio broadcasting and sets the stage for our consideration of noise in Chap. 10.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

Find the instantaneous phase and frequency of a signal with exponential modulation (Sect. 5.1).

Construct the line spectrum and phasor diagram for FM or PM with tone modulation (Sect. 5.1).

Estimate the bandwidth required for FM or PM transmission (Sect. 5.2).

Identify the effects of distortion, limiting, and frequency multiplication on an FM or PM signal (Sect. 5.2).
Design an FM generator and detector appropriate for an application (Sect. 5.3).

Use a phasor diagram to analyze interference in AM, FM, and PM (Sect. 5.4).

I I e

5.1 PHASE AND FREQUENCY MODULATION

This section introduces the concepts of instantaneous phase and frequency for the
definition of PM and FM signals. Then, since the nonlinear nature of exponential
modulation precludes spectral analysis in general terms, we must work instead with
the spectra resulting from particular cases such as narrowband modulation and tone
modulation.

PM and FM Signals

Consider a CW signal with constant envelope but time-varying phase, so

x(t) = Accos [w.t + (1) ] [




5.1 Phase and Frequency Modulation

Upon defining the total instantaneous angle

0t) = w.t + ¢(2)

we can express x.(¢) as
x(t) = A cos 8,(t) = A, Re [¢/%0)]

Hence, if 6(¢) contains the message information x(f), we have a process that may be
termed either angle modulation or exponential modulation. We’ll use the latter
name because it emphasizes the nonlinear relationship between x.(¢) and x(2).

As to the specific dependence of 6.(f) on x(¢), phase modulation (PM) is
defined by

$(1) £ dax(t)  pu=180° (2]
so that

x(t) = A, cos [w .t + Pax(t)] [3]

These equations state that the instantaneous phase varies directly with the modulat-
ing signal. The constant ¢, represents the maximum phase shift produced by x(2),
since we’re still keeping our normalization convention |x(#)| = 1. The upper bound
¢ = 180° (or 7 radians) limits ¢(2) to the range = 180° and prevents phase ambi-
guities—after all, there’s no physical distinction between angles of +270 and —90°,
for instance. The bound on ¢, is analogous to the restriction u < 1 in AM, and ¢,
can justly be called the phase modulation index, or the phase deviation.

The rotating-phasor diagram in Fig. 5.1-1 helps interpret phase modulation and
leads to the definition of frequency modulation. The total angle 6,(¢) consists of the
constant rotational term w.? plus ¢(¢), which corresponds to angular shifts relative to

the dashed line. Consequently, the phasor’s instantaneous rate of rotation in cycles
per second will be

al . o 1,
f@) = - 0(t) =f. + Py (1) [4]

2 N

Figure 5.1-1 Rotating-phasor representation of exponential modulation.
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in which the dot notation stands for the time derivative, that is, ¢(r) = d(£)/dt, and
so on. We call f(#) the instantaneous frequency of x.(). Although f(¢) is measured
in hertz, it should not be equated with spectral frequency. Spectral frequency fis the
independent variable of the frequency domain, whereas instantaneous frequency f(¢)
is a time-dependent property of waveforms with exponential modulation.

In the case of frequency modulation (FM), the instantaneous frequency of the
modulated wave is defined to be

FO) S+ () A <] [5]

so f(#) varies in proportion with the modulating signal. The proportionality constant
fa called the frequency deviation, represents the maximum shift of f(¢) relative to
the carrier frequency f.. The upper bound f, < f, simply ensures that f(¢) > 0. How-
ever, we usually want f, << £, in order to preserve the bandpass nature of x(z).

Equations (4) and (5) show that an FM wave has o) = 27f, x(¢), and integra-
tion yields the phase modulation

d(t) = 27f, J' x(A) dr + (1) t =t (6a]

If ¢, is taken such that ¢(zy) = 0, we can drop the lower limit of integration and use
the informal expression

t

o(1) = zﬁfAJ x(A) dA [6b]

The FM waveform is then written as

x(t) = A, cos [wct + ZWfAer(/\) d/\} [7]

But it must be assumed that the message has no dc component so the above integrals
do not diverge when t — 00. Physically, a dc term in x(f) would produce a constant
carrier-frequency shift equal to fy(x(¢)).

A comparison of Egs. (3) and (7) implies little difference between PM and FM,
the essential distinction being the integration of the message in FM. Moreover,
nomenclature notwithstanding, both FM and PM have both time-varying phase and
frequency, as underscored by Table 5.1-1. These relations clearly indicate that, with
the help of integrating and differentiating networks, a phase modulator can produce
frequency modulation and vice versa. In fact, in the case of tone modulation it’s
nearly impossible visually to distinguish FM and PM waves.

On the other hand, a comparison of exponential modulation with linear modu-
lation reveals some pronounced differences. For one thing,

Mmm;s S




5.1 Phase and Frequency Modulation

Table 5.1-1 Comparison of PM and FM

Instantaneous phase ¢(¢) Instantaneous frequency f(¢)
1 .
PM Pax(?) fot py= Pax(t)
v
t
M 27TfA{ x(A) dA fi + fax(2)

Therefore, regardless of the message x(z), the average transmitted power is

S; =142 8]

For another, the zero crossings of an exponentially modulated wave are not periodic,
whereas they are always periodic in linear modulation. Indeed, because of the
constant-amplitude property of FM and PM, it can be said that

Finally, since exponential modulation is a nonlinear process,

Figure 5.1-2 illustrates some of these points by showing typical AM, FM, and
PM waves. As a mental exercise you may wish to check these waveforms against the
corresponding modulating signals. For FM and PM this is most easily done by consid-
ering the instantaneous frequency rather than by substituting x(¢) in Egs. (3) and (7).

Despite the many similarities of PM and FM, frequency modulation turns out to
have superior noise-reduction properties and thus will receive most of our attention.
To gain a qualitative appreciation of FM noise reduction, suppose a demodulator
simply extracts the instantaneous frequency f(¢) = f, + fux(¢) from x(?). The
demodulated output is then proportional to the frequency deviation f,, which can be
increased without increasing the transmitted power Sy. If the noise level remains
constant, increased signal output is equivalent to reduced noise. However, noise
reduction does require increased transmission bandwidth to accommodate large fre-
quency deviations.

Ironically, frequency modulation was first conceived as a means of bandwidth
reduction, the argument going somewhat as follows: If, instead of modulating the
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Modulating ﬂ /—\\/A
signal

ool o
A WA
O

Figure 5.1-2 ustrative AM, FM, and PM waveforms.

carrier amplitude, we modulate the frequency by swinging it over a range of, say,
*50 Hz, then the transmission bandwidth will be 100 Hz regardless of the message
bandwidth. As we’ll soon see, this argument has a serious flaw, for it ignores the dis-
tinction between instantaneous and spectral frequency. Carson (1922) recognized
the fallacy of the bandwidth-reduction notion and cleared the air on that score.
Unfortunately, he and many others also felt that exponential modulation had no
advantages over linear modulation with respect to noise. It took some time to over-
come this belief but, thanks to Armstrong (1936), the merits of exponential modula-
tion were finally appreciated. Before we can understand them quantitatively, we
must address the problem of spectral analysis.

EXERCISE 5.1-1

Suppose FM had been defined in direct analogy to AM by writing x(f) =
A, cos w (1) t with @ (t) = w[1 + ux(t)]. Demonstrate the physical impossibility
of this definition by finding () when x(¢) = cos w,,1.

Narrowband PM and FM

Our spectral analysis of exponential modulation starts with the quadrature-carrier
version of Eq. (1), namely

x(t) = x,4(t) cos w.t — x.,(t) sin w.t [9]

where

%) = A, cos $(r) = Ac[l - )+ ] 101




5.1 Phase and Frequency Modulation

L 1
xcq(t) = ACSH] qb(t) = Ac ¢(I) - ; ¢3(I) + o
Now we impose the simplifying condition

lo(1)] << 1rad [11d]

so that

) =Ae x 1) = AB() (114

Then it becomes an easy task to find the spectrum X (f) of the modulated wave in
terms of an arbitrary message spectrum X(f).
Specifically, the transforms of Egs. (9) and (115) yield

1 .
XAf) =4S~ £) + SAR(G—f)  f>0 t12d

in which

o) = sto] = {*20) 126
—ifX(f)/f EM
The FM expression comes from the integration theorem applied to ¢(¢) in Eq. (6).
Based on Eq. (12), we conclude that if x(¢) has message bandwidth W << f,
then x.(¢) will be a bandpass signal with bandwidth 2W. But this conclusion holds
only under the conditions of Eq. (11). For larger values of |¢p(?)|, the terms ¢%(2),
@), . . . cannot be ignored in Eq. (10) and will increase the bandwidth of x(2).

Hence, Egs. (11) and (12) describe the special case of narrowband phase or fre-
quency modulation (NBPM or NBFM).
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An informative illustration of Eq. (12) is provided by taking x(t) = sinc 2Wz, so
X(f) = (1/2W)II(f/2W). The resulting NBPM and NBFM spectra are depicted in
Fig. 5.1-3. Both spectra have carrier-frequency impulses and bandwidth 2W. How-
ever, the lower sideband in NBFM 1s 180° out of phase (represented by the negative
sign), whereas both NBPM sidebands have a 90° phase shift (represented by j).

Except for the phase shift, the NBPM spectrum looks just like an AM spectrum with
the same modulating signal.

EXAMPLE 5.1-1

Use the second-order approximations x(f) = A[1 — %gbz(t)] and x (1) = AP to
find and sketch the components of the PM spectrum when x(¢) = sinc 2Wt.

EXERCISE 5.1-2

Tone Modulation

The study of FM and PM with tone modulation can be carried out jointly by the sim-
ple expedient of allowing a 90° difference in the modulating tones. For if we take
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A2
!
jAc ¢’A
4w
0 fc_ w fc fc +W
(a)
A2
_ AcfA AcfA
4W? 4W?2
0 v =W f. f+W
(b)

Figure 5.1-3 Narrowband modulated spectra with x{f = sinc 2Wt. [a} PM: (b) FM.

0 {Am sin w,,t PM
x =
A, cos w,t FM

then Egs. (2) and (6) both give

d(t) = Bsin w,t [13d]
where
JAY d)AAm PM
2 b]
P {<Am/fm>fA FM 3

The parameter 8 serves as the modulation index for PM or FM with tone modula-
tion. This parameter equals the maximum phase deviation and is proportional to the
tone amplitude A, in both cases. Note, however, that 8 for FM is inversely propor-
tional to the tone frequency f,, since the integration of cos w,,t yields (sin w,)/w,,,
Narrowband tone modulation requires 8 << 1, and Eq. (9) simplifies to

x(t) = A . cos w.t — A B sin w,t sin w.t (4]

A A,
~ A.COS w.t — %’B cos (w, — w,)t + —2@ cos (w, + w,)t

The corresponding line spectrum and phasor diagram are shown in Fig. 5.1-4.
Observe how the phase reversal of the lower sideband line produces a component
perpendicular or guadrature to the carrier phasor. This quadrature relationship is

precisely what’s needed to create phase or frequency modulation instead of ampli-
tude modulation.
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A
48
fc—fm 2
0—"N— I f J+ f
Ap ¢ Jet Jm
T2
(a) (b)
Figure 5.1-4

NBFM with tone modulation. {d] Line spectrum; (b) phasor diagram.

Now, to determine the line spectrum with an arbitrary value of the modulation
index, we drop the narrowband approximation and write

x(t) = Afcos ¢(t) cos w t — sin ¢(t) sin w, 1] [15]
= A [cos (B sin w,, ) cos w .t — sin (B sin w,t) sin w. 1]

Then we use the fact that, even though x(t) is not necessarily periodic, the terms
cos (B sin w,, t) and sin (B sin w,t) are periodic and each can be expanded as a

trigonometric Fourier series with f; = f,,. Indeed, a well-known result from applied
mathematics states that

cos (Bsin w, 1) = Jo(B) + D 2J,(B) cos nw,t [16]

2 neven

sin(B sin w,, t) = E 2 J,(B) sin nw,t

1 n odd

; where 7 is positive and

] ” 1 T ] )

‘ J.(B) = ——J e J(BsinA=nd) g\ [17]
27 ) _

The coefficients J,(3) are Bessel functions of the first kind, of order n and argument
B. With the aid of Eq. (17), you should encounter little difficulty in deriving the
trigonometric expansions given in Eq. (16).

l Substituting Eq. (16) into Eq. (15) and expanding products of sines and cosines
finally yields

1 x(t) = A Jy(B) cos w, t [18q]

+ DA T(B)cos (@, + nw,)t — cos (w, — nw,)i]

l ‘ n odd

+ iACJn(,B)[cos (w, + nw,)t + cos (w, — nw,,)t]

[ neven
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Alternatively, taking advantage of the property that J_,(8) = ( — 1)"/,(B), we get
the more compact but less informative expression

o0

x(f) = A, 2 J(B) cos (v, + nw,,)t [18h]

n=-—oo

In either form, Eq. (18) is the mathematical representation for a constant-amplitude
wave whose instantaneous frequency varies sinusoidally. A phasor interpretation, to
be given shortly, will shed more light on the matter.

Examining Eq. (18), we see that

A typical spectrum is illustrated in Fig. 5.1-5. Note that negative frequency compo-
nents will be negligible as long as Bf,, << f.. In general, the relative amplitude of a

line at f, + nf, is given by J,(B), so before we can say more about the spectrum, we
must examine the behavior of Bessel functions.

Figure 5.1-6a shows a few Bessel functions of various order plotted versus the
argument 3. Several important properties emerge from this plot.

1. The relative amplitude of the carrier line Jo(8) varies with the modulation index
and hence depends on the modulating signal. Thus, in contrast to linear modu-
lation, the carrier-frequency component of an FM wave “contains” part of the
message information. Nonetheless, there will be spectra in which the carrier
line has zero amplitude since Jo(3) = 0 when 3 = 2.4, 5.5, and so on.

Jo(B)
Ji(B)
J2(B) 1B) 15(B)
: 1 L

fo fot fa
fot+ 2,

-J5(B)

~NL(B

Figure 5.1-5 Line spectrum of FM with tone modulation.
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2. The number of sideband lines having appreciable relative amplitude also
depends on B. With 8 << 1 only J;y and J, are significant, so the spectrum will
consist of carrier and two sideband lines as in Fig. 5.1-4a. But if 8 >> 1, there
will be many sideband lines, giving a spectrum quite unlike linear modulation.

3. Large B implies a large bandwidth to accommodate the extensive sideband
structure, agreeing with the physical interpretation of large frequency deviation.

Ja(B)
1.0 4 " =0
=1
T § n=2
4 n=3 n =10
¥ T TN ,B
15
n/B
04+
b)
Figure 5.1-6 Plots of Bessel functions. (a) Fixed order n, variable argument 8; [b) fixed argu-

ment B, variable order n.
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Table 5.1-2 Selected values of J,(8)
LOL) 1,02 1,05 00 L0 IG0 1,00

n n
0 1.00 0.99 0.94 0.77 0.22 -0.18 -0.25 0
1 0.05 0.10 0.24 0.44 0.58 —0.33 0.04 1
2 0.03 0.11 0.35 0.05 0.25 2
3 0.02 0.13 0.36 0.06 3
4 0.03 0.39 —0.22 4
5 0.26 -0.23 5
6 0.13 —0.01 6
7 0.05 0.22 7
8 0.02 0.32 8
9 0.29 9

10 0.21 10

11 012 11

12 0.06 12

13 0.03 13

14 0.01 14

Some of the above points are better illustrated by Fig. 5.1-6b, which gives J,,(3)
as a function of n/B for various fixed values of B. These curves represent the
“envelope” of the sideband lines if we multiply the horizontal axis by 3f,, to obtain the
line position nf,, relative to f,. Observe in particular that all J,(3) decay monotonically
forn/B > 1 and that |J,(8)| << 1if |n/B] => 1. Table 5.1-2 lists selected values
of J,(B), rounded off at the second decimal place. Blanks in the table correspond to
[7.(B)] < 0.01.

Line spectra drawn from the data in Table 5.1-2 are shown in Fig. 5.1~7, omitting
the sign inversions. Part a of the figure has 3 increasing with f;, held fixed, and applies
to FM and PM. Part b applies only to FM and illustrates the effect of increasing 8 by
decreasing f,, with A,, f held fixed. The dashed lines help bring out the concentration
of significant sideband lines within the range f, = Bf,, as 8 becomes large.

For the phasor interpretation of x.(f) in Eq. (18), we first return to the narrow-
band approximation and Fig. 5.1-4. The envelope and phase constructed from the
carrier and first pair of sideband lines are seen to be

2 2 2
At) = \/A% + <2§Acsin wmt) == Ac[l + % - %—cos 2w,

2(B/2)A,sin w,, ¢t
A

¢(r) =~ arctan [ ] =~ Bsin w,,!

c

Thus the phase variation is approximately as desired, but there is an additional
amplitude variation at twice the tone frequency. To cancel out the latter we should
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Figure 5.1-7 Tone-modulated line spectra. {a) FM or PM with £, fixed; [b) FM with A_f, fixed.

include the second-order pair of sideband lines that rotate at = 2f,, relative to the car-
rier and whose resultant is collinear with the carrier. While the second-order pair
virtually wipes out the undesired amplitude modulation, it also distorts ¢(#). The
phase distortion is then corrected by adding the third-order pair, which again intro-
duces amplitude modulation, and so on ad infinitum.

When all spectral lines are included, the odd-order pairs have a resultant in
quadrature with the carrier that provides the desired frequency modulation plus
unwanted amplitude modulation. The resultant of the even-order pairs, being
collinear with the carrier, corrects for the amplitude variations. The net effect is then
as illustrated in Fig. 5.1-8. The tip of the resultant sweeps through a circular arc
reflecting the constant amplitude A..
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The narrowband FM signal x(z) = 100 cos [27 5000t + 0.05 sin 27 200¢] is
transmitted. To find the instantaneous frequency f(¢) we take the derivative of 6(z)

76 = 5= 60

1
= [27 5000 + 0.05(27 200) cos 27 200 7]
u

= 5000 + 10 cos 27 200 ¢

EXAMPLE 5.1-2
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From f(#) we determine that f, = 5000 Hz, f, = 10, and x(#) = cos 277200¢. There
are two ways to find B. For NBFM with tone modulation we know that
(1) = Bsinw,t. Since x,(t) = A.cos [w.t + ¢(t)], we can see that B = 0.05.
Alternatively we can calculate

An
B= }:f A
From f(#) we find that A,,f, = 10 and f,, = 200 so that 8 = 10/200 = 0.05 just as
we found earlier. The line spectrum has the form of Fig. 5.1-4a with A, = 100 and
sidelobes A.8/2 = 2.5. The minor distortion from the narrowband approximation
shows up in the transmitted power. From the line spectrum we get S = 3(—2.5)% +
1(100)% + 3(2.5)? = 5006.25 versus Sy = 3A2 = 3(100)? = 5000 when there are
enough sidelobes so that there is no amplitude distortion.

EXERCISE 5.1-3 Consider tone-modulated FM with A, = 100, A,.fs, = 8 kHz, and f,, = 4 kHz.
Draw the line spectrum for f, = 30 kHz and for f, = 11kHz.

Even-order

Odd-order sidebands

sidebands

Figure 5.1-8 FM phasor diagram for arbitrary 8.

Multitone and Periodic Modulations

The Fourier series technique used to arrive at Eq. (18) also can be applied to the case
of FM with multitone modulation. For instance, suppose that x(t) = A; cos wt +
A, cos w,t, where f; and f, are not harmonically related. The modulated wave is first
written as
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x(t) = A[(cos a; cos @, — sin a, sin a;) cos w, ¢
—(sin ) cos a; + cos @, sin @,) sin @, ]

where @, = B;sin wt, B, = A,fa/f1, and so on. Terms of the form cos «,, sin @,
and so on, are then expanded according to Eq. (16), and after some routine manipu-
lations we arrive at the compact result

x(t) = A, E E Ju(B)In(Ba) cos (w, + nw, + mw,)t [19]
This technique can be extended to include three or more nonharmonic tones; the
procedure is straightforward but tedious.

To interpret Eq. (19) in the frequency domain, the spectral lines can be divided
into four categories: (1) the carrier line of amplitude A, Jo(B:) Jo(B,); (2) sideband
lines at f. = nf; due to one tone alone; (3) sideband lines at f, = mf, due to the other
tone alone; and (4) sideband lines at f, = nf; = mf, which appear to be beat-
frequency modulation at the sum and difference frequencies of the modulating tones
and their harmonics. (This last category would not occur in linear modulation where
simple superposition of sideband lines is the rule.) A double-tone FM spectrum
showing the various types of spectral lines is given in Fig. 5.1-9 for fi < f, and
B, > B,. Under these conditions there exists the curious property that each sideband
line at f, = mf; looks like another FM carrier with tone modulation of frequency f;.

When the tone frequencies are harmonically related—meaning that x(¢) is a
periodic waveform—then ¢(t) is periodic and so is e/#”. The latter can be expanded
in an exponential Fourier series with coefficients

1
C, = —J exp j[d(t) — nwyt] dr [204]
Ty T,
Therefore
x(f) = ACRe[ > cnej(“’f+”“’°)[} [20b]

and A, |c,| equals the magnitude of the spectral line at f = f. + nf;.

l L

fe fetr h Lo+ 2
fem /i fe+ A

N | |
)

£-2% £

Figure 5.1-9 Double-tone FM line spectrum with f{ << £, and 8, > B,.
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EXAMPLE 5.1-3 FM with Pulse-Train Modulation

Let x(¢) be a unit-amplitude rectangular pulse train with period Ty, pulse duration T,
and duty cycle d = 7/T,. After removing the dc component (x(¢)) = d, the instan-
taneous frequency of the resulting FM wave is as shown in Fig. 5.1-10a. The time
origin is chosen such that ¢(t) plotted in Fig. 5.1-10b has a peak value ¢, = 27f,7
att = 0. We’ve also taken the constant of integration such that ¢(¢) = 0. Thus

(}5(1‘)—{ da(1 + /1) —r<t<0
dall — /(T — 7)] 0<r<Ty— 7
which defines the range of integration for Eq. (20a).

The evaluation of ¢, is a nontrivial exercise involving exponential integrals and
trigonometric relations. The final result can be written as

B [sin (B —n)d (1 —d)sinw(B— ”)d} jm(B+nyd
S R Rl
___ P4 sinc (B — n)d e/™BMd

(B—n)d+n

where we’ve let

B = faTo = fulfo

which plays a role similar to the modulation index for single-tone modulation.
Figure 5.1-10c plots the magnitude line spectrum for the case of d = 1/4,
B =4, and A, = 1. Note the absence of symmetry here and the peaking around

S
fc+ (1 _d)fA

. et

- 0 To-7 T 0.8
{a) 0.6 - fa

() 0.4 - S
$a=27 for =
: +— ¢ 0 n |
—r 3

-0 To-7 To fmghs Lo fr o

(b) [c)
Figure 5.1-10 FM with pulsesrain modulation. (d} Instantaneous frequency; (b) phase; [¢) line spectrum for d = 1/4.
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f=fr- tfoand f=f + % fa» the two values taken on by the instantaneous fre-
quency. The fact that the spectrum contains other frequencies as well underscores
the difference between spectral frequency and instantaneous frequency. The same

remarks apply for the continuous spectrum of FM with a single modulating pulse—
demonstrated by our results in Example 2.5-1.
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The spectrum of a signal with exponential modulation has infinite extent, in general.
Hence, generation and transmission of pure FM requires infinite bandwidth,
whether or not the message is bandlimited. But practical FM systems having finite
bandwidth do exist and perform quite well. Their success depends upon the fact that,
sufficiently far away from the carrier frequency, the spectral components are quite
small and may be discarded. True, omitting any portion of the spectrum will cause
distortion in the demodulated signal; but the distortion can be minimized by keeping
all significant spectral components.

We’ll formulate in this section estimates of transmission bandwidth require-
ments by drawing upon results from Sect. 5.1. Then we’ll look at distortion pro-
duced by linear and nonlinear systems. Topics encountered in passing include the
concept of wideband FM and that important piece of FIM hardware known as a lim-

iter. We’ll concentrate primarily on FM, but minor modifications make the analyses
applicable to PM.

Transmission Bandwidth Estimates

Determination of FM transmission bandwidth boils down to the question: How
much of the modulated signal spectrum is significant? Of course, significance stan-
dards are not absolute, being contingent upon the amount of distortion that can be
tolerated in a specific application. However, rule-of-thumb criteria based on studies
of tone modulation have met with considerable success and lead to useful approxi-
mate relations. Our discussion of FM bandwidth requirements therefore begins with
the significant sideband lines for tone modulation.

Figure 5.1-6 indicated that J,(B) falls off rapidly for |n/B| > 1, particularly if
B => 1. Assuming that the modulation index S is large, we can say that |J,(3)] is
significant only for |n| < B = A,,fa/f,.- Therefore, all significant lines are con-
tained in the frequency range f, = Bf, = f. £ A, fs a conclusion agreeing with
intuitive reasoning. On the other hand, suppose the modulation index is small; then
all sideband lines are small compared to the carrier, since Jy(8) > J,+o(B) when
B << 1. But we must retain at least the first-order sideband pair, else there would be

no frequency modulation at all. Hence, for small 3, the significant sideband lines are
contained in f, * f

m*

To put the above observations on a quantitative footing, all sideband lines hav-
ing relative amplitude |J,(B)| > e are defined as being significant, where € ranges
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from 0.01 to 0.1 according to the application. Then, if [/,(B8)] > € and
[y+1(B)| < e, there are M significant sideband pairs and 2M + 1 significant lines
al] told. The bandwidth is thus written as

B = 2M(B),, M(B)=1 (1]

since the lines are spaced by f,, and M depends on the modulation index 3. The con-
dition M(B) = 1 has been included in Eq. (1) to account for the fact that B cannot be
less than 2f,.

Figure 5.2-1 shows M as a continuous function of 8 for € = 0.01 and 0.1.
Experimental studies indicate that the former is often overly conservative, while the
latter may result in small but noticeable distortion. Values of M between these two
bounds are acceptable for most purposes and will be used hereafter.

But the bandwidth B is not the transmission bandwidth By; rather it’s the mini-
mum bandwidth necessary for modulation by a tone of specified amplitude and fre-
quency. To estimate By, we should calculate the maximum bandwidth required when
the tone parameters are constrained by A,, = 1 and f,, = W. For this purpose, the
dashed line in Fig. 5.2—1 depicts the approximation

M(B)~pB +2 [2]

which falls midway between the solid lines for 8 = 2. Inserting Eq. (2) into Eq. (1)
gives

B~ 2(B + z)fm =2 (AMfA 2) 2(AmfA + 2fm)

Im
20 m T -
s L /’4//
10 "Z

L
’,
’
’

M5 /

0.2 0 1 1.5 2 5 10 15 20
B (or D)

Figure 5.2-1 The number of significant sideband pairs as a function of 8 [or D).
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Now, bearing in mind that f, is a property of the modulator, what tone produces the
maximum bandwidth? Clearly, it is the maximum-amplitude—maximum-frequency
tone having A,, = 1 and f,, = W. The worst-case tone-modulation bandwidth is then

Br=2(fy +2W) ifp>2

Note carefully that the corresponding modulation index 8 = f,/W is not the maxi-
mum value of 8 but rather the value which, combined with the maximum modulat-
ing frequency, yields the maximum bandwidth. Any other tone having 4,, < 1 or
f» < W will require less bandwidth even though 8 may be larger.

Finally, consider a reasonably smooth but otherwise arbitrary modulating signal
having the message bandwidth W and satisfying the normalization convention
|x()] = 1. We’ll estimate By directly from the worst-case tone-modulation analysis,
assuming that any component in x(¢) of smaller amplitude or frequency will require a
smaller bandwidth than B;. Admittedly, this procedure ignores the fact that superposi-
tion 1s not applicable to exponential modulation. However, our investigation of multi-
tone spectra has shown that the beat-frequency sideband pairs are contained primarily
within the bandwidth of the dominating tone alone, as illustrated by Fig. 5.1-9.

Therefore, extrapolating tone modulation to an arbitrary modulating signal, we
define the deviation ratio

A fa
D =" [3]
w
which equals the maximum deviation divided by the maximum modulating fre-
quency, analogous to the modulation index of worst-case tone modulation. The
transmission bandwidth required for x(¢) is then

By = 2M(D)W [4]

where D is treated just like 8 to find M(D), say from Fig. 5.2-1.
Lacking appropriate curves or tables for M(D), there are several approximations
to By that can be invoked. With extreme values of the deviation ratio we find that

B_{ZDszfA D> 1
T law D<Kl

paralleling our results for tone modulation with 8 very large or very small. Both of
these approximations are combined in the convenient relation

D >1
Br=2(fa + W) =2(D+ L)W 5
known as Carson’s rule. Perversely, the majority of actual FM systems have 2 <
D < 10, for which Carson’s rule somewhat underestimates the transmission band-
width. A better approximation for equipment design is then

Br=2(fy+2W)=2(D+2)W D >2 (6]
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which would be used, for example, to determine the 3 dB bandwidths of FM ampli-
fiers. Note that Carson’s rule overestimates By for some applications using the
narrowband approximation. The bandwidth of the transmitted signal in Example
5.1-2 is 400 Hz, whereas Eq. (5) estimates B; = 420 Hz.

Physically, the deviation ratio represents the maximum phase deviation of an
FM wave under worst-case bandwidth conditions. Our FM bandwidth expressions
therefore apply to phase modulation if we replace D with the maximum phase devi-

ation ¢, of the PM wave. Accordingly, the transmission bandwidth for PM with
arbitrary x(f) is estimated to be

By =2M(¢p )W  M($,y) =1 [74]

or

Br=2(¢y + 1)W [76]

which is the approximation equivalent to Carson’s rule. These expressions differ
from the FM case in that ¢, is independent of W.

You should review our various approximations and their conditions of validity.
In deference to most of the literature, we’ll usually take B as given by Carson’s rule
in Egs. (5) and (7b). But when the modulating signal has discontinuities—a rectan-
gular pulse train, for instance—the bandwidth estimates become invalid and we
must resort to brute-force spectral analysis.

XAMPLE 5.2-1 Commercial FM Bandwidth

Commercial FM broadcast stations in the United States are limited to a maximum
frequency deviation of 75 kHz, and modulating frequencies typically cover 30 Hz to
15 kHz. Letting W = 15 kHz, the deviation ratio is D = 75 kHz/15 kHz = 5 and Eq.
(6) yields By = 2(5 + 2) X 15 kHz = 210 kHz. High-quality FM radios have band-
widths of at least 200 kHz. Carson’s rule in Eq. (5) underestimates the bandwidth,
giving By =~ 180 kHz. :

If a single modulating tone has A,, = 1 and f,, = 15 kHz, then 8 = 5, M(8) = 7,
and Eq. (1) shows that B = 210 kHz. A lower-frequency tone, say 3 kHz, would
result in a larger modulation index (8 = 25), a greater number of significant sideband
pairs (M = 27), but a smaller bandwidth since B = 2 X 27 X 3kHz = 162 kHz.

EXERCISE 5.2-1 Calculate B;/W for D = 0.3, 3, and 30 using Egs. (5) and (6) where applicable.

Linear Distortion

The analysis of distortion produced in an FM or PM wave by a linear network 1s an
exceedingly knotty problem—so much so that several different approaches to it
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have been devised, none of them easy. Panter (1965) devotes three chapters to the
subject and serves as a reference guide. Since we’re limited here to a few pages, we
can only view the “tip of the iceberg.” Nonetheless, we’ll gain some valuable
insights regarding linear distortion of FM and PM.

Figure 5.2-2 represents an exponentially modulated bandpass signal x.(f)
applied to a linear system with transfer function H(f), producing the output y(%).
The constant-amplitude property of x.(¢) allows us to write the lowpass equivalent
input

xelt) = 34,90 8]

where ¢(z) contains the message information. In terms of X,,(f), the lowpass
equivalent output spectrum 1s

Yo (f) = H(f + foulf + f)X () [9]
Lowpass—to—bandpass transformation finally gives the output as
y{t) = 2 Re [y, (t)e’'] [10]

While this method appears simple on paper, the calculations of X ,,(f) = F[xe,(?)]
and yg,(1) = F [ Y,,(f)] generally prove to be major stumbling blocks. Computer-
aided numerical techniques are then necessary.

One of the few cases for which Egs. (8)-(10) yield closed-form results is the
transfer function plotted in Fig. 5.2-3. The gain |H(f )| equals K, at f. and increases
(or decreases) linearly with slope K, /f.; the phase-shift curve corresponds to carrier

x () — H(f) ——ey0

Figure 5.2-2
H(f)
[H( I %
| Ko C
]
/\l !
0 - | fe !
=27
arg H(f>/_z,:zfﬁ — !

Figure 5.2-3
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delay 1, and group delay ¢,, as discussed in Example 4.1-1. The lowpass equivalent
of H(f) is

B+ fulr+ 5) = Ko+ S )eprtetonn

and Eq. (9) becomes

—jwe —j2mt K —jo, 1 . —j2mt
Ye(f) = Koe 74X g (f) e ™) + J;‘e Joct] (277 £)X g, f Je 27 |

Invoking the time-delay and differentiation theorems for F~![ Y, »(f )] we see that

. K .
Yeolt) = Koe T 0xg(t — 1) + j—je‘f“’f‘f’ Xt — 1))

c

where

. dil , . .
Xeplt — 1) = E{—z—AceﬂW“")] = é‘Ac¢(f — 1)/

obtained from Eq. (8).
Inserting these expressions into Eq. (10) gives the output signal

yt) = A(t) cos [w(t — t;) + ¢(t — ;)] (114}
which has a time-varying amplitude

K, .
At) = AC[KO + ;‘ ot — tl)} [1156]
In the case of an FM input, ¢(¢) = 27rf, x(¢) so

Ki1fa

<

Ar) = A{KO + x(t — tl)} (12]
Equation (12) has the same form as the envelope of an AM wave with u =
K, fa/K, f.. We thus conclude that |H(f)| in Fig. 5.2-3 produces FM-to-AM conver-
sion, along with the carrier delay ¢, and group delay ¢, produced by arg H(f). (By.
the way, a second look at Example 4.2-2 reveals that amplitude distortion of an AM
wave can produce AM-to-PM conversion.)

FM-to-AM conversion does not present an insurmountable problem for FM or
PM transmission, as long as ¢(#) suffers no ill effects other than time delay. We
therefore ignore the amplitude distortion from any reasonably smooth gain curve.
But delay distortion from a nonlinear phase-shift curve can be quite severe and must
be equalized in order to preserve the message information.

A simplified approach to phase-distortion effects is provided by the quasi-static
approximation which assumes that the instantaneous frequency of an FM wave with
fa =>> W varies so slowly compared to 1/W that x.(f) looks more or less like an
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ordinary sinusoid at frequency f(z) = f. + f, x(¢). For if the system’s response to a
carrier-frequency sinusoid is

ye(t) = A H(f)| cos [w.t + arg H(f,)]

and if x(¢) has a slowly changing instantaneous frequency f(¢), then

ye(t) = AJH[f()]] cos {w.t + ¢(t) + arg H[£(1)]} [13]
It can be shown that this approximation requires the condition
. 1 d°H
|6 ()] max |77 7+ (f) <« 87t [14]
H(f) df* Ime

in which | $(¢)| = 4 *f,W for tone-modulated FM with f,, = W. If H(f) represents
a single-tuned bandpass filter with 3 dB bandwidth B, then the second term in Eq.
(14) equals 8/B? and the condition becomes 4f,W/B* << 1 which is satisfied by the
transmission bandwidth requirement B = By.

Now suppose that Eq. (14) holds and the system has a nonlinear phase shift

such as arg H(f) = af?, where a is a constant. Upon substituting f(¢) = f. + d2m
we get

af.

ar

arg H[£(2)] = af? + 2 §(t) + 56()

Thus, the total phase in Eq. (13) will be distorted by the addition of ¢(¢) and ¢*(¢).
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Let |H(f)| = 1 and arg H(f) = —2#t,(f — £.). Show that Eqgs. (11) and (13) give
the same result with ¢(¢) = B sin w,, ¢ provided that w,, t; << .

EXERCISE 5.2-2

Nonlinear Distortion and Limiters

Amplitude distortion of an FM wave produces FM-to-AM conversion. Here we’ll
show that the resulting AM can be eliminated through the use of controlled nonlin-
ear distortion and filtering.

For purposes of analysis, let the input signal in Fig. 5.2—4 be
Vin(t) = A(2) cos 6(¢)
where 6(t) = w.t + ¢(¢) and A(¢) is the amplitude. The nonlinear element is
assumed to be memoryless—meaning no energy storage—so the input and output

are related by an instantaneous nonlinear transfer characteristic vy, = T]v;,]. We'll
also assume for convenience that 7[0] = 0.

Although v, (#) is not necessarily periodic in time, it may be viewed as a peri-
odic function of 6, with period 27r. (Try to visualize plotting v;, versus §, with time
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Nonlinear element

Q_. Vou(t) = T[]

U'm(t)

Figure 5.2-4

held fixed.) Likewise, the output is a periodic function of 6, and can be expanded in
the trigonometric Fourier series

x
Vouw = 2, 12a,]cos(n b, + arga,) [15d]
n=1
where
a, = LJ T [0, ]e ™ do [15b]
n 277 n [

m

The time variable ¢ does not appear explicitly here, but v,, depends on ¢ via the
time-variation of .. Additionally, the coefficients a, may be functions of time when
the amplitude of v, has time variations.

But we’ll first consider the case of an undistorted FM input, so A(?) equals the

constant A, and all the g, are constants. Hence, writing out Eq. (15a) term by term
with ¢ explicitly included, we have

Vo) = [2a,| cos [w 1 + @(t) + arg a(] [16]
+ |2a,| cos [2w.t + 2¢(2) + arg a,]
+ .

This expression reveals that the nonlinear distortion produces additional FM waves
at harmonics of the carrier frequency, the nth harmonic having constant amplitude
|2a,| and phase modulation n¢(z) plus a constant phase shift arg a,.

If these waves don’t overlap in the frequency domain, the undistorted input can
be recovered by applying the distorted output to a bandpass filter. Thus, we say that
FM enjoys considerable immunity from the effects of memoryless nonlinear
distortion.

Now let’s return to FM with unwanted amplitude variations A(f). Those varia-’
tions can be flattened out by an ideal hard limiter or clipper whose transfer char-
acteristic is plotted in Fig. 5.2-5a. Figure 5.2-5b shows a clipper circuit employing
back-to-back Zener diodes with breakdown voltage V,, at the output of a high-gain
amplifier.

The clipper output looks essentially like a square wave, since T{v;,] =
Vi sgn v;, and

+ VQ Uin >0
U =
o ~ Vo Uin <0
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Uou[
+V

O
+ +

0 Vin
Vin Vour

-V, ~ ~
[a) (b)
Figure 5.2-5 Hard limiter. {a) Transfer characteristic; (b) circuit realization with Zener diodes.

The coefficients are then found from Eq. (15b) to be

4Vy/mn n=1509,...
a, = —4Vy/mn n=3711,...
0 n=24,6,...
which are independent of time because A(t) = 0 does not affect the sign of vy,
Therefore,
3V, 8V,
Voutt) = —7_—Ocos[wct + (1)) — 5—2 cos [Bw.t + 3p(r)] + - (171
] aa

and bandpass filtering yields a constant-amplitude FM wave if the components of
Uou(?) have no spectral overlap. Incidentally, this analysis lends support to the previ-
ous statement that message information resides entirely in the zero-crossings of an
FM or PM wave.

Figure 5.2-6 summarizes our results. The limiter plus BPF in part a removes
unwanted amplitude variations from an AM or PM wave, and would be used in a
receiver. The nonlinear element in part b distorts a constant-amplitude wave, but the
BPF passes only the undistorted term at the nth harmonic. This combination acts as
a frequency multiplier if n > 1, and is used in certain types of transmitters.

A(t) cos [w,t + (1)) _}— E_—v i:_o cos [w,t + &)

(a)

A, cos [w.t + ¢(1)] /]V E— 12a,| cos [nw t + ne(t) + arg a,)

(b)

Figure 5.2-6 Nenlinear processing circuits. [a) Amplitude limiter; {b) frequency multiplier.
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5.3 GENERATION AND DETECTION OF FM AND PM

The operating principles of several methods for the generation and detection of
exponential modulation are presented in this section. Other FM and PM systems that
involve phase-lock loops will be mentioned in Sect. 7.3. Additional methods and
information regarding specific circuit designs can be found in the radio electronics
texts cited at the back of the book.

When considering equipment for exponential modulation, you should keep in
mind that the instantaneous phase or frequency varies linearly with the message
waveform. Devices are thus required that produce or are sensitive to phase or fre-
quency variation in a linear fashion. Such characteristics can be approximated in a
variety of ways, but it is sometimes difficult to obtain a suitably linear relationship
over a wide operating range.

On the other hand, the constant-amplitude property of exponential modulation
is a definite advantage from the hardware viewpoint. For one thing, the designer
need not worry about excessive power dissipation or high-voltage breakdown due to
extreme envelope peaks. For another, the relative immunity to nonlinear distortion
allows the use of nonlinear electronic devices that would hopelessly distort a signal
with linear modulation. Consequently, considerable latitude is possible in the design
and selection of equipment. As a case in point, the microwave repeater links of long-
distance telephone communications employ FM primarily because the wideband

linear amplifiers required for amplitude modulation are unavailable at microwave
frequencies.

Direct FM and VCOs

Conceptually, direct FM is straightforward and requires nothing more than a voltage-
controlled oscillator (VCO) whose oscillation frequency has a linear dependence on
applied voltage. It’s possible to modulate a conventional tuned-circuit oscillator by
introducing a variable-reactance element as part of the LC parallel resonant circuit.
If the equivalent capacitance has a time dependence of the form

C(t) = Cy — Cx(2)

and if Cx(?) is “small enough” and *slow enough,” then the oscillator produces
x(t) = A, cos 6(t) where

I _c. ~1
o) = VLC(r) \/LCO[1 Co O)}

Letting o, = 1/V LC; and assuming [(C/Co)x(z)] << 1, the binomial series expan-
sion gives 8.(t) = w1 + (C/2Cy)x(2)], or

.. c [
6.(t) =27 fit + 27 —fCJ x(A)dA (1l
26,
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Tuned
N:1 RFC DC block circuit

¢ »
+
x(®) l C,(6) l

TVaractor T Gyl x(®) | Oscillator
- — VE
T . ! . _

Figure 5.3-1 VYCO circuit with varactor diode for variable reactance.

which constitutes frequency modulation with fy = (C/2C,)f.. Since |x(¢)| = 1, the
approximation is good to within 1 percent when C/C; < 0.013 so the attainable fre-
quency deviation is limited by

Ia Lfc = 0.006 f. (2]

2C,
This limitation quantifies our meaning of Cx(¢) being “small” and seldom imposes
a design hardship. Similarly, the usual condition W << f, ensures that Cx(¢) is “slow
enough.”

Figure 5.3-1 shows a tuned-circuit oscillator with a varactor diode biased to get
Cx(#). The input transformer, RF choke (RFC), and dc block serve to isolate the low-
frequency, high-frequency, and dc voltages. The major disadvantage with this type
of circuit is that the carrier frequency tends to drift and must be stabilized by rather
elaborate feedback frequency control. For this reason, many older FM transmitters
are of the indirect type.

Linear integrated-circuit (IC) voltage-controlled oscillators can generate a
direct FM output waveform that is relatively stable and accurate. However, in order
to operate, IC VCOs require several additional external components to function.
Because of their low output power, they are most suitable for applications such as
cordless telephones. Figure 5.3—2 shows the schematic diagram for a direct FM
transmitter using the Motorola MC1376, an 8-pin IC FM modulator. The MC1376
operates with carrier frequencies between 1.4 and 14 MHz. The VCO is fairly linear
between 2 and 4 volts and can produce a peak frequency deviation of approximately
150 kHz. Higher power outputs can be achieved by utilizing an auxiliary transistor
connected to a 12-V power supply.

Phase Modulators and Indirect FM

Although we seldom transmit a PM wave, we’re still interested in phase modulators
because: (1) the implementation is relatively easy; (2) the carrier can be supplied by
a stable frequency source, such as a crystal-controlled oscillator; and (3) integrating
the input signal to a phase modulator produces a frequency-modulated output.
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= Antenna
@]
47 pli”
1\
e ]| T J_ %1.01«2 1.8kQ
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33 uH vVCO !
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Figure 5.3-2 Schematic diagram of IC VCO direct FM generator utilizing the Motorola
MC1376.

$ax(t) —=(x) (—= =0

\- +90° I
t éAc COS w, .t

Figure 5.3-3 Narrowband phase modulator.

Figure 5.3-3 depicts a narrowband phase modulator derived from the approxi-
mation x.(t) = A.cos w .t — A, sx(t) sin w,t—see Egs. (9) and (11), Sect. 5.1.
The evident simplicity of this modulator depends upon the approximation condi-
tion |@ax(f)| << 1 radian, and phase deviations greater than 10° result in distorted
modulation.

Larger phase shifts can be achieved by the switching-circuit modulator in
Fig. 5.3—4. The typical waveforms shown in Fig. 5.3—4 help explain the operation.
The modulating signal and a sawtooth wave at twice the carrier frequency are
applied to a comparator. The comparator’s output voltage goes high whenever x(¢)
exceeds the sawtooth wave, and the flip-flop switches states at each rising edge of a
comparator pulse. The flip-flop thus produces a phase-modulated square wave (like
the output of a hard limiter), and bandpass filtering yields x(z).

Now consider the indirect FM transmitter diagrammed in Fig. 5.3-5. The inte-
grator and phase modulator constitute a narrowband frequency modulator that gen-
erates an initial NBFM signal with instantaneous frequency

RO = f + 22 ()




5.3 Generation and Detection of FM and PM

Comparator
J- Flip- BPF — x(0)
. flop
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Comparator
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Figure 5.3-4 Switching-cireuit phase modulator. (a) Schematic diagram {b] waveforms.

Narrowband frequency modulator

_________________

E § A® | Frequency | fo(8)
x(®) . % mggsls ;t or [ multiplier x(1)
i i Xn
® io
Figure 5.3-5 Indirect FM transmitter.

where T is the integrator’s proportionality constant. The initial frequency deviation

therefore equals ¢,/27T and must be increased to the desired value f by a fre-
quency multiplier.

The frequency multiplier produces n-fold multiplication of instantaneous fre-
quency, SO

L(8) = nfi(t) = nf, + fux(r) [3]

_ ba
fa= ”(%T)

where

211



212

CHAPTER 5 e Exponential CW Modulation

Typical frequency multipliers consist of a chain of doublers and triplers, each unit
constructed as shown in Fig. 5.2-65. Note that this multiplication is a subtle process,
affecting the range of frequency variation but not the rate. Frequency multiplication
of a tone-modulated signal, for instance, increases the carrier frequency and modu-
lation index but not the modulation frequency, so the amplitude of the sideband
lines is altered while the line spacing remains the same. (Compare the spectra in
Fig.5.1-7a with B = 5and 8 = 10.)

The amount of multiplication required to get f, usually results in nf, being much
higher than the desired carrier frequency. Hence, Fig. 5.3-5 includes a frequency con-
verter that translates the spectrum intact down to f, = ‘nfc1 * fio| and the final
instantaneous frequency becomes f(t) = f. + fax(¢). (The frequency conversion
may actually be performed in the middle of the multiplier chain to keep the frequen-
cies at reasonable values.) The last system component is a power amplifier, since all
of the previous operations must be carried out at low power levels. Note the similar-
ity to the ring modulator discussed in Sect. 4.3 that is used to generate DSB signals.

EXAMPLE 5.3-1

The indirect FM system originally designed by Armstrong employed a narrowband
phase modulator in the form of Fig. 5.3—-3 and produced a minute initial frequency devi-
ation. As an illustration with representative numbers, suppose that ¢,/27T = 15 Hz
(which ensures negligible modulation distortion) and that f, = 200 kHz (which falls
near the lower limit of practical crystal-oscillator circuits). A broadcast FM output
with fy = 75 kHz requires frequency multiplication by the factor n = 75,000 + 15 =
5000. This could be achieved with a chain of four triplers and six doublers, so
n = 3%x2%=75184. But nf., = 5000 X 200 kHz = 1000 MHz, and a down-
converter with'f; o = 900 MHz is needed to put f, in the FM band of 88-108 MHz.

EXERCISE 5.3-1

Show that the phase at the output of Fig. 5.3-3 is given by
¢(1) = dax(t) — 3036°(1) +36ax°() + - [4]

Hence, ¢ (1) contains odd-harmonic distortion unless ¢, is quite small.

Triangular-Wave FM»

Triangular-wave FM is a modern and rather novel method for frequency modulation
that overcomes the inherent problems of conventional VCOs and indirect FM sys-
tems. The method generates virtually distortionless modulation at carrier frequen-
cies up to 30 MHz, and is particularly well suited for instrumentation applications.
We’ll define triangular FM by working backwards from x.(¢) = A, cos 6.(f) with

0.(1) = wet + $(r) = $(0)
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where the initial phase shift —¢(0) has been included so that 6.(0) = 0. This phase
shift does not affect the instantaneous frequency

) = 2=6,(8) = £, + fur(t)

21

Expressed in terms of 6,(¢), a unit-amplitude triangular FM signal is

xp(t) = %arcsin [cos 6,(1)] (54l

which defines a triangular waveform when ¢(#) = 0. Even with ¢(f) # 0, Eq. (Sa)
represents a periodic triangular function of 8, as plotted in Fig. 5.3—-6a. Thus,

2
1 —-— 8. 0<e.<mw
T
XA = 9 [5b]
~3+;96 T <0, <27

and so forth for 6, > 2.

Figure 5.3-6b shows the block diagram of a system that produces x,(¢) from
the voltage

o(0) = 26,(t) = 4{. + far(t)]

XA
1
'. ; 6,
0 /2 p 32 2
14+ >
-2 L

{a)

% Electronic switch
oo=200 | ~. _. A
=4[ f, + fax(®)]

LIS, @4—_
Schmitt trigger

Figure 5.3-6 Triangular-wave FM. {a) Waveform; {b) modulation system.
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which is readily derived from the message waveform x(#). The system consists of an
analog inverter, an integrator, and a Schmitt trigger controlling an electronic switch.
The trigger puts the switch in the upper position whenever x,(¢) increases to +1 and
puts the switch in the lower position whenever x,(t) decreases to —1.

Suppose the system starts operating at ¢ = 0 with x,(0) = 41 and the switch in
the upper position. Then, for 0 <t <1,

0 = 1= [san=1- 2o - 0 0)]

2
=1-= <t <
1 - 6.(t) 0 <<y

so xa(t) traces out the downward ramp in Fig. 5.3-6a until time #, when

xx(t;) = —1, corresponding to 6,(¢;) = . Now the trigger throws the switch to the
lower position and

x(f) = =1 + J’tv(/\)d/\ =~ 1+ %[ec(r) — 0.1))

b

2
=—3+—7;6c(t) H<t<t

s0 x,(¢) traces out the upward ramp in Fig. 5.3—6a. The upward ramp continues until
time £, when 6,(¢,) = 27 and x,(¢,) = +1. The switch then triggers back to the
upper position, and the operating cycle goes on periodically for ¢ > t,.

A sinusoidal FM wave is obtained from x,(¢) using a nonlinear waveshaper
with transfer characteristics T[x,(¢)] = A, sin [(7/2)x,(¢)], which performs the
inverse of Eq. (5a). Or x,(t) can be applied to a hard limiter to produce square-
wave FM. A laboratory test generator might have all three outputs available.

Frequency Detection

A frequency detector, often called a discriminator, produces an output voltage
that should vary linearly with the instantaneous frequency of the input. There are
perhaps as many different circuit designs for frequency detection as there are
designers who have considered the problem. However, almost every circuit falls into
one of the following four operational categories:

1. FM-to-AM conversion
2. Phase-shift discrimination

3. Zero-crossing detection

4, Frequency feedback

We’ll lock at illustrative examples from the first three categories, postponing fre-
quency feedback to Sect. 7.3. Analog phase detection is not discussed here because
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x () — Lim d/de I::jz;’ -, DC e yp(f) = Kx(D)

{al

xc(t)

¥p(D

~—__~

{b)

Figure 5.3-7 {a} Frequency detector with limiter and FM-to-AM conversion; {b) waveforms.

it’s seldom needed in practice and, if needed, can be accomplished by integrating
the output of a frequency detector.

Any device or circuit whose output equals the time derivative of the input pro-
duces FM-to-AM conversion. To be more specific, let x(¢f) = A cos 0(¢) with
0.(t) = 2n[f, + fux(t)]; then

i{t) = —AD (1) sin 0.(r) [6]
= 2mA [ f. + fux(t)] sin [6r) = 180°]

Hence, an envelope detector with input x. () yields an output proportional to
F(8) = fo + fax(t).

Figure 5.3-7a diagrams a conceptual frequency detector based on Eq. (6). The
diagram includes a limiter at the input to remove any spurious amplitude variations
from x(t) before they reach the envelope detector. It also includes a dc block to
remove the constant carrier-frequency offset from the output signal. Typical wave-
forms are sketched in Fig. 5.3-7b taking the case of tone modulation.
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For actual hardware implementation of FM-to-AM conversion, we draw upon
the fact that an ideal differentiator has |H(f)| = 2mf. Slightly above or below reso-
nance, the transfer function of an ordinary tuned circuit shown in Fig. 5.3-8a approx-
imates the desired linear amplitude response over a small frequency range. Thus, for
instance, a detuned AM receiver will roughly demodulate FM via slope detection.

Extended linearity is achieved by the balanced discriminator circuit in
Fig. 5.3-8b. A balanced discriminator includes two resonant circuits, one tuned
above f. and the other below, and the output equals the difference of the two
envelopes. The resulting frequency-to-voltage characteristic takes the form of the
well-known S curve in Fig. 5.3-8¢. No dc block is needed, since the carrier-frequency

H(U Slope
approximation

L

: f
fc fO
{a)
f0>fc
—
. +
x5 Kx(D)
RK.—J -
f0<fc
(bl
f
(c)
Figure 5.3-8 {a) Slope detection with @ tuned circuit; (b} balanced discriminator circuit;

(¢} frequency-to-voltage characteristic.
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offset cancels out, and the circuit has good performance at low modulating frequen-
cies. The balanced configuration easily adapts to the microwave band, with resonant
cavities serving as tuned circuits and crystal diodes for envelope detectors.

Phase-shift discriminators involve circuits with linear phase response, in con-
trast to the linear amplitude response of slope detection. The underlying principle
comes from an approximation for time differentiation, namely

o(e) = }l[v@ — ot = 1)] 7)

providing that ¢; is small compared to the variation of v(#). Now an FM wave has

(1) = 2mfax(t) so
b(t) ~ p(t — 1) = 1,$(t) = 27 fi 1, x(2) (8]

The term ¢(¢ — ¢;) can be obtained with the help of a delay line or, equivalently, a
linear phase-shift network.

Figure 5.3-9 represents a phase-shift discriminator built with a network having
group delay ¢, and carrier delay #; such that w.#; = 90°~—which accounts for the
name quadrature detector. From Eq. (11), Sect. 5.2, the phase-shifted signal is pro-
portional to cos[w,t — 90° + ¢(t — ;)] = sin [w, ¢ + (¢ — ¢t;)]. Multiplication
by cos [w.t + ¢(t)] followed by lowpass filtering yields an output proportional to

sin[@(r) — ot — 1)) = &) — &z — 1)

assuming ¢, is small enough that |p(t) — ¢(¢ — #,)| << 7. Therefore,

yo(t) = Kpfax(t)

where the detection constant K, includes #,. Despite these approximations, a quad-
rature detector provides better linearity than a balanced discriminator and is often
found in high-quality receivers.

Other phase-shift circuit realizations include the Foster-Seely discriminator
and the popular ratio detector. The latter is particularly ingenious and economical,
for it combines the operations of limiting and demodulation into one unit. See
Tomasi (1998, Chap. 7) for further details.

T cos [w,t + d()]
BPF

©)

xc(t) —‘s Lim }—

Yp(t) = Kpfpx(®)

Phase-shift
network

sin [w.t+ ¢t~ 1))]

Figure 5.3-9 Phase-shift discriminator or quadrature detector.
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Figure 5.3~10 Zerocrossing detector. {a} Diagram; {b} waveforms.

Lastly, Fig. 5.3-10 gives the diagram and waveforms for a simplified zero-
crossing detector. The square-wave FM signal from a hard limiter triggers a mono-
stable pulse generator, which produces a short pulse of fixed amplitude A and duration
7 at each upward (or downward) zero crossing of the FM wave. If we invoke the quasi-
static viewpoint and consider a time interval 7' such that W << 1/T << f,, the mono-
stable output v(¢) looks like a rectangular pulse train with nearly constant period 1/f(%).

Thus, there are ny = Tf(f) pulses in this interval, and continually integrating v(¢) over
the past T seconds yields

t
lJ v(A)dA = 1 npAt = Atf(t)
T)_, T

which becomes yp(t) = Kpfux(t) after the dc block.

Commercial zero-crossing detectors may have better than 0.1 percent linearity
and operate at center frequencies from 1 Hz to 10 MHz. A divide-by-ten counter
inserted after the hard limiter extends the range up to 100 MHz.

Today most FM communication devices utilize linear integrated circuits for FM
detection. Their reliability, small size, and ease of design have fueled the growth of

portable two-way FM and cellular radio communications systems. Phase-lock loops
and FM detection will be discussed in Sect. 7.3.

EXERCISE 5.3-2

Given a delay line with time delay 7, << 1/f,, devise a frequency detector based on
Eqgs. (6) and (7).
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5.4 INTERFERENCE

Interference refers to the contamination of an information-bearing signal by another
similar signal, usually from a human source. This occurs in radio communication
when the receiving antenna picks up two or more signals in the same frequency
band. Interference may also result from multipath propagation, or from electromag-
netic coupling between transmission cables. Regardless of the cause, severe inter-
ference prevents successful recovery of the message information.

Our study of interference begins with the simple but nonetheless informative
case of interfering sinusoids, representing unmodulated carrier waves. This simpli-
fied case helps bring out the differences between interference effects in AM, FM,
and PM. Then we’ll see how the technique of deemphasis filtering improves FM
performance in the face of interference. We conclude with a brief examination of the
FM capture effect.

Interfering Sinusoids

Consider a receiver tuned to some carrier frequency f.. Let the total received signal be
v(t) = Accos w .t + A;cos [(w, + o)t + @]

The first term represents the desired signal as an unmodulated carrier, while the sec-
ond term is an interfering carrier with amplitude A;, frequency f, + f,, and relative
phase angle ¢,.

To put v(¢) in the envelope-and-phase form v(r) = A,(¢) cos [w .t + ¢ (1) ],
we’ll introduce

p2AJA.  8(1) & wt+ ¢, [1]
Hence, A; = pA. and the phasor construction in Fig. 5.4—1 gives
A (t) = AN+ p? + 2p cos 61) [2]
p sin 6(¢)

¢ ,(t) = arctan

1 + pcos 6r)

LA psin 6,00)

K20 Ac A 60

A [1+ pcos 8]

Figure 5.4-1 Phasor diagram of interfering carriers.
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These expressions show that interfering sinusoids produce both amplitude and
phase modulation. In fact, if p << 1 then

A1) = Al + pcos(w;t + ¢))] (3]
¢(t) =~ psin (w;t + &)

which looks like tone modulation at frequency f; with AM modulation index u = p
and FM or PM modulation index 3 = p. At the other extreme, if p > | then

A1) = A[1 + p~ cos (w;t + ¢))]
¢v(t) =~ w;t + ¢i

so the envelope still has tone modulation but the phase corresponds to a shifted car-
rier frequency f, + f; plus the constant ¢,.

Next we investigate what happens when v(¢) is applied to an ideal envelope,
phase, or frequency demodulator with detection constant K. We’ll take the weak
interference case (p << 1) and use the approximation in Eq. (3) with ¢; = 0. Thus,
the demodulated output is

Kp(1 + pcos w;t) AM
yo(t) = ¢ Kppsin w;t PM (4]
Kppficos w;t M

provided that |f;| = W—otherwise, the lowpass filter at the output of the demodula-
tor would reject |f}| > W. The constant term in the AM result would be removed if
the demodulator includes a dc block. As written, this result also holds for synchro-
nous detection in DSB and SSB systems since we’ve assumed ¢; = 0. The multi-
plicative factor f; in the FM result comes from the instantaneous frequency deviation
¢ (2)/ 2.

Equation (4) reveals that weak interference in a linear modulation system or
phase modulation system produces a spurious output tone with amplitude propor-
tional to p = A;/A,, independent of f.. But the tone amplitude is proportional to pf;
in an FM system. Consequently, FM will be less vulnerable to interference from a
cochannel signal having the same carrier frequency, so f; = 0, and more vulnerable
to adjacent-channel interference (f; # 0). Figure 5.4-2 illustrates this difference in

AM and

PM \

Amplitude

M

1!
0 w

Figure 5.4-2 Amplitude of demodulated interference from a carrier at frequency . + f.
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the form of a plot of demodulated interference amplitude versus |f;|. (The crossover
point would correspond to |f}| = 1 Hz if all three detector constants had the same
numerical value.)

The analysis of demodulated interference becomes a much more difficult task
with arbitrary values of p and/or modulated carriers. We’ll return to that problem
after exploring the implications of Fig. 5.4-2.
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LetA; = A.so p = 11in Eq. (2). Take ¢, = 0 and use trigonometric identities to show
that

Ay(t) = 24 Jcos (w;1/2)]  ¢,(t) = w;t/2

Then sketch the demodulated output waveform for envelope, phase, and frequency
detection assuming f; << W.

EXERCISE 5.4-1

Deemphasis and Preemphasis Filtering

The fact that detected FM interference is most severe at large values of |f;| suggests
a method for improving system performance with selective postdetection filtering,
called deemphasis filtering. Suppose the demodulator is followed by a lowpass fil-
ter having an amplitude ratio that begins to decrease gradually below W; this will
deemphasize the high-frequency portion of the message band and thereby reduce the
more serious interference. A sharp-cutoff (ideal) lowpass filter is still required to
remove any residual components above W, so the complete demodulator consists of
a frequency detector, deemphasis filter, and lowpass filter, as in Fig. 5.4-3.

Obviously deemphasis filtering also attenuates the high-frequency components of
the message itself, causing distortion of the output signal unless corrective measures
are taken. But it’s a simple matter to compensate for deemphasis distortion by predis-
torting or preemphasizing the modulating signal at the transmitter before modula-
tion. The preemphasis and deemphasis filter characteristics should be related by

1
Hde(f)

to yield net undistorted transmission. In essence,

Hy(f) = |fl =W (5]

| Frequency Deemphasis LPE
det filter

Figure 5.4-3 Complete FM demodulator.

[
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Preemphasis/deemphasis filtering offers potential advantages whenever unde-
sired contaminations tend to predominate at certain portions of the message band.
For instance, the Dolby system for tape recording dynamically adjusts the amount of
preemphasis/deemphasis in inverse proportion to the high-frequency signal content;
see Stremler (1990, App. F) for details. However, little is gained from deemphasiz-
ing phase modulation or linear modulation because the demodulated interference
amplitude does not depend on the frequency.

The FM deemphasis filter is usually a simple first-order network having

f -1 1 ifi < Bde
B Y ) e L
L

where the 3 dB bandwidth By, is considerably less than the message bandwidth
W. Since the interference amplitude increases linearly with | £;| in the absence of fil-
tering, the deemphasized interference response is |Hg(f;)| X | £, as sketched in
Fig. 5.4-4. Note that, like PM, this becomes constant for |f;| >> Bg.. Therefore,
FM can be superior to PM for both adjacent-channel and cochannel interference.
At the transmitting end, the corresponding preemphasis filter function should be

f 1 If‘ < Bde
wor-loAD)]-{e s

de

which has little effect on the lower message frequencies. At higher frequencies,
however, the filter acts as a differentiator, the output spectrum being proportional to
FX(f) for | f ( >> Bg. But differentiating a signal before frequency modulation is
equivalent to phase modulation! Hence, preemphasized FM is actually a combina-
tion of FM and PM, combining the advantages of both with respect to interference.

Amplitude

FM with deemphasis

— ¥A
0 By w

Figure 5.4-4 Demodulated interference amplitude with FM deemphasis filtering.
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As might be expected, this turns out to be equally effective for reducing noise, as
will be discussed in more detail in Chap. 10.

Referring to H,.(f) as given above, we see that the amplitude of the maximum
modulating frequency is increased by a factor of W/B,., which means that the fre-
quency deviation is increased by this same factor. Generally speaking, the increased
deviation requires a greater transmission bandwidth, so the preemphasis-deemphasis
improvement is not without price. Fortunately, many modulating signals of interest,
particularly audio signals, have relatively little energy in the high-frequency end of
the message band, and therefore the higher frequency components do not develop
maximum deviation, the transmission bandwidth being dictated by lower compo-
nents of larger amplitude. Adding high-frequency preemphasis tends to equalize the
message spectrum so that all components require the same bandwidth. Under this
condition, the transmission bandwidth need not be increased.

Typical deemphasis and preemphasis networks for commercial FM are shown in EXAMPLE 5.4-1
Fig. 5.4-5 along with their Bode diagrams. The RC time constant in both circuits

equals 75 us, so By, = 1/27RC = 2.1 kHz. The preemphasis filter has an upper

break frequency at f, = (R + r)/2wRrC, usually chosen to be well above the audio

range, say f, = 30 kHz.

Suppose an audio signal is modeled as a sum of tones with low-frequency amplitudes EXERCISE 5.4-2
A, = lforf, = 1kHz and high-frequency amplitudes A,, = 1 kHz/f,, for f,, > 1 kHz.
Use Egs. (1) and (2), Sect. 5.2, to estimate the bandwidth required for a single tone at
fr = 15 kHz whose amplitude has been preemphasized by |H,(f)| given in Eg. (7)
with By, = 2 kHz. Assume f, = 75 kHz and compare your result with Br = 210 kHz.

R |Hy. dB Bge
+o—A, _T_ o+ 0 ; f
Vin T C Vout
— O & O —
\Hp,l dB By, fu
0 : ' f

(b)

figure 5.4-5 {a) Deemphasis filter; (b) preemphasis filter.
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FM Capture Effect %

Capture effect is a phenomenon that takes place in FM systems when two signals
have nearly equal amplitudes at the receiver. Small variations of relative amplitude
then cause the stronger of the two to dominate the situation, suddenly displacing the
other signal at the demodulated output. You may have heard the annoying results
when listening to a distant FM station.

For a reasonably tractable analysis of capture effect, we’ll consider an unmodu-
lated carrier with modulated cochannel interference (f; = 0). The resultant phase
¢,(t) is then given by Eq. (2) with 8,(t) = ¢(t), where ¢(¢) denotes the phase mod-
ulation of the interfering signal. Thus, if K, = 1 for simplicity, the demodulated
signal becomes

o _da p sin ¢ (1)
yp(t) = ¢,(t) = a arctan 1 + pcos b (1) [8a]
= alp, ¢:) d (1)
where
2
a(p.d) & —2 Fpeosd, (8]

1+ p?+ 2pcos ¢,

The presence of ¢ {#) in Eq. (8a) indicates potentially intelligible interference (or
cross talk) to the extent that a(p, ¢;) remains constant with time. After all, if
p > 1thena(p, ¢,;) = land y,(t) = ¢ (2).

But capture effect occurs when A; = A, so p = 1 and Eq. (8b) does not imme-
diately simplify. Instead, we note that

p/(1 + p) ¢, =0, £ 27, ...
alp, ¢;) = .02/(1 + Pz) ¢;= = 72, £3n/2,..
—p/(1 = p) $;i= T m, = 3m...

and we resort to plots of a(p, ¢;) versus ¢; as shown in Fig. 5.4—6a. Except for the
negative spikes, these plots approach a(p, ¢;) = 0.5 as p — 1, and thus y,() = 0.5
¢ (1). For p < 1, the strength of the demodulated interference essentially depends
on the peak-to-peak value

ap = ap,0) — alp, m) = 2p/(1 = p?)

which is plotted versus p in Fig. 5.4-6b. This knee-shaped curve reveals that if
transmission fading causes p to vary around a nominal value of about 0.7, the inter-
ference almost disappears when p < 0.7 whereas it takes over and *‘captures’ the
output when p > 0.7.

Panter (1965, Chap. 11) presents a detailed analysis of FM interference, includ-
ing waveforms that result when both carriers are modulated.

g gL
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Figure 5.4-6
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5.1-2
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5.1-5

5.1-6
5.1-7%

5.1-8

5.5 PROBLEMS

Sketch and label ¢(f) and f(#) for PM and FM when x(t) = AA(t/7). Take
¢( — o0) = 0 in the FM case.
Do Prob. 5.1-1 with x(¢t) = Acos(rt/7)I1(z/27).

4At

Do Prob. 5.1-1 with x(¢) = —
t“— 16

fort > 4.

‘A frequency-sweep generator produces a sinusoidal output whose instantaneous fre-

quency increases linearly from f; att = Otofyatt =T. Write 6 (¢) for O = ¢t =< T.

Besides PM and FM, two other possible forms of exponential modulation are phase-

integral modulation, with ¢(t) = K dx(t)/dt, and phase-acceleration modulation,
with

fl) =f + KJ x(\)dA

Add these to Table 5.1-1 and find the maximum values of ¢(¢) and f(¢) for all four
types when x (¢) = cos 27 f,, ¢.

Use Eq. (16) to obtain Eq. (18a) from Eq. (15).

Derive Eq. (16) by finding the exponential Fourier series of the complex periodic
function exp (j B sin @, t).

Tone modulation is applied simultaneously to a frequency modulator and a phase
modulator and the two output spectra are identical. Describe how these two spectra
will change when: (a) the tone amplitude is increased or decreased; (b) the tone fre-
quency is increased or decreased; (c) the tone amplitude and frequency are increased
or decreased in the same proportion.
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5.1-9

5.1-10*
5.1-11

5.1-12
5.1-13

5.1-14

5.1-15

5.1-16%

5.2-1

5.2-2
5.2-3

5.2-4

5.2-5*
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Consider a tone-modulated FM or PM wave with f,, = 10 kHz, 8 = 2.0, A, = 100,

and f, = 30 kHz. (@) Write an expression for f(#). (b) Draw the line spectrum and
show therefrom that §; < A%/2.

Do Prob. 5.1-9 with f,, = 20kHz and f. = 40 kHz, in which case S; > A?%/2.

Construct phasor diagrams for tone-modulated FM with A, = 10 and 8 = 0.5 when

w,t = 0, /4, and 7/2. Calculate A and ¢ from each diagram and compare with the
theoretical values.

Do Prob. 5.1-11 with 8 = 1.0.

A tone-modulated FM signal with 8 = 1.0 and f,, = 100 Hz is applied to an ideal
BPF with B = 250 Hz centered at f. = 500. Draw the line spectrum, phasor dia-
gram, and envelope of the output signal.

Do Prob. 5.1-13 with 8 = 5.0.

One implementation of a music synthesizer exploits the harmonic structure of FM
tone modulation. The violin note C, has a frequency of f, = 405 Hz with harmon-
ics at integer multiples of f, when played with a bow. Construct a system using FM

tone modulation and frequency converters to synthesize this note with f; and three
harmonics.

Consider FM with periodic square-wave modulation defined by x(¢) = 1 for
0 <t<Ty2andx(t) = — 1for — Ty/2 <t < 0. (a) Take $(0) = 0 and plot
d(t) for — Ty/2 < t < Tp/2. Then use Eq. (20a) to obtain

1, n+ . - .
Cp = Ee”‘{sinc( 5 B) /™% + sinc(n 5 B) e‘“’"/z}

where B = fT,. (b) Sketch the resulting magnitude line spectrum when (3 is a large
integer.

A message has W = 15 kHz. Estimate the FM transmission bandwidth for f; = 0.1,
0.5,1,5, 10, 50, 100, and 500 kHz.

Do Prob. 5.2-1 with W = 5 kHz.

An FM system has f, = 10 kHz. Use Table 9.4--1 and Fig. 5.2-1 to estimate the
bandwidth for: (a) barely intelligible voice transmission; (b) telephone-quality voice
transmission: (c) high-fidelity audio transmission.

A video signal with W = 5 MHz is to be transmitted via FM with f = 25 MHz. Find
the minimum carrier frequency consistent with fractional bandwidth considerations.
Compare your results with transmission via DSB amplitude modulation.

Your new wireless headphones use infrared FM transmission and have a frequency
response of 30-15,000 Hz. Find Brand f, consistent with fractional bandwidth con-
siderations, assuming f. = 5 X 10'* Hz.
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A commercial FM radio station alternates between music and talk show/call-in for-
mats. The broadcasted CD music is bandlimited to 15 kHz based on convention.
Assuming D = 5 is used for both music and voice, what percentage of the available

transmission bandwidth is used during the talk show if we take W = 5 kHz for
voice signals?

An FM system with f, = 30 kHz has been designed for W = 10 kHz. Approxi-
mately what percentage of Bt is occupied when the modulating signal is a unit-

amplitude tone at f,, = 0.1, 1.0, or 5.0 kHz? Repeat your cjalculations for a PM
system with ¢, = 3 rad. '

Consider phase-integral and phase-acceleration modulation defined in Prob. 5.1-5.
Investigate the bandwidth requirements for tone modulation, and obtain transmis-
sion bandwidth estimates. Discuss your results.

The transfer function of a single-tuned BPF is H(f) = 1/[1 + j20 (f — f.)/f:]
over the positive-frequency passband. Use Eq. (10) to obtain an expression for the
output signal and its instantaneous phase when the input is an NBPM signal.

Use Eg. (10) to obtain an expression for the output signal and its amplitude when
an FM signal is distorted by a system having H(f) = Ky — K3(f — f.)® over the
positive-frequency passband.

Use Eq. (13) to obtain an expression for the output signal and its instantaneous
frequency when an FM signal is distorted by a system having |H(f)| = 1 and
arg H(f) = a;(f — f.) + as(f — f.)* over the positive-frequency passband.

An FM signal is applied to the BPF in Prob. 5.2-9. Let @ = 20f,/f. << 1 and use

Eq.(13) to obtain an approximate expression for the output signal and its instanta-
neous frequency. ‘

Let the input to the system in Fig. 5.2-6a be an FM signal with D = f,/W and spu-
rious amplitude variations. Sketch the spectrum at the output of the limiter and show
that successful operation requires f, < (f, — W)/2.

The input to the system in Fig. 5.2-6b is an FM signal with D = f,/W and the BPF
is centered at 3f,, corresponding to a frequency tripler. Sketch the spectrum at the fil-

ter’s input and obtain a condition on f, in terms of f, and W that ensures successful
operation.

Do Prob. 5.2-14 with the BPF centered at 4f,, corresponding to a frequency
quadrupler.

The equivalent tuning capacitance in Fig. 5.3-1 is C(t) = C; + Cy(t) where
C,(t) = Cy/ V' Vg + x(t)/N. Show that C(t) = Cy — C,(t) with 1 percent accuracy
if NVz = 300/4. Then show that the corresponding limitation on the frequency
deviation is f, < f./300.

The direct FM generator in Fig. 5.3-2 is used for a remote-controlled toy car. Find
the range of allowable values for W so that By satisfies the fractional bandwidth
requirements, assuming the maximum frequency deviation of 150 kHz is used.
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Confirm that x(t) = A cos 6.(¢) is a solution of the integrodifferential equation
x(t) = —0t) [ 0t) x(t) dt. Then draw the block diagram of a direct FM gener-
ator based on this relationship.

Suppose an FM detector receives the transmitted signal that was generated by the
phase modulator in Fig. 5.3-3. Describe the distortion in the output message signal.
(Hint: Consider the relationship between the message signal amplitude and fre-
quency, and the modulation index.)

An audio message signal is transmitted using frequency modulation. Describe the
distortion on the output message signal if it is received by a PM detector. (Hint:

Consider the relationship between the message signal amplitude and frequency, and
the modulation index.)

Design a wireless stereo speaker system using indirect FM. Assuming W = 15 kHz,
D =5,f, =500 kHz, f. = 915 MHz, and ¢,/2#T < 20, determine the number

of triplers needed in your multiplier stage, and find the value of f; 5 needed to design
your system.

The audio portion of a television transmitter is an indirect FM system having
W = 10kHz, D = 2.5, and f, = 4.5 MHz. Devise a block diagram of this system
with ¢,/27T < 20 Hz and f, = 200 kHz. Use the shortest possible multiplier
chain consisting of frequency triplers and doublers, and locate the down-converter
such that no frequency exceeds 100 MHz.

A signal with W = 4 kHz is transmitted using indirect FM with f, = 1 MHz and
fa = 12 kHz. If ¢,/27T < 100 and f,; = 10 kHz, how many doublers will be
needed to achieve the desired output parameters? Draw the block diagram of the
system indicating the value and location of the local oscillator such that no fre-
quency exceeds 10 MHz.

Suppose the phase modulator in Fig. 5.3-5 is implemented as in Fig. 5.3-3. Take
x(t) = A, cos w,t andlet B = (¢pp/27T)(A,/f»)- (@) Show thatif 8 << 1, then

fi(t) = fo + Bfnlcos ot + (B/2)? cos 3w,,1]

(b) Obtain a condition on ¢, /27T so the third-harmonic distortion does not exceed
1 percent when A,, = 1 and 30 Hz = f,, = 15 kHz, as in FM broadcasting.

Let the input to Fig. 5.3~7a be an FM signal with f, << f, and let the differentiator
be implemented by a tuned circuit with H(f) = 1/[1 + j2Q/f)(f — fo)] for

f = f,. Use the quasi-static method to show that y(¢) = Kpfyx(¢) when fy = f, + b
provided that f, < b << f,/20.

Let the input to Fig. 5.3-7a be an FM signal with f, << f, and let the differentiator
be implemented by a first-order lowpass filter with B = f,. Use quasi-static analysis
to show that yp(t) = —K, fax(t) + K,f%x*(t). Then take x(¢) = cos w,,¢ and obtain
a condition on f,/f. so the second-harmonic distortion is less than 1%.
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The tuned circuits in Fig. 5.3-8b have transfer functions of the form H(f) =
U1 + jROI)(Sf — fol for f= f). Let the two center frequencies be f = f, = b with
fa = b << .. Use quasi-static analysis to show that if both circuits have 2Q/f)b =
a << 1, then yp(r) = Kx(t) — K3x°(¢) where K3/K; << 1.

Obtain an approximate expression for the output of an amplitude demodulator when
the input is an AM signal with 100 percent modulation plus an interfering signal
Al + x{t)] cos [(w, + w))t + ¢;] with p=A/A, K< 1. Is the demodulated
interference intelligible?

Obtain an approximate expression for the output of a phase demodulator when the
input is an NBPM signal with 100 percent modulation plus an interfering signal

A; cos [(w, + w)t + ()] with p = A/A, << 1. Is the demodulated interference
intelligible?

Investigate the performance of envelope detection versus synchronous detection of
AM in the presence of multipath propagation, so that v(¢) = x(t) + ax (t — t,)
with & < 1. Consider the special cases w.t, =~ 7/2 and w.t, =~ .

You are talking on your cordless phone, which uses amplitude modulation, when
someone turns on a motorized appliance, causing static on the phone. You switch to
your new FM cordless phone, and the call is clear. Explain.

In World War II they first used preemphasis/deemphasis in amplitude modulation
for mobile communications to make the high-frequency portion of speech signals
more intelligible. Assuming that the amplitude of the speech spectrum is bandlimited
to 3.5 kHz and rolls off at about 6 dB per decade (factor of 10 on a log-frequency
scale) above 500 Hz, draw the Bode diagrams of the preemphasis and deemphasis fil-
ters so that the message signal has a flattened spectrum prior to transmission. Discuss
the impact on the transmitted power for DSB versus standard AM with . = 1.

Preemphasis filters can also be used in hearing aid applications. Suppose a child has
a hearing loss that gets worse at high frequencies. A preemphasis filter can be
designed to be the approximate inverse of the high frequency deemphasis that takes
place in the ear. In a noisy classroom it is often helpful to have the teacher speak into
a microphone and have the signal transmitted by FM to a receiver that the child is
wearing. Is it better to have the preemphasis filter at the microphone end prior to FM
transmission or at the receiver worn by the child? Discuss your answer in terms of
transmitted power, transmitted bandwidth, and susceptibility to interference.

A message signal x(¢) has an energy or power spectrum that satisfies the condition

Gx(f) = (Bde/f)szax |f\ > Bde

where G, is the maximum of G(f) in | f| < Bg,. If the preemphasis filter in Eq.

(7) is applied to x(#) before FM transmission, will the transmitted bandwidth be
increased?
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Equation (8) also holds for the case of unmodulated adjacent-channel interference if
we let ¢(t) = w;t. Sketch the resulting demodulated waveform when p = 0.4, 0.8,
and 1.2.

If the amplitude of an interfering sinusoid and the amplitude of the sinusoid of inter-
est are approximately equal, p = A;/A. =~ 1 and Eq. (8b) appears to reduce to
a(p, ¢;) = 1/2 for all ¢, resulting in cross talk. However, large spikes will appear
at the demodulator output when ¢; = *7. Show that if ¢; = mand p =1 = ¢,
then a(p, m) — *oo as € — 0. Conversely, show that if p is slightly less than 1 and
¢;=m = g then a(p, ;) > — ccas e —0.

Develop an expression for the demodulated signal when an FM signal with instanta-
neous phase ¢(f) has interference from an unmodulated adjacent-channel carrier.
Write your result in terms of ¢(¢), p = A/A_, and 6,(t) = w;t + ¢,
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Experimentcﬂ data and mathematical functions are frequently displayed as confinuous curves, even though a finite
number of discrefe points was used to construct the graphs. I these points, or samples, have sufficiently close spac-
ing, a smooth curve drawn through them allows you to interpolate intermediate values to any reasonable degree of
cccuracy. It can therefore be said that the continuous curve is adequately described by the sample points alone.

In similar fashion, an electric signal satisfying certain requirements can be reproduced from an appropriate set
of instantaneous samples. Sampling therefore makes it possible to transmit @ message in the form of pulse modulation,
rather than a continuous signal. Usually the pulses are quite short compared to the time between them, so a pulse-
modulated wave has the property of being “off” most of the time.

This property of pulse modulation offers two potential advantages over CW modulation. First, the transmitted
power can be concentrated info short bursts instead of being generated continuously. The system designer then has
greater lafitude for equipment selection, and may choose devices such as lasers and high-power microwave tubes
that operate only on a pulsed basis. Second, the time inferval between pulses can be filed with sample values from
other signals, a process called time-division multiplexing (TDM).

But pulse modulation has the disadvantage of requiring very large transmission bandwidth compared to the mes-
sage bandwidth. Consequently, the methods of analog pulse modulation discussed in this chapter are used primarily
as message processing for TDOM and/or prior to CW modulation. Digital or coded pulse modulation has additional
advantages that compensate for the increased bandwidth, as we'll see in Chapter 12.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Draw the spectrum of a sampled signal (Sect. 6.1).

2. Define the minimum sampling frequency to adequately represent a signal given the maximum value of aliasing
error, message bandwidth, LPF characteristics, and so forth (Sect. 6.1).

Know what is meant by the Nyquist rate and know where it applies (Sect. 6.1).
Describe the implications of practical sampling versus ideal sampling (Sect. 6.1).
Reconstruct a signal from its samples using an ideal LPF (Sect. 6.1).

Explain the operation of pulse-amplitude modulation, pulse-duration modulation, and pulse-position modulation;
sketch their time domain waveforms; and calculate their respective bandwidths (Sects. 6.2 and 6.3).

I

6.1 SAMPLING THEORY AND PRACTICE

The theory of sampling presented here sets forth the conditions for signal sampling
and reconstruction from sample values. We’ll also examine practical implementa-
tion of the theory and some related applications.

Chopper Sampling

A simple but highly informative approach to sampling theory comes from the
switching operation of Fig. 6.1-1a. The switch periodically shifts between two con-
tacts at a rate of f; = 1/7; Hz, dwelling on the input signal contact for T seconds and
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on the grounded contact for the remainder of each period. The output x(¢) then con-
sists of short segments for the input x(¢), as shown in Fig. 6.1-1b. Figure 6.1-1c is
an electronic version of Fig. 6.1-1a; the output voltage equals the input voltage
except when the clock signal forward-biases the diodes and thereby clamps the out-
put to zero. This operation, variously called single-ended or unipolar chopping, is
not instantaneous sampling in the strict sense. Nonetheless, x,(¢) will be designated
the sampled wave and f; the sampling frequency.

We now ask: Are the sampled segments sufficient to describe the original input
signal and, if so, how can x(¢) be retrieved from x,(¢)? The answer to this question
lies in the frequency domain, in the spectrum of the sampled wave.

As a first step toward finding the spectrum, we introduce a switching function
s(¢) such that

x(r) = x(2)s(z) (m

Thus the sampling operation becomes multiplication by s(z), as indicated schemat-
ically in Fig. 6.1-2a, where s(#) is nothing more than the periodic pulse train of
Fig. 6.1-2b. Since s(z) is periodic, it can be written as a Fourier series. Using the
results of Example 2.1-1 we have

o o0
s(t) = 2 fo7 sinc nf, T fP™ = ¢y + 2:2c,l COS nw,t [2]
n=-~0o0 n=1
where
¢, = f,Tsinc nf, T s = 2T f,

i‘ Clock

]

Figure 6.1-1 Switching sampler. (a) Functional diagram; (b) waveforms; (¢] cireuit realiza-
tion with diode bridge.
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This analysis has shown that if a bandlimited signal is sampled at a frequency
greater than the Nyquist rate, it can be completely reconstructed from the sampled
wave. Reconstruction is accomplished by lowpass filtering. These conclusions may
be difficult to believe at first exposure; they certainly test our faith in spectral analy-
sis. Nonetheless, they are quite correct.

Finally, it should be pointed out that our results are independent of the sample-
pulse duration, save as it appears in the duty cycle. If 7 is made very small, x,(z)
approaches a string of instantaneous sample points, which corresponds to ideal
sampling. We’ll pursue ideal sampling theory after a brief look at the bipolar chop-
per, which has v = TJ2.

EXAMPLE 6.1-1

Bipolar Choppers

Figure 6.1-4a depicts the circuit and waveforms for a bipolar chopper. The equiva-
lent switching function is a square wave alternating between s(f) = +1 and —1.
From the series expansion of s(f) we get

4 4 4
x(t) = ;x(t) cos wt — ;x(t) cos 3w, t + S—ﬂ_x(t) cosSw,t — - [7]

whose spectrum is sketched in Fig. 6.1-4b for f = 0. Note that X,(f) contains no dc
component and only the odd harmonics of f;. Clearly, we can’t recover x(¢) by low-
pass filtering. Instead, the practical applications of bipolar choppers involve band-
pass filtering.

If we apply x,(¢) to a BPF centered at some odd harmonic nf;, the output will be
proportional to x(f) cos nwg¢—a double-sideband suppressed-carrier waveform.

x(t) o—

X

/‘\/.\/i\f

o f 3, 5f,
(bl

Figure 6.1-4 Bipolar chopper. [a] Circuit and waveforms; {b) spectrum.
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Thus, a bipolar chopper serves as a balanced modulator. It also serves as a synchro-
nous detector when the input is a DSB or SSB signal and the output is lowpass fil-
tered. These properties are combined in the chopper-stabilized amplifier, which
makes possible dc and low-frequency amplification using a high-gain ac amplifier.
Additionally, Prob. 6.1-4 indicates how a bipolar chopper can be modified to pro-
duce the baseband multiplexed signal for FM stereo.
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Ideal Sampling and Reconstruction

By definition, ideal sampling is instantaneous sampling. The switching device of
Fig. 6.1-1a yields instantaneous values only if 7 — O; but then f;r — 0, and so does
x,(f). Conceptually, we overcome this difficulty by multiplying x,(¢) by 1/7 so that,
as 7 — 0 and 1/7 — o, the sampled wave becomes a train of impulses whose areas
equal the instantaneous sample values of the input signal. Formally, we write the

rectangular pulse train as
& t — kT,
(=3 n( )

k=—c0 T

from which we define the ideal sampling function

ss(f) & lirré%s(t) = > 8t — kT,) (8]

k=—c0

The ideal sampled wave is then

xs(t) S x(1)ss(2) [9a]

= x(1) i 8(t — kTy)

k=—00

[oe]

= > x(kT,) §(t — kT,) [9b]

k=—co

since x(¢) 6(¢t — kT,) = x(kT,) 6(¢t — kT,).

To obtain the corresponding spectrum X5(f) = F[x5(¢)] we note that (1/7)x,(¢) —
x5() as 7 — 0 and, likewise, (1/7)X,(f) — Xs(f). But each coefficient in Eq. (4) has
the property ¢, /v = f; sinc nfyr = f, when = 0. Therefore,

Xa(f) = £X(f) + fIX(F = £) + X+ 1) + -
= fi 2 X(f = nf)

n=-—co

(1ol

which is illustrated in Fig. 6.1-5 for the message spectrum of Fig. 6.1-3a taking f, >
2W. We see that X5(f) is periodic in frequency with period f;, a crucial observation
in the study of sampled-data systems.
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Xs(f)
L — ‘ 4 4 f
o W & %
i-W
Figure 6.1-5 Spectrum of ideally sampled message.

Somewhat parenthetically, we can also develop an expression for Ss(f) =
F[s5()] as follows. From Eq. (9a) and the convolution theorem, X5(f) = X(f) *
Ss(f) whereas Eq. (10) is equivalent to

X(f) = X(f) * [ S £8(F - nf)

n=-0o0

Therefore, we conclude that

Ss(f) = f; >, 8(f — nf,) 1

so the spectrum of a periodic string of unit-weight impulses in the time domain is a {'
periodic string of impulses in the frequency domain with spacing f, = 1/T,; in both ,;'5
domains we have a function that looks like a picket fence. 3

Returning to the main subject and Fig. 6.1-5, it’s immediately apparent that if
we invoke the same conditions as before—x(¢) bandlimited in W and f, = 2W—then
a filter of suitable bandwidth will reconstruct x(f) from the ideal sampled wave. /

Specifically, for an ideal LPF of gain K, time delay 1, and bandwidth B, the transfer
function is

— i —jwt, (
H(f) _KH<2B)€ it

so filtering x5(#) produces the output spectrum
Y(f) = H()Xs(f) = Kf, X(f)e "
assuming B satisfies Eq. (6). The output time function is then
y(t) = FHY()] = Kf,x(t — 1) [12]

which is the original signal amplified by Kf; and delayed by ¢,.
Further confidence in the sampling process can be gained by examining recon-
struction in the time domain. The impulse response of the LPF 1s

h(t) = 2BK sinc 2B(t — t,)
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And since the input x4(¢) is a train of weighted impulses, the output is a train of
weighted impulse responses, namely,

(1) = h(t) * x5(t) = 2 x(kT,)h(t — kT;) [13]

k

2BK > x(kT,) sinc 2B(t — t; — kT,)

k=—00

Now suppose for simplicity that B = f/2, K = 1/f,, and t, = 0, s0

y(t) = Ek:x(ka) sinc (f;t — k)

We can then carry out the reconstruction process graphically, as shown in Fig. 6.1-6.
Clearly the correct values are reconstructed at the sampling instants ¢t = kT, for all
sinc functions are zero at these times save one, and that one yields x(kT;). Between
sampling instants x(¢) is interpolated by summing the precursors and postcursors
from all the sinc functions. For this reason the LPF is often called an interpolation
filter, and its impulse is called the interpolation function.

The above results are well summarized by stating the important theorem of uni-
form (periodic) sampling. While there are many variations of this theorem, the fol-
lowing form is best suited to our purposes.

Another way to express the theorem comes from Eqgs. (12) and (13) with X = T and
t; = 0. Then y(¢) = x() and

x(f) = 2BT, > x(kT,) sinc 2B(t — kT,) [14]
k=—co
x(3T,) (B = x()

x(3T,) sinc (f,z-3)

Figure 6.1-6 Ideal reconstruction.
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provided T; = 1/2W and B satisfies Eq. (6). Therefore, just as a periodic signal is
completely described by its Fourier series coefficients, a bandlimited signal is com-

pletely described by its instantaneous sample values whether or not the signal actu-
ally is sampled.

EXERCISE 6.1-1

Consider a sampling pulse train of the general form

5,(t) = i p(t — kT)) [15a]

k=-00

whose pulse type p(f) equals zero for || > T2 but is otherwise arbitrary. Use an
exponential Fourier series and Eq. (21), Sect. 2.2, to show that

[e]

S,(f) = f, >, P(nf,) 8(f — nf,) [15b]

n=—00

where P(f) = F[p(?)]. Then let p(t) = 8(2) to obtain Eq. (11).

Practical Sampling and Aliasing

Practical sampling differs from ideal sampling in three obvious aspects:

1. The sampled wave consists of pulses having finite amplitude and duration,
rather than impulses.

Practical reconstruction filters are not ideal filters.

3. 'The messages to be sampled are timelimited signals whose spectra are not and
cannot be strictly bandlimited.

The first two differences may present minor problems, while the third leads to the
more troublesome effect known as aliasing.

Regarding pulse-shape effects, our investigation of the unipolar chopper and the
results of Exercise 6.1-1 correctly imply that almost any pulse shape p(f) will do
when sampling takes the form of a multiplication operation x(£)s,(f). Another opera-
tion produces flat-top sampling described in the next section. This type of sampling
may require equalization, but it does not alter our conclusion that pulse shapes are
relatively inconsequential.

Regarding practical reconstruction filters, we consider the typical filter
response superimposed in a sampled-wave spectrum in Fig. 6.1-7. As we said ear-
lier, reconstruction can be done by interpolating between samples. The ideal LPF
does a perfect interpolation. With practical systems, we can reconstruct the signal
using a zero-order hold (ZOH) with

o = Sy (P E) (16

k N
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X

Filter response

Figure 6.1-7 Practical reconstruction filter.

or a first-order hold (FOH) which performs a linear interpolation using

= x(kz;)A( d ka) [(17]
P T,

The reconstruction process for each of these is shown in Fig. 6.1-8. Both the ZOH

and FOH functions are lowpass filters with transfer function magnitudes of

\Hzou()] = |T, sinc (fT,)| and |Heou (f)| = |1, V1 + (27fT,)? sincX(fT,)|, respec-

tively. See Problems 6.1-11 and 6.1-12 for more insight.

If the filter is reasonably flat over the message band, its output will consist of x(¢)
plus spurious frequency components at |f| > f, — W outside the message band. In
audio systems, these components would sound like high-frequency hissing or “noise.”
However, they are considerably attenuated and their strength is proportional to x(#), so
they disappear when x(f) = 0. When x(¢) # 0, the message tends to mask their pres-
ence and render them more tolerable. The combination of careful filter design and an
adequate guard band created by taking f; > 2W makes practical reconstruction filter-
ing nearly equivalent to ideal reconstruction. In the case of ZOH and FOH reconstruc-
tion, their frequency response shape sinc(f7,) and sinc? (fT,) will distort the spectra of
x(¢). We call this aperature error, which can be minimized by either increasing the
sampling rate or compensating with the appropriate inverse filter.

(a) (b)

Figure 6.1-8 Signal reconstruction from samples using {a) ZOH, (b} FOH.
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Regarding the timelimited nature of real signals, a message spectrum like
Fig. 6.1-9a may be viewed as a bandlimited spectrum if the frequency content above
W is small and presumably unimportant for conveying the information. When such a
message is sampled, there will be unavoidable overlapping of spectral components as
shown in Fig. 6.1-9b6. In reconstruction, frequencies originally outside the normal
message band will appear at the filter output in the form of much lower frequencies.
Thus, for example, f; > W becomes f, — f; < W, as indicated in the figure.

This phenomenon of downward frequency translation is given the descriptive
name of aliasing. The aliasing effect is far more serious than spurious frequencies
passed by nonideal reconstruction filters, for the latter fall outside the message band,
whereas aliased components fall within the message band. Aliasing is combated by
filtering the message as much as possible before sampling and, if necessary, sam-
pling at higher than the Nyquist rate. This is often done when the antialiasing filter
does not have a sharp cutoff characteristic, as is the case of RC filters. Let’s consider
a broadband signal whose message content has a bandwidth of W but is corrupted by
other frequency components such as noise. This signal is filtered using the simple
first-order RC LPF antialiasing filter that has bandwidth B = 1/27RC with W << B
and is shown in Figure 6.1-9a. It is then sampled to produce the spectra shown in
Fig. 6.1-9b. The shaded area represents the aliased components that bave spilled
into the filter’s passband. Observe that the shaded area decreases if f; increases or if
we employ a more ideal LPF. Assuming reconstruction is done with the first-order
Butterworth LPF, the maximum percent aliasing error in the passband is

XA

0.707

- f
fa Js
(b)

Figure 6.1-9 Message spectrum. [a} Output of RC filter; (b) after sampling. Shaded area
represents aliasing spillover into passband.
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1/0.707

V1 + (f./B)?

with f, = f; — B and the 0.707 factor is due to the filter’s gain at its half-power fre-
quency, B. See Ifeachor and Jervis (1993).

Error% =

X 100% 18]
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Oversampling

When using VLSI technology for digital signal processing (DSP) of analog signals,
we must first sample the signal. Because it is relatively difficult to fabricate inte-
grated circuit chips with large values of R and C we use the most feasible RC LPF
and then oversample the signal at several times its Nyquist rate. We follow with a
digital filter to reduce frequency components above the information bandwidth W.
We then reduce the effective sampling frequency to its Nyquist rate using a process
called downsampling. Both the digital filtering and downsampling processes are
readily done with VLSI technology.

Let’s say the maximum values of R and C we can put on a chip are 10 k{2 and
100 pF, respectively, and we want to sample a telephone quality voice such that the
aliased components will be at least 30 dB below the desired signal. Using Eq. (18)
with

1 1

T 27RC 27 X 10* x 1002

B = 159 kHz

we get

1/0.707
5% = X 100%.
V1 + (f,/159 kHz)?

Solving yields f, = 4.49 MHz, and therefore the sampling frequency is f; = f, +
B = 4.65 MHz. With our RC LPF, and f, = 4.49 MHZ, any aliased components at
159 kHz will be at least 5 percent below the signal level at the half-power frequency.
Of course the level of aliasing will be considerably less than 5 percent at frequencies
below the telephone bandwidth of 3.2 kHz.

EXAMPLE 6.1-2

Sampling Oscilloscopes

A practical application of aliasing occurs in the sampling oscilloscope, which
exploits undersampling to display high-speed periodic waveforms that would other-
wise be beyond the capability of the electronics. To illustrate the principle, consider
the periodic waveform x(7) with period 7, = 1/f, in Fig. 6.1-10a. If we use a sam-
pling interval 7} slightly greater than 7, and interpolate the sample points, we get the
expanded waveform y(f) = x(at) shown as a dashed curve. The corresponding sam-
pling frequency is

fi=1-a)f, 0<a<l

EXAMPLE 6.1-3
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x() ¥ = x(at)

| |

-2 -+ 0 L 2f; d
| (b}
lml | |‘| |11 |‘||| LU,
—%f; i 05 fs s
(c)
Figure 6.1-10 (a} Periodic waveform with undersampling; (b} spectrum of x{t}; (] spectrum

of y{t) = x|af), a<1.

s0 f; < f, and even the fundamenta] frequency of x(f) will be undersampled. Now let’s
find out if and how this system actually works by going to the frequency domain.
We assume that x(z) has been prefiltered to remove any frequency components
higher than the mth harmonic. Figure 6.1-10b shows a typical two-sided line spec-
trum of x(¢), taking m = 2 for simplicity. Since sampling translates all frequency

components up and down by nf,, the fundamental will appear in the spectrum of the
sampled signal at

Xf, = 2L - Al = e,

as well as at =, and at f; = nf; = (1 + n)f, = nf,. Similar translations applied to the
dc component and second harmonic yield the spectrum in Figure 6.1-10c, which
contains a compressed image of the original spectrum centered at each multiple of f,.

Therefore, a lowpass filter with B = f/2 will construct y(f) = x(ar) from x(f) pro-
vided that

2m + 1

which prevents spectral overlap.
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Demonstrate the aliasing effect for yourself by making a careful sketch of cos 27710z

and cos 2770t for 0 = ¢ < 15. Put both sketches on the same set of axes and find the
sample values at ¢ = 0, g5, % ..., which corresponds to f; = 80. Also, convince

yourself that no other waveform bandlimited in 10 < W < 40 can be interpolated
from the sample values of cos 2710z.

EXERCISE 6.1-2

6.2 PULSE-AMPLITUDE MODULATION

If a message waveform is adequately described by periodic sample values, it can be
transmitted using analog pulse modulation wherein the sample values modulate the
amplitude of a pulse train. This process is called pulse-amplitude modulation
(PAM). An example of a message waveform and corresponding PAM signal are
shown in Figure 6.2-1.

As Figure 6.2-1 indicates, the pulse amplitude varies in direct proportion to the
sample values of x(f). For clarity, the pulses are shown as rectangular and their dura-
tions have been grossly exaggerated. Actual modulated waves would also be
delayed slightly compared to the message because the pulses can’t be generated
before the sampling instances.

It should be evident from the waveform that a PAM signal has significant dc con-
tent and that the bandwidth required to preserve the pulse shape far exceeds the mes-
sage bandwidth. Consequently you seldom encounter a single-channel communica-
tion system with PAM or, for that matter, other analog pulse-modulated methods. But
analog pulse modulation deserves attention for its major roles in time-division multi-
plexing, data telemetry, and instrumentation systems.

Flat-Top Sampling and PAM

Although a PAM wave could be obtained from a chopper circuit, a more popular
method employs the sample-and-hold (S/H) technique. This operation produces
flat-top pulses, as in Fig. 6.2—1, rather than curved-top chopper pulses. We therefore
begin here with the properties of flat-top sampling.

Figure 6.2-1
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A rudimentary S/H circuit consists of two FET switches and a capacitor, con-
nected as shown in Fig. 6.2-2a. A gate pulse at G1 briefly closes the sampling
switch and the capacitor holds the sampled voltage until discharged by a pulse
applied to G2. (Commercial integrated-circuit S/H units have further refinements,
including isolating op-amps at input and output). Periodic gating of the sample-and-
hold circuit generates the sampled wave

%) = S akT)p(t - AT,) i)

k

illustrated by Fig. 6.2—2b. Note that each output pulse of duration 7 represents a sin-
gle instantaneous sample value.

To analyze flat-top sampling, we’ll draw upon the relation p(t — kT,) = p(¢) *
8 (t — kT;) and write

o0 = pl0) s | S 46T 06 - )] = pl0 + 20

Fourier transformation of this convolution operation yields

X1) = PU)| £ S5 - )| = P 2

Figure 6.2-3 provides a graphical interpretation of Eq. (2), taking X(f) = II(f/2W).
We see that flat-top sampling is equivalent to passing an ideal sampled wave
through a network having the transfer function P(f) = F[p()].

The high-frequency rolloff characteristic of a typical P(f) acts like a lowpass
filter and attenuates the upper portion of the message spectrum. This loss of high-
frequency content is called aperture effect. The larger the pulse duration or aper-
ture T, the larger the effect. Aperture effect can be corrected in reconstruction by
including an equalizer with

H.o(f) = Ke 4/ P(f) 8

However, little if any equalization is needed when 7/7, << 1.

Sampling Discharge x(£) x(kTy)
switch switch

e, s 4 . 4 O J— e
+ —L J— + '\ T
L o— C t

x,()
_ a1 _F kT, \l{

{a) (b)

Figure 6.2-2 Flattop sampling. (a] Sample-and-hold circuit; (b} waveforms.

x(1)
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X5
| : !
- 0 Js
{a)
()l
1PCF
,,,,, — T
—f 0 s
(b)

Figure 6.2-3 (a) Spectrum for idecl sampling when X{f) = T1{f/2W); (b) aperfure effect in
flattop sampling.

Now consider a unipolar flat-top PAM signal defined by -

(1) = D Ao[1 + px(kT,)]p(t ~ KT,) [4]

The constant A, equals the unmodulated pulse amplitude, and the modulation index
w controls the amount of amplitude variation. The condition

1+ ux(t) >0 (5]

ensures a unipolar (single-polarity) waveform with no missing pulses. The resulting
constant pulse rate f; is particularly important for synchronization in time-division
multiplexing.

Comparison of Egs. (1) and (4) shows that a PAM signal can be obtained from
a sample-and-hold circuit with input Ag[1 + wux(f)]. Correspondingly, the PAM
spectrum will look like Fig. 6.2-3b with X(f) replaced by

FlAo[1 + ux(6)]} = Ao[8(f) + pX(f)],

which results in spectral impulses at all harmonics of £, and at f = 0. Reconstruction of
x(£) from x,(¢) therefore requires a dc block as well as lowpass filtering and equalization.

Clearly, PAM has many similarities to AM CW modulation—modulation
index, spectral impulses, and dc blocks. (In fact, an AM wave could be derived from
PAM by bandpass filtering). But the PAM spectrum extends from dc up through sev-
eral harmonics of f,, and the estimate of required transmission bandwidth By must be
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based on time-domain considerations. For this purpose, we assume a small pulse
duration T compared to the time between pulses, so

1
<IL=o
7 oW

Adequate pulse resolution then requires
1
Br=—>> W 6]
27

Hence, practical applications of PAM are limited to those situations in which the
advantages of a pulsed waveform outweigh the disadvantages of large bandwidth.

EXERCISE 6.2~1

Consider PAM transmission of a voice signal with W = 3 kHz. Calculate BT iff, =
8kHzand T = 0.17,.

6.3 PULSE-TIME MODULATION

The sample values of a message can also modulate the time parameters of a pulse
train, namely the pulse width or its position. The corresponding processes are desig-
nated as pulse-duration (PDM) and pulse-position modulation (PPM) and are illus-
trated in Fig. 6.3—1. PDM is also called pulse-width modulation (PWM). Note the
pulse width or pulse position varies in direct proportion to the sample values of x(z).

Pulse-Duration and Pulse-Position Modulation

We lump PDM and PPM together under one heading for two reasons. First, in both
cases a time parameter of the pulse is being modulated, and the pulses have constant

amplitude. Second, a close relationship exists between the modulation methods for
PDM and PPM.

Figure 6.3-1 Types of pulse-time modulation.
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To demonstrate these points, Fig. 6.3-2 shows the block diagram and wave-
forms of a system that combines the sampling and modulation operations for either
PDM or PPM. The system employs a comparator and a sawtooth-wave generator
with period T,. The output of the comparator is zero except when the message wave-
form x(f) exceeds the sawtooth wave, in which case the output is a positive constant
A. Hence, as seen in the figure, the comparator produces a PDM signal with trailing-
edge modulation of the pulse duration. (Reversing the sawtooth results in leading-
edge modulation while replacing the sawtooth with a triangular wave results in
modulation on both edges.) Position modulation is obtained by applying the PDM
signal to a monostable pulse generator that triggers on trailing edges at its input and
produces short output pulses of fixed duration.

Comparator
M) o+ PDM
J ' >
PPM
Monostable —©
Sawtooth
generator ‘
(a)
x(f)

PPM

KT, 1 b

Figure 6.3-2 Generation of PDM or PPM. (d) Block diagram; [b) waveforms.

Careful examination of Fig. 6.3-2b reveals that the modulated duration or posi-
tion depends on the message value at the time location z, of the pulse edge, rather
than the apparent sample time k7. Thus, the sample values are nonuniformly spaced.
Inserting a sample-and-hold circuit at the input of the system gives uniform sampling
if desired, but there’s little difference between uniform and nonuniform sampling in
the practical case of small amounts of time modulation such that ¢, — kT, << T..

If we assume nearly uniform sampling, the duration of the kth pulse in the PDM
signal is

T = To[ 1 + wx(kTy)] (1]
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in which the unmodulated duration 7, represents x(kT;) = O and the modulation
index w controls the amount of duration modulation. Our prior condition on & in
Eqg. (5), Sect. 6.2, applies here to prevent missing pulses and “negative” durations
when x(kT;) = 0. The PPM pulses have fixed duration and amplitude so, unlike
PAM and PDM, there’s no potential problem of missing pulses. The kth pulse in a
PPM signal begins at time

t, = kT, + t; + ty x(kT}) [2]

in which the unmodulated position kT + ¢, represents x(kT,) = 0 and the constant z,
controls the displacement of the modulated pulse.

The variable time parameters in Egs. (1) and (2) make the expressions for x,()
rather awkward. However, an informative approximation for the PDM waveform is
derived by taking rectangular pulses with amplitude A centered at ¢+ = kT and
assuming that 7, varies slowly from pulse to pulse. Series expansion then yields

x,(£) = Af,o[1 + px(t)] + D % sin n(z) cos nwgt [3]
n=1
where ¢(f) = mfro[l + px(¥)]. Without attempting to sketch the corresponding
spectrum, we see from Eq. (3) that the PDM signal contains the message x(z) plus a
dc component and phase-modulated waves at the harmonics of f,. The phase modu-
lation has negligible overlap in the message band when 75 << T, so x(f) can be
recovered by lowpass filtering with a dc block.

Another message reconstruction technique converts pulse-time modulation into
pulse-amplitude modulation, and works for PDM and PPM. To illustrate this tech-
nique the middle waveform in Fig. 6.3—3 is produced by a ramp generator that starts
at time kT, stops at t,, restarts at (k + 1)7T,, and so forth. Both the start and stop
commmands can be extracted from the edges of a PDM pulse, whereas PPM recon-
struction must have an auxiliary synchronization signal for the start command.

j.

. (k+ DT,

Figure 6.3-3 Conversion of PDM or PPM into PAM.
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6.3 Pulse-Time Modulation

Regardless of the particular details, demodulation of PDM or PPM requires
received pulses with short risetime in order to preserve accurate message informa-
tion. For a specified risetime ¢, << T, the transmission bandwidth must satisfy

1
Br = 2 [4]
which will be substantially greater than the PAM transmission bandwidth. In
exchange for the extra bandwidth, we gain the benefit of constant-amplitude pulses
that suffer no ill effects from nonlinear distortion in transmission since nonlinear
distortion does not alter pulse duration or position.

Additionally, like PM and FM CW modulation, PDM and PPM have the poten-
tial for wideband noise reduction—a potential more fully realized by PPM than by
PDM. To appreciate why this is so, recall that the information resides in the time
location of the pulse edges, not in the pulses themselves. Thus, somewhat like the
carrier-frequency power of AM, the pulse power of pulse-time modulation is
“wasted” power, and it would be more efficient to suppress the pulses and just trans-
mit the edges! Of course we cannot transmit edges without transmitting pulses to
define them. But we can send very short pulses indicating the position of the edges,
a process equivalent to PPM. The reduced power required for PPM is a fundamental
advantage over PDM, an advantage that becomes more apparent when we examine
the signal-to-noise ratios.
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Derive Eq. (3) by the following procedure. First, assume constant pulse duration =
and write x,(f) = As(f) with s(2) given by Eq. (2), Sect. 6.1. Then apply the quasi-
static approximation T = Ty[1 + pux(®)].

EXERCISE 6.3-1

PPM Spectral Analysisx

Because PPM with nonuniform sampling is the most efficient type of analog pulse
modulation for message transmission, we should take the time to analyze its spec-
trum. The analysis method itself is worthy of examination.

Let the kth pulse be centered at time f,. If we ignore the constant time delay ¢, in
Eq. (2), nonuniform sampling extracts the sample value at ¢,, rather than kT, so

te = kT, + tox(ty) [5]

By definition, the PPM wave is a summation of constant-amplitude position-modulated
pulses, and can be written as

) = ;Ap(t — 1) = Ap(t) * { >, 8- tk)}

k

where A is the pulse amplitude and p(f) the pulse shape. A simplification at this
point is made possible by noting that p(¢) will (or should) have a very small duration
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compared to T;. Hence, for our purposes, the pulse shape can be taken as impulsive,
and

x,(1) = A D 8(t — 1) [6]

If desired, Eq. (6) can later be convolved with p(#) to account for the nonimpulsive
shape.

In their present form, Eqs. (5) and (6) are unsuited to further manipulation; the
trouble is the position term ¢, which cannot be solved for explicitly. Fortunately, ¢,
can be eliminated entirely. Consider any function g(#) having a single first-order
zero at ¢t = A, such that g(A) = 0, g(¢) # Ofort #* A, and g(¥) # 0 at¢t = A. The dis-
tribution theory of impulses then shows that

8(t — A) = [3()| 8[s(1)] 71

whose right-hand side is independent of A. Equation (7) can therefore be used to
remove #, from 8(¢ — t,) if we can find a function g(¢) that satisfies g(z,) = 0 and the
other conditions but does not contain ¢,.

Suppose we take g(f) =t — kT, — tox(t), which is zero at t = kT, + txx(¢). Now,
for a given value of k, there is only one PPM pulse, and it occurs at t, = kT, + tox(t,).
Thus g(t) = t, — kT, — tex(t) = 0, as desired. Inserting A = £, g(¢) = 1 — 1, x(2),
etc., into Eq. (7) gives

8(t — 1) = {1 — tox(1)] 8[t — kT, — to.x(1)]
and the PPM wave of Eq. (6) becomes
x,(t) = A[1 — 1,x(2)] ga[r — tox(t) — kT,

The absolute value is dropped since |t,%(£)] < 1 for most signals of interest if t, <& T,.
We then convert the sum of impulses to a sum of exponentials via

> 8(t — KkT) = f, >, el [8]

k=—0c0 n=-00

which is Poisson’s sum formula. Thus, we finally obtain

x,(1) = Af[1 — tox(r)] D, el

n=-—od

= Af,[1 — 1, x(t)]{l + 22005 [nwst — nwty x(t)]} [9]

The derivation of Eq. (8) is considered in Prob. 6.3-6.
Interpreting Eq. (9), we see that PPM with nonuniform sampling is a combina-
tion of linear and exponential carrier modulation, for each harmonic of f; is phase-
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modulated by the message x(¢) and amplitude-modulated by the derivative x(¢). The
spectrum therefore consists of AM and PM sidebands centered at all multiples of f;,
plus a dc impulse and the spectrum of x(z). Needless to say, sketching such a spec-
trum 1s a tedious exercise even for tone modulation. The leading term of Eq. (9) sug-
gests that the message can be retrieved by lowpass filtering and integrating. How-
ever, the integration method does not take full advantage of the noise-reduction

properties of PPM, so the usual procedure is conversion to PAM or PDM followed
by lowpass filtering.

6.1-2
6.1-3

6.1-4"

6.1-5

6.4 PROBLEMS

Consider the chopper-sampled waveform in Eq. (3) with 7 = T,/2, f, = 100 Hz, and
x(¢) = 2 + 2 cos 2730t + cos 27780¢. Draw and label the one-sided line spectrum of
x,(t) for 0 = f = 300 Hz. Then find the output waveform when x(¢) is applied to an
ideal LPF with B = 75 Hz.

Do Prob. 6.1-1 with x(¢) = 2 + 2 cos 2730t + cos 27140z,

The usable frequency range of a certain amplifier is f, to f; + B, with B => f,. Devise
a system that employs bipolar choppers and allows the amplifier to handle signals
having significant dc content and bandwidth W << B.

The baseband signal for FM stereo is
x,(t) = [xp(t) + xg(t)] + [x(t) — xg(t)] cos w,t + A cos w,t/2

with f; = 38 kHz. The chopper systém in Fig. 6.14 is intended to generate this sig-
nal. The LPF has gain K, for |f| = 15 kHZ, gain K, for 23 < |f| = 53 kHz, and
rejects |f| = 99 kHz. Use a sketch to show that x,(£) = x;()s(t) + xzx(D[1 — s®)],

where s() is a unipolar switching function with 7 = T/2. Then find the necessary
values of X, and K,.

x(2)
—F0

) x,(8)
~ 0 2
0 i LPF ®
>
1
1
% Switch x2 19 kHz
i
Figure P6.1-4 e

A popular stereo decoder circuit employs transistor switches to generate v,(f) =
x,(5) — Kxy(f) and vg(t) = x,(t) — Kx,(f) where K is a constant, x,(f) = x,(£)s(?),
x(5) = x,(H[1 — ()], x,(¢) is the FM stereo baseband signal in Prob. 6.1-4, and s(2)
is a unipolar switching function with 7 = T/2. (a) Determine K such that lowpass
filtering of v, (f) and vg(?) yields the desired left- and right-channel signals. (b) What’s
the disadvantage of a simpler switching circuit that has K = 0?
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6.1-6
6.1-7

6.1-8

6.1-9

6.1-10

6.1-11

6.1-12%
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Derive Eq. (11) using Eq. (14), Sect. 2.5.

Suppose x(¢) has the spectrum in Fig. P6.1-7 with f, = 25 kHz and W = 10 kHz.
Sketch x5(f) for f, = 60, 45, and 25 kHz. Comment in each case on the possible
reconstruction of x(#) from x;(?).

X()

! f— — f

—fu —fu+W" 0 f;I_W fu

Figure P6.1-7

Consider the bandpass signal spectrum in Fig. P6.1-7 whose Nyquist rate is f, = 2f,.
However, the bandpass sampling theorem states that x(¢) can be reconstructed from
x5(8) by bandpass filtering if f; = 2f,/m and the integer m satisfies (/W) — 1 <m =
f/W. (a) Find m-and plot f/W versus f,/W for 0 < f,/W = 5. (b) Check the theorem
by plotting X5(f) when f, = 2.5W and f, = 2.5W. Also show that the higher rate f, =
4W would not be acceptable.

The signal x(#) = sinc? 5¢ is ideally sampled at ¢ = 0, =0.1, 0.2, ..., and recon-
structed by an ideal LPF with B = 5, unit gain, and zero time delay. Carry out the
reconstruction process graphically, as in Fig. 6.1-6 for |f| < 0.2.

A rectangular pulse with 7 = 2 is ideally sampled and reconstructed using an ideal
LPF with B = f/2. Sketch the resulting output waveforms when 7, = 0.8 and 0.4,
assuming one sample time is at the center of the pulse.

Suppose an ideally sampled wave is reconstructed using a zero-order hold with time
delay T = T,. (a) Find and sketch y(#) to show that the reconstructed waveform is a
staircase approximation of x(z). (b) Sketch |Y(f)| for X(f) = II(f2W) with W << {,.
Comment on the significance of your result.

The reconstruction system in Fig. P6.1-12 is called a first-order hold. Each block
labeled ZOH is a zero-order hold with time delay T = T,. (a) Find h(¢) and sketch
¥(?) to interpret the reconstruction operation. () Show that H(f) = T,(1 + j27fT,)
(sinc? f T,) exp (— j2mfT,). Then sketch |Y(f)| for X(f) = TI(f12W) with W < £,/2.

h..# ZOH N
LT

x5(0) Detay 70
ZOH T EH—

1 +
Figure P6.1-12
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Use Parseval’s theorem and Eq. (14) with T, = 1/2W and B = W to show that the
energy of a bandlimited signal is related to its sample values by

E = (1/2W) > |x(k/2W)[?
k=—0c0

The frequency-domain sampling theorem says that if x(¢) is a rimelimited signal,
such that x(¢) = 0 for |¢| = T, then X(f) is completely determined by its sample val-
ues X(nfy) with fy = 1/27T. Prove this theorem by writing the Fourier series for the
periodic signal v(¢) = x(£) * [%, 8(t — kT,)], where T, = 2T, and using the fact that
x(1) = v(OLLER2T).

A signal with period T, = 0.08 ws is to be displayed using a sampling oscilloscope
whose internal high-frequency response cuts off at B = 6 MHz. Determine maxi-
mum values for the sampling frequency and the bandwidth of the presampling LPF.

Explain why the sampling oscilloscope in Prob. 6.1-15 will not provide a useful dis-
play when T, < 1/3B.

A W = 15 kHz signal has been sampled at 150 kHz. What will be the maximum per-
cent aperature error if the signal is reconstructed using a (a) ZOH, (b) FOH?

A W = 15 kHz signal is sampled at 150 kHz with a first-order Butterworth antialias-
ing filter. What will be the maximum percent aliasing error in the passband?

Show that the equality in Eq. (5) of Sect. 6.1 does not hold for a sinusoidal signal.

What is the Nyquist rate to adequately sample the following signals: (a) sinc (1001),
(b) sinc? (1001), (¢) 10 cos*(2mw10°)?

Repeat Example 6.1-2 such that aliased components will be least 40 dB below the
signal level at the half-power frequency of 159 kHz.

Sketch |X,(f)| and find H.(f) for flat-top sampling with T = Ty/2, f, = 2.5W, and
p(t) = 1I(#/7). Is equalization essential in this case?

Do Prob. 6.2-1 for p(¢) = (cos wt/T)II(t/T).

Some sampling devices extract from x(¢) its average value over the sampling dura-
tion, so x(k7) in Eq. (1) is replaced by

k1) &1 J  X(A) d
T ig—x

(a) Devise a frequency-domain model of this process using an averaging filter, with

input x(¢) and output x(¢), followed by instantaneous flat-top sampling. Then obtain

the inpulse response of the averaging filter and write the resulting expression for

X,(f). (b) Find the equalizer needed when p(¢) is a rectangular pulse.

Consider the PAM signal in Eq. (4). (a) Show that its spectrum is

X(f) = Aof;P(f){ 2 [8(f = nf) + pX(f - nfs)]}

1]
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6.2-6
6.3-1"
6.3-2

6.3-3

6.3-4
6.3-5

6.3-6
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(b) Sketch ]Xp( )l when p(r) = I(¢/7) with + = T2 and ux(t) = cos 27f,/t with
I <JJ2.

Suppose the PAM signal in Eq. (4) is to be transmitted over a transformer-coupled
channel, so the pulse shape is taken as p(¢) = LI[(t — 7/2)/7] — II[(t + 7/2)/7] to
eliminate the dc component of x,(¢). (a) Use the expression in Prob. 6.2-4a to sketch
1X,(H)| when 7 = T /4, X(f) = [1(f/2W), and £, > 2W. (b) Find an appropriate equal-
izer, assuming that x(#) has negligible frequency content for |f| < f, < W. Why is
this assumption necessary?

Show how a PAM signal can be demodulated using a product detector. Be sure to
describe frequency parameters for the LO and the LPE

Calculate the transmission bandwidth needed for voice PDM with f, = 8 kHz,
|ux(t)| = 0.8, and 7, = T/5 when we want ¢, < 0.257 ;. ‘

A voice PDM signal with f, = 8 kHz and |ux(f)] = 0.8 is to be transmitted over a chan-
nel having By = 500 kHz. Obtain bounds on 7¢ such that 7, =< 7./3 and 7, = 3¢,

A pulse-modulated wave is generated by uniformly sampling the signal x(f) =
cos 27t/T,, att = kT, where T, = T,/3. Sketch and label x,(t) when the modulation
is: (a) PDM with u = 0.8, 7o = 0.4T, and leading edges fixed at ¢ = kT ; (b) PPM
with ; = 0.5 and t, = 7 = 0.27,.

Do Prob. 6.3-3 with T, = T, /6.

Use Eq. (9) to devise a system that employs a PPM generator and produces narrow-
band phase modulation with f, = mf,.

Poisson’s sum formula states in general that

[ve] [oe]
2 eth‘n'nA/L =1 2 8(/\ _ mL)

where A is an independent variable and L is a constant. (a) Derive the time-domain
version as given in Eq. (8) by taking F~1[Ss(/)]. (b) Derive the frequency-domain
version by taking % [s5(£)].

Let g(r) be any continuous function that monotonically increases or decreases over
a =t = b and crosses zero at t = A within this range. Justify Eq. (7) by making the
change-of-variable v = g(¢) in

r‘o‘[g(t)l dt

a

£
S
£33
g
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Communicotion systems that employ linear or exponential CW modulation may differ in many respects—type of
modulation, carrier frequency, transmission medium, and so forth. But they have in common the property that a sinu-
soidal bandpass signal with time~varying envelope and/or phase conveys the message information. Consequently,
generic hardware items such as oscillators, mixers, and bandpass filters are important building blocks for all CW mod-
ulation systems. Furthermore, many systems involve both linear and exponential CW modulation techniques.

This chapter therefore takes a broader look at CW modulation systems and hardware, using concepts and
results from Chapters 4 through 6. Specific topics include CW receivers, frequency- and time-division multiplexing,
phase-lock loops, and television systems. ‘

OBJECTIVES

After studying this chapter and working the exercises, you should be able ro do each of the following:

1. Design, in block-diagram form, a superheterodyne receiver that satisfies stated specifications (Sect. 7.1).
2. Predict at what frequencies a superheterodyne is susceptible to spurious inputs (Sect. 7.1).

3. Draw the block diagram of either an FDM or TDM system, given the specifications, and calculate the various
bandwidths (Sect. 7.2).

4. Identify the phase-locked loop structures used for pilot filtering, frequency synthesis, and FM detection (Sect. 7.3).
Analyze a simple phase-lock-loop system and determine the condition for locked operation (Sect. 7.3).

6. Explain the following TV terms: scanning raster, field, frame, retrace, luminance, chrominance, and color com-
patibility (Sect. 7.4).

7. Estimate the bandwidth requirement for image transmission given the vertical resolution, active line time, and
aspect ratio (Sect. 7.4).

8. Describe the significant performance differences of NTSC versus HDTV systems (Sect. 7.4).

o

7.1 RECEIVERS FOR CW MODULATION

All that is really essential in a CW receiver is some tuning mechanism, demodula-
tion, and amplification. With a sufficiently strong received signal, you may even get
by without amplification—witness the historic crystal radio set. However, most
receivers operate on a more sophisticated superheterodyne principle, which we’ll
discuss first. Then we’ll consider other types of receivers and the related scanning
spectrum analyzer.

Superheterodyne Receivers

Beside demodulation, a typical broadcast receiver must perform three other opera-
tions: (1) carrier-frequency tuning to selectthe desired signal, (2) filtering to sepa-
rate that signal from others received with it, and (3) amplification to compensate for
transmission loss. And at least some of the amplification should be provided before
demodulation to bring the signal up to a level useable by the demodulator circuitry.

B
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For example, if the demodulator is based on a diode envelope detector, the input sig-
nal must overcome the diode’s forward voltage drop. In theory, all of the foregoing
requirements could be met with a high-gain tunable bandpass amplifier. In practice,
fractional-bandpass and stability problems make such an ampliﬁer expensive and
difficult to build. Armstrong devised the superheterodyne or ‘“‘superhet” receiver to
circumvent these problems.

The superhet principle calls for two distinct amphﬁcat1on and filtering sec-
tions prior to demodulation, as diagrammed in Fig. 7.1-1. The incoming signal
x.(¢) is first selected and amplified by a radio-frequency (RF) section tuned to the
desired carrier frequency f.. The amplifier has a relatively broad bandwidth B that
partially passes adjacent-channel signals along with x.(f). Next a frequency con-
verter comprised of a mixer and local oscillator translates the RF output down to
an intermediate-frequency (IF) at f;z < f.. The adjustable LO frequency tracks

with the RF tuning such that
Jro = fo T fiF or fro=1. — fir (1]

and hence

\fe = frol = fir [2]

An TF section with bandwidth B, = B now removes the adjacent-channel signals.
This section is a fixed bandpass amplifier, called the IF strip, which provides most
of the gain. Finally, the IF output goes to the demodulator for message recovery and

baseband amplification. The parameters for commercial broadcast AM and FM
receivers are given in Table 7.1-1.

Table 7.1-1 Parameters of AM and FM radios

AM FM
Carrier frequency 540-1600 kHz 88.1-107.9 MHz
Carrier spacing 10 kHz 200 kHz
Intermediate frequency 455 kHz 10.7 MHz
IF bandwidth 6-10kHz 200-250 kHz
Audio bandwidth 3-5 kHz 15kHz

The spectral drawings of Fig. 7.1-2 help clarify the action of a superhet
receiver. Here we assume a modulated signal with symmetric sidebands (as distin-
guished from SSB or VSB), and we take f;, = f. + f;z S0

fe = Jro — Jir

The RF input spectrum in Fig. 7.1-2a includes our desired signal plus adjacent-
channel signals on either side and another signal at the image frequency

fe=1ft 2 = fro + fir 131
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Figure 7.1-2
B1/2 while rejecting the image fre-
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The main task of the RF section is to pass f, =

quency signal. For f/ to reach the mixer, it would be down-converted to
fé = fro = (fro + fir) = fro = fir

and the image frequency signal would produce an effect similar to cochannel inter-

ference. Hence, we want an RF response |Hg=(f)| like the dashed line, with

By < Bpr < 2fi1r [4]

The filtered and down-converted spectrum at the IF input is shown in Fig 7.1-2b.
The indicated IF response |H;=(f)| with Bjz = By completes the task of adjacent-

channel rejection.
The superheterodyne structure results in several practical benefits. First, tuning
takes place entirely in the “front” end so the rest of the circuitry, including the




7.1 Receivers for CW Modulation

demodulator, requires no adjustment to change f.. Second, the separation between f,
and f;r eliminates potential instability due to stray feedback from the amplified out-
put to the receiver’s inputs. Third, most of the gain and selectivity is concentrated in
the fixed-frequency IF strip. Since fj- 1s an internal design parameter, it can be cho-
sen to obtain a reasonable fractional bandwidth B,g/f;r for ease of implementation.
Taken together, these benefits make it possible to build superhets with extremely
high gain—75 dB or more in the IF strip alone. We can also employ high-Q mechan-
ical, ceramic, crystal, and SAW bandpass filters and thus achieve tremendous reduc-
tions in adjacent channel interference.

Additionally, when the receiver must cover a wide carrier-frequency range, the
choice of f;, = f, + fi;r may result in a smaller and more readily achieved LO tun-
ing ratio. For example, with AM broadcast radios, where 540 < f, < 1600 kHz and
fir = 455 kHz using f;o = f. + fir results in 995 < f;, < 2055 kHz and thus a LO
tuning range of 2:1. On the other hand, if we chose f;, = f, ~ fi» then for the same
IF and input frequency range, we get 85 < f;, < 1145 kHz or a LO tuning range of
13:1. We should point out, however, that taking f;, > f, in an SSB superhet causes
sideband reversal in the down-converted signal, so USSB at RF becomes LSSB at
IF, and vice versa.

A major disadvantage of the superhet structure is its potential for spurious
responses at frequencies beside f,. Image-frequency response is the most obvious
problem. The radio of Figure 7.1-1 employs a tunable BPF for image rejection.
Given today’s integrated electronics technology, high-Q tunable BPFs may not be
economical and thus some other means of image rejection must be employed. Rais-
ing f;» will increase the spacing between f, and f, and thus reduce the requirements
for the RF amplifier’s BPF. In fact, if we set f high enough, we could use a more
economical LPF for image rejection.

But images are not the only problem superhets face with respect to spurious
responses. Any distortion in the LO signal will generate harmonics that get mixed
with a spurious input and be allowed to pass to the IF strip. That’s why the LO must
be a “clean” sine wave. The nonsinusoidal shape of digital signals is loaded with har-
monics and thus if a receiver contains digital circuitry, special care must be taken to
prevent these signals from “leaking” into the mixer stage. Further problems come
from signal feedthrough and nonlinearities. For example, when a strong signal fre-
quency near 3 f;r gets to the IF input, its second harmonic may be produced if the first
stage of the IF amplifier is nonlinear. This second harmonic, approximately f;z will
then be amplified by later stages and appear at the detector input as interference.

Superheterodyne receivers often contain an automatic gain control (AGC)
such that the receiver’s gain is automatically adjusted according to the input signal
level. AGC is accomplished by rectifying the receiver’s audio signal, thus calculat-
ing its average value. This dc value is then fed back to the IF or RF stage to increase
or decrease the stage’s gain. An AM radio usually includes an automatic volume
control (AVC) signal from the demodulator back to the IF, while an FM receiver

has automatic frequency control (AFC) fed back to the LO to correct small fre-
quency drifts.
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EXAMPLE 7.1-1

Superhets and spurious signal response

A superhet receiver with f;z = 500 kHz and 3.5 < f;, < 4.0 MHz has a tuning dial
calibrated to receive signals from 3 to 3.5 MHz. It is set to receive a 3.0-MHz signal.
The receiver has a broadband RF amplifier, and it has been found that the LO has a
significant third harmonic output. If a signal is heard, what are all its possible carrier
frequencies? With f;p = 3.5 MHz, f. = fio — fir = 3.5 — 0.5 = 3.0 MHz, and the

- image frequency is f, = f, + 2f;z = 4.0 MHz. But the oscillator’s third harmonic is

10.5 MHz and thus f" = 3f,, — fi = 10.5 — 0.5 = 10.0 MHz. The corresponding
image frequency is then f” = f + 2f; = 10 + 1 = 11 MHz. Therefore, with this
receiver, even though the dial states the station is transmitting at 3.0 MHz, it actually
may also be 4, 10, or 11 MHz.

EXERCISE 7.1-1

Determine the spurious frequencies for the receiver of Example 7.1-1 if fiz = 7.0
MHz with 10 = f;, = 10.5 MHz and the local oscillator outputs a third harmonic.
What would the minimum spurious input rejection be in dB, if the receiver’s input
was preceded by a first-order Butterworth LPF with B = 4 MHz.

Direct Conversion Receivers

Direct conversion receivers (DC) are a class of tuned-RF (TRF) receivers that
consist of an RF amplifier followed by a product detector and suitable message
amplification. They are called homodyne receivers. A DC receiver is diagrammed
in Fig. 7.1-3. Adjacent channel interference rejection is accomplished by the LPF
after the mixer. The DC receiver does not suffer from the same image problem that
affects the superhet and because of improved circuit technology, particularly with
higher gain and more stable RF amplifiers, it is capable of good performance. The
DC’s simplicity lends itself to subminiature wireless sensor applications.

The DC’s chief drawback is that it does not reject the image signal that is pres-
ent in the opposite sideband and is thus more susceptible to noise and interference.
Fig. 7.1-4 illustrates the output from two single-tone SSB signals, one transmitting
at the upper sideband, or f. + f;, and an interfering signal at the lower sideband, or f.
— f». Both f, and f, will appear at the receiver’s output. However, the system shown
in Figure 7.1-4, which was originally developed by Campbell (1993), eliminates the
other sideband. If the nodes in Figure 7.1-4 are studied, the receiver’s output only
contains the upper sideband f, + f; signal.

Special-Purpose Receivers

Other types of receivers used for special purposes include the heterodyne, the TRE,
and the double-conversion structure. A heterodyne receiver is a superhet without
the RF section, which raises potential image-frequency problems. Such receivers

LN
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x(t) = A, cos 2m( f. + f))t (upper sideband)
+ A/ cos 2m( f. - f>)t (lower sideband)

’

x() = % cos 27 fit + Azc cos 2mfot

T

cos 2w fot

LO

Figure 7.1-3 Direct conversion receiver.
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+ Azc cos 2mfot
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ATC cos 2w fit

4
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g cos 2mfot

Figure 7.1-4 Direct conversion receiver with opposite sideband rejection.

can be built at microwave frequencies with a diode mixer preceded by a fixed
microwave filter to reject images. In addition to the DC TRF receiver, we can also
have a TRF using a tunable RF amplifier and envelope detector. The classic crystal
radio is the simplest TRF.

A double-conversion receiver in Fig. 7.1-5 takes the superhet principle one
step further by including two frequency converters and two IF sections. The second
IF is always fixed-tuned, while the first IF and second LO may be fixed or tunable.
In either case, double conversion permits a larger value of f;z, to improve image
rejection in the RF section, and a smaller value of f;z, to improve adjacent-channel
rejection in the second IF. High-performance receivers for SSB and shortwave AM
usually improve this design strategy.
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Demod —

Figure 7.1-5 Double-conversion receiver.

Notice that a double-conversion SSB receiver with synchronous detection
requires three stable oscillators plus automatic frequency control and synchroniza-
tion circuitry. Fortunately IC technology has made the frequency synthesizer avail-

able for this application. We’ll discuss frequency synthesis using phase-lock loops
in Sect. 7.3.

Receiver Specifications

We now want to consider several parameters that determine the ability of a receiver
to successfully demodulate a radio signal. Receiver sensitivity is the minimum
input voltage that produces a specified signal-to-noise ratio at the output of the IF
section. A good quality short-wave radio typically has a sensitivity of 1uV for a
40 dB signal-to-noise ratio. Dynamic range is the difference between the largest
input signal that will not become distorted and the smallest signal that can be dis-
cerned, and is an important parameter. It is measured in dB. The maximum dynamic
range of most analog amplifiers is 100 dB. Let’s say we are listening to a weak AM
broadcast signal and there is a strong station transmitting at a significantly different
frequency, but within the RF amplifier’s passband. The strong signal can overload
the RF amplifier and thus wipe out the weak signal. Selectivity specifies a receiver’s
ability to discriminate against adjacent channel signals. It is a function of the IF
strip’s BPE The noise figure indicates how much the receiver degrades the input
signal’s signal-to-noise ratio and is calculated by

S N inpu
Nf = /N [5]
(S/N) output
Typical noise figures are 5-10 dB. Finally image rejection is defined as
RR = 10 log|Hge (£)/Hre (F)I*  dB l6]

A typical value of image rejection is 50 dB. This equation may apply to other types
of spurious inputs as well.
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Suppose a superhet’s RF section is a typical tuned circuit described by Eq. (17),
Sect. 4.1, with f, = f, and Q = 50. Show that achieving RR = 60 dB requires f,/f, =

20 when f; = f, + 2f;. This requirement could easily be satisfied by a double con-
version receiver with fijp_; = 9.5f..

EXERCISE 7.1-2

Scanning Spectrum Analyzersx

If the LO in a superhet is replaced by a VCO, then the predetection portion acts like
a voltage-tunable bandpass amplifier with center frequency f; = f;o = fi» and band-
width B = B. This property is at the heart of the scanning spectrum analyzer in
Fig. 7.1-6a—a useful laboratory instrument that displays the spectral magnitude of
an input signal over some selected frequency range.

The VCO is driven by a periodic ramp generator that sweeps the instantaneous
frequency f;,(?) linearly from f; to f, in T seconds. The IF section has a narrow band-
width B, usually adjustable, and the IF output goes to an envelope detector. Hence,
the system’s amplitude response at any instant ¢ looks like Fig. 7.1-6b, where f;(¢) =
Jfro(®) — fir- A fixed BPF (or LPF) at the input passes f; = f = f, while rejecting the
image at fy(?) + 2fp.

As fy(t) repeatedly scans past the frequency components of an input signal v(%),
its spectrum is displayed by connecting the envelope detector and ramp generator to
the vertical and horizontal deflections of an oscilloscope. Obviously, a transient sig-
nal would not yield a fixed display, so v(¢) must be either a periodic or quasi-periodic
signal or a stationary random signal over the time of observation. Correspondingly,

CRO

t Vv
l&» BPF % Env -0 @
det H

o ®]

fro(®
VCO |~ lA/ Ramp
0T generator
(a)
1H e () |Hppr( )
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.
[

| 21 5

b3 Fo @ +2p

o - fir
(b)

Figure 7.1-6 Scanning spectrum analyzer, {a} Block diagram; (b} amplitude response.
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the display represents the amplitude line spectrum or the power spectral density. (A
square-law envelope detector would be used for the latter.)

Some of the operational subtleties of this system are best understood by assum-
ing that v(#) consists of two or more sinusoids. To resolve one spectral line from the
others, the IF bandwidth must be smaller than the line spacing. Hence, we call B the
frequency resolution, and the maximum number of resolvable lines equals (f, —

f1)/B. The IF output produced by a single line takes the form of a bandpass pulse
with time duration

T = BT/(f, ~ fi) = B/f,

where fo = (f — fOIT represents the frequency sweep rate in hertz per second.
But a rapid sweep rate may exceed the IF pulse response. Recall that our guide-
line for bandpass pulses requires B = 1/7 = f,/B, or
fo= h=h < B? (71
T
This important relation shows that accurate resolution (small B) calls for a slow rate
and correspondingly long observation time. Also note that Eq. (7) involves four
parameters adjustable by the user. Some scanning spectrum analyzers have built-in
hardware that prevents you from violating Eq. (7); others simply have a warning light.

7.2 MULTIPLEXING SYSTEMS

When several communication channels are needed between the same two points,
significant economies may be realized by sending all the messages on one transmis-
sion facility—a process called multiplexing. Applications of multiplexing range
from the vital, if prosaic, telephone network, to the glamour of FM stereo and space-
probe telemetry systems. There are three basic multiplexing techniques: frequency-
division multiplexing (FDM), time-division multiplexing (TDM), and code-division
multiplexing, treated in Chapter 15. The goal of these techniques is to enable multi-
ple users to share a channel, and hence they are referred to as frequency-division

multiple access (FDMA), time-division multiple access (TDMA), and code-division
multiple access (CDMA).

Frequency-Division Multiplexing

The principle of FDM is illustrated by Fig. 7.2—-1a, where several input messages
(three are shown) individually modulate the subcarriers f.,, f.,, and so forth, after
passing through LPFs to limit the message bandwidths. We show the subcarrier
modulation as SSB as it often is, but any of the CW modulation techniques could be
employed, or a mixture of them. The modulated signals are then summed to produce
the baseband signal, with spectrum X,(f) as shown in Fig. 7.2-1b. (The designation
“baseband” indicates that final carrier modulation has not yet taken place.) The
baseband time function x,(z) is left to your imagination.

polinlraidbibyl |
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Figure 7.2-1 Typical FDM transmitter. {a} Input spectra and block diagram; {b) baseband
FDM spectrum.

Assuming that the subcarrier frequencies are properly chosen, the multiplexing
operation has assigned a slot in the frequency domain for each of the individual
messages in modulated form, hence the name frequency-division multiplexing.
The baseband signal may then be transmitted directly or used to modulate a trans-
mitted carrier of frequency f.. We are not particularly concerned here with the nature
of the final carrier modulation, since the baseband spectrum tells the story.

Message recovery or demodulation of FDM is accomplished in three steps por-
trayed by Fig. 7.2~2. First, the carrier demodulator reproduces the baseband signal
x,(£). Then the modulated subcarriers are separated by a bank of bandpass filters in
parallel, following which the messages are individually detected.

The major practical problem of FDM is cross talk, the unwanted coupling of
one message into another. Intelligible cross talk (cross-modulation) arises primarily
because of nonlinearities in the system which cause one message signal to appear as
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Figure 7.2-2 Typical FDM receiver.

modulation on another subcarrier. Consequently, standard practice calls for negative
feedback to minimize amplifier nonlinearity in FDM systems. (As a matter of his-
torical fact, the FDM cross talk problem was a primary motivator for the develop-
ment of negative-feedback amplifiers.)

Unintelligible cross talk may come from nonlinear effects or from imperfect
spectral separation by the filter bank. To reduce the latter, the modulated message
spectra are spaced out in frequency by guard bands into which the filter transition
regions can be fitted. For example, the guard band marked in Fig. 7.2~15 is of width
f2 — (f.y ¥ W)). The net baseband bandwidth is therefore the sum of the modulated
message bandwidths plus the guard bands. But the scheme in Fig. 7.2-2 is not the
only example of FDM. The commercial AM or FM broadcast bands are everyday

examples of FDMA, where several broadcasters can transmit simultaneously in the
same band, but at slightly different frequencies.

EXAMPLE 7.2-1

FDMA Satellite Systems

The Intelsat global network adds a third dimension to long-distance communication.
Since a particular satellite links several ground stations in different countries, various
access methods have been devised for international telephony. One scheme, known
as frequency-division multiple access (FDMA), assigns a fixed number of voice
channels between pairs of ground stations. These channels are grouped with standard
FDM hardware, and relayed through the satellite using FM carrier modulation.

For the sake of example, suppose a satellite over the Atlantic Ocean serves
ground stations in the United States, Brazil, and France. Further suppose that 36
channels (three groups) are assigned to the US-France route and 24 channels (two
groups) to the US—Brazil route. Figure 7.2-3 shows the arrangement of the US
transmitter and the receivers in Brazil and France. Not shown are the French and
Brazilian transmitters and the US receiver needed for two-way conversations. Addi-
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Figure 7.2-3 Simplified FDMA satellite system.

tional transmitters and receivers at slightly different carrier frequencies would pro-
vide a Brazil-France route.

The FDMA scheme creates at the satellite a composite FDM signal assembled
with the FM signals from all ground stations. The satellite equipment consists of a
bank of transponders. Each transponder has 36-MHz bandwidth accommodating
336 to 900 voice channels, depending on the ground-pair assignments. More details
and other access schemes can be found in the literature. )

Suppose an FDM baseband amplifier has cube-law nonlinearity which produces a
baseband component proportional to (v, cos w,t)?v; cos wt, where f; and f, are two
subcarrier frequencies. Show that AM subcarrier modulation with v; = 1 + x,(¢)
and v, = 1 + x,(¢) results in both intelligible and unintelligible cross talk on subcar-
rier f;. Compare with the DSB case v, = x,(#) and v, = x,(8).

EXERCISE 7.2-1

FM Stereo Multiplexing

Figure 7.2—4a diagrams the FDM system that generates the baseband signal for FM
stereophonic broadcasting. The left-speaker and right-speaker signals are first
matrixed and preemphasized to produce x;(¢) + xz(¢) and x;(#) — xz(¢). The sum sig-
nal is heard with a monophonic receiver; matrixing is required so the monaural lis-
tener will not be subjected to sound gaps in program material having stereophonic
Ping-Pong effects. The x,(¢) + xz(¢) signal is then inserted directly into the base-
band, while x; () — xz(t) DSB modulates a 38-kHz subcarrier. Double-sideband

modulation is employed to preserve fidelity at low frequencies, and a 19-kHz pilot
tone is added for receiver synchronization.

EXAMPLE 7.2-2
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Figure 7.2-4 FM stereo multiplexing. {a} Transmitter; (b} baseband spectrum.

The resulting baseband spectrum is sketched in Fig. 7.2-4b. Also shown is
another spectral component labeled SCA, which stands for Subsidiary Communica-
tion Authorization. The SCA signal has NBFM subcarrier modulation and is transmit-
ted by some FM stations for the use of private subscribers who pay for commercial-
free program material—the so-called “wallpaper music” heard in stores and offices.

For stereo broadcasting without SCA, the pilot carrier is allocated 10 percent of
the peak frequency deviation and the seesaw relationship between L + Rand L — R
permits each to achieve nearly 90 percent deviation. The fact that the baseband spec-
trum extends to 53 kHz (or 75 kHz with SCA) does not appreciably increase the
transmission bandwidth requirement because the higher frequencies produce smaller
deviation ratios. High-fidelity stereo receivers typically have Bz = 250 kHz.

The stereo demultiplexing or decoding system is diagrammed in Fig. 7.2-5.
Notice how the pilot tone is used to actuate the stereo indicator as well as for syn-
chronous detection. Integrated-circuit decoders employ switching circuits or phase-
lock loops to carry out the functional operations.

Incidentally, discrete four-channel (quadraphonic) disk recording takes a logi-
cal extension of the FM stereo strategy to multiplex four independent signals on the
two channels of a stereophonic record. Let’s denote the four signals as Lz, Ly, Rp,
and Ry (for left-front, left-rear, etc.). The matrixed signal Ly + L, is recorded
directly on one channel along with Ly — L; multiplexed via frequency modulation
of a 30-kHz subcarrier. The matrixed signals Ry + Ry and Ry — Rj are likewise mul-
tiplexed on the other channel. Because the resulting baseband spectrum goes up to
45 kHz, discrete quadraphonic signals cannot be transmitted in full on stereo FM.

b



7.2 Multiplexing Systems

LPF | %) +xx(®

0-15kHz
Matrix
=0 1 v x(2) BPF Lpp | O -%®
det 23-53 kHz 0-15 kHz
EilltOt Stereo
19 kgz indicator
Figure 7.2-5 FM stereo multiplex receiver.

Other quadraphonic systems have only two independent channels and are compati-
ble with FM stereo.

Quadrature-Carrier Multiplexing

Quadrature-carrier multiplexing, also known as quadrature amplitude modulation
(QAM), utilizes carrier phase shifting and synchronous detection to permit two DSB
signals to occupy the same frequency band. Figure 7.2-6 illustrates the multiplexing
and demultiplexing arrangement. The transmitted signal has the form

x(t) = Afxy(t) cos w .t = x,(t) sin w, 1] (11

Since the modulated spectra overlap each other, this technique is more properly
characterized as frequency-domain rather than frequency-division multiplexing.
From our prior study of synchronous detection for DSB and SSB, you should
readily appreciate the fact that QAM involves more stringent synchronization than,
say, an FDM system with SSB subcarrier modulation. Hence, QAM is limited to
specialized applications, notably color television and digital data transmission.
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Figure 7.2-6 Quadrature-carrier multiplexing.
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Time-Division Multiplexing

A sampled waveform is “off” most of the time, leaving the time between samples
available for other purposes. In particular, sample values from several different sig-
nals can be interlaced into a single waveform. This is the principle of time-division
multiplexing (TDM) discussed here.

The simplified system in Fig. 7.2-7 demonstrates the essential features of time-
division multiplexing. Several input signals are prefiltered by the bank of input
LPFs and sampled sequentially. The rotating sampling switch or commutator at the
transmitter extracts one sample from each input per revolution. Hence, its output is
a PAM waveform that contains the individual samples periodically interlaced in
time. A similar rotary switch at the receiver, called a decommutator or distributor,
separates the samples and distributes them to another bank of LPFs for reconstruc-
tion of the individual messages.

If all inputs have the same message bandwidth W, the commutator should rotate
at the rate f; = 2W so that successive samples from any one input are spaced by T =
1/f, = 1/2W. The time interval T, containing one sample from each input is called a
frame. If there are M input channels, the pulse-to-pulse spacing within a frame is
T,/M = 1/Mf,. Thus, the total number of pulses per second will be

r=Mf,=2MW 2]

which represents the pulse rate or signaling rate of the TDM signal.
Our primitive system shows mechanical switching to generate multiplexed
PAM. But almost all practical TDM systems employ electronic switching. Further-

Inputs LPFs LPFs Output
xy() g| ' x,(f)
x(t) ——= !_'Z/ '\ | Trapsmission|__ /7 \) x(1)
x3(f) ——= e/ channel >R x3(1)

) E S )
X xy(t

[a)
t

Multiplexed
PAM wave

Figure 7.2-7 TDM system. {a) Block diagram; (b} wavetorms.
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more, other types of pulse modulation can be used instead of PAM. Therefore, a more
generalized commutator might have the structure diagrammed in Fig. 7.2-8, where
pulse-modulation gates process the individual inputs to form the TDM output. The
gate control signals come from a flip-flop chain (a broken-ring counter) driven by a
digital clock at frequency Mf,. The decommutator would have a similar structure.
Regardless of the type of pulse modulation, TDM systems require careful syn-
chronization between commutator and decommutator. Synchronization is a critical
consideration in TDM, because each pulse must be distributed to the correct output
line at the appropriate time. A popular brute-force synchronization technique
devotes one time slot per frame to a distinctive marker pulse or nonpulse, as illus-
trated in Fig. 7.2-9. These markers establish the frame frequency f, at the receiver,
but the number of signal channels is reduced to M — 1. Other synchronization meth-
ods involve auxiliary pilot tones or the statistical properties of the TDM signal itself.
Radio-frequency transmission of TDM necessitates the additional step of CW
modulation to obtain a bandpass waveform. For instance, a TDM signal composed
of duration or position-modulated pulses could be applied to an AM transmitter with
100 percent modulation, thereby producing a train of constant-amplitude RF pulses.

Pulse modulation gates

Inputs
(0 TDM
2 3 5 | ouput
oL 3
DD =l
Clock \IQI TQz TQs } 0u
My, Flip-flop chain
(a)
Clock

— b 1M

o ; :
b 1/f I

O 3 ! lI ] :
Ou : . ;

) 1

(b)
Figure 7.2-8 (a} Electronic commutator for TDM; {b) timing diagram.
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The compound process would be designated PDM/AM or PPM/AM, and the
required transmission bandwidth would be twice that of the baseband TDM signal.
The relative simplicity of this technique suits low-speed multichannel applications
such as radio control for model airplanes.

More sophisticated TDM systems may use PAM/SSB for bandwidth conserva-
tion or PAM/EM for wideband noise reduction. The complete transmitter diagram in
Fig. 7.2—-10a now includes a lowpass baseband filter with bandwidth

%r = %Mfs [3]

Baseband filtering prior to CW modulation produces a smooth modulating wave-
form x,(#) having the property that it passes through the individual sample values at
the corresponding sample times, as portrayed in Fig. 7.2—-10b. Since the interlaced
sample spacing equals 1/Mf,, the baseband filter constructs x,(f) in the same way

B,

1l

Xy Marker x X;  Xxp-1 Marker x;

PAM —l
= ][O0

PPM

Frame

Figure 7.2-9 TDM synchronization markers.

50 | Commu- Baseband
Xy(t) —| tator filter xp(1) r(;}Z\cli x (1)
() —__ s By= Mf/2
éfc
{a)
x(1)
x 1% | X% t
I
Mf;
(b)

Figure 7.2-10 (o) TDM transmitter with baseband filtering; (b] baseband waveform.
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that an LPF with B = f,/2 would reconstruct a waveform x(¢) from its periodic sam-
ples x(kT,) with T, = 1/f..
If baseband filtering is employed, and if the sampling frequency is close to the

Nyquist rate f;_. = 2W for the individual inputs, then the transmission bandwidth
for PAM/SSB becomes :

By = iM X 2W = MW

Under these conditions, TDM approaches the theoretical minimum bandwidth of
frequency-division multiplexing with SSB subcarrier modulation.

Although we’ve assumed so far that all input signals have the same bandwidth,
this restriction is not essential and, moreover, would be unrealistic for the important
case of analog data telemetry. The purpose of a telemetry system is to combine and
transmit physical measurement data from different sources at some remote location.
The sampling frequency required for a particular measurement depends on the phys-
ical process involved and can range from a fraction of one hertz up to several kilo-
hertz. A typical telemetry system has a main multiplexer plus submultiplexers
arranged to handle 100 or more data channels with various sampling rates.
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TDM Telemetry

For the sake of illustration, suppose we need 5 data channels with minimum sampling
rates of 3000, 700, 600, 300, and 200 Hz. If we used a 5-channel multiplexer with f, =
3000 Hz for all channels, the TDM signaling rate would be r = 5 X 3000 = 15 kHz—
not including synchronization markers. A more efficient scheme involves an 8-
channel main multiplexer with f;, = 750 Hz and a 2-channel submultiplexer with £, =
375 Hz connected as shown in Fig. 7.2-11.

The two lowest-rate signals x,(¢) and xs(#) are combined by the submultiplexer
to create a pulse rate of 2 X 375 = 750 Hz for insertion into one channel of the

Sampling rate, Hz

Signal Minimum Actual
(M 3000  4x750
20 700 750 TDM
output
x3(0) 600 750
@ 300 1/2x750
x5(8) 200 1/2x750
Clock
F—« 6 kHz
Figure 7.2-11 TDM telemetry system with main multiplexer and submultiplexer.

EXAMPLE 7.2-3
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main multiplexer. Hence, the samples of x,(¢) and xs5(f) will appear in alternate
frames. On the other hand, the highest-rate signal x,(¢) is applied to four inputs on
the main multiplexer. Consequently, its samples appear in four equispaced slots
within each frame, for an equivalent sampling rate of 4 X 750 = 3000 Hz. The total
output signaling rate, including a marker, is r = 8 X 750 Hz = 6 kHz. Baseband
filtering would yield a smoothed signal whose bandwidth B, = 3 kHz fits nicely
into a voice telephone channel!

EXERCISE 7.2-2

Suppose the output in Fig. 7.2-11 is an unfiltered PAM signal with 50 percent duty
cycle. Sketch the waveform for two successive frames, labeling each pulse with its
source signal. Then calculate the required transmission bandwidth B from Eq. (6),
Sect. 6.2.

Cross Talk and Guard Times

When a TDM system includes baseband filtering, the filter design must be done
with extreme care to avoid interchannel cross talk from one sample value to the next
in the frame. Digital signals suffer a similar problem called intersymbol interfer-
ence, and we defer the treatment of baseband waveform shaping to Sect. 11.3.

A TDM signal without baseband filtering also has cross talk if the transmission
channel results in pulses whose tails or postcursors overlap into the next time slot of
the frame. Pulse overlap is controlled by establishing guard times between pulses,
analogous to the guard bands between channels in an FDM system. Practical TDM
systems have both guard times and guard bands, the former to suppress cross talk,
the latter to facilitate message reconstruction with nonideal filters.

For a quantitative estimate of cross talk, let’s assume that the transmission
channel acts like a first-order lowpass filter with 3-dB bandwidth B. The response to
a rectangular pulse then decays exponentially, as sketched in Fig. 7.2-12. The guard
time T, represents the minimum pulse spacing, so the pulse tail decays to a value no
larger than A, = Ae 27872 by the time the next pulse arrives. Accordingly, we define
the cross-talk reduction factor.

ke £ 1010g (A/A)? ~ —54.5BT,  dB (4]

N

A
AC!
l

Figure 7.2-12 Cross talk in TDM.
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Figure 7.2-13 TDM/PPM with guard time.

Keeping the cross talk below —30 dB calls for T, > 1/2B.

Guard times are especially important in TDM with pulse-duration or pulse-
position modulation because the pulse edges move around within their frame slots.
Consider the PPM case in Fig. 7.2-13: here, one pulse has been position-modulated
forward by an amount ¢, and the next pulse backward by the same amount. The
allowance for guard time T, requires that T, + 2t + 2(7/2) = T /M or

1/ T
tOSE M—T—Tg [5]

A similar modulation limit applies in the case of PDM.
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Nine voice signals plus a marker are to be transmitted via PPM on a channel having
B = 400 kHz. Calculate T, such that k., = —60 dB. Then find the maximum permit-
ted value of ¢, if f, = 8 kHz and 7 = 3(T,/M).

EXERCISE 7.2-3

Comparison of TDM and FDM

Time-division and frequency-division multiplexing accomplish the same end by dif-
ferent means. Indeed, they may be classified as dual techniques. Individual TDM
channels are assigned to distinct time slots but jumbled together in the frequency
domain; conversely, individual FDM channels are assigned to distinct frequency
slots but jumbled together in the time domain. What advantages then does each offer
over the other?

Many of the TDM advantages are technology driven. TDM is readily imple-
mented with high-density VLSI circuitry where digital switches are extremely eco-
nomical. Recall that FDM requires an analog subcarrier modulator, bandpass filter,
and demodulator for every message channel. These are relatively expensive to
implement in VLSI. But all of these are replaced by a TDM commutator and decom-
mutator switching circuits, easily put on a chip. However, TDM synchronization is
only slightly more demanding than that of suppressed-carrier FDM.

Second, TDM is invulnerable to the usual causes of cross talk in FDM, namely,
imperfect bandpass filtering and nonlinear cross-modulation. However, TDM cross-

talk immunity does depend on the transmission bandwidth and the absence of delay
distortion.
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Third, the use of submultiplexers allows a TDM system to accommodate differ-
ent signals whose bandwidths or pulse rates may differ by more than an order of
magnitude. This flexibility has particular value for multiplexing digital signals, as
we’ll see in Sect. 12.5.

Finally, TDM may or may not be advantageous when the transmission medium
is subject to fading. Rapid wideband fading might strike only occasional pulses
in a given TDM channel, whereas all FDM channels would be affected. But slow
narrowband fading wipes out all TDM channels, whereas it might hurt only one
FDM channel.

Many systems such as satellite relay are a hybrid of FDMA and TDMA.
For example, we have FDMA where specific frequency channels will be allocated

to various services. In turn then, each channel may be shared by individual users
using TDMA.

7.3 PHASE-LOCK LOOPS

The phase-lock loop (PLL) is undoubtedly the most versatile building block avail-
able for CW modulation systems. PLLs are found in modulators, demodulators, fre-
quency synthesizers, multiplexers, and a variety of signal processors. We’ll illustrate
some of these applications after discussing PLL operation and lock-in conditions.
Our introductory study provides a useful working knowledge of PLLs but does not
go into detailed analysis of nonlinear behavior and transients. Treatments of these

advanced topics are given in Blanchard (1976), Gardner (1979), Meyr and Ascheid
(1990), and Lindsey (1972).

PLL Operation and Lock-In

The basic aim of a PLL 1is to lock or synchronize the instantaneous angle (i.e.,
phase and frequency) of a VCO output to the instantaneous angle of an external
bandpass signal that may have some type of CW modulation. For this purpose, the
PLL must perform phase comparison. We therefore begin with a brief look at
phase comparators.

The system in Fig. 7.3—1a is an analog phase comparator. It produces an out-
put y(¢) that depends on the instantaneous angular difference between two bandpass
nput signals, x.(f) = A, cos 8.(¢) and v(¥) = A, cos 0,(1). Specifically, if

6,(t) = 0.(t) — €(r) + 90° (1]

and if the LPF simply extracts the difference-frequency term from the product
x(t)u(?), then

W) =3 Ac A, cos [8() — 0,(t)]
=1 A A, cos [e(t) ~ 90°] =4 A, A, sin €(t)
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x(£) = A cos B, (1) 1) ='h A A, sine()
LPF I . l/’1. AC AU

T N .

° _' o 0 l o
v(t) =A,cos 8, (D 130M 90
8, (1) = 0.(r) - () + 90°

{a)

x(8) Switching {0
circuit LPF

Lim

180°

Lim ~— v(9)

(b)
Figure 7.3~1 Phase comparators. (a) Analog; (b} digital.

We interpret e(f) as the angular error, and the plot of y versus e emphasizes that
¥(#) = O when &(¢) = 0. Had we omitted the 90° shift in Eq. (1), we would get y(t) = 0
at () = =90°. Thus, zero output from the phase comparator corresponds to a quad-
rature phase relationship.

Also note that y(¢) depends on A, A, when €(¢) # 0, which could cause problems
if the input signals have amplitude modulation. These problems are eliminated by
the digital phase comparator in Fig. 7.3—-1b, where hard limiters convert input sinu-
soids to square waves applied to a switching circuit. The resulting plot of y versus e
has a triangular or sawtooth shape, depending on the switching circuit details. How-
ever, all three phase-comparison curves are essentially the same when |e(f)| <<
90°—the intended operating condition in a PLL.

Hereafter, we’ll work with the analog PLL structure in Fig. 7.3-2. We assume
for convenience that the external input signal has constant amplitude A, = 2 so that
x.(t) = 2 cos 6,(¢t) where, as usual,

0.(t) = w.t + (1) w. = 27f, (2]

x.(f)=2cos 8D = ;
¢ c ¥(£) = K sin € (¢)
@ LPF ‘ K

N
VCO
v(r) = cos 8,(¥)

Figure 7.3-2 Phase-lock loop.
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We also assume a unit-amplitude VCO output v(#) = cos 6,(f) and a loop amplifier
with gain K. Hence,
¥(t) = K, sin €(z) ]
which is fed back for the control voltage to the VCO.
Since the VCO’s free-running frequency with y(f) = 0 may not necessarily

equal f,, we’ll write it as f, = f. — Af where Af stands for the frequency error. Appli-
cation of the control voltage produces the instantaneous angle

6,(t) = 2mw(f, — Af)t + @, (¢) + 90° [4d]
with

t

¢w>=zw&jyu»¢~ (4t

when K, equals the frequency-deviation constant. The angular error is then
(t) = 6(0) — 8,(8) + 90°
=2mAft + $(t) — u(t) |

and differentiation with respect to ¢ gives

(1) = 2wAf + (1) — 27K, ()
Upon combining this expression with Eq. (3) we obtain the nonlinear differential
equation.

é(t) + 2mK sin e(t) = 2wAf + $(¢) 5]

in which we’ve introduced the loop gain
K2 KK,

This gain is measured in hertz and turns out to be a critical parameter.

Equation (5) governs the dynamic operation of a PLL, but it does not yield a
closed-form solution with an arbitrary ¢(f). To get a sense of PLL behavior and
lock-in conditions, consider the case of a constant input phase ¢(¢) = ¢, starting at
t = 0. Then ¢(t) = 0 and we rewrite Eq. (5) as

: : Af

€(r) +sine(t) = * = 0 6]
Lock-in with a constant phase implies that the loop attains a steady state with &(f) = 0
and €(f) = €. Hence, sin €, = Af/K at lock-in, and it follows that

Af

€, = a:csin—KT [7d]

A
Vs = K sin €5, = ?f (74]

v

2K
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U(t) = cos (w .t + ¢y — €, + 90°) [7¢]

Note that the nonzero value of y  cancels out the VCO frequency error, and v,(f) is
locked to the frequency of the input signal x(#). The phase error €, will be negligi-
ble if |Af/K| << 1.

However, Eq. (6) has no steady-state solution and €, in Eq. (7a) is undefined
when |Af/K| > 1. Therefore, lock-in requires the condition

K = |Af] (8]

Stated another way, a PLL will lock to any constant input frequency within the range
%+ K hertz of the VCO’s free-running frequency f,.

Additional information regarding PLL behavior comes from Eq. (6) when we
require sufficient loop gain that €;; = 0. Then, after some instant t, > 0, €(¢) will be
small enough to justify the approximation sin &(f) = ¢(¢) and

K €(t) +e(r) =0 t=1, [94]

This linear equation yields the well-known solution
€(t) = €(ty)e ™™ W =y, [9b]

a transient error that virtually disappears after five time constants have elapsed, that is,
&(t) = 0 for t > t; + 5/(2wK). We thus infer that if the input x(¢) has a time-varying
phase ¢(¢) whose variations are slow compared to 1/(27K), and if the instantaneous
frequency f. + ¢(t)/2 does not exceed the range of f, = K, then the PLL will stay in
lock and track ¢(#) with negligible error—provided that the LPF in the phase com-
parator passes the variations of ¢(¢) on to the VCO.
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The phase-plane plot of € versus € is defined by rewriting Eq. (6) in the form
€ = 2m(Af — Ksine)

(a) Sketch € versus € for K = 2 Af and show that an arbitrary initial value €(0) must
go to g, = 30° = m 360° where m is an integer. Hint: €(t) increases when €é(¢) > 0
and decreases when é&(¢) < 0. () Now sketch the phase-plane plot for K < Af to
show that |&(f)| > O for any €(f) and, consequently, €, does not exist.

EXERCISE 7.3~1

Synchronous Detection and Frequency Synthesizers

The lock-in ability of a PLL makes it ideally suited to systems that have a pilot car-
rier for synchronous detection. Rather than attempting to filter the pilot out of the
accompanying modulated waveform, the augmented PLL circuit in Fig. 7.3-3 can
be used to generate a sinusoid synchronized with the pilot. To minimize clutter here,
we’ve lumped the phase comparator, lowpass filter, and amplifier into a phase dis-
criminator (PD) and we’ve assumed unity sinusoidal amplitudes throughout.
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Yss = sin €
Main PD r
V(1) vCO Tuning voltage
cos (w.t + Pg)
'1—__'__? -90°
plus
modulated cos (wgt + g - €5) . o
waveform 0 sync de
- Lock-in
Quad PD indicator
COS €4

Figure 7.3-3 PLL pilot filter with two phase discriminators (PD}.

Initial adjustment of the tuning voltage brings the VCO frequency close to f,
and €, = 0, a condition sensed by the quadrature phase discriminator and displayed
by the lock-in indicator. Thereafter, the PLL automatically tracks any phase or fre-
quency drift in the pilot, and the phase-shifted VCO output provides the LLO signal
needed for the synchronous detector. Thus, the whole unit acts as a narrowband
pilot filter with a virtually noiseless output.

Incidentally, a setup like Fig. 7.3-3 can be used to search for a signal at some
unknown frequency. You disconnect the VCO control voltage and apply a ramp gen-
erator to sweep the VCO frequency until the lock-in indicator shows that a signal has
been found. Some radio scanners employ an automated version of this procedure.

For synchronous detection of DSB without a transmitted pilot, Costas invented
the PLL system in Fig. 7.3—4. The modulated DSB waveform x(¢) cos w with band-
width 2W is applied to a pair of phase discriminators whose outputs are proportional

to x(¢) sin €, and x(¢) cos €. Multiplication and integration over T >>> 1/W produces
the VCO control voltage S

T
¥ = T{x?(t)) sin €, cos €, = 5 S, sin 2,

x(¥) sin €
M

ain PD‘ ‘

A
t
cos (w. — €5+ 90°) vCoO L it <—@ Multiplier

x(¥) cos ot .
—9Q° T .
90 Vss = Sy sin 2€;

} :
@P—D‘ x(#) cos € Output
I |

Figure 7.3-4 Costas PLL system for synchronous detection.
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If Af = 0, the PLL locks with €;; = 0 and the output of the quadrature discriminator
is proportional to the demodulated message x(z). Of course the loop loses lock if
x(#) = 0 for an extended interval.

The frequency-offset loop in Fig. 7.3-5 translates the input frequency (and
phase) by an amount equal to that of an auxiliary oscillator. The intended output fre-
quency is now f_ + fi, so the free-running frequency of the VCO must be

L= th) - Af=f +f

The oscillator and VCO outputs are mixed and filtered to obtain the difference-
frequency signal cos [0,(t) — (wz + ¢,)] applied to the phase discriminator. Under
locked conditions with €, = 0, the instantaneous angles at the input to the discrimi-
nator will differ by 90°. Hence, 8,(f) — (wt + ¢,) = wt + ¢y + 90°, and the VCO
produces cos [(w, + @)t + ¢y + ¢, + 90°].

By likewise equating instantaneous angles, you can confirm that Fig. 7.3-6 per-
forms frequency multiplication. Like the frequency multiplier discussed in Sect. 5.2,
this unit multiplies the instantaneous angle of the input by a factor of n. However, it
does so with the help of a frequency divider which is easily implemented using a
digital counter. Commercially available divide-by-n counters allow you to select
any integer value for n from 1 to 10 or even higher. When such a counter is inserted
in a PLL, you have an adjustable frequency multiplier. '

cos (wt + ¢g) | ' cos [(@, + @t + g + b, + 90°]
————~ VCO —e—
1 fo=fethi

LPF

cos (wt+ ¢p)
cos 0,(1)
© O,
Mixer

Figure 7.3-5 Frequency-offset loop.

cos (.t + ¢p) cos (nwt + nggy + n90°)
—™ PD VCOi\*'—»

} Jo=nfe

cos [6,(D/n] “n
I

Figure 7.3-6 PLL frequency multiplier.
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A frequency synthesizer starts with the output of one crystal-controlled master
oscillator; various other frequencies are synthesized therefrom by combinations of
frequency division, multiplication, and translation. Thus, all resulting frequencies
are stabilized by and synchronized with the master oscillator. General-purpose labo-
ratory synthesizers incorporate additional refinements and have rather complicated
diagrams. So we’ll illustrate the principles of frequency synthesis by an example.

EXAMPLE 7.3-1 Suppose a double-conversion SSB receiver needs fixed LO frequencies at 100 kHz
(for synchronous detection) and 1.6 MHz (for the second mixer), and an adjustable
LO that covers 9.90-9.99 MHz in steps of 0.01 MHz (for RF tuning). The custom-
tailored synthesizer in Fig. 7.3-7 provides all the required frequencies by dividing
down, multiplying up, and mixing with the output of a 10-MHz oscillator. You can
quickly check out the system by putting-a frequency-multiplication block in place of
each PLL with a divider.
Observe here that all output frequencies are less than the master-oscillator fre-
quency. This ensures that any frequency drift will be reduced rather than increased
by the synthesis operations.

(10— 0.01n)
Mi MHz
10MHz 2 LPF
x { .
10 | MHz 0.1MHz 0.01 MHz ) £, =10 MHz
MHz I ' ‘
(o= =10 - 10 L+10 PD VCO }——4 0.012 MHz
-n
100 kHz
0.2 MHz L 1.6 MHz
Le| =5 PD VCO |

Figure 7.3-7 Frequency synthesizer with fixed and adjustable outputs.

EXERCISE 7.3-2 Draw the block diagram of a PLL system that synthesizes the output frequency nf/m
from a master-oscillator frequency f.. State the condition for locked operation in
terms of the loop gain K and the VCO free-running frequency f,.
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Linearized PLL Models and FM Detection

Suppose that a PLL has been tuned to lock with the input frequency f,, so Af = 0.
Suppose further that the PLL has sufficient loop gain to track the input phase ¢(?)
within a small error (), so sin €(z) = €(?) = ¢() — ¢,(#). These suppositions con-
stitute the basis for the linearized PLL model in Fig. 7.3-8a, where the LPF has been
represented by its impulse response A(f).

Since we’ll now focus on the phase variations, we view ¢(f) as the input “sig-
nal” which is compared with the feedback “signal”

o.(1) = 27K, j J() dA

to produce the output y(f). We emphasize that viewpoint by redrawing the linearized
model as a negative feedback system, Fig. 7.3-8b. Note that the VCO becomes an
integrator with gain 27K, while phase comparison becomes subtraction.

Fourier transformation finally takes us to the frequency-domain model in
Fig. 7.3-8¢, where ®(f) = F[d(1)], H(f) = F[h(?)], and so forth. Routine analysis
yields

KA o L IKHD)
1+ K, H(f)(K./if) K, jf + KH(f)

Y(f) = [10]

x.(f) =2 cos [w.t + ()]

v(t) = cos [w.t + ¢, (1) + 90°]

y(@®

{a)

& +@ h(s) %,—_. (5
bu(®) |— 27K, / ‘

(b)
o(f) +® ) .._. Y(f)
Dy(f) K./

]

Figure 7.3-8 Linearized PLL models. (a} Time domain; (b] phase; (¢] frequency domain.
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which expresses the frequency-domain relationship between the input phase and
output voltage.

Now let x(t) be an FM wave with ¢(t) = 2mf, x(¢) and, accordingly,
O(f) = 2mfy X(F)/(j27f) = (fa/if)X(f)
Substituting for ®(f) in Eq. (10) gives

fa

Hp) =%

H,(f)X(f) [11a]
where

_HY)
H(F) + J(f/K)

which we interpret as the equivalent loop transfer function. If X(f) has message
bandwidth W and if

[11b]

Hy(f)

H(f)=1 Ifl=w [124]
then H;(f) takes the form of a first-order lowpass filter with 3-dB bandwidth K, namely
‘ 1
H = ——— =W [126]
Thus, Y(f) = (fa/K,)X(f) when K = W so
¥(t) = Q—Ax(t) [13]

Under these conditions, the PLL recovers the message x(#) from x.(f) and thereby
serves as an FM detector.

A disadvantage of the first-order PLL with H(f) = 1 is that the loop gain X
determines both the bandwidth of H;(f) and the lock-in frequency range. In order to
track the instantaneous input frequency f(f) = f, + fyx(¢¥) we must have K = f,. The
large bandwidth of H;(f) may then result in excessive interference and noise at the
demodulated output. For this reason, and other considerations, H;(f) is usually a
more sophisticated second-order function in practical PLL frequency detectors.

7.4 TELEVISION SYSTEMS

The message transmitted by a television is a two-dimensional image with motion,
and therefore a function of two spatial variables as well as time. This section intro-
duces the theory and practice of image transmission via an electrical signal. Our ini-
tial discussion of monochrome (black and white) video signals and bandwidth
requirements also applies to facsimile systems which transmit only still pictures.
Then we’ll describe TV transmitters, in block-diagram form, and the modifications
needed for color television.
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There are several types of television systems with numerous variations found in
different countries. We’ll concentrate on the NTSC (National Television System
Committee) system used in North America, South America, and Japan and its digi-
tal replacement, the HDTV (high-definition television). More details about HDTV
are given by Whitaker (1999), and ATSC (1995).

Video Signals, Resolution, and Bandwidth

To start with the simplest case, consider a motion-free monochrome intensity pat-
tern I(h, v ), where h and v are the horizontal and vertical coordinates. Converting
I(h, v) to a signal x(f)—and vice versa—requires a discontinuous mapping process
such as the scanning raster diagrammed in Fig. 7.4-1. The scanning device, which
produces a voltage or current proportional to intensity, starts at point A and moves
with constant but unequal rates in the horizontal and vertical directions, following
the path AB. Thus, if s, and s, are the horizontal and vertical scanning speeds, the
output of the scanner is the video signal

x(t) = I{sy t,5,1) (1]

since i = s,¢, and so forth. Upon reaching point B, the scanning spot quickly flies
back to C (the horizontal retrace) and proceeds similarly to point D, where facsimile
scanning would end.

In TV, however, image motion must be accommodated, so the spot retraces ver-
tically to E and follows an interlaced pattern ending at F. The process is then
repeated starting again at A. The two sets of lines are called the first and second
fields; together they constitute one complete picture or frame. The frame rate is just
rapid enough (25 to 30 per second) to create the illusion of continuous motion, while
the field rate (twice the frame rate) makes the flickering imperceptible to the human
eye. Hence, interlaced scanning allows the lowest possible picture repetition rate
without visible flicker.

F

Figure 7.4-1 Scanning raster with two fields (line spacing grossly exaggerated}.
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Horizontal
S 1
Sync 1 100 yne pulse ™\ S
Back
Black - 75 porch
White + 12.5 10
e | 53.5 ]
. ~ N L s
Active line time Horizontal retrace

Figure 7.4-2 Video waveform for one full ine {NTSC standards}.

Two modifications are made to the video signal after scanning: blanking pulses
are inserted during the retrace intervals to blank out retrace lines on the receiving
picture tube; and synchronizing pulses are added on top of the blanking pulses to
synchronize the receiver’s horizontal and vertical sweep circuits. Figure 7.4-2
shows the waveform for one complete line, with amplitude levels and durations cor-
responding to NTSC standards. Other parameters are listed in Table 7.4~1 along
with some comparable values for the European CCIR (International Radio Consul-
tative Committee) system and the high-definition (HDTV) system.

Table 7.4-1 . Television system parameters
NTSC CCIR HDTV/USA

Aspect ratio, horizontal/vertical 413 4/3 16/9

Total of lines per frame 525 625 1125

Field frequency, Hz 60 50 60

Line frequency, kHz 15.75 15.625 33.75

Line time, us 63.5 64 29.63

Video bandwidth, MHz 4.2 5.0 249

Optimal viewing distance TH 7H 3H

Sound Mono/Stereo Mono/Stereo 6 channe] Dolby
output output Digital Surround

Horizontal retrace time, uS 10 37

Vertical retrace, lines/field 21 45

Analyzing the spectrum of the video signal in absence of motion is relatively
easy with the aid of Fig. 7.4-3 where, instead of retraced scanning, the image has
been periodically repeated in both directions so the equivalent scanning path is
unbroken. Now any periodic function of two variables may be expanded as a two-
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Figure 7.4-3 Periodically repeated image with unbroken scanning path.

dimensional Fourier series by straightforward extension of the one-dimensional

series. For the case at hand with H and V the horizontal and vertical periods (includ-
ing retrace allowance), the image intensity is

hoy= S 3 cnexp [jzﬂ(m—h + ﬂ)] 2]

e H V
where

! [H Jvz(h v)e { 7 (mh + ”vﬂ dh dv [3]
= —_— s x —_— — —_—

Therefore, letting

Sp

fh:E fu=

<|&

and using Egs. (1) and (2), we obtain

X(Z') — E i CmnejZﬁ(mﬁ,+nﬁ,)t 14]

m=—00 n=—0c0

This expression represents a doubly periodic signal containing all harmonics of the
line frequency f, and the field frequency f,, plus their sums and differences. Since
f»=>f, and since |c,,,| generally decreases as the product mn increases, the ampli-
tude spectrum has the form shown in Fig. 7.4-4, where the spectral lines cluster
around the harmonics of f, and there are large gaps between clusters.
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| il At
i1 'R | 7 11 7 f

0] L-2f
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Figure 7.4-4 Video spectrum for still image.

Equation (4) and Fig. 7.4-4 are exact for a still picture, as in facsimile systems.
When the image has motion, the spectral lines merge into continuous clumps around
the harmonics of f;. Even so, the spectrum remains mostly “empty” everywhere else,
a property used to advantage in the subsequent development of color TV. Despite the
gaps in Fig. 7.4-4, the video spectrum theoretically extends indefinitely—similar to
an FM line spectrum. Determining the bandwidth required for a video signal thus
involves additional considerations.

Two basic facts stand in the way of perfect image reproduction: (1) there can be 4
only a finite number of lines in the scanning raster, which limits the image clarity or
resolution in the vertical direction; and (2) the video signal must be transmitted with
a finite bandwidth, which limits horizontal resolution. Quantitatively, we measure
resolution in terms of the maximum number of discrete image lines that can be dis-
tinguished in each direction, say n, and #n,. In other words, the most detailed image
that can be resolved is taken to be a checkerboard pattern having 7, columns and n,
rows. We usually desire equal horizontal and vertical resolution in lines per unit dis-
tance, so n,/H = n,/V and

(5]

which is called the aspect ratio.

Clearly, vertical resolution is related to the total number of raster lines N;
indeed, n, equals N if all scanning lines are active in tmage formation (as in facsim-
ile but not TV) and the raster aligns perfectly with the rows of the image. Experi-
mental studies show that arbitrary raster alignment reduces the effective resolution
by a factor of about 70 percent, called the Kerr factor, so

n, = 0.7(N ~ N,,) (6]

where N, is the number of raster lines lost during vertical retrace.
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Horizontal resolution is determined by the baseband bandwidth B allotted to the
video signal. If the video signal is a sinusoid at frequency f;,,, = B, the resulting pic-
ture will be a sequence of alternating dark and light spots spaced by one-half cycle
in the horizontal direction. It then follows that

ny, = 2B(T1ine - Thr) (7]

Where T}, 1s the total duration of one line and 7, is the horizontal retrace time.
Solving Eq. (7) for B and using Egs. (5) and (6) yields

(H/V)n, N — N,
= ———=035H/V) 70— [8]
2(Tline - Thr) ( / ) Tline - Thr

Another, more versatile bandwidth expression is obtained by multiplying both sides
of Eq. (8) by the frame time Tyume = N7y, and explicitly showing the desired reso-
lution. Since N = n,/0.7(1 — N, /N), this results in

0.714n,

1- 1 -
N Tline

n, = —n? = n,n, [9b]

B Tframe =

where

The parameter n, represents the number of picture elements or pixels. Equation (9)
brings out the fact that the bandwidth (or frame time) requirement increases in pro-
portion to the number of pixels or as the square of the vertical resolution.
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The NTSC system has N = 525 and N,, = 2 X 21 = 42 so there are 483 active lines.
The line time is Tyi,e = 1/f, = 63.5 us and 7,,, = 10 ws, leaving an active line time of
53.5 ps. Therefore, using Eq. (8) with H/V = 4/3, we get the video bandwidth

4 48
B=035X=-X 3

— % 4oMH
37535 x 10°° z

This bandwidth is sufficiently large to reproduce the 5-us sync pulses with reason-
ably square corners.

EXAMPLE 7.4~1

Facsimile systems require no vertical retrace and the horizontal retrace time is neg-
ligible. Calculate the time Tj, . needed for facsimile transmission of a newspaper

page, 37 by 59 cm, with a resolution of 40 lines/cm using a voice telephone channel
with B = 3.2 kHz.

EXERCISE 7.4~1
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Monochrome Transmitters and Receivers

The large bandwidth and significant low-frequency content of the video signal,
together with the desired simplicity of envelope detection, have led to the selection
of VSB + C (as described in Sect. 4.4) for TV broadcasting in the United States.
However, since precise vestigial sideband shaping is more easily carried out at the
receiver where the power levels are small, the actual modulated-signal spectrum is
as indicated in Fig. 7.4-5a. The half-power frequency of the upper sideband is about
4.2 MHz above the video carrier f,, while the lower sideband has a 1-MHz band-
width. Figure 7.4-5b shows the frequency shaping at the receiver.

The audio signal is frequency-modulated on a separate carrier f,, = f,, + f,
with f; = 4.5 MHz and frequency deviation f, = 25 kHz. Thus, assuming an audio
bandwidth of 10 kHz, D = 2.5 and the modulated audio occupies about 80 kHz. TV
channels are spaced by 6 MHz, leaving a 250-kHz guard band. Carrier frequencies
are assigned in the VHF ranges 54-72, 7688, and 174-216 MHz, and in the UHF
range 470-806 MHz.

The essential parts of a TV transmitter are block-diagrammed in Fig. 7.4-6. The
synchronizing generator controls the scanning raster and supplies blanking and sync
pulses for the video signal. The dc restorer and white clipper working together
ensure that the amplified video signal levels are in proportion. The video modulator
is of the high-level AM type with u = 0.875, and the power amplifier removes the
lower portion of the lower sideband.

The antenna has a balance-bridge configuration such that the outputs of the
audio and video transmitters are radiated by the same antenna without interfering
with each other. The transmitted audio power is 50 to 70 percent of the video power.

As indicated in Fig. 7.4~7, a TV receiver is of the superheterodyne type. The
main IF amplifier has fr in the 41- to 46-MHz range and provides the vestigial shap-
ing per Fig. 7.4-5b. Note that the modulated audio signal is also passed by this

Video carrier Audio carrier
)
"\/ﬁ; + - f"fcw MHz
-125 -0.75 O 4.0 45475
(a)
A ——> f‘fcw MHz
075 0 0.75 4.5 415
b)

Figure 7.4~5 (] Transmitted TV spectrum; {b) VSB shaping at receiver.
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Figure 7.4-7 Monochrome TV receiver.

amplifier, but with substantially less gain. Thus, drawing upon Eq. (11), Sect. 4.4,
the total signal at the input to the envelope detector is

¥(t) = AL [l + ux(t) ] cos ot — A,ux,(t) sin w,t [10]

where x(?) is the video signal, ¢(#) is the FM audio, and w, = 27 f,. Since |ux,(f)| << 1
and A, << A_,, the resulting envelope is approximately

At) = ALl + ux(t)] + Ay cos [w,t + ¢(1)] [11]

which gives the signal at the output of the envelope detector.

The video amplifier has a lowpass filter that removes the audio component from
A(t) as well as a dc restorer that electronically clamps the blanking pulses and
thereby restores the correct dc level to the video signal. The amplified and dc-
restored video signal is applied to the picture tube and to a sync-pulse separator that
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provides synchronization for the sweep generators. The “brightness” control permits
manual adjustment of the DC level while the “contrast” control adjusts the gain of
the IF amplifier.

Equation (11) shows that the envelope detector output also includes the modu-
lated audio. This component is picked out and amplified by another IF amplifier
tuned to 4.5 MHz. FM detection and amplification then yields the audio signal.

Observe that, although the transmitted composite audio and video signal is a
type of frequency-division multiplexing, separate frequency conversion is not
required for the audio. This is because the video carrier acts like a local oscillator for
the audio in the envelope-detection process, an arrangement called the intercarrier-
sound system having the advantageous feature that the audio and video are always
tuned in together. Successful operation depends on the fact that the video compo-
nent is large compared to the audio at the envelope detector input, as made possible
by the white clipper at the transmitter (which prevents the modulated video signal
from becoming too small) and the relative attenuation of the audio by the receiver’s
IF response.

Some additional features not shown on our transmitter and receiver diagrams
relate to the vertical retrace interval. The NTSC system allots 21 lines per field to
vertical retracing, or about 1.3 ms every 1/60 sec. The first 9 lines carry control
pulses, but the remaining 12 may be utilized for other purposes while the retrace
goes on. Applications of these available lines include: the vertical-interval test signal
(VITS) for checking transmission quality; the vertical-interval reference (VIR) for
receiver servicing and/or automatic adjustments; and digital signals that generate
the closed-captioning characters on special receivers for the hearing impaired.

EXERCISE 7.4-2

Use a phasor diagram to derive Eq. (11) from Eq. (10).

Color Television

Any color can be synthesized from a mixture of the three additive primary colors,
red, green, and blue. Accordingly, a brute-force approach to color TV would involve
direct transmission of three video signals, say xz(z), x5(¢), and xz(t)—one for each
primary. But, aside from the increased bandwidth requirement, this method would
not be compatible with existing monochrome systems. A fully compatible color TV
signal that fits into the monochrome channel was developed in 1954, drawing upon
certain characteristics of human color perception. The salient features of that system
are outlined here.

To begin with, the three primary color signals can be uniquely represented by
any three other signals that are independent linear combinations of xg(t), x5(#), and
x5(#). And, by proper choice of coefficients, one of the linear combinations can be
made the same as the intensity or luminance signal of monochrome TV. In particu-
lar, it turns out that if
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7.4  Television Systems

xy(t) = 0.30xg(2) + 0.59x4(t) + 0.11x5(2) (124]

then x,(?) is virtually identical to the conventional video signal previously symbol-
ized by x(f). The remaining two signals, called the chrominance signals, are taken as

x{t) = 0.60xg(t) — 0.28x45(t) — 0.32x4(¢) [12b]

xg(t) = 0.21xg(r) — 0.52x5(t) + 0.31x4(z) [12d

Here, the color signals are normalized such that 0 =< xg(#) =< 1, and so forth, so the
luminance signal is never negative while the chrominance signals are bipolar.

Understanding the chrominance signals is enhanced by introducing the color -

vector
xc(t) = xt) + jxgl(2) [13]

whose magnitude |x.(£)| is the color intensity or saturation and whose angle arg x(t) is
the hue. Figure 7.4-8 shows the vector positions of the saturated primary colors in the
IQ plane. A partially saturated (pastel) blue-green, for instance, might have x; = 0 and
x5 = x5 = 0.5, s0 xc = —0.300 — j0.105, |x.| = 0.318, and arg x, = —160°. Since
the origin of the IQ plane represents the absence of color, the luminance signal may
be viewed as a vector perpendicular to this plane.

Because xy(?) serves as the monochrome signal, it must be alloted the entire 4.2-
MHz baseband bandwidth to provide adequate horizontal resolution. Consequently,
there would seem to be no room for the chrominance signals. Recall, however, that
the spectrum of x,(f) has periodic gaps between the harmonics of the line frequency
fi—and the same holds for the chrominance signals. Moreover, subjective tests have
shown that the human eye is less perceptive of chrominance resolution than lumi-
nance resolution, so that x,(t) and x,(¢) can be restricted to about 1.5 MHz and
0.5 MHz, respectively, without significant visible degradation of the color picture.

0
Blue
46°
Red
0.45 0.63
20° I
0.59
28°
Green

Figure 7.4-8 Saturated primary color vectors in the IQ plane.
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Combining these factors permits multiplexing the chrominance signals in an inter-
leaved fashion in the baseband spectrum of the luminance signal.

The chrominance signals are multiplexed on a color subcarrier whose fre-
quency falls exactly halfway between the 227th and 228th harmonic of f,, namely,

455
Jee = Tfh ~ 3.6 MHz (14]

Therefore, by extension of Fig. 7.4-3, the luminance and chrominance frequency
components are interleaved as indicated in Fig. 7.4-9a, and there is 0.6 MHz
between f,. and the upper end of the baseband channel. The subcarrier modulation
will be described shortly, after we examine frequency interleaving and compatibility.

What happens when a color signal is applied to a monochrome picture tube?
Nothing, surprisingly, as far as the viewer sees. True, the color subcarrier and its
sidebands produce sinusoidal variations on top of the luminance signal. But because
all of these sinusoids are exactly an odd multiple of one-half the line frequency, they
reverse in phase from line to line and from field to field—illustrated by Fig. 7.4-9b.
This produces flickering in small areas that averages out over time and space to the
correct luminance value and goes essentially unnoticed by the viewer.

- s s . = 0 K f
0 fn 227f, — g L— 228y,
{a)
t
l 1
[ i 1
(b)
Figure 7.4-9 {a) Chrominance spectral lines {dashed) interleaved between luminance lines;

[b} lineto-line phase reversal of chrominance variations on luminance.
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By means of this averaging effect, frequency interleaving renders the color sig-
nal compatible with an unmodified monochrome receiver. It also simplifies the
design of color receivers since, reversing the above argument, the luminance signal
does not visibly interfere with the chrominance signals. There is a minor interfer-
ence problem caused by the difference frequency f, — f.. between the audio and
color subcarriers. That problem was solved by slightly changing the line frequency
to f, = f/286 = 15.73426 kHz giving f, — f,. = 4500 — 3,579.545 = 920.455 kHz
= (107/2)f, which is an “invisible” frequency. (As a result of this change, the field
rate is actually 59.94 Hz rather than 60 Hz!)

A modified version of quadrature-carrier multiplexing puts both chrominance
signals on the color subcarrier. Figure 7.4—10 shows how the luminance and chromi-
nance signals are combined to form the baseband signal x,(¢) in a color transmitter.
Not shown is the nonlinear gamma correction introduced at the camera output to
compensate for the brightness distortion of color picture tubes.

The gamma-corrected color signals are first matrixed to obtain xy(f), x,(¥), and
xo(#) in accordance with Eq. (12). Next, the chrominance signals are lowpass fil-
tered (with different bandwidths) and applied to the subcarrier modulators. Subse-
quent bandpass filtering produces conventional DSB modulation for the Q channel
and modified VSB for the I channel—for example, DSB for baseband frequencies
of x,(t) below 0.5 MHz and LSSB for 0.5 < |f| < 1.5 MHz. The latter keeps the

*r LPF

4.2 MHz

xR
Color xG : *1 LPF N BPF
camera X3 Matrix 1.5 MHz N\ 2.1-4.1 MHz G
-90°
LPF e BPF
Xp 0.5 MHz \Z/ 3.1-4.1 MHz
oo (D
Horiz Gate
sync

Figure 7.4-10 Color subcarrier modulation system.

xp(8)

Color
burst
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modulated chrominance signals as high as possible in the baseband spectrum,
thereby confining the flicker to small areas, while still allowing enough bandwidth
for proper resolution of x,(z). Total sideband suppression cannot be used owing to
the significant low-frequency content in x,() and x(2).

Including x{t), the entire baseband signal becomes

xp(t) = xy(t) + xp(2) sin w ot + x,(2) cos w ¢t + Xu(t) sin o .t [15]

where X5(t) is the Hilbert transform of the high-frequency portion of x(f) and
accounts for the asymmetric sidebands. This baseband signal takes the place of the
monochrome video signal in Fig. 7.4-6. Additionally, an 8-cycle piece of the color
subcarrier known as the color burst is put on the trailing portion or “back porch” of
the blanking pulses for purposes of synchronization.

Demultiplexing is accomplished in a color TV receiver after the envelope detec-
tor, as laid out in Fig. 7.4-11. Since the luminance signal is at baseband here, it
requires no further processing save for amplification and a 3.6-MHz trap or rejection
filter to eliminate the major flicker component; the chrominance sidebands need not
be removed, thanks to frequency interleaving. The chrominance signals pass
through a bandpass amplifier and are applied to a pair of synchronous detectors
whose Jocal oscillator is the VCO in a PLL synchronized by phase comparison with
the received color burst. Manual controls usually labeled “color level” (i.e., satura-

LPF 3.6 MHz
42 MHz trap
Xy

I S
LPF Xy . 53
| O 15Muz Maix 57—~
]
x,(0) BPF -90° } N
2.1-4.1 MHz q e
Horiz L Fx ~ LPF ]
sync Color r N/ 0.5MHz
l level
]
PLL Phase .
Gate 3.6 MHz adj | Tint

Figure 7.4-11 Color demodulation system.
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tion) and “tint” (i.e., hue) are provided to adjust the gain of the chrominance ampli-
fier and the phase of the VCO; their effect on the picture is readily explained in
terms of the color vector and Fig. 7.4-8.

Assuming good synchronization, it follows from Eq. (15) that the detected but
unfiltered /- and Q-channel signals are proportional to

U,(t) = x,(t) + 2xyu(t) cos w .t + x,(t) cos 2w, [16d]
+ [xo(t) + Zix(t)] sin 20,

UQ(t) == XQ(t) + f]H(t) + 2xYH(t) Sin (l)cct + xl(t) Sin 2(l)cct [léb]
— [xo(#) + Zy(t)] cos 2wt

where xy;(?) represents the luminance frequency components in the 2.1- to 4.1-MHz
range. Clearly, lowpass filtering will remove the double-frequency terms, while the
terms involving xyy(?) are “invisible” frequencies. Furthermore, %;(#) in Eq. (165)
has no components less than 0.5 MHz, so it is rejected by the LPF in the Q channel.
(Imperfect filtering here results in a bothersome effect called quadrature color cross
talk). Therefore, ignoring the invisible-frequency terms, x,(f) and xy(¢) have been
recovered and can then be matrixed with x,(f) to generate the color signals for the
picture tube. Specifically, by inversion of Eq. (12),

xg(t) = xy(t) + 0.95x,(t) + 0.62x(2) 7]
xg(t) = xy(t) — 0.28x,(t) — 0.64xy(t)
xp(t) = xy(t) — 1.10x,(t) + 1.70x,(z)

If the received signal happens to be monochrome, then the three color signals will be
equal and the reproduced picture will be black-and-white. This is termed reverse
compatibility.

The NTSC color system described here certainly ranks high as an extraordinary
engineering achievement! It solved the problems of color reproduction with direct and

reverse monochrome compatibility while staying within the confines of the 6-MHz
channel allocation.

HDTV?

The tremendous advances in digital technology combined with consumer demand for
better picture and sound quality, plus computer compatibility, has motivated televi-
sion manufacturers to develop a new US color TV standard: high-definition televi-
sion (HDTV). A digital standard provides multimedia options such as special effects,
editing, and so forth, and better computer interfacing. The HDTV standard supports
at least 18 different formats and is a significant advancement over NTSC with respect
to TV quality. One of the HDTV standards is shown in Table 7.4-1. First, with

"Jodo O. P. Pinto drafted this section.
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respect to the NTSC system, the number of vertical and horizontal lines has doubled,
and thus the picture resolution is four times greater. Second, the aspect ratio has been
changed from 4/3 to 16/9. Third, as Figs. 7.4-12 and 7.4-13 indicate, HDTV has
improved scene capture and viewing angle features. For example, with H equal to the
TV screen height and with a viewing distance of 10 feet (7H) in the NTSC system,
the viewing angle is approximately 10 degrees. Whereas with HDTV, the same 10
foot viewing distance (3H) yields a viewing angle of approximately 20 degrees.

HDTYV has also adopted the AC-3 surround sound system instead of mono-
phonic or stereo sound. This system has six channels: right, right surround, left, left
surround, center, and low-frequency effect (LFE). The LFE channel has only a band-
width of 120 Hz, effectively providing only 5.1 channels.

HDTYV can achieve a given signal-to-noise ratio with 12 dB less radiated power
than NTSC-TV. Thus, for the same transmitter power, reception that was marginal
with NTSC broadcasts will be greatly improved with HDTV.

Although there was no attempt to make HDTV broadcast signals compatible with
existing NTSC TV receivers, by 2006 the FCC will require that only digital signals be

NTSC
camera

Figure 7.4-12 Scene capabilities of conventional NTSC system and HDTV.
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| 7H (10 feet)

(a)

3H '
{b)

Figure 7.4-13 Viewing angles as a function of distance. {a) Conventional NTSC; (b) HDTV.

broadcast, of which HDTYV is one kind. Thus, in order to receive TV broadcasts, exist-
ing TV sets will have to be replaced or modified by some type of converter.

The system for encoding and transmitting HDTV signals is shown in Figure 7.4-14.
The transmitter consists of several stages. First, the 24.9-MHz video signal and corre-
sponding audio signals are compressed, so they will fit into the allocated 6-MHz channel
bandwidth. The compressed audio and video data is then combined with ancillary data
that includes control data, closed captioning, and so forth, using a multiplexer. The mul-
tiplexer then formats the data into packets. Next, the packetized data is scrambled to
remove any undesirable frequency discrete components, and is channel encoded. During
channel coding the data is encoded with check or parity symbols using Reed-Solomon
coding to enable error correction at the receiver. The symbols are interleaved to mini-
mize the effects of burst-type errors where noise in the channel can cause successive
symbols to be corrupted. Finally, the symbols are Trellis-Code Modulated (TCM).
TCM, which will be discussed in Chapter 14, combines coding and modulation and
makes it possible to increase the symbol transmission rate without an increase in error
probability. The encoded data is combined with synchronization signals and is then
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S
Video
Video coding
and
compression
Transport
Audio Video packetization
coding multiplexing
and Transport
compression packets
Ancillary data. ——————
Clock

Data Channel MUX nf(;’isi . ()
scrambler coding up converter RF out

Segment sync ——

Field sync ——»

Figure 7.4-14 HDTV transmitter block diagram.

8VSB modulated. 8VSB is a VSB technique where an 8-level baseband code is VSB
modulated onto a given carrier frequency.

The HDTYV receiver shown in Figure 7.4-15 reverses the above process. As
broadcasters and listeners make the transition from NTSC-TV to HDTV, they will
be allowed to transmit both signals simultaneously. To overcome potential interfer-
ence, the HDTV receiver uses the NTSC rejection filter to reject NTSC signals. A
channel equalizer/ghost canceller stage, not shown, performs ghost cancellation and
channel equalization. The phase tracker minimizes the effects of phase noise caused
by the system’s PLL. :

When digitized, the 24.9-MHz video signal has a bit rate of 1 Gbps, whereas a
6-MHz television channel can only accommodate 20 Mbps. Therefore a compres-
sion ratio of more than 50:1 is required. The raw video signal obtained by the scan-
ning process contains significant temporal and spatial redundancies. These are taken
advantage of during the compression process. During the transmission of each
frame, only those parts in the scene that move or change are actually transmitted.
The specific compression process is the MPEG-2 (Motion Picture Expert Group-2),
which uses the Discrete Cosine Transform (DCT). See Gonzalez and Woods (1992)

for more information on the DCT. The MPEG-2 signals are readily interfaced to
computers for multimedia capability.
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NTSC
*o() RF Synchronous Fat Phase Channel
- rejection Descrambler
converter detector filter tracker decoder
RF input
Transport packets
Clock Clock
control
4
Video
decoding Video Video
and presentation display
decompression
Transport
depacketization
and Audio )
demultiplexing decoding Audio Audio
and presentation speaker
decompression
Ancillary data

Figure 7.4-15 HDTVY receiver block diagram.

7.5 PROBLEMS

7.1-1* Suppose a commercial AM superhet has been designed such that the image fre-
quency always falls above the broadcast band. Find the minimum value of f;z, the
corresponding range of f;, and the bounds on Bpgg.

7.1-2

Suppose a commercial FM superhet has been designed such that the image fre-
‘ quency always falls below the broadcast band. Find the minimum value of fir, the
corresponding range of f;, and the bounds on Bgp.

‘ 7.1-3* Suppose a commercial AM superhet has fjz = 455 kHz and f;, = 127 VLC,

‘ where L = 1 uH and C is a variable capacitor for tuning. Find the range of C when
Jro =/t + firand when fio = f. — fir.

l 7.1-4 Suppose the RF stage of a commercial AM superhet is a tuned circuit like Fig. 4.1-7

with L = 1 pwH and variable C for tuning. Find the range of C and the corresponding
bounds on R.




304

7.1-5

7.1-6
7.1-7

7.1-8

7.1-9*

7.1-10

7.1-11

7.1-12*

7.1-13

7.1-14*
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Consider a superhet intended for USSB modulation with W = 4 kHz and f, =
3.57-3.63 MHz. Take f;, = f. + fir and choose the receiver parameters so that all
bandpass stages have B/fy = 0.02. Then sketch |Hgzz(f)| to show that the RF stage
can be fixed-tuned. Also sketch |H,z(f)|, accounting for sideband reversal.

Do Prob. 7.1-5 for LSSB modulation with W = 6 kHz and f, = 7.14-7.26 MHz.

Sketch the spectrum of x.(f) X cos 27f;,t to demonstrate the sideband-reversal
effect in an SSB superhet when f;, = f. + fip

For automatic frequency control in an FM superhet, the LO is replaced by a VCO
that generates A;, cos 0(f) with () = 27[f. — fir + Kv(®) + ()] where () is a
slow and random frequency drift. The control voltage v(#) is derived by applying the
demodulated signal to an LPF with B << W. The demodulated signal is yp(t) =
K () /2 where ¢,z(2) is the instantaneous phase at the IF output. Analyze this
AFC system by finding y,(¢) in terms of x(¢) and e(#).

Consider a superhet that receives signals in the 50-54 MHz range with f;, = f, + fir.
Assuming there is little filtering prior to the mixer, what range of input signals will
be received if the fi-is: (a) 455 kHz, () 7 MHz?

Design a receiver that will receive USSB signals in the 50-54 MHz range where
fir = 100 MHz and does not exhibit sideband-reversal. Assume there is little filtering
prior to the mixer. Specify f;,, the product detector oscillator frequency, the center
frequency of the IF bandpass filter, and any image frequencies that will be received.

Consider a superhet with f;o = f. + fim fir = 455 kHz, and f, = 2 MHz. The RF
amplifier is preceded by a first-order RLC bandpass filter with f = 2 MHz and B =
0.5 MHz. Assume the IF-BPF is nearly ideal and that the mixer has unity gain. What
is the minimum spurious frequency input rejection ratio in dB?

Suppose the receiver of Prob. 7.1-11 has a LO with a second harmonic whose volt-
age level is half that of the fundamental component. (@) What input frequencies will
be accepted, and at what power level in dB as compared to the correct input? (») Dis-
cuss all ways to minimize these interfering inputs.

Consider a superhet that receives signals in the 7.0 to 8.0 MHz range with f;p = f. +
Jie and fir = 455 kHz. The receiver’s RF amplifier has a passband of 2 MHz, and its
[F-BPF is nearly ideal and has a bandwidth of 3 kHz. Design a frequency converter
that has a fixed LO frequency that will enable the reception of 50.0- to 51.0-MHz
signals. Assume the converter’s RF amplifier is relatively wideband. (a) If the
incoming frequency is supposed to be f, = 50 MHz, what other spurious frequencies

will this receiver respond to? (o) Describe how to minimize these spurious
IeSponses.

What is the image rejection performance of a single conversion superhet receiver
that receives signals in the 50-54 MHz range, f;» > f., and has an RF amplifier

that includes a fixed frequency RLC-BPF with B = 4 MHz with (a) f;z = 20 MHz,
(b) fir = 100 MHz?
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Design a superhet receiver for a dual-mode cellular phone system that will accept
either 850 MHz analog cellular signals or 1900 MHz digital personal communica-
tions systems (PCS) signals. Specify the F;,, Fr, and image frequencies.

Find suitable parameters of a double-conversion receiver having RR = 60 dB and
intended for DSB modulation with W = 10 kHz and f, = 4 MHz.

A double conversion receiver designed for f, = 300 MHz has f;z_; = 30 MHz and
fir—2» = 3 MHz, and each LO frequency is set at the higher of the two possible val-
ues. Insufficient filtering by the RF and first IF stages results in interference from
three 1mage frequencies. What are they?

Do Prob. 7.1-17 with each LO frequency set at the lower of the two possible values.

Specify the settings on a scanning spectrum analyzer to display the spectrum up to
the 10th harmonic of a signal with a 50-ms period.

Specify the settings on a scanning spectrum analyzer to display the spectrum of a
tone-modulated FM signal with f, = 100 kHz, f,, = 1 kHz, and 8 = 5.

The magnitude spectrum of an energy signal v(¢) can be displayed by multiplying
v(2) with the swept-frequency wave cos (o — at?) and applying the product to a
bandpass filter having k,,(z) = cos (w.t + ar?). Use equivalent lowpass time-domain
analysis to show that hg,(t) = %e""“z and that the envelope of the bandpass output is
proportional to |V(f)| with f = at/r.

Four signals, each having W = 3 kHz, are to be multiplexed with 1-kHz guard bands
between channels. The subcarrier modulation is USSB, except for the lowest chan-
nel which is unmodulated, and the carrier modulation is AM. Sketch the spectrum of
the baseband and transmitted signal, and calculate the transmission bandwidth.

Do Prob. 7.2-1 with AM subcarrier modulation.

Let f; be an arbitrary carrier in an FDM signal. Use frequency-translation sketches to
show that the BPFs in Fig. 7.2-2 are not necessary if the subcarrier modulation is
DSB and the detector includes an LPF. Then show that the BPFs are needed, in gen-
eral, for SSB subcarrier modulation.

Ten signals with bandwidth W are to be multiplexed using SSB subcarrier modula-
tion and a guard band B, between channels. The BPFs at the receiver have |H(H| =
exp {—[1.2(f — f)/W]?}, where f; equals the center frequency for each subcarrier
signal. Find B, so that the adjacent-channel response satisfies |H(f)| = 0.1. Then
calculate the resulting transmission bandwidth of the FDM signal.

Suppose the voice channels in a group signal have B, = 1 kHz and are separated at
the receiver using BPFs with |[H(f)| = {1 + [2(f — fo)/B]**} 2. Make a careful
sketch of three adjacent channels in the group spectrum, taking account of the fact
that a baseband voice signal has negligible content outside 200 < |f| < 3200 Hz.

Use your sketch to determine values for B, f;, and n so that |H(f)| = 0.1 outside the
desired passband.
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rier signal bandwidth B, is proportional to
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SOIDC FDM te]emetry systems employ proportional bandwidth EM subcarrier mod-
ulation when the signals to be multiplexed have different bandwidths. All subcarrier
signals have the same deviation ratio but the jth subcarrier frequency and message
bandwidth are related by Ji = W/a where « is a constant. (a) Show that the subcar-
/- and obtain an expression for Jiry In
terms of f; to provide a guard band B, between channels. (b) Calculate the next three
subcarrier frequencies when f, = 2 kHz, B, = 800 Hz, and B, = 400 Hz.

Find the output signals of the quadrature-carrier system in Fig. 7.2-6 when the
receiver local oscillator has a phase error o'

In one proposed system for FM quadraphonic multiplexing, the baseband signal in
Fig. 7.2-4 is modified as follows: The unmodulated signal is xo(f) = Lp + Ly + R,
+ Ry (for monophonic compatibility), the 38-kHz subcarrier has quadrature-carrier
multiplexing with modulating signals x1(?) and x,(¢), and the SCA signal is replaced
by a 76-kHz subcarrier with DSB modulation by x3(t) = Ly — Lg + Ry — Rg. What
should be the components of x,(#) for stereophonic compatibility? Now consider
xo() £ x)(#) = x5(F) to determine the components of x,(#). Draw a block diagram of
the corresponding transmitter and quadraphonic receiver.

Suppose the transmission channel in Fig. 7.2-6 has linear distortion represented by
the transfer function H.(f). Find the resulting spectrum at the lower output and
show that the condition for no cross talk is Ho(f = f) = Ho(f + f) for |[fl = W. If
this condition holds, what must be done to recover x(5)?

Twenty-four voice signals are to be transmitted via multiplexed PAM with a marker
pulse for frame synchronization. The sampling frequency is 8 kHz and the TDM sig-
nal has a 50 percent duty cycle. Calculate the signaling rate, pulse duration, and
minimum transmission bandwidth.

Do Prob. 7.2-10 with a 6-kHz sampling frequency and 30 percent duty cycle.

Twenty signals, each with W = 4 kHz, are sampled at a rate that allows a 2-kHz
guard band for reconstruction filtering. The multiplexed samples are transmitted'on
a CW carrier. Calculate the required transmission bandwidth when the modulation
1s: (@) PAM/AM with 25 percent duty cycle; () PAM/SSB with baseband filtering.

Ten signals, each with W = 2 kHz, are sampled at a rate that allows a 1-kHz guard
band for reconstruction filtering. The multiplexed samples are transmitted on a CW
carrier. Calculate the required transmission bandwidth when the modulation is: (a)
PPM/AM with 20 percent duty cycle; () PAM/FM with baseband filtering and f =
75 kHz.

Given a 6-channel main multiplexer with f; = 8 kHz, devise a telemetry system sim-
ilar to Fig. 7.2-11 (including a marker) that accommodates six input signals having
the following bandwidths: 8.0, 3.5, 2.0, 1.8, 1.5, and 1.2 kHz. Make sure that suc-
cessive samples of each input signal are equispaced in time. Calculate thg resulting
baseband bandwidth and compare with the minimum transmission bandwidth for an
FDM-SSB system.
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Do Prob. 7.2-14 for seven input signals having the following bandwidths: 12.0, 4.0,
1.0,0.9,0.8, 0.5, and 0.3 kHz.

Do Prob. 7.2-14 for eight input signals having the following bandwidths: 12.0, 3.5,
2.0,0.5,0.4,0.3,0.2, and 0.1 kHz.

Calculate the bandwidth required so the cross talk does not exceed —40 dB when 25
voice signals are transmitted via PPM-TDM with f; = 8§ kHz and ¢, = 7 = 0.2(T/M).

Find the maximum number of voice signals that can be transmitted via TDM-PPM

with f; = 8 kHz and t, = 7 = 0.25(T/M) when the channel has B = 500 kHz and the
cross talk is to be kept below —30 dB.

Cross talk also occurs when a transmission system has inadequate low-frequency
response, usually as a result of transformer coupling or blocking capacitors. Demon-
strate this effect by sketching the pulse response of a high-pass filter whose step
response is g(?) = exp (—27f¢t) u(f). Consider the extreme cases f,7 << 1 and f,7 > 1.

For one implementation of digital phase comparison, the switching circuit in Fig.
7.3-1b has a set-reset flip-flop whose output becomes s(t) = + A after a positive-
going zero-crossing of x.(?) and s(f) = —A after a positive-going zero-crossing of
v(?). (a) Take x(t) = cos w.t and v(t) = cos (wt — ¢,) and sketch one period of s(¥)
for ¢, = 45, 135, 180, 225, and 315°. (b) Now plot y versus € = ¢, — 180° assum-
ing that y(¢) = <s()> . Note that this implementation requires *180° phase differ-
ence between the inputs for y = 0.

Do part (a) of Prob. 7.3~1 for a digital phase comparator with a switch controlled by
v(?) so its output is s(¥) = A sgn x.(¢) when v(#) > 0 and s(¢) = 0 when v(¢) < 0. Now
plot y versus € = ¢, —90° assuming that y(¢) = <s(#)>.

Consider a PLL in the steady state with €, << 1 for t < 0. The input frequency has a

step change at ¢ = 0, so ¢(¢) = 2mf,t for £ > 0. Solve Eq. (5) to find and sketch &(2),
assuming that K >> |Af + f;].

Explain why the Costas PLL system in Fig. 7.3—4 cannot be used for synchronous
detection of SSB or VSB.

Consider a PLL in steady-state locked conditidns. If the external input is x.(¢) =
A, cos (wt + ¢g), then the feedback signal to the phase comparator must be propor-

tional to cos (wt + ¢y + 90° — €,,). Use this property to find the VCO output in
Fig. 7.3-5 when €, # 0.

Use the property stated in Prob. 7.3-5 to find the VCO output in Fig. 7.3—-6 when
€, * 0.

Modify the FM stereo receiver in Fig. 7.2-5 to incorporate a PLL with f, =~ 38 kHz
for the subcarrier. Also include a dc stereo indicator.

Given a 100-kHz master oscillator and two adjustable divide-by-n counters with
n = 110 10, devise a system that synthesizes any frequency from 1 kHz to 99 kHz in
steps of 1 kHz. Specify the nominal free-running frequency of each VCO.
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Referring to Table 7.1-1, devise a frequency synthesizer to generate f;, = f, + fir
for an FM radio. Assume you have available a master oscillator at 120.0 MHz and
adjustable divide-by-n counters with n = 1 to 1000.

Referring to Table 7.1-1, devise a frequency synthesizer to generate f,, = f. + fir
for an AM radio. Assume you have available a master oscillator at 2105 kHz and
adjustable divide-by-n counters with n = 1 to 1000.

The linearized PLL in Fig. 7.3-8 becomes a phase demodulator if we add an ideal
integrator to get

zmzjkmm

Find Z(f)/X(f) when the input is a PM signal. Compare with Eq. (11).

Consider the PLL model in Fig. 7.3-8¢, where E(f) = ®(f) — ®,f). (@) Find
E(f)/®(f) and derive Eq. (10) therefrom. (b) Show that if the input is an FM signal,
then E(f) = (i K)H(HX(f) with H(f) = V[H(f) + j(fIK)].

Suppose an FM detector is a linearized first-order PLL with H(f) = 1. Let the input
signal be modulated by x(r) = A, cos 27f,,t where A,, =< land 0 = f,, = W. (a) Use
the relationship in Prob. 7.3-12b to find the steady-state amplitude of e&(¥).
(b) Since linear operation requires |e(f)| = 0.5 rad, so sin € = ¢, show that the mini-
mum loop gain is K = 2fj.

Suppose an FM detector is a second-order PLL with loop gain K and H(f) = 1 +
K/j2f. Let the input signal be modulated by x(¢) = A,, cos 27f,,t where A,, = 1 and
0 = f,, = W. (@) Use the relationship in Prob. 7.3—-12& to show that the steady-state
amplitude of e(r) is maximum when £, = K/\/2 if K/\/2 = W. (b) Now assume
that K/\/2 > W and f, > W. Since linear operation requires |e()| < 0.5 rad, so
sin € = ¢, show that the minimum loop gain is K = 2V f,W.

Consider the second-order PLL in Prob. 7.3-14. (a) Show that H,;(f) becomes a
second-order LPF with |H;| maximum at f = 0.556K and 3-dB bandwidth B =
1.14K. (b) Use the loop-gain conditions in Probs. 7.3—-13 and 7.3-14 to compare the
minimum 3-dB bandwidths of a first-order and second-order PLL FM detector when
fa/W=12,5,and 10.

Explain the following statements: (a) A TV frame should have an odd number of

lines. (b) The waveform that drives the scanning path should be a sawrooth, rather
than a sinusoid or triangle.

Consider a scanning raster with very small slope and retrace time. Sketch the video
signal and its spectrum, without using Eq. (4), when the image consists of: (@) alter-
nating black and white vertical bars of width H/4; (b) alternating black and white
horizontal bars of height V/4.
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Consider an image that’s entirely black (/ = 0) except for a centered white rectangle
(I = 1.0) of width «H and height V. (a) Show that |c,,,| = @B sinc am sinc Bn|.
(b) Sketch the resulting line spectrum when « = 1/2, 8 = 1/4, and f, = £,/100.

Calculate the number of pixels and the video bandwidth requirement for a low-

resolution TV system with a square image, 230 active lines, and 100-us active line
time.

Calculate the number of pixels and the video bandwidth requirement for the HDTV
system in Table 7.4-1 if N,,<< N and 7}, = 0.2T}je.

Calculate the number of pixels and the video bandwidth requirement for the CCIR
system in Table 7.4-1if N,, = 48 and 7}, = 10 us.

Horizontal aperture effect arises when the scanning process in a TV camera pro-
duces the output.

i) = f (1) dA

=T
where x(?) is the desired video signal and 7 << Tj;,.. (a) Describe the resulting TV
picture. (b) Find an equalizer that will improve the picture quality.

Describe what happens to a color TV picture when: (a) the gain of the chrominance
amplifier is too high or too low; (b) the phase adjustment of the color subcarrier is in
error by £90 or 180°.

Carry out the details leading from Eq. (15) to Eq. (16).

Obtain expressions equivalent to Eqs. (15) and (16) when all the filters in the x, chan-
nel (at transmitter and receiver) are the same as the x; channel. Discuss your results.
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hapters 2 through 7 dealt entirely with deterministic signals, for when we write an explicit fime function v{f] we

presume that the behavior of the signal is known or determined for all time. In Chapter @ we'll deal with random
signals whose exact behavior cannot be described in advance. Random signals occur in communication both as
unwanted noise and as desired information-bearing waveforms. Lacking detailed knowledge of the time variation of
a random signal, we must speak instead in terms of probabilities and statistical properties. This chapter therefore pre-
sents the groundwork for the description of random signals.

The major topics include probabilities, random variables, statistical averages, and important probability models.
We direct our coverage specifically toward those aspects used in later chapters and rely heavily on intuitive reason-
ing rather than mathematical rigor.

If you've previously studied probability and statistics, then you can skim over this chapter and go to Chapter 9.
[However, be alert for possible differences of notation and emphasis.) If you want to pursue the subject in greater
detail, you'll find a wealth of material in texts devoted to the subject.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Calculate event probabilities using frequency of occurrence and the relationships for mutually exclusive, joint,
conditional, and statistically independent events (Sect. 8.1).

2. Define and state the properties of the probability functions of discrete and continuous random variables (Sect. 8.2).

Write an expression for the probability of a numerical-valued event, given a frequency function, CDF, or PDF
(Sect. 8.2).

Find the mean, mean-square, and variance of a random variable, given its frequency function or PDF (Sect. 8.3).
Define and manipulate the expectation operation (Sect. 8.3).

Describe applications of the binomial, Poisson, gaussian, and Rayleigh probability models (Sect. 8.4).

Write probabilities for a gaussian random variable in terms of the Q function (Sect. 8.4).

w

No 0k

8.1 PROBABILITY AND SAMPLE SPACE

Probability theory establishes a mathematical framework for the study of random
phenomena. The theory does not deal with the nature of random processes per se,
but rather with their experimentally observable manifestations. Accordingly, we’ll
discuss probability here in terms of events associated with the outcomes of experi-
ments. Then we’ll introduce sample space to develop probability theory and to
obtain the probabilities of various types of events.

Probabilities and Events

Consider an experiment involving some element of chance, so the outcome varies
unpredictably from trial to trial. Tossing a coin is such an experiment, since a trial

(PR I PR ERDE A
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toss could result in the coin landing heads up or tails up. Although we cannot predict
the outcome of a single trial, we may be able to draw useful conclusions about the
results of a large number of trials.

For this purpose, let’s identify a specific event A as something that might be
observed on any trial of a chance experiment. We repeat the experiment N times and
record N,, the number of times A occurs. The ratio N,/N then equals the relative fre-
quency of occurrence of the event A for that sequence of trials.

The experiment obeys the empirical law of large numbers if NV,/N approaches
a definite limit as N becomes very large and if every sequence of trials yields the
same limiting value. Under these conditions we take the probability of A to be

P(A) = N,/N N— o (1]

The functional notation P(A) emphasizes that the value of the probability depends

upon the event in question. Nonetheless, every probability is a nonnegative number
bounded by

0=PA)=1

since 0 =< N, = N for any event A.

Our interpretation of probability as frequency of occurrence agrees with intu-
ition and common experience in the following sense: You can’t predict the specific
result of a single trial of a chance experiment, but you expect that the number of
times A occurs in IV >>>1 trials will be N, = NP(A). Probability therefore has mean-
ing only in relation to a large number of trials.

By the same token, Eq. (1) implies the need for an infinite number of trials to
measure an exact probability value. Fortunately, many experiments of interest pos-
sess inherent symmetry that allows us to deduce probabilities by logical reasoning,
without resorting to actual experimentation. We feel certain, for instance, that an
honest coin would come up heads half the time in a large number of trial tosses, so
the probability of heads equals 1/2. :

Suppose, however, that you seek the probability of getting two heads in three
tosses of an honest coin. Or perhaps you know that there were two heads in three
tosses and you want the probability that the first two tosses match. Although such
problems could be tackled using relative frequencies, formal probability theory pro-
vides a more satisfactory mathematical approach, discussed next.

Sample Space and Probability Theory

A typical experiment may have several possible outcomes, and there may be various
ways of characterizing the associated events. To construct a systematic model of a
chance experiment let the sample space S denote the set of outcomes, and let S be

partitioned into sample points s, s,, . . . , corresponding to the specific outcomes.
Thus, in set notation,

S = {s1,5 .-}

313



314

CHAPTER 8 @  Probability and Random Variables

Although the partitioning of S is not unique, the sample points are subject to two
requirements: "

1. The set {s, 5,, .. . } must be exhaustive, so that S consists of all possible out-
comes of the experiment in question.

2. The outcomes s,, s,, . . . must be mutually exclusive, so that one and only one
of them occurs on a given trial.

Consequently, any events of interest can be described by subsets of S containing
Zero, one, or more than one sample points.

By way of example, consider the experiment of tossing a coin three times and
observing the sequence of heads (H) and tails (7'). The sample space then contains
2 X 2 X 2 = 8 distinct sequences, namely,

S = {HHH, HTH, HHT, THH, THT, TTH, HTT, TIT}

where the order of the listing is unimportant. What is important is that the eight
sample-point sequences are exhaustive and mutually exclusive. The event A = “two
heads” can therefore be expressed as the subset

A = {HTH, HHT, THH }

Likewise, the events B = “second toss differs from the other two” and C = “first
two tosses match” are expressed as

B = {HTH,THT}  C = {HHH, HHT, TTH, TIT}

Figure 8.1-1 depicts the sample space and the relationships between A, B, and
C in the form of a Venn diagram, with curves enclosing the sample points for each
event. This diagram brings out the fact that B and C happen to be mutually exclusive
events, having no common sample points, whereas A contains one point in common
with B and another point in common with C.

r
B 2 c
: A S
| HTH || HHT | THH

STTH:|  HTT

T
. )

Figure 8.1-1 Sample space and Venn diagram of three events.
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Other events may be described by particular combinations of event subsets, as
follows:

s The union event A + B (also symbolized by A U B) stands for the occurrence
of A or B or both, so its subset consists of all s, in either A or B.

* The intersection event AB (also symbolized by A M B) stands for the occur-
rence of A and B, so its subset consists only of those s; in both A and B.

For instance, in Fig. 8.1-1 we see that
A + B = {HTH, HHT, THH, THT } AB = {HTH}
But since B and C are mutually exclusive and have no common sample points,
BC =

where (J denotes the empty set.

Probability theory starts with the assumption that a probability P(s;) has been
assigned to each point s; in the sample space S for a given experiment. The theory

says nothing about those probabilities except that they must be chosen to satisfy
three fundamental axioms:

P(A) = 0O for any event A in S [2d]
P(s) = 1 [25]

These axioms form the basis of probability theory, even though they make no men-
tion of frequency of occurrence. Nonetheless, axiom (2a) clearly agrees with Eq.
(1), and so does axiom (2b) because one of the outcomes in S must occur on every
trial. To interpret axiom (2¢) we note that if A; occurs N, times in N trials and 4,
occurs N, times, then the event “A; or A,” occurs N, + N, times since the stipulation
AA, = & means that they are mutually exclusive. Hence, as N becomes large,
P, + A)) = (N + N,)/N = (N,/N) + (N,/N) = P(A,) + P(A,).

Now suppose that we somehow know all the sample-point probabilities P(s;) for
a particular experiment. We can then use the three axioms to obtain relationships for
the probability of any event of interest. To this end, we’ll next state several impor-
tant general relations that stem from the axioms. The omitted derivations are exer-
cises in elementary set theory, and the relations themselves are consistent with our
interpretation of probability as relative frequency of occurrence.

Axiom (2¢) immediately generalizes for three or more mutually exclusive
events. For if

AAA ... =T
then

P(A, + A, + Ay + ...) = P(A)) + P(A,) + P(4;) + ... (3]
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Furthermore, if M mutually exclusive events have the exhaustive property
Al +A,+ ... +4,=3S§

then, from axioms (2¢) and (26),
M
i=1

Note also that Eq. (4) applies to the sample-point probabilities P(s,).
Equation (4) takes on special importance when the M events happen to be

equally likely, meaning that they have equal probabilities. The sum of the probabil-
ities in this case reduces to M X P(A,) = 1, and hence

PA)=1M i=12 ..,M [5]

This result allows you to calculate probabilities when you can identify all possible
outcomes of an experiment in terms of mutually exclusive, equally likely events.
The hypothesis of equal likelihood might be based on experimental data or symme-
try considerations—as in coin tossing and other honest games of chance.
Sometimes we’ll be concerned with the nonoccurrence of an event. The event

“not A” is called the complement of A, symbolized by A€ (also written A). The
probability of A€ is

P(A%) =1 — P(A) [6]

since A + A® = § and AAC = (7.

Finally, consider events A and B that are nof mutually exclusive, so axiom (2¢)
does not apply. The probability of the union event A + B is then given by

P(A + B) = P(A) + P(B) — P(AB) {71
in which P(AB) is the probability of the intersection or joint event AB. We call P(AB)
the joint probability and interpret it as

P(AB) = Nyg/N N—>o0

where N, stands for the number of times A and B occur together in N trials. Equa-

tion (7) reduces to the form of axiom (2¢) when AB = J, so A and B cannot occur
together and P(AB) = 0.

EXAMPLE 8.1-1

As an application of our probability relationships, we’ll calculate some event prob-
abilities for the experiment of tossing an honest coin three times. Since H and T
are equally likely to occur on each toss, the eight sample-point sequences back in
Fig. 8.1-1 must also be equally likely. We therefore use Eq. (5) with M = 8 to get

P(s)=1/8 i=1,2, ...,8
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The probabilities of the events A, B, and C are now calculated by noting that

A contains three sample points, B contains two, and C contains four, so Eq. (3)
yields

) =iiei=t PB) = RO -3

Similarly, the joint-event subsets AB and AC each contain just one sample point,
SO

P(AB) = P(AC) = 1/8

whereas P(BC) = 0 since B and C are mutually exclusive.
The probability of the complementary event A is found from Eq. (6) to be

PA) =1 -}
The probability of the union event A + B is given by Eq. (7) as
PA+B) =f+-}-1

Our results for P(A€) and P(A + B) agree with the facts that the subset A€ contains
five sample points and A + B contains four.
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A certain honest wheel of chance is divided into three equal segments colored green
(G), red (R), and yellow (Y), respectively. You spin the wheel twice and take the out-
come to be the resulting color sequence—GR, RG, and so forth. Let A = “neither

color is yellow” and let B = “matching colors.” Draw the Venn diagram and calcu-
late P(A), P(B), P(AB), and P(A + B).

EXERCISE 8.1-1

Conditional Probability and Statistical Independence

Sometimes an event B depends in some way on another event A having P(A) # 0.
Accordingly, the probability of B should be adjusted when you know that A has
occurred. Mutually exclusive events are an extreme example of dependence, for if
you know that A has occurred, then you can be sure that B did not occur on the same
trial. Conditional probabilities are introduced here to account for event dependence
and also to define statistical independence.

We measure the dependence of B on A in terms of the conditional probability
P(B|A) £ P(AB)/P(A) (8]

The notation B|A stands for the event B given A, and P(B|A) represents the proba-
bility of B conditioned by the knowledge that A has occurred. If the events happen to
be mutually exclusive, then P(AB) = 0 and Eq. (8) confirms that P(B|A) = 0 as
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expected. With P(AB) #+ 0, we interpret Eq. (8) in terms of relative frequency by
inserting P(AB) = N,z/N and P(A) = N,/N as N — . Thus,

Nsy/N N,
P(B| A) = ._iBL - 1'AB
Ny/N N,
which says that P(B|A) equals the relative frequency of A and B together in the N,

trials where A occurred with or without B.

Interchanging B and A in Eq. (8) yields P(A|B) = P(AB)/P(B), and we thereby
obtain two relations for the joint probability, namely,

P(AB) = P(A|B)P(B) = P(B|A)P(A) [9]
Or we could eliminate P(AB) to get Bayes’ theorem
_ P(B)P(A|B)

P(B|A) = PA) [10]

This theorem plays an important role in statistical decision theory because it allows us
to reverse the conditioning event. Another useful expression is the total probability

P(B) = iP(Bm,.)P(A,.) [11]

where the conditioning events A, A,, . . . , Ay must be mutually exclusive and
exhaustive.

Events A and B are said to be statistically independent when they do not
depend on each other, as indicated by

P(B|A) = P(B) P(A|B) = P(A) {12
Inserting Eq. (12) into Eq. (9) then gives
P(AB) = P(A)P(B)

so the joint probability of statistically independent events equals the product of the
individual event probabilities. Furthermore, if three or more events are all indepen-
dent of each other, then

P(ABC...) = P(A)P(B)P(C) ... [13]

in addition to pairwise independence.

As a rule of thumb, physical independence is a sufficient condition for statisti-
cal independence. We may thus apply Eq. (12) to situations in which events have no
physical connection. For instance, successive coin tosses are physically indepen-
dent, and a sequence such as 77H may be viewed as a joint event. Invoking the
equally likely argument for each toss alone, we have P(H) = P(T) = 1/2 and
P(TTH) = P(DP(T)P(H) = (1/2)* = 1/8—in agreement with our conclusion in
Example 8.1-1 that P(s;) = 1/8 for any three-toss sequence.
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In Example 8.1-1 we calculated the probabilities P(A) = 3/8, P(B) = 2/8, and EXAMPLE 8.1-2
P(AB) = 1/8. We’ll now use these values to investigate the dependence of events A
and B.

Since P(A)P(B) = 6/64 #+ P(AB), we immediately conclude that A and B are not
statistically independent. The dependence is reflected in the conditional probabilities
P(B|A) = ———P(AB) = 1—/§ _ P(A|B) = L(AB) = 1/—8 _1
P(A) 3/8 3 P(B) 2/8 2
so P(B|A) # P(B) and P(A|B) # P(A).

Reexamination of Fig. 8.1-1 reveals why P(B|A) > P(B). Event A corresponds
to any one of three equally likely outcomes, and one of those outcomes also corre-
sponds to event B. Hence, B occurs with frequency N,y/N, = 1/3 of the N, trials in
which A occurs—as contrasted with P(B) = Ny/N = 2/8 for all N trials. Like rea-
soning justifies the value of P(A|B).

The resistance R of a resistor drawn randomly from a large batch has five possible EXAMPLE 8.1-3
values, all in the range 40-60 (). Table 8.1-1 gives the specific values and their
probabilities.
Table 8.1-1
R: 40 45 50 55 60
Pa(R): 0.1 0.2 0.4 0.2 0.1

Let the event A be “R =< 50 {}” so
P(A) = P(R =400r R = 45 0r R = 50) = PR(40) + P(45) + P(50) = 0.7
Similarly, the event B = 45 ) < R = 55 () has
. P(B) = PR(45) + PR(50) + Pr(55) = 0.8
The events A and B are not independent since
P(AB) = Pg(45) + P(50) = 0.6
which does not equal the product P(A)P(B). Then, using Eqgs. (7) and (9),

0.6 0.6
PA+B)=07+08~-06=09 PBJA) = 07 =0.857 P(AB) = 08 =0.75
The value of P(A + B) is easily confirmed from Table 8.1-1, but the conditional
probabilities are most easily calculated from Eq. (9).
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EXERCISE 8.1-2

Referring to Fig. 8.1-1 let
D = {THT,TTH, HTT, TTT }

which expresses the event “two or three tails.” Confirm that B and D are statistically
independent by showing that P(B|D) = P(B), P(D|B) = P(D), and P(B)P(D) =
P(BD).

8.2 RANDOM VARIABLES AND PROBABILITY
FUNCTIONS

Coin tossing and other games of chance are natural and fascinating subjects for
probability calculations. But communication engineers are more concerned with
random processes that produce numerical outcomes—the instantaneous value of a
noise voltage, the number of errors in a digital message, and so on. We handle such
problems by defining an appropriate random variable, or RV for short.

Despite the name, a random variable is neither random nor a variable. Instead,

it’s a function that generates numbers from the outcomes of a chance experiment.
Specifically,

Almost an)’l relationship may serve as an RV, provided that X is real and single-
valued and that

P(X = —00) = P(X = 00) = 0

The essential property is that X maps the outcomes in S into numbers along the real

line —o < x < . (More advanced presentations deal with complex numbers.)
We’ll distinguish between discrete and continuous RVs, and we’ll develop

probability functions for the analysis of numerical-valued random events.

Discrete Random Variables and CDFs

If S contains a countable number of sample points, then X will be a discrete RV hav-
ing a countable number of distinct values. Figure 8.2-1 depicts the corresponding
mapping processes and introduces the notation x; < x, < ... for the values of X(s)
in ascending order. Each outcome produces a single number, but two or more out-
comes may map into the same number.

B
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Although a mapping relationship underlies every RV, we usually care only
about the resulting numbers. We’ll therefore adopt a more direct viewpoint and treat
X itself as the general symbol for the experimental outcomes. This viewpoint allows
us to deal with numerical-valued events such as X = g or X = g, where ¢ is some
point on the real line. Furthermore, if we replace the constant a with the independent
variable x, then we get probability functions that help us calculate probabilities of
numerical-valued events.

The probability function P(X = x) is known as the cumulative distribution
function (or CDF), symbolized by

Fy(x) £ P(X = x) 1]

Pay careful attention to the notation here: The subscript X identifies the RV whose
characteristics determine the function Fy(x), whereas the argument x defines the

event X = x so x is not an RV. Since the CDF represents a probability, it must be
bounded by

0=Fx) =1 [24]

with extreme values
Fy(—00) =0 Fy(c0) =1 12b]
The lower limit reflects our condition that P(X = —) = (, whereas the upper limit

says that X always falls somewhere along the real line. The complementary events
X = x and X > x encompass the entire real line, so

P(X > x) = 1 — Fy(x) [3]

Other CDF properties will emerge as we go along.

X(s)

O X
Xy X2 Xk

Figure 8.2-1 Sample poinis mapped by the discrete RV X(s] into numbers on the real line.

321



322

CHAPTER 8 @  Probability and Random Variables

X<a N a<X<h N X>b
/ /

b

Q9

Figure 8.2-2 Numericalvalued events along the real line.

Suppose we know F,(x) and we want to find the probability of observing a <
X = b. Figure 8.2-2 illustrates the relationship of this event to the events X < a and
X > b. The figure also brings out the difference between open and closed inequali-

ties for specifying numerical events. Clearly, the three events here are mutually
exclusive when b > a, and

PX=a)+Pa<X=b)+PX>b)=PX=00)=1
Substituting P(X = a) = Fy(a) and P(X > b) = 1 — Fy(b) yields the desired result
Pla < X =b) = Fy(b) — Fy(a) b>a (4]

Besides being an important relationship in its own right, Eq. (4) shows that Fy(x) has
the nondecreasing property Fy(b) < Fy(a) for any b > a. Furthermore, Fy(x) is con-
tinuous from the right in the sense that if € > 0O then Fy(x + €) > Fx(x) as € - 0.
Now let’s take account of the fact that a discreie RV is restricted to distinct val-
ues X, X,, . . . . This restriction means that the possible outcomes X = x; constitute a

set of mutually exclusive events. The corresponding set of probabilities will be writ-
ten as

Px) & PX=x) i=12 .. (51

which we call the frequency function. Since the x; are mutually exclusive, the prob-
ability of the event X =< x, equals the sum

P(X = x;) = Py(x;) + Px(x) + -+ + Py(x)

Thus, the CDF can be obtained from the frequency function Py(x,) via

Fy(x) = i Py(x;) (6]

This expression indicates that Fy(x) looks like a staircase with upward steps of
height Py(x,) at each x = x;. The staircase starts at Fyy(x) = 0 for x < x, and reaches

Fy(x) = 1 at the last step. Between steps, where x, < x < x,,,, the CDF remains con-
stant at Fy(x,).

EXAMPLE 8.2-1

Consider the experiment of transmitting a three-digit message over a noisy channel.
The channel has error probability P(E) = 2/5 = 0.4 per digit, and errors are statisti-
cally independent from digit to digit, so the probability of receiving a correct digit is
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P(C) =1 —2/5 =3/5 = 0.6. We’ll take X to be the number of errors in a received
message, and we’ll find the corresponding frequency function and CDF.

The sample space for this experiment consists of eight distinct error patterns,
like the head-tail sequences back in Fig. 8.1-1. But now the sample points are not
equally likely since the error-free pattern has P(CCC) = P(C)P(C)P(C) = (3/5)’ =
0.216, whereas the all-error pattern has P(EEE) = (2/5)* = 0.064. Similarly, each of
the three patterns with one error has probability (2/5) X (3/5)? and each of the three
patterns with two errors has probability (2/5)* X (3/5). Furthermore, although there
are eight points in S, the RV X has only four possible values, namely, x; = 0, 1, 2,
and 3 errors.

Figure 8.2-3a shows the sample space, the mapping for X, and the resulting
values of Py(x,). The values of Fy(x;) are then calculated via

Fe(0) = P(0)  Fy(1) = P(0) + P(1)

and so forth in accordance with Eq. (6). The frequency function and CDF are plotted
in Fig. 8.2-3b. We see from the CDF plot that the probability of less than two errors

1s Fy(2 — €) = Fy(1) = 81/125 = 0.648 and the probability of more than one error
is 1 — Fy(1) = 44/125 = 0.352.
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Let a random variable be defined for the experiment in Exercise 8.1-1 (p. 317) by
the following rule: The colors are assigned the numerical weights G = 2, R = —1,
and ¥ = 0, and X is taken as the average of the weights observed on a given trial of
two spins. For instance, the outcome RY maps into the value X(RY) = (—1 + 0)/2 =
—0.5. Find and plot Py(x;) and Fx(x;). Then calculate P(—1.0 < X = 1.0).

EXERCISE 8.2-1

Continuous Random Variables and PDFs

A continuous RV may take on any value within a certain range of the real line,
rather than being restricted to a countable number of distinct points. For instance,
you might spin a pointer and measure the final angle 6. If you take X(6) = tan® 6, as
shown in Fig. 8.2—4, then every value in the range 0 =< x < = is a possible outcome
of this experiment. Or you could take X(6) = cos 8, whose values fall in the range
—-1.0=x=1.0.

Since a continuous RV has an wuncountable number of possible values, the
chance of observing X = a must be vanishingly small in the sense that P(X = a) = 0
for any specific a. Consequently, frequency functions have no meaning for continu-
ous RVs. However, events such as X = a and a < X = b may have nonzero proba-
bilities, and Fy(x) still provides useful information. Indeed, the properties stated
before in Egs. (1)—(4) remain valid for the CDF of a continuous RV.
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Figure 8.2-3 {a) Mapping for Example 8.2-1. {b) Frequency function and CDF for the dis-
crete RV in Example 8.2-1. '
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394 Figure 8.2-4 Mapping by a continuous RY.
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But a more common description of a continuous RV is its probability density
function (or PDF), defined by

px(x) & dFy(x)/dx 17)

provided that the derivative exists. We don’t lose information when differentiating
Fy(x) because we know that Fy(—) = 0. We can therefore write

P(X =x) = Fy(x) = J" py(A) dA (8l

-0

where we’ve used the dummy integration variable A for clarity. Other important
PDF properties are

px(x) =0 J px(x)dx =1 [91
Pla < X =b) = F(b) — Fxla) = prx(x) dx ol

a

Thus,

As a special case of Eq. (10), let a = x — dx and b = x. The integral then
reduces to the differential area py(x) dx and we see that

px(x)dx = P(x — dx < X < x) (1l

This relation serves as another interpretation of the PDF, emphasizing its nature as a
probability density. Figure 8.2-5 shows a typical PDF for a continuous RV and the
areas involved in Eqgs. (10) and (11).

Px)

Px—dx<X<Xx)

Pla<X<bh)

0] v‘l__dx a b *

Figure 8.2-5 A typical PDF and the area interpretation of probabilities.
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Occasionally we’ll encounter mixed random variables having both continuous
and discrete values. We treat such cases using impulses in the PDF, similar to our
spectrum of a signal containing both nonperiodic and periodic components. Specifi-
cally, for any discrete value x, with nonzero probability Py(x,) = P(X = x;) # O, the
PDF must include an impulsive term Py (xq)8(x — x,) so that F,(x) has an appropriate
jump at x = x,. Taking this approach to the extreme, the frequency function of a dis-
crete RV can be converted into a PDF consisting entirely of impulses.

But when a PDF includes impulses, you need to be particularly careful with
events specified by open and closed inequalities. For if py(x) has an impulse at x,,
then the probability that X = x, should be written out as P(X = x;) = P(X > x,) +
P(X = x,). In contrast, there’s no difference between P(X = x;) and P(X > x,) for a
strictly continuous RV having P(X = x;) = 0.

EXAMPLE 8.2-2

Uniform PDF

To illustrate some of the concepts of a continuous RV, let’s take X = 6 (radians) for
the angle of the pointer back in Fig. 8.2—4. Presumably all angles between 0 and 27
are equally likely, so py(x) has some constant value C for 0 < x = 27 and py(x) = 0
outside this range. We then say that X has a uniform PDF.

The unit-area property requires that

=} 2
J'pX(x)dJC:J Cdx=1=C= 12w

—00 0

SO

120 0<x=2w
0 otherwise

) = 5 [u) — utx — 27)] = {

which is plotted in Fig. 8.2-6a. Integrating py(x) per Eq. (8) yields the CDF in
Fig. 8.2-6b, where
Fy(x) =x2mr 0<x=27

so, for example, P(X < 7) = Fy(7) = 1/2. These functions describe a continuous
RV uniformly distributed over the range 0 < x = 2.
But we might also define another random variable Z such that

{77 X<
X X>a

Then PZ<7m)=0,PZ=m)=PX=m)=1/2,and P(Z = z) = P(X = z) for
z > . Hence, using z as the independent variable for the real line, the PDF of Z 1s

7 =

pz(2) = %8(2 — ) + 2—17_‘— [w(z — 7) — u(z — 27)]

The impulse here accounts for the discrete value Z = .

R
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(b)
Figure 8.2-6 PDF and CDF of a uniformly distributed RV.
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Use the PDFs in Example 8.2-2 to calculate the probabilities of the following
events: () 7 <X =372, 0O)X>372, )7 <Z=3w[2,and (d) 7 = Z = 37/2.

EXERCISE 8.2-2

Transformations of Random Variables

The preceding example touched upon a transformation that defines one RV in terms
of another. Here, we’ll develop a general expression for the resulting PDF when the
new RV is a continuous function of a continuous RV with a known PDE.

Suppose we know py(x) and we want to find p,(z) for the RV related to X by the
transformation function

Z = g(X)
We initially assume that g(X) increases monotonically, so the probability of observ-
ing Z in the differential range z — dz < Z = z equals the probability that X occurs in
the corresponding range x — dx < X =< x, as illustrated in Fig. 8.2-7. Equation (10)
then yields py(z) dz = py(x) dx, from which pAz) = px(x) dxv/dz But if g(X)

decreases monotonically, then Z increases when X decreases and p,(z) =
Dx(x)(—dx/dz). We combine both of these cases by writing

A
dz

Finally, since x transforms to z = g(x), we insert the inverse transformation x =
¢7!(2) to obtain

p2(z) = px(x)

dg™ ()

12
2 2]

p2(z) = px[g"l(Z)]‘

which holds for any monotonic function.
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Z=gX
X
Figure 8.2~7 Transformation of an RY.
A simple but important monotonic function is the linear transformation

Z=aX+ B [134]
where « and 3 are constants. Noting that z = g(x) = ax + B, x = g7'(9) =
(z — B)la, and dg~(z)/dz = 1/a, Eq. (12) becomes

1 z— B
=— — 13b
pz(z) i(XIPX( - ) [13b]

Hence, p,(z) has the same shape as py(x) shifted by 8 and expanded or compressed
by «.

If g(X) is not monotonic, then two or more values of X produce the same value
of Z. We handle such cases by subdividing g(x) into a set of monotonic functions,
g1(x), g.(x), . . ., defined over different ranges of x. Since these ranges correspond to
mutually exclusive events involving X, Eq. (12) generalizes as

dgi'(2) dg;'(2)
= Tt St — |+ - 14]
p(z) = pxlg1'(2)] dz px(g2'(2)] dz [
The following example illustrates this method.
EXAMPLE 8.2-3

Consider the transformation Z = cos X with X being the uniformly distributed angle
from Example 8.2-2. The plot of Z versus X in Fig. 8.2—8a brings out the fact that Z

goes twice over the range —1 to 1 as X goes from O to 247, so the transformation is
not monotonic.

To calculate p,(z), we first subdivide g(x) into the two monotonic functions
g(x) = cosx O0<x=mw
g2(x) = cosx T < x =<2

which happen to be identical except for the defining ranges. For the range 0 < x = 7,
we have py(x) = 1/2m withx = g7'(z) = cos™! z, so dg7!(z)/dz = —(1 — z%)~'? and

ot it b f
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Equation (15) corresponds to the volume between the x-y plane and the surface
Dxxy) for the stated ranges of x and y.

If X and Y happen to be statistically independent, then their joint PDF reduces
to the product

Pxy(% ¥) = px(x)pr(y) [16]
Otherwise, the dependence of Y on X is expressed by the conditional PDF
X,
pXY( y) (7]
px(x)

which corresponds to the PDF of Y given that X = x.
The PDF for X alone may be obtained from the joint PDF by noting that P(X < x)

= P(X = x, —00 < Y < =) since the value of Y doesn’t matter when we’re only con-
cerned with X. Thus,

px(x) = J Py, ¥) dy [18]

-0

We call p,(x) a marginal PDF when it’s derived from a joint PDF per Eq. (18).

EXAMPLE 8.2-4

The joint PDF of two noise voltages is known to be
1 2
pxr(x, y) =2—e—(>’“"’+’3/2) —00 <x <00, -0 <y<oo
T

From Eq. (18), the marginal PDF for X alone is

= - L (Y- +sY2) 5 l —;c2/4joo -\ _ _1_ —x¥/4
px(x) J—oo o € dy € i e " dA o e
where we have made the change of variable A = y — x/2. In like manner,
D QO T 1
B L W

—00 2 \V 27

Thus, X and Y are not independent since py (X)pLy) # Px(x,y). But Eq. (17) yields
the conditional PDFs

1 (oo x? 1 2.
pyly|x) = (P +3p) = o+ %)

e 7’ px(xly) PRt
T 21

8.3 STATISTICAL AVERAGES

For some purposes, a probability function provides more information about an RV
than actually needed. Indeed, the complete description of an RV may prove to be an
embarrassment of riches, more confusing than illuminating. Thus, we often find it
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more convenient to describe an RV by a few characteristic numbers. These numbers
are the various statistical averages presented here.

Means, Moments, and Expectation

The mean of the random variable X is a constant my that equals the sum of the val-
ues of X weighted by their probabilities. This statistical average corresponds to an
ordinary experimental average in the sense that the sum of the values observed over
N >> 1 trials is expected to be about Nmy. For that reason, we also call my the
expected value of X, and we write E[X] or X to stand for the expectation operation
that yields my. '

To formulate an expression for the statistical average or expectation, we begin
by considering N independent observations of a discrete RV. If the event X = x;
occurs N, times, then the sum of the observed values is

Nix, + Nyxypo. = EN,-xi

Upon dividing by /N and letting V — =, the relative frequency N/N becomes P(X = x,)
= Py(x,). Thus, the statistical average value is

my = Ex,-PX(x,-) [

which expresses the mean of a discrete RV in terms of its frequency function Py(x;).
For the mean of a continuous RV, we replace Py(x,) with P(x — dx < X < x) =
Px(x) dx and pass from summation to integration so that

my = [ x p,(x) dx [2]

This expression actually includes Eq. (1) as a special case obtained by writing the
discrete PDF as

px(x) = z Py (x)8(x — x;)

Hence, when we allow impulses in the PDF, Eq. (2) applies to any RV—continuous,
discrete, or mixed. Hereafter, then, statistical averages will be written mostly in inte-
gral form with PDFs. The corresponding expressions for a strictly discrete RV are
readily obtained by substituting the frequency function in place of the PDF or, more
directly, by replacing the integration with the analogous summation.

When a function g(X) transforms X into another random variable Z, its

expected value can be found from p.(x) by noting that the event X = x transforms
to Z = g(x), so

Es00] = | stoputa) & @

-
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If g(X) = X", then E[X"] is known as the nth moment of X. The first moment, of
course, is just the mean value E[X] = my. The second moment E[X?] or X Zis called
the mean-square value, as distinguished from the mean squared m% = X2 Writing
out Eq. (3) with g(X) = X?, we have

X’ = J x* py(x) dx

-0

or, for a discrete RY,

F = Ex,z Px(xl')

The mean-square value will be particularly significant when we get to random sig-
nals and noise.

Like time averaging, the expectation in Eq. (3) is a linear operation. Thus, if
and 3 are constants and if g(X) = aX + B, then

ElaX + Bl =aX + B [4]
Although this result seems rather trivial, it leads to the not-so-obvious relation
E[XX] = XE[X] = X?

since X is a constant inside E[XX].

Standard Deviation and Chebyshev’s Inequality

The standard deviation of X, denoted by o, provides a measure of the spread of
observed values of X relative to my. The square of the standard deviation is called the
variance, or second central moment, defined by

0% 2 E[(X — my)?] (5]

But a more convenient expression for the standard deviation emerges when we
expand (X — my)? and invoke Eq. (4), so

and

oy =V X* = m} [6]

Hence, the standard deviation equals the square root of the mean-square value
minus the mean value squared.

For an interpretation of oy, let k be any positive number and consider the event
IX — my| = ko,. Chebyshev’s inequality (also spelled Tchebycheff) states that

P(|X = my| = koy) = 1/k? (74
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regardless of px(x). Thus, the probability of observing any RV outside *+k standard
deviations of its mean is no larger than 1/k2. By the same token,
P(X — my| < koy) > 1 — 1/k? (7b]
With k = 2, for instance, we expect X to occur within the range my = 20, for more
than 3/4 of the observations. A small standard deviation therefore implies a small
spread of likely values, and vice versa.
The proof of Eq. (7a) starts by taking Z = X — my and a = koy > 0. We then let
€ be a small positive quantity and note that
E[Z%] = J 2'pz(2) dz = J 2'p,(z) dz + { 2 py(z) dz
But 72> = a2 over the range a =< |z] < ©, 50
—-a o0
E[Z*] = a{ [ pAz) dz + J p22) dZ}
where the first integral inside the brackets represents P(Z = —a) whereas the second
represents P(Z = a). Therefore,
P(jz| = a) = PZ = —a) + P(Z = a) = E[Z%)/a”
and Eq. (7a) follows by inserting Z = X — my, E[Z*] = 0%, and a = koy.
To illustrate the calculation of statistical averages, let’s take the case where EXAMPLE 8.3-1

px(x) = %e’“["' —00 < x < 00

with a being a positive constant. This PDF describes a continuous RV with a
Laplace distribution.

Drawing upon the even symmetry of py(x), Egs. (2) and (3) yield
[ee] o0 2
my = J—oox %e‘“""dx =0 EX*= 2L x? %e““‘ dx = =
Hence, from Eq. (6), ox = VE[X?] — mi = V2/a.
The probability that an observed value of a Laplacian RV falls within =20 of
the mean is given by
2\/5/0 a
P(|X — 0] < 2V2/a) = J — e gy = 0.94
—2\/5/:2

as compared with the lower bound of 0.75 from Chebyshev’s inequality.
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EXERCISE 8.3-1

Let X have a uniform distribution over 0 < X =< 277, as in Example 8.2-2 (p. 326).
Calculate my, X, and oy. What’s the probability of [X — my| < 204?

Multivariate Expectations

Multivariate expectations involve two or more RVs, and they are calculated using

multiple integration over joint PDFs. Specifically, when g(X,Y) defines a function of
X and ¥, its expected value is

E[gX, V)] £ ” g(x, Y)pxy(x, ) dx dy [8]

=00
However, we’ll restrict our attention to those cases in which the multiple integration
reduces to separate integrals.

First, suppose that X and Y are independent, so pyy(x,y) = px(x)py(y). Assume

further that we can write g(X,Y) as a product in the form g(X,Y) = gx(X)g,(Y).
Equation (8) thereby becomes

E[g(X, V)] 8x(x)gy(¥)px(x)py(y) dx dy [9]

Il
| —
5 —s

- J ” g, (1), (x) dxro g,(np,(y) dy

-0 —oQ

= E[gx(X)E[gn(Y)]
If we take g(XY) = XY, for instance, then g,(X) = X and g(¥Y) = Y so E[XY] =
E[X]E[Y] or
XY =XY = mymy | [10]

Hence, the mean of the product of independent RVs equals the product of their
means.

Next, consider the sum g(X,Y) = X + ¥, where X and Y are not necessarily inde-
pendent. Routine manipulation of Eq. (8) now leads to E[X + Y] = E[X] + E[Y] or

X+Y=X+Y=my+my [11]

Hence, the mean of the sum equals the sum of the means, irrespective of statistical
independence.

Finally, let Z = X + Y so we know that m, = my + m,. But what’s the variance
027 To answer that question we calculate the mean-square value E[Z?] via

Z2=E[X*+2XY + Y] = X* +2XV + Y2
Thus,

05 =2 = (my+ my) = (XF = m}) + (Y7 = m}) + 207 — mymy)
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The last term of this result vanishes when Eq. (10) holds, so the variance of the sum
of independent RVs is

o3 =0%+ o} (12]

Equations (9)—(12) readily generalize to include three or more RVs. Keep in
mind, however, that only Eq. (11) remains valid when the RVs are not independent.
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Sample Mean and Frequency of Occurrence
Let X, X,, . . ., Xy be sample values obtained from N independent observations of a
random variable X having mean my and variance 2. Each sample value is an RV,
and so is the sum
| Z=X, +Xo+ ... + Xy
and the sample mean
u=Z/N

We’ll investigate the statistical properties of u, and we’ll use them to reexamine the
meaning of probability. L _

From Egs. (11) and (12) wehave Z = X; + X, + -+ + Xy = Nmyand 0} =
No% Thus, u = Z/N = my, whereas

0 = El(u ~ 5] = 5 Bz = 2)’) = 13

N2

Since o, = oy/ /N, the spread of the sample mean decreases with increasing A,
and p approaches my as N — oo, Furthermore, from Chebyshev’s inequality, the

probability that w differs from m, by more than some positive amount € is upper-
bounded by

P(lp — my| = €) = o'}/Ne?

Although not immediately obvious, this result provides further justification for the
relative-frequency interpretation of probability.

To develop that point, let A be a chance-experiment event and let X be a discrete
RV defined such that X = 1 when A occurs on a given trial and X = O when A does
not occur. If A occurs N, times in N independent trials, then Z = N, and 1 = N,/N.
Thus, our definition of X makes the sample mean u equal to the frequency of occur-
rence of A for that set of trials. Furthermore, since P(A) = P(X = 1) = P,(1) and
P(A°) = P4(0), the statistical averages of X are

my = 0 X Py(0) + 1 X Py(1) = P(A)
E[X?] = 0% X Py(0) + 12 X Py(1) = P(A)
oy = P(A) — P*(A)

EXAMPLE 8.3-2
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SO

_PA4) ~ P?(A)
B Ne?

We therefore conclude that, as N — o, N,/N must approach P(A) in the sense that

the probability of a significant difference between N,/N and P(A) becomes negligi-
bly small.

P(|,u—mX]26)=P{ %—P(A)’ze}

N

EXERCISE 8.3-2

Prove Eq. (11) using marginal PDFs as defined by Eq. (18), Sect. 8.2 (p. 330), for
px(x) and p(y).

Characteristic Functions %

Having found the mean and variance of a sum Z = X + ¥, we’ll now investigate the
PDF of Z and its relation to py(x) and p,(y) when X and Y are independent. This
investigation is appropriate here because the best approach is an indirect one using a
special type of expectation.

The characteristic function of an RV X is an expectation involving an auxil-
iary variable v defined by

Dy(v) = E[e™*] = J e’ py(x) dx [13]
Upon closer inspection of Eq. (13), the presence of the complex exponential e/”*
suggests similarity to a Fourier integral. We bring this out explicitly by letting v =
27t and x = fso that

D2 = | pP)e™ = 7 p (1) (14a]
Consequently, by the Fourier integral theorem,
px(f) = F[D;(271)] = j O (2m)e 7 dt [14b]

Hence, the characteristic function and PDF of a random variable constitute the
Fourier-transform pair ©x2mt) & px(f).

Now, for the PDF of a sum of independent RVs, we let Z = X + Y and we use
Egs. (13) and (9) to write

v) = E[e¥%*D] = E[e7¥ o] = E[eP¥]E[e 7] = Qly) Oylp)
Then, from the convolution theorem,

pASf) = g[qu(z“‘t)(by(zﬂ't) = px(f) *py(f)
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Appropriate change of variables yields the final result

[>e]

pz(z) = J Px(z = A)py(A) dA = J P (M)p,(z = A) dA [15]

—00 —00
Thus, the PDF of X + Y equals the convolution of py(x) and p,(y) when X and Y are
independent.

Other applications of characteristic functions are explored in problems at the
end of the chapter.
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Use Eq. (14a) to find @4 (v) for the uniform PDF p,(x) = a™! II(x/a).

EXERCISE 8.3-3

8.4 PROBABILITY MODELS

Many probability functions have been devised and studied as models for various
random phenomena. Here we discuss the properties of two discrete functions (bino-
mial and Poisson) and two continuous functions (gaussian and Rayleigh). These
models, together with the uniform and Laplace distributions, cover most of the cases
encountered in our latter work. Table T.5 at the back of the book summarizes our
results and includes a few other probability functions for reference purposes.

Binomial Distribution

The binomial model describes an integer-valued discrete RV associated with
repeated trials. Specifically,

This model thus applies to repeated coin tossing when I stands for the number of
heads in n tosses and P(H) = «. But, more significantly for us, it also applies to dig-
ital transmission when 7 stands for the number of errors in an n-digit message with
per-digit error probability a.

To formulate the binomial frequency function P,(i) = P(I = i), consider any
sequence of n independent trials in which event A occurs i times. If P(A) = «, then
P(A®) = 1 — a and the sequence probability equals a/(1 — a)"~'. The number of dif-
fergent sequences with i occurrences is given by the binomial coefficient, denoted

i), s0 we have



338

CHAPTER 8 ®  Probability and Random Variables

P(i) = (7)&(1 —a)™  i=0,1..,n [

The corresponding CDF is

~~

Fk) = D P) k=0,1...,n

i=0
These functions were previously evaluated in Fig. 8.2-3 for the case of n = 3 and
a = 2/5.

The binomial coefficient in Eq. (1) equals the coefficient of the ({ + 1) term in
the expansion of (a + )", defined in general by the factorial expression

where it’s understood that 0! = 1 when i = O or i = n. This quantity has the sym-

metry property
n n
()-(2)
We thus see that

)= ()= (=000 = ()= () =75

and so on. Other values can be found using Pascal’s triangle, tables, or a calculator
or computer with provision for factorials.

The statistical averages of a binomial RV are obtained by inserting Eq. (1) into
the appropriate discrete expectation formulas. Some rather laborious algebra then
yields simple results for the mean and variance, namely,

= na o =na(l —a) =m(l — a) (3]

where we’ve omitted the subscript [ for simplicity. The relative spread o-/m decreases
as 1/ \/r; meaning that the likely values of I cluster around m when n is large.

EXAMPLE 8.4-1

Suppose 10,000 digits are transmitted over a noisy channel with per-digit error
probability @ = 0.01. Equation (3) then gives

m = 10,000 X 0.01 =100  o*= 100(1 — 0.01) = 99

Hence, the likely range m = 2o tells us to expect about 80 to 120 errors.

Poisson Distribution

The Poisson model describes another integer-valued RV associated with repeated
trials, in that
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The resulting Poisson frequency function is

Pi) = e —— [4]

from which

m= ul ol=m

These expressions describe random phenomena such as radioactive decay and shot
noise in electronic devices.

The Poisson model also approximates the binomial model when n is very large,
o is very small, and the product na remains finite. Equation (1) becomes awkward

to handle in this case, but we can let uT = m in Eq. (4) to obtain the more conven-
ient approximation

i

P) = e 'l"—‘ [5]

Neither n nor o appears here since they have been absorbed in the mean value m = na.

339

Use Eq. (5) to estimate the probability of I = 2 errors when 10,000 digits are trans-
mitted over a noisy channel having error probability & = 5 X 1075,

EXERCISE 8.4-1

Gaussian PDF

The gaussian model describes a continuous RV having the normal distribution
encountered in many different applications in engineering, physics, and statistics.

The remarkable versatility of this model stems from the famous central limit theo-
rem, which states in essence that

IF X rep ifs the sum’ oF N mdependent random components, cnd if: ‘each component mokes only a-
- small-contribution to. the sum, then. the :CDF of X opprooches o’ goussmn ‘CDFas N becomes large,
regc:rc“ess of fhe dxsfrlbuhon of fhe |nd|v|duol componenfs. -

A more complete statement of the theorem and its proof involves sophisticated
mathematical arguments and won’t be pursued here. However, we’ll draw upon the
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implication that the gaussian model often holds when the quantity of interest results
from the summation of many small fluctuating components. Thus, for instance, ran-
dom measurement errors usually cause experimental values to have a gaussian dis-
tribution around the true value. Similarly, the random motion of thermally agitated
electrons produces the gaussian random variable known as thermal noise.

A gaussian RV is a continuous random variable X with mean m, variance o2,
and PDF

px(x) = ——=—==e = _co<x< o0 6]

This function defines the bell-shaped curve plotted in Fig. 8.4-1. The even symme-
try about the peak at x = m indicates that

PX=m)=PX>m)=3

so observed values of X are just as likely to fall above or below the mean.

Now assume that you know the mean m and variance ¢? of a gaussian RV and
you want to find the probability of the event X > m + ko. Since the integral in ques-
tion cannot be evaluated in closed form, numerical methods have been used to gen-
erate extensive tables of the normalized integral

1 * —AY2
ok) & —— J e X2 g) 7]
(k) ),

The change of variable A = (x — m)/o then shows that
P(X > m + ko) = Q(k)

We therefore call Q(k) the area under the gaussian tail, as illustrated by Fig. 8.4-2.
This figure also brings out the fact that P(m < X = m + ko) = 3 — Q(k), which
follows from the symmetry and unit-area properties of py(x).

You can calculate any desired gaussian probability in terms of Q(k) using
Fig. 8.4-2 and the symmetry of the PDF. In particular,

Py(x)

o

Figure 8.4~1 Gaussian PDF.
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Figure 8.4-2
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Px)

Area interpretation of Q(K).

PX>m+ ko) =PX=m— ko) = Q(k)
Pm<X=m+ko)=Pm—ke <X=m)=1%—-0k)
P(X — m| > ko) = 20(k)

P(|X — m| = ko) = 1 — 20(k)

[8dl
[8b]
(8c]
(8d]

Table 8.4—1 compares some values of this last quantity with the lower bound 1 — 1/&?
from Chebyshev’s inequality. The lower bound is clearly conservative, and the likely
range of observed values is somewhat less than m *= 2. We usually take the likely
range of a gaussian RV to be m = o since P(|X — m| < o) = 0.68.

Table 8.4-1

k 1- 200 1 - 1k
0.5 0.38

1.0 0.68 0.00
1.5 0.87 0.56
2.0 0.95 0.75
2.5 0.99 0.84

numerical integration. But we can then use the analytical approximation

1
27k?

O(k) =~ et k>3

This approximation follows from Eq. (7) by integration by parts.

For larger values of k, the area under the gaussian tail becomes too small for

[9]

Table T.6 at the back of the book gives a detailed plot of O(k) for 0 < k= 7.

Also given are relationships between Q(k) and other gaussian probability functions
found in the literature.
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EXAMPLE 8.4-2

Suppose you want to evaluate the probability of |[X — m| = 3 when X is gaussian
with o2 = 4. You can use Eq. (8d) and Table 8.4-1 by noting that o = 2 and ko = 3
when k = 3/ = 1.5. Hence,

P(X -~ m|=3) =P(X — m| = 1.5¢) = 1 — 20(1.5) = 0.87

EXERCISE 8.4-2

Given that X is gaussian with m = 5 and o = 8, sketch the PDF and mark the bound-
aries of the area in question to show that P(9 < X = 25) = Q(0.5) — Q(2.5) = 0.3.

Rayleigh PDF

The Rayleigh model describes a continuous RV obtained from two gaussian RVs as
follows:

Thus, as shown in Fig. 8.4-3, the Rayleigh model applies to any rectangular-to-
polar conversion when the rectangular coordinates are identical but independent
gaussians with zero mean.

To derive the corresponding Rayleigh PDF, we introduce the random angle ®
from Fig. 8.4-3 and start with the joint PDF relationship

Pro(r.@)|dr de| = pyy(x,y)|dx dy|
where
P2 = x2 4 2 @ = arctan (y/x) dxdy = rdrde
X
Figure 8.4-3 Rectangular to polar conversion.
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Since X and Y are independent gaussians with m = 0 and variance o2,

1

2TT

pxrx, y) = px(x)py(y) =

e—-(,1:2+y")/2cr2
2

Hence, including u(r) to reflect the fact that » = 0, we have

r

Pro(r, @) = e 17 u(r) [10]

2ot

The angle ¢ does not appear explicitly here, but its range is clearly limited to 27
radians.

We now obtain the PDF for R alone by integrating Eq. (10) with respect to ¢.
Taking either 0 < ¢ = 27 or —7 < ¢ = 7 yields the Rayleigh PDF

— L ~r/20" 1
Pr(r) Sa¢ u(r) (1l

which is plotted in Fig. 8.4—4. The resulting mean and second moment of R are
R = \/§ o R = 202 2]
For probability calculations, the Rayleigh CDF takes the simple form

Fer)=PR=r) = (1 - e"z/zc’z)u(r) [13]

derived by integrating pp(A) over0 = A = r.
Returning to Eq. (10), we get the marginal PDF for the random angle ® via

*° 1
Pole) = L Pra(r, @) dr = Py

so @ has a wuniform distribution over 2 radians. We also note that pre(r.) =
Pr(Nps(e), which means that the polar coordinates R and @ are statistically

independent. These results will be of use in Chapter 10 for the representation of
bandpass noise.

Pr(N)

Figure 8.4-4 Rayleigh PDF.
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EXAMPLE 8.4-3

Suppose you throw darts at a target whose bull’s eye has a radius of 3 cm. If the rect-
angular coordinates of the impact points are gaussianly distributed about the origin
with spread o = 4 cm in either direction, then your probability of hitting the bull’s
eye is given by Eq. (13) as

PR=3)=1-e?=25%

EXERCISE 8.4-3

Derive Eq. (13) from Eq. (11).

Bivariate Gaussian Distribution %

Lastly, we want to investigate the joint PDF of two gaussian RVs that are neither
identically distributed nor independent. As preparation, we first introduce a general
measure of interdependence between any two random variables.

Let X and Y be arbitrarily distributed with respective means and variances ny,
my, o, and 0. The degree of dependence between them is expressed by the corre-
lation coefficient

N !
oy Oy

o E[(X — mo)(¥ — my)] 4]
where the expectation E[(X — my)(Y — my)] is called the covariance of X and Y. At
one extreme, if X and Y are statistically independent, then E[(X — m)(Y — my)] =
El(X — my)]E(Y — my)] = 0 so the covariance equals zero and p = 0. At the other
extreme, if ¥ depends entirely upon X in the sense that ¥ = *aX, then o = (aoy)?
and the covariance equals *ao? so p = *1. Thus, the correlation coefficient ranges
over —1 < p < 1, and | p| reflects the degree of interdependence.

. When X and Y are interdependent gaussian RVs, their joint PDF is given by the
bivariate gaussian model

1 .
pxr(x,y) = e Fw /=07 [154]

2moxoy, V1 — p?

with

(x — my)? + (v — my)? _ (x = my)(y — my)p
20‘;2( 20’; Ox Oy

flxy) = [15b]

This formidable-looking expression corresponds to a bell-shaped surface over the
x-y plane, the peak being at x = m, and y = m,.

If p = 0, then the last term of Eq. (15b) disappears and pyy(x,y) = px(x)py()).
We thus conclude that

*  Uncorrelated gaussian RVs are statistically independent.

) Jp, a

b
3
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Further study leads to the additional conclusions that

The marginal and conditional PDFs derived from the bivariate gaussian PDF

with any p are all gaussian functions.

*  Any linear combination Z = «X + BY will also be a gaussian RV.

These three properties are unique characteristics of the bivariate gaussian case, and
they do not necessarily hold for other distributions.

All of the foregoing analysis can be extended to the case of three or more jointly
gaussian RVs. In such cases, matrix notation is usually employed for compact PDF

expressions.

8.1-1*

8.1-2

8.1-3

8.1-4

8.1-5*

8.1-6

8.1-7

8.5 PROBLEMS

The outcome of an experiment is an integer / whose value is equally likely to be any
integer in the range 1 = I =< 12. Let A be the event that I is odd, let B be the event
that ] is exactly divisible by 3, and let C be the event that [ is exactly divisible by 4.

Draw the Venn diagram and find the probabilities of the events A, B, C, AB, AC, BC,
and AB.

The outcome of an experiment is an integer / whose value is equally likely to be any
integer in the range 1 = I < 4. The experiment is performed twice, yielding the out-
comes I, and ,. Let A be the event that I; = [,, let B be the event that I, > I,, and let
C be the event that I, + I, = 6. Draw the Venn diagram and find the probabilities of
the events A, B, C, AB, AC, BC, and A“B.

If A and B are not mutually exclusive events, then the number of times A occurs in N
trials can be written as N, = N,z + Ny, Where N, zc stands for the number of times
A occurs without B. Use this notation to show that P(AB®) = P(A) — P(AB).

Use the notation in Prob. 8.1-3 to justify Eq. (7), (p. 316).

Let C stand for the event that either A or B occurs but not both. Use the notation in
Prob. 8.1-3 to express P(C) in terms of P(A), P(B), and P(AB).

A biased coin is loaded such that P(H) = (1 + €)/2 with 0 < |¢| < 1. Show that the
probability of a match in two independent tosses will be greater than 1/2.

A certain computer becomes inoperable if two components C, and Cy both fail. The
probability that C, fails is 0.01 and the probability that Cj fails is 0.005. However,
the probability that Cj fails is increased by a factor of 4 if C, has failed. Calculate

the probability that the computer becomes inoperable. Also find the probability that
C, fails if Cy has failed.

An honest coin is tossed twice and you are given partial information about the out-
come. (a) Use Eq. (8) (p. 317) to find the probability of a match when you are told
that the first toss came up heads. (b) Use Eq. (8) (p. 317) to find the probability of
a match when you are told that heads came up on at least one toss. (¢) Use Eq. (10)
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(p. 318) to find the probability of heads on at least one toss when you are told that a
match has occurred.

Do Prob. 8.1-8 for a loaded coin having P(H) = 1/4.
Derive from Eq. (9) (p. 318) the chain rule

P(XYZ) = P(X)P(Y|X)P(Z|XY)

A box contains 10 fair coins with P(H) = 1/2 and 20 loaded coins with P(H) = 1/4.
A coin is drawn at random from the box and tossed twice. (a) Use Eq. (11) (p. 318)
to find the probability of the event “all tails.” Let the conditioning events be the hon-

esty of the coin. (b) If the event “all tails” occurs, what’s the probability that the coin
was loaded?

Do Prob. 8.1-11 for the case when the withdrawn coin is tossed thfee times.

Two marbles are randomly withdrawn without replacement from a bag initially
containing 5 red marbles, 3 white marbles, and 2 green marbles. (a) Use Eq. (11)
(p- 318) to find the probability that the withdrawn marbles have matching colors.
Let the conditioning events be the color of the first marble withdrawn. (b) If the
withdrawn marbles have matching colors, what’s the probability that they are white?

Do Prob. 8.1--13 for the case when three marbles are withdrawn from the bag.

Let X = 3N?, where N is a random integer whose value is equally likely to be any

integer in the range —1 = N = 3. Plot the CDF of X and use it to evaluate the prob-
abilitiesof: X = 0,2 <X =3,X<2,and X = 2.

Do Prob. 8.2—-1 with X = 4 cos 7wN/3.

Let py(x) = xe ™ u(x). Find F,(x) and use it to evaluate P(X = 1), P(1 < X = 2), and
PX > 2).

Let py(x) = % ¢ Find Fy(x) and use it to evaluate P(X < 0), P(0 < X = 1), and
P(X > 1).

Suppose a certain random variable has the CDF
0 x=0
Fe(x) = < Kx? 0<x=10
100K x> 10

Evaluate K, write the corresponding PDF, and find the values of P(X = 5) and
PE<X=T).

Do Prob. 8.2-5 with
0 x=0
Fy(x) = < K sin 7x/40 0<x=10
K sin w/4 x> 10
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Given that Fy(x) = (77 + 2 tan™! x)/27r, find the CDF and PDF of the random vari-
able Zdefinedby Z=0forX<=0and Z= Xfor X > 0.

Do Prob. 82-7withZ = —1forX=0and Z = Xfor X > 0.

Let py(x) = 2e™>u(x). Find the PDF of the random variable defined by the transfor-
mation Z = 2X — 5. Then sketch both PDFs on the same set of axes.

Do Prob. 8.2-0 with Z = —2X + 1.

Let X have a uniform PDF over —1 < x = 3. Find and sketch the PDF of Z defined
by the transformation Z = VX + 1.

Do Prob. 8.2-11 with Z = |X|.
Do Prob. 8.2-11 with Z = V/|X|.
Consider the square-law transformation Z = X2. Show that

pala) = 2%/2 [p(V2) + pe(=V2) ()

Find py(y) when pyy(x,y) = ye™** Du(x)u(y). Then show that X and Y are not statis-
tically independent, and find px(x)y).

Do Prob. 8.2-15 with pyy(x,y) = [(x + y)¥40]11(/2)I1(y/6).

Show that [*,, p.(x|y) dx = 1. Explain why this must be true.

Obtain an expression for p,(y|x) in terms of py(x|y) and py(¥).

Find the mean, second moment, and standard deviation of X when px(x) = ae™"u(x)
with a > 0.

Find the mean, second moment, and standard deviation of X when py(x) =
a’xe~%u(x) with a > 0.

Find the mean, second moment, and standard deviation of X when

V2

7l + (x — a)*]

px(x) =

A discrete RV has two possible values, a and b. Find the mean, second moment, and
standard deviation in terms of p = P(X = a).

A discrete RV has K equally likely possible values, 0, g, 2q, . .., (K — 1)a. Find the
mean, second moment, and standard deviation.

Find the mean, second moment, and standard deviation of Y = a cos X, wherea is a
constant and X has a uniform PDF over 6 < x =< 0 + 2.

Do Prob. 8.3—6 for the case when X has a uniform PDF over 6 = x <6 + .
LetY = aX + B. Show that o, = || oy
LetY = X + 3. What value of 8 minimizes E{Y?]?
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Let X be a nonnegative continuous RV and let a be any positive constant. By con-
sidering E[X], derive Markov’s inequality P(X = a) = my/a.

Use E[(X = Y)?] to obtain upper and lower bounds on E[XY] when X and Y are not
statistically independent.

The covariance of X and Y is defined as Cyy = E[(X — my)(Y — m,)]. Expand this
joint expectation and simplify it for the case when: (@) X and Y are statistically inde-
pendent; (b) Yisrelatedto X by ¥ = aX + SB.

In linear estimation we estimate Y from X by writing Y =aX + B. Obtain expres-
sions for a and B to minimize the mean square error €* = E[(Y — Y)?].

Show that the nth moment of X can be found from its characteristiq function via
d n(Dx(V)

B = =K

v=20

Obtain the characteristic function of X when py(x) = ae"*u(x) with a > 0. Then use
the relation in Prob. 8.3—14 to find the first three moments.

Let X have a known PDF and let Y = g(X), so

(I)Y(V) — E[eivs(X)] - J eivg(-r)px(x).dx

—00

If this integral can be rewritten in the form

d,(v) = JOO e” h(A) dA

-0

then py(zy) = h(y). Use this method to obtain the PDF of ¥ = X? when py(x) =
2axe” " u(x).

Use the method in Prob. 8.3—16 to obtain the PDF of ¥ = sin X when X has a uni-
form PDF over |x| < /2.

Ten honest coins are tossed. What’s the likely range of the number of heads? What’s
the probability that there will be fewer than three heads?

Do Prob. 8.4—-1 with biased coins having P(H) = 3/5.

The one-dimensional random walk can be described as follows. An inebriated
man walking in a narrow hallway takes steps of equal length /. He steps forward
with probability & = 2 or backwards with probability 1 — a = 1. Let X be his dis-
tance from the starting point after 100 steps. Find the mean and standard deviation
of X.

A noisy transmission channel has per-digit error probability @ = 0.01. Calculate the
probability of more than one error in 10 received digits. Repeat this calculation
using the Poisson approximation.
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A radioactive source emits particles at the average rate of 0.5 particles per second.
Use the Poisson model to find the probability that: (a) exactly one particle is emitted
in two seconds; (b) more than one particle is emitted in two seconds.

Show that the Poisson distribution in Eq. (5), (p. 339), yields E[I] = m and E[I*] =
m® + m. The summations can be evaluated by writing the series expansion for e
and differentiating it twice.

Observations of a noise voltage X are found to have a gaussian distribution with m =
100 and o = 2. Evaluate X and the probability that X falls outside the range m * o.

A gaussian RV has X = 2 and X? = 13. Evaluate the probabilities of the events X >
Sand2 <X =5. _

A gaussian RV has E[X] = 10 and E[X?] = 500. Find P(X > 20), P(10 < X = 20),
P(0 < X =< 20), and P(X > 0).

When a binomial CDF has n >>> 1, it can be approximated by a gaussian CDF with
the same mean and variance. Suppose an honest coin is tossed 100 times. Use the
gaussian approximation to find the probability that: (a) heads occurs more than 70
times; (b) the number of heads is between 40 and 60.

Let X be a gaussian RV with mean m and variance o2, Write an expression in terms
of the Q function for P(a < X << b) witha < m < b.

A random noise voltage X is known to be gaussian with E[X] = 0 and E[X?] = 9.

Find the value of ¢ such that | X| < ¢ for: (@) 90 percent of the time; (b) 99 percent of
the time.

Write e *7/2dA = —(1/A)d(e ""/?) to show that the approximation in Eq. (9),
(p- 341), is an upper bound on Q(k). Then justify the approximation for £ >> 1.

Let X be a gaussian RV with mean m and variance o2. (@) Show that E[(X — m)"] = 0
for odd n. (b) For even n, use integration by parts to obtain the recursion relation

E[(X —m)"} = (n — 1)o? E[(X — m)"™?]
Then show forn = 2, 4, 6, . . . that
E[(X—-m)']=1:3:5-(n— 1)o"

Let X be a gaussian RV with mean m and variance ¢, Show that its characteristic
. . — 2,2 H
function is @y (v) = ™7 ¥ /2%,

Let Z = X + ¥, where X and Y are independent gaussian RVs with different means
and variances. Use the characteristic function in Prob. 8.4-15 to show that Z has a
gaussian PDF. Then extrapolate your results for

1 1
Z‘Z;X"

where the X; are mutually independent gaussian RVs.
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A random variable Y is said to be log-normal if the transformation X = In Y yields
a gaussian RV. Use the gaussian characteristic function in Prob. 8.4-15 to obtain
E[Y] and E[Y?] in terms of my and o #. Do not find the PDF or characteristic func-
tion of Y.

Let Z = X? where X is a gaussian RV with zero mean and variance . (a) Use Egs.
(3) and (13), Sect. 8.3, to show that

&, (v) = (1 ——j2cr?‘1/)"1/2

(b) Apply the method in Prob. 8.3—16 to find the first three moments of Z. What sta-
tistical properties of X are obtained from these results?

The resistance R of a resistor drawn randomly from a large batch is found to have a
Rayleigh distribution with R* = 32. Write the PDF pg(r) and evaluate the probabil-
ities of the events R > 6and 4.5 <R =S5.5.

The noise voltage X at the output of a rectifier is found to have a Rayleigh distribu-
tion with X? = 18. Write the PDF p,(x) and evaluate P(X < 3), P(X > 4), and
PRB3<X=4).

Certain radio channels suffer from Rayleigh fading such that the received signal
power is a random variable Z = X? and X has a Rayleigh distribution. Use Eq. (12),
Sect. 8.2, to obtain the PDF

pele) = e mulz)

where m = E[Z]. Evaluate the probability P(Z = km)fork = 1 and k = 0.1.

Let R, and R, be independent Rayleigh RVs with E[R?] = E[R3] = 202 (a) Use the
characteristic function from Prob. 8.4—18 to obtain the PDF of A = R%. (b) Now
apply Eq. (15), Sect. 8.3, to find the PDF of W = R? + R3.

Let the bivariate gaussian PDF in Eq. (15), (p. 344), have my = m, = 0and oy = o,
= o. Show that p,(y) and py(x|y) are gaussian functions.

Find the PDF of Z = X + 3Y when X and Y are gaussian RVs with my = 6, m, = —2,
oy = 0oy=4,and E[XT] = —22.

Let X = Y2, so X and Y are not independent. Nevertheless, show that they are uncor-
related if the PDF of X has even symmetry.

i A

it i
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I meaningful communication signals are unpredictable or random as viewed from the receiving end. Otherwise,

there would be litlle value in transmitting a signal whose behavior was completely known beforehand. Further-
more, all communication systems suffer o some degree from the adverse effects of electrical noise. The study of random
signals and noise undertaken here is therefore essential for evaluating the performance of communication systems.

Sections @.1 and 9.2 of this chapter combine concepts of signal analysis and probability to construct mathe-
matical models of random electrical processes, notably random signals and noise. Don't be discouraged if the mate-
rial seems rather theoretical and abstract, for we'll put our models to use in Sects. 9.3 through 9.5. Specifically, Sect.
9.3 is devoted to the descriptions of noise per se, while Sects. 9.4 and 9.5 examine signal transmission in the pres-
ence of noise. Most of the topics introduced here will be further developed and extended in later chapters of the text.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1.  Define the mean and autocorrelation function of a random process, and state the properties of a stationary or
gaussian process (Sect. 9.1)

2. Relate the time and ensemble averages of a random signal from an ergodic process (Sect. 9.1).

3.  Obtain the mean-square value, variance, and power spectrum of a stationary random signal, given its autocorrela-
tion function (Sect. 9.2).

4,  Find the power spectrum of a random signal produced by superposition, modulation, or filtering (Sect. 9.2).
5.  Write the autocorrelation and spectral density of white noise, given the noise temperature (Sect. 9.3).

6.  Calculate the noise bandwidth of a filter, and find the power spectrum and total output power with white noise at
the input (Sect. 9.3).

7.  State the conditions under which signal-to-noise ratio is meaningful (Sect. 9.4).
Analyze the performance of an analog baseband transmission system with noise (Sect. 9.4).
9.  Find the optimum filter for pulse detection in white noise (Sect. 9.5).

©

10.  Analyze the performance of a pulse transmission system with noise (Sect. 9.5).

9.1 RANDOM PROCESSES

A random signal is the manifestation of a random electrical process that takes place
over time. Such processes are also called stochastic processes. When time enters the
picture, the complete description of a random process becomes quite complicated—
especially if the statistical properties change with time. But many of the random
processes encountered in communication systems have the property of stationarity
or even ergodicity, which leads to rather simple and intuitively meaningful relation-
ships between statistical properties, time averages, and spectral analysis.

This section introduces the concepts and description of random process and
briefly sets forth the conditions implied by stationarity and ergodicity.
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Ensemble Averages and Correlation Functions

Previously we said that a random variable maps the outcomes of a chance experiment
into numbers X(s) along the real line. We now include time variation by saying that

We’ll represent ensembles formally by v(z,s). When the process in question is elec-
trical, the sample functions are random signals.

Consider, for example, the set of voltage waveforms generated by thermal elec-
tron motion in a large number of identical resistors. The underlying experiment
might be: Pick a resistor at random and observe the waveform across its terminals.
Figure 9.1-1 depicts some of the random signals from the ensemble v(z,s) associated
with this experiment. A particular outcome (or choice of resistor) corresponds to the
sample function v(f) = v(ss;) having the value v/(t;) = v(t;,s,) at time t,. If you
know the experimental outcome then, in principle, you know the entire behavior of
the sample function and all randomness disappears.

But the basic premise regarding random processes is that you don’t know which
sample function you’re observing. So at time ¢, you could expect any value from the
ensemble of possible values v(#,s). In other words, v(z,,s) constitutes a random vari-
able, say Vi, defined by a “vertical slice” through the ensemble at ¢t = ¢, as illus-
trated in Fig. 9.1-1. Likewise, the vertical slice at ¢, defines another random variable
V,. Viewed in this light, a random process boils down to a family of RVs.
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Figure 9.1-1 Waveforms in an ensemble v{t,s).
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Now let’s omit s and represent the random process by v(#), just as we did when we
used X for a single random variable. The context will always make it clear when we’re
talking about random processes rather than nonrandom signals, so we’ll not need a
more formal notation. (Some authors employ boldface letters or use V(¢) for the ran-
dom process and V; for the random variables.) Our streamlined symbol v(¢) also agrees
with the fact that we hardly ever know nor care about the details of the underlying
experiment. What we do care about are the statistical properties of v(¢).

For a given random process, the mean value of v(f) at arbitrary time ¢ is
defined as

N N el A Sl -
EASTR YA (1) £ E[v(®)] )

------ -

e U

Here, E{v(#)] denotes an ensemble average obtained by averaging over all the sam-
ple functions with time ¢ held fixed at an arbitrary value. Setting ¢ = ¢, then yields

~ “ E[v(1,)] = V,, which may differ from V.

To investigate the relationship between the RVs V, and V, we define the auto-
correlation function

R,(ty, 1) = Ev(t)v(t)] (2]

where the lowercase subscript has been used to be consistent with our previous work
in Chapter 3. This function measures the relatedness or dependence between V, and
V,. If they happen to be statistically independent, then R,(t,, t,) = V,V,. However,
if t, = ¢, then V, = V; and RJt,,t,) = V1. More generally, setting t, =
1, = tyields

R,(t 1) = E[v¥(1)] = v’(1)

which is the mean-square value of v(#) as a function of time.
Equations (1) and (2) can be written out explicitly when the process in question
involves an ordinary random variable X in the functional form

v(r) = g(X. 1)

Thus, at any time #, we have the RV transformation V; = g(X,z,). Consequently,
knowledge of the I?DF of X allows you to calculate the ensemble average and the
autocorrelation function via

o) = Els 0) = | sgls Opuls) d (30}
R ) = Elg n)s(t )] = | sx iste pata) &5 G

Equations (3a) and (3b) also generalize to the case of a random process defined in
terms of two or more RVs. If v(f) = g(X, Y1), for instance, then Eq. (3b) becomes
R,(t,t) = E[g(X, ¥ 1)g(X, ¥ 1)].
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Occasionally we need to examine the joint statistics of two random processes,
say v(#) and w(). As an extension of Eq. (2), their relatedness is measured by the
crosscorrelation function
A
va<t1’ tZ) = E[U(tl)w(t2)] [4]
The processes are said to be uncorrelated if, for all ¢, and ¢,,
va(tlv tZ) = U(tl) X W(tZ) . 5]
Physically independent random processes are usually statistically independent
and, hence, uncorrelated. However, uncorrelated processes are not necessarily
independent.
Consider the random processes v(t) and w(t) defined by EXAMPLE 9.1-1
v(t) =t +X  w(t)=1tY
where X and Y are random variables. Although the PDFs of X and Y are not given,
we can still obtain expressions for the ensemble averages from the corresponding
expectation operations.
The mean and autocorrelation of v(#) are found using Eqgs. (3a) and (3b), keep-
ing in mind that time is not a random quantity. Thus,
v@) =E[t+X]=t+E[X]=t+X
R,(t1, 1) = E[(t; + X)(t; + X)]
=Eltt, + (1, + )X + X2 = t;t, + (1, + )X + X°
Likewise, for w(z),
w(t) = E[tY] =¥  R,(t,,t,) = E[1,Y5,Y] = t;1,Y2
Taking the crosscorrelation of v(z) with w(t), we get
R,(t, 1) = E[(t; + X)6,Y] = E[t,t,Y + £,XY] = 1,1, + £,X¥
If X and ¥ happen to be independent, then XY = X X ¥ and
Ry (ty, 12) = 115,Y + 5XY = (1, + X)(6Y) = v(t,) X w(ty)
so the processes are uncorrelated.
Randomly Phased Sinusoid EXAMPLE 9.1-2

Suppose you have an oscillator set at some nonrandom amplitude A and frequency
wy, but you don’t know the phase angle until you turn the oscillator on and observe
the waveform. This situation can be viewed as an experiment in which you pick an
oscillator at random from a large collection with the same amplitude and frequency
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but no phase synchronization. A particular oscillator having phase angle ¢; gener-
ates the sinusoidal sample function v(f) = A cos (wgt + ¢;), and the ensemble of
sinusoids constitutes a random process defined by

v(t) = Acos (wyt + D) 7

- T
where @ is a random angle presumably with a uniform PDF over 27 radians. We’ll
find the mean value and autocorrelation function of this randomly phased sinusoid.

Since v(?) is defined by transformation of @, we can apply Egs. (3a) and (3b)
with g(®, 1) = A cos (wot + D) and pe(p) = 1/27 for 0 < ¢ < 277. As a preliminary
step, let n be a nonzero integer and consider the expected value of cos (@ + n®).
Treating o as a constant with respect to the integration over ¢,

2w

E[cos (a + nd)] = r" cos (a+nd) pe (¢)de = J

1
cos (a@ + n®)—do
oo A 2
= [sin (@ + 27n) — sina]/27n =0 n#0

But, with n = 0, E[cos a] = cos o because cos « does not involve the random vari-
able ®.

Now we find the mean value of v(f) by inserting g(®d,r) with & = w,t into Eq.
(Ba), so

v(t) = E[g(®, )] = AE[cos (ot + ®)] = 0

which shows that the mean value equals zero at any time. Next, for the autocorrela-
tion function, we use Eq. (3b) with a; = wyt, and a, = wgt,. Trigonometric expan-
sion then yields

R,(ty, t;) = E[A cos (a; + ®) X A cos (a, + D)]
= (A?/2) E[cos (@; — a3) + cos (a; + a, + 2D)]
= (A%/2){E[cos {(@; — ;)] + E[cos (a; + a, + 2®)]}
= (A%*/2) {cos (a; — a,) + 0}
and hence
R(t}, 1) = (A*/2) cos wo(t) — 1)
Finally, setting t, = ¢, = t gives
V(1) = Ry(1 1) = A7/2

so the mean-square value stays constant over time.

EXERCISE 9.1-1

Let v(t) = X + 3t where X is an RV with X = 0 and X2 = 5. Show that v(t) = 3t
and R,(t,t) = 5 + 9t,1,.
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Ergodic and Stationary Processes

The randomly phased sinusoid in Example 9.1-2 illustrates the property that some
ensemble averages may equal the corresponding time averages of an arbitrary sam-
ple function. To elaborate, recall that if g[v,(¢)] is any function of v(¢), then its time
average 1s given by

T2
<glv(t)|> = lim %f glv,(t)] dt

With v(t) = a cos (wyt + @;), for instance, time averaging yields <v(H)> = 0 =
E[v()] and <v(t)> = $a® = E[v*(1)].

Using a time average instead of an ensemble average has strong practical appeal
when valid, because an ensemble average involves every sample function rather than
just one. We therefore say that

This means that we can take time averages of one sample function to determine or at

\"Ew("\
least estimate ensemble averages. (\ﬁ npwi,:n ,
g g ,\ The definition of ergodicity requires that an ergodic process has <gl[v($)]> = 12 \M[»»"N'

E {glv(H)]} for any v,(¢) and any function glv(¢)]. But the value of <g[v,(£)]> must
be independent of ¢, so we conclude that

o2

The randomly phased sinusoid happens tévergodic, whereas the process in Exercise
9.1-1 is not since E[v(1)] varies with time.

When a random signal comes from an ergodic source, the mean and mean-
square values will be constants. Accordingly, we write mf\r-»'-ﬁwx%m

/ ey
s 2 _ 2 2 T
Elv()] =v=my, EPY(Y)] = V= o} + ml L,_\%.‘m\_‘v- [6]

where my and o denote the mean and variance of v(f). Then, observing that any
sample function has <v(f)> = E[v(f)] and <v?(#)> = E[v*(#)], we can interpret
certain ensemble averages in more familiar terms as follows:

1. The mean value my equals the dc component <v(£)>. —= =¥

2. The mean squared m$ equals the dc power <v(£)>2.
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3. The mean-square value v? equals the total average power <v?(£)>.

The variance o§ equals the ac power, meaning the power in the time-varying
component.

o dV Prrldsa  rydsaRTR

5. The standard deviation o, equals the rms value of the time-varying component.

These relations help make an electrical engineer feel more at home in the world of
random processes.

Regrettably, testing a given process for ergodicity generally proves to be a
daunting task because we must show that <g{v(f)]> = E{g{v(#)]} for any and all
glu(®)]. Instead, we introduce a useful but less stringent condition by saying that

Expressed in mathematical form, wide-sense stationarity requires that
Efv(t)] = my R(t1, ) = R,(t; — 1,) (7]

Any ergodic process satisfies Eq. (7) and thus is wide-sense stationary. However,
stationarity does not guarantee ergodicity because any sample function of an
ergodic process must be representative of the entire ensemble. Furthermore, an
ergodic process is strictly stationary in that all ensemble averages are independent
of time. Hereafter, unless otherwise indicated, the term stationary will mean wide-
sense stationary per Eq. (7).

Although a stationary process is not necessarily ergodic, its autocorrelation
function is directly analogous to the autocorrelation function of a deterministic sig-
nal. We emphasize this fact by letting 7 = #; — ¢, and taking either ; = for¢, = t to
rewrite R,(t; — t,) as

R(r) = E[u(t)u(t = 7)] = E[o(z + 7)u(?)] (8]
Equation (8) then leads to the properties
R,(—1) = R,(7) : {94l
R,(0) = v? = 0% + m? [95]
|R,(T)| = R,(0) [9d

so the autocorrelation function R,(t) of a stationary process has even symmetry
about a maximum at 7 = 0, which equals the mean-square value.

For 7 # 0, R,(7) measures the statistical similarity of v(¢) and v(¢t = 7). On the
one hand, if v(#) and v(t = T) become independent as T — <, then

R,(xc0) = 0% = m}, [10]
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On the other hand, if the sample functions are periodic with period Ty, then
R,(t £ nTy) = R,(7) n=12, ... [11]

and R,(7) does not have a unique limit as |7| — o,

Returning to the randomly phased sinusoid, we now see that the stationarity
conditions in Eq. (7) are satisfied by E[u(f)] = 0 and R, (t1,1) = (A%2) cos wy(t, — t)
= R,(t, — t,). We therefore write R (1) = (A%/2) cos w,T, which illustrates the prop-
erties in Eqgs. (9a)—(9¢). Additionally, each sample function v,(£) = A cos (wgt T ¢;)
has period Ty = 27/wy and so does R, (1), in agreement with Eq. (11).

Finally, we define the average power of a random process v(t) to be the
ensemble average of <v?(f)>, so

P & E<X()>] = <E[v(1)]> [2]

This definition agrees with our prior observation that the average power of an
ergodic process is <v?(¢)> = v?, since an ergodic process has E[v(f)] = <vi(f)>
and <E[v%()]> = E[vX()] when E[v*(#)] is independent of time. If the process is
stationary but not necessarily ergodic, then E[v*(9)] = R,(0) and Eq. (12) reduces to
P = R,(0) 3]

All stationary processes of practical interest have R,(0) > 0, so most of the sample
functions are power signals rather than finite-energy signals.

359

Random Digital Wave

The random digital wave comes from an ensemble of rectangular pulse trains like
the sample function in Fig. 9.1-2a. All pulses have fixed nonrandom duration D, but
the ensemble involves two random variables, as follows:

1. The delay T, is a continuous RV uniformly distributed over 0 < ¢; = D, indi-
cating that the ensemble consists of unsynchronized waveforms.

2. The amplitude a, of the kth pulse is a discrete RV with mean E[q,] = 0 and vari-
ance ¢?, and the amplitudes in different intervals are statistically independent
so Ela;a,) = Elaj)Elq,] = Oforj # k.

Note that we’re using the lowercase symbol g, here for the random amplitude, and that
the subscript k denotes the sequence position rather than the amplitude value. We’ll
investigate the stationarity of this process, and we’ll find its autocorrelation function.

Consider the kth pulse interval defined by kD + T, <t < (k + 1)D + T, and
shown in Fig. 9.1-22. Since v(t) = a, when ¢, falls in this interval, and since all such
intervals have the same statistics, we conclude that

Elv(t)] = E{a,] =0  E[v*(t)] = E[a;] = 0°

EXAMPLE 9.1-3
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Figure 9.1-2 Random digital wave. {a} Sample function; (b] kth pulse interval.

Being independent of time, these results suggest a stationary process. To complete
the test for wide-sense stationarity, we must find R, (t,,t,). However, since the proba-
bility function for the pulse amplitudes is not known, our approach will be based on
the expectation interpretation of the ensemble average E[v(¢))u(t,)] when ¢, and 2,
fall in the same or different pulse intervals.

Clearly, t; and ¢, must be in different intervals when ]t2 - tl\ > D, in which case
v(t) = a;and v(%,) = a, withj # kso

Elv(t))v(t,)] = Elgja,] =0 |t —1)| > D

Butif |t, — #,| < D, then either ¢, and t, are in adjacent intervals and E[v(t,)v(z,)] = 0,
or else t; and 1, are in the same interval and E[v(t))v(t,)] = Ela}] = o2
We therefore let A stand for the event *¢) and 1, in adjacent intervals” and write

E[v(t))v(t)] = E[aa]P(A) + E[ag][1 — P(A)]
=d’[1-PA)] |b—1t|<D

From Fig. 9.1-2b, the probability P(A) involves the random delay T, as well as #,
and t,. For t; < t, as shown, ¢, and t, are in adjacent intervals if t, < kD + T, < t,, and

ty—kD t, — 1
t,—kD b b

Including the other case when ¢, < t,, the probability of ¢, and ¢, being in adjacent
intervals 1s

P(A) = |t, — 1)|/D

i

b A A
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Ry(m)
o2
-p 0 D
Figure 9.1-3 Autocorrelation of the random digital wave.

and hence,
Elv(t)v(t)] = o1 = |5, — 1,|/D] =6l <D
Combining this result with our previous result for |z, — #,| > D, we have

I, — 1t
Ry(t,t2) = 0’2<1 - |2_D_l.> |, — 1| <D

Since R, (#,,t,) depends only on the time difference ¢, — t,, the random digital wave
is wide-sense stationary.

Accordingly, we now let T = ¢ — ¢, and express the correlation function in the
compact form

R(r) = 0*A(1/D)

where A(7/D) is the triangle function. The corresponding plot of R (7) in Fig. 9.1-3
deserves careful study because it further illustrates the autocorrelation properties
stated in Eqgs. (9a)~(9¢c), withm, = 0 and v? = 0% + m% = o*

The average power of this process is then given by Eq. (13) as

P =R,0) = o?

However, the process is not ergodic and the average power of a particular sample
function could differ from P. By way of example, if v,(f) happens to have a, = a, for
all k, then <v}(H)> = <ad> = a} # P. We use P as the “best” prediction for the
value of <v?()> because we don’t know the behavior of v(f) in advance.

361

Let v(f) be a stationary process and let z(#,5,) = v(t)) = v(#,). Use the fact that
E[Z(1,,t,)] = 0 to prove Eq. (9¢).

EXERCISE 9.1-2
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Gaussian Processes

A random process is called a gaussian process if all marginal, joint, and conditional
PDFs for the random variables V; = v(z;) are gaussian functions. But instead of find-
ing all these PDFs, we usually invoke the central-limit to determine if a given
process is gaussian. Gaussian processes play a major role in the study of communi-
cation systems because the gaussian model applies to so many random electrical
phenomena—at least as a first approximation.

Having determined or assumed that v(f) is gaussian, several important and
convenient properties flow therefrom. Specifically, more advanced investigations
show that:

1. The process is completely described by E[v(#)] and R,(2,,t,).

2. If R,(t,ty) = Elv(t)]Elv(t)], then v(z)) and v(t,) are uncorrelated and statisti-
cally independent.

W

If v(r) satisfies the conditions for wide-sense stationarity, then the process is
also strictly stationary and ergodic.

4. Any linear operation on v(#) produces another gaussian process.
These properties greatly simplify the analysis of random signals, and they will be

drawn upon frequently hereafter. Keep in mind, however, that they hold in general
only for gaussian processes.

EXERCISE 9.1-3

By considering R,,(¢,,t,), determine the properties of w(f) = 2v(z) — 8 when v(¢) is a
gaussian process with E[u(f)] = 0 and R,(t,,t,) = 9e~Slu—nl,

9.2 RANDOM SIGNALS

This section focuses on random signals from ergodic or at least stationary sources.
We’ll apply the Wiener-Kinchine theorem to obtain the power spectrum, and we’ll

use correlation and spectral analysis to investigate filtering and other operations on
random signals.

Power Spectrum

When a random signal u(#) is stationary, then we can meaningfully speak of its
power spectrum G,(f) as the distribution of the average power P over the frequency
domain. According to the Wiener-Kinchine theorem, G,(f) is related to the auto-
correlation R, () by the Fourier transform

G,(f) = FRy(7)]

J R, (7)e ™™ gr Nd]
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Conversely,

Ry() = FG(F)] & f G(F)e™" af (16

—c0

Thus, the autocorrelation and spectral density constitute a Fourier transform pair,
just as in the case of deterministic power signals. Properties of G,(f) include

Jm G(f) df = R,(0) = v* = P [2]
Gv(f) =0 Gv(—f) = Gv(f) (3]

The even-symmetry property comes from the fact that R (7) is real and even, since
v(?) is real.

The power spectrum of a random process may be continuous, impulsive, or
mixed, depending upon the nature of the source. By way of illustration, the ran-
domly phased sinusoid back in Example 9.1-2 has

2 2 2

Rfr) =5 cosdmfyr o G(f) =5 B =fo) + 5 S(F+ ) 14

The resulting impulsive spectrum, plotted in Fig. 9.2-14, is identical to that of a
deterministic sinusoid because the randomly phased sinusoid comes from an
ergodic process whose sinusoidal sample functions differ only in phase angle. As
contrast, the random digital wave in Example 9.1-3 has

R,(1t) = 0®A(7/D) <> G,(f) = o*Dsinc’ fD 5]

Figure 9.2—-1b shows this continuous power spectrum.

Since the autocorrelation of a random signal has the same mathematical proper-
ties as those of a deterministic power signal, justification of the Wiener-Kinchine
theorem for random signals could rest on our prior proof for deterministic signals.
However, an independent derivation based on physical reasoning provides addi-
tional insight and a useful alternative definition of power spectrum.

A A’
4 4
f f
~f 0 fo
(a) {b)
Figure 9.2-1 Power spectra. (a) Randomly phased sinusoid; [b) random digital wave.
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Consider the finite-duration or truncated random signal

A U(l‘) {t' < T/2
velt) = {o 1) > 1/2

Since each truncated sample function has finite energy, we can introduce the Fourier
transform

co T2 A
Velf,s) = f v (t)e ™ dr = 4( u(t)e ™ dt (6]
-0 -T2
Then |Vi(fs)|? is the energy spectral density of the truncated sample function
vz(t,s;). Furthermore, drawing upon Rayleigh’s energy theorem in the form

| " = | a0 - EWT(ﬁ &

~T/2 —00

the average power of v(#) becomes

T—o0
-T/2

P = lim { " E[V(D)] dt

o]

: 1 (% .1
= lim Eb Lo V(s s>!2df] = Lo tim — E[lve(£, )| af
Accordingly, we now define the power spectrum of v(#) as

G() 2 im 2. E[IVi(s;5)P°] 7

which agrees with the properties in Eqs.(2) and (3).

Conceptually, Eq. (7) corresponds to the following steps: (1) calculate the
energy spectral density of the truncated sample functions, (2) average over the
ensemble, (3) divide by T to obtain power, and (4) take the limit 7 — c. Equation
(7) provides the basis for experimental spectra estimation. For if you observe a sam-
ple function v(z,s;) for a long time 7, then you can estimate G,(f) from

G ) = ZWeFs)l”

The spectral estimate G,{f) is called the periodogram because it originated in the
search for periodicities in seismic records and similar experimental data.

Now, to complete our derivation of the Wiener-Kinchine theorem, we outline
the proof that G,(f) in Eq. (7) equals F[R,(T)]. First, we substitute Eq. (6) into
E[|VT( £5)[2 = E[V(£.5)V;(£5)] and interchange integration and expectation to get

772
Ve, 9] = H ELu()o(A)Je ™ d an
-7/2
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7
T2
=T+ T/v ; :
— :I T
T 0 T
E w=7-172
~T2
Figure 9.2-2 Integration region in the 7 — p plane.
in which
E[u(u(A)] = R,(t, A) = Ry(t — A)
Next, let 7 =t — A and w = ¢ so the double integration is performed over the region
of the 7 — w plane shown in Fig. 9.2-2. Integrating with respect to w for the two
cases 7 < 0 and 7 > 0 then yields
0 A T+T)2 T 12
E[I_VT(f, S)H = J RU(T)e'Jm(J d,u)dT + J RU(T)e—j“"<J' d,u)dT
-T -12 0 12
0 T
= J R,(T)e™ (T + 7)dr + J R,(T)e (T — 7)dr
-7 0
Finally, since 7 = —|r| for 7 < 0, we have
2] _ r |71 wr
Elvi(f, )2 =1 (1-  JR(r)e dr (8]
-7
Therefore,
.1 2 * =
jim 2. v ) = | R ar
T—co T o
which confirms that G,(f) = F_[R,(T)].
Random Telegraph Wave EXAMPLE 9.2-1

Figure 9.2-3a represents a sample function of a random telegraph wave. This signal
makes independent random shifts between two equally likely values, A and 0. The
number of shifts per unit time is governed by a Poisson distribution, with u being
the average shift rate.
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vin)

= + Vi
- 0 M
(c!
9.2-3 Random telegraph wave. (a} Sample function; (b} autocorrelation; (c] power spectrum.

We’ll find the power spectrum given the autocorrelation function
A?.
Ry(r) = (e 7+ 1)

which is sketched in Fig. 9.2-3b. From R,(7) we see that

— A A?
P =0 =R(0) =7 mj=R(*00) =

sotherms value is oy = V 02 — m% = A/2.

Taking the Fourier transform of R,(7) gives the power spectrum
A’ A
Glf) =t

apll + (ffp)?] 4 )

Jabii
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which includes an impulse at the origin representing the dc power m3 = A%4. This
mixed spectrum is plotted in Fig. 9.2-3¢. Although u equals the average shift rate,

about 20 percent of the ac power (measured in terms of o?) is contained in the
higher frequencies [f| > u.

367

To confirm in general that G,(f) includes an impuise when my # 0, let z() = v(t) — my,
and show from R,(7) that G,(f) = G,(f) + m3&(f).

EXERCISE 9.2-1

Superposition and Modulation

Some random signals may be viewed as a combination of other random signals. In
particular, let v(z) and w(z) be jointly stationary so that

va(tla t2) = RUW(tl - tZ)

and let
) = v(t) = w() 19
Then
R(1) = Ry(r) + R,(7) = [Rou(r) + Ryp(7)]
and

G(f) = G(f) + Gf) = [Gulf) + Gu(S)]

where we have introduced the cross-spectral density

Gl f) & F[R,(7)] hol

The cross-spectral density vanishes when v(f) and w(?) are uncorrelated and m,my = 0,
S0

R,(7) =R,(1) =0 [11al
Under this condition _
R(7) = R,(1) + R,(7) [1156]
G(f) = G(f) + G.(f) [1d
Z=0+w [11d]

Thus, we have superposition of autocorrelation, power spectra, and average power.

When Eg. (11a) holds, the random signals are said to be incoherent. Signals
from independent sources are usually incoherent, and superposition of average
power is a common physical phenomenon. For example, if two musicians play in
unison but without perfect synchronization, then the total acoustical power simply
equals the sum of the individual powers.
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Furthermore, the mean value of the output is

my = {j h(/\)d/\}mx = H(0)my (20]
where H(0) equals the system’s dc gain.

The power spectrum relation in Eq. (18) has additional value for the study of
linear operations on random signals, whether or not filtering is actually involved. In
particular, suppose that you know G.(f) and you want to find G,(f) when y(r) =
dx(t)/dt. Conceptually, y(f) could be obtained by applying x(¢) to an ideal differentia-
tor which we know has H(f) = j2nf. We thus see from Eq. (18) that if

y(2) = dx(z)/dt [21d]
then
G(f) = Quf ) 'G{f) [21b]
Conversely, if
y(t) = J’[ x(A)dA my =0 [224]
then
G(f) = @uf)? G(f) [22b}

These relations paralle]l the differentiation and integration theorems for Fourier
transforms.

EXAMPLE 9.2~-2

Let the random telegraph wave from Example 9.2-1 be applied to an ideal bandpass
filter with unit gain and narrow bandwidth B centered at f, = w/w. Figure 9.2-5
shows the resulting output power spectrum G,(f) = |H(/)PG(.

With G(£f.) = A*8u and B << f,, we have '

_[A*8u —B/2<|f-f|<B/2
Gy(f) B {O otherwise

and the output power equals the area under G,(f), namely
y2 = 2B X (A?/8u) = A’B/4u << A%/4m

whereas x* = A2/2. Moreover, since H(0) = 0, we know from Eq. (20) that my, = 0
even though my = A/2. Note that we obtained these results without the added labor of
finding R,(7).
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Gy(f)
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Figure 9.2-5 Filtered power spectrum in Example 9.2-2.
Hilbert Transform of a Random Signal EXAMPLE 9.2-3

The Hilbert transform x(#) was previously defined as the output of a quadrature
phase-shifting filter having

ho(t) = —  Hp(f) = —jsenf

Since |[Hy(f)|* = 1, we now conclude that if x(f) is a random signal and y(f) =
x(t), then

G(f) = G(f)  Ri(r) = FTUG(f)] = Ry(7)

Thus, Hilbert transformation does not alter the values of my or x2.
However, from Eq. (17a),

Re(r) = ho(r)*R{(7) = R(r)
where ﬁx(r) stand for the Hilbert transform of R, (7). It can also be shown that
Rys(r) = —R(7)
We’ll apply these results in the next chapter.

Let the random digital wave described by Eq. (5) (p. 363) be applied to a first-order

LPF with H(f) = [1 + j(f/B)]! and B << 1/D. Obtain approximate expressions for
G,(f) and R(7).

EXERCISE 9.2-3

9.3 NOISE

Unwanted electric signals come from a variety of sources, generally classified
as either human interference or naturally occurring noise. Human interference is
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produced by other communication systems, ignition and commutator sparking, ac
hum, and so forth. Natural noise-generating phenomena include atmospheric distur-
bances, extraterrestrial radiation, and random electron motion. By careful engineer-
ing, the effects of many unwanted signals can be reduced or virtually eliminated.
But there always remains certain inescapable random signals that present a funda-
mental limit to system performance.

One unavoidable cause of electrical noise is the thermal motion of electrons in
conducting media—wires, resistors, and so on. Accordingly, this section begins with
a brief discussion of thermal noise that, in turn, leads to the convenient abstraction
of white noise—a useful model in communication. We then consider filtered white
noise and input—output relations. Other aspects of noise analysis are developed in

subsequent chapters and the appendix. In particular, the special properties of band-
pass noise will be discussed in Sect. 10.1.

Thermal Noise and Available Power
For our purposes,

From kinetic theory, the average energy of a particle at absolute temperature J is
proportional to kJ, k being the Boltzmann constant. We thus expect thermal-noise
values to involve the product k9. In fact, we’ll develop a measure of noise power in
terms of temperature. Historically, Johnson (1928) and Nyquist (1928b) first studied
noise in metallic resistors—hence, the designation Johnson noise or resistance
noise. There now exists an extensive body of theoretical and experimental studies
pertaining to noise, from which we’ll freely draw.

When a metallic resistance R is at temperature J, random electron motion pro-
duces a noise voltage v(t) at the open terminals. Consistent with the central-limit
theorem, v(?) has a gaussian distribution with zero mean and variance

— 2wkT )?
k)

2 2 V2
v oy h

(1l

where I is measured in kelvins (K) and

k = Boltzmann constant = 1.38 X 1072 J/K

h = Planck constant = 6.62 X 10734 J-s

The presence of the Planck constant in Eq. (1) indicates a result from quantum theory.
The theory further shows that the mean square spectral density of thermal noise is

(;‘(‘-‘).‘-‘U‘," " R b

e
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2RA(f|

T

G(f) = V?/Hz (2]

which 1s plotted in Fig. 9.3-1 for f = 0. This expression reduces at “low” frequen-
cies to

g (1 P K
G,,(f)~2RkJ<1 2k?7> If] < P [2b]

Both Eq. (2a) and (2b) omit a term corresponding to the zero-point energy, which is
independent of temperature and plays no part in thermal noise transferred to a load.

Fortunately, communication engineers almost never have need for Egs. (2a) and
(2b). To see why, let room temperature or the standard temperature be

I, £ 290 K (63°F) (3]
which is rather on the chilly side but simplifies numerical work since
KTy =4 X 1072 W-s [3b]

If the resistance in question is at Jy, then G,(f) is essentially constant for |f| <
0.1kJp/h = 10'? Hz. But this upper limit falls in the infrared part of the electromag-
netic spectrum, far above the point where conventional electrical components have

ceased to respond. And this conclusion holds even at cryogenic temperatures (J =
0.001).

Therefore, for almost all purposes we can say that the mean square voltage
spectral density of thermal noise is constant at

G,(f) = 2RkI V¥Hz 4]

obtained from Eq. (2b) with &|f|/kF << 1. The one trouble with Eq. (4) is that it erro-
neously predicts v* = 0o when G,(f) is integrated over all . However, you seldom
have to deal directly with v? because v(z) is always subject to the filtering effects of
other circuitry. That topic will be examined shortly. Meanwhile, we’ll use Eq. (4) to
construct the Thévenin equivalent model of a resistance, as shown in Fig. 9.3-2a.
Here the resistance is replaced by a noiseless resistance of the same value, and the

G, ()

Figure 9.3-1 Thermal noise spectra density, V?/Hz.
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Figure 9.3-2 Thermal resistance noise. {a) Thévenin equivalent; [b) Norton equivalent.

noise is represented by a mean square voltage generator. Similarly, Fig. 9.3-254 is the
Norton equivalent with a mean square current generator having G(f) = G,(f)/R* =
2kJ/R. Both generators are shaded to indicate their special nature.

Instead of dealing with mean square voltage or current, describing thermal
noise by its available power cleans up the notation and speeds calculations. Recall
that available power is the maximum power that can be delivered to a load from a
source having fixed nonzero source resistance. The familiar theorem for maximum
power transfer states that this power is delivered only when the load impedance is
the complex conjugate of the source impedance. The load is then said to be matched
to the source, a condition usually desired in communication systems.

Let the sinusoidal source in Fig. 9.3-3¢ have impedance Z; = R, + jX,, and let
the open-circuit voltage be v,. If the load impedance is matched, so that Z, = Z% =
R, — jX,, then the terminal voltage is v,/2 and the available power is

o _ <laj2r> _ <vi(y>

¢ R 4R,

i

Using our Thévenin model, we extend this concept to a thermal resistor viewed as a

noise source in Fig. 9.3-3b. By comparison, the available spectral density at the
load resistance is

G(f) 1
G(f)=—>—==k3 W/H (5]
A thermal resistor therefore delivers a maximum power density of kJ/2 W/Hz to a
matched load, regardless of the value of R!

Zs R
As L2
I P ] 3G
- 7z, =72 GJ(f)= e
Us ) LA ok @ R
{a) (b)
Figure 9.3-3 Available power. (a] AC source with matched lead; (b) thermal resistance with

matched load.
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Calculate from Eq. (1) the rms noise voltage across the terminals of a 1 — k{} resis- EXERCISE 9.3-1
tance at J = 29 K. Then use Eq. (2b) to find the percentage of the mean square volt-
age that comes from frequency components in the range |f| < 1 GHz.

White Noise and Filtered Noise

Besides thermal resistors, many other types of noise sources are gaussian and have a

% flat spectral density over a wide frequency range. Such a spectrum has all frequency
? components in equal proportion, and 1s therefore called white noise by analogy to
! white light. White noise is a convenient model (and often an accurate one) in com-
% munications, and the assumption of a gaussian process allows us to invoke all the

aforementioned properties—but some applications (beyond our scope) may need a
more advanced model for the noise.

We’ll write the spectral density of white noise in general as

G(f) = No/2 [6d]

where N, represents a density constant in the standard notation. The seemingly
extraneous factor of 1/2 is included to indicate that half the power is associated with
positive frequency and half with negative frequency, as shown in Fig. 9.3—4a. Alter-
natively, &, stands for the one-sided spectral density. The autocorrelation function
for white noise follows immediately by Fourier transformation of G(f), so

R(r) = %8(7‘) | (6b]

as in Fig. 9.3-4b.

We thus see that R(7) = 0 for 7 # 0, so any two different samples of a gaussian
white noise signal are uncorrelated and hence statistically independent. This obser-
vation, coupled with the constant power spectrum, leads to an interesting conclu-
sion, to wit: When white noise is displayed on an oscilloscope, successive sweeps
are always different from each other; but the waveform always looks the same, no

esd
%

G(H R(7)
Ny
2
Ny
2
0 f 0 ‘
(a) (b)

Figure 9.3-4 White noise. (a) Power spectrum; (b} autocorrelation.
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matter what sweep speed is used, since all rates of time variation (frequency compo-
nents) are contained in equal proportion. Similarly, when white noise drives a loud-
speaker, it always sounds the same, somewhat like a waterfall.

The value of N, in Egs. (6a) and (6b) depends upon two factors: the type of
noise, and the type of spectral density. If the source is a thermal resistor, then the
mean square voltage and mean square current densities are

Ny, = 4RkT Ny = 4kT/R [7]

where the added subscripts v and i identify the type of spectral density. Moreover,
any thermal noise source by definition has the available one-sided noise spectral
density 2G,(f) = kJ. Other white noise sources are nonthermal in the sense that the
available power is unrelated to a physical temperature. Nonetheless, we can speak of

the noise temperature J, of almost any white noise source, thermal or nonthermal,
by defining

gNé 2Ga(f) - &
k k

[8d]

Then, given a source’s noise temperature,
Ny = kIy (8b]

It must be emphasized that Jy is not necessarily a phﬁi’cal temperature. For
instance, some noise generators have I = 10, = 3000 K (5000° F), but the
devices surely aren’t that hot.

Now consider gaussian white noise x(f) with spectral density G,(f) = Ny/2
applied to an LTT filter having transfer function H(f). The resulting output y(¢) will
be gaussian noise described by

G(f) = tH(f o [9a]
R() = 229 [|a()P) 195
y? = % ro H(f)? df [9c]

Pay careful attention to Eq. (9a) which shows that the spectral density of filtered white
noise takes the shape of |H(f)[>. We therefore say that filtering white noise produces
colored noise with frequency content primarily in the range passed by the filter.

As an illustration of filtered noise, let H(f) be an ideal lowpass function with
unit gain and bandwidth B. Then

G(f) = %H(%) R,(7) = N,B sinc 2Bt [10d]
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(a) (b)
Figure 9.3-5 White noise passed by an ideal LPF. [a] Power spectrum; [b) autocorrelation.
which are plotted in Fig. 9.3-5. Besides the spectral shaping, we see that lowpass
filtering causes the output noise to be correlated over time intervals of about 1/25.
We also see that
y? = N,B [108]
so the output power is directly proportional to the filter’s bandwidth.
Thermal Noise in an RC Network EXAMPLE 9.3-1

To pull together several of the topics so far, consider the RC network in Fig. 9.3—-6a
with the resistor at temperature J. Replacing this thermal resistor with its Thévenin
model leads to Fig. 9.3—65, a white noise mean square voltage source with G, (f) =
2RkI V?[Hz applied to a noiseless RC LPF. Since |H(f)|*> = [1 + (f/B)?]"}, the out-
put spectral density is

2REkT 1
G(Ff) = HIAPG(f)=—""" _ B=— n
The inverse transform then yields
— a7 —2mwBlT| — kT —|r|/RC
R,(7) = 2RkT 7Be = ¢ [11b]

{a) (b)

Figure 9.3-6 (@) RC network with resistance noise; [b) noise equivalent model.
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which shows that the interval over which the filtered noise voltage has appreciable
correlation approximately equals the network’s time constant RC, as might have
been suspected.
We can further say that y(¢) is a gaussian random signal with no dc component—
since x(t) 1s a zero-mean gaussian—and
— kT
v =R,(0) =" [12]
Surprisingly, y* depends on C but not on R, even though the noise source is the ther-
mal resistor! This paradox will be explained shortly; here we conclude our example
with a numerical calculation.
Suppose the resistor is at room temperature J,; and C = 0.1 uF; then

Y2 =4x1072/1077 =4 x 107 V2

and the rms output voltage is oy = 2 X 1077 = 0.2 wV. Such exceedingly small val-
ues are characteristic of thermal noise, which is why thermal noise goes unnoticed
in ordinary situations. However, the received signal in a long-distance communica-
tion system may be of the same order of magnitude or even smaller.

-
-

Noise Equivalent Bandwidth

Filtered white noise usually has finite power. To emphasize this property, we desig-
nate average noise power by N and write Eq. (9¢) in the form

Ny [ *
v | R =] Gy

Noting that the integral depends only on the filter’s transfer function, we can sim-
plify discussion of noise power by defining a noise equivalent bandwidth By (or
just the noise bandwidth) as

ol
V:

B, —J |H()|* af [13]
g J :
where

g = |H(f)|max

which stands for the center-frequency power ratio (assuming that the filter has a
meaningful center frequency). Hence the filtered noise power is

N = gIVOBN []4]




9.3 Noise

This expression becomes more meaningful if you remember that N, represents
density.

Examining Eq. (14) shows that the effect of the filter has been separated into
two parts: the relative frequency selectivity as described by By, and the power gain
(or attenuation) represented by g. Thus, By equals the bandwidth of an ideal rectan-
gular filter with the same gain that would pass as much white noise power as the fil-
ter in question, as illustrated in Fig. 9.3-7 for a bandpass filter.

Let’s apply Egs. (13) and (14) to the RC LPF in Example 9.3—1. The filter’s
center frequency isf = 0 so g = |[H(0)]? = 1, and

B, = J' df ™ 1
0

1+ (7B 20 ke sl

The reason why y? in Eq. (12) is independent of R now becomes apparent if we
write y2 = N = NyBy = (4RkF) X (1/4RC). Thus, increasing R increases the
noise density N, (as it should) but decreases the noise bandwidth By. These two
effects precisely cancel each other and y* = kJ/C.

By definition, the noise bandwidth of an ideal filter is its actual bandwidth. For
practical filters, By is somewhat greater than the 3-dB bandwidth. However, as the
filter becomes more selective (sharper cutoff characteristics), its noise bandwidth
approaches the 3-dB bandwidth, and for most applications we are not too far off in
taking them to be equal.

In summary, if y(¢) is filtered white noise of zero mean, then

PZO?,:N:gNoBN O'Yz\/Z_V:' VgNOBN []6]

This means that given a source of white noise, an average power meter (or mean
square voltage meter) willread y? = N = N,By, where By, is the noise bandwidth of
the meter itself. Working backward, the source power density can be inferred via

Ny = N/By, provided you’re sure that the noise is white over the frequency-response
range of the meter.

IH(f)P

0

Figure 9.3-7 Noise equivalent bandwidth of a bandpass filter.
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EXERCISE 9.3-2

Consider an nth-order Butterworth LPF defined by Eq. (4), p. 113. Show that the
noise bandwidth By is related to the 3-dB bandwidth B by
7B

B = 2n sin(mw/2n) 17l

Hence, By = Basn — .

System Measurements Using White Noise %

Since white noise contains all frequencies in equal proportion, it’s a convenient signal
for system measurements and experimental design work. Consequently, white noise
sources with calibrated power density have become standard laboratory instruments.
A few of the measurements that can be made with these sources are outlined here.

Noise Equivalent Bandwidth Suppose the gain of an amplifier is known, and we
wish to find its noise equivalent bandwidth. To do so, we can apply white noise to
the input and measure the average output power with a meter whose frequency
response is essentially constant over the amplifier’s passband. The noise bandwidth
in question is then, from Eq. (14), By = N/gN,.

Amplitude Response  To find the amplitude response (or amplitude ratio) of a given
system, we apply white noise to the input so the output power spectrum is propor-
tional to |H(f)|?>. Then we scan the output with a tunable bandpass filter whose band-
width is constant and small compared to the variations of |H(f)[?. Figure 9.3-8a dia-
grams the experimental setup. If the scanning filter is centered at f;, the rms noise
voltage at its output is proportional to |H(f.)|. By varying f;, a point-by-point plot of
|H(f)| is obtained.

Impulse Response Figure 9.3-85 shows a method for measuring the impulse
response A(f) of a given system. The instrumentation required is a white noise
source, a variable time delay, a multiplier, and an averaging device. Denoting the
input noise as x(z), the system output is A"x(z), and the delayed signal is x(r — t,).
Thus, the output of the multiplier is

o0
z(t) = x(t — ty)[p*x(2)] = x(t — td)J h(A)x(t — A)dA
~00
Now suppose that z(?) is averaged over a long enough time to obtain <z(#)>. If the
noise source is ergodic and the system is linear and time-invariant, then the average
output approximates the ensemble average

o

Elz(t)] = ro R(NE[x(t — t)x(t — A)]d\ = J A(MR(A — 1)dA

—~o -0

But with x(f) being white noise, Eq. (6b) says that R (A — t)) = (Ny/2)0(A — tp).

Hence,
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Wl?jte T Narrow W rms
noise — | System BPF moter [
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h s x(t
System *x(0)
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noise Multiplier <X>—>
Delay
Iq x(t -1y
(b)
Figure 9.3-8 System measurements using white noise. [a) Amplitude response; (b] impulse

response.

Ny ([ Ny
<z(t)> == 7J h()L)S(/\ — td)d/\ = 7 h(td)
and A(?) can be measured by varying the time delay ?,.
The measurement techniques in Fig. 9.3—8 have special value for industrial pro-
cessing or control systems. A conventional sinusoidal or pulsed input could drive
such a system out of its linear operating region and, possibly, cause damage to the

system. Low-level white noise then provides an attractive alternative for the test
input signal.
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At last we’re ready to investigate the effects of noise on electrical communication.
We begin here by studying baseband signal transmission systems with additive noise,
and we’ll introduce the signal-to-noise ratio as a measure of system performance in
regard to analog communication. Section 9.5 focuses on pulse transmission.

Throughout this section and Section 9.5, we’ll restrict our consideration to a
linear system that does not include carrier modulation. This elementary type of sig-
nal transmission will be called baseband communication. The results obtained for
baseband systems serve as a benchmark for comparison when we discuss carrier
modulation systems with noise in subsequent chapters.
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Additive Noise and Signal-to-Noise Ratios

Contaminating noise in signal transmission usually has an additive effect in the
sense that

For purposes of analysis, all the noise will be lumped into one source added to the

signal xg(?) at the input of the receiver. Figure 9.4-1 diagrams our model of additive
noise.

This model emphasizes the fact that the most vulnerable point in a transmission
system is the receiver input where the signal level has its weakest value. Further-
more, noise sources at other points can be “referred” to the receiver input using tech-
niques covered in the appendix.

Since the receiver is linear, its combined input produces output signal plus
noise at the destination. Accordingly, we write the output waveform as

¥p(t) = xp(2) + np(t) (1]

where xp(#) and np(#) stand for the signal and noise waveforms at the destination.
The total output power is then found by averaging y3(f) = x3() + 2xp(Hnp(t) +
nj(o). :
To calculate this average, we’ll treat the signal as a sample function of an
ergodic process and we’ll make two reasonable assumptions about additive noise:

1. The noise comes from an ergodic source with zero mean and power spectral
density G,(f);

2. The noise is physically independent of the signal and therefore uncorrelated
with it.

Under these conditions the statistical average of the crossproduct x,(f)np(f) equals
zero because xp(t) and np(t) are incoherent. Thus, the statistical average of y3(¢) yields

¥b = xp + np [2]

which states that we have superposition of signal and noise power at the destination.

Additive noise

Received G.() Destination
signal
) N Linear yp(t) =
xp(8) + — xp(2) + ¢
K 2 receiver p(® +np()

Figure 9.4-1 Model of received signal with additive noise.
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Let’s underscore the distinction between desired signal power and unwanted
noise power by introducing the notation

AN
Sp = xp Np

>
Sl
DI\)

[34]
so that

;g =8y + Np [34]

The signal-to-noise ratio will now be defined as the ratio of signal power to noise
power, symbolized by

(S/N)p £ Sp/Np = xb/ 14]
and often expressed in decibels.

This ratio provides an important and handy indication of the degree to which
the signal has been contaminated with additive noise. But note that the interpretation
of signal-to-noise ratio is meaningful only when Eq. (2) holds. Otherwise, y% would
include additional terms involving the crossproduct of signal times noise.

Superposition of signal and noise power is a helpful condition in experimen-
tal work because you can’t turn off the noise to determine Sj, alone. Instead, you
must measure N, alone (with the signal off) and measure y5 = Sp, + Np (with the
signal on). Given these measured values, you can calculate (5/), from the relation-
ship y5/Np = (Sp + Np)/Np = (S/N)p + 1.

For analytic work, we generally take the case of white noise with G,(f) = Ny/2.

If the receiver has gain gz and noise bandwidth By, the destination noise power
becomes

Np = grNoBy [5]

When the noise has a gaussian distribution, this case is called additive white gauss-
ian noise (AWGN), which is often the assumed model.

In any white-noise case, the noise density may also be expressed in terms of the
noise temperature J y referred to the receiver input, so that

Ny = kTy = kTy(Ty/Tp) =~ 4 X 1072(Fy/Tp) W/Hz [6]

where we’ve introduced the standard temperature I, for numerical convenience.
Typical values of Iy range from about 0.29, (60 K) for a carefully designed low-
noise system up to 109, or more for a “noisy” system.

Analog Signal Transmission

Figure 9.4-2 represents a simple analog signal baseband transmission system. The
information generates an analog message waveform x(t), which is to be reproduced at
the destination. We’ll model the source as an ergodic process characterized by a mes-
sage bandwidth W such that any sample function x(f) has negligible spectral content
for [f| > W. The channel is assumed to be distortionless over the message bandwidth
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Source  Transmitter Distortionless ‘White noise

Receiver Destination
channel Go(f) = Nyi2
f__—/\_—-_“—ﬁ
x(®) L xR(9) Q LPF xp(8) + nD(r)
—iie- | g
S, Sy Se \_/ R Sp+ Np
Figure 9.4-2 Analog baseband transmission system with noise.

so that xp(f) = Kx(¢t — t,), where K and ¢, account for the total amplification and time
delay of the system. We’ll concentrate on the contaminating effects of additive white
noise, as measured by the system’s signal-to-noise ratio at the destination. A

The average signal power generated at the source can be represented as S, = x?.
Since the channel does not require equalization, the transmitter and receiver merely
act as amplifiers over the message band with power gains g, and gz compensating
for the transmission loss L. Thus, the transmitted signal power, the received signal
power, and the destination signal power are related by

Sr=grx>=grS, Sg=xz=S/L Sp= xp = gxSz {71

These three parameters are labeled at the corresponding locations in Fig. 9.4-2.
The figure also shows a lowpass filter as part of the receiver. This filter has the
crucial task of passing the message while reducing the noise at the destination. Obvi-
ously, the filter should reject all noise frequency components that fall outside the mes-
sage band—which calls for an ideal LPF with bandwidth B = W. The resulting desti-
nation noise power will be N, = gp/NyW, obtained from Eq. (5) with By = B = W.
We now see that the receiver gain gz amplifies signal and noise equally. There-

fore, gz cancels out when we divide S, by Ny, and

(S/N)p = Sg/NeW (8]

This simple result gives the destination signal-to-noise ratio in terms of three funda-
mental system parameters: the signal power Sy and noise density /N, at the receiver
input, and the message bandwidth W. We can also interpret the denominator N,W as
the noise power in the message band before amplification by gz. Consequently, a
wideband signal suffers more from noise contamination than a narrowband signal.

For decibel calculations of (S/N)p, we’ll express the signal power in milliwatts
(or dBm) and write the noise power in terms of the noise temperature J . Thus,

S _ Sk Ty
N o = 10 logq m =~ Sge. T 174 ~ 101ogy ’g,—OW [9]

where the constant 174 dB comes from Eq. (6) converted to milliwatts.

Table 9.4-1 lists typical dB values of (S/N), along with the frequency range
needed for various types of analog communication systems. The upper limit of the
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frequency range equals the nominal message bandwidth W, The lower limit also has
design significance because many transmission systems include transformers or
coupling capacitors that degrade the low-frequency response.

Table 9.4-1 Typical transmission requirements for selected analog signals
Signal Type Frequency Range Signal-to-Noise Ratio, dB
Barely intelligible voice 500 Hz to 2 kHz 5-10

Telephone-quality voice 200Hz to 3.2 KHz 25-35

AM broadcast quality audio 100 Hz to S kHz 40-50

High-fidelity audio 20 Hz to 20 kHz 55-65

Video 60 Hz to 4.2 MHz 45-55

The destination signal-to-noise ratio doesn’t depend on the receiver gain, which
only serves to produce the desired signal level at the output. However, (S/N), will be
affected by any gains or losses that enter the picture before the noise has been added.
Specifically, substituting Sz = S,/L in Eq. (8) yields

(S/N)p = Sz/LNW [10]

so (S/N)p 1s directly proportional to the transmitted power Sr and inversely propor-
tional to the transmission loss L—a rather obvious but nonetheless significant con-
clusion. A

When all the parameters in Eq. (10) are fixed and (S/N), turns out to be too
small, consideration should be given to the use of repeaters to improve system per-
formance. In particular, suppose that the transmission path is divided into equal sec-
tions, each having loss L. If a repeater amplifier with noise density N, is inserted at
the end of the first section, its output signal-to-noise ratio will be

(S/N)l = Sg/L\NW

which follows immediately from Eq. (10). Repeaters are often designed so the
amplifier gain just equals the section loss. The analysis in the appendix then shows
that if the system consists of m identical repeater sections (including the receiver),
the overall signal-to-noise ratio becomes

&), =55, = (o)
N/, m\N/, mL \LNW
Compared to direct transmission, this result represents potential improvement by a
factor of L/mL,.

It should be stressed that all of our results have been based on distortionless
transmission, additive white noise, and ideal filtering. Consequently, Egs. (8)—(11)

represent upper bounds on (S/N)p for analog communication. If the noise band-
width of the lowpass filter in an actual system is appreciably greater than the
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message bandwidth, the signal-to-noise ratio will be reduced by the factor W/B,,.
System nonlinearities that cause the output to include signal-times-noise terms also
reduce (S/N)p. However, nonlinear companding may yield a net improvement.

EXAMPLE 9.4-1

Consider a cable system having L = 140 dB = 10 and I, = 57, If you want
high-fidelity audio transmission with W = 20 kHz and (S/N), = 60 dB, the neces-
sary signal power at the receiver can be found from Eq. (9) written as

Sk, + 174 — 10 log;o(5 X 20 X 10°) = 60 dB

Hence, Sz = —64 dBm =~ 4 X 1077 mW and the transmitted power must be Sy =
LSp =4 X 10" mW = 40,000 W.

Needless to say, you wouldn’t even try to put 40 kW on a signal transmission
cable! Instead, you might insert a repeater at the midpoint so that L, = 70 dB = 10"

(Recall that cable loss in dB is directly proportional to length.) The resulting
improvement factor in Eq. (11) is

L 10
le 2 X 107

=5 X 10°

which reduces the transmitted-power requirement to Sy = (4 X 10’ mW)/(5 X 106) =
8 mW—a much more realistic value. You would probably take S; in the range of
10-20 mW to provide a margin of safety.

EXERCISE 9.4-1

Repeat the calculations in Example 9.4—1 for the case of video transmission with W =
4.2 MHz and (§/N)p = 50 dB.

9.5 BASEBAND PULSE TRANSMISSION WITH NOISE

This section looks at baseband pulse transmission with noise, which differs from
analog signal transmission in two major respects. First, rather than reproducing a
waveform, we're usually concerned with measuring the pulse amplitude or arrival
time or determining the presence or absence of a pulse. Second, we may know the
pulse shape in advance, but not its amplitude or arrival time. Thus, the concept of
signal-to-noise ratio introduced in Sect. 9.4 has little meaning here.

Pulse Measurements in Noise

Consider initially the problem of measuring some parameter of a single received
pulse p(f) contaminated by additive noise, as represented by the receiver dia-
grammed in Fig. 9.5-1a. Let the pulse be more-or-less rectangular with received
amplitude A, duration 7, and energy E, = A%r. Let the noise be white with power
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p() LPF
® By> L y(8) = p(®) + n(t)

G(f) = Ny/2

v(t)

(b)

Figure 9.5-1 Pulse measurement in noise. (a] Model; (b] waveform.

spectral density G(f) = Ny/2 and zero mean value. The pulse will be passed and the
excess noise will be removed by a reasonably selective lowpass filter having unit
gain and bandwidth B = By = 1/27. Thus, the output y(¢) = p(#) + n(?) sketched in
Fig. 9.5-1b consists of noise variations superimposed on a trapezoidal pulse shape
with risetime ¢, = 1/2B,,.

If you want to measure the pulse amplitude, you should do so at some instant f,

near the center of the output pulse. A single measurement then yields the random
quantity

¥t) = A+ n(t,) =A+ e,

where €, = n(z,) represents the amplitude error. Thus, the error variance is

UE\: n2 =NOBN []]

which should be small compared to A? for an accurate measurement. Since A? =
E, /T and By = 1/27, we can write the lower bound
Ny  NoA?

2
oL =—

2T ZEP

[2]

Any filter bandwidth less than about 1/27 would reduce the output pulse amplitude
as well as the noise. Achieving the lower bound requires a matched filter as dis-
cussed later.

Measurements of pulse arrival time or duration are usually carried out by detect-
ing the instant ¢, when y(z) crosses some fixed ievel such as A/2. The noise perturba-
tion n(z,) shown in the enlarged view of Fig. 9.5-2 causes a time-position error .
From the similar triangles here we see that €,/n(t,) = t,/A, so €, = (¢t /A)n(t,) and

ot = (1,/A)’n” = (1,/A)* NoBy
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VH/
A
AL /M n(ty)

NS P
»

Figure 9.5-2 Time-position error caused by noise.

Substituting ¢, ~ 1/2By and A* = E, /7 yields

" N 0 _ N oT
4ByA*  4ByE,

o? [3]
which implies that we can make o, arbitrarily small by letting By — <« so that ¢, — 0.

But the received pulse actually has a nonzero risetime determined by the transmis-
sion bandwidth B;. Hence,

v

5 NO No'T
O-t

= [4]
4BrA*  4BrE,

and the lower bound is obtained with filter bandwidth By = B;—in contrast to the
lower bound on o4 obtained with By = 1/27.

EXERCISE 9.5-1

Suppose a 10-us pulse is transmitted on a channel having By = -800 kHz and IV, =
E,/50. Calculate o 4/A and o/T when: (a) By = 1/27; (b) By = Br.

Pulse Detection and Matched Filters

When we know the pulse shape, we can design optimum receiving filters for detect-
ing pulses buried in additive noise of almost any known spectral density G,(f). Such
optimum filters, called matched filters, have extensive applications in digital com-
munication, radar systems, and the like.

Figure 9.5-3a will be our model for pulse detection. The received pulse has

known shape p(¢) but unknown amplitude A, and arrival time £,, so the received sig-
nal is

xilt) = A,p(t = 1o) 150l
Thus, the Fourier transform of xg(#) will be

Xp(f) = ApP(f)e7/0 : [55]
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[a) (b)
Figure 9.5-3 Pulse detection in noise. (a) Model; {b] filtered output.

where P(f) = F[p(#)]. The total received pulse energy is

E,= J IXR(f)Pdf:A;%J |P(F)| df 15}

—00 -0

To detect the pulse in the face of additive noise, the receiving filter should compress
the pulse energy into an output pulse with peak amplitude A at some specific instant,
say t =ty + ¢, and the filter should also minimize the rms output noise. The output
waveform would thus look something like Fig. 9.5-3b. We seek the filter ‘transfer
function H(f) that achieves this goal, given p(t) and G,(f).

First, we write the peak pulse amplitude in terms of H(f) and P(f), namely,

A= °J7’_1[H(f)XR(f)]\ = APJ H(f)P(f)e™ ™ df (6]

t=ty+1¢,
ot la oo

Next, assuming that the noise has zero mean, its output variance is

= | o &

We want to maximize the ratio of peak output amplitude A to rms noise o or,
equivalently,

| mpyrremas

AN —0
O

EGRAGE,

where H(f) is the only function at our disposal. Normally, optimization requires the
methods of variational calculus. But this particular problem (and a few others) can
be solved by adroit application of Schwarz’s inequality.
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For our present purposes we draw upon the inequality from p. 128 in the form

fm V(f)W*(f)dfr .
_Tm V() df } L o

where V(f) and W(f) are arbitrary functions of f. The left-hand side of this inequal-
ity is identical to Eq. (7) with

V(f) = H(F)VG(f)
AH()P(f)es _ AP(f)et
V() VG,(f)

and the inequality becomes an equality when V(f) is proportional to W(f). There-
fore, if V(f) = KW(f)/Ag, then we obtain the maximum value

W) =

AV ) J © |P(f)I?
_— — 8
(3).=# G Y ®
The corresponding optimum filter must have
PH(f)e
H =K———— 9
opt(f) Gn(f) [ ]

where K is an arbitrary gain constant. Observe that |H,(f)| is proportional to |P(f)|
and inversely proportional to G,(f). Hence, the optimum filter emphasizes those fre-
quencies where the pulse spectrum is large and deemphasizes those frequencies
where the noise spectrum is large—a very sensible thing to do.

In the special but important case of white noise with G, (f) = Ny2, Eq. (8)
reduces to

A 24 [ _25
(0> =N Lo \P(F)|*df = N, [10]

max

which brings out the significance of the energy E, for pulse detection. The impulse
response of the optimum filter is then

2k o 1 2K
hom(t) = F {Vo P(f)e™ ] =F0p(td - 1) [11]

The name matched filter comes from the fact that A,(¢) has the same shape as the
pulse p(f) reversed in time and shifted by ¢,. The value of ¢, equals the delay between
the pulse arrival and the output peak, and it may be chosen by the designer.
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Sometimes the matched filter turns out to be physically unrealizable because
how(t) has precursors for ¢ < 0. However, a reasonable approximation may be
obtained by taking #, large enough so that the precursors are negligible.

Consider the rectangular pulse shape p(f) = u(f) — u(t — 7). Find hgy,(f) from Eq. EXERCISE 9.5-2
(11) when K = Ny2, and determine the condition on ¢, for realizability of the

matched filter. Then use the convolution A, (£) xg(t) to obtain the peak value A of the
output pulse.

9.6 PROBLEMS

9.1-1* The random variable X has a uniform distribution over 0 = x =< 2. Find v(z),
R,(t).1,), and v?(¢) for the random process v(z) = 6e¥’,

9.1-2 Do Prob. 9.1-1 with v(f) = 6 cos Xt.

9.1-3 Let X and Y be independent RVs. Given that X has a uniform distribution over —1 =

x = 1and that Y =2 and Y? = 6, find v(t), R,(¢,.,t,), and v*(z) for the random
process v(t) = (Y + 3Xnt.

9.1-4 Do Prob. 9.1-3 with v(¢) = Ye*.
9.1-5 Do Prob. 9.1-3 with v(¢) = Y cos Xt.

9.1-6% Letv(t) = A cos 2wFt + @) where A is a constant and F and ® are RVs. If ® has a
uniform distribution over 27 radians and F has an arbitrary PDF pz(f), show that

2 roo
' Ru(tl’ tz) = 7 J’ Ccos 277/\(t1 - t?.)pF(/\) dA

Also find v(¢) and V*(2).

' 9.1-7* Let X and Y be independent RVs, both having zero mean and variance o2. Find the
crosscorrelation function of the random processes

I v(t) = X cos wyt + Y sin wyt

w(t) = Y cos wyt — X sin wyt

| 9.1-8 Consider the process v(t) defined in Prob. 9.1-7. (@) Find @ and R,(t,,t,) to con-

firm that this process is wide-sense stationary. (b) Show, from E[v%(£)] and <vi(H)>,
that the process is not ergodic.

‘ 9.1-9 Let v(f) = A cos (wyt + P), where A and P are independent RVs and P has a uni-
form distribution over 27r radians. (a) Find v(¢) and R,(t,,5,) to confirm that this

. process is wide-sense stationary. (b) Show, from E[v?(#)] and <v?(f)>, that the
l process is not ergodic.
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Let z(¢) = v(f) — v(t + T), where v(t) is a stationary nonperiodic process and 7 is a
constant. Find the mean and variance of z(¢) in terms of R (7).

Do Prob. 8.1-10 with z(t) = v(®) + vt — D).

A certain random signal has R,(7) = 16e “®7" + 9. Find the power spectrum and
determine the signal’s dc value, average power, and rms value.

Do Prob. 9.2-1 with R,(7) = 32 sinc? 87 + 4 cos 87.

Consider the signal defined in Prob. 9.1-6. Show that G,(f) = (A%4)(ps(f) +

pr(—f)1. Then simplify this expression for the case when F = f;, where f; is a
constant.

Consider the spectral estimate G,(f) = |Vi(f, s)|)/T. Use Eq. (8), p. 365, to show
that E[G,(f)] = (T sinc® fT) * G,(f) What happens in the limit as 7 — ®?

Let v(t) be a randomly phased sinusoid. Show that Eq. (7), p. 364, yields G,(f) in
Eq. (4), p. 363.

Modify Egs. (115)—(11d), p. 367, for the case when v(¢) and w(t) are independent
stationary signals with mymy # 0. Show from your results that R, (%) = (my = my)?
and that z> > 0.

Let v(#) and w(t) be jointly stationary, so that R,,(¢,,t,) = R,,(t; — %,). Show that
Ry(T) = Ryp(~7)
What’s the corresponding relationship between the cross-spectral densities?

Let z(t) = v(®) — v(t + 1), where v(¢) is a stationary random signal and 7 is a con-
stant. Start with R (¢,t,) to find R (7) and G,(f) in terms of R,(7) and G,(f).

Do Prob. 9.2-8 with z(¢#) = v(t) + v(t — T).

Let z(¢) = A cos 2mfit + ®@)) cos 2nfot + D,), where 4, f,, and f, are constants, and
®, and @, are independent RVs, both uniformly distributed over 2+ radians. Find
G,(f) and simplify it for the case f| = f;.

Confirm that Ry(7) = h(—7) * R, (7).

Let y(t) = dx(¢)/dt. Find R, (1) and R, (7) in terms of R.(7) by taking the inverse
transforms of G,(f) and G (f).

Let y(t) = x(t) — ax(t — T), where « and T are constants. Obtain expressions for
G,(f) and R (7).

Use the relation in Prob. 9.2-7 to show that
R:(r) = —I%X(T)

The moving average of a random signal x(z) is defined as

t+T/2

¥(t) = %J x(A) dA
=T/2
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Find H(f) such that y(t) = h(#)"x(¢) and show that

Ry(r) = -;: fT (1 - |—;’)Rx(7 ~ A)dA

Derive Eq. (2b), p. 373, by using series approximations in Eq. (2a), p. 373.

Use Eq. (176), p. 369, to show that Eq. (90), p. 376, can be written in the alternate
form

R,(1) = % fo h(t)h(t + 7)dt

Find G,(f), R,(7), and }7 when white noise is filtered by the zero-order hold on
p. 241.

Do Prob. 9.3-3 with a gaussian filter having H(f) = Ke™ @7,

Do Prob. 9.3-3 with an ideal BPF having gain K and delay ¢, over the frequency
range f, — BR2 < |f| < f, + B/2.

Do Prob. 9.3-3 with an ideal HPF having gain K and delay ¢, over the frequency
range |f| = £,

Figure P9.3-7 represents a white-noise voltage source connected to a noiseless RL

~ network. Find G,(f), R(7), and y? taking y(¢) as the voltage across R.

R

Gy(f) = Ng,/2 @ 2 L
Figure P9.3-7

Do Prob. 9.3-7 taking y(#) as the voltage across L.

The spectral density of the current i(?) in Fig. P9.3~7 is G{f) = Ny,/(2|R + jwL|?).1f
the source represents thermal noise from the resistance, then the equipartition the-
orem of statistical mechanics requires that $Li®> = k7. As a consequence, show
that Ny, = 4RkJ, in agreement with Eq. (7), p. 376.

Thermal noise from a 10 k() resistance at room temperature is applied to an ideal
LPF with B = 2.5 MHz and unit gain. The filtered noise is applied to a full-wave
rectifier, producing z(¢) = |y(¢)|. Calculate the mean and rms value of z(f).

Do Prob. 9.3-10 with a half-wave rectifier, so that z(r) = 0 for y(z) < 0.

Thermal noise from a 10 k() resistance at room temperature is applied to an ideal
LPF with B = 2.5 MHz and unit gain. The filtered noise voltage is then applied to a
delay line producing z(¢) = y(t — T). Use Egs. (14) and (15), p. 344, to find the joint
PDF of the random variables ¥ = y(¢) and Z = z(¢{) when 7 = 1 us.
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Do Prob. 9.3-12 with 7 = 0.1 us.
Find By for the gaussian LPF in Prob. 9.3—4. Compare By, with the 3-dB bandwidth B.

Impulse noise, which occurs in some communication systems, can be modeled as
the random signal

(0= D AB(—T)

k=-00

where the A and 7 are independent sets of random variables. The impulse weights
A, are independent and have zero mean and variance o2, The delay times T} are gov-
ermned by a Poisson process such that the expected number of impulses in time T
equals uT. Use Eq. (7), p. 364, to show that impulse noise has a constant spectral
density given by G (f) = uo?.

Calculate (S/N)p in dB for a baseband system with I, = J, W = 4 MHz, and Sz =
0.02 pW.

Calculate (S/N)p in dB for a baseband system with &y, = 57, W = 2 MHz, and
S = 0.004 uW.

A baseband analog transmission system with W = 5 kHz has (S/N), = 46 dB when
Sy = 100 mW. If the receiver bandwidth is changed accordingly, what value of S;is
appropriate to: (a) upgrade the system for high-fidelity audio; (b) downgrade the
system for telephone-quality voice?

Consider an AWGN baseband transmission system with W = 10 kHz. Express
(S/N)p in a form like Eq. (8), p. 384, when the receiving filter is: (a) a first-order
LPF with B = 15 kHz; (b) a second-order Butterworth LPF with B = 12 kHz.

Consider a baseband transmission system with additive white noise and a distorting
channel having |[H(f)? = 1/{L[1 + (f/W)4}. The distortion is equalized by a

receiving filter with |Hg(f)]? = [K/|Hc(f)I2TI(f/2W). Obtain an expression for
(S/N)p in the form like Eq. (10), p. 385.

Do Prob. 9.4-5 with |[H(H)|? = V{L[1 + QAW))}.

A baseband signal with W = 5 kHz is transmitted 40 km via a cable whose loss is @ =
3 dB/km. The receiver has I = 109, (a) Find Sy needed to get (S/N)p, = 60 dB.
(b) Repeat the calculation assuming a repeater at the midpoint.

A cable transmission system with L = 240 dB has m = 6 equal-length repeater sec-

tions and (§/N)p, = 30 dB. Find the new value of (S/N)p if: (@) m is increased to 12;
(b) m is decreased to 4.

The cable for a 400-km repeater system has @ = 0.5 dB/km. Find the minimum

number of equal-length repeater sections needed to get (S/N)p = 30 dB if S/N,W =
80 dB.

If all other parameters of a cable transmission system are fixed, show that the num-
ber of equal-length repeater sections that maximizes (S/N) is m = 0.23Lg.
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The open-circuit signal voltage output of an oscillator is A cos 27fyt. The oscillator
has a noiseless source resistance R and internally generated thermal noise at temper-
ature 9 y. A capacitance C is connected across the output terminals to improve the

signal-to-noise ratio. Obtain an expression for S/NV in terms of C, and find the value
of C that maximizes S/N.

A baseband pulse transmission system has By = 1/7, Ty = T, and E, = 1072 J.
Find (o 4/A).

Show that 0, /¢, = 03/A = V' NyBy+/E, when By < Br.

A baseband pulse transmission system has 7 = 5 us, By = 1 MHz, and N, = 10712
W/Hz. Find the minimum value of E, so that o, = A/100, and calculate the corre-
sponding value of o /7.

A baseband pulse transmission system has 7 = 50 us, By = 1 MHz, and Ny = 10712
W/Hz. Find the minimum value of E, so that o, = 7/100, and calculate the corre-
sponding value of o 4/A.

A baseband pulse transmission system has 7 = 1 ms, By = 1 MHz, and Ny = 1072,
Find the minimum value of £, and the corresponding value of By so that oy = A/100
and o, = 1/1000.

A rectangular pulse with duration 7 has been contaminated by white noise. The
receiving filter is a first-order LPF with 3-dB bandwidth B >> 1/7, rather than a
matched filter. Obtain an expression for (A/¢)? in terms of E o No-

Do Prob. 9.5-6 for arbitrary B.

Let the shape of a received pulse be p(f) = A(#/7). Find the characteristics of the
matched filter assuming white noise. Then find the condition on #, so that this filter
can be realized.

Let the shape of a received pulse be p(f) = e *u(¢). Find the characteristics of the
matched filter assuming white noise. Then find the condition on f; so that a good
approximation of this filter can be realized.
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his chapter rounds out our study of analog modulation with an examination of system performance in the presence
of contaminating noise. Our emphasis will be on CW modulation systems, but we'll also look at analog pulse
modulation.

We'll begin with the properties of the bandpass noise that appears in CW modulation systems. The assumption
of bandpassiltered white noise from a stationary gaussian process leads to mathematical descriptions that we
employ to investigate additive noise effects in linear and exponential modulation systems. Our work culminates in a
relative comparison of the several types of CVW modulation. Then we'll examine the effects of additive noise on
phase-lock loops and analog pulse modulation.

Further comparisons including both CW and pulse modulation will be made in Chap. 16, based upon absolute
standards derived from information theory.

OBJECTIVES

After studying this chapter and working the exercises, you should be able to do each of the following:

1. Sketch the noise power spectrum at the input of a CW demodulator (Sect. 10.1).

2.  Write the quadrature and envelope-and-phase expressions for bandpass noise, and relate the components to the
power spectrum (Sect. 10.1).

3.  Write expressions for the predetection and postdetection signal-plus-noise when a CW modulation system has
additive noise (Sects. 10.2 and 10.3).

4.  Sketch the noise power spectrum and calculate the noise power at the output of a CW demodulator with input
bandpass noise (Sects. 10.2 and 10.3).

5. Explain the meaning and significance of threshold effect, deemphasis improvement, and wideband noise reduc-
tion (Sect. 10.3).

6. Calculate (S§/N),, and the threshold level, if any, for a CW modulation system with specified parameters (Sects.
10.2 and 10.3).

7.  Select a suitable analog CW modulation type, given the desired system performance and constraints (Sect. 10.4).
Describe the effects of additive noise on phase-lock loop performance (Sect. 10.5).

9.  Determine suitable parameters for a PAM, PDM, or PPM system given the desired (S/N)p (Sect. 10.6).
10.  Explain the meaning and significance of false-pulse threshold effect in PDM or PPM (Sect. 10.6).

®

3

10.1 BANDPASS NOISE

Although we must give individual attention to the effects of noise on specific types of
analog modulation, all analog CW communication systems have the same general
structure and suffer from bandpass noise. This section summarizes the system mod-
els and describes bandpass noise, assuming that the noise comes from an additive
white gaussian noise (AW GN) process. In particular, we’ll state the statistical proper-
ties of the quadrature components and the envelope and phase of bandpass noise. The
stated properties are subsequently justified by studying the correlation functions.
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10.1  Bandpass Noise

System Models

Figure 10.1-1 depicts our generalized model of an analog CW communication sys-

tem. The message x(¢) is a lowpass signal coming from an ergodic process with
bandwidth W, normalized such that

x() =1 S, =x*=<x}(t)>=1

All message signal averages will be taken in the statistical sense over the ensemble.

The channel has transmission loss L but otherwise provides nearly distortion-
less transmission and negligible time delay. (A distorting channel would require
equalization by a bandpass device located before the detector because demodulation
is a nonlinear operation—except for synchronous detection which permits baseband
equalization.) To minimize notational changes, the modulated signal at the output of

the channel will be represented by x.(¢) with carrier amplitude A,. The received sig-
nal power is then

%]
N
I
I
Tl
™)

(1]

The corresponding transmitted waveform is \/Zxc(t), SO our previous expressions
for Sy still apply but with A, replaced by \/LA,.

We’ll model the entire predetection portion of the receiver as a bandpass filter
with transfer function Hi(f) having unit gain over the transmission bandwidth By .
‘We can ignore any predetection frequency translation since it has the same effect on
signal and noise—which is also true for any predetection gain. Thus, in the usual

case of superheterodyne receiver, Hy(f) is the frequency response of the IF ampli-
fier with fir = f..

Under the foregoing conditions with the assumption of additive noise at the
receiver’s input, the total signal-plus-noise at the detector becomes

v(t) = x (1) + n(2) [2]

where n(?) represents the predetection noise. Eventually, we’ll recast v(#) in envelope-
and-phase or quadrature carrier form as

u(r) = A1) cos [wt + ¢, (1)] = vi(t) cos wt — v,(t) sin w.t

Noise: G(f) = No/2

NLT x(8) ‘ ) Rec;c\iver \
O e \ [ Cramner |50 BPF pet 20 LPE
St L He(f) Hp
Sp=x2 v(e) = x,(6) + nt)

Figure 10.1-1 Model of a CW communication system with noise.
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which facilitates analysis of the demodulated signal-plus-noise y(¢). Lastly, the
demodulated waveform goes through a lowpass filter with Hp(f) to yield the final
output yy(#) at the destination. This postdetection filtering may include deemphasis
or other processing operations.

The additive form of Eq. (2) together with the reasonable assumption of statis-
tically independent signal and noise allows us to write

V2 =x2 4+ n? =S + Ng [3]

where N = n? is the predetection noise power. Before discussing the signal-to-
noise ratio, we’ll turn off the signal and examine Ny by itself.

Figure 10.1-2a isolates that part of the system diagram relevant to Ny. Here, we
treat the channel noise plus any noise generated in the predetection portion of the
receiver as being equivalent to white noise. Hence, the filtered output n() has spec-
tral density

GAf) = 2P

as sketched in Fig. 10.1-2b. The density parameter N, includes all noise referred to
the input of the receiver. We then say that

Figure 10.1-2b is based upon a predetection filter with nearly square frequency
response, so its noise bandwidth equals By and

No Ny
G(fi= 5 Gu(f)= '2_|HR(f)|2
Hg(f)
{a)
G.(f)
N,
N, > Hg(f 7
[ 1 2 B — v
— —A—A— —
_fc fc+ aBT f::_aBT fc
(b)

Figure 10.1-2 Bandpass filtered white noise. {a} Block diagram; [b] power spectrum.
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A less selective filter would, of course, pass more noise power.

Note that the carrier frequency f. does not necessarily fall in the center of the
passband in Fig. 10.1-2b. We’ve wntten the lower cutoff as f, — aBr to include the
symmetric-sideband case (o« = 1/2) and the suppressed-sideband case (a = 0 or 1).

Needless to say, the value of By depends upon the message bandwidth W and the
type of modulation.

From Egs. (3) and (4), we now define the predetection signal-to-noise ratio

(E) a Sk _ Sk (5]
N/Jg Nz NyBr
which looks similar to the destination signal-to-noise ratio Sg/N,W defined in Sect.

9.4 relative to baseband transmission. But (S/N)g should not be confused with
Sg/NoW. To bring out the distinction, we’ll introduce the system parameter

v & Sp/N,W (6]
such that
(5) =¥
Ny Br!

and hence (S/N)g = v since By = W. You should keep in mind the interpretation that
v equals the maximum destination S/N for analog baseband transmission with iden-
tical values of Si and N, at the receiver. By the same token, Egs. (5) and (7) are actu-
ally upper bounds on (S/N )z since the various imperfections in a practical system
inevitably degrade the signal-to-noise ratio to some extent.

Quadrature Components
Now let n(t) be a sample function of an AWGN process. Then

Ps0 R=oh= N,

which follows from the absence of a dc component in G,(f). And the shape of G,(f)
in Fig. 10.1-2b suggests expressing the noise in the usual bandpass form

n(t) = ny(t) cos wt — ny(r) sin wt (8]

with in-phase component nf) and quadrature component n,(f). These components
are jointly stationary and gaussian, like n(f), and have the following properties:

n,=n, =0 n(t)n,(t) =0 [9d]

S
Il

2=npl=n?= Ny [95]

S
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G (f+fulf+ 1) Culf=f) M-l f+f)]

Nyl2

-(1-a)B; -aBr O aB; (1-a)Br

- By 0 By

Figure 10.1-3 Lowpass power spectra of the quadrature components of bandpass noise.

{a) General case; (b} symmetric-sideband case; (¢} suppressed-sideband case.

Equation (9a) means that the random variables n,(f) and n,(z) are independent at any

instant ¢, so their joint probability density function is the product of identical gauss-
ian PDF’s.

The power spectral densities of the quadrature components are identical low-
pass functions related to G,(f) by

G.(f) = G (f) = Gf + fu(f + fo) + G(f ~ fIL — u(f = f)] Dol

where the term G,(f + fou(f + f.) simply stands for the positive frequency portion -

of G,(f) translated downward and G,(f — f)[1 — u(f — f.)] stands for the negative-
frequency portion translated upward. These terms then overlap and add for |f| <
aBy, as illustrated by Fig. 10.1-3a. Figure 10.1-35 shows the complete overlap in
the symmetric-sideband case (« = 1/2), and Fig. 10.1-3¢ shows the lack of overlap
in the suppressed-sideband case (@ = O or 1). When G,(f) has local symmetry

around =*f,, as reflected in Fig. 10.1-3), the quadrature components are uncorre-
lated processes.

EXERCISE 10.1-1

Sketch G,(f) and G, (f) when |Hg(f)| has the VSB shaping shown in Fig. 10.1-4
for f> 0.
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ydin

-1 0 1 4

f~f MHz

Figure 10.1-4

Envelope and Phase

As an alternative to Eq. (8), we also want to express bandpass noise in the form
n(t) = A,(t) cos [wt + ¢,(t)] (1]

with envelope A,(f) and phase ¢,(¢). The standard phasor diagram in Fig. 10.1-5
relates our two sets of components. Clearly, at any instant of time,

n
Al =n?+ n, ¢, = tan”! = [124d]

n;

and conversely

n; = A, cos ¢, ng = A, sin ¢, [12b]

These nonlinear relationships make spectral analysis of A, and ¢, difficult, even
though we know G, (f) and G, (f). However, the lowpass spectrum of the quadra-
ture components suggests that the time variations of A,(¢) and ¢,(¢) will be slow
compared to f,, in agreement with the bandpass nature of n(f).

Furthermore, Eq. (12a) constitutes a rectangular-to-polar conversion of inde-
pendent gaussian RV, just like the one that led to the Rayleigh distribution. We thus
conclude that the PDF of the envelope is a Rayleigh function given by

An 2 n
PafAn) = e MM u(A,) (13]
R

Figure 10.1-5 Phasor diagram for bandpass noise components.
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with mean and second moment
A, = VaNg/2 A= 2N,
The probability that A, exceeds some specified positive value a is then

P(A, > a) = /s [14]

These results follow from Egs. (11)—(13) in Sect. 8.4.
The phase ¢, has a uniform PDF over 27 radians, independent of A,. Hence,

n> = A2 cos¥wt + ¢,) = A2 X 1/2 = Ny
which explains the factor of 2 in A—g = 2Ng.

EXERCISE 10.1-2

Suppose bandpass noise with Ny = 1 uW is applied to a one-ohm resistor. Calculate
the mean and rms value of the envelope voltage. Also evaluate P(A, > 24,).

Correlation Functionskx

The properties of the quadrature components of bandpass noise were presented
without proof in order to put the important results up front. Now we’ll outline the
derivation of those results by drawing upon various correlation functions. This

analysis brings together concepts and relations from several previous chapters to
shed further light on bandpass noise.

We begin with the fictitious lowpass equivalent noise waveform defined by
A PN —iw
nep (1) = z[n(t) + ja(t)]e 7™

in which 7(t) is the Hilbert transform of the bandpass noise n(f). The lowpass nature

of ng,(t) is easily confirmed by deterministic Fourier transformation. But the quad-
rature components of n(¢) should be such that

2ln(t) + Jng(8)] = ne,(1)
Thus, equating the real and imaginary parts of n,,() yields
n(t) = n(t) cos wt + n(t) sin w.t [154d]
ng(t) = n(t) cos w.t — n(t) sin w.t [15b]

which establishes explicit relationships between the quadrature components and 7(z).
This expression contains much valuable information, as follows:

1. Itstates the physically obvious fact that n,(t) and n.(#) depend entirely on n(H)—
remember that n(t) represents a linear operation on n(z).

If n(¢) is gaussian then n(t) is gaussian, and since Eq. (15) shows that the quad-

rature components are linear combinations of gaussian RVs at any instant, they
must also be gaussian.

il
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L

Equation (15) provides the starting point for correlation analysis.

4. Equation (15) brings out the importance of Hilbert transforms in the study of
bandpass noise.

The Hilbert transform of a random signal was previously considered in Exam-
ple 9.2-3. Applying those results to the case at hand, we have

Gﬁ(f) = Gn(f) Rﬁ(T) = RH(T) “60]
and
Rin(T) = Ry(7)  Ru(r) = —Ry(7) (1651

Here, I%n(q-) stands for the Hilbert transform of R,(7), defined by ﬁ”(q-) =
ho(T)*R, (1) with ho(T) = 17T

Having completed the necessary groundwork, we proceed to the autocorrela-
tion function of the in-phase component n,(z). Into the basic definition

R, (61— 1) = E[n(t)ni(t — 7)]

we insert Eq. (15a) and perform some manipulations to get
Roft,t = 7) = 3{[Ru(7) + Ro(m) ] cos ot + [Rin(7) = Ro(r)] sim s

+ [Ra(7) = Ra(r)] cos (2t = 7) + [Ranlr) + Rpa(r)] sin (2t — 1)}
This cumbersome expression then simplifies with the help of Eq. (16) to
R,(t,t — ) = R,(7) cos w. + ]%n(’T) sin @, T

which 1s independent of z The same result holds for the autocorrelation of n(f).
Thus

R,(1) = R, (1) = R,(r) cos w,r + R,(7) sin w7 171

so the quadrature components are stationary and have identical autocorrelation and
spectral density functions.

To obtain the power spectral density via Fourier transformation of Eq. (17), we
note that

F[Ro(7) cos w7] = 5[G(f ~ £.) + Gu(f + £2)]

Then, using the convolution and modulation theorems,

F[Ru(7)] = Fo[ho(r)1F[R(7)] = (—jsenf)Gi(f)
and

F[R,(7) sin w.t] = F[R (1) cos (o — 7/2)]

= —[—jsen (f = £)Gf = f)]+ 4[—jsen (f+ £)G.(f+ £)]
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Therefore,
G (f) =G, (f) =3[l +sen (f+ £)IG(f+ f)
+3[1 = sgn(f— £)]G.(f = £)

which reduces to Eq. (10) because the first term vanishes for f < —f,. whereas the
second term vanishes for f > f£..

Finally, a similar analysis for the crosscorrelation of the quadrature components
produces

R, (T) = Ry(7) sin @, — ]%n(’r) Cos w,T (18]

and

FRon (M) = H{G(f + fu(f+ 1) = G(f— L —u(f~ )]} 19

If G,(f) has local symmetry around f = =f,, then the right-hand side of Eq. (19)
equals zero for all f. This means that R, , (1) = 0 for all 7, so the quadrature com-
ponents are uncorrelated and statistically independent processes.

Y,

£

i b i

10.2 LINEAR CW MODULATION WITH NOISE

Now we’re prepared to deal with the situation in Fig. 10.2-1. The linearly modu-
lated signal x.(#) is contaminated by AWGN at the input to the receiver. Predetec-
tion bandpass filtering produces v(f) = x(t) + n(f) with x> = Sp and n* = N; so

(£> _ Sk _ Se _W
N)x Ni NeBy B’

The bandpass noise can be expressed in quadrature form as

n(r) = n,t) cos wt — ny(t) sin wt

Sl

where rT,z = n, = Ny = NyBy. The demodulation operation will be represented by
one of the following idealized mathematical models:

vi(1) Synchronous detector
t) = —
(1) At) — A, Envelope detector
6 =20
1 2 u(t) = x (1) + n(2)

Xc(f) BPF b (&) LPF }’D(t)

() t
5 A T (s) ) B [(s)
NJ/R S N/p

Figure 10.2-1 Model of receiver for CW modulation with noise.
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These models presuppose perfect synchronization, and so forth, as appropriate. The
term 4, = <A,(t)> reflects the dc block normally found in an envelope detector. A
detection constant could be included in our models but it adds nothing in the way of
generality.

The questions at hand are these: Given x(¢) and the type of detector, what’s the
final signal-plus-noise waveform yp(t) at the destination? And if the signal and noise
are additive at the output, what’s the destination signal-to-noise ratio (S/N),?

Synchronous Detection

An ideal synchronous detector simply extracts the in-phase component of v(¥). If the
modulation is DSB, then x(f) = A, x(¢) cos w. so

v(r) = [A. x(t) + n(t)] cos wt — ny(t) sin w. 1]
and y(t) = v{2) = A, x(¢) + n(0). Thus, if the postdetection filter approximates an
ideal LPF with bandwidth W,

yp(t) = Ax(z) + nyt) (2]

‘We see that the output signal and noise are, indeed, additive, and that the quadrature
noise component n,(t) has been rejected by the detector.
Furthermore, if the predetection filter has a relatively square response with

bandwidth By = 2W centered at f;, then the output noise power will take the shape of
Fig. 10.1-3b. Hence,

Go(f) = NoT1(f/2W) fa

which looks like lowpass-filtered white noise. Under these conditions, we don’t

need any postdetection filter beyond the LPF within the synchronous detector.

Next we obtain the postdetection S/N from Eq. (2) by taking the mean square
values of the signal and noise terms. Upon noting that N, = n2 and Sp=
A2x? = A2S,, whereas Sp = x2 = A2S,/2, we get

S Sp 28z S
N/p Np NyBr N /g
or, since By = 2W,
S S
(—) =—% -y DSB [4b]
N/p NW

Therefore, insofar as noise is concerned, DSB with ideal synchronous detection has
the same performance as analog baseband transmission.

You might have suspected a different result in view of the predetection noise
power Ny = NyBr = 2N, W. However, the signal sidebands add in a coherent fashion,
when translated to baseband, whereas the noise sidebands add incoherently. The
sideband coherence in synchronous detection of DSB exactly counterbalances the
double-sideband noise power passed by the predetection filter.

407



408

CHAPTER 10 &  Noise in Analog Modulation Systems

The preceding analysis is readily adapted to the case of an AM signal x.(f) =
Al + x(®)] cos wt, in which we’ve taken p = 1 for simplicity. If the synchronous
detector includes an ideal dc block, then yp(f) will be as given in Eq. (2) so S, =
A%S, and N, = n?. But when we account for the unmodulated carrier power in Sg =
A%(1 + S))/2 we find that S, = 25,Sp/(1 + S,) and

(ﬁ) > (§> L AM (5]
NJp 1+S\N/Je 1+8.7

This ratio is bounded by (S/N)p = /2 since S, =< 1.

Full-load tone modulation corresponds to S, = 1/2 and (S/N)p = /3, which is
about 5 dB below that of DSB with the same parameters. More typically, however,
S, = 0.1 and AM would be some 10 dB inferior to DSB. AM broadcasting stations
usually combat this effect with special techniques such as volume compression and
peak limiting of the modulating signal to keep the carrier fully modulated most of
the time. These techniques actually distort x(#).

For SSB modulation (or VSB with a small vestige) we have x(z) =
(A/2)[x(t) cos wt *= X(t) sin w.t] with By = W and Sz = A2S/4. Synchronous
detection rejects the quadrature component of both the signal and noise, leaving

yp(t) = %Acx(t) + nyt) (6]

so Sp = A2S./4 = Si. Since f. falls at either edge of an ideal predetection filter,
G, (f) has the shape of Fig. 10.1-3c. Hence,

G.(f) = 2TU(2W) 7

and N, = n—,2 = NyW. Therefore,

S S
—_— == —_— = 8
W) ()= s o

which shows that SSB yields the same noise performance as analog baseband or
DSB transmission.

Finally, consider VSB plus carrier. If the vestigial band is small compared to W,
then the predetection and postdetection noise will be essentially the same as SSB.

But the signal will be essentially the same as AM with all the information-bearing
power in one sideband. Hence,

(§_> ~ (—S-> - VSB + C (9}
NJp 1+S,\NJy 1+5.7

X

assuming that By = Wand p.= 1.
To summarize the results in Egs. (2)—(9), we state the following general proper-
ties of synchronously detected linear modulation with noise:

1. The message and noise are additive at the output if they are additive at the
detector input.
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2. If the predetection noise spectrum is reasonably flat over the transmission band,
then the destination noise spectrum is essentially constant over the message band.

3. Relative to (S/N)p, suppressed-sideband modulation has no particular advantage
over double-sideband modulation because the coherence property of double side-
band compensates for the reduced predetection noise power of single sideband.

4. Making due allowance for the “wasted” power in unsuppressed-carrier systems,
all types of linear modulation have the same performance as baseband trans-
mission on the basis of average transmitted power and fixed noise density.

These statements presume nearly ideal systems with fixed average power.
Comparisons based on peak envelope power indicate that SSB yields a postde-
tection S/N about 3 dB better than DSB and 9 dB better than AM, assuming a rea-

sonably smooth modulating signal. But SSB is inferior to DSB if the message has
pronounced discontinuities causing envelope horns.

409

Suppose the predetection filter for a USSB signal actually passes f, — W/4 < |f| <
f. + W. Use Fig. 10.1-3a to sketch the postdetection noise power spectrum. Then
show that (S/N), will be about 1 dB less than the value predicted by Eq. (8).

EXERCISE 10.2-1

Envelope Detection and Threshold Effect

Inasmuch as AM is normally demodulated by an envelope detector, we should

examine how this differs from synchronous detection when noise is present. At the
detector input we have

v(t) = AJf1 + x(£)] cos wt + [n,(r) cos wt — ny(t) sin w.t] “hol

where we’re still taking p = 1. The phasor construction of Fig. 10.2-2 shows that
the resultant envelope and phase are

A= VIA[L + x(1)] + n()F + [n (1) [

ng(t) '
1+ x(0)] + nlo)

¢,(¢) = tan™! N

P . .
Ac[1+x] n

Figure 10.2-2 Phascr diagram for AM plus noise with {S/Njp > 1.
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Clearly, further progress calls for some simplifications, so let’s assume that the sig-
nal is either very large or very small compared to the noise.
Taking the signal to dominate, say A2 > n?, then A [l + x(¢)] will be large

compared to n(t) and n(?), at least most of the time. The envelope can then be
approximated by

A1) = AQ1 + x())] + ni() [12]

which shows the envelope modulation due to noise, similar to interference modula-
tion. An ideal envelope detector reproduces the envelope minus its dc component, so

yo(t) = A1) — A, = Acx(1) + nyt)

which is identical to that of a synchronous detector. The postdetection S/N is then as
previously given in Eq. (5). Likewise, Eq. (9) will hold for envelope detection of
VSB + C. L L

But bear in mind that these results hold only when A2 >> n?. Since A%/n? is
proportional to Sz/NyBr, an equivalent requirement is (S/N)z =>> 1. (There is no such
condition with synchronous detection.) Thus, providing that the predetection signal-
to-noise ratio is large, envelope demodulation in the presence of noise has the same
performance quality as synchronous demodulation.

At the other extreme, with (S/N); << 1, the situation is quite different. For if
A? << n? the noise dominates in a fashion similar to strong interference, and we
can think of x(¢) as modulating n(¢) rather than the reverse. To expedite the analysis
of this case, n(z) is represented in envelope-and-phase form n(t) = A,(¢) cos [w .t +
¢,(1)], leading to the phasor diagram of Fig. 10.2-3. In this figure the noise phasor is

the reference because we are taking n(f) to be dominant. The envelope is then
approximated by the horizontal component, so

A1) = A (1) + AJ1 + x(2)] cos ¢,(2) [13)
from which
¥(t) = A,(t) + Ax(z) cos (1) — 4, (14]
where A, = \/m.

The principal output component is obviously the noise envelope A, (t), as
expected. Furthermore, there is no term in Eq. (14) strictly proportional to the mes-

A [1+X]

s
l A [
A [l +x]cos ¢y

Figure 10.2-3 Phasor diagram for AM plus noise with (S/N)g << 1.
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sage x(#). Though signal and noise were additive at the input, the detected message
term 18 rultiplied by noise in the form of cos ¢,(z), which is random. The message
is therefore hopelessly mutilated, and its information has been lost. Under these cir-
cumstances, an output signal-to-noise ratio is difficult to define, if not meaningless.

The mutilation or loss of message at low predetection signal-to-noise ratios is
called threshold effect. The name comes about because

With synchronous detection, the output signal and noise are always additive. True,

the message is buried in noise if (S/N)z << 1, but the identity of x(¢) is preserved.
Actually, the threshold is not a unique point unless some convention is estab-

lished for its definition. Generally speaking, threshold effects are minimal if A, >

A, most of the time. To be more specific we define the threshold level as that value
of (S/N)g for which A, = A, with probability 0.99. Then

)
— =41n 10 = 10 [154d]
(N Rth
or, since (S/N)g = v/2,
Yn = 81n 10 = 20 [15b]

If (S/N)r < (S/N)gw (01 ¥ < vy), message mutilation must be expected, along with
the consequent loss of information.

Looking at the value of (S/N)gy, and recalling that (S/N)p << (S/N)g leads to a
significant conclusion:

For audio transmission demands a postdetection signal-to-noise ratio of 30 dB or
more, s0 (S/N)g is well above the threshold level. In other words, additive noise
obscures the signal long before multiplicative noise mutilates it. On the other hand,
sophisticated processing techniques exist for recovering digital signals buried in
additive noise. Hence, 1if AM is used for digital transmission, synchronous detection
may be necessary to avoid threshold effects.

Lastly, let’s consider how an envelope detector can act in a synchronous fashion
and why this requires large (S/N)g. Assuming the input noise is negligible, the diode
in an envelope detector functions as a switch, closing briefly on the carrier peaks of
the proper polarity; therefore the switching is perfectly synchronized with the carrier.
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But when noise dominates, the switching is controlled by the noise peaks and syn-
chronism 1s lost. The latter effect never occurs in true synchronous detectors, where
the locally generated carrier can always be much greater than the noise.

EXERCISE 10.2-2

Use Eq. (14), p. 404, to derive the threshold level in Eq. (154a). Specifically, show
that if S, =1, then P(A. = A,) = 0.99 requires (S/N)z = 41n 10 = 10.

10.3 EXPONENTIAL CW MODULATION WITH NOISE

This section deals with noise in analog PM and FM systems. The demodulation
operation will be represented by

b, (1) Phase detector
=9, .
55 du(1) Frequency detector

As we saw 1n Chap. 5, the inherent nonlinear nature of exponential modulation leads
to analytic difficulties—all the more so when noise must be considered. We’ll there-
fore begin with the large signal condition (S/V); =>> 1 to determine the postdetection
noise characteristics and signal-to-noise ratios for PM and FM. Our efforts here pay
off in results that quantify the valuable wideband noise reduction property, a prop-
erty further enhanced by postdetection FM deemphasis filtering.

But wideband noise reduction involves a threshold effect that, unlike the AM
case, may pose a significant performance limitation. We’ll qualitatively discuss

operation near threshold, and take a brief look at the FM feedback receiver as one
technique for threshold extension.

Postdetection Noise

The predetection portion of an exponential modulation receiver has the structure
previously diagrammed in Fig. 10.2-1 (p. 406). The received signal is

x(t) = A, cos [t + ¢(1)]
where ¢(f) = $ax(t) for a PM wave or ¢(t) = 27fyx(t) for an FM wave. In either

case, the carrier amplitude remains constant so

Sg = 3A? <§> - [
R 24%¢ N R ZNOBT
and (S/N)y is often called the carrier-to-noise ratio (CNR). The predetection BPF
is assumed to have a nearly ideal response with bandwidth B, centered at f..
Figure 10.3-1 portrays our model for the remaining portion of the receiver, with
the detector input v(t) = x(f) + n(t) = A, cos [wt + ¢,(2)]. The limiter sup-

. ot s It ek,
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10.3  Exponential CW Modulation with Noise

u(1) = x (1) + n(t) = A, (0 cos [wt + ¢,(1)]

\ — ;
Aﬂi;Lumter ?—— Discriminator \ HDlZf‘) &- ¥

(). - Ad2 Bo(H) PM
R N, = .
oB y() 2%%([) M

Figure 10.3-1 Model for detection of exponential modulation plus noise.

presses any amplitude variation represented by A,(f). To find the signal and noise
contained in ¢,(7), we express n(f) in envelope-and-phase form and write

v(r) = A, cos [wt + ¢(2)] + A(2) cos [wt + ¢,(1)] (2]
The phasor construction of Fig. 10.3-2 then shows that

B o Aa) sin [9( — ()]
¢u(2) = $(r) +t A, + A (1) cos [¢,(t) — ()]

The first term of ¢,(¢) is the signal phase by itself, but the contaminating second
term involves both noise and signal. Clearly, this expression is very unclear and we
can’t go much further without some simplifications.

A logical simplification comes from the large-signal condition (S/N)z =2 1, so
A.>> A, (1) most of the time and we can use the small-argument approximation for
the inverse tangent function. A less obvious simplification ignores ¢(z) in Eq. (3),
replacing ¢,(1) — ¢() with ¢,(¢) alone. We justify this step for purposes of noise
analysis by recalling that ¢, has a uniform distribution over 27 radians; hence, in

the sense of ensemble averages, ¢, — ¢ differs from ¢, only by a shift of the mean
value. With these two simplifications Eq. (3) becomes

¢u(t) = o(1) + Y(2) [4]

(3]

where

JAN An sin ¢)n(t) . 1
O \/2_San(z) (5]

in which we’ve substituted n, = A, sin ¢, and Sg = A%/2.

Figure 10.3-2 Phasor diagram of exponential modulation plus noise.
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Equation (4) says that the signal phase ¢(f) and the equivalent phase noise s(f)
are additive under the large-signal condition. Equation (5) brings out the fact that
s(t) depends on the quadrature component of n(f) and decreases with increasing
signal power.

Now let ¢(f) = 0 and consider the resulting noise () at the output of a phase
detector. The PM postdetection noise power spectrum has the shape of G, (f) in
Fig. 10.1-35 (p. 402), but multiplied by 1/2S because /% = rzé/QSR. Hence,

Mo (]
Gl,ﬁ(f) = 25, H<BT> {61

which is essentially flat over |f| < By/2, as sketched in Fig. 10.3-3.

Since B2 exceeds the message bandwidth W, save for the special case of
NBPM, the receiver should include a postdetection filter with transfer function
Hp(f) to remove out-of-band noise. If Hy(f) approximates the response of an ideal

LPF with unit gain and bandwidth W, then the output noise power at the destination
will be

NoW
Sk

w

Ny = J Gy(f)df = PM {71
4

The shaded area in Fig. 10.3-3 equals Np.

Next consider a frequency detector with input ¢,(t) = (1), so the output is the
instantaneous frequency noise

' 1. 1
£ 2 (D) = ——==n,(0) 8]
2m 20V28,
Thus, from Eq. (21), p. 370, we get the FM postdetection noise power spectrum
1 Nof? (f )
G = (27f)? G = I = [91
() = @nf P g Gnl) = 5T 5

This parabolic function sketched in Fig. 10.3-4 has components beyond W < B7/2,
like PM, but increases as f2.

Figure 10.3-3 PM postdetection noise spectrum.




10.3

Figure 10.3-4 FM postdetection noise spectrum.

If we again take the postdetection filter to be an essentially ideal LPF that
passes the shaded region in Fig. 10.3-4, the destination noise power will be

w NW?3
ND:J Ge(f)df = —

M [10]
—W 3SR

However, if we also incorporate deemphasis filtering such that |Hp(f)| =
|Hao (OIIF2W) with |He(f)] = [1 + (f/Bae)?1 ™ then

o= [t =2 () ()]

de de

In the usnal case where W/B,, = 1, Eq. (114a) simplifies to

Np =~ NyB3W/Sg Deemphasized FM
since tan~! (W/By,) = /2 << W/B,.
Let’s summarize and comment on our results up to this point as follows:

[11b]

The postdetection noise spectral densities in PM and FM have out-of-band
components that call for postdetection filtering.

o

The PM noise spectrum is flat, like linear modulation except for the out-of-band
components.

The FM noise spectrum increases parabolically, so higher baseband signal fre-
quencies suffer more noise contamination than lower frequencies. Deemphasis
filtering compensates for this effect, provided that the message has been preem-

phasized at the transmitter.
The destination noise power Np in PM and FM decreases as S increases, a phe-

nomenon known as noise quieting. You may hear noise quieting on an FM
radio with the volume turned up when you tune between stations.

Exponential CW Modulation with Noise

Find the deemphasized noise spectrum |Hy.( f)lng( f) without a lowpass cutoff for

|f| > W. Then estimate the total area Np, assuming By > W > B,,. Compare your
result with Eq. (115).

EXERCISE 1031
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Destination S/NV

Now we can calculate the signal-to-noise ratios for PM, FM, and deemphasized FM.
We continue the large-signal condition (S/N)p =>> 1 so our previous results for Np
still hold. The presence of a signal phase ¢(r) does not void those results even
though we replaced ¢,(f) — ¢(r) with ¢,(¢) in Eq. (3). Had we included ¢(¢) in the
phase noise, a more complicated analysis would have revealed that the postdetection
noise spectrum includes additional components that fall outside the message band
and are rejected by Hy(f).

The demodulated signal plus noise in a PM system with ¢(2) = ¢x(f) is
¥(1) = ¢,(t) = pax(t) + ¢(1)

The postdetection filter passes the signal term ¢,x(f) so Sp = qSAZ;i = ¢2S,, and the
output noise power Np is given by Eq. (7). Hence,

S ¢AZSX 2 SR
) = BA% L g2g PR 425, PM 12
(N>D (Now/sg) ~ P85 ngw T P "

Since vy equals the output S/N for analog baseband transmission (or suppressed-
carrier linear modulation) with received power Sg, bandwidth W, and noise density
N,, we see that PM gives an improvement over baseband of exactly ¢3%S,. But in
view of the ambiguity constraint ¢, < 7, the PM improvement is no greater than
23S Jmax = 7, or about 10 dB at best. In fact if ¢3S, < 1, then PM performance is
inferior to baseband but the transmission bandwidth is still By = 2W.

The demodulated signal plus noise in an FM system with S = 2ufx(t) is

1
27

(1) = 5= (1) = fux(e) + £()

The postdetection filter passes the signal term fx(f) so Sp = f%S,, and N, is given by

Eq. (10). Hence,
(5) - SIS (85
N/p  (NW?3/35) W,/ TNW

in which we spot the deviation ratio D = f,/W. We therefore write

S ,
— | =3D-S FM 13
<N>D = sl

and it now appears that (S/NV), can be made arbitrarily large by increasing D with-
out increasing the signal power Sg—a conclusion that requires further qualification
and will be reexamined shortly.

Meanwhile, recall that the transmission bandwidth requirement By increases
with the deviation ratio. Therefore, Eq. (13) represents wideband noise reduction
in that we have the latitude to

R . . PRI By e e e i S Eg b b il i 33 A
e e e e B e S i e
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10.3  Exponential CW Modulation with Noise

To emphasize this property, take the case of wideband FM with D > 1 and B =
2f, >> W. Then D = B/2W and Eq. (13) becomes

(8) 22V sy waen
N, a\w,) ™

which shows that (S/V), increases as the square of the bandwidth ratio B/W. With
smaller deviation ratios, the break-even point compared to baseband transmission
occurs when 3D2S, = 1 or D = 1/V3S, = 0.6. The dividing line between NBFM
and WBFM is sometimes designated to be D = (.6 for this reason.

Finally, if the receiver includes deemphasis filtering and By, << W, the output
noise is further reduced in accordance with Eq. (115). Thus,

S fa ¥ .
— | == Sy Deemphasized FM {15]
N/p B

"and we have a deemphasis improvement factor of about (W/Bg)*3. This improve-
ment requires preemphasis filtering at the transmitter and may carry a hidden
penalty. For if the message amplitude spectrum does not roll off at least as fast as 1/f,

like an audio signal does, then preemphasis increases the deviation ratio and the
transmission bandwidth requirement.

417

Just how much can be gained from wideband noise reduction is well illustrated with

the broadcast FM parameters f, = 75 kHz, W = 15 kHz, and D = 5. Taking S, = 1/2
for a representative value, Eq. (13) gives

(S/N)p = (3 X 52X 1/2)y =~ 38y

or about 16 dB better than analog baseband transmission. Deemphasis filtering with
B4, = 2.1 kHz increases (S/N)p to about 640vy. Thus, other factors being equal, a 1-W
FM system with deemphasis could replace a 640-W baseband system. The cost of
this transmitted power reduction is increased bandwidth, since FM with D = 5
requires By =~ 14W.

But several practical factors work against full realization of increased bandwidth in
exchange for reduced transmitter power S;. And indeed the goal of FM broadcasting
is maximum (S/N), rather than minimum S;. However, other applications involve
minimizing Sy or squeezing as much as possible from every available transmitted
watt. The large-signal condition (S/N)g =>> 1 then poses a serious limitation for such
applications, and the FM threshold effect becomes a matter of grave concern.

EXAMPLE 10.3-1
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EXERCISE 10.3-2 Calculate the minimum transmitted power needed when a PM system replaces the
1-W FM system in Example 10.3-1 and the value of (S/N), remains the same.

FM Threshold Effect

The small-signal condition (S/N)g <1 can be represented by a phasor diagram like
Fig. 10.3-2 with signal and noise phasors interchanged. Then, since A,(f) > A,
most of the time, the resultant phase at the detector input is

A sin [9(£) = ¢,(1)]
A(t)

The noise now dominates and the message, contained in ¢(¢), has been mutilated
beyond all hope of recovery.

Actually, significant mutilation begins to occur when (S/N); = 1 and A, ~ A,.
With phasors of nearly equal length, we have a situation similar to cochannel inter-
ference when p = A/A, = 1. Small noise variations may then produce large spikes
in the demodulated FM output. The phasor diagram in Fig. 10.3-5a illustrates this

b,(t) = ¢a(t) + [16]

TR
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T
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(b}

Figure 10.3-5 FM near threshold. (a) Phasor diagram; [b] instantaneous phase and frequency.



10.3  Exponential CW Modulation with Noise

point taking ¢(#) = 0 and ¢,(¢;) = —7 50 ¢,(¢,) = —ar. If the variations of A (¢) and
¢,(2) follow the dashed locus from ¢, to ¢, then ¢,(t,) = +7r. Correspondingly, the
waveform ¢,(f) in Fig. 10.3-50 has a step of height 27w and the output
y(t) = ¢,(¢)/27 has a unit-area spike. These spikes would be heard on an FM radio
as a crackling or clicking sound that masks the signal.

We infer from this qualitative picture that the output noise spectrum is no longer
parabolic but tends to fill in at dc, the output spikes producing appreciable low-
frequency content. This conclusion has been verified through detailed analysis using
the “click” approach as refined by Rice. The analysis is complicated (and placed
beyond our scope) by the fact that the spike characteristics change when the carrier
is modulated—called the modulation-suppression effect. Thus, quantitative results
are obtained only for specific modulating signals. In the case of tone modulation, the
total output noise becomes

_NOW3[1 . 12D

= ~(W/By 17
b 35, ye 171

where the second term is the contribution of the spikes. See Rice (1948) and
Stumpers (1948) for the original work. _

Figure 10.3-6 shows (S/N)p in decibels plotted versus vy in decibels for two val-
ues of the deviation ratio D, taking tone modulation and N, given by Eq. (17). The
rather sudden drop-off of these curves is the FM threshold effect, traced to the expo-
nential factor in Eq. (17). We see that

50
YV
D=5
40 7
A4 D =72 / ,,/,
% JO / ,,,'l
—=_ y //\ Baseband
vz ,/’ '/'
S— 20 '1//,/ W
10 -
,/’, //
0 . L
0 10 20 30 40
,dB

Figure 10.3-6 FM noise performance (without deemphasis).
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Below threshold, noise captures the output just like strong cochannel interference.
Experimental studies indicate that noise mutilation is negligible in most cases of
interest if (S/N)z = 10 or thereabouts. Hence, we define the threshold point to be at

(S/N)ga = 10 (18]
Equivalently, since (S/N)g = (W/Bp)y,

B
Y = 10# = 20M(D) (194l

~20D+2) D>2 (195}

where use has been made of the FM bandwidth equation By = 2M(D)W =
2(D + 2)W. Equations (18) and (19) also apply to PM with D replaced by ¢,.

Figure 10.3-6 correctly demonstrates that FM performance above threshold is
quite impressive—after all, baseband transmission at best gives (S/N), = . And
these curves do not include the additional improvement afforded by deemphasis fil-
tering. But observe what happens if we attempt to make (S/V), arbitrarily large by
increasing only the deviation ratio while holding vy fixed, say at 20 dB. With D = 2
(By = 7W) we are just above threshold and (S/N), =~ 28 dB. But with D = 5 (B =
14W) we are below threshold, and the output signal is useless because of mutilation.
We therefore cannot achieve an unlimited exchange of bandwidth for signal-to-noise
ratio, and system performance may actually deteriorate with increased deviation.

Swapping bandwidth in favor of reduced signal power is likewise restricted.
Suppose, for example, that a 30-dB signal-to-noise ratio is desired with a minimum
of transmitted power but the transmission bandwidth can be as large as By = 14W.
Were it not for threshold effect, we could use FM with D = 5 and y = 14 dB, a
power saving of 16 dB compared to baseband. But the threshold point for D = 5 is
at vy = 22 dB, for which (S/N), = 37 dB. Thus,

Correspondingly, the potential power reduction may not be fully realized.
In view of these considerations, it’s useful to calculate (S/V), at the threshold
point. Thus, again omitting deemphasis, we substitute Eq. (19) into Eq. (13) to get
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(E) = 3D*Sy, (204
N Dth

~60D*D +2)S, D >2 [20b]

which equals the minimum value of (S/N), as a function of D. Given a specified
value for (S/N)p and no bandwidth constraint, you can solve Eq. (20) for the devia-
tion ratio D that yields the most efficient performance in terms of signal power. Of
course, some allowance must be made for possible signal fading since it is unadvis-
able to operate with no margin relative to the threshold point.
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Suppose a minimum-power FM system is to be designed such that (S/N), = 50 dB,
given S, = 1/2, W = 10kHz, N, = 1078 W/Hz, and no constraint on B;. Temporarily
ignoring threshold, we might use Eq. (13) to get 10° = 1.5D%y so y = 296 when
D = 15. But taking threshold into account with the stated values and the assumption
that D > 2, Eq. (20) becomes 10° = 60D?*(D + 2)/2, and trial-and-error solution
yields D = 15 so By = 2(D + 2)W = 340 kHz. Then, from Eq. (19a), Sg/NoW =
Y = 10 X 34 = 340, which requires Sy = 340N, W = 34 mW.

EXAMPLE 10.3-2

Find the minimum useful value of (S/N),, for a deemphasized FM system with By =
5W, fa = 10By, and S, = 1/2.

EXERCISE 10.3-3

Threshold Extension by FM Feedback*

Since the threshold limitation yields a constraint on the design of minimum-power
analog FM systems, there has been interest in threshold extension techniques. Long
ago Chaffee (1939) proposed a means for extending the FM threshold point using a
frequency-following or frequency-compressive feedback loop in the receiver, called
an FM feedback (FEMFEB) receiver.

The FMFB receiver diagrammed in Fig. 10.3-7 embodies features of a phase-
lock loop within the superheterodyne structure. Specifically, the superhet’s LO has
been replaced by a VCO whose free-running frequency equals f, — f;- The control
voltage for the VCO comes from the demodulated output y,,(#). If the loop has suffi-
cient gain K and (S/N), is reasonably large, then the VCO tracks the instantaneous
phase of x.(¢). This tracking action reduces the frequency deviation from fa to
fa/(1 + K