Chapter 1 - Section A-Mathcad Solutions

1.4 The equation that relates deg F to deg C is: $t(F)=1.8 t(C)+32$. Solve this equation by setting $t(F)=t(C)$.

Guess solution: $\quad t:=0$
Given

$$
\mathrm{t}=1.8 \mathrm{t}+32 \quad \operatorname{Find}(\mathrm{t})=-40
$$

Ans.
1.5 By definition: $P=\frac{F}{A} \quad F=\operatorname{mass} \cdot g$

Note: Pressures are in gauge pressure.
$\mathrm{P}:=3000 \mathrm{bar}$
$\mathrm{A}:=\frac{\pi}{4} \cdot \mathrm{D}^{2}$
$\mathrm{A}=12.566 \mathrm{~mm}^{2}$
$\underset{\mathrm{m}}{\mathrm{F}}:=\mathrm{P} \cdot \mathrm{A} \quad \mathrm{g}=9.807 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
mass $:=\frac{\mathrm{F}}{\mathrm{g}}$
mass $=384.4 \mathrm{~kg}$
Ans.
1.6 By definition: $P=\frac{F}{A} \quad F=\operatorname{mass} \cdot g$

P := 3000atm
D :=0.17in
$\mathrm{A}:=\frac{\pi}{4} \cdot \mathrm{D}^{2}$
$\mathrm{A}=0.023 \mathrm{in}^{2}$
$\mathrm{F}:=\mathrm{P} \cdot \mathrm{A} \quad \mathrm{g}=32.174 \frac{\mathrm{ft}}{\mathrm{sec}^{2}} \quad$ mass $:=\frac{\mathrm{F}}{\mathrm{g}}$
mass $=1000.7 \mathrm{lb}_{\mathrm{m}}$
Ans.
$1.7 \quad \mathrm{P}_{\mathrm{abs}}=\rho \cdot \mathrm{g} \cdot \mathrm{h}+\mathrm{P}_{\mathrm{atm}}$

$$
\rho:=13.535 \cdot \frac{\mathrm{gm}}{\mathrm{~cm}^{3}}
$$

$\mathrm{P}_{\mathrm{atm}}:=101.78 \mathrm{kPa}$
$\mathrm{P}_{\mathrm{abs}}:=\rho \cdot \mathrm{g} \cdot \mathrm{h}+\mathrm{P}_{\mathrm{atm}}$

$$
\mathrm{g}:=32.243 \cdot \frac{\mathrm{ft}}{\mathrm{~s}^{2}}
$$

$P_{\text {atm }}:=29.86$ in_Hg

$$
\mathrm{P}_{\mathrm{abs}}:=\rho \cdot \mathrm{g} \cdot \mathrm{~h}+\mathrm{P}_{\mathrm{atm}}
$$

$\mathrm{h}:=56.38 \mathrm{~cm}$
$\mathrm{P}_{\mathrm{abs}}=176.808 \mathrm{kPa}$
$\mathrm{h}:=25.62 \mathrm{in}$
$\mathrm{P}_{\mathrm{abs}}=27.22 \mathrm{psia}$

Ans.

Ans.
1.10 Assume the following: $\rho:=13.5 \frac{\mathrm{gm}}{\mathrm{cm}^{3}}$
$\mathrm{P}:=400 \mathrm{bar}$
$\mathrm{h}:=\frac{\mathrm{P}}{\rho \cdot \mathrm{g}}$

$$
\mathrm{g}:=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
\mathrm{h}=302.3 \mathrm{~m} \quad \text { Ans. }
$$

1.11 The force on a spring is described by: $F=K_{s} x$ where K_{s} is the spring constant. First calculate K based on the earth measurement then $\mathbf{g}_{\text {Mars }}$ based on spring measurement on Mars.
On Earth:

$$
\begin{array}{llll}
\mathrm{F}=\text { mass } \cdot \mathrm{g}=\mathrm{K} \cdot \mathrm{x} & \text { mass }:=0.40 \mathrm{~kg} & \mathrm{~g}:=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} & \mathrm{x}:=1.08 \mathrm{~cm} \\
\mathrm{~F}:=\text { mass } \cdot \mathrm{g} & \mathrm{~F}=3.924 \mathrm{~N} & \mathrm{~K}_{\mathrm{s}}:=\frac{\mathrm{F}}{\mathrm{x}} & \mathrm{~K}_{\mathrm{S}}=363.333 \frac{\mathrm{~N}}{\mathrm{~m}}
\end{array}
$$

On Mars:

$\mathrm{x}:=0.40 \mathrm{~cm}$	$\mathrm{~F}_{\text {Mars }}:=\mathrm{K} \cdot \mathrm{x}$	$\mathrm{F}_{\text {Mars }}=4 \times 10^{-3} \mathrm{mK}$
$\mathrm{g}_{\text {Mars }}:=\frac{\mathrm{F}_{\text {Mars }}}{\text { mass }}$	$\mathrm{g}_{\text {Mars }}=0.01 \frac{\mathrm{mK}}{\mathrm{kg}}$	Ans.

1.12 Given: $\frac{d}{d z} P=-\rho \cdot g \quad$ and: $\rho=\frac{M \cdot P}{R \cdot T} \quad$ Substituting: $\quad \frac{d}{d z} P=-\frac{M \cdot P}{R \cdot T} \cdot g$

Separating variables and integrating: $\int_{P_{\text {sea }}}^{P_{\text {Denver }}} \frac{1}{P} d P=\int_{0}^{Z_{\text {Denver }}}-\left(\frac{M \cdot g}{R \cdot T}\right) d z$
After integrating:

$$
\ln \left(\frac{\mathrm{P}_{\text {Denver }}}{\mathrm{P}_{\text {sea }}}\right)=\frac{-\mathrm{M} \cdot \mathrm{~g}}{\mathrm{R} \cdot \mathrm{~T}} \cdot \mathrm{z}_{\text {Denver }}
$$

Taking the exponential of both sides and rearranging:

$$
P_{\text {Denver }}=P_{\text {sea }} \cdot \mathrm{e}^{\left(\frac{-\mathrm{M} \cdot \mathrm{~g}}{\mathrm{R} \cdot \mathrm{~T}} \cdot \mathrm{z}_{\text {Denver }}\right)}
$$

$\mathrm{P}_{\text {sea }}:=1 \mathrm{~atm}$

$$
\mathrm{M}:=29 \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

$$
\mathrm{g}:=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
\mathrm{R}:=82.06 \frac{\mathrm{~cm}^{3} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \mathrm{~T}:=(10+273.15) \mathrm{K} \quad \mathrm{z}_{\text {Denver }}:=1 \cdot \mathrm{mi}
$$

$$
\frac{\mathrm{M} \cdot \mathrm{~g}}{\mathrm{R} \cdot \mathrm{~T}} \cdot \mathrm{z}_{\text {Denver }}=0.194
$$

$$
P_{\text {Denver }}:=P_{\text {sea }} \cdot \mathrm{e}^{\left(\frac{-\mathrm{M} \cdot \mathrm{~g}}{\mathrm{R} \cdot \mathrm{~T}} \cdot \mathrm{z}_{\text {Denver }}\right)} \quad \text { P Denver }=0.823 \mathrm{~atm} \quad \text { Ans. }
$$

$$
P_{\text {Denver }}=0.834 \text { bar } \quad \text { Ans. }
$$

1.13 The same proportionality applies as in Pb . 1.11.

$g_{\text {earth }}:=32.186 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}}$
$g_{\text {moon }}:=5.32 \cdot \frac{\mathrm{ft}}{\mathrm{s}^{2}}$
$\Delta \mathrm{l}_{\text {moon }}:=18.76$
$\Delta l_{\text {earth }}:=\Delta l_{\text {moon }} \cdot \frac{g_{\text {earth }}}{g_{\text {moon }}}$
$\Delta l_{\text {earth }}=113.498$
$\mathrm{M}:=\Delta \mathrm{l}_{\mathrm{earth}} \cdot \mathrm{lb}_{\mathrm{m}}$
$\mathrm{w}_{\text {moon }}:=\mathrm{M} \cdot \mathrm{g}_{\text {moon }}$
$\mathrm{w}_{\text {moon }}=18.767 \mathrm{lbf}$
Ans.

Ans.
1.14 cost $_{\text {bulb }}:=\frac{5.00 \text { dollars }}{1000 \mathrm{hr}} \cdot 10 \frac{\mathrm{hr}}{\text { day }}$

$$
\text { cost }_{\text {elec }}:=\frac{0.1 \text { dollars }}{\mathrm{kW} \cdot \mathrm{hr}} \cdot 10 \frac{\mathrm{hr}}{\text { day }} \cdot 70 \mathrm{~W}
$$

cost $_{\text {bulb }}=18.262 \frac{\text { dollars }}{\mathrm{yr}}$
cost $_{\text {elec }}=25.567 \frac{\text { dollars }}{\mathrm{yr}}$
$\operatorname{cost}_{\text {total }}:=\operatorname{cost}_{\text {bulb }}+\operatorname{cost}_{\text {elec }}$
cost $_{\text {total }}=43.829 \frac{\text { dollars }}{\mathrm{yr}}$ Ans.
1.15

$$
\mathrm{D}:=1.25 \mathrm{ft}
$$

$$
\text { mass }:=250 \mathrm{lb}_{\mathrm{m}}
$$

$$
\mathrm{g}:=32.169 \frac{\mathrm{ft}}{\mathrm{~s}^{2}}
$$

$$
\mathrm{P}_{\mathrm{atm}}:=30.12 \mathrm{in}_{-} \mathrm{Hg} \quad \mathrm{~A}:=\frac{\pi}{4} \cdot \mathrm{D}^{2} \quad \mathrm{~A}=1.227 \mathrm{ft}^{2}
$$

(a) $\mathrm{F}:=\mathrm{P}_{\mathrm{atm}} \cdot \mathrm{A}+$ mass $\cdot \mathrm{g}$
$\mathrm{F}=2.8642 \times 10^{3} \mathrm{lb}_{\mathrm{f}} \quad$ Ans.
(b) $\quad \mathrm{P}_{\mathrm{abs}}:=\frac{\mathrm{F}}{\mathrm{A}}$

$$
P_{\mathrm{abs}}=16.208 \mathrm{psia}
$$

Ans.
(c) $\quad \Delta \mathrm{l}:=1.7 \mathrm{ft}$

Work :=F. $\Delta \mathrm{l}$
Work $=4.8691 \times 10^{3} \mathrm{ft} \cdot \mathrm{lb}_{\mathrm{f}}$ Ans.
$\Delta \mathrm{P}_{\mathrm{E}}:=$ mass.g. $1 \quad \Delta \mathrm{P}_{\mathrm{E}}=424.9 \mathrm{ft} \cdot 1 \mathrm{lb}_{\mathrm{f}}$
1.16

$$
\mathrm{D}:=0.47 \mathrm{~m}
$$

$$
\text { mass }:=150 \mathrm{~kg}
$$

$$
P_{\mathrm{atm}}:=101.57 \mathrm{kPa}
$$

$$
\mathrm{A}:=\frac{\pi}{4} \cdot \mathrm{D}^{2}
$$

$$
\mathrm{A}=0.173 \mathrm{~m}^{2}
$$

(a) $\mathrm{F}:=\mathrm{P}_{\text {atm }} \cdot \mathrm{A}+$ mass.g
(b) $\quad \mathrm{P}_{\mathrm{abs}}:=\frac{\mathrm{F}}{\mathrm{A}}$

$$
F=1.909 \times 10^{4} \mathrm{~N}
$$

Ans.

Ans.
(c) $\Delta \mathrm{l}:=0.83 \mathrm{~m}$

Work :=F• $\Delta \mathrm{l}$
$\Delta \mathrm{E}_{\mathrm{P}}:=$ mass.f. 1
$\mathrm{P}_{\mathrm{abs}}=110.054 \mathrm{kPa}$

$$
\mathrm{g}:=9.813 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Ans.

1.18

mass $:=1250 \mathrm{~kg}$	$\mathrm{u}:=40 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{E}_{\mathrm{K}}:=\frac{1}{2}$ mass $^{2} \mathrm{u}^{2}$	$\mathrm{E}_{\mathrm{K}}=1000 \mathrm{~kJ}$
Work $:=\mathrm{E}_{\mathrm{K}}$	Work $=1000 \mathrm{~kJ}$

Ans.
Ans.
$1.19 \quad$ Wdot $=\frac{\text { mass. } \mathrm{y} \cdot \mathrm{h}}{\text { time }} \cdot 0.91 \cdot 0.92$

$$
\text { Wdot }:=200 \mathrm{~W} \quad \mathrm{~g}:=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \Delta \mathrm{~h}:=50 \mathrm{~m}
$$

$$
\operatorname{mdot}:=\frac{\mathrm{Wdot}}{\mathrm{~g} \cdot \Delta \mathrm{~h} \cdot 0.91 \cdot 0.92}
$$

Ans.
1.22 a) cost_coal $:=\frac{\frac{25.00}{\text { ton }}}{29 \cdot \frac{\mathrm{MJ}}{\mathrm{kg}}}$
cost_gasoline $:=\frac{\frac{2.00}{\mathrm{gal}}}{37 \cdot \frac{\mathrm{GJ}}{\mathrm{m}^{3}}}$
cost_electricity $:=\frac{0.1000}{\mathrm{~kW} \cdot \mathrm{hr}}$

$$
\text { cost_coal }=0.95 \mathrm{GJ}^{-1}
$$

$$
\text { cost_gasoline }=14.28 \mathrm{GJ}^{-1}
$$

$$
\text { cost_electricity }=27.778 \mathrm{GJ}^{-1}
$$

b) The electrical energy can directly be converted to other forms of energy whereas the coal and gasoline would typically need to be converted to heat and then into some other form of energy before being useful.

The obvious advantage of coal is that it is cheap if it is used as a heat source. Otherwise it is messy to handle and bulky for tranport and storage.

Gasoline is an important transportation fuel. It is more convenient to transport and store than coal. It can be used to generate electricity by burning it but the efficiency is limited. However, fuel cells are currently being developed which will allow for the conversion of gasoline to electricity by chemical means, a more efficient process.

Electricity has the most uses though it is expensive. It is easy to transport but expensive to store. As a transportation fuel it is clean but batteries to store it on-board have limited capacity and are heavy.
1.24 Use the Matcad genfit function to fit the data to Antoine's equation. The genfit function requires the first derivatives of the function with respect to the parameters being fitted.
Function being fit: $f(T, A, B, C):=e^{\left(A-\frac{B}{T+C}\right)}$

First derivative of the function with respect to parameter A

$$
\frac{d}{d A} f(T, A, B, C) \rightarrow \exp \left(A-\frac{B}{T+C}\right)
$$

First derivative of the function with respect to parameter B

$$
\frac{\mathrm{d}}{\mathrm{~dB}} \mathrm{f}(\mathrm{~T}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}) \rightarrow \frac{-1}{\mathrm{~T}+\mathrm{C}} \cdot \exp \left(\mathrm{~A}-\frac{\mathrm{B}}{\mathrm{~T}+\mathrm{C}}\right)
$$

First derivative of the function with respect to parameter \mathbf{C}

$$
\frac{d}{d C} f(T, A, B, C) \rightarrow \frac{B}{(T+C)^{2}} \cdot \exp \left(A-\frac{B}{T+C}\right)
$$

$$
\mathrm{t}:=\left(\begin{array}{c}
-18.5 \\
-9.5 \\
0.2 \\
11.8 \\
23.1 \\
32.7 \\
44.4 \\
52.1 \\
63.3 \\
75.5
\end{array}\right) \quad \text { Psat }:=\left(\begin{array}{c}
3.18 \\
5.48 \\
9.45 \\
16.9 \\
28.2 \\
41.9 \\
66.6 \\
89.5 \\
129 \\
187
\end{array}\right)
$$

$$
\mathrm{T}:=\mathrm{t}+273.15 \quad \ln \text { Psat }:=\ln (\text { Psat })
$$

Array of functions used by Mathcad. In this case, $a_{0}=A, a_{1}=B$ and $a_{2}=C$.

$$
F(T, a):=\left[\begin{array}{c}
\exp \left(a_{0}-\frac{a_{1}}{T+a_{2}}\right) \\
\exp \left(a_{0}-\frac{a_{1}}{T+a_{2}}\right) \\
\frac{-1}{T+a_{2}} \cdot \exp \left(a_{0}-\frac{a_{1}}{T+a_{2}}\right) \\
\frac{a_{1}}{\left(T+a_{2}{ }^{2}\right.} \cdot \exp \left(a_{0}-\frac{a_{1}}{T+a_{2}}\right)
\end{array}\right]
$$

Guess values of parameters

guess :=($\left.\begin{array}{c}15 \\ 3000 \\ -50\end{array}\right)$

Apply the genfit function
$\left(\begin{array}{l}\text { A } \\ \text { B } \mid:=\operatorname{genfit}(T, \text { Psat }, \text { guess }, F) \\ \text { C })\end{array}\right.$

Ans.

Compare fit with data.

To find the normal boiling point, find the value of T for which Psat $=1 \mathbf{a t m}$.

$$
\begin{array}{ll}
\text { Psat }:=1 \mathrm{~atm} \quad & \mathrm{~T}_{\mathrm{nb}}:=\left(\frac{\mathrm{B}}{\mathrm{~A}-\ln \left(\frac{\mathrm{Psat}}{\mathrm{kPa}}\right)}-\mathrm{C} \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{nb}}=329.154 \mathrm{~K}\right. \\
& \mathrm{T}_{\mathrm{nb}}-273.15 \mathrm{~K}=56.004 \mathrm{degC} \quad \text { Ans. }
\end{array}
$$

1.25
a) $t_{1}:=1970$
$\mathrm{t}_{2}:=2000$
$\mathrm{C}_{1}:=0.35 \frac{\text { dollars }}{\text { gal }}$
$\mathrm{C}_{2}=1.513 \frac{\text { dollars }}{\text { gal }}$
i := 5\%
$\mathrm{C}_{2}:=\mathrm{C}_{1} \cdot(1+\mathrm{i})^{\mathrm{t}_{2}-\mathrm{t}_{1}}$

The increase in price of gasoline over this period kept pace with the rate of inflation.
b) $\mathrm{t}_{1}:=1970$
$\mathrm{t}_{2}:=2000$

Given $\quad \frac{\mathrm{C}_{2}}{\mathrm{C}_{1}}=(1+\mathrm{i})^{\mathrm{t}_{2}-\mathrm{t}_{1}} \quad \mathrm{i}:=\operatorname{Find}(\mathrm{i}) \quad \mathrm{i}=5.511 \%$
The salary of a Ph. D. engineer over this period increased at a rate of 5.5\%, slightly higher than the rate of inflation.
c) This is an open-ended problem. The strategy depends on age of the child, and on such unpredictable items as possible financial aid, monies earned by the child, and length of time spent in earning a degree.

Chapter 2 - Section A - Mathcad Solutions

2.1
(a)

$\Delta z:=5 \cdot m$

$$
\text { Work }=1.715 \mathrm{~kJ}
$$

(b) $\Delta \mathrm{U}_{\text {total }}:=$ Work

$$
\Delta \mathrm{U}_{\text {total }}=1.715 \mathrm{~kJ}
$$

(c) By Eqs. (2.14) and (2.21): $\quad d U+d(P V)=C_{P} \cdot d T$

Ans.
Ans.

Since P is constant, this can be written:

$$
\mathrm{M}_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{C}_{\mathrm{P}} \cdot \mathrm{dT}=\mathrm{M}_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{dU}+\mathrm{M}_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{P} \cdot \mathrm{dV}
$$

Take Cp and V constant and integrate: $\mathrm{M}_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{C}_{P} \cdot \theta_{2}-\mathrm{t}_{1}=\mathrm{U}_{\text {total }}$
$\mathrm{t}_{1}:=20 \cdot \operatorname{deg} \mathrm{C}$
$\mathrm{C}_{\mathrm{P}}:=4.18 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \operatorname{degC}} \quad \mathrm{M}_{\mathrm{H} 2 \mathrm{O}}:=30 \cdot \mathrm{~kg}$
$\mathrm{t}_{2}:=\mathrm{t}_{1}+\frac{\Delta \mathrm{U}_{\text {total }}}{\mathrm{M}_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{C}_{\mathrm{P}}}$
$\mathrm{t}_{2}=20.014 \mathrm{degC}$
Ans.
(d) For the restoration process, the change in internal energy is equal but of opposite sign to that of the initial process. Thus

$$
\mathrm{Q}:=-\Delta \mathrm{U}_{\text {total }} \quad \mathrm{Q}=-1.715 \mathrm{~kJ} \quad \text { Ans. }
$$

(e) In all cases the total internal energy change of the universe is zero.
2.2 Similar to Pb. 2.1 with mass of water $=30 \mathrm{~kg}$.

Answers are: \quad (a) $W=1.715 \mathrm{~kJ}$
(b) Internal energy change of the water $=1.429 \mathrm{~kJ}$
(c) Final temp. $=20.014 \operatorname{deg} \mathrm{C}$
(d) $\mathbf{Q}=-\mathbf{1 . 7 1 5} \mathrm{kJ}$
2.4 The electric power supplied to the motor must equal the work done by the motor plus the heat generated by the motor.

$$
\begin{array}{ll}
\mathrm{i}:=9.7 \mathrm{amp} & \mathrm{E}:=110 \mathrm{~V} \quad \text { Wdot }_{\text {mech }}:=1.25 \mathrm{hp} \\
\text { Wdotelect }:=\mathrm{i} \cdot \mathrm{E} \quad \text { Wdotelect }=1.067 \times 10^{3} \mathrm{~W} \\
\text { Qdot }:=\text { Wdotelect }- \text { Wdot }_{\text {mech }} \quad \text { Qdot }=134.875 \mathrm{~W} \quad \text { Ans. }
\end{array}
$$

2.5 Eq. (2.3): $\Delta \mathrm{U}^{\mathrm{t}}=\mathrm{Q}+\mathrm{W}$

Step 1 to 2: $\Delta \mathrm{Ut}_{12}:=-200 \mathrm{~J}$
$\mathrm{W}_{12}:=-6000 \mathrm{~J}$
$\mathrm{Q}_{12}:=\Delta \mathrm{Ut}_{12}-\mathrm{W}_{12}$
$\mathrm{Q}_{12}=5.8 \times 10^{3} \mathrm{~J}$
Ans.

Step 3 to 4: $\quad Q_{34}:=-800 \mathrm{~J}$
$\mathrm{W}_{34}:=300 \mathrm{~J}$

$$
\Delta \mathrm{Ut}_{34}:=\mathrm{Q}_{34}+\mathrm{W}_{34} \quad \Delta \mathrm{Ut}_{34}=-500 \mathrm{~J}
$$

Ans.

Step 1 to 2 to 3 to 4 to 1 : Since ΔU^{t} is a state function, ΔU^{t} for a series of steps that leads back to the initial state must be zero. Therefore, the sum of the $\Delta \mathrm{U}^{\mathrm{t}}$ values for all of the steps must sum to zero.

$$
\Delta \mathrm{Ut}_{41}:=4700 \mathrm{~J} \quad \Delta \mathrm{Ut}_{23}:=-\Delta \mathrm{Ut}_{12}-\Delta \mathrm{Ut}_{34}-\mathrm{Ut}_{41}
$$

$$
\Delta \mathrm{Ut}_{23}=-4000 \mathrm{~J}
$$

Ans.

Step 2 to 3: $\Delta \mathrm{Ut}_{23}=-4 \times 10^{3} \mathrm{~J}$
$Q_{23}:=-3800 \mathrm{~J}$

$$
\mathrm{W}_{23}:=\Delta \mathrm{Ut}_{23}-\mathrm{Q}_{23} \quad \mathrm{~W}_{23}=-200 \mathrm{~J}
$$

Ans.

For a series of steps, the total work done is the sum of the work done for each step.
$\mathrm{W}_{12341}:=-1400 \mathrm{~J}$

$$
\mathrm{W}_{41}:=\mathrm{W}_{12341}-\mathrm{W}_{12}-\mathrm{W}_{23}-\mathrm{W}_{34} \quad \mathrm{~W}_{41}=4.5 \times 10^{3} \mathrm{~J}
$$

Step 4 to 1: $\Delta \mathrm{Ut}_{41}:=4700 \mathrm{~J}$
$\mathrm{W}_{41}=4.5 \times 10^{3} \mathrm{~J}$
$\mathrm{Q}_{41}:=\Delta \mathrm{Ut}_{41}-\mathrm{W}_{41}$
$\mathrm{Q}_{41}=200 \mathrm{~J}$
Ans.
Note: $\quad \mathrm{Q}_{12341}=-\mathrm{W}_{12341}$
2.11 The enthalpy change of the water $=$ work done.
$\mathrm{M}:=20 \cdot \mathrm{~kg}$

$$
\mathrm{C}_{P}:=4.18 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \operatorname{deg} \mathrm{C}}
$$

$\Delta t:=10 \cdot \operatorname{deg} C$
$\mathrm{Wdot}:=0.25 \cdot \mathrm{~kW} \quad \Delta \tau:=\frac{\mathrm{M} \cdot \mathbb{C}_{\mathrm{P}} \cdot \mathrm{t}}{\mathrm{Wdot}}$

$$
\Delta \tau=0.929 \mathrm{hr}
$$

$2.12 \mathrm{Q}:=7.5 \cdot \mathrm{~kJ}$
$\Delta \mathrm{U}:=-12 \cdot \mathrm{~kJ}$
$\mathrm{W}:=\Delta \mathrm{U}-\mathrm{Q}$
$W=-19.5 \mathrm{~kJ}$
$\Delta \mathrm{U}:=-12 \cdot \mathrm{~kJ}$
$\mathrm{Q}:=\Delta \mathrm{U}$
$Q=-12 k J$
Ans.

Ans.
Ans.
2.13 Subscripts: c, casting; w, water; t, tank. Then
$\mathrm{m}_{\mathrm{c}} \cdot \Delta \mathrm{U}_{\mathrm{c}}+\mathrm{m}_{\mathrm{W}} \cdot \Delta \mathrm{U}_{\mathrm{W}}+\mathrm{m}_{\mathrm{t}} \cdot \Delta \mathrm{U}_{\mathrm{t}}=0$

Let \mathbf{C} represent specific heat,
 $$
C=C_{P}=C_{V}
$$

Then by Eq. (2.18)
$\mathrm{m}_{\mathrm{c}} \cdot \mathbb{\mathbb { G }}_{\mathrm{c}} \cdot \mathrm{t}_{\mathrm{c}}+\mathrm{m}_{\mathrm{w}} \cdot \mathbb{\mathbb { S }}_{\mathrm{w}} \cdot \mathrm{t}_{\mathrm{w}}+\mathrm{m}_{\mathrm{t}} \cdot \mathbb{\mathbb { G }}_{\mathrm{t}} \cdot \mathrm{t}_{\mathrm{t}}=0$

$$
\mathrm{m}_{\mathrm{c}}:=2 \cdot \mathrm{~kg} \quad \mathrm{~m}_{\mathrm{w}}:=40 \cdot \mathrm{~kg} \quad \mathrm{~m}_{\mathrm{t}}:=5 \cdot \mathrm{~kg}
$$

$\mathrm{C}_{\mathrm{c}}:=0.50 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{degC}}$
$C_{t}:=0.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{degC}}$
$\mathrm{C}_{\mathrm{W}}:=4.18 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \operatorname{degC}}$
$\mathrm{t}_{\mathrm{c}}:=500 \cdot \operatorname{deg} \mathrm{C}$
$\mathrm{t}_{1}:=25 \cdot \operatorname{degC}$
$\mathrm{t}_{2}:=30 \cdot \operatorname{deg} \mathrm{C} \quad$ (guess)
Given

$$
\begin{gathered}
-\mathrm{m}_{\mathrm{c}} \cdot \mathrm{C}_{\mathrm{c}} \cdot()_{2}-\mathrm{t}_{\mathrm{c}}=\left(\mathrm{m}_{\mathrm{w}} \cdot \mathrm{C}_{\mathrm{w}}+\mathrm{m}_{\mathrm{t}} \cdot \mathrm{C}_{\mathrm{t}} \cdot()_{2}-\mathrm{t}_{1}\right. \\
\mathrm{t}_{2}:=\operatorname{Find}()_{2} \quad \mathrm{t}_{2}=27.78 \operatorname{degC}
\end{gathered}
$$

Ans.
2.15 mass $:=1 \cdot \mathrm{~kg} \quad \mathrm{C}_{\mathrm{V}}:=4.18 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
(a) $\Delta \mathrm{T}:=1 \mathrm{~K} \quad \Delta \mathrm{Ut}:=$ mass $\cdot \mathbb{C}_{\mathrm{V}} \cdot \mathrm{T} \quad \Delta \mathrm{Ut}=4.18 \mathrm{~kJ}$

Ans.
(b) $\mathrm{g}:=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \quad \Delta \mathrm{E}_{\mathrm{P}}:=\Delta \mathrm{Ut}$
$\Delta z:=\frac{\Delta \mathrm{E}_{\mathrm{P}}}{\text { mass } \cdot \mathrm{g}} \quad \Delta \mathrm{z}=426.531 \mathrm{~m} \quad$ Ans.
(c) $\Delta \mathrm{E}_{\mathrm{K}}:=\Delta \mathrm{Ut}$

$$
\mathrm{u}:=\sqrt{\frac{\Delta \mathrm{E}_{\mathrm{K}}}{\frac{1}{2} \cdot \operatorname{mass}}}
$$

$$
\mathrm{u}=91.433 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Ans.
2.17

$$
\begin{array}{ll}
\Delta \mathrm{z}:=50 \mathrm{~m} & \rho:=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{u}:=5 \frac{\mathrm{~m}}{\mathrm{~s}} \\
\mathrm{D}:=2 \mathrm{~m} & \mathrm{~A}:=\frac{\pi}{4} \mathrm{D}^{2} \quad \mathrm{~A}=3.142 \mathrm{~m}^{2} \\
\text { mdot }:=\rho \cdot \mathrm{u} \cdot \mathrm{~A} & \text { mdot }=1.571 \times 10 \frac{4 \mathrm{~kg}}{\mathrm{~s}}
\end{array}
$$

$$
\mathrm{Wdot}:=\text { mdot.g. } \mathrm{z} \quad \mathrm{Wdot}=7.697 \times 10^{3} \mathrm{~kW}
$$

2.18 (a) $\quad \mathrm{U}_{1}:=762.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{1}:=\mathrm{U}_{1}+\mathrm{P}_{1} \cdot \mathrm{~V}_{1}$

$$
\mathrm{H}_{1}=763.131 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Ans.

$$
\mathrm{V}_{1}:=1.128 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

Ans.

$$
\mathrm{V}_{2}:=169.7 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

$\mathrm{H}_{2}:=\mathrm{U}_{2}+\mathrm{P}_{2} \cdot \mathrm{~V}_{2}$
$\Delta \mathrm{U}:=\mathrm{U}_{2}-\mathrm{U}_{1}$

$$
\Delta \mathrm{H}:=\mathrm{H}_{2}-\mathrm{H}_{1}
$$

$$
\Delta \mathrm{U}=2022.4 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \text { Ans. } \quad \Delta \mathrm{H}=2275.8 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Ans.
2.22
$\mathrm{D}_{1}:=2.5 \mathrm{~cm}$
$\mathrm{u}_{1}:=2 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{D}_{2}:=5 \mathrm{~cm}$
(a) For an incompressible fluid, $\rho=$ constant. By a mass balance, mdot $=$ constant $=\mathbf{u}_{1} \mathbf{A}_{1} \rho=\mathbf{u}_{2} \mathbf{A}_{2} \rho$.
$\mathrm{u}_{2}:=\mathrm{u}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{2}$
$\mathrm{u}_{2}=0.5 \frac{\mathrm{~m}}{\mathrm{~s}}$
Ans.
(b) $\quad \Delta \mathrm{E}_{\mathrm{K}}:=\frac{1}{2} \mathrm{u}_{2}{ }^{2}-\frac{1}{2} \mathrm{u}_{1}{ }^{2}$
$\Delta \mathrm{E}_{\mathrm{K}}=-1.875 \frac{\mathrm{~J}}{\mathrm{~kg}}$

Ans.
2.23 Energy balance: $\operatorname{mdot}_{3} \cdot \mathrm{H}_{3}-()$ mdot $_{1} \cdot \mathrm{H}_{1}+\operatorname{mdot}_{2} \cdot \mathrm{H}_{2}=$ Qdot

Mass balance: $\quad \operatorname{mdot}_{3}-\operatorname{mdot}_{1}-\operatorname{mdot}_{2}=0$
Therefore: $\quad \operatorname{mdot}_{1} \cdot\left(\mathrm{H}_{3}-\mathrm{H}_{1}+\operatorname{mdot}_{2} \cdot() \mathrm{H}_{3}-\mathrm{H}_{2}=\right.$ Qdot or $\quad \operatorname{mdot} \cdot \mathrm{C}_{\mathrm{p}} \cdot\left(\Gamma_{3}-\mathrm{T}_{1}+\operatorname{mdot}_{2} \cdot \mathrm{C}_{\mathrm{P}} \cdot() \Gamma_{3}-\mathrm{T}_{2}=\right.$ Qdot $\mathrm{T}_{3} \cdot \mathrm{C}_{\mathrm{P}} \cdot\left(\operatorname{mdot}_{1}+\operatorname{mdot}_{2}=\mathrm{Qdot}+\operatorname{mdot}_{1} \cdot \mathrm{C}_{\mathrm{P}} \cdot \mathrm{T}_{1}+\operatorname{mdot}_{2} \cdot \mathrm{C}_{\mathrm{P}} \cdot \mathrm{T}_{2}\right.$

$\operatorname{mdot}_{1}:=1.0 \frac{\mathrm{~kg}}{\mathrm{~s}}$	$\mathrm{~T}_{1}:=25 \operatorname{degC} \quad \operatorname{mdot}_{2}:=0.8 \frac{\mathrm{~kg}}{\mathrm{~s}} \quad \mathrm{~T}_{2}:=75 \operatorname{degC}$
Qdot $:=-30 \frac{\mathrm{~kJ}}{\mathrm{~s}}$	$\mathrm{C}_{P}:=4.18 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$

$$
\mathrm{T}_{3}:=\frac{\mathrm{Qdot}+\operatorname{mdot}_{1} \cdot \mathrm{C}_{\mathrm{P}} \cdot \mathrm{~T}_{1}+\mathrm{mdot}_{2} \cdot \mathrm{C}_{\mathrm{P}} \cdot \mathrm{~T}_{2}}{\left(\mathrm{mdot}_{1}+\mathrm{mdot}_{2} \cdot \mathrm{C}_{\mathrm{P}}\right.}
$$

2.25 By Eq. (2.32a):

$$
\begin{array}{ll}
\Delta \mathrm{H}+\frac{\Delta \mathrm{u}^{2}}{2}=0 & \Delta \mathrm{H}=\mathrm{C}_{\mathrm{P}} \cdot \Delta \mathrm{~T} \\
\mathrm{u}_{2}=\mathrm{u}_{1} \cdot \frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}} & \mathrm{C}_{\mathrm{P}}:=4.18 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \operatorname{degC}}
\end{array}
$$

By continuity, incompressibility
$\Delta u^{2}=u_{1}^{2} \cdot\left[\left(\frac{\mathrm{~A}_{1}}{\mathrm{~A}_{2}}\right)^{2}-1\right]$
$\Delta u^{2}=u_{1}^{2} \cdot\left[\left(\frac{D_{1}}{\mathrm{D}_{2}}\right)^{4}-1\right]$
SI units: $\quad u_{1}:=14 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
$\Delta \mathrm{T}:=\frac{\mathrm{u}_{1}^{2}}{2 \cdot \mathrm{C}_{\mathrm{P}}} \cdot\left[1-\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}\right]$
$\mathrm{D}_{2}:=7.5 \mathrm{~cm}$
$\Delta \mathrm{T}:=\frac{\mathrm{u}_{1}^{2}}{2 \cdot \mathrm{C}_{\mathrm{P}}} \cdot\left[1-\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}\right]$
$\Delta \mathrm{T}=0.023 \mathrm{deg} \mathrm{C}$
$\mathrm{D}_{1}:=2.5 \cdot \mathrm{~cm}$
$\mathrm{D}_{2}:=3.8 \cdot \mathrm{~cm}$
$\Delta \mathrm{T}=0.019 \mathrm{deg} \mathrm{C} \quad$ Ans.

Maximum T change occurrs for infinite D2:
$\mathrm{D}_{2}:=\infty \cdot \mathrm{cm}$
$\Delta \mathrm{T}:=\frac{\mathrm{u}_{1}^{2}}{2 \cdot \mathrm{C}_{\mathrm{P}}} \cdot\left[1-\left(\frac{\mathrm{D}_{1}}{\mathrm{D}_{2}}\right)^{4}\right]$
$\Delta \mathrm{T}=0.023 \operatorname{deg} \mathrm{C}$
Ans.
$2.26 \mathrm{~T}_{1}:=300 \mathrm{~K}$
$\mathrm{T}_{2}:=520 \mathrm{~K}$
$\mathrm{u}_{1}:=10 \frac{\mathrm{~m}}{\mathrm{~s}}$

$$
\mathrm{u}_{2}:=3.5 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
\text { molwt }:=29 \frac{\mathrm{~kg}}{\mathrm{kmol}}
$$

Wsdot := 98.8 kW

$$
\text { ndot }:=50 \frac{\mathrm{kmol}}{\mathrm{hr}}
$$

$$
\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \mathrm{R}
$$

$\Delta \mathrm{H}:=\mathrm{C}_{\mathrm{P}} \cdot() \Gamma_{2}-\mathrm{T}_{1} \quad \Delta \mathrm{H}=6.402 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{kmol}}$
By Eq. (2.30):
Qdot $:=\left[\Delta H+\left(\frac{u_{2}^{2}}{2}-\frac{u_{1}^{2}}{2}\right) \cdot m o l w t\right] \cdot$ ndot - Wsdot \quad Qdot $=-9.904 \mathrm{~kW}$
Ans.
2.27 By Eq. (2.32b): $\quad \Delta H=-\frac{\Delta u^{2}}{2 \cdot g_{c}} \quad$ also $\quad \frac{V_{2}}{V_{1}}=\frac{T_{2}}{T_{1}} \cdot \frac{P_{1}}{P_{2}}$
$\begin{aligned} & \text { By continunity, } \\ & \text { constant area }\end{aligned} \mathrm{u}_{2}=\mathrm{u}_{1} \cdot \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} \quad \mathrm{u}_{2}=\mathrm{u}_{1} \cdot \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}} \cdot \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}} \quad \Delta \mathrm{u}^{2}=\mathrm{u}_{2}{ }^{2}-\mathrm{u}_{1}{ }^{2}$

$$
\begin{array}{ll}
\Delta \mathrm{u}^{2}=\mathrm{u}_{1}^{2} \cdot\left[\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}} \cdot \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)^{2}-1\right] & \Delta \mathrm{H}=\mathrm{C}_{\mathrm{P}} \cdot \Delta \mathrm{~T}=\frac{7}{2} \cdot \mathrm{R} \cdot() \Gamma_{2}-\mathrm{T}_{1} \\
\mathrm{P}_{1}:=100 \cdot \mathrm{psi} & \mathrm{P}_{2}:=20 \cdot \mathrm{psi}
\end{array} \quad \mathrm{u}_{1}:=20 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \quad \mathrm{~T}_{1}:=579.67 \cdot \text { rankine } .
$$

$\mathrm{R}=3.407 \frac{\mathrm{ft} \cdot \mathrm{lb}_{\mathrm{f}}}{\mathrm{mol} \cdot \text { rankine }} \quad$ molwt $:=28 \frac{\mathrm{gm}}{\mathrm{mol}}$
$\mathrm{T}_{2}:=578 \cdot$ rankine \quad (guess)

Given $\quad \frac{7}{2} \cdot \mathrm{R} \cdot() \Gamma_{2}-\mathrm{T}_{1}=-\frac{\mathrm{u}_{1}}{2} \cdot\left[\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}} \cdot \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)^{2}-1\right] \cdot$ molwt
$\mathrm{T}_{2}:=\operatorname{Find}\left(\Gamma_{2} \quad \mathrm{~T}_{2}=578.9\right.$ rankine Ans.
(119.15•degF)
$2.28 \mathrm{u}_{1}:=3 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{u}_{2}:=200 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{H}_{1}:=334.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{2}:=2726.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

By Eq. (2.32a): $\quad \mathrm{Q}:=\mathrm{H}_{2}-\mathrm{H}_{1}+\frac{\mathrm{u}_{2}{ }^{2}-\mathrm{u}_{1}{ }^{2}}{2} \quad \mathrm{Q}=2411.6 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
Ans.
$2.29 \mathrm{u}_{1}:=30 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
$\mathrm{H}_{1}:=3112.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{2}:=2945.7 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{u}_{2}:=500 \cdot \frac{\mathrm{~m}}{\mathrm{~s}}$
(guess)
By Eq. (2.32a):
Given
$\mathrm{H}_{2}-\mathrm{H}_{1}=\frac{\mathrm{u}_{1}^{2}-\mathrm{u}_{2}^{2}}{2}$
$\mathrm{u}_{2}:=\operatorname{Find}()_{2}$

$$
\mathrm{u}_{2}=578.36 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Ans.
$\mathrm{D}_{1}:=5 \cdot \mathrm{~cm}$

$$
\mathrm{V}_{1}:=388.61 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

$$
\mathrm{V}_{2}:=667.75 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

Continuity: $\quad \mathrm{D}_{2}:=\mathrm{D}_{1} \cdot \sqrt{\frac{\mathrm{u}_{1} \cdot \mathrm{~V}_{2}}{\mathrm{u}_{2} \cdot \mathrm{~V}_{1}}} \quad \mathrm{D}_{2}=1.493 \mathrm{~cm}$
Ans.
2.30 (a)

$\mathrm{Q}=13.728 \mathrm{~kJ}$
Ans.
By Eq. (2.19): $\quad Q:=n \cdot C_{V} \cdot()_{2}-t_{1}$
Take into account the heat capacity of the vessel; then

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{V}}:=100 \cdot \mathrm{~kg} \quad \mathrm{c}_{\mathrm{V}}:=0.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \operatorname{degC}} \\
& \mathrm{Q}:=\left(\mathrm{m}_{\mathrm{V}} \cdot \mathrm{c}_{\mathrm{V}}+\mathrm{n} \cdot \mathrm{C}_{\mathrm{V}} \cdot()_{2}-\mathrm{t}_{1} \quad \mathrm{Q}=11014 \mathrm{~kJ}\right. \\
& \text { (b) } \quad \mathrm{t}_{1}:=200 \cdot \operatorname{degC} \quad \mathrm{t}_{2}:=40 \cdot \operatorname{degC} \quad \mathrm{n}:=4 \cdot \mathrm{~mol} \\
& \mathrm{C}_{\mathrm{P}}:=29.1 \cdot \frac{\text { joule }}{\mathrm{mol} \cdot \operatorname{degC}}
\end{aligned}
$$

Ans.

By Eq. (2.23): $\quad Q:=n \cdot C_{P} \cdot()_{2}-t_{1} \quad Q=-18.62 k J$
Ans.
2.31 (a) $\mathrm{t}_{1}:=70 \cdot \operatorname{degF} \quad \mathrm{t}_{2}:=350 \cdot \operatorname{degF} \quad \mathrm{n}:=3 \cdot \mathrm{~mol}$

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{V}}:=5 \cdot \frac{\mathrm{BTU}}{\mathrm{~mol} \cdot \operatorname{deg} \mathrm{~F}} & \text { By Eq. (2.19): } \\
\mathrm{Q}:=\mathrm{n} \cdot \mathrm{C}_{\mathrm{V}} \cdot()_{2}-\mathrm{t}_{1} & \mathrm{Q}=4200 \mathrm{BTU}
\end{array}
$$

Take account of the heat capacity of the vessel:

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{V}}:=200 \cdot 1 \mathrm{~b}_{\mathrm{m}} \quad \mathrm{c}_{\mathrm{V}}:=0.12 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \operatorname{deg} \mathrm{~F}} \\
& \mathrm{Q}:=\left(\mathrm{m}_{\mathrm{V}} \cdot \mathrm{c}_{\mathrm{V}}+\mathrm{n} \cdot \mathrm{C}_{\mathrm{V}} \cdot()_{2}-\mathrm{t}_{1} \quad \mathrm{Q}=10920 \mathrm{BTU} \quad\right. \text { Ans. } \\
& \text { (b) } \mathrm{t}_{1}:=400 \cdot \operatorname{degF} \quad \mathrm{t} \quad:=150 \cdot \operatorname{degF} \quad \mathrm{n}:=4 \cdot \mathrm{~mol}
\end{aligned}
$$

$$
\begin{array}{lll}
& \begin{array}{ll}
\mathrm{C}_{\mathrm{P}}:=7 \cdot \frac{\mathrm{BTU}}{\mathrm{~mol} \cdot \mathrm{degF}} & \text { By Eq. (2.23): } \\
\mathrm{Q}:=\mathrm{n} \cdot \mathrm{C}_{\mathrm{P}} \cdot\left(\mathrm{f}_{2}-\mathrm{t}_{1}\right. & \mathrm{Q}=-7000 \mathrm{BTU} \quad \text { Ans. } \\
2.33 & \mathrm{H}_{1}:=1322.6 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
\end{array} & \mathrm{H}_{2}:=1148.6 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{u}_{1}:=10 \cdot \frac{\mathrm{ft}}{\mathrm{~s}} \\
\mathrm{~V}_{1}:=3.058 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{~V}_{2}:=78.14 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{D}_{1}:=3 \cdot \mathrm{in} \quad \mathrm{D}_{2}:=10 \cdot \mathrm{in} \\
\mathrm{mdot}:=\frac{\frac{\pi}{4} \cdot \mathrm{D}_{1}^{2} \cdot \mathrm{u}_{1}}{\mathrm{~V}_{1}} & \mathrm{mdot}=3.463 \times 10^{4} \frac{\mathrm{lb}}{\mathrm{sec}} \\
\mathrm{u}_{2}:=\mathrm{mdot} \cdot \frac{\mathrm{~V}_{2}}{\frac{\pi}{4} \cdot \mathrm{D}_{2}^{2}} & \mathrm{u}_{2}=22.997 \frac{\mathrm{ft}}{\mathrm{sec}}
\end{array}
$$

Eq. (2.32a): $\mathrm{W}_{\mathrm{S}}:=\mathrm{H}_{2}-\mathrm{H}_{1}+\frac{\mathrm{u}_{2}{ }^{2}-\mathrm{u}_{1}{ }^{2}}{2} \quad \mathrm{~W}_{\mathrm{S}}=-173.99 \frac{\mathrm{BTU}}{\mathrm{lb}}$
$\mathrm{Wdot}:=-\mathrm{W}_{\mathrm{S}} \cdot \mathrm{mdot}$
$\mathrm{Wdot}=39.52 \mathrm{hp}$
Ans.
2.34
$\mathrm{H}_{1}:=307 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{H}_{2}:=330 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{u}_{1}:=20 \cdot \frac{\mathrm{ft}}{\mathrm{s}}$
molwt $:=44 \cdot \frac{\mathrm{gm}}{\mathrm{mol}}$
$\mathrm{V}_{1}:=9.25 \cdot \frac{\mathrm{ft}^{3}}{1 \mathrm{~b}_{\mathrm{m}}}$
$\mathrm{V}_{2}:=0.28 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{D}_{1}:=4 \cdot \mathrm{in}$
$\mathrm{D}_{2}:=1 \cdot$ in
$\operatorname{mdot}:=\frac{\frac{\pi}{4} \cdot \mathrm{D}_{1}{ }^{2} \cdot \mathrm{u}_{1}}{\mathrm{~V}_{1}} \quad \operatorname{mdot}=679.263 \frac{\mathrm{lb}}{\mathrm{hr}}$
$\mathrm{u}_{2}:=\operatorname{mdot} \cdot \frac{\mathrm{V}_{2}}{\frac{\pi}{4} \cdot \mathrm{D}_{2}{ }^{2}}$
$\mathrm{u}_{2}=9.686 \frac{\mathrm{ft}}{\mathrm{sec}}$

$$
\mathrm{W}_{\mathrm{S}}:=5360 \cdot \frac{\mathrm{BTU}}{\mathrm{lbmol}}
$$

Eq. (2.32a): $\mathrm{Q}:=\mathrm{H}_{2}-\mathrm{H}_{1}+\frac{\mathrm{u}_{2}^{2}-\mathrm{u}_{1}^{2}}{2}-\frac{\mathrm{W}_{\mathrm{s}}}{\mathrm{molwt}} \quad \mathrm{Q}=-98.82 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$

$$
\mathrm{Qdot}:=\operatorname{mdot} \cdot \mathrm{Q}
$$

Ans.
$2.36 \quad \mathrm{~T}_{1}:=300 \cdot \mathrm{~K} \quad \mathrm{P}:=1 \cdot \mathrm{bar} \quad \mathrm{n}:=\frac{1 \cdot \mathrm{~kg}}{28.9 \cdot \frac{\mathrm{gm}}{\mathrm{mol}}} \quad \mathrm{n}=34.602 \mathrm{~mol}$
$\mathrm{V}_{1}:=83.14 \cdot \frac{\mathrm{bar} \cdot \mathrm{cm}^{3}}{\mathrm{~mol} \cdot \mathrm{~K}} \cdot \frac{\mathrm{~T}_{1}}{\mathrm{P}} \quad \mathrm{V}_{1}=24942 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
$W=-n \cdot \int_{V_{1}}^{V_{2}} P d V=n \cdot P \cdot\left(N_{1}-V_{2}=n \cdot P \cdot\left(N_{1}-3 \cdot V_{1}\right.\right.$

Whence

$$
\mathrm{W}:=-\mathrm{n} \cdot \mathrm{P} \cdot 2 \cdot \mathrm{~V}_{1}
$$

$$
\mathrm{W}=-172.61 \mathrm{~kJ}
$$

Ans.
Given: $\quad \mathrm{T}_{2}=\mathrm{T}_{1} \cdot \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}=\mathrm{T}_{1} \cdot 3 \quad$ Whence $\quad \mathrm{T}_{2}:=3 \cdot \mathrm{~T}_{1}$
$\mathrm{C}_{\mathrm{P}}:=29 \cdot \frac{\text { joule }}{\mathrm{mol} \cdot \mathrm{K}}$
$\Delta \mathrm{H}:=\mathrm{C}_{\mathrm{P}} \cdot() \Gamma_{2}-\mathrm{T}_{1}$
$\Delta \mathrm{H}=17.4 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
Ans.
$\mathrm{Q}:=\mathrm{n} \cdot \Delta \mathrm{H}$
$\mathrm{Q}=602.08 \mathrm{~kJ}$
$\Delta \mathrm{U}=12.41 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Ans.

Ans.
2.37 Work exactly like Ex. 2.10: 2 steps, (a) \& (b). A value is required for PV/T, namely R.

$\mathrm{R}=8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$	$\mathrm{~T}_{1}:=293.15 \cdot \mathrm{~K}$	$\mathrm{~T}_{2}:=333.15 \cdot \mathrm{~K}$
(a) Cool at const V1 to P2 (b) Heat at const P2 to T2	$\mathrm{C}_{1}:=1000 \cdot \mathrm{kPa}$	$\mathrm{P}_{2}:=100 \cdot \mathrm{kPa}$

$\mathrm{T}_{\mathrm{a} 2}:=\mathrm{T}_{1} \cdot \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}} \quad \mathrm{~T}_{\mathrm{a} 2}=29.315 \mathrm{~K}$

$$
\begin{aligned}
& \Delta \mathrm{T}_{\mathrm{b}}:=\mathrm{T}_{2}-\mathrm{T}_{\mathrm{a} 2} \quad \Delta \mathrm{~T}_{\mathrm{b}}=303.835 \mathrm{~K} \quad \Delta \mathrm{~T}_{\mathrm{a}}:=\mathrm{T}_{\mathrm{a} 2}-\mathrm{T}_{1} \quad \Delta \mathrm{~T}_{\mathrm{a}}=-263.835 \mathrm{~K} \\
& \begin{array}{ll}
\Delta \mathrm{H}_{\mathrm{b}}:=\mathrm{C}_{\mathrm{P}} \cdot \Delta \mathrm{~T}_{\mathrm{b}} & \Delta \mathrm{H}_{\mathrm{b}}=8.841 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\Delta \mathrm{U}_{\mathrm{a}}:=\mathrm{C}_{\mathrm{V}} \cdot \Delta \mathrm{~T}_{\mathrm{a}} & \Delta \mathrm{U}_{\mathrm{a}}=-5.484 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{array} \\
& \mathrm{~V}_{1}:=\frac{\mathrm{R} \cdot \mathrm{~T}_{1}}{\mathrm{P}_{1}} \quad \mathrm{~V}_{1}=2.437 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~mol}} \quad \mathrm{~V}_{2}:=\frac{\mathrm{R} \cdot \mathrm{~T}_{2}}{\mathrm{P}_{2}} \quad \mathrm{~V}_{2}=0.028 \frac{\mathrm{~m}^{3}}{\mathrm{~mol}} \\
& \Delta \mathrm{H}_{\mathrm{a}}:=\Delta \mathrm{U}_{\mathrm{a}}+\mathrm{V}_{1} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1} \quad \Delta \mathrm{H}_{\mathrm{a}}=-7.677 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}\right. \\
& \Delta \mathrm{U}_{\mathrm{b}}:=\Delta \mathrm{H}_{\mathrm{b}}-\mathrm{P}_{2} \cdot\left(\mathrm{~N}_{2}-\mathrm{V}_{1} \quad \Delta \mathrm{U}_{\mathrm{b}}=6.315 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}\right. \\
& \Delta \mathrm{U}:=\Delta \mathrm{U}_{\mathrm{a}}+\Delta \mathrm{U}_{\mathrm{b}} \\
& \Delta \mathrm{U}=0.831 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Delta \mathrm{H}=1.164 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \text { Ans. } \\
& \text { Ans. } \\
& \mu:=9.0 \cdot 10^{-4} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}} \\
& \varepsilon \mathrm{D}:=0.0001 \\
& \text { Note: } \varepsilon \mathbf{D}=\varepsilon / \mathbf{D} \\
& \text { in this solution } \\
& \operatorname{Re}:=\frac{\overrightarrow{D \cdot \rho \cdot \mathrm{u}}}{\mu} \quad \operatorname{Re}=\left(\begin{array}{c}
22133 \\
55333 \\
110667 \\
276667
\end{array}\right)
\end{aligned}
$$

$$
\mathrm{fF}:=\overrightarrow{\left[0.3305 \cdot\left[\ln \left[0.27 \cdot \varepsilon \mathrm{D}+\left(\frac{7}{\mathrm{Re}}\right)^{0.9}\right]\right]^{-2}\right]} \quad \mathrm{f}=\left(\begin{array}{c}
0.00635 \\
0.00517 \\
0.00452 \\
0.0039
\end{array}\right)
$$

$\operatorname{mdot}:=\overrightarrow{\left(\rho \cdot u \cdot \frac{\pi}{4} \mathrm{D}^{2}\right)}$
$\Delta \mathrm{P} \Delta \mathrm{L}:=\overrightarrow{\left(\frac{-2}{\mathrm{D}} \cdot \mathrm{FF}_{\mathrm{F}} \cdot \cdot \mathrm{u}^{2}\right)}$
mdot $=\left(\left.\begin{array}{l}0.313 \\ 1.956 \\ 1.565\end{array} \right\rvert\, \frac{\mathrm{kg}}{\mathrm{s}}\right.$
$\Delta \mathrm{P} \Delta \mathrm{L}=\left(\begin{array}{ll}-0.632 & \\ -0.206 \\ -11.254 & \frac{\mathrm{kPa}}{\mathrm{m}} \\ -3.88\end{array}\right)$

Ans.

Ans.
$2.42 \operatorname{mdot}:=4.5 \frac{\mathrm{~kg}}{\mathrm{~s}} \quad \mathrm{H}_{1}:=761.1 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{H}_{2}:=536.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
Assume that the compressor is adiabatic (Qdot = 0). Neglect changes in KE and PE.
$W \operatorname{dot}:=\operatorname{mdot} \cdot\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right.$
Cost $:=15200 \cdot\left(\frac{\mid \text { Wdot } \mid}{\mathrm{kW}}\right)^{0.573}$
W dot $=-1.009 \times 10^{3} \mathrm{~kW}$

Cost $=799924$ dollars Ans.

Chapter 3 - Section A - Mathcad Solutions

$3.1 \beta=\frac{-1}{\rho} \cdot\left(\frac{d}{d T} \rho\right)_{P} \quad \kappa=\frac{1}{\rho} \cdot\left(\frac{d}{d P} \rho\right)_{T}$
At constant T, the 2nd equation can be written:

$$
\begin{aligned}
& \frac{d \rho}{\rho}=\kappa \cdot d P \quad \ln \left(\frac{\rho_{2}}{\rho_{1}}\right)=\kappa \Delta P \quad \kappa:=44.18 \cdot 10^{-6} \cdot \mathrm{bar}^{-1} \quad \rho_{2}=1.01 \cdot \rho_{1} \\
& \Delta \mathrm{P}:=\frac{\ln (1.01)}{\kappa} \quad \Delta \mathrm{P}=225.2 \mathrm{bar} \quad \mathrm{P}_{2}=226.2 \cdot \mathrm{bar} \quad \text { Ans. }
\end{aligned}
$$

$3.4 \mathrm{~b}:=2700 \cdot \mathrm{bar}$

$$
\mathrm{c}:=0.125 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

$$
\mathrm{P}_{1}:=1 \cdot \mathrm{bar}
$$

$$
\mathrm{P}_{2}:=500 \cdot \mathrm{bar}
$$

Since \quad Work $=-\int_{V_{1}}^{V_{2}} P d V \quad$ a bit of algebra leads to
Work : $=c \cdot \int_{P_{1}}^{P_{2}} \frac{P}{P+b} d P$

$$
\text { Work }=0.516 \frac{\mathrm{~J}}{\mathrm{gm}}
$$

Ans.

Alternatively, formal integration leads to
Work $:=\mathrm{c} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1}-\mathrm{b} \cdot \ln \left(\frac{\mathrm{P}_{2}+\mathrm{b}}{\mathrm{P}_{1}+\mathrm{b}}\right)\right)$

Ans.

$$
\begin{array}{rl|l|l}
3.5 & \kappa=\mathrm{a}+\mathrm{b} \cdot \mathrm{P} & \mathrm{a}:=3.9 \cdot 10^{-6} \cdot \mathrm{~atm}^{-1} & \mathrm{~b}:=-0.1 \cdot 10^{-9} \cdot \mathrm{~atm}^{-2} \\
& \mathrm{P}_{1}:=1 \cdot \mathrm{~atm} & \mathrm{P}_{2}:=3000 \cdot \mathrm{~atm} & \mathrm{~V}:=1 \cdot \mathrm{ft}^{3} \quad \text { (assume const.) }
\end{array}
$$

Combine Eqs. (1.3) and (3.3) for const. T:
Work $:=\mathrm{V} \cdot \int_{\mathrm{P}_{1}}^{\mathrm{P}_{2}}(\mathrm{a}+\mathrm{b} \cdot \mathrm{P}) \cdot \mathrm{PdP}$
Work $=16.65 \mathrm{~atm} \cdot \mathrm{ft}^{3}$
Ans.

$$
\begin{array}{llll}
3.6 & \beta:=1.2 \cdot 10^{-3} \cdot \operatorname{deg} \mathrm{C}^{-1} & \mathrm{CP}:=0.84 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \operatorname{degC}} & \mathrm{M}:=5 \cdot \mathrm{~kg} \\
\mathrm{~V}_{1}:=\frac{1}{1590} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} & \mathrm{P}:=1 \cdot \mathrm{bar} & \mathrm{t}_{1}:=0 \cdot \operatorname{degC} & \mathrm{t}_{2}:=20 \cdot \operatorname{degC}
\end{array}
$$

With beta independent of T and with $P=$ constant,

$$
\frac{\mathrm{dV}}{\mathrm{~V}}=\beta \cdot \mathrm{dT} \quad \mathrm{~V}_{2}:=\mathrm{V}_{1} \cdot \exp \left[\beta \cdot()_{2}-\mathrm{t}_{1}\right] \quad \Delta \mathrm{V}:=\mathrm{V}_{2}-\mathrm{V}_{1}
$$

$$
\Delta \mathrm{V}_{\text {total }}:=\mathrm{M} \cdot \Delta \mathrm{~V}
$$

$$
\Delta \mathrm{V}_{\text {total }}=7.638 \times 10^{-5} \mathrm{~m}^{3}
$$

Ans.

$$
\text { Work }:=-\mathbb{B} \cdot \quad \mathrm{V}_{\text {total }}
$$

(Const. P) Work $=-7.638$ joule

Ans.
Ans.
Ans.
Ans.
Ans.
$3.8 \quad \mathrm{P}_{1}:=8 \cdot \mathrm{bar} \quad \mathrm{P}_{2}:=1 \cdot \mathrm{bar} \quad \mathrm{T}_{1}:=600 \cdot \mathrm{~K} \quad \mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \mathrm{R} \quad \mathrm{C}_{\mathrm{V}}:=\frac{5}{2} \cdot \mathrm{R}$
(a) Constant
$\mathrm{T}_{2}:=\mathrm{T}_{1} \cdot \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}$
$\mathrm{W}=0 \quad$ and $\quad \Delta \mathrm{U}=\mathrm{Q}=\mathrm{C}_{\mathrm{V}} \cdot \Delta \mathrm{T}$
$\mathrm{T}_{2}:=\mathrm{T}_{1} \cdot \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}$
$\Delta \mathrm{U}:=\mathrm{C}_{\mathrm{V}} \cdot \Delta \mathrm{T}$
$\Delta \mathrm{H}:=\mathrm{C}_{\mathrm{P}} \cdot \Delta \mathrm{T}$
(b) Constant $\mathrm{T}:$
Work $:=\mathrm{R} \cdot \mathrm{T}_{1} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$
$\Delta \mathrm{T}:=\mathrm{T}_{2}-\mathrm{T}_{1} \quad \Delta \mathrm{~T}=-525 \mathrm{~K}$
$\mathrm{Q}:=\mathrm{M} \cdot \mathrm{C}_{\mathrm{P}} \cdot()_{2}-\mathrm{t}_{1} \quad \mathrm{Q}=84 \mathrm{~kJ}$
$\Delta \mathrm{H}_{\text {total }}:=\mathrm{Q} \quad \Delta \mathrm{H}_{\text {total }}=84 \mathrm{~kJ}$

$$
\Delta \mathrm{U}_{\text {total }}:=\mathrm{Q}+\text { Work } \quad \Delta \mathrm{U}_{\text {total }}=83.99 \mathrm{~kJ}
$$

$\gamma:=\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}} \quad \mathrm{T}_{2}:=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}} \quad \mathrm{~T}_{2}=331.227 \mathrm{~K} \quad \Delta \mathrm{~T}:=\mathrm{T}_{2}-\mathrm{T}_{1}$

$$
\Delta \mathrm{U}:=\mathrm{C}_{\mathrm{V}} \cdot \Delta \mathrm{~T}
$$

$$
\Delta \mathrm{H}:=\mathrm{C}_{\mathrm{P}} \cdot \Delta \mathrm{~T}
$$

W and
$\Delta \mathrm{U}=-5.586 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Ans.
$\Delta \mathrm{H}=-7.821 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Ans.
$3.9 \quad \mathrm{P}_{4}:=2 \mathrm{bar}$

$$
\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \mathrm{R}
$$

$$
\mathrm{C}_{\mathrm{V}}:=\frac{5}{2} \mathrm{R}
$$

$$
\mathrm{P}_{1}:=10 \mathrm{bar} \quad \mathrm{~T}_{1}:=600 \mathrm{~K} \quad \mathrm{~V}_{1}:=\frac{\mathrm{R} \cdot \mathrm{~T}_{1}}{\mathrm{P}_{1}} \quad \mathrm{~V}_{1}=4.988 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}
$$

Step 41: Adiabatic

$$
\mathrm{T}_{4}:=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{P}_{4}}{\mathrm{P}_{1}}\right)^{\frac{\mathrm{R}}{\mathrm{CP}_{\mathrm{P}}}} \quad \mathrm{~T}_{4}=378.831 \mathrm{~K}
$$

$$
\Delta \mathrm{U}_{41}:=\mathrm{C}_{\mathrm{V}} \cdot() \Gamma_{1}-\mathrm{T}_{4} \quad \Delta \mathrm{U}_{41}=4.597 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{H}_{41}:=\mathrm{C}_{\mathrm{P}} \cdot() \Gamma_{1}-\mathrm{T}_{4} \quad \Delta \mathrm{H}_{41}=6.436 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{Q}_{41}:=0 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{Q}_{41}=0 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{W}_{41}:=\Delta \mathrm{U}_{41}
$$

$$
\mathrm{W}_{41}=4.597 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{P}_{2}:=3 \text { bar } \quad \mathrm{T}_{2}:=600 \mathrm{~K} \quad \mathrm{~V}_{2}:=\frac{\mathrm{R} \cdot \mathrm{~T}_{2}}{\mathrm{P}_{2}} \quad \mathrm{~V}_{2}=0.017 \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}
$$

Step 12: Isothermal $\quad \Delta \mathrm{U}_{12}:=0 \frac{\mathrm{~J}}{\mathrm{~mol}}$

$$
\Delta \mathrm{U}_{12}=0 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{H}_{12}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{H}_{12}=0 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\begin{array}{ll}
\mathrm{Q}_{12}:=-\mathrm{R} \cdot \mathrm{~T}_{1} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right) & \mathrm{Q}_{12}=6.006 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathrm{~W}_{12}:=-\mathrm{Q}_{12} & \mathrm{~W}_{12}=-6.006 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{array}
$$

$P_{3}:=2 \mathrm{bar}$

$$
\mathrm{V}_{3}:=\mathrm{V}_{2}
$$

$$
\mathrm{T}_{3}:=\frac{\mathrm{P}_{3} \cdot \mathrm{~V}_{3}}{\mathrm{R}}
$$

$$
\mathrm{T}_{3}=400 \mathrm{~K}
$$

Step 23: Isochoric

$$
\begin{array}{ll}
\Delta \mathrm{U}_{23}:=\mathrm{C}_{\mathrm{V}} \cdot() \Gamma_{3}-\mathrm{T}_{2} & \Delta \mathrm{U}_{23}=-4.157 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\Delta \mathrm{H}_{23}:=\mathrm{C}_{\mathrm{P}} \cdot\left(\Gamma_{3}-\mathrm{T}_{2}\right. & \Delta \mathrm{H}_{23}=-5.82 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathrm{Q}_{23}:=\mathrm{C}_{\mathrm{V}} \cdot\left(\Gamma_{3}-\mathrm{T}_{2}\right. & \mathrm{Q}_{23}=-4.157 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathrm{~W}_{23}:=0 \frac{\mathrm{~J}}{\mathrm{~mol}} & \mathrm{~W}_{23}=0 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{array}
$$

$$
\mathrm{P}_{4}=2 \mathrm{bar} \quad \mathrm{~T}_{4}=378.831 \mathrm{~K} \quad \mathrm{~V}_{4}:=\frac{\mathrm{R} \cdot \mathrm{~T}_{4}}{\mathrm{P}_{4}} \mathrm{~V}_{4}=0.016 \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}
$$

Step 34: Isobaric

$$
\begin{array}{ll}
\Delta \mathrm{U}_{34}:=\mathrm{C}_{\mathrm{V}} \cdot() \Gamma_{4}-\mathrm{T}_{3} & \Delta \mathrm{U}_{34}=-439.997 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\Delta \mathrm{H}_{34}:=\mathrm{C}_{\mathrm{P}} \cdot() \Gamma_{4}-\mathrm{T}_{3} & \Delta \mathrm{H}_{34}=-615.996 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathrm{Q}_{34}:=\mathrm{C}_{\mathrm{P}} \cdot\left(\left(\Gamma_{4}-\mathrm{T}_{3}\right.\right. & \mathrm{Q}_{34}=-615.996 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathrm{~W}_{34}:=-\mathrm{R} \cdot() \Gamma_{4}-\mathrm{T}_{3} & \mathrm{~W}_{34}=175.999 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{array}
$$

3.10 For all parts of this problem: $T_{2}=T_{1}$ and
$\Delta \mathrm{U}=\Delta \mathrm{H}=0 \quad$ Also $\quad \mathrm{Q}=-$ Work and all that remains is to calculate Work. Symbol V is used for total volume in this problem.

$$
\mathrm{P}_{1}:=1 \cdot \mathrm{bar} \quad \mathrm{P}_{2}:=12 \cdot \mathrm{bar} \quad \mathrm{~V}_{1}:=12 \cdot \mathrm{~m}^{3} \quad \mathrm{~V}_{2}:=1 \cdot \mathrm{~m}^{3}
$$

(a) Work $=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{T} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right) \quad$ Work $:=\mathrm{P}_{1} \cdot \mathrm{~V}_{1} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$

$$
\text { Work }=2982 \mathrm{~kJ} \quad \text { Ans. }
$$

(b) Step 1: adiabatic compression to $\mathbf{P}_{\mathbf{2}}$

$$
\begin{array}{ll}
\gamma:=\frac{5}{3} \quad \mathrm{~V}_{\mathrm{i}}:=\mathrm{V}_{1} \cdot\left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}\right)^{\bar{\gamma}} & \text { (intermediate } \mathrm{V}) \quad \mathrm{V}_{\mathrm{i}}=2.702 \mathrm{~m}^{3} \\
\mathrm{~W}_{1}:=\frac{\mathrm{P}_{2} \cdot \mathrm{~V}_{\mathrm{i}}-\mathrm{P}_{1} \cdot \mathrm{~V}_{1}}{\gamma-1} & \mathrm{~W}_{1}=3063 \mathrm{~kJ}
\end{array}
$$

Step 2: cool at const $\mathbf{P}_{\mathbf{2}}$ to $\mathbf{V}_{\mathbf{2}}$

$$
\begin{array}{ll}
\mathrm{W}_{2}:=-\mathrm{P}_{2} \cdot\left(\mathrm{~N}_{2}-\mathrm{V}_{\mathrm{i}}\right. & \mathrm{W}_{2}=2042 \mathrm{~kJ} \\
\text { Work }:=\mathrm{W}_{1}+\mathrm{W}_{2} & \text { Work }=5106 \mathrm{~kJ} \quad \text { Ans. }
\end{array}
$$

(c) Step 1: adiabatic compression to \mathbf{V}_{2}

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{i}}:=\mathrm{P}_{1} \cdot\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma} & \text { (intermediate } \mathrm{P}) \\
\mathrm{P}_{\mathrm{i}}=62.898 \mathrm{bar} \\
\mathrm{~W}_{1}:=\frac{\mathrm{P}_{\cdot} \cdot \mathrm{V}_{2}-\mathrm{P}_{1} \cdot \mathrm{~V}_{1}}{\gamma-1} & \mathrm{~W}_{1}=7635 \mathrm{~kJ}
\end{array}
$$

Step 2: No work.
Work := W \quad Work $=7635 \mathrm{~kJ}$
Ans.
(d) Step 1: heat at const $\mathbf{V}_{\mathbf{1}}$ to $\mathbf{P}_{\mathbf{2}} \quad \mathrm{W}_{1}=0$

Step 2: cool at const $\mathbf{P}_{\mathbf{2}}$ to $\mathbf{V}_{\mathbf{2}}$

$$
\mathrm{W}_{2}:=-\mathrm{P}_{2} \cdot\left(\mathrm{~N}_{2}-\mathrm{V}_{1} \quad \text { Work }:=\mathrm{W}_{2} \quad \text { Work }=13200 \mathrm{~kJ} \quad\right. \text { Ans. }
$$

(e) Step 1: cool at const P_{1} to $\mathbf{V}_{\mathbf{2}}$

$$
\mathrm{W}_{1}:=-\mathrm{P}_{1} \cdot\left(\mathrm{~N}_{2}-\mathrm{V}_{1}\right.
$$

$$
\mathrm{W}_{1}=1100 \mathrm{~kJ}
$$

Step 2: heat at const $\mathbf{V}_{\mathbf{2}}$ to $\mathbf{P}_{\mathbf{2}} \quad \mathrm{W}_{2}=0$

$$
\text { Work }:=\mathrm{W}_{1}
$$

Work $=1100 \mathrm{~kJ}$
Ans.
3.17 (a) No work is done; no heat is transferred.

$$
\Delta \mathrm{U}^{\mathrm{t}}=\Delta \mathrm{T}=0 \quad \mathrm{~T}_{2}=\mathrm{T}_{1}=100 \cdot \operatorname{deg} \mathrm{C} \quad \text { Not reversible }
$$

(b) The gas is returned to its initial state by isothermal compression.

$$
\begin{array}{ll}
\text { Work }=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{~T} \cdot \ln \left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right) \quad \mathrm{n} \cdot \mathrm{R} \cdot \mathrm{~T}=\mathrm{P}_{2} \cdot \mathrm{~V}_{2} \\
\mathrm{~V}_{1}:=4 \cdot \mathrm{~m}^{3} & \mathrm{~V}_{2}:=\frac{4}{3} \cdot \mathrm{~m}^{3} \\
\text { Work }:=\mathrm{P}_{2} \cdot \mathrm{~V}_{2} \cdot \ln \left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right) & \text { Work }=8 \cdot \mathrm{bar} \\
\text { W } &
\end{array}
$$

3.18 (a) $\mathrm{P}_{1}:=100 \cdot \mathrm{kPa}$
$\mathrm{P}_{2}:=500 \cdot \mathrm{kPa}$
$\mathrm{T}_{1}:=303.15 \cdot \mathrm{~K}$
$\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \mathrm{R}$
$\mathrm{C}_{\mathrm{V}}:=\frac{5}{2} \cdot \mathrm{R}$
$\gamma:=\frac{C_{P}}{C_{V}}$

Adiabatic compression from point 1 to point 2:

$$
\begin{array}{ll}
\mathrm{Q}_{12}:=0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}} & \Delta \mathrm{U}_{12}=\mathrm{W}_{12}=\mathrm{C}_{\mathrm{V}} \cdot \Delta \mathrm{~T}_{12} \quad \mathrm{~T}_{2}:=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}} \\
\Delta \mathrm{U}_{12}:=\mathrm{C}_{\mathrm{V}} \cdot() \mathrm{r}_{2}-\mathrm{T}_{1} & \Delta \mathrm{H}_{12}:=\mathrm{C}_{\mathrm{P}} \cdot\left(\Gamma_{2}-\mathrm{T}_{1} \quad \mathrm{~W}_{12}:=\Delta \mathrm{U}_{12}\right. \\
\Delta \mathrm{U}_{12}=3.679 \frac{\mathrm{~kJ}}{\mathrm{~mol}} & \Delta \mathrm{H}_{12}=5.15 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \mathrm{~W}_{12}=3.679 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \text { Ans. }
\end{array}
$$

Cool at $\mathbf{P}_{\mathbf{2}}$ from point 2 to point 3:

$$
\begin{gathered}
\mathrm{T}_{3}:=\mathrm{T}_{1} \quad \Delta \mathrm{H}_{23}:=\mathrm{C}_{\mathrm{P}} \cdot() \Gamma_{3}-\mathrm{T}_{2} \quad \mathrm{Q}_{23}:=\Delta \mathrm{H}_{23} \\
\Delta \mathrm{U}_{23}:=\mathrm{C}_{\mathrm{V}} \cdot() \Gamma_{3}-\mathrm{T}_{2} \quad \mathrm{~W}_{23}:=\Delta \mathrm{U}_{23}-\mathrm{Q}_{23}
\end{gathered}
$$

$$
\begin{array}{ll}
\Delta \mathrm{H}_{23}=-5.15 \frac{\mathrm{~kJ}}{\mathrm{~mol}} & \Delta \mathrm{U}_{23}=-3.679 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{array} \quad \text { Ans. }
$$

Isothermal expansion from point 3 to point 1:
$\Delta \mathrm{U}_{31}=\Delta \mathrm{H}_{31}=0 \quad \mathrm{P}_{3}:=\mathrm{P}_{2} \quad \mathrm{~W}_{31}:=\mathrm{R} \cdot \mathrm{T}_{3} \cdot \ln \left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{3}}\right)$
$\mathrm{Q}_{31}:=-\mathrm{W}_{31}$

$$
\mathrm{W}_{31}=-4.056 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

$$
\mathrm{Q}_{31}=4.056 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Ans.

FOR THE CYCLE: $\quad \Delta \mathrm{U}=\Delta \mathrm{H}=0$
$\mathrm{Q}:=\mathrm{Q}_{12}+\mathrm{Q}_{23}+\mathrm{Q}_{31}$
$Q=-1.094 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Work $:=\mathrm{W}_{12}+\mathrm{W}_{23}+\mathrm{W}_{31}$
Work $=1.094 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
(b) If each step that is $\mathbf{8 0 \%}$ efficient accomplishes the same change of state, all property values are unchanged, and the delta H and delta U values are the same as in part (a). However, the Q and W values change.

$$
\begin{array}{lll}
\text { Step 12: } & \mathrm{W}_{12}:=\frac{\mathrm{W}_{12}}{0.8} & \mathrm{~W}_{12}=4.598 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \mathrm{Q}_{12}:=\Delta \mathrm{U}_{12}-\mathrm{W}_{12} & \mathrm{Q}_{12}=-0.92 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\text { Step 23: } & \mathrm{W}_{23}:=\frac{\mathrm{W}_{23}}{0.8} & \mathrm{~W}_{23}=1.839 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \mathrm{Q}_{23}:=\Delta \mathrm{U}_{23}-\mathrm{W}_{23} & \mathrm{Q}_{23}=-5.518 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\text { Step 31: } & \mathrm{W}_{31}:=\mathrm{W}_{31} \cdot 0.8 & \mathrm{~W}_{31}=-3.245 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \mathrm{Q}_{31}:=-\mathrm{W}_{31} & \mathrm{Q}_{31}=3.245 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{array}
$$

FOR THE CYCLE:

$$
\begin{array}{ll}
\mathrm{Q}:=\mathrm{Q}_{12}+\mathrm{Q}_{23}+\mathrm{Q}_{31} & \text { Work }:=\mathrm{W}_{12}+\mathrm{W}_{23}+\mathrm{W}_{31} \\
\mathrm{Q}=-3.192 \frac{\mathrm{~kJ}}{\mathrm{~mol}} & \text { Work }=3.192 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{array}
$$

3.19 Here, V represents total volume.

$$
\begin{array}{lll}
\mathrm{P}_{1}:=1000 \cdot \mathrm{kPa} & \mathrm{~V}_{1}:=1 \cdot \mathrm{~m}^{3} & \mathrm{~V}_{2}:=5 \cdot \mathrm{~V}_{1} \quad \mathrm{~T}_{1}:=600 \cdot \mathrm{~K} \\
\mathrm{C}_{\mathrm{P}}:=21 \cdot \frac{\text { joule }}{\mathrm{mol} \cdot \mathrm{~K}} & \mathrm{C}_{\mathrm{V}}:=\mathrm{C}_{\mathrm{P}}-\mathrm{R} & \gamma:=\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}
\end{array}
$$

(a) Isothermal: \quad Work $=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{T}_{1} \cdot \ln \left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right) \quad \mathrm{P}_{2}:=\mathrm{P}_{1} \cdot \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}$

$$
\begin{array}{lll}
\mathrm{T}_{2}:=\mathrm{T}_{1} & \mathrm{~T}_{2}=600 \mathrm{~K} & \mathrm{P}_{2}=200 \mathrm{kPa} \quad \text { Ans. }
\end{array}
$$

Work $:=\mathrm{P}_{1} \cdot \mathrm{~V}_{1} \cdot \ln \left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right) \quad$ Work $=-1609 \mathrm{~kJ}$
Ans.
(b) Adiabatic:

$$
\begin{array}{ll}
\mathrm{P}_{2}:=\mathrm{P}_{1} \cdot\left(\frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}\right)^{\gamma} & \mathrm{T}_{2}:=\mathrm{T}_{1} \cdot \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}} \cdot \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} \\
\mathrm{~T}_{2}=208.96 \mathrm{~K} & \mathrm{P}_{2}=69.65 \mathrm{kPa} \quad \text { Ans. }
\end{array}
$$

$$
\text { Work }:=\frac{\mathrm{P}_{2} \cdot \mathrm{~V}_{2}-\mathrm{P}_{1} \cdot \mathrm{~V}_{1}}{\gamma-1}
$$

Work $=-994.4 \mathrm{~kJ} \quad$ Ans,
(c) Restrained adiabatic:

$$
\text { Work }=\Delta \mathrm{U}=-\mathbb{R}_{\mathrm{ext}} \cdot \mathrm{~V}
$$

$$
\begin{array}{lrl}
\mathrm{P}_{\mathrm{ext}}:=100 \cdot \mathrm{kPa} & \text { Work }:=-\mathrm{P}_{\mathrm{ext}} \cdot\left(\mathrm{~N}_{2}-\mathrm{V}_{1}\right. & \text { Work }=-400 \mathrm{~kJ} \\
\mathrm{n}:=\frac{\mathrm{P}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}} & \Delta \mathrm{U}=\mathrm{n} \cdot \mathbb{C}_{\mathrm{V}} \cdot \mathrm{~T} & \\
\mathrm{~T}_{2}:=\frac{\mathrm{Work}}{\mathrm{n} \cdot \mathrm{C}_{\mathrm{V}}}+\mathrm{T}_{1} & \mathrm{~T}_{2}=442.71 \mathrm{~K} & \text { Ans. } \\
\mathrm{P}_{2}:=\mathrm{P}_{1} \cdot \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}} \cdot \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}} & \mathrm{P}_{2}=147.57 \mathrm{kPa} & \text { Ans. }
\end{array}
$$

$\mathrm{T}_{1}:=423.15 \cdot \mathrm{~K} \quad \mathrm{P}_{1}:=8 \cdot \mathrm{bar} \quad \mathrm{P}_{3}:=3 \cdot \mathrm{bar}$
$\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \mathrm{R} \quad \mathrm{C}_{\mathrm{V}}:=\frac{5}{2} \cdot \mathrm{R} \quad \Delta \mathrm{H}_{12}:=0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{U}_{12}:=0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
Step 12: $\quad \mathrm{T}$
If $\quad \mathrm{r}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{3}} \quad$ Then $\quad \mathrm{r}:=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{3}} \cdot \frac{\mathrm{P}_{3}}{\mathrm{P}_{1}} \quad \mathrm{~T}_{3}:=323.15 \cdot \mathrm{~K}$
$\mathrm{~W}_{12}=-2.502 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \mathrm{~W}_{12}:=\mathrm{R} \cdot \mathrm{T}_{1} \cdot \ln (\mathrm{r})$

Step 23: $\quad \mathrm{W}_{23}:=0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{U}_{23}:=\mathrm{C}_{\mathrm{V}} \cdot() \Gamma_{3}-\mathrm{T}_{2}$

$$
\mathrm{Q}_{23}:=\Delta \mathrm{U}_{23} \quad \Delta \mathrm{H}_{23}:=\mathrm{C}_{\mathrm{P}} \cdot\left(\Gamma_{3}-\mathrm{T}_{2}\right.
$$

$$
\mathrm{Q}_{23}=-2.079 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{U}_{23}=-2.079 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{H}_{23}=-2.91 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Process:

$$
\begin{array}{ll}
\text { Work }:=\mathrm{W}_{12}+\mathrm{W}_{23} & \text { Work }=-2.502 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\mathrm{Q}:=\mathrm{Q}_{12}+\mathrm{Q}_{23} & \mathrm{Q}=0.424 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta \mathrm{H}:=\Delta \mathrm{H}_{12}+\Delta \mathrm{H}_{23} & \Delta \mathrm{H}=-2.91 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta \mathrm{U}:=\Delta \mathrm{U}_{12}+\Delta \mathrm{U}_{23} & \Delta \mathrm{U}=-2.079 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{array}
$$

Ans.

Ans.

Ans.
3.21 By Eq. (2.32a), unit-mass basis:

$$
\text { molwt }:=28 \frac{\mathrm{gm}}{\mathrm{~mol}} \quad \Delta \mathrm{H}+\frac{1}{2} \cdot \Delta \mathrm{u}^{2}=0
$$

$$
\begin{array}{ll}
\text { But } \quad \Delta \mathrm{H}=\mathrm{C}_{\mathrm{P}} \cdot \Delta \mathrm{~T} \quad \text { Whence } & \Delta \mathrm{T}=\frac{-()_{2}^{2}-\mathrm{u}_{1}^{2}}{2 \cdot \mathrm{C}_{\mathrm{P}}} \\
\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \frac{\mathrm{R}}{\mathrm{molwt}} \quad \mathrm{u}_{1}:=2.5 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} & \mathrm{u}_{2}:=50 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \mathrm{t}_{1}:=150 \cdot \operatorname{degC}
\end{array}
$$

$$
\mathrm{t}_{2}:=\mathrm{t}_{1}-\frac{\mathrm{u}_{2}^{2}-\mathrm{u}_{1}^{2}}{2 \cdot \mathrm{C}_{\mathrm{P}}} \quad \mathrm{t}_{2}=148.8 \mathrm{degC}
$$

Ans.
3.22

$$
\begin{array}{lll}
\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \mathrm{R} & \mathrm{C}_{\mathrm{V}}:=\frac{5}{2} \cdot \mathrm{R} & \mathrm{~T}_{1}:=303.15 \cdot \mathrm{~K} \quad \mathrm{~T}_{3}:=403.15 \cdot \mathrm{~K} \\
\mathrm{P}_{1}:=1 \cdot \mathrm{bar} & \mathrm{P}_{3}:=10 \cdot \mathrm{bar} & \\
\Delta \mathrm{U}:=\mathrm{C}_{\mathrm{V}} \cdot\left(\Gamma_{3}-\mathrm{T}_{1}\right. & \Delta \mathrm{H}:=\mathrm{C}_{\mathrm{P}} \cdot() \Gamma_{3}-\mathrm{T}_{1} \\
\Delta \mathrm{U}=2.079 \frac{\mathrm{~kJ}}{\mathrm{~mol}} & \text { Ans. } & \Delta \mathrm{H}=2.91 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \text { Ans. }
\end{array}
$$

Each part consists of two steps, 12 \& 23.
(a) $\mathrm{T}_{2}:=\mathrm{T}_{3}$
$\mathrm{P}_{2}:=\mathrm{P}_{1} \cdot \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}$
$\mathrm{W}_{23}:=\mathrm{R} \cdot \mathrm{T}_{2} \cdot \ln \left(\frac{\mathrm{P}_{3}}{\mathrm{P}_{2}}\right)$
Work := W_{23}
Work $=6.762 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
Ans.
$\mathrm{Q}:=\Delta \mathrm{U}$ - Work
$Q=-4.684 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
Ans.
(b)
$\mathrm{T}_{2}:=\mathrm{T}_{3}$
$\Delta \mathrm{H}_{12}:=\mathrm{C}_{\mathrm{P}} \cdot() \Gamma_{2}-\mathrm{T}_{1} \quad \mathrm{Q}_{12}:=\Delta \mathrm{H}_{12}$
$\mathrm{W}_{12}:=\Delta \mathrm{U}_{12}-\mathrm{Q}_{12}$
$\mathrm{W}_{23}:=\mathrm{R} \cdot \mathrm{T}_{2} \cdot \ln \left(\frac{\mathrm{P}_{3}}{\mathrm{P}_{2}}\right)$

Work $:=\mathrm{W}_{12}+\mathrm{W}_{23}$

$$
\text { Work }=6.886 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

$\mathrm{Q}:=\Delta \mathrm{U}$ - Work

$$
\begin{aligned}
& \mathrm{W}_{12}=-0.831 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \mathrm{~W}_{23}=7.718 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

$Q=-4.808 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\mathrm{W}_{12}:=\mathrm{R} \cdot \mathrm{T}_{1} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$
$\mathrm{Q}_{23}:=\Delta \mathrm{H}_{23}$
$\Delta \mathrm{U}_{23}:=\mathrm{C}_{\mathrm{V}} \cdot() \Gamma_{3}-\mathrm{T}_{2}$
$\mathrm{W}_{23}:=\Delta \mathrm{U}_{23}-\mathrm{Q}_{23}$

Work $:=\mathrm{W}_{12}+\mathrm{W}_{23}$
Work $=4.972 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\mathrm{Q}=-2.894 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Ans.

Ans.

Ans.
.

Ans.

For the second set of heat-capacity values, answers are ($\mathrm{kJ} / \mathrm{mol}$):

$$
\Delta \mathrm{U}=1.247
$$

$$
\Delta \mathrm{U}=2.079
$$

(a) \quad Work $=6.762$
$\mathrm{Q}=-5.515$
(b) \quad Work $=6.886$
$\mathrm{Q}=-5.639$
(c) \quad Work $=4.972$
$\mathrm{Q}=-3.725$
3.23

$\mathrm{T}_{1}:=303.15 \cdot \mathrm{~K}$	$\mathrm{T}_{2}:=\mathrm{T}_{1} \quad \mathrm{~T}_{3}$	$\mathrm{T}_{3}:=393.15 \cdot \mathrm{~K}$
$\mathrm{P}_{1}:=1 \cdot \mathrm{bar}$	$\mathrm{P}_{3}:=12 \cdot \mathrm{bar} \quad \mathrm{C}_{\mathrm{P}}$	$\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \mathrm{R} \quad \mathrm{C}_{\mathrm{V}}:=\frac{5}{2} \cdot \mathrm{R}$
For the process:	$\Delta \mathrm{U}:=\mathrm{C}_{\mathrm{V}} \cdot\left(\Gamma_{3}-\mathrm{T}_{1}\right.$	$1 \quad \Delta \mathrm{H}:=\mathrm{C}_{\mathrm{P}} \cdot() \Gamma_{3}-\mathrm{T}_{1}$
	$\Delta \mathrm{U}=1.871 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$	$\Delta \mathrm{H}=2.619 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$ Ans.
Step 12:	$\mathrm{P}_{2}:=\mathrm{P}_{3} \cdot \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{3}}$	$\mathrm{W}_{12}:=\mathrm{R} \cdot \mathrm{T}_{1} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$
$\mathrm{W}_{12}=5.608 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$	$\mathrm{Q}_{12}:=-\mathrm{W}_{12}$	$Q_{12}=-5.608 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
Step 23:	$\mathrm{W}_{23}:=0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}}$	$\mathrm{Q}_{23}:=\Delta \mathrm{U}$
For the process:	Work : $=\mathrm{W}_{12}+\mathrm{W}_{23}$	
$\mathrm{Q}:=\mathrm{Q}_{12}+\mathrm{Q}_{23}$	$\text { Work }=5.608 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$	$\mathrm{Q}=-3.737 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad$ An

$3.24 \quad \mathrm{~W}_{12}=0 \quad$ Work $=\mathrm{W}_{23}=-\mathrm{P}_{2}\left(\mathrm{~N}_{3}-\mathrm{V}_{2}=-\mathrm{R} \cdot\left(\Gamma_{3}-\mathrm{T}_{2}\right.\right.$

$$
\begin{array}{lll}
\text { But } & \mathrm{T}_{3}=\mathrm{T}_{1} \quad \text { So... } & \text { Work }=\mathrm{R} \cdot() \mathrm{T}_{2}-\mathrm{T}_{1} \\
\text { Also } \quad \mathrm{W}=\mathrm{R} \cdot \mathrm{~T}_{1} \cdot \ln \left(\frac{\mathrm{P}}{\mathrm{P}_{1}}\right) & \text { Therefore } \\
\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{1}}\right)=\frac{\mathrm{T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1}} \quad \mathrm{~T}_{2}:=350 \cdot \mathrm{~K} & \mathrm{~T}_{1}:=800 \cdot \mathrm{~K} & \mathrm{P}_{1}:=4 \cdot \mathrm{bar} \\
\mathrm{P}:=\mathrm{P}_{1} \cdot \exp \left(\frac{\mathrm{~T}_{2}-\mathrm{T}_{1}}{\mathrm{~T}_{1}}\right) & \mathrm{P}=2.279 \text { bar } \quad \text { Ans. }
\end{array}
$$

3.25 $\quad \mathrm{V}_{\mathrm{A}}:=256 \cdot \mathrm{~cm}^{3} \quad$ Define: $\quad \frac{\Delta \mathrm{P}}{\mathrm{P}_{1}}=\mathrm{r} \quad \mathrm{r}:=-0.0639$

Assume ideal gas; let V represent total volume:
$P_{1} \cdot V_{B}=P_{2} \cdot\left(N_{A}+V_{B} \quad\right.$ From this one finds:
$\frac{\Delta \mathrm{P}}{\mathrm{P}_{1}}=\frac{-\mathrm{V}_{\mathrm{A}}}{\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}}$
$\mathrm{V}_{\mathrm{B}}:=\frac{-\mathrm{V}_{\mathrm{A}} \cdot(\mathrm{r}+1)}{\mathrm{r}}$
$\mathrm{V}_{\mathrm{B}}=3750.3 \mathrm{~cm}^{3}$
Ans.
$3.26 \quad \mathrm{~T}_{1}:=300 \cdot \mathrm{~K} \quad \mathrm{P}_{1}:=1 \cdot \mathrm{~atm}$
$\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \mathrm{R}$
$\mathrm{C}_{\mathrm{V}}:=\mathrm{C}_{\mathrm{P}}-\mathrm{R}$
$\gamma:=\frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{C}_{\mathrm{V}}}$

The process occurring in section B is a reversible, adiabatic compression. Let

$$
\mathrm{P}(\text { final })=\mathrm{P}_{2} \quad \mathrm{~T}_{\mathrm{A}}(\text { final })=\mathrm{T}_{\mathrm{A}} \quad \mathrm{~T}_{\mathrm{B}}(\text { final })=\mathrm{T}_{\mathrm{B}}
$$

$n_{A}=n_{B} \quad$ Since the total volume is constant,
$\frac{2 \cdot \mathrm{n}_{\mathrm{A}} \cdot \mathrm{R} \cdot \mathrm{T}_{1}}{\mathrm{P}_{1}}=\frac{\mathrm{n}_{\mathrm{A}} \cdot \mathrm{R} \cdot() \mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}}{\mathrm{P}_{2}} \quad$ or $\quad \frac{2 \cdot \mathrm{~T}_{1}}{\mathrm{P}_{1}}=\frac{\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}}{\mathrm{P}_{2}}$
(a) $\quad \mathrm{P}_{2}:=1.25 \cdot \mathrm{~atm}$
$\mathrm{T}_{\mathrm{B}}:=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}$
$\mathrm{T}_{\mathrm{A}}:=2 \cdot \mathrm{~T}_{1} \cdot \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}-\mathrm{T}_{\mathrm{B}}$
$\mathrm{Q}=\mathrm{n}_{\mathrm{A}} \cdot() \Delta \mathrm{U}_{\mathrm{A}}+\Delta \mathrm{U}_{\mathrm{B}}$

Define
$\mathrm{q}=\frac{\mathrm{Q}}{\mathrm{n}_{\mathrm{A}}} \quad \mathrm{q}:=\mathrm{C}_{\mathrm{V}} \cdot() \mathrm{r}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}-2 \cdot \mathrm{~T}_{1}$
$\mathrm{T}_{\mathrm{B}}=319.75 \mathrm{~K}$
$\mathrm{T}_{\mathrm{A}}=430.25 \mathrm{~K}$

$$
\begin{equation*}
\mathrm{q}=3.118 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \tag{3}
\end{equation*}
$$

Ans.
(b) Combine Eqs. (1) \& (2) to eliminate the ratio of pressures:

$$
\mathrm{T}_{\mathrm{A}}:=425 \cdot \mathrm{~K} \quad \text { (guess) } \quad \mathrm{T}_{\mathrm{B}}:=300 \cdot \mathrm{~K}
$$

Given $\quad T_{B}=T_{1} \cdot\left(\frac{\left.T_{A}+T_{B}\right)^{\frac{\gamma-1}{\gamma}}}{2 \cdot T_{1}}\right)^{\frac{\gamma}{B}} \quad T_{B}:=\operatorname{Find}()_{B}$
$\mathrm{T}_{\mathrm{B}}=319.02 \mathrm{~K}$

$$
\begin{align*}
& \mathrm{P}_{2}:=\mathrm{P}_{1} \cdot\left(\frac{\mathrm{~T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}}{2 \cdot \mathrm{~T}_{1}}\right) \tag{1}\\
& \mathrm{q}:=\mathrm{C}_{\mathrm{V}} \cdot\left(\Gamma_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}-2 \cdot \mathrm{~T}_{1}\right.
\end{align*}
$$

$$
\mathrm{P}_{2}=1.24 \mathrm{~atm}
$$

Ans.

Ans.
(c) $\quad \mathrm{T}_{\mathrm{B}}:=325 \cdot \mathrm{~K}$

By Eq. (2),
$\mathrm{P}_{2}:=\mathrm{P}_{1} \cdot\left(\frac{\mathrm{~T}_{\mathrm{B}}}{\mathrm{T}_{1}}\right)^{\frac{\gamma}{\gamma-1}}$
$\mathrm{P}_{2}=1.323 \mathrm{~atm}$
Ans.
$\mathrm{T}_{\mathrm{A}}:=2 \cdot \mathrm{~T}_{1} \cdot \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}-\mathrm{T}_{\mathrm{B}}$
$\mathrm{q}:=\mathrm{C}_{\mathrm{V}} \cdot\left(\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}}-2 \cdot \mathrm{~T}_{1}\right.$
$\mathrm{T}_{\mathrm{A}}=469 \mathrm{~K}$
Ans.

Ans.
(d) Eliminate $\mathrm{T}_{\mathrm{A}}+\mathrm{T}_{\mathrm{B}} \quad$ from Eqs. (1) \& (3):

$$
\begin{array}{ll}
\mathrm{q}:=3 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \mathrm{P}_{2}:=\frac{\mathrm{q} \cdot \mathrm{P}_{1}}{2 \cdot \mathrm{~T}_{1} \cdot \mathrm{C}_{\mathrm{V}}}+\mathrm{P}_{1} & \mathrm{P}_{2}=1.241 \mathrm{~atm} \\
\mathrm{~T}_{\mathrm{B}}:=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}} & \mathrm{~T}_{\mathrm{B}}=319.06 \mathrm{~K} \\
\mathrm{~T}_{\mathrm{A}}:=2 \cdot \mathrm{~T}_{1} \cdot \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}-\mathrm{T}_{\mathrm{B}} & \text { (1) } \tag{1}
\end{array}
$$

Ans.
$3.30 \mathrm{~B}:=-242.5 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
$\mathrm{P}_{1}:=1 \cdot \mathrm{bar}$
$\mathrm{C}:=25200 \cdot \frac{\mathrm{~cm}^{6}}{\mathrm{~mol}^{2}} \quad \mathrm{~T}:=373.15 \cdot \mathrm{~K}$
$\mathrm{P}_{2}:=55 \cdot \mathrm{bar}$
$\mathrm{B}^{\prime}:=\frac{\mathrm{B}}{\mathrm{R} \cdot \mathrm{T}}$

$$
\mathrm{B}^{\prime}=-7.817 \times 10^{-3} \frac{1}{\mathrm{bar}}
$$

$\mathrm{C}^{\prime}:=\frac{\mathrm{C}-\mathrm{B}^{2}}{\mathrm{R}^{2} \cdot \mathrm{~T}^{2}}$
$\mathrm{C}^{\prime}=-3.492 \times 10^{-5} \frac{1}{\mathrm{bar}^{2}}$
(a) Solve virial eqn. for initial V .

Guess: $\quad \mathrm{V}_{1}:=\frac{\mathrm{R} \cdot \mathrm{T}}{\mathrm{P}_{1}}$
Given $\quad \frac{\mathrm{P}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{R} \cdot \mathrm{T}}=1+\frac{\mathrm{B}}{\mathrm{V}_{1}}+\frac{\mathrm{C}}{\mathrm{V}_{1}{ }^{2}} \quad \mathrm{~V}_{1}:=\operatorname{Find}\left(\mathrm{N}_{1} \quad \mathrm{~V}_{1}=30780 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}\right.$

Solve virial eqn. for final V.

Guess: $\quad \mathrm{V}_{2}:=\frac{\mathrm{R} \cdot \mathrm{T}}{\mathrm{P}_{2}}$
Given $\quad \frac{\mathrm{P}_{2} \cdot \mathrm{~V}_{2}}{\mathrm{R} \cdot \mathrm{T}}=1+\frac{\mathrm{B}}{\mathrm{V}_{2}}+\frac{\mathrm{C}}{\mathrm{V}_{2}{ }^{2}} \quad \mathrm{~V}_{2}:=\operatorname{Find}\left(\mathrm{N}_{2} \quad \mathrm{~V}_{2}=241.33 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}\right.$
Eliminate P from Eq. (1.3) by the virial equation:
Work $:=-\mathrm{R} \cdot \mathrm{T} \cdot \int_{\mathrm{V}_{1}}^{\mathrm{V}_{2}}\left(1+\frac{\mathrm{B}}{\mathrm{V}}+\frac{\mathrm{C}}{\mathrm{V}^{2}}\right) \cdot \frac{1}{\mathrm{~V}} \mathrm{dV} \quad$ Work $=12.62 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
Ans.
(b) Eliminate dV from Eq. (1.3) by the virial equation in P:

$$
\begin{array}{ll}
\mathrm{dV}=\mathrm{R} \cdot \mathrm{~T} \cdot\left(\frac{-1}{\mathrm{P}^{2}}+\mathrm{C}^{\prime}\right) \cdot \mathrm{dP} & \mathrm{~W}:=-\mathrm{R} \cdot \mathrm{~T} \cdot \int_{\mathrm{P}_{1}}^{\mathrm{P}_{2}}\left(\frac{-1}{\mathrm{P}}+\mathrm{C}^{\prime} \cdot \mathrm{P}\right) \mathrm{dP} \\
& \mathrm{~W}=12.596 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \text { Ans. }
\end{array}
$$

Note: The answers to (a) \& (b) differ because the relations between the two sets of parameters are exact only for infinite series.

$$
\begin{aligned}
& 3.32 \mathrm{~T}_{\mathrm{c}}:=282.3 \cdot \mathrm{~K} \quad \mathrm{~T}:=298.15 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=1.056 \\
& \mathrm{P}_{\mathrm{c}}:=50.4 \cdot \mathrm{bar} \quad \mathrm{P}:=12 \cdot \mathrm{bar} \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \text { (guess) } \\
& \omega:=0.087 \\
& \text { (a) } \quad \mathrm{B}:=-140 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{C}:=7200 \cdot \frac{\mathrm{~cm}^{6}}{\mathrm{~mol}^{2}} \quad \mathrm{~V}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=2066 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

Given $\frac{\mathrm{P} \cdot \mathrm{V}}{\mathrm{R} \cdot \mathrm{T}}=1+\frac{\mathrm{B}}{\mathrm{V}}+\frac{\mathrm{C}}{\mathrm{V}^{2}}$
$\mathrm{V}:=\operatorname{Find}(\mathrm{V}) \quad \mathrm{V}=1919 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{Z}:=\frac{\mathrm{P} \cdot \mathrm{V}}{\mathrm{R} \cdot \mathrm{T}} \quad \mathrm{Z}=0.929 \quad$ Ans.
(b) $\quad \mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}{ }^{1.6}} \quad \mathrm{~B}_{0}=-0.304$

$$
\mathrm{B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=2.262 \times 10^{-3}
$$

$$
\mathrm{Z}:=1+\left(\mathrm{B}_{0}+\omega \cdot \mathrm{B}_{1} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}} \quad \mathrm{Z}=0.932 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1924 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}\right. \text { Ans. }
$$

(c) For Redlich/Kwong EOS:

$$
\begin{array}{lll}
\sigma:=1 & \varepsilon:=0 & \Omega:=0.08664
\end{array} \quad \Psi:=0.42748
$$

$$
\text { Table } 3.1
$$

Guess: $\quad \mathrm{Z}:=0.9$
Given Eq. (3.52)

$$
\begin{aligned}
& \mathrm{Z}=1+\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}-\mathrm{q}() \Gamma_{\mathrm{r}} \cdot \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot \frac{\mathrm{Z}-\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}}{\left(z+\varepsilon \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot\left(\mathrm{Z}+\sigma \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.\right.} \\
& \mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.928 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1916.5 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

Ans.

(d) For SRK EOS:

$\sigma:=1$
$\varepsilon:=0$
$\Omega:=0.08664$
$\Psi:=0.42748$
Table 3.1
$\alpha\left(\Gamma_{\mathrm{r}}, \omega:=\left[1+\left(b .480+1.574 \omega-0.176 \omega^{2} \cdot\left(1-\mathrm{T}_{\mathrm{r}}{ }^{\frac{1}{2}}\right)\right]^{2}\right.\right.$
q()$_{\mathrm{r}}:=\frac{\Psi \alpha\left(\Gamma_{\mathrm{r}}, \omega\right.}{\Omega \cdot \mathrm{T}_{\mathrm{r}}} \quad$ Eq. (3.54) $\quad \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}:=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}}$
Table 3.1

Eq. (3.53)

Calculate Z Guess: $\quad \mathrm{Z}:=0.9$

Given Eq. (3.52)

$$
\begin{gathered}
\mathrm{Z}=1+\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}-\mathrm{q}() \Gamma_{\mathrm{r}} \cdot \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot \frac{\mathrm{Z}-\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}}{\left(Z+\varepsilon \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot\left(Z+\sigma \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.\right.} \\
\mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.928 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1918 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{gathered}
$$

Ans.
(e) For Peng/Robinson EOS:

$$
\begin{align*}
\sigma:=1+\sqrt{2} \quad \varepsilon:=1-\sqrt{2} \quad \Omega:=0.07779 \quad \Psi:=0.45724 & \text { Table 3.1 } \\
\alpha() \Gamma \mathrm{r}, \omega \quad:=\left[1+\left(b .37464+1.54226 \omega-0.26992 \omega^{2} \cdot\left(1-\mathrm{T}_{\mathrm{r}}^{\frac{1}{2}}\right)\right]^{2}\right. & \text { Table 3.1 } \\
\mathrm{q}() \Gamma_{\mathrm{r}}:=\frac{\Psi \alpha() \Gamma_{\mathrm{r}}, \omega}{\Omega \cdot \mathrm{~T}_{\mathrm{r}}} & \text { Eq. (3.54) } \quad \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}:=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}}
\end{align*} \quad \text { Eq. (3.53) } \quad \text {. }
$$

Calculate $\mathbf{Z} \quad$ Guess: $\quad \mathrm{Z}:=0.9$
Given Eq. (3.52)

$$
\begin{aligned}
& Z=1+\beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}-\mathrm{q}\left(\Gamma_{\mathrm{r}} \cdot \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot \frac{\mathrm{Z}-\beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.}{\left(Z+\varepsilon \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot\left(Z+\sigma \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.\right.}\right.\right. \\
& \mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.92 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1900.6 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

Ans.

$$
\begin{array}{rlrl}
3.33 & \mathrm{~T}:=323.15 \cdot \mathrm{~K} & \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=1.058 \\
\mathrm{P}_{\mathrm{c}}:=48.72 \cdot \mathrm{bar} & \mathrm{P}:=15 \cdot \mathrm{bar} & \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.308 \\
\omega:=0.100 & & \text { (guess) }
\end{array}
$$

(a) $\mathrm{B}:=-156.7 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$

$$
\mathrm{C}:=9650 \cdot \frac{\mathrm{~cm}^{6}}{\mathrm{~mol}^{2}}
$$

$$
\mathrm{V}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1791 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Given $\frac{\mathrm{P} \cdot \mathrm{V}}{\mathrm{R} \cdot \mathrm{T}}=1+\frac{\mathrm{B}}{\mathrm{V}}+\frac{\mathrm{C}}{\mathrm{V}^{2}}$
$\mathrm{V}:=\operatorname{Find}(\mathrm{V})$
$\mathrm{V}=1625 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{Z}:=\frac{\mathrm{P}}{\mathrm{R}}$
$\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}} \quad \mathrm{~B}_{0}=-0.302$
$\mathrm{B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=3.517 \times 10^{-3}$
$Z:=1+\left(\beta_{0}+\omega \cdot B_{1} \cdot \frac{P_{r}}{T_{r}} \quad Z=0.912 \quad V:=\frac{Z \cdot R \cdot T}{P} \quad V=1634 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}\right.$ Ans.
(c) For Redlich/Kwong EOS:
$\sigma:=1$
$\varepsilon:=0$
$\Omega:=0.08664$
$\Psi:=0.42748$

Table 3.1

$$
\begin{array}{lll}
\alpha(\mathrm{Tr}):=\mathrm{T}_{\mathrm{r}}^{-0.5} & \text { Table 3.1 } & \mathrm{q}() \Gamma_{\mathrm{r}}:=\frac{\Psi \alpha() \Gamma_{\mathrm{r}}}{\Omega \cdot \mathrm{~T}_{\mathrm{r}}} \\
\beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}:=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}}\right. & \text { Eq. (3.53) } & \tag{3.53}
\end{array}
$$

Calculate Z Guess: $\quad \mathrm{Z}:=0.9$
Given Eq. (3.52)

$$
\begin{aligned}
& Z=1+\beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}-\mathrm{q}() \Gamma_{\mathrm{r}} \cdot \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot \frac{\mathrm{Z}-\beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.}{\left(Z+\varepsilon \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot\left(\not \subset+\sigma \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.\right.}\right. \\
& \mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.906 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1622.7 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

Ans.
(d) For SRK EOS:

$$
\begin{array}{llll}
\sigma:=1 & \varepsilon:=0 & \Omega:=0.08664 & \Psi:=0.42748 \\
\text { Table 3.1 } \\
\alpha()_{\mathrm{r}}, \omega & :=\left[1+\left(b .480+1.574 \omega-0.176 \omega^{2} \cdot\left(1-\mathrm{T}_{\mathrm{r}} \frac{1}{2}\right)\right]^{2}\right. & \text { Table 3.1 } \\
q\left(\Gamma_{\mathrm{r}}:=\frac{\Psi \alpha\left(\Gamma_{\mathrm{r}}, \omega\right.}{\Omega \cdot T_{\mathrm{r}}}\right. & \text { Eq. (3.54) } & \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}:=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{T_{\mathrm{r}}} & \text { Eq. (3.53) }
\end{array}
$$

Calculate Z \quad Guess: $\quad \mathrm{Z}:=0.9$
Given
Eq. (3.52)

$$
\begin{aligned}
& Z=1+\beta\left(\Gamma_{r}, P_{r}-q() \Gamma_{r} \cdot \beta\left(\Gamma_{\mathrm{r}}, P_{r} \cdot \frac{\mathrm{Z}-\beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.}{\left(Z+\varepsilon \beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot\left(Z+\sigma \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.\right.\right.}\right.\right. \\
& \mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.907 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1624.8 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

Ans.
(e) For Peng/Robinson EOS:
$\sigma:=1+\sqrt{2}$
$\varepsilon:=1-\sqrt{2}$
$\Omega:=0.07779$
$\Psi:=0.45724$
Table 3.1

$$
\begin{align*}
\alpha() \Gamma \mathrm{r}, \omega & :=\left[1+\left(0.37464+1.54226 \omega-0.26992 \omega^{2} \cdot\left(1-\mathrm{T}_{\mathrm{r}}^{2}\right)\right]^{\frac{1}{2}}\right]^{2} \\
\mathrm{q}\left(\Gamma_{\mathrm{r}}\right. & :=\frac{\Psi \alpha() \Gamma_{\mathrm{r}}, \omega}{\Omega \cdot \mathrm{~T}_{\mathrm{r}}} \quad \text { Eq. (3.54) } \quad \beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}:=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}}\right. \tag{3.53}
\end{align*}
$$

Calculate $\mathbf{Z} \quad$ Guess: $\quad \mathrm{Z}:=0.9$
Given
Eq. (3.52)

$$
\begin{aligned}
& \mathrm{Z}=1+\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}-\mathrm{q}() \Gamma_{\mathrm{r}} \cdot \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot \frac{\mathrm{Z}-\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}}{\left(Z+\varepsilon \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot\left(\not \subset+\sigma \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.\right.} \\
& \mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.896 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1605.5 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

Ans.

$$
\begin{array}{rlll}
3.34 \mathrm{~T}_{\mathrm{c}}:=318.7 \cdot \mathrm{~K} & \mathrm{~T}:=348.15 \cdot \mathrm{~K} & \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{~T}_{\mathrm{r}}=1.092 \\
\mathrm{P}_{\mathrm{c}}:=37.6 \cdot \mathrm{bar} & \mathrm{P}:=15 \cdot \mathrm{bar} & \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} & \mathrm{P}_{\mathrm{r}}=0.399 \\
\omega:=0.286 & &
\end{array}
$$

(guess)

(a)

$$
\mathrm{B}:=-194 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

$$
\mathrm{C}:=15300 \cdot \frac{\mathrm{~cm}^{6}}{\mathrm{~mol}^{2}}
$$

$$
\mathrm{V}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1930 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Given $\frac{P \cdot V}{R \cdot T}=1+\frac{B}{V}+\frac{C}{V^{2}}$
$\mathrm{V}:=\operatorname{Find}(\mathrm{V}) \quad \mathrm{V}=1722 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{Z}:=\frac{\mathrm{P} \cdot \mathrm{V}}{\mathrm{R} \cdot \mathrm{T}} \quad \mathrm{Z}=0.893 \quad$ Ans.
(b) $\mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}{ }^{1.6}} \quad \mathrm{~B}_{0}=-0.283$

$$
\begin{gathered}
\mathrm{B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=0.02 \\
\mathrm{Z}:=1+\left(\mathrm{B}_{0}+\omega \cdot \mathrm{B}_{1} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}} \quad \mathrm{Z}=0.899 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1734 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}\right. \text { Ans. }
\end{gathered}
$$

(c) For Redlich/Kwong EOS:

$$
\begin{array}{lll}
\sigma:=1 & \varepsilon:=0 & \Omega:=0.08664
\end{array} \quad \Psi:=0.42748
$$

$$
\text { Table } 3.1
$$

Calculate $\mathbf{Z} \quad$ Guess: $\quad \mathrm{Z}:=0.9$
Given Eq. (3.52)

$$
\begin{aligned}
& Z=1+\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}-\mathrm{q}() \Gamma_{\mathrm{r}} \cdot \beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot \frac{\mathrm{Z}-\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}}{\left(\not \mathrm{Z}+\varepsilon \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot\left(\not \subset+\sigma \beta()_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.\right.}\right. \\
& \mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.888 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1714.1 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{~A}
\end{aligned}
$$

Ans.
(d) For SRK EOS:

$$
\begin{array}{llll}
\sigma:=1 & \varepsilon:=0 & \Omega:=0.08664 & \Psi:=0.42748
\end{array} \text { Table 3.1 }
$$

Calculate Z
Guess: $\quad \mathrm{Z}:=0.9$
Given
Eq. (3.52)

$$
\begin{gathered}
Z=1+\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}-\mathrm{q}() \Gamma_{\mathrm{r}} \cdot \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot \frac{\mathrm{Z}-\beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.}{\left(Z+\varepsilon \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot\left(\not \subset+\sigma \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.\right.} \\
\mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.895 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1726.9 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{gathered}
$$

Ans.
(e) For Peng/Robinson EOS:

$$
\begin{gather*}
\sigma:=1+\sqrt{2} \quad \varepsilon:=1-\sqrt{2} \quad \Omega:=0.07779 \quad \Psi:=0.45724 \quad \text { Table 3.1 } \\
\alpha() \Gamma \mathrm{r}, \omega:=\left[1+\left(0.37464+1.54226 \omega-0.26992 \omega^{2} \cdot\left(1-\mathrm{T}_{\mathrm{r}}^{\frac{1}{2}}\right)\right]^{2} \quad\right. \text { Table 3.1 } \\
\mathrm{q}() \Gamma_{\mathrm{r}}:=\frac{\Psi \alpha\left(\Gamma_{\mathrm{r}}, \omega\right.}{\Omega \cdot \mathrm{T}_{\mathrm{r}}} \quad \text { Eq. (3.54) } \quad \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}:=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}} \quad \text { Eq. (3.53) } \tag{3.53}
\end{gather*}
$$

Calculate $\mathbf{Z} \quad$ Guess: $\quad \mathrm{Z}:=0.9$
Given Eq. (3.52)

$$
\begin{gathered}
Z=1+\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}-\mathrm{q}() \Gamma_{\mathrm{r}} \cdot \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot \frac{\mathrm{Z}-\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}}{\left(Z+\varepsilon \beta() \Gamma_{\mathrm{r}}, P_{\mathrm{r}} \cdot\left(Z+\sigma \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.\right.} \\
\mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.882 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1701.5 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{gathered}
$$

(a) $\mathrm{B}:=-152.5 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{C}:=-5800 \cdot \frac{\mathrm{~cm}^{6}}{\mathrm{~mol}^{2}} \quad \mathrm{~V}:=\frac{\mathrm{R} \cdot \mathrm{T}}{\mathrm{P}} \quad$ (guess)

$$
\begin{array}{lll}
\text { Given } & \frac{\mathrm{P} \cdot \mathrm{~V}}{\mathrm{R} \cdot \mathrm{~T}}=1+\frac{\mathrm{B}}{\mathrm{~V}}+\frac{\mathrm{C}}{\mathrm{~V}^{2}} & \mathrm{~V}:=\operatorname{Find}(\mathrm{V}) \\
\mathrm{Z}:=\frac{\mathrm{P} \cdot \mathrm{~V}}{\mathrm{R} \cdot \mathrm{~T}} & \mathrm{~V}=2250 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} & \mathrm{Z}=0.931
\end{array}
$$

Ans.
(b) $\mathrm{T}_{\mathrm{c}}:=647.1 \cdot \mathrm{~K}$
$P_{c}:=220.55 \cdot$ bar
$\omega:=0.345$
$\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}$
$\mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}$
$\mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}}$
$\mathrm{T}_{\mathrm{r}}=0.808$
$\mathrm{P}_{\mathrm{r}}=0.082$
$\mathrm{B}_{0}=-0.51$
$\mathrm{B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=-0.281$
$\mathrm{Z}:=1+\left(\mathrm{B}_{0}+\omega \cdot \mathrm{B}_{1} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}}\right.$
$\mathrm{V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}}{\mathrm{P}}$

$$
\mathrm{Z}=0.939
$$

$$
\mathrm{V}=2268 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Ans.

(c) Table F.2: \quad molwt $:=18.015 \cdot \frac{\mathrm{gm}}{\mathrm{mol}}$

$$
\mathrm{V}:=124.99 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \cdot \text { molwt }
$$

or

Ans.

$$
\mathrm{D}:=5000 \cdot \frac{\mathrm{~cm}^{9}}{\mathrm{~mol}^{3}}
$$

$$
\mathrm{n}:=\mathrm{mol}
$$

$\begin{array}{rr}3.37 & \mathrm{~B}:=-53.4 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\ \mathrm{~T}:=273.15 \cdot \mathrm{~K}\end{array}$

$$
\mathrm{f}(\mathrm{P}, \mathrm{~V}):=\operatorname{Find}(\mathrm{V})
$$

$$
\mathrm{i}:=0 . .10 \quad \mathrm{P}_{\mathrm{i}}:=\left(10^{-10}+20 \cdot \mathrm{i} \cdot \text { bar } \quad \mathrm{V}_{\mathrm{i}}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}_{\mathrm{i}}}\right.
$$

Given

$$
\frac{\mathrm{P} \cdot \mathrm{~V}}{\mathrm{R} \cdot \mathrm{~T}}=1+\frac{\mathrm{B}}{\mathrm{~V}}+\frac{\mathrm{C}}{\mathrm{~V}^{2}}+\frac{\mathrm{D}}{\mathrm{~V}^{3}}
$$

$$
\begin{equation*}
\mathrm{Z}_{\mathrm{i}}:=\frac{\mathrm{f}\left(\mathrm{P}_{\mathrm{i}}, \mathrm{~V}_{\mathrm{i}} \cdot \mathrm{P}_{\mathrm{i}}\right.}{\mathrm{R} \cdot \mathrm{~T}} \tag{3.12}
\end{equation*}
$$

$\mathrm{Z} 1_{\mathrm{i}}:=1+\frac{\mathrm{B} \cdot \mathrm{P}_{\mathrm{i}}}{\mathrm{R} \cdot \mathrm{T}}$
Eq. (3.38) $\quad Z 2_{i}:=\frac{1}{2}+\sqrt{\frac{1}{4}+\frac{\mathrm{B} \cdot \mathrm{P}_{\mathrm{i}}}{\mathrm{R} \cdot \mathrm{T}}}$

$\mathrm{P}_{\mathrm{i}}=$	1.10-10	bar	$\mathrm{Z}_{\mathrm{i}}=$	$\mathrm{Z1} \mathrm{i}_{\mathrm{i}}=$	$\mathrm{Z} 2_{\mathrm{i}}=$
	20		1	1	1
	40		0.953	0.953	0.951
	60		0.906	0.906	0.895
	80		0.861	0.859	0.83
	100		0.819	0.812	0.749
	120		0.784	0.765	0.622
	140		0.757	0.718	0.5+0.179i
	160		0.74	0.671	$0.5+0.281 \mathrm{i}$
	180		0.733	0.624	0.5+0.355i
	200		0.735	0.577	$0.5+0.416 \mathrm{i}$
			0.743	0.53	$0.5+0.469 \mathrm{i}$

Note that values of \mathbf{Z} from Eq. (3.39) are not physically meaningful for pressures above 100 bar.

3.38
(a) Propane:
$\mathrm{T}_{\mathrm{c}}:=369.8 \cdot \mathrm{~K}$
$\mathrm{P}_{\mathrm{c}}:=42.48 \cdot \mathrm{bar}$
$\omega:=0.152$
$\mathrm{T}:=313.15 \cdot \mathrm{~K} \quad \mathrm{P}:=13.71 \cdot \mathrm{bar}$
$\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r}}=0.847 \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.323$

For Redlich/Kwong EOS:
$\sigma:=1$
$\varepsilon:=0$
$\Omega:=0.08664$
$\Psi:=0.42748$
Table 3.1
$\alpha(\mathrm{Tr}):=\mathrm{T}_{\mathrm{r}}{ }^{-0.5}$
Table 3.1 $\mathrm{q}\left(\Gamma_{\mathrm{r}}:=\frac{\Psi \alpha() \Gamma_{\mathrm{r}}}{\Omega \cdot \mathrm{T}_{\mathrm{r}}}\right.$
Eq. (3.54)
$\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}:=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}}$
Eq. (3.53)
Calculate \mathbf{Z} for liquid by Eq. (3.56) Guess: $\quad Z:=0.01$

Given
$Z=\beta() \Gamma_{r}, P_{r}+\left(z+\varepsilon \beta() \Gamma_{r}, P_{r} \cdot\left(z+\sigma \beta() \Gamma_{r}, P_{r} \cdot\left(\frac{1+\beta() \Gamma_{r}, P_{r}-Z}{q() \Gamma_{r} \cdot \beta() \Gamma_{r}, P_{r}}\right)\right.\right.$
$Z:=\operatorname{Find}(Z) \quad Z=0.057$

$$
\mathrm{V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}}
$$

Ans.

Calculate \mathbf{Z} for vapor by Eq. (3.52) Guess: $\quad Z:=0.9$
Given
$Z=1+\beta() \Gamma_{r}, P_{r}-q\left(\Gamma_{r} \cdot \beta() \Gamma_{r}, P_{r} \cdot \frac{Z-\beta() \Gamma_{r}, P_{r}}{Z \cdot\left(Z+\beta() \Gamma_{r}, P_{r}\right.}\right.$
$Z:=\operatorname{Find}(Z) \quad Z=0.789$
$\mathrm{V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}}{\mathrm{P}}$

Ans.

Rackett equation for saturated liquid: $\quad \mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r}}=0.847$

$$
\mathrm{V}_{\mathrm{c}}:=200.0 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{Z}_{\mathrm{c}}:=0.276
$$

$$
\left.\mathrm{V}:=\mathrm{V}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{c}}^{\left[\left(\mathrm{l}-\mathrm{T}_{\mathrm{r}}\right.\right.}{ }^{0.2857}\right] \quad \mathrm{V}=94.17 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Ans.

For saturated vapor, use Pitzer correlation:

$$
\mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}} \quad \mathrm{~B}_{0}=-0.468
$$

$\mathrm{B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}{ }^{4.2}}$
$B_{1}=-0.207$
$\mathrm{V}:=\frac{\mathrm{R} \cdot \mathrm{T}}{\mathrm{P}}+\mathrm{R} \cdot\left(\mathrm{B}_{0}+\omega \cdot \mathrm{B}_{1} \cdot \frac{\mathrm{~T}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}}\right.$
$\mathrm{V}=1.538 \times 10^{3} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
Ans.

Parts (b) through (t) are worked exactly the same way. All results are summarized as follows. Volume units are cu.cm./mole.

R/K, Liq. R/K, Vap. Rackett Pitzer
$\begin{array}{lllll}\text { (a) } & 108.1 & 1499.2 & 94.2 & 1537.8\end{array}$
(b) $114.5 \quad 1174.7 \quad 98.1 \quad 1228.7$
$\begin{array}{lllll}\text { (c) } & 122.7 & 920.3 & 102.8 & 990.4\end{array}$
$\begin{array}{lllll}\text { (d) } & 133.6 & 717.0 & 109.0 & 805.0\end{array}$
$\begin{array}{lllll}\text { (e) } & 148.9 & 1516.2 & 125.4 & 1577.0\end{array}$
$\begin{array}{lllll}\text { (f) } & 158.3 & 1216.1 & 130.7 & 1296.8\end{array}$
$\begin{array}{lllll}\text { (g) } & 170.4 & 971.1 & 137.4 & 1074.0\end{array}$
$\begin{array}{lllll}\text { (h) } & 187.1 & \mathbf{7 6 8 . 8} & 146.4 & 896.0\end{array}$
$\begin{array}{lllll}\text { (i) } & 153.2 & 1330.3 & 133.9 & 1405.7\end{array}$
$\begin{array}{lllll}\text { (j) } & 164.2 & 1057.9 & 140.3 & 1154.3\end{array}$
$\begin{array}{lllll}\text { (k) } & 179.1 & 835.3 & 148.6 & 955.4\end{array}$
$\begin{array}{lllll}\text { (l) } & 201.4 & 645.8 & 160.6 & 795.8\end{array}$
$\begin{array}{lllll}\text { (m) } & 61.7 & 1252.5 & 53.5 & 1276.9\end{array}$
$\begin{array}{lllll}\text { (n) } & 64.1 & 1006.9 & 55.1 & 1038.5\end{array}$
$\begin{array}{lllll}\text { (o) } & 66.9 & 814.5 & 57.0 & 853.4\end{array}$
$\begin{array}{lllll}\text { (p) } & 70.3 & 661.2 & 59.1 & 707.8\end{array}$
$\begin{array}{lllll}\text { (q) } & 64.4 & 1318.7 & 54.6 & 1319.0\end{array}$
$\begin{array}{lllll}\text { (r) } & 67.4 & 1046.6 & 56.3 & 1057.2\end{array}$
$\begin{array}{lllll}\text { (s) } & 70.8 & 835.6 & 58.3 & 856.4\end{array}$
$\begin{array}{lllll}\text { (t) } & 74.8 & 669.5 & 60.6 & 700.5\end{array}$
$\begin{array}{cll}3.39 \text { (a) Propane } \mathrm{T}_{\mathrm{c}}:=369.8 \cdot \mathrm{~K} & \mathrm{P}_{\mathrm{c}}:=42.48 \cdot \mathrm{bar} & \omega:=0.152 \\ \mathrm{~T}:=(40+273.15) \cdot \mathrm{K} & \mathrm{T}=313.15 \mathrm{~K} & \mathrm{P}:=13.71 \cdot \mathrm{bar} \\ \mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}} & \mathrm{T}_{\mathrm{r}}=0.847 & \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}\end{array}$
From Table 3.1 for SRK:
$\sigma:=1$
$\varepsilon:=0$
$\Omega:=0.08664$
$\Psi:=0.42748$
$\alpha\left(\Pi_{\mathrm{r}}, \omega:=\left[1+\left(b .480+1.574 \omega-0.176 \omega^{2} \cdot\left(1-\mathrm{T}_{\mathrm{r}}{ }^{\frac{1}{2}}\right)\right]^{2}\right.\right.$
$\mathrm{q}\left(\Gamma_{\mathrm{r}}:=\frac{\Psi \alpha\left(\Gamma_{\mathrm{r}}, \omega\right.}{\Omega \cdot \mathrm{T}_{\mathrm{r}}}\right.$
Eq. (3.54)
$\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}:=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}}$

Calculate Z for liquid by Eq. (3.56) Guess: $\quad Z:=0.01$
Given

$$
\begin{aligned}
& \mathrm{Z}=\beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}+\left(z+\varepsilon \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \quad\left(\not \subset+\sigma \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot\left(\frac{\left.1+\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}-\mathrm{Z}\right)}{\mathrm{q}() \Gamma_{\mathrm{r}} \cdot \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}}\right)\right.\right.\right. \\
& \mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.055 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=104.7 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \text { Ans. }
\end{aligned}
$$

Calculate Z for vapor by Eq. (3.52) Guess: $\quad \mathrm{Z}:=0.9$
Given
$Z=1+\beta() \Gamma_{\mathrm{r}}, P_{r}-q() \Gamma_{\mathrm{r}} \cdot \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot \frac{Z-\beta() \Gamma_{\mathrm{r}}, P_{r}}{\left(\not \subset+\varepsilon \beta() \Gamma_{\mathrm{r}}, P_{r} \cdot\left(\not \subset+\sigma \beta() \Gamma_{\mathrm{r}}, P_{r}\right.\right.}$
$Z:=\operatorname{Find}(Z) \quad Z=0.78$

$$
\mathrm{V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}}
$$

$$
\mathrm{V}=1480.7 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Parts (b) through (t) are worked exactly the same way. All results are summarized as follows. Volume units are cu.cm./mole.
SRK, Liq. SRK, Vap. Rackett Pitzer
$\begin{array}{lllll}\text { (a) } & 104.7 & 1480.7 & 94.2 & 1537.8\end{array}$
(b) $110.6 \quad 1157.8 \quad 98.1 \quad 1228.7$
$\begin{array}{llll}\text { (c) } & 118.2 & 904.9 & 102.8 \\ 990.4\end{array}$
$\begin{array}{lllll}\text { (d) } & 128.5 & 703.3 & 109.0 & 805.0\end{array}$
(e) $\begin{array}{lllll}142.1 & 1487.1 & 125.4 & 1577.0\end{array}$
$\begin{array}{lllll}\text { (f) } & 150.7 & 1189.9 & 130.7 & 1296.8\end{array}$
$\begin{array}{lllll}\text { (g) } & 161.8 & 947.8 & 137.4 & 1074.0\end{array}$
$\begin{array}{lllll}\text { (h) } & \mathbf{1 7 7 . 1} & 747.8 & 146.4 & 896.0\end{array}$
(i) $146.7 \quad 1305.3 \quad 133.9 \quad 1405.7$
$\begin{array}{lllll}\text { (j) } & 156.9 & 1035.2 & 140.3 & 1154.3\end{array}$
$\begin{array}{lllll}\text { (k) } & 170.7 & 815.1 & 148.6 & 955.4\end{array}$
$\begin{array}{lllll}\text { (l) } & 191.3 & 628.5 & 160.6 & 795.8\end{array}$
$\begin{array}{lllll}(m) & 61.2 & 1248.9 & 53.5 & 1276.9\end{array}$
$\begin{array}{lllll}\text { (n) } & 63.5 & 1003.2 & 55.1 & 1038.5\end{array}$
$\begin{array}{lllll}\text { (o) } & 66.3 & 810.7 & 57.0 & 853.4\end{array}$
$\begin{array}{lllll}\text { (p) } & 69.5 & 657.4 & 59.1 & 707.8\end{array}$
$\begin{array}{lllll}\text { (q) } & 61.4 & 1296.8 & 54.6 & 1319.0\end{array}$
$\begin{array}{lllll}\text { (r) } & 63.9 & 1026.3 & 56.3 & 1057.2\end{array}$
$\begin{array}{lllll}\text { (s) } & 66.9 & 817.0 & 58.3 & 856.4\end{array}$
$\begin{array}{lllll}\text { (t) } & 70.5 & 652.5 & 60.6 & 700.5\end{array}$
$\begin{array}{lll}3.40 \text { (a) Propane } \mathrm{T}_{\mathrm{c}}:=369.8 \cdot \mathrm{~K} & \mathrm{P}_{\mathrm{c}}:=42.48 \cdot \mathrm{bar} & \omega:=0.152 \\ \mathrm{~T}:=(40+273.15) \cdot \mathrm{K} & \mathrm{T}=313.15 \mathrm{~K} & \mathrm{P}:=13.71 \cdot \mathrm{bar} \\ \mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}} & \mathrm{T}_{\mathrm{r}}=0.847 & \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}\end{array}$
From Table 3.1 for PR:
$\alpha\left(\Gamma_{\mathrm{r}}, \omega:=\left[1+\left(\hat{0.37464}+1.54226 \omega-0.26992 \omega^{2} \cdot\left(1-\mathrm{T}_{\mathrm{r}}{ }^{\frac{1}{2}}\right)\right]^{2}\right.\right.$
$\sigma:=1+\sqrt{2} \quad \varepsilon:=1-\sqrt{2} \quad \Omega:=0.07779 \quad \Psi:=0.45724$
$\mathrm{q}\left(\Gamma_{\mathrm{r}}:=\frac{\Psi \alpha\left(\Gamma_{\mathrm{r}}, \omega\right.}{\Omega \cdot \mathrm{T}_{\mathrm{r}}}\right.$
Eq. (3.54) $\quad \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}:=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}}$
Calculate Z for liquid by Eq. (3.56) Guess: $\quad Z:=0.01$
Given

$$
\begin{aligned}
& Z=\beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}+\left(z+\varepsilon \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \quad \cdot\left(z+\sigma \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot\left(\frac{1+\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}-\mathrm{Z}}{\mathrm{q}() \Gamma_{\mathrm{r}} \cdot \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}}\right)\right.\right.\right. \\
& \mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.049 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=92.2 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \text { Ans. }
\end{aligned}
$$

Calculate Z for vapor by Eq. (3.52) Guess: $\quad Z:=0.6$
Given

$$
\begin{aligned}
& Z=1+\beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}-\mathrm{q}\left(\Gamma_{\mathrm{r}} \cdot \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot \frac{\mathrm{Z}-\beta\left(\Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.}{\left(Z+\varepsilon \beta() \Gamma_{\mathrm{r}}, P_{\mathrm{r}} \cdot\left(Z+\sigma \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.\right.}\right.\right. \\
& \mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.766 \quad \mathrm{~V},=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=1454.5 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

Parts (b) through (t) are worked exactly the same way. All results are summarized as follows. Volume units are cu.cm./mole.
PR, Liq. PR, Vap. Rackett Pitzer
$\begin{array}{lllll}\text { (a) } & 92.2 & 1454.5 & 94.2 & 1537.8\end{array}$
$\begin{array}{lllll}\text { (b) } & 97.6 & 1131.8 & 98.1 & 1228.7\end{array}$
$\begin{array}{lllll}\text { (c) } & 104.4 & 879.2 & 102.8 & 990.4\end{array}$
$\begin{array}{lllll}\text { (d) } & 113.7 & 678.1 & 109.0 & 805.0\end{array}$
(e) $\begin{array}{lllll}125.2 & 1453.5 & 125.4 & 1577.0\end{array}$
$\begin{array}{lllll}\text { (f) } & 132.9 & 1156.3 & 130.7 & 1296.8\end{array}$
$\begin{array}{lllll}\text { (g) } & 143.0 & 915.0 & 137.4 & 1074.0\end{array}$
$\begin{array}{lllll}\text { (h) } & 157.1 & 715.8 & 146.4 & \mathbf{8 9 6 . 0}\end{array}$
(i) $\begin{array}{lllll}129.4 & 1271.9 & 133.9 & 1405.7\end{array}$
$\begin{array}{lllll}\text { (j) } & 138.6 & 1002.3 & 140.3 & 1154.3\end{array}$
$\begin{array}{lllll}\text { (k) } & 151.2 & 782.8 & 148.6 & 955.4\end{array}$
$\begin{array}{lllll}\text { (l) } & 170.2 & 597.3 & 160.6 & 795.8\end{array}$
$\begin{array}{lllll}\text { (m) } & 54.0 & 1233.0 & 53.5 & 1276.9\end{array}$
$\begin{array}{lllll}\text { (n) } & 56.0 & 987.3 & 55.1 & 1038.5\end{array}$
$\begin{array}{lllll}\text { (o) } & 58.4 & 794.8 & 57.0 & 853.4\end{array}$
$\begin{array}{lllll}\text { (p) } & 61.4 & 641.6 & 59.1 & 707.8\end{array}$
$\begin{array}{lllll}\text { (q) } & 54.1 & 1280.2 & 54.6 & 1319.0\end{array}$
$\begin{array}{lllll}\text { (r) } & 56.3 & 1009.7 & 56.3 & 1057.2\end{array}$
$\begin{array}{lllll}\text { (s) } & 58.9 & 800.5 & 58.3 & 856.4\end{array}$
$\begin{array}{lllll}\text { (t) } & 62.2 & 636.1 & 60.6 & 700.5\end{array}$
3.41
(a) For ethylene,

$$
\begin{array}{lll}
\text { molwt }:=28.054 \frac{\mathrm{gm}}{\mathrm{~mol}} \mathrm{~T}_{\mathrm{c}}:=282.3 \cdot \mathrm{~K} & \mathrm{P}_{\mathrm{c}}:=50.40 \cdot \mathrm{bar} \\
\omega:=0.087 & \mathrm{~T}:=328.15 \cdot \mathrm{~K} & \mathrm{P}:=35 \cdot \mathrm{bar}
\end{array}
$$

$$
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=1.162 \quad \mathrm{P}_{\mathrm{r}}=0.694
$$

From Tables E. 1 \& E.2:

$$
\mathrm{Z}_{0}:=0.838
$$

$$
\mathrm{Z}_{1}:=0.033
$$

$\mathrm{Z}:=\mathrm{Z}_{0}+\omega \cdot \mathrm{Z}_{1} \quad \mathrm{Z}=0.841$
$\mathrm{n}:=\frac{18 \cdot \mathrm{~kg}}{\mathrm{molwt}}$
$\mathrm{V}_{\text {total }}:=\frac{\mathrm{Z} \cdot \mathrm{n} \cdot \mathrm{R} \cdot \mathrm{T}}{\mathrm{P}}$

$$
\mathrm{V}_{\text {total }}=0.421 \mathrm{~m}^{3}
$$

Ans.
(b) $\mathrm{T}:=323.15 \cdot \mathrm{~K}$
$\mathrm{P}:=115 \cdot \mathrm{bar}$
$\mathrm{V}_{\text {total }}:=0.25 \cdot \mathrm{~m}^{3}$
$\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}$
$\mathrm{T}_{\mathrm{r}}=1.145$
$\mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}$
$\mathrm{P}_{\mathrm{r}}=2.282$
From Tables E. 3 \& E.4: $\mathrm{Z}_{0}:=0.482$

$$
\mathrm{Z}_{1}:=0.126
$$

$$
\mathrm{Z}:=\mathrm{Z}_{0}+\omega \cdot \mathrm{Z}_{1} \quad \mathrm{Z}=0.493 \quad \mathrm{n}:=\frac{\mathrm{P} \cdot \mathrm{~V}_{\text {total }}}{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}} \quad \mathrm{n}=2171 \mathrm{~mol}
$$

$$
\text { mass }:=\mathrm{n} \cdot \text { molwt } \quad \text { mass }=60.898 \mathrm{~kg} \quad \text { Ans. }
$$

3.42 Assume validity of Eq. (3.38).

$$
\mathrm{P}_{1}:=1 \mathrm{bar}
$$

$$
\mathrm{T}_{1}:=300 \mathrm{~K}
$$

$$
\mathrm{V}_{1}:=23000 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

$$
\mathrm{Z}_{1}:=\frac{\mathrm{P}_{1} \cdot \mathrm{~V}_{1}}{\mathrm{R} \cdot \mathrm{~T}_{1}} \quad \mathrm{Z}_{1}=0.922 \quad \mathrm{~B}:=\frac{\mathrm{R} \cdot \mathrm{~T}_{1}}{\mathrm{P}_{1}} \cdot\left(\mathrm{Z}_{1}-1 \quad \mathrm{~B}=-1.942 \times 10^{3} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}\right.
$$

With this B, recalculate at $\mathbf{P}_{\mathbf{2}}$

$$
\mathrm{P}_{2}:=5 \mathrm{bar}
$$

$$
\mathrm{Z}_{2}:=1+\frac{\mathrm{B} \cdot \mathrm{P}_{2}}{\mathrm{R} \cdot \mathrm{~T}_{1}} \quad \mathrm{Z}_{2}=0.611 \quad \mathrm{~V}_{2}:=\frac{\mathrm{R} \cdot \mathrm{~T}_{1} \cdot \mathrm{Z}_{2}}{\mathrm{P}_{2}} \quad \mathrm{~V}_{2}=3.046 \times 10^{3} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \text { Ans. }
$$

$$
\begin{aligned}
& 3.43 \mathrm{~T}:=753.15 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{c}}:=513.9 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=1.466 \\
& \mathrm{P}:=6000 \cdot \mathrm{kPa} \quad \mathrm{P}_{\mathrm{c}}:=61.48 \cdot \mathrm{bar} \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.976 \\
& \begin{array}{lll}
\omega:=0.645 & \mathrm{~B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}{ }^{1.6}} & \mathrm{~B}_{0}=-0.146 \\
\mathrm{~B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}{ }^{4.2}} & \mathrm{~B}_{1}=0.104
\end{array} \\
& \mathrm{~V}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}}+\left(\mathrm{B}_{0}+\omega \cdot \mathrm{B}_{1} \cdot \mathrm{R} \cdot \frac{\mathrm{~T}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}}\right. \\
& \mathrm{V}=989 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \text { For an ideal gas: } \\
& \mathrm{V}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \\
& \begin{array}{rlll}
3.44 \mathrm{~T}:=320 \cdot \mathrm{~K} & \mathrm{P}:=16 \cdot \mathrm{bar} & \mathrm{~T}_{\mathrm{c}}:=369.8 \cdot \mathrm{~K} & \mathrm{P}_{\mathrm{c}}:=42.48 \cdot \mathrm{bar} \\
\omega:=0.152 & \mathrm{~V}_{\mathrm{c}}:=200 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} & \mathrm{Z}_{\mathrm{c}}:=0.276 & \text { molwt }:=44.097 \frac{\mathrm{gm}}{\mathrm{~mol}}
\end{array} \\
& \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.865 \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.377 \\
& \mathrm{~V}_{\mathrm{liq}}:=\mathrm{V}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{C}}\left[()-\mathrm{T}_{\mathrm{r}}{ }^{0.2857}\right] \\
& \mathrm{V}_{\mathrm{liq}}=96.769 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \mathrm{~V}_{\mathrm{tank}}:=0.35 \cdot \mathrm{~m}^{3} \quad \mathrm{~m}_{\mathrm{liq}}:=\frac{0.8 \cdot \mathrm{~V}_{\text {tank }}}{\frac{\mathrm{V}_{\mathrm{liq}}}{\mathrm{molwt}}} \quad \mathrm{~m}_{\mathrm{lqq}}=127.594 \mathrm{~kg} \quad \text { Ans. } \\
& \mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}} \quad \mathrm{~B}_{0}=-0.449 \\
& \mathrm{~B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=-0.177
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{\text {vap }}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}}+\left(\beta_{0}+\omega \cdot \mathrm{B}_{1} \cdot \mathrm{R} \cdot \frac{\mathrm{~T}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}}\right. & \mathrm{V}_{\text {vap }}=1.318 \times 10^{3} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
\mathrm{~m}_{\text {vap }}:=\frac{0.2 \cdot \mathrm{~V}_{\text {tank }}}{\frac{\mathrm{V}_{\text {vap }}}{\text { molvt }}} & \mathrm{m}_{\text {vap }}=2.341 \mathrm{~kg} \quad \text { An }
\end{aligned}
$$

Ans.

3.46
(a) $\mathrm{T}:=333.15 \cdot \mathrm{~K}$
$\mathrm{T}_{\mathrm{c}}:=305.3 \cdot \mathrm{~K}$
$\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r}}=1.091$
$\mathrm{P}:=14000 \cdot \mathrm{kPa} \quad \mathrm{P}_{\mathrm{c}}:=48.72 \cdot \mathrm{bar} \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=2.874$

$$
\omega:=0.100
$$

$$
\mathrm{V}_{\text {total }}:=0.15 \cdot \mathrm{~m}^{3}
$$

$$
\text { molwt }:=30.07 \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

From tables E. 3 \& E.4: $Z_{0}:=0.463$

$$
\mathrm{Z}_{1}:=-0.037
$$

$$
\begin{array}{ll}
\mathrm{Z}:=\mathrm{Z}_{0}+\omega \cdot \mathrm{Z}_{1} & \mathrm{Z}=0.459 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=90.87 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
\mathrm{~m}_{\text {ethane }}:=\frac{\mathrm{V}_{\text {total }}}{\frac{\mathrm{V}}{\mathrm{molwt}}} & \mathrm{~m}_{\text {ethane }}=49.64 \mathrm{~kg} \quad \text { Ans. } \\
\text { (b) } \mathrm{V}:=\frac{\mathrm{V}_{\text {total }}}{40 \cdot \mathrm{~kg}} & \mathrm{P}:=20000 \cdot \mathrm{kPa} \quad \mathrm{P} \cdot \mathrm{~V}=\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}=\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{r}} \cdot \mathrm{~T}_{\mathrm{c}} \\
\text { or } \quad \mathrm{T}_{\mathrm{r}}=\frac{\alpha}{\mathrm{Z}} \quad \text { where } \quad \alpha:=\frac{\mathrm{P} \cdot \mathrm{~V}}{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}}} \quad \alpha=29.548 \frac{\mathrm{~mol}}{\mathrm{~kg}} \\
\text { Whence } \quad \mathrm{T}_{\mathrm{r}}=\frac{0.889}{\mathrm{Z}} \quad \text { at } \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \quad \mathrm{P}_{\mathrm{r}}=4.105
\end{array}
$$

This equation giving T_{r} as a function of Z and Eq. (3.57) in conjunction with
Tables E. 3 \& E. 4 are two relations in the same variables which must be satisfied at the given reduced pressure. The intersection of these two relations can be found by one means or another to occur at about:

$$
\mathrm{T}_{\mathrm{r}}:=1.283 \quad \text { and } \quad \mathrm{Z}:=0.693
$$

Whence $\quad \mathrm{T}:=\mathrm{T}_{\mathrm{r}} \cdot \mathrm{T}_{\mathrm{c}}$

$$
\mathrm{T}=391.7 \mathrm{~K} \quad \text { or } \quad 118.5 \cdot \operatorname{deg} \mathrm{C} \quad \text { Ans. }
$$

$$
\begin{aligned}
& 3.47 \mathrm{~V}_{\text {total }}:=0.15 \cdot \mathrm{~m}^{3} \quad \mathrm{~T}:=298.15 \cdot \mathrm{~K} \\
& \mathrm{~T}_{\mathrm{c}}:=282.3 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=50.40 \cdot \mathrm{bar} \quad \omega:=0.087 \quad \mathrm{P} \cdot \mathrm{~V}=\mathrm{P}_{\mathrm{r}} \cdot \mathrm{P}_{\mathrm{c}} \cdot \mathrm{~V}=\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T} \\
& \mathrm{~V}:=\frac{\mathrm{V}_{\text {total }}}{\left(\frac{40 \cdot \mathrm{~kg})}{\text { molwt }}\right)} \quad \text { where } \quad \alpha:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}_{\mathrm{c}} \cdot \mathrm{~V}} \quad \alpha=4.675 \\
& \text { or } \quad \mathrm{P}_{\mathrm{r}}=\alpha \cdot \mathrm{Z} \quad \text { at } \quad \mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=1.056
\end{aligned}
$$

$$
\text { molwt }:=28.054 \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

This equation giving P_{r} as a function of Z and Eq. (3.57) in conjunction with
Tables E. 3 \& E. 4 are two relations in the same variables which must be satisfied at the given reduced temperature. The intersection of these two relations can be found by one means or another to occur at about:

$$
\mathrm{P}_{\mathrm{r}}:=1.582 \quad \text { and } \quad \mathrm{Z}:=0.338 \quad \mathrm{P}:=\mathrm{P}_{\mathrm{c}} \cdot \mathrm{P}_{\mathrm{r}} \quad \mathrm{P}=79.73 \mathrm{bar} \quad \text { Ans. }
$$

$3.48 \mathrm{~m}_{\text {water }}:=15 \cdot \mathrm{~kg}$

$$
\mathrm{V}_{\text {total }}:=0.4 \cdot \mathrm{~m}^{3}
$$

$$
\mathrm{V}:=\frac{\mathrm{V}_{\text {total }}}{\mathrm{m}_{\mathrm{water}}}
$$

$$
\mathrm{V}=26.667 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

Interpolate in Table F. 2 at $\mathbf{4 0 0}$ degC to find:

$$
\mathrm{P}=9920 \cdot \mathrm{kPa} \quad \text { Ans. }
$$

$$
\begin{array}{llll}
3.49 \mathrm{~T}_{1}:=298.15 \cdot \mathrm{~K} & \mathrm{~T}_{\mathrm{c}}:=305.3 \cdot \mathrm{~K} & \mathrm{~T}_{\mathrm{r} 1}:=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{~T}_{\mathrm{r} 1}=0.977 \\
\mathrm{P}_{1}:=2200 \cdot \mathrm{kPa} & \mathrm{P}_{\mathrm{c}}:=48.72 \cdot \mathrm{bar} & \mathrm{P}_{\mathrm{r} 1}:=\frac{\mathrm{P}_{1}}{\mathrm{P}_{\mathrm{c}}} & \mathrm{P}_{\mathrm{r} 1}=0.452 \\
\mathrm{~V}_{\text {total }}:=0.35 \cdot \mathrm{~m}^{3} & \omega:=0.100 & &
\end{array}
$$

From Tables E. 1 \& E.2: $Z_{0}:=.8105$

$$
Z_{1}:=-0.0479
$$

$$
\mathrm{Z}:=\mathrm{Z}_{0}+\omega \cdot \mathrm{Z}_{1}
$$

$$
Z=0.806
$$

$$
\mathrm{V}_{1}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}_{1}}{\mathrm{P}_{1}} \quad \mathrm{~V}_{1}=908 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

$$
\mathrm{T}_{2}:=493.15 \cdot \mathrm{~K}
$$

$$
\mathrm{T}_{\mathrm{r} 2}:=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{c}}}
$$

$$
\mathrm{T}_{\mathrm{r} 2}=1.615
$$

Assume Eq. (3.38) applies at the final state.

$$
\begin{aligned}
& \mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r} 2} 1.6} \quad \mathrm{~B}_{0}=-0.113 \\
& \mathrm{~B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r} 2} 4.2} \quad \mathrm{~B}_{1}=0.116 \\
& \mathrm{P}_{2}:=\frac{\mathrm{R} \cdot \mathrm{~T}_{2}}{\mathrm{~V}_{1}-\left(\beta_{0}+\omega \cdot \mathrm{B}_{1} \cdot \mathrm{R} \cdot \frac{\mathrm{~T}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}}\right.}
\end{aligned}
$$

$$
\mathrm{P}_{2}=42.68 \mathrm{bar}
$$

Ans.

$$
\begin{aligned}
& 3.50 \mathrm{~T}:=303.15 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{c}}:=304.2 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.997 \\
& \begin{array}{ll}
\mathrm{V}_{\text {total }}:=0.5 \cdot \mathrm{~m}^{3} & \mathrm{P}_{\mathrm{c}}:=73.83 \cdot \text { bar } \\
\mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}{ }^{1.6}} & \mathrm{~B}_{0}=-0.341
\end{array} \\
& \mathrm{~B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}{ }^{4.2}} \quad \mathrm{~B}_{1}=-0.036 \\
& \mathrm{~V}:=\frac{\mathrm{V}_{\text {total }}}{\left(\frac{10 \cdot \mathrm{~kg}}{\mathrm{molwt}}\right)} \quad \mathrm{V}=2.2 \times 10^{3} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& P:=\frac{R \cdot T}{V-\left(\beta_{0}+\omega \cdot B_{1} \cdot R \cdot \frac{T_{c}}{P_{c}}\right.} \quad P=10.863 \text { bar } \quad \text { Ans. }
\end{aligned}
$$

3.51 Basis: 1 mole of LIQUID nitrogen

$\mathrm{T}_{\mathrm{n}}:=77.3 \cdot \mathrm{~K}$	$\mathrm{T}_{\mathrm{c}}:=126.2 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{T}_{\mathrm{c}}}$	$\mathrm{T}_{\mathrm{r}}=0.613$
$\mathrm{P}:=1 \cdot \mathrm{~atm}$	$\mathrm{P}_{\mathrm{c}}:=34.0 \cdot$ bar $\quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}$	$\mathrm{P}_{\mathrm{r}}=0.03$
$\omega:=0.038$	molwt $:=28.014 \cdot \frac{\mathrm{gm}}{\mathrm{mol}}$	$\mathrm{V}_{\text {liq }}:=34.7 \cdot \mathrm{~cm}^{3}$
$\mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}}$	$\mathrm{B}_{0}=-0.842$	
$\mathrm{B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}}$	$\mathrm{B}_{1}=-1.209$	
$Z:=1+\left(\beta_{0}+\omega \cdot B_{1}\right.$	$\frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}} \quad \mathrm{Z}=0.957$	

$\mathrm{n}_{\text {vapor }}:=\frac{\mathrm{P} \cdot \mathrm{V}_{\text {liq }}}{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}_{\mathrm{n}}} \quad \quad \mathrm{n}_{\text {vapor }}=5.718 \times 10^{-3} \mathrm{~mol}$
Final conditions:

$$
\begin{array}{lll}
\mathrm{n}_{\text {total }}:=1 \cdot \mathrm{~mol}+\mathrm{n}_{\text {vapor }} & \mathrm{V}:=\frac{2 \cdot \mathrm{~V}_{\text {liq }}}{\mathrm{n}_{\text {total }}} & \mathrm{V}=69.005 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
\mathrm{~T}:=298.15 \cdot \mathrm{~K} & \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{~T}_{\mathrm{r}}=2.363 \\
\mathrm{P}_{\mathrm{ig}}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{~V}} \quad \mathrm{P}_{\mathrm{ig}}=359.2 \mathrm{bar} &
\end{array}
$$

Use Redlich/Kwong at so high a P.

$$
\Omega:=0.08664 \quad \Psi:=0.42748 \quad \alpha(\operatorname{Tr}):=\operatorname{Tr}^{-.5} \quad \alpha() \Gamma_{\mathrm{r}}=0.651
$$

$$
\begin{equation*}
\mathrm{a}:=\frac{\Psi \alpha\left(\Gamma_{\mathrm{r}} \cdot \mathrm{R}^{2} \cdot \mathrm{~T}_{\mathrm{c}}^{2}\right.}{\mathrm{P}_{\mathrm{c}}} \quad \text { Eq. (3.42) } \quad \mathrm{b}:=\frac{\Omega \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}} \tag{3.43}
\end{equation*}
$$

$\mathrm{a}=0.901 \mathrm{~m}^{3} \frac{\mathrm{bar} \cdot \mathrm{cm}^{3}}{\mathrm{~mol}^{2}}$
$\mathrm{b}=26.737 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
$\mathrm{P}:=\frac{\mathrm{R} \cdot \mathrm{T}}{\mathrm{V}-\mathrm{b}}-\frac{\mathrm{a}}{\mathrm{V} \cdot(\mathrm{V}+\mathrm{b})} \quad$ Eq. (3.44) $\quad \mathrm{P}=450.1 \mathrm{bar}$

> Ans.
3.52 For isobutane:

$$
\mathrm{T}_{\mathrm{c}}:=408.1 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=36.48 \cdot \mathrm{bar}
$$

$$
\mathrm{V}_{1}:=1.824 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

$\mathrm{T}_{1}:=300 \cdot \mathrm{~K}$

$$
\mathrm{P}_{1}:=4 \cdot \mathrm{bar}
$$

$$
\mathrm{T}_{2}:=415 \cdot \mathrm{~K}
$$

$$
\mathrm{P}_{2}:=75 \cdot \mathrm{bar}
$$

$\mathrm{T}_{\mathrm{r} 1}:=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{c}}}$
$\mathrm{P}_{\mathrm{r} 1}:=\frac{\mathrm{P}_{1}}{\mathrm{P}_{\mathrm{c}}}$
$\mathrm{T}_{\mathrm{r} 2}:=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{c}}}$
$\mathrm{P}_{\mathrm{r} 2}:=\frac{\mathrm{P}_{2}}{\mathrm{P}_{\mathrm{c}}}$
$\mathrm{T}_{\mathrm{r} 1}=0.735$
$\mathrm{P}_{\mathrm{r} 1}=0.11$
$\mathrm{T}_{\mathrm{r} 2}=1.017$
$\mathrm{P}_{\mathrm{r} 2}=2.056$

From Fig. (3.17):

$$
\rho_{\mathrm{r} 1}:=2.45
$$

The final T > Tc, and Fig. 3.16 probably should not be used. One can easily show that
$\rho_{\mathrm{r}}=\frac{\mathrm{P} \cdot \mathrm{V}_{\mathrm{c}}}{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}}$
with Z from Eq. (3.57) and
Tables E. 3 and E.4. Thus
$\mathrm{V}_{\mathrm{c}}:=262.7 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
$\omega:=0.181$

$$
\mathrm{Z}_{0}:=0.3356 \quad \mathrm{Z}_{1}:=-0.0756
$$

$\mathrm{Z}:=\mathrm{Z}_{0}+\omega \cdot \mathrm{Z}_{1}$
$\rho_{\mathrm{r} 2}:=\frac{\mathrm{P}_{2} \cdot \mathrm{~V}_{\mathrm{c}}}{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}_{2}} \quad \rho_{\mathrm{r} 2}=1.774$
$\mathrm{V}_{2}:=\mathrm{V}_{1} \cdot \frac{\rho_{\mathrm{r} 1}}{\rho_{\mathrm{r} 2}}$
$\mathrm{V}_{2}=2.519 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
Ans.
Eq. (3.75):

$$
\mathrm{Z}=0.322
$$

$$
\rho_{\mathrm{r} 2}:=\frac{\mathrm{P}_{2} \cdot \mathrm{v}_{\mathrm{c}}}{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}_{2}}
$$

A
3.53 For n-pentane: $\quad T_{c}:=469.7 \cdot \mathrm{~K}$

$$
\mathrm{T}_{1}:=291.15 \cdot \mathrm{~K} \quad \mathrm{P}_{1}:=1 \cdot \mathrm{bar}
$$

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{c}}:=33.7 \cdot \mathrm{bar} \\
& \mathrm{~T}_{2}:=413.15 \cdot \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{1}:=0.63 \cdot \frac{\mathrm{gm}}{\mathrm{~cm}^{3}} \\
& \mathrm{P}_{2}:=120 \cdot \mathrm{bar}
\end{aligned}
$$

$\mathrm{T}_{\mathrm{r} 1}:=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{c}}}$
$\mathrm{P}_{\mathrm{r} 1}:=\frac{\mathrm{P}_{1}}{\mathrm{P}_{\mathrm{c}}}$
$\mathrm{T}_{\mathrm{r} 1}=0.62 \quad \mathrm{P}_{\mathrm{r} 1}=0.03$
$\mathrm{T}_{\mathrm{r} 2}=0.88$
$\mathrm{P}_{\mathrm{r} 2}=3.561$
From Fig. (3.16): $\quad \rho_{\mathrm{r} 1}:=2.69$

$$
\rho_{\mathrm{r} 2}:=2.27
$$

By Eq. (3.75), $\quad \rho_{2}:=\rho_{1} \cdot \frac{\rho_{\mathrm{r} 2}}{\rho_{\mathrm{r} 1}}$

$$
\rho_{2}=0.532 \frac{\mathrm{gm}}{\mathrm{~cm}^{3}}
$$

Ans.
3.54 For ethanol: $\mathrm{T}_{\mathrm{c}}:=513.9 \cdot \mathrm{~K} \quad \mathrm{~T}:=453.15 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r}}=0.882$

$$
\begin{array}{ll}
\mathrm{P}_{\mathrm{c}}:=61.48 \cdot \mathrm{bar} & \mathrm{P}:=200 \cdot \mathrm{bar} \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=3.253 \\
\mathrm{~V}_{\mathrm{c}}:=167 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} & \text { molwt }:=46.069 \cdot \frac{\mathrm{gm}}{\mathrm{~mol}}
\end{array}
$$

From Fig. 3.16:

$$
\begin{array}{ll}
\rho_{\mathrm{r}}:=2.28 & \rho \rho=\mathrm{r} \cdot \rho_{\mathrm{c}}=\frac{\rho_{\mathrm{r}}}{\mathrm{~V}_{\mathrm{c}}} \\
\rho:=\frac{\rho_{\mathrm{r}}}{\frac{\mathrm{~V}_{\mathrm{c}}}{\mathrm{molwt}}} & \rho=0.629 \frac{\mathrm{gm}}{\mathrm{~cm}^{3}}
\end{array}
$$

Ans.

3.55 For ammonia:

$$
\begin{array}{lll}
\mathrm{T}_{\mathrm{c}}:=405.7 \cdot \mathrm{~K} & \mathrm{~T}:=293.15 \cdot \mathrm{~K} & \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.723 \\
\mathrm{P}_{\mathrm{c}}:=112.8 \cdot \mathrm{bar} & \mathrm{P}:=857 \cdot \mathrm{kPa} & \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.076 \\
\mathrm{~V}_{\mathrm{c}}:=72.5 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} & \mathrm{Z}_{\mathrm{c}}:=0.242 & \mathrm{~V}_{\text {liquid }}=27.11 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}^{3}} \\
\text { Eq. (3.72): } & \mathrm{V}_{\text {liquid }}:=\mathrm{V}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{c}}^{\left[(1)-\mathrm{T}_{\mathrm{r}}\right.}{ }^{0.2857]} \\
\mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}}{ }^{1.6} & \mathrm{~B}_{0}=-0.627 &
\end{array}
$$

$$
\mathrm{B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=-0.534
$$

$$
\begin{array}{ll}
\mathrm{V}_{\text {vapor }}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}}+\left(\mathrm{B}_{0}+\omega \cdot \mathrm{B}_{1} \cdot \mathrm{R} \cdot \frac{\mathrm{~T}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}}\right. & \mathrm{V}_{\text {vapor }}=2616 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
\Delta \mathrm{~V}:=\mathrm{V}_{\text {vapor }}-\mathrm{V}_{\text {liquid }} & \Delta \mathrm{V}=2589 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{array}
$$

Ans.

Alternatively, use Tables E. 1 \& E. 2 to get the vapor volume:
$Z_{0}:=0.929$
$Z_{1}:=-0.071$
$\mathrm{Z}:=\mathrm{Z}_{0}+\omega \cdot \mathrm{Z}_{1}$
$Z=0.911$
$\mathrm{V}_{\text {vapor }}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}}{\mathrm{P}}$
$\mathrm{V}_{\text {vapor }}=2591 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
$\Delta \mathrm{V}:=\mathrm{V}_{\text {vapor }}-\mathrm{V}_{\text {liquid }}$

Ans.
3.5810 gal. of gasoline is equivalent to $1400 \mathrm{cu} \mathbf{f t}$. of methane at $\mathbf{6 0 ~ d e g F}$ and 1 atm. Assume at these conditions that methane is an ideal gas:
$\mathrm{R}=0.7302 \frac{\mathrm{ft}^{3} \cdot \mathrm{~atm}}{\mathrm{lbmol} \cdot \text { rankine }}$
$\mathrm{T}:=519.67 \cdot$ rankine $\quad \mathrm{P}:=1 \cdot \mathrm{~atm}$
$\mathrm{V}:=1400 \cdot \mathrm{ft}^{3}$
$\mathrm{n}:=\frac{\mathrm{P} \cdot \mathrm{V}}{\mathrm{R} \cdot \mathrm{T}}$
$\mathrm{n}=3.689 \mathrm{lbmol}$
For methane at $\mathbf{3 0 0 0}$ psi and $\mathbf{6 0 ~ d e g F}$:
$\mathrm{T}_{\mathrm{c}}:=190.6 \cdot 1.8 \cdot$ rankine
$\mathrm{T}:=519.67 \cdot$ rankine
$\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}$
$\mathrm{T}_{\mathrm{r}}=1.515$
$\mathrm{P}_{\mathrm{c}}:=45.99 \cdot$ bar $\quad \mathrm{P}:=3000 \cdot \mathrm{psi} \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=4.498$
$\omega:=0.012$

From Tables E. 3 \& E.4:
$Z_{0}:=0.819$
$Z_{1}:=0.234$
$\mathrm{Z}:=\mathrm{Z}_{0}+\omega \cdot \mathrm{Z}_{1}$
$Z=0.822$

$$
\mathrm{V}_{\operatorname{tank}}:=\frac{\mathrm{Z} \cdot \mathrm{n} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}}
$$

$$
\mathrm{V}_{\mathrm{tank}}=5.636 \mathrm{ft}^{3}
$$

Ans.

$$
\text { 3.59 } \mathrm{T}:=25 \mathrm{~K} \quad \mathrm{P}:=3.213 \mathrm{bar}
$$

Calculate the effective critical parameters for hydrogen by equations (3.58) and (3.56)

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{c}}:=\frac{43.6}{1+\frac{21.8 \mathrm{~K}}{2.016 \mathrm{~T}}} \cdot \mathrm{~K} & \mathrm{~T}_{\mathrm{c}}=30.435 \mathrm{~K} \\
\mathrm{P}_{\mathrm{c}}:=\frac{20.5}{1+\frac{44.2 \mathrm{~K}}{2.016 \mathrm{~T}}} \cdot \text { bar } & \mathrm{P}_{\mathrm{c}}=10.922 \mathrm{bar} \\
\omega:=0 &
\end{array}
$$

$$
\mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.294 \quad \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.821
$$

Initial guess of volume:

$$
\mathrm{V}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}}
$$

$$
\mathrm{V}=646.903 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Use the generalized Pitzer correlation

$$
\begin{aligned}
& \mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}} \quad \mathrm{~B}_{0}=-0.495 \quad \mathrm{~B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=-0.254 \\
& \mathrm{Z}:=1+\left(\mathrm{B}_{0}+\omega \cdot \mathrm{B}_{1} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}} \quad \mathrm{Z}=0.823\right. \\
& \text { Ans. } \\
& \text { Experimental: } \mathrm{Z}=\mathbf{0 . 7 7 5 7}
\end{aligned}
$$

For Redlich/Kwong EOS:

$$
\begin{array}{lll}
\sigma:=1 & \varepsilon:=0 & \Omega:=0.08664
\end{array} \quad \Psi:=0.42748 ~ 子 ~ T a b l e ~ 3.1 ~ \% ~ q ~\left(~ \Gamma_{\mathrm{r}}:=\frac{\Psi \alpha() \Gamma_{\mathrm{r}}}{\Omega \cdot \mathrm{~T}_{\mathrm{r}}}\right.
$$

$$
\text { Table } 3.1
$$

Calculate Z Guess: $\quad \mathrm{Z}:=0.9$

Given Eq. (3.52)
$Z=1+\beta\left(\Gamma_{r}, P_{r}-q\left(\Gamma_{r} \cdot \beta() \Gamma_{r}, P_{r} \cdot \frac{Z-\beta() \Gamma_{r}, P_{r}}{Z \cdot\left(Z+\beta() \Gamma_{r}, P_{r}\right.}\right.\right.$
$\mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=0.791 \quad$ Ans. \quad Experimental: $\mathrm{Z}=\mathbf{0 . 7 7 5 7}$
3.61 For methane: $\omega:=0.012 \quad T_{c}:=190.6 \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=45.99 \mathrm{bar}$

At standard condition: $\quad \mathrm{T}:=\left[(60-32) \cdot \frac{5}{9}+273.15\right] \mathrm{K} \quad \mathrm{T}=288.706 \mathrm{~K}$
Pitzer correlations: $\mathrm{P}:=1 \mathrm{~atm}$
$\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}$
$\mathrm{T}_{\mathrm{r}}=1.515 \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}$
$\mathrm{P}_{\mathrm{r}}=0.022$
$\mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}{ }^{1.6}} \quad \mathrm{~B}_{0}=-0.134 \quad \mathrm{~B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=0.109$
$\mathrm{Z}_{0}:=1+\mathrm{B}_{0} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}} \quad \mathrm{Z}_{0}=0.998 \quad \mathrm{Z}_{1}:=\mathrm{B}_{1} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}} \quad \mathrm{Z}_{1}=0.00158$
$\mathrm{Z}:=\mathrm{Z}_{0}+\omega \cdot \mathrm{Z}_{1} \quad \mathrm{Z}=0.998 \quad \mathrm{~V}_{1}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}}{\mathrm{P}} \quad \mathrm{V}_{1}=0.024 \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}$
(a) At actual condition:

$$
\mathrm{T}:=\left[(50-32) \cdot \frac{5}{9}+273.15\right] \mathrm{K} \quad \mathrm{P}:=300 \mathrm{psi}
$$

Pitzer correlations:

$$
\mathrm{T}=283.15 \mathrm{~K}
$$

$$
\begin{array}{rll}
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{~T}_{\mathrm{r}}=1.486 & \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}
\end{array} \mathrm{P}_{\mathrm{r}}=0.45
$$

$$
\begin{array}{ll}
\mathrm{Z}_{0}:=1+\mathrm{B}_{0} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}} & \mathrm{Z}_{0}=0.957 \quad \mathrm{Z}_{1}:=\mathrm{B}_{1} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}} \quad \mathrm{Z}_{1}=0.0322 \\
\mathrm{Z}:=\mathrm{Z}_{0}+\omega \cdot \mathrm{Z}_{1} & \mathrm{Z}=0.958 \quad \mathrm{~V}_{2}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}_{2}=0.00109 \frac{\mathrm{~m}^{3}}{\mathrm{~mol}} \\
\mathrm{q}_{1}:=150 \cdot 10^{6} \frac{\mathrm{ft}^{3}}{\mathrm{day}} & \mathrm{q}_{2}:=\mathrm{q}_{1} \cdot \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} \quad \mathrm{q}_{2}=6.915 \times 10^{6} \frac{\mathrm{ft}^{3}}{\text { day }} \quad \text { Ans. } \tag{Ans.}\\
\begin{array}{ll}
\text { (b) } \mathrm{n}_{1}:=\frac{\mathrm{q}_{1}}{\mathrm{~V}_{1}} & \mathrm{n}_{1}=7.485 \times 10^{3} \frac{\mathrm{kmol}}{\mathrm{hr}} \text { Ans. } \\
\begin{array}{ll}
\text { (c) } \mathrm{D}:=22.624 \mathrm{in} & \mathrm{~A}:=\frac{\pi}{4} \mathrm{D}^{2}
\end{array} \quad \mathrm{~A}=0.259 \mathrm{~m}^{2} \\
\mathrm{u}:=\frac{\mathrm{q}_{2}}{\mathrm{~A}} & \mathrm{u}=8.738 \frac{\mathrm{~m}}{\mathrm{~s}} \quad \text { Ans. }
\end{array}
\end{array}
$$

Use the first 29 components in Table B. 1 sorted so that ω values are in ascending order. This is required for the Mathcad slope and intercept functions.
$\mathrm{m}:=\operatorname{slope}\left(\nmid 0, \mathrm{Z}_{\mathrm{C}}=(-0.091)\right.$
$\mathrm{b}:=\operatorname{intercept}(\not), \mathrm{Z}_{\mathrm{C}}=(0.291)$
$\mathrm{r}:=\operatorname{corr}(\not), \mathrm{Z}_{\mathrm{C}}=(-0.878) \quad \mathrm{r}^{2}=0.771$

ω
The equation of the line is: $Z_{c}=0.291-0.091 \omega$

Ans.

$$
\begin{array}{rlr}
3.65 \mathrm{C}_{\mathrm{p}}:=\frac{7}{2} \mathrm{R} & \mathrm{C}_{\mathrm{V}}:=\frac{5}{2} \mathrm{R} & \gamma:=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{v}}} \quad \gamma=1.4 \\
\mathrm{~T}_{1}:=298.15 \mathrm{~K} & \mathrm{P}_{1}:=1 \mathrm{bar} & \\
& \mathrm{P}_{2}:=5 \mathrm{bar} & \\
\mathrm{~T}_{3}:=\mathrm{T}_{1} & \mathrm{P}_{3}:=5 \mathrm{bar} &
\end{array}
$$

Step 1->2 Adiabatic compression

$$
\begin{aligned}
& \mathrm{T}_{2}:=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}} \\
& \Delta \mathrm{U}_{12}:=\mathrm{C}_{\mathrm{V}} \cdot() \Gamma_{2}-\mathrm{T}_{1} \\
& \Delta \mathrm{H}_{12}:=\mathrm{C}_{\mathrm{p}} \cdot() \Gamma_{2}-\mathrm{T}_{1} \\
& \mathrm{Q}_{12}:=0 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \mathrm{~W}_{12}:=\Delta \mathrm{U}_{12}
\end{aligned}
$$

Step 2->3 Isobaric cooling

$$
\begin{aligned}
& \Delta \mathrm{U}_{23}:=\mathrm{C}_{\mathrm{V}} \cdot() \Gamma_{3}-\mathrm{T}_{2} \\
& \Delta \mathrm{H}_{23}:=\mathrm{C}_{\mathrm{p}} \cdot() \Gamma_{3}-\mathrm{T}_{2} \\
& \mathrm{Q}_{23}:=\Delta \mathrm{H}_{23} \\
& \mathrm{~W}_{23}:=-\mathrm{R} \cdot() \Gamma_{3}-\mathrm{T}_{2}
\end{aligned}
$$

Step 3->1 Isothermal expansion

$$
\begin{aligned}
& \Delta \mathrm{U}_{31}:=\mathrm{C}_{\mathrm{V}} \cdot() \Gamma_{1}-\mathrm{T}_{3} \\
& \Delta \mathrm{H}_{31}:=\mathrm{C}_{\mathrm{p}} \cdot() \Gamma_{1}-\mathrm{T}_{3}
\end{aligned}
$$

$\mathrm{T}_{2}=472.216 \mathrm{~K}$
$\Delta \mathrm{U}_{12}=3.618 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\Delta \mathrm{H}_{12}=5.065 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Ans.

Ans.

Ans.

$$
\mathrm{W}_{12}=3.618 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Ans.
$\Delta \mathrm{U}_{23}=-3.618 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\Delta \mathrm{H}_{23}=-5.065 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Ans.

Ans.
$\mathrm{Q}_{23}=-5.065 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\mathrm{~W}_{23}=1.447 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Ans.

Ans.

$$
\begin{aligned}
\Delta \mathrm{U}_{31} & =0 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta \mathrm{H}_{31} & =0 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

Ans.

Ans.

$$
\begin{aligned}
& \mathrm{Q}_{31}:=-\mathrm{R} \cdot \mathrm{~T}_{3} \cdot \ln \left(\frac{\mathrm{P}_{1}}{\mathrm{P}_{3}}\right) \\
& \mathrm{W}_{31}:=-\mathrm{Q}_{31}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{Q}_{31} & =3.99 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\mathrm{~W}_{31} & =-3.99 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

Ans.

Ans.
For the cycle

$$
\begin{array}{ll}
\mathrm{Q}_{\text {cycle }}:=\mathrm{Q}_{12}+\mathrm{Q}_{23}+\mathrm{Q}_{31} & \mathrm{Q}_{\text {cycle }}=-1.076 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \text { Ans. } \\
\mathrm{W}_{\text {cycle }}:=\mathrm{W}_{12}+\mathrm{W}_{23}+\mathrm{W}_{31} & \mathrm{~W}_{\text {cycle }}=1.076 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \text { Ans. }
\end{array}
$$

Now assume that each step is irreversible with efficiency: $\eta:=80 \%$
Step 1->2 Adiabatic compression
$\mathrm{W}_{12}:=\frac{\mathrm{W}_{12}}{\eta}$
$\mathrm{Q}_{12}:=\Delta \mathrm{U}_{12}-\mathrm{W}_{12}$

Step 2->3 Isobaric cooling

$$
\mathrm{W}_{23}:=\frac{\mathrm{W}_{23}}{\eta}
$$

$$
\mathrm{Q}_{23}:=\Delta \mathrm{U}_{23}-\mathrm{W}_{23}
$$

$$
\mathrm{Q}_{23}=-5.427 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Step 3->1 Isothermal expansion
$W_{31}:=\eta \cdot W_{31}$
$\mathrm{Q}_{31}:=\Delta \mathrm{U}_{31}-\mathrm{W}_{31}$

$$
\mathrm{Q}_{31}=3.192 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

For the cycle

$$
\begin{aligned}
& \mathrm{Q}_{\text {cycle }}:=\mathrm{Q}_{12}+\mathrm{Q}_{23}+\mathrm{Q}_{31} \\
& \mathrm{~W}_{\text {cycle }}:=\mathrm{W}_{12}+\mathrm{W}_{23}+\mathrm{W}_{31}
\end{aligned}
$$

$\mathrm{W}_{12}=4.522 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

$$
\mathrm{Q}_{12}=-0.904 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

$$
\mathrm{W}_{23}=1.809 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

$$
\mathrm{W}_{31}=-3.192 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Ans.

Ans.

Ans.

Ans.

Ans.
Ans.

Ans.

Ans.

Ans.
3.67 a) PV data are taken from Table F. 2 at pressures above 1atm.

$$
\begin{aligned}
& \mathrm{T}:=(300+273.15) \mathrm{K} \\
& \mathrm{M}:=18.01 \frac{\mathrm{gm}}{\mathrm{~mol}}
\end{aligned}
$$

If a linear equation is fit to the points then the value of B is the y-intercept. Use the Mathcad intercept function to find the y-intercept and hence, the value of B

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{i}}:=\frac{\mathrm{Z}_{\mathrm{i}}-1}{\rho_{\mathrm{i}}} \quad \mathrm{X}_{\mathrm{i}}:=\rho_{\mathrm{i}} \quad \mathrm{~B}:=\operatorname{intercept}(\mathrm{X}, \mathrm{Y}) \quad \mathrm{B}=-128.42 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \mathrm{~A}:=\operatorname{slope}(\mathrm{X}, \mathrm{Y}) \quad \mathrm{A}=1.567 \times 10^{5} \frac{\mathrm{~cm}^{6}}{\mathrm{~mol}^{2}} \\
& \mathrm{X}:=0 \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}, 10^{-5} \cdot \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}} \cdot .8 \cdot 10^{-5} \cdot \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}
\end{aligned}
$$

Below is a plot of the data along with the linear fit and the extrapolation to the y-intercept.

b) Repeat part a) for $T=350 \mathrm{C}$

PV data are taken from Table F. 2 at pressures above 1atm.

If a linear equation is fit to the points then the value of B is the y-intercept.
Use the Mathcad intercept function to find the y-intercept and hence, the value of B
$Y_{i}:=\frac{Z_{i}-1}{\rho_{\mathrm{i}}} \quad X_{i}:=\rho_{\mathrm{i}}$
B := intercept(X,Y)

$$
\mathrm{B}=-105.899 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Ans.

$$
\begin{aligned}
& \mathrm{A}:=\operatorname{slope}(\mathrm{X}, \mathrm{Y}) \quad \mathrm{A}=1.784 \times 10^{5} \frac{\mathrm{~cm}^{6}}{\mathrm{~mol}^{2}} \\
& \mathrm{X}:=0 \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}, 10^{-5} \cdot \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}} . .8 \cdot 10^{-5} \cdot \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}
\end{aligned}
$$

Below is a plot of the data along with the linear fit and the extrapolation to the y-intercept.

c) Repeat part a) for $T=400 \mathrm{C}$

PV data are taken from Table F. 2 at pressures above 1atm.
$P:=\left(\begin{array}{l}125 \\ 150 \\ 175 \\ 200 \\ 225 \\ 250 \\ 275\end{array} \mathrm{l}_{1} \mathrm{kPa}\right.$
$V:=\left(\begin{array}{l}2481.2 \\ 2066.9 \\ 1771.1 \\ 1549.2 \\ 1376.6 \\ 1238.5 \\ 1125.5 \\ 1031.4\end{array}\right) \cdot\left(\left.\begin{array}{l}\text { gm } \\ \end{array} \right\rvert\,\right.$

$$
\mathrm{T}:=(400+273.15) \mathrm{K}
$$

$$
\mathrm{M}:=18.01 \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

$\mathrm{Z}:=\frac{\overrightarrow{\mathrm{P} \cdot \mathrm{V} \cdot \mathrm{M}}}{\mathrm{R} \cdot \mathrm{T}} \quad \rho:=\frac{\overrightarrow{1}}{\mathrm{~V} \cdot \mathrm{M}} \quad \mathrm{i}:=0 . .7$
If a linear equation is fit to the points then the value of B is the y-intercept.
Use the Mathcad intercept function to find the y-intercept and hence, the value of B

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{i}}:=\frac{\mathrm{Z}_{\mathrm{i}}-1}{\rho_{\mathrm{i}}} \quad \mathrm{X}_{\mathrm{i}}:=\rho_{\mathrm{i}} \quad \mathrm{~B}:=\operatorname{intercept}(\mathrm{X}, \mathrm{Y}) \quad \mathrm{B}=-89.902 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \mathrm{~A}:=\operatorname{slope}(\mathrm{X}, \mathrm{Y}) \quad \mathrm{A}=2.044 \times 10^{5} \frac{\mathrm{~cm}^{6}}{\mathrm{~mol}^{2}} \\
& \mathrm{X}:=0 \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}, 10^{-5} \cdot \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}} . .8 \cdot 10^{-5} \cdot \frac{\mathrm{~mol}}{\mathrm{~cm}^{3}}
\end{aligned}
$$

Below is a plot of the data along with the linear fit and the extrapolation to the y-intercept.

3.70 Create a plot of $\frac{(Z-1) \cdot Z \cdot T_{r}}{P_{r}}$ vs $\frac{P_{r}}{Z \cdot T_{r}}$

Data from Appendix E at $T_{r}=1$
$P_{r}:=\left(\begin{array}{l}0.01 \\ 0.05 \\ 0.10 \\ 0.20 \\ 0.40 \\ 0.60 \\ 0.80\end{array}\right)$
$\mathrm{Z}:=\left(\begin{array}{l}0.9967 \\ 0.9832 \\ 0.9659 \\ 0.9300 \\ 0.8509 \\ 0.7574 \\ 0.6355\end{array}\right)$
$\mathrm{X}:=\frac{\overrightarrow{\mathrm{P}_{\mathrm{r}}}}{\mathrm{Z} \cdot \mathrm{T}_{\mathrm{r}}}$
$\mathrm{Y}:=\frac{\overrightarrow{(\mathrm{Z}-1) \cdot \mathrm{Z} \cdot \mathrm{T}_{\mathrm{r}}}}{\mathrm{P}_{\mathrm{r}}}$

$$
\mathrm{T}_{\mathrm{r}}:=1
$$

Create a linear fit of \mathbf{Y} vs \mathbf{X}

$$
\begin{array}{ll}
\text { Slope }:=\text { slope }(\mathrm{X}, \mathrm{Y}) & \text { Slope }=0.033 \\
\text { Intercept }:=\operatorname{intercept}(\mathrm{X}, \mathrm{Y}) & \text { Intercept }=-0.332 \\
\text { Rsquare }:=\operatorname{corr}(\mathrm{X}, \mathrm{Y}) & \text { Rsquare }=0.9965
\end{array}
$$

The second virial coefficient (Bhat) is the value when $X->0$

Bhat := Intercept
By Eqns. (3.65) and (3.66)
These values differ by $\mathbf{2 \%}$.

Bhat $=-0.332 \quad$ Ans.

$$
\mathrm{B} 0:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}}
$$

$$
\mathrm{B} 0=-0.339
$$

Ans.

3.71 Use the SRK equation to calculate Z

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{c}}:=150.9 \cdot \mathrm{~K} \quad \mathrm{~T}:=(30+273.15) \cdot \mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=2.009 \\
& \mathrm{P}_{\mathrm{c}}:=48.98 \cdot \mathrm{bar} \quad \mathrm{P}:=300 \cdot \mathrm{bar} \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=6.125 \\
& \omega:=0.0 \\
& \sigma:=1 \\
& \varepsilon:=0 \\
& \Omega:=0.08664 \\
& \Psi:=0.42748 \text { Table } 3.1 \\
& \alpha\left(\Gamma_{\mathrm{r}}, \omega:=\left[1+\left(b .480+1.574 \omega-0.176 \omega^{2} \cdot\left(1-\mathrm{T}_{\mathrm{r}}{ }^{\frac{1}{2}}\right)\right]^{2}\right.\right. \\
& \mathrm{q}() \Gamma_{\mathrm{r}}:=\frac{\Psi \alpha\left(\Gamma_{\mathrm{r}}, \omega\right.}{\Omega \cdot \mathrm{T}_{\mathrm{r}}} \quad \text { Eq. (3.54) } \quad \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}:=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}}
\end{aligned}
$$

Calculate Z
Given
Guess: $\quad \mathrm{Z}:=0.9$
Eq. (3.52)

$$
\begin{aligned}
& Z=1+\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}-\mathrm{q}() \Gamma_{\mathrm{r}} \cdot \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot \frac{\mathrm{Z}-\beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}}{\left(Z+\varepsilon \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}} \cdot\left(\not \subset+\sigma \beta() \Gamma_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right.\right.} \\
& \mathrm{Z}:=\operatorname{Find}(\mathrm{Z}) \quad \mathrm{Z}=1.025 \quad \mathrm{~V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=86.1 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \text { Ans. }
\end{aligned}
$$

This volume is within $\mathbf{2 . 5 \%}$ of the ideal gas value.
3.72 After the reaction is complete, there will be 5 moles of $\mathrm{C}_{2} \mathrm{H}_{2}$ and 5 moles of $\mathrm{Ca}(\mathrm{OH})_{2}$.

First calculate the volume available for the gas.

$$
\begin{array}{lll}
\mathrm{n}:=5 \mathrm{~mol} & \mathrm{Vt}:=0.4 \cdot 1800 \cdot \mathrm{~cm}^{3}-5 \cdot \mathrm{~mol} \cdot 33.0 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} & \mathrm{Vt}=555 \mathrm{~cm}^{3} \\
\mathrm{~V}:=\frac{\mathrm{Vt}}{\mathrm{n}} & & \mathrm{~V}=111 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{array}
$$

Use SRK equation to calculate pressure.
$\begin{array}{ll}\mathrm{T}_{\mathrm{c}}:=308.3 \cdot \mathrm{~K} & \mathrm{~T}:=(125+273.15) \cdot \mathrm{K} \quad \mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r}}=1.291 \\ \mathrm{P}_{\mathrm{c}}:=61.39 \cdot \mathrm{bar} & \omega:=0.0 \\ \sigma:=1 & \varepsilon:=0 \quad \Omega:=0.08664 \quad \Psi:=0.42748 \quad \text { Table 3.1 }\end{array}$
$\alpha\left(\Gamma_{\mathrm{r}}, \omega:=\left[1+\left(b .480+1.574 \omega-0.176 \omega^{2} \cdot\left(1-\mathrm{T}_{\mathrm{r}}{ }^{\frac{1}{2}}\right)\right]^{2}\right.\right.$
Table 3.1
q()$\Gamma_{\mathrm{r}}:=\frac{\Psi \alpha\left(\Gamma_{\mathrm{r}}, \omega\right.}{\Omega \cdot \mathrm{T}_{\mathrm{r}}} \quad$ Eq. (3.54)
$\mathrm{a}:=\Psi \cdot \frac{\alpha\left(\Gamma_{\mathrm{r}}, \omega \cdot \mathrm{R}^{2} \cdot \mathrm{~T}_{\mathrm{c}}{ }^{2}\right.}{\mathrm{P}_{\mathrm{c}}} \quad$ Eq. (3.45) $\quad \mathrm{b}:=\Omega \cdot \frac{\mathrm{R} \cdot \mathrm{T}_{\mathrm{c}}}{\mathrm{P}_{\mathrm{c}}}$
$\mathrm{a}=3.995 \mathrm{~m}^{3} \frac{\mathrm{bar} \cdot \mathrm{cm}^{3}}{\mathrm{~mol}^{2}} \quad \mathrm{~b}=36.175 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
$P:=\frac{\mathrm{R} \cdot \mathrm{T}}{\mathrm{V}-\mathrm{b}}-\frac{\mathrm{a}}{\mathrm{V} \cdot(\mathrm{V}+\mathrm{b})}$
P = 197.8bar Ans.
3.73 mass $:=35000 \mathrm{~kg} \quad \mathrm{~T}:=(10+273.15) \mathrm{K}$

$\omega:=0.152$	$\mathrm{~T}_{\mathrm{c}}:=369.8 \mathrm{~K}$	$\mathrm{P}_{\mathrm{c}}:=42.48 \mathrm{bar}$	$\mathrm{M}:=44.097 \frac{\mathrm{gm}}{\mathrm{mol}}$
$\mathrm{Z}_{\mathrm{c}}:=0.276$	$\mathrm{~V}_{\mathrm{c}}:=200.0 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$	$\mathrm{n}:=\frac{\text { mass }}{\mathrm{M}}$	$\mathrm{n}=7.937 \times 10^{5} \mathrm{~mol}$

a) Estimate the volume of gas using the truncated virial equation

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.766 \quad \mathrm{P}:=1 \mathrm{~atm} \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \\
\mathrm{~B} 0:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}} & \text { Eq. (3-65) } \\
& \mathrm{B} 1:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}}
\end{array}
$$

Eq. (3-66)
$B 0=-0.564$
$B 1=-0.389$

$$
\begin{aligned}
& \mathrm{Z}:=1+\left(\mathrm{B} 0+\omega \cdot \mathrm{B} 1 \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}}\right. \\
& \mathrm{Vt}:=\frac{\mathrm{Z} \cdot \mathrm{n} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}}
\end{aligned}
$$

$$
\mathrm{Z}=0.981
$$

$$
\mathrm{Vt}=-2.379 \times 10^{7} \mathrm{~m}^{3} \mathrm{~m}^{3}
$$

This would require a very large tank. If the tank were spherical the diameter would be:

$$
\mathrm{D}:=\sqrt[3]{\frac{6}{\pi} \cdot \mathrm{Vt}} \quad \mathrm{D}=32.565 \mathrm{~m}
$$

b) Calculate the molar volume of the liquid with the Rackett equation(3.72)
$\mathrm{V}_{\text {liq }}:=\mathrm{V}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{c}}^{()}{ }^{\left(\mathrm{l}-\mathrm{T}_{\mathrm{r}}\right.}{ }^{0.2857}$
$\mathrm{P}:=6.294 \mathrm{~atm} \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}$

$$
\mathrm{V}_{\mathrm{liq}}=85.444 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

$$
\mathrm{P}_{\mathrm{r}}=0.15
$$

$Z:=1+\left(B 0+\omega \cdot B 1 \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}}\right.$

$$
\mathrm{Z}=0.878
$$

$\mathrm{V}_{\text {vap }}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}}{\mathrm{P}}$

$$
\mathrm{V}_{\text {vap }}=3.24 \times 10^{3} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Guess: $\quad \mathrm{V}_{\text {tank }}:=90 \% \cdot \mathrm{~V}_{\mathrm{liq}} \cdot \mathrm{n}$
Given $\quad 90 \% \cdot \frac{\mathrm{~V}_{\text {tank }}}{\mathrm{V}_{\text {liq }}}+10 \% \frac{\mathrm{~V}_{\text {tank }}}{\mathrm{V}_{\text {vap }}}=\mathrm{n} \quad \mathrm{V}_{\text {tank }}:=\operatorname{Find}\left(\mathrm{N}_{\text {tank }}\right.$

$$
\mathrm{V}_{\text {tank }}=75.133 \mathrm{~m}^{3}
$$

This would require a small tank. If the tank $\quad \mathrm{D}:=\sqrt[3]{\frac{6}{\pi} \cdot \mathrm{~V}_{\operatorname{tank}}} \quad \mathrm{D}=5.235 \mathrm{~m}$
were spherical, the diameter would be: Although the tank is smaller, it would need to accomodate a pressure of $\mathbf{6 . 2 9 4}$ atm (92.5 psi). Also, refrigeration would be required to liquify the gaseous propane stream.

Chapter 4 - Section A - Mathcad Solutions

4.1 (a) $\mathrm{T}_{0}:=473.15 \cdot \mathrm{~K}$

For SO2: $A:=5.699$

$$
\mathrm{T}:=1373.15 \cdot \mathrm{~K} \quad \mathrm{n}:=10 \cdot \mathrm{~mol}
$$

$\Delta \mathrm{H}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{0}, \mathrm{~T}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$

$$
\Delta \mathrm{H}=47.007 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

$$
\mathrm{Q}:=\mathrm{n} \cdot \Delta \mathrm{H}
$$

$$
\mathrm{Q}=470.073 \mathrm{~kJ}
$$

Ans.
(b) $\mathrm{T}_{0}:=523.15 \cdot \mathrm{~K}$

$$
\mathrm{T}:=1473.15 \cdot \mathrm{~K}
$$

$$
\mathrm{n}:=12 \cdot \mathrm{~mol}
$$

$$
\text { For propane } A:=1.213 \quad B:=28.785 \cdot 10^{-3} \quad C:=-8.824 \cdot 10^{-6} \quad D:=0
$$

$$
\Delta \mathrm{H}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{0}, \mathrm{~T}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, 0.0
$$

$$
\Delta \mathrm{H}=161.834 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

$$
\begin{aligned}
& \mathrm{Q}:=\mathrm{n} \cdot \Delta \mathrm{H} \\
& \mathrm{Q}=1.942 \times 10^{3} \mathrm{~kJ} \text { Ans. }
\end{aligned}
$$

4.2 (a) $\mathrm{T}_{0}:=473.15 \cdot \mathrm{~K}$

$$
\mathrm{n}:=10 \cdot \mathrm{~mol} \quad \mathrm{Q}:=800 \cdot \mathrm{~kJ}
$$

For ethylene:
$\tau:=2$ (guess)
$\mathrm{Q}=\mathrm{n} \cdot \mathrm{R} \cdot\left[\left[\mathrm{A} \cdot \mathrm{T}_{0} \cdot()-1+\frac{\mathrm{B}}{2} \cdot \mathrm{~T}_{0}{ }^{2} \cdot()^{2}-1\right]+\frac{\mathrm{C}}{3} \cdot \mathrm{~T}_{0}{ }^{3} \cdot()^{3}-1\right]$
$\tau:=\operatorname{Find}\left(t \quad \tau=2.905 \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=1374.5 \mathrm{~K} \quad\right.$ Ans.
(b) $\mathrm{T}_{0}:=533.15 \cdot \mathrm{~K}$

For 1-butene: $A:=1.967 \quad B:=\frac{31.630 \cdot 10^{-3}}{K} \quad C:=\frac{-9.873 \cdot 10^{-6}}{K^{2}}$

$$
\begin{aligned}
& \tau:=3 \quad \text { (guess) Given } \\
& \mathrm{Q}=\mathrm{n} \cdot \mathrm{R} \cdot\left[\left[\mathrm{~A} \cdot \mathrm{~T}_{0} \cdot()-1+\frac{\mathrm{B}}{2} \cdot \mathrm{~T}_{0}{ }^{2} \cdot()^{2}-1\right]+\frac{\mathrm{C}}{3} \cdot \mathrm{~T}_{0}{ }^{3} \cdot()^{3}-1\right] \\
& \tau:=\operatorname{Find}\left(t \quad \tau=2.652 \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=1413.8 \mathrm{~K} \quad\right. \text { Ans. } \\
& \begin{array}{ll}
\text { (c) } \mathrm{T}_{0}:=500 \cdot \operatorname{deg} \mathrm{~F} & \mathrm{n}:=40 \cdot 1 \mathrm{bmol} \quad \mathrm{Q}:=10^{6} \cdot \mathrm{BTU}
\end{array}
\end{aligned}
$$

Values converted to SI units

$$
\begin{array}{lccc}
\mathrm{T}_{0}:=533.15 \mathrm{~K} & \mathrm{n}=1.814 \times 10^{4} \mathrm{~mol} & \mathrm{Q}=1.055 \times 10^{6} \mathrm{~kJ} \\
\text { For ethylene: } & \mathrm{A}:=1.424 & \mathrm{~B}:=\frac{14.394 \cdot 10^{-3}}{\mathrm{~K}} & \mathrm{C}:=\frac{-4.392 \cdot 10^{-6}}{\mathrm{~K}^{2}} \\
\tau:=2 \text { (guess) } & \text { Given } \\
\mathrm{Q}=\mathrm{n} \cdot \mathrm{R} \cdot\left[\left[\mathrm{~A} \cdot \mathrm{~T}_{0} \cdot()-1+\frac{\mathrm{B}}{2} \cdot \mathrm{~T}_{0}{ }^{2} \cdot()^{2}-1\right]+\frac{\mathrm{C}}{3} \cdot \mathrm{~T}_{0}{ }^{3} \cdot()^{3}-1\right] \\
\tau:=\operatorname{Find}\left(t \quad \tau=2.256 \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad\right. & \mathrm{T}=1202.8 \mathrm{~K} \\
& & \mathrm{~T}=1705.4 \mathrm{degF}
\end{array}
$$

4.3 Assume air at the given conditions an ideal gas. Basis of calculation is $\mathbf{1}$ second.
$\mathrm{P}:=1 \cdot \mathrm{~atm} \quad \mathrm{~T}_{0}:=122 \cdot \operatorname{degF} \quad \mathrm{~V}:=250 \cdot \mathrm{ft}^{3} \quad \mathrm{~T}:=932 \cdot \operatorname{deg} \mathrm{~F}$

Convert given values to SI units

$$
\mathrm{V}=7.079 \mathrm{~m}^{3}
$$

$\mathrm{T}:=(\mathrm{T}-32 \mathrm{deg} \mathrm{F})+273.15 \mathrm{~K}$
$\mathrm{T}_{0}:=\left(\Gamma_{0}-32 \mathrm{degF}+273.15 \mathrm{~K}\right.$
$\mathrm{T}=773.15 \mathrm{~K}$
$\mathrm{T}_{0}=323.15 \mathrm{~K}$
$\mathrm{n}:=\frac{\mathrm{P} \cdot \mathrm{V}}{\mathrm{R} \cdot \mathrm{T}_{0}} \quad \mathrm{n}=266.985 \mathrm{~mol}$
For air:

$$
\mathrm{A}:=3.355 \quad \mathrm{~B}:=0.575 \cdot 10^{-3} \quad \mathrm{C}:=0.0 \quad \mathrm{D}:=-0.016 \cdot 10^{5}
$$

$\Delta \mathrm{H}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{0}, \mathrm{~T}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$

$$
\Delta \mathrm{H}=13.707 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

$$
\begin{aligned}
& \mathrm{Q}:=\mathrm{n} \cdot \Delta \mathrm{H} \\
& \mathrm{Q}=3.469 \times 10^{3} \mathrm{BTU} \text { Ans. }
\end{aligned}
$$

4.4 molwt $:=100.1 \cdot \frac{\mathrm{gm}}{\mathrm{mol}}$

$$
\mathrm{T}_{0}:=323.15 \cdot \mathrm{~K} \quad \mathrm{~T}:=1153.15 \cdot \mathrm{~K}
$$

$\mathrm{n}:=\frac{10000 \cdot \mathrm{~kg}}{\mathrm{molwt}}$

$$
\mathrm{n}=9.99 \times 10^{4} \mathrm{~mol}
$$

For CaCO3: $A:=12.572 \quad B:=2.637 \cdot 10^{-3} \quad C:=0.0 \quad D:=-3.120 \cdot 10^{5}$
$\Delta \mathrm{H}:=\mathrm{R} \cdot \mathrm{ICPH}()_{0}, \mathrm{~T}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$
$\Delta \mathrm{H}=9.441 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{Q}:=\mathrm{n} \cdot \Delta \mathrm{H} \quad \mathrm{Q}=9.4315 \times 10^{6} \mathrm{~kJ} \quad$ Ans.
4.7 Let step 12 represent the initial reversible adiabatic expansion, and step 23 the final constant-volume heating.

$\mathrm{T}_{1}:=298.15 \cdot \mathrm{~K}$	$\mathrm{~T}_{3}:=298.15 \cdot \mathrm{~K}$	$\mathrm{P}_{1}:=121.3 \cdot \mathrm{kPa}$
$\mathrm{P}_{2}:=101.3 \cdot \mathrm{kPa}$	$\mathrm{P}_{3}:=104.0 \cdot \mathrm{kPa}$	$\mathrm{T}_{2}:=\mathrm{T}_{3} \cdot \frac{\mathrm{P}_{2}}{\mathrm{P}_{3}}$
$\mathrm{C}_{\mathrm{P}}:=30 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$	(guess)	$\mathrm{T}_{2}=290.41 \mathrm{~K}$

Given $\quad T_{2}=T_{1} \cdot\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{P}}}} \quad \mathrm{C}_{\mathrm{P}}:=\operatorname{Find}\left(\mathrm{C}_{\mathrm{P}} \quad \mathrm{C}_{\mathrm{P}}=56.95 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right.$ Ans.
4.9 a) Acetone: $\mathrm{T}_{\mathrm{c}}:=508.2 \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=47.01 \mathrm{bar} \quad \mathrm{T}_{\mathrm{n}}:=329.4 \mathrm{~K}$
$\Delta \mathrm{H}_{\mathrm{n}}:=29.10 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \mathrm{~T}_{\mathrm{rn}}:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{rn}}=0.648$
Use Eq. (4.12) to calculate ΔH at $T_{n}\left(\Delta H_{\text {ncalc }}\right)$

$$
\Delta \mathrm{H}_{\mathrm{ncalc}}:=\mathrm{R} \cdot \mathrm{~T}_{\mathrm{n}} \cdot \frac{1.092 \cdot\left(\ln \left(\frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{bar}}\right)-1.013\right)}{0.930-\mathrm{T}_{\mathrm{rn}}} \quad \Delta \mathrm{H}_{\mathrm{ncalc}}=30.108 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

To compare with the value listed in Table B.2, calculate the \% error.
\%error $:=\frac{\Delta \mathrm{H}_{\text {ncalc }}-\Delta \mathrm{H}_{\mathrm{n}}}{\Delta \mathrm{H}_{\mathrm{n}}}$ \%error $=3.464 \%$

Values for other components in Table B. 2 are given below. Except for acetic acid, acetonitrile. methanol and nitromethane, agreement is within 5% of the reported value.

	$\Delta \mathrm{H}_{\mathrm{n}}(\mathrm{kJ} / \mathrm{mol})$	\% error
Acetone	30.1	3.4\%
Acetic Acid	40.1	69.4\%
Acetonitrile	33.0	9.3\%
Benzene	30.6	-0.5\%
iso-Butane	21.1	-0.7\%
n-Butane	22.5	0.3\%
1-Butanol	41.7	-3.6\%
Carbon tetrachloride	29.6	-0.8\%
Chlorobenzene	35.5	0.8\%
Chloroform	29.6	1.1\%
Cyclohexane	29.7	-0.9\%
Cyclopentane	27.2	-0.2\%
n-Decane	40.1	3.6\%
Dichloromethane	27.8	-1.0\%
Diethyl ether	26.6	0.3\%
Ethanol	40.2	4.3\%
Ethylbenzene	35.8	0.7\%
Ethylene glycol	51.5	1.5\%
n-Heptane	32.0	0.7\%
n-Hexane	29.0	0.5\%
Methanol	38.3	8.7\%
Methyl acetate	30.6	1.1\%
Methyl ethyl ketone	32.0	2.3\%
Nitromethane	36.3	6.7\%
n-Nonane	37.2	0.8\%
iso-Octane	30.7	-0.2\%
n-Octane	34.8	1.2\%
n-Pentane	25.9	0.3\%
Phenol	46.6	1.0\%
1-Propanol	41.1	-0.9\%
2-Propanol	39.8	-0.1\%
Toluene	33.4	0.8\%
Water	42.0	3.3\%
o-Xylene	36.9	1.9\%
m-Xylene	36.5	2.3\%
p-Xylene	36.3	1.6\%

b)
$\left.\begin{array}{rl}\mathrm{T}_{\mathrm{c}} & :=\left(\left.\begin{array}{l}469.7 \\ 507.6 \\ 562.2\end{array} \right\rvert\, \mathrm{K}\right. \\ 560.4)\end{array}\right] \quad \mathrm{P}_{\mathrm{c}}:=\left(\left.\begin{array}{l}33.70 \\ 30.25 \\ 48.98 \\ 43.50)\end{array} \right\rvert\, \mathrm{bar} \quad \Delta \mathrm{H}_{\mathrm{n}}:=\left(\left.\begin{array}{l}25.79 \\ 28.85 \\ 30.72\end{array} \right\rvert\, \frac{\mathrm{kJ}}{\mathrm{mol}}, ~\binom{366.3}{29.97}\right.\right.$.
$\mathrm{T}_{\mathrm{r} 1}:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r} 2}:=\frac{(25+273.15) \mathrm{K}}{\mathrm{T}_{\mathrm{c}}} \quad \Delta \mathrm{H}_{2}:=\overrightarrow{\left(\Delta \mathrm{H}_{25} \cdot \mathrm{M}\right.} \quad \Delta \mathrm{H}_{1}:=\Delta \mathrm{H}_{\mathrm{n}}$
$\mathrm{T}_{\mathrm{r} 1}=\left(\begin{array}{l}0.658 \\ 0.673 \\ 0.628 \\ 0.631\end{array}\right)$
$\left.\Delta \mathrm{H}_{2 \mathrm{calc}}:=\xrightarrow[\Delta \mathrm{H}_{1} \cdot\left(\frac{1-\mathrm{T}_{\mathrm{r} 2}}{1-\mathrm{T}_{\mathrm{r} 1}}\right)^{0.38}]\right]{ }$
$\Delta \mathrm{H}_{2 \mathrm{calc}}=\left(\begin{array}{l}26.448 \\ 31.533 \\ 33.571\end{array} \left\lvert\, \frac{\mathrm{kJ}}{\mathrm{mol}} \begin{array}{l}32.816)\end{array}\right.\right.$
Ans. $\Delta \mathrm{H}_{2}=\left(\begin{array}{l}26.429 \\ 31.549 \\ 33.847 \\ 32.242)\end{array} \frac{\mathrm{kJ}}{\mathrm{mol}}\right.$
\%error $=\left(\begin{array}{c}0.072 \\ -0.052 \\ -0.814 \\ 1.781\end{array}\right) \%$

The values calculated with Eq. (4.13) are within 2% of the handbook values.
4.10 The $\ln \mathbf{P}$ vs. 1/T relation over a short range is very nearly linear. Our procedure is therefore to take 5 points, including the point at the temperature of interest and two points on either side, and to do a linear least-squares fit, from which the required derivative in Eq. (4.11) can be found. Temperatures are in rankines, pressures in psia, volumes in cu $\mathrm{ft} / \mathrm{lbm}$, and enthalpies in $B t u / \mathrm{lbm}$. The molar mass M of tetrafluoroethane is 102.04. The factor 5.4039 converts energy units from (psia)(cu ft) to Btu.
(a) $\mathrm{T}:=459.67+5$

$$
\Delta \mathrm{V}:=1.934-0.012
$$

$$
\mathrm{i}:=1 \text {.. } 5
$$

slope $:=\operatorname{slope}(x, y)$ slope $=-4952$
$\mathrm{dPdT}:=\frac{(-\mathrm{P})_{3}}{\mathrm{~T}^{2}} \cdot$ slop $\mathrm{dPdT}=0.545$
$\Delta \mathrm{H}:=\frac{\mathrm{T} \cdot \Delta \mathrm{V} \cdot \mathrm{dPdT}}{5.4039} \Delta \mathrm{H}=90.078 \quad$ Ans.
The remaining parts of the problem are worked in exactly the same way. All answers are as follows, with the Table 9.1 value in ():
(a) $\Delta \mathrm{H}=90.078$
(b) $\Delta \mathrm{H}=85.817$
(c) $\Delta \mathrm{H}=81.034$
(d) $\Delta \mathrm{H}=76.007$
(e) $\Delta \mathrm{H}=69.863$
(69.969)

$$
\Delta \mathrm{H}:=\left(\begin{array}{c}
270.9 \\
1189.5 \left\lvert\, \cdot \frac{\mathrm{J}}{\mathrm{gm}}\right. \\
217.8
\end{array}\right) \quad \Delta \mathrm{H}_{\exp }:=\left(\begin{array}{c}
246.9 \\
1099.5 \mid \cdot \mathrm{J} \\
194.2
\end{array}\right) \quad \mathrm{g}_{\mathrm{r} 1}=\left(\begin{array}{l}
0.509 \\
0.533 \mid \\
0.491
\end{array}\right) \quad \mathrm{T}_{\mathrm{r} 2}=\left(\begin{array}{l}
0.623 \\
0.659 \mid \\
0.629
\end{array}\right)
$$

(a) By Eq. (4.13)

$$
\left.\Delta \mathrm{H}_{\mathrm{n}}:=\overrightarrow{\left[\Delta \mathrm{H} \cdot\left(\frac{\left.1-\mathrm{T}_{\mathrm{r} 2}\right)^{0.38}}{1-\mathrm{T}_{\mathrm{r} 1}}\right)\right.}\right]
$$

$$
\text { PCE } \left.:=\overrightarrow{\left(\frac{\Delta \mathrm{H}_{\mathrm{n}}-\Delta \mathrm{H}_{\exp }}{\Delta \mathrm{H}_{\exp }} \cdot 100 \%\right.}\right) \quad \text { This is the \% error }
$$

$\mathrm{PCE}=\left(\begin{array}{l}-0.77 \\ -4.03 \mid \% \\ -0.52)\end{array}\right.$
(b) By Eq. (4.12):

$$
\Delta \mathrm{H}_{\mathrm{n}}:=\left[\frac{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{n}}}{\mathrm{M}} \cdot\left[\frac{1.092 \cdot\left(\ln \left(\frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{bar}}\right)-1.013\right)}{0.930-\mathrm{T}_{\mathrm{r} 2}}\right]\right]
$$

$$
\text { PCE } \left.:=\overrightarrow{\left(\frac{\Delta \mathrm{H}_{\mathrm{n}}-\Delta \mathrm{H}_{\mathrm{exp}}}{\Delta \mathrm{H}_{\mathrm{exp}}} \cdot 100 \%\right.}\right)
$$

$\Delta H_{\mathrm{n}}=\left(\begin{array}{c}247.7 \\ 1195.3 \\ 192.3\end{array}\right) \frac{\mathrm{J}}{\mathrm{gm}}$
$\mathrm{PCE}=\left(\begin{array}{c}0.34 \\ 8.72 \\ -0.96\end{array}\right)$

4.12 Acetone

$\omega:=0.307$	$\mathrm{~T}_{\mathrm{c}}:=508.2 \mathrm{~K}$	$\mathrm{P}_{\mathrm{c}}:=47.01 \mathrm{bar}$	$\mathrm{Z}_{\mathrm{c}}:=0.233$
$\mathrm{~V}_{\mathrm{c}}:=209 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$	$\mathrm{~T}_{\mathrm{n}}:=329.4 \mathrm{~K}$	$\mathrm{P}:=1 \mathrm{~atm}$	$\Delta \mathrm{H}_{\mathrm{n}}:=29.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{T}_{\mathrm{c}}}$	$\mathrm{T}_{\mathrm{r}}=0.648$	$\mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}$	$\mathrm{P}_{\mathrm{r}}=0.022$

Generalized Correlations to estimate volumes
Vapor Volume
$\mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}{ }^{1.6}} \quad \mathrm{~B}_{0}=-0.762$
$\mathrm{B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=-0.924$
$Z:=1+B_{0} \cdot \frac{P_{r}}{T_{r}}+\cdot B_{1} \cdot \frac{P_{r}}{T_{r}} \quad Z=0.965$
$\mathrm{V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}_{\mathrm{n}}}{\mathrm{P}}$
$V=2.609 \times 10^{4} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$

Liquid Volume

$\mathrm{V}_{\mathrm{sat}}:=\mathrm{V}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{c}}^{\left(\mathrm{l}-\mathrm{T}_{\mathrm{r}}{ }^{\frac{2}{7}}\right.}$
Eq. (3.72)

$$
\mathrm{V}_{\mathrm{sat}}=70.917 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Combining the Clapyeron equation (4.11) $\Delta H=T \cdot \Delta V \cdot \frac{d}{d T} P_{\text {sat }}$
with Antoine's Equation $\quad P_{s a t}=e^{A-\frac{B}{T+C}}$
gives

$$
\Delta \mathrm{H}=\mathrm{T} \cdot \Delta \mathrm{~V} \cdot \frac{\mathrm{~B}}{(\mathrm{~T}+\mathrm{C})^{2}} \cdot \mathrm{e}^{\left[\mathrm{A}-\frac{\mathrm{B}}{(\mathrm{~T}+\mathrm{C})}\right]}
$$

$$
\Delta \mathrm{V}:=\mathrm{V}-\mathrm{V}_{\text {sat }} \quad \Delta \mathrm{V}=2.602 \times 10 \frac{4 \mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

$$
\mathrm{A}:=14.3145
$$

$$
\text { B }:=2756.22
$$

$$
\mathrm{C}:=228.060
$$

The table below shows the values for other components in Table B.2. Values agree within 5\% except for acetic acid.

	$\left.\Delta \mathrm{H}_{\mathrm{n}} \mathbf{(k J} / \mathrm{mol}\right)$	\% error
Acetone	29.7	1.9\%
Acetic Acid	37.6	58.7\%
Acetonitrile	31.3	3.5\%
Benzene	30.8	0.2\%
iso-Butane	21.2	-0.7\%
n-Butane	22.4	0.0\%
1-Butanol	43.5	0.6\%
Carbon tetrachloride	29.9	0.3\%
Chlorobenzene	35.3	0.3\%
Chloroform	29.3	0.1\%
Cyclohexane	29.9	-0.1\%
Cyclopentane	27.4	0.4\%
n-Decane	39.6	2.2\%
Dichloromethane	28.1	0.2\%
Diethyl ether	26.8	0.9\%
Ethanol	39.6	2.8\%
Ethylbenzene	35.7	0.5\%
Ethylene glycol	53.2	4.9\%
n-Heptane	31.9	0.4\%
n-Hexane	29.0	0.4\%
Methanol	36.5	3.6\%
Methyl acetate	30.4	0.2\%
Methyl ethyl ketone	31.7	1.3\%
Nitromethane	34.9	2.6\%
n-Nonane	37.2	0.7\%
iso-Octane	30.8	-0.1\%
n-Octane	34.6	0.6\%
n-Pentane	25.9	0.2\%
Phenol	45.9	-0.6\%
1-Propanol	41.9	1.1\%

2-Propanol	40.5	$\mathbf{1 . 7 \%}$
Toluene	33.3	0.5%
Water	41.5	$\mathbf{2 . 0 \%}$
o-Xylene	36.7	$\mathbf{1 . 2 \%}$
m-Xylene	36.2	1.4%
p-Xylene	35.9	0.8%

4.13 Let P represent the vapor pressure.

$\mathrm{T}:=348.15 \cdot \mathrm{~K} \quad \mathrm{P}:=100 \cdot \mathrm{kPa} \quad$ (guess)
Given $\ln \left(\frac{\mathrm{P}}{\mathrm{kPa}}\right)=48.157543-\frac{5622.7 \cdot \mathrm{~K}}{\mathrm{~T}}-4.70504 \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~K}}\right)$
$\mathrm{P}:=\operatorname{Find}(\mathrm{P}) \quad \mathrm{dPdT}:=\mathrm{P} \cdot\left(\frac{5622.7 \cdot \mathrm{~K}}{\mathrm{~T}^{2}}-\frac{4.70504}{\mathrm{~T}}\right) \quad \mathrm{dPdT}=0.029 \frac{\mathrm{bar}}{\mathrm{K}}$
$\mathrm{P}=87.396 \mathrm{kPa} \quad \Delta \mathrm{H}:=31600 \cdot \frac{\mathrm{joule}}{\mathrm{mol}} \quad \mathrm{V}_{\mathrm{liq}}:=96.49 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$

Clapeyron equation: $\quad \mathrm{dPdT}=\frac{\Delta \mathrm{H}}{\mathrm{T} \cdot\left(\mathrm{N}-\mathrm{V}_{\mathrm{liq}}\right.}$
$\mathrm{V}=$ vapor molar volume. $\mathrm{V}:=\mathrm{V}_{\mathrm{liq}}+\frac{\Delta \mathrm{H}}{\mathrm{T} \cdot \mathrm{dPdT}}$

Eq. (3.39)

$$
\mathrm{B}:=\mathrm{V} \cdot\left(\frac{\mathrm{P} \cdot \mathrm{~V}}{\mathrm{R} \cdot \mathrm{~T}}-1\right) \quad \mathrm{B}=-1369.5 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Ans.
4.14 (a) Methanol: $\mathrm{T}_{\mathrm{c}}:=512.6 \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=80.97 \mathrm{bar} \quad \mathrm{T}_{\mathrm{n}}:=337.9 \mathrm{~K}$

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{L}}:=13.431 & \mathrm{~B}_{\mathrm{L}}:=-51.28 \cdot 10^{-3} \\
\mathrm{C}_{\mathrm{PL}}(\mathrm{~T}):=\left(\mathrm{C}_{\mathrm{L}}:=\frac{\mathrm{B}_{\mathrm{L}}}{\mathrm{~K}} \cdot \mathrm{~T}+\frac{\mathrm{C}_{\mathrm{L}}}{\mathrm{~K}^{2}} \cdot \mathrm{~T}^{2}\right) \cdot \mathrm{R} & \\
\mathrm{~A}_{\mathrm{V}}:=2.211 .13 \cdot 10^{-6} \\
\quad \mathrm{~B}_{\mathrm{V}}:=12.216 \cdot 10^{-3} & \mathrm{C}_{\mathrm{V}}:=-3.450 \cdot 10^{-6}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{PV}}(\mathrm{~T}):=\left(\mathrm{A}_{\mathrm{V}}+\frac{\mathrm{B}_{\mathrm{V}}}{\mathrm{~K}} \cdot \mathrm{~T}+\frac{\mathrm{C}_{\mathrm{V}}}{\mathrm{~K}^{2}} \cdot \mathrm{~T}^{2}\right) \cdot \mathrm{R} \\
& \mathrm{P}:=3 \mathrm{bar} \quad \mathrm{~T}_{\mathrm{sat}}:=368.0 \mathrm{~K} \quad \mathrm{~T}_{1}:=300 \mathrm{~K} \quad \mathrm{~T}_{2}:=500 \mathrm{~K}
\end{aligned}
$$

Estimate $\Delta \mathbf{H v}$ using Riedel equation (4.12) and Watson correction (4.13)
$\mathrm{T}_{\mathrm{rn}}:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{rn}}=0.659 \quad \mathrm{~T}_{\mathrm{rsat}}:=\frac{\mathrm{T}_{\mathrm{sat}}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{rsat}}=0.718$
$\Delta \mathrm{H}_{\mathrm{n}}:=\frac{1.092 \cdot\left(\ln \left(\frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{bar}}\right)-1.013\right)}{0.930-\mathrm{T}_{\mathrm{rn}}} \cdot \mathrm{R} \cdot \mathrm{T}_{\mathrm{n}}$
$\Delta \mathrm{H}_{\mathrm{n}}=38.301 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\Delta \mathrm{H}_{\mathrm{V}}:=\Delta \mathrm{H}_{\mathrm{n}} \cdot\left(\frac{1-\mathrm{T}_{\mathrm{rsat}}}{1-\mathrm{T}_{\mathrm{rn}}}\right)^{0.38}$
$\Delta \mathrm{H}_{\mathrm{v}}=35.645 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\Delta H:=\int_{T_{1}}^{\mathrm{T}_{\text {sat }}} \mathrm{C}_{\mathrm{PL}}(\mathrm{T}) \mathrm{dT}+\Delta \mathrm{H}_{\mathrm{v}}+\int_{\mathrm{T}_{\mathrm{sat}}}^{\mathrm{T}_{2}} \mathrm{C}_{\mathrm{PV}}(\mathrm{T}) \mathrm{dT} \quad \Delta \mathrm{H}=49.38 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\mathrm{n}:=100 \frac{\mathrm{kmol}}{\mathrm{hr}}$
$\mathrm{Q}:=\mathrm{n} \cdot \Delta \mathrm{H}$
$\mathrm{Q}=1.372 \times 10^{3} \mathrm{~kW}$
Ans.
(b) Benzene: $\quad \Delta \mathrm{H}_{\mathrm{V}}=28.273 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{H}=55.296 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \mathrm{Q}=1.536 \cdot 10^{3} \mathrm{~kW}$
(c) Toluene $\quad \Delta \mathrm{H}_{\mathrm{V}}=30.625 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{H}=65.586 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \mathrm{Q}=1.822 \cdot 10^{3} \mathrm{~kW}$
4.15 Benzene $\quad \mathrm{T}_{\mathrm{c}}:=562.2 \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=48.98 \mathrm{bar} \quad \mathrm{T}_{\mathrm{n}}:=353.2 \mathrm{~K}$

$$
\mathrm{T}_{1 \mathrm{sat}}:=451.7 \mathrm{~K} \quad \mathrm{~T}_{2 \mathrm{sat}}:=358.7 \mathrm{~K} \quad \mathrm{C}_{\mathrm{p}}:=162 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Estimate $\Delta \mathbf{H v}$ using Riedel equation (4.12) and Watson correction (4.13)

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{rn}}:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{rn}}=0.628 \\
\Delta \mathrm{H}_{\mathrm{n}}:=\frac{\mathrm{T}_{\mathrm{r} 2 \mathrm{sat}}:=\frac{\mathrm{T}_{2 \mathrm{sat}}}{\mathrm{~T}_{\mathrm{c}}}}{1.092 \cdot\left(\ln \left(\frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{bar})}-1.013\right)\right.} & \mathrm{T}_{\mathrm{r} 2 \mathrm{sat}}=0.638 \\
0.930-\mathrm{T}_{\mathrm{rn}} \\
\mathrm{R} \cdot \mathrm{~T}_{\mathrm{n}} & \Delta \mathrm{H}_{\mathrm{n}}=30.588 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta \mathrm{H}_{\mathrm{v}}:=\Delta \mathrm{H}_{\mathrm{n}} \cdot\left(\frac{\left.1-\mathrm{T}_{\mathrm{r} 2 \mathrm{sat}}\right)^{0.38}}{1-\mathrm{T}_{\mathrm{rn}}}\right) & \Delta \mathrm{H}_{\mathrm{v}}=30.28 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{array}
$$

Assume the throttling process is adiabatic and isenthalpic.

Guess vapor fraction (x): $x:=0.5$
Given $\quad C_{p} \cdot() \Gamma_{1 \text { sat }}-T_{2 \text { sat }}=x \cdot \Delta H_{V} \quad x:=\operatorname{Find}(x) \quad x=0.498 \quad$ Ans.
4.16 (a) For acetylene: $T_{c}:=308.3 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=61.39 \cdot \mathrm{bar} \quad \mathrm{T}_{\mathrm{n}}:=189.4 \cdot \mathrm{~K}$

$$
\begin{aligned}
& \mathrm{T}:=298.15 \cdot \mathrm{~K} \\
& \mathrm{~T}_{\mathrm{rn}}:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{rn}}=0.614 \\
& \Delta \mathrm{H}_{\mathrm{n}}:=\mathrm{R} \cdot \mathrm{~T}_{\mathrm{n}} \cdot 1.092 \cdot \frac{\ln \left(\frac{\left.\mathrm{P}_{\mathrm{c}}\right)}{\mathrm{bar})}-1.013\right.}{0.930-\mathrm{T}_{\mathrm{rn}}} \\
& \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \Delta \mathrm{H}_{\mathrm{n}}=16.91 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Delta \mathrm{H}_{\mathrm{v}}:=\Delta \mathrm{H}_{\mathrm{n}} \cdot\left(\frac{1-\mathrm{T}_{\mathrm{r}}}{1-\mathrm{T}_{\mathrm{rn}}}\right)^{0.38} \quad \Delta \mathrm{H}_{\mathrm{V}}=6.967 \\
& \Delta \mathrm{H}_{\mathrm{f}}:=227480 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{H}_{298}:=\Delta \mathrm{H}_{\mathrm{f}}-\Delta \mathrm{H}_{\mathrm{V}} \quad \Delta \mathrm{H}_{298}=220.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

Ans.
(b) For 1,3-butadiene: $\Delta \mathrm{H}_{298}=88.5 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
(c) For ethylbenzene: $\quad \Delta \mathrm{H}_{298}=-12.3 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
(d) For n-hexane: $\quad \Delta \mathrm{H}_{298}=-198.6 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
(e) For styrene:

$$
\Delta \mathrm{H}_{298}=103.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

4.17 1st law: $\quad d Q=d U-d W=C_{V} \cdot d T+P \cdot d V$

Ideal gas: $\quad \mathrm{P} \cdot \mathrm{V}=\mathrm{R} \cdot \mathrm{T} \quad$ and $\quad \mathrm{P} \cdot \mathrm{dV}+\mathrm{V} \cdot \mathrm{dP}=\mathrm{R} \cdot \mathrm{dT}$
Whence $\quad V \cdot d P=R \cdot d T-P \cdot d V$
Since $\quad P \cdot V^{\delta}=$ const then $P \cdot \delta \cdot V^{\delta-1} \cdot d V=-V^{\delta} \cdot d P$
from which $\quad \mathrm{V} \cdot \mathrm{dP}=-8 \cdot \cdot \mathrm{dV}$
Combines with (B) to yield: $\quad P \cdot d V=\frac{R \cdot d T}{1-\delta}$
Combines with (A) to give: $\quad d Q=C_{V} \cdot d T+\frac{R \cdot d T}{1-\delta}$
or $\quad d Q=C_{P} \cdot d T-R \cdot d T+\frac{R \cdot d T}{1-\delta}$
which reduces to

$$
\mathrm{dQ}=\mathrm{C}_{\mathrm{P}} \cdot \mathrm{dT}+\frac{\delta}{1-\delta} \cdot \mathrm{R} \cdot \mathrm{dT}
$$

or $\quad d Q=\left(\frac{C_{P}}{R}+\frac{\delta}{1-\delta}\right) \cdot R \cdot d T$
Since C_{P} is linear in T, the mean heat capacity is the value of C_{P} at the arithmetic mean temperature. Thus
$\mathrm{C}_{\mathrm{Pm}}:=\mathrm{R} \cdot\left(\beta .85+0.57 \cdot 10^{-3} \cdot \mathrm{~T}_{\mathrm{am}}\right.$
Integrate (C):
$\mathrm{T}_{2}:=950 \cdot \mathrm{~K}$
$\mathrm{T}_{1}:=400 \cdot \mathrm{~K} \quad \delta:=1.55$
$\mathrm{Q}:=\left(\frac{\mathrm{CPm}_{\mathrm{Pm}}}{\mathrm{R}}+\frac{\delta}{1-\delta}\right) \cdot \mathrm{R} \cdot\left(\Gamma_{2}-\mathrm{T}_{1}\right.$

$$
\mathrm{Q}=6477.5 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Ans.
$P_{1}:=1 \cdot$ bar

$$
P_{2}:=P_{1} \cdot\left(\frac{T_{2}}{T_{1}}\right)^{\frac{\delta}{\delta-1}}
$$

$\mathrm{P}_{2}=11.45$ bar Ans.
4.18 For the combustion of methanol:
$\mathrm{CH} 3 \mathrm{OH}(\mathrm{g})+(3 / 2) \mathrm{O} 2(\mathrm{~g})=\mathrm{CO} 2(\mathrm{~g})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}_{298}:=-393509+2 \cdot(-241818)-(-200660)$
$\Delta \mathrm{H}_{298}=-676485$
For 6 MeOH :
$\Delta \mathrm{H}_{298}=-4,058,910 \cdot \mathrm{~J}$
Ans.

For the combustion of 1-hexene:
$\mathrm{C} 6 \mathrm{H} 12(\mathrm{~g})+9 \mathrm{O} 2(\mathrm{~g})=6 \mathrm{CO} 2(\mathrm{~g})+6 \mathrm{H} 2 \mathrm{O}(\mathrm{g})$

$$
\Delta \mathrm{H}_{298}:=6 \cdot(-393509)+6 \cdot(-241818)-(-41950)
$$

$\Delta \mathrm{H}_{298}=-3770012$
$\Delta \mathrm{H}_{298}=-3,770,012 \cdot \mathrm{~J}$
Ans.

Comparison is on the basis of equal numbers of \mathbf{C} atoms.
$4.19 \quad \mathrm{C} 2 \mathrm{H} 4+3 \mathrm{O} 2=2 \mathrm{CO} 2+2 \mathrm{H} 2 \mathrm{O}(\mathrm{g})$

$$
\Delta \mathrm{H}_{298}:=[2 \cdot(-241818)+2 \cdot(-393509)-52510] \cdot \frac{\mathrm{J}}{\mathrm{~mol}}
$$

Parts (a) - (d) can be worked exactly as Example 4.7. However, with Mathcad capable of doing the iteration, it is simpler to proceed differently.

Index the product species with the numbers:
1 = oxygen
2 = carbon dioxide
3 = water (g)
4 = nitrogen
(a) For the product species, no excess air:
$\mathrm{n}:=\left(\begin{array}{c}0 \\ 2 \\ 2 \\ 11.286\end{array}\right) \mathrm{A}:=\left(\begin{array}{l}3.639 \\ 5.457 \\ 3.470 \\ 3.280\end{array}\right) \mathrm{B}:=\left(\begin{array}{l}0.506 \\ 1.045 \\ 1.450 \\ 0.593\end{array}\right) \cdot \frac{10^{-3}}{\mathrm{~K}} \mathrm{D}:=\left(\begin{array}{l}-0.227 \\ -1.157 \\ 0.121 \\ 0.040\end{array}\right) \cdot 10^{5} \mathrm{~K}^{2}$
$\mathrm{i}:=1 . .4$
$\mathrm{A}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{j}} \mathrm{B}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}}\right.\right.$
$\mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.$

$$
\mathrm{A}=54.872 \quad \mathrm{~B}=0.012 \frac{1}{\mathrm{~K}} \quad \mathrm{D}=-1.621 \times 10^{5} \mathrm{~K}^{2}
$$

For the products,

$$
\Delta \mathrm{H}_{\mathrm{P}}=\mathrm{R} \cdot \int_{\mathrm{T}_{0}}^{\mathrm{T}} \frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{R}} \mathrm{dT} \quad \mathrm{~T}_{0}:=298.15 \mathrm{~K}
$$

The integral is given by Eq. (4.7). Moreover, by an energy balance,

$$
\Delta \mathrm{H}_{298}+\Delta \mathrm{H}_{\mathrm{P}}=0
$$

$\tau:=2 \quad$ (guess)
Given $\quad-\Delta \mathrm{H}_{298}=\mathrm{R} \cdot\left[\mathrm{A} \cdot \mathrm{T}_{0} \cdot()-1+\frac{\mathrm{B}}{2} \cdot \pi_{0}{ }^{2} \cdot()^{2}-1+\frac{\mathrm{D}}{\mathrm{T}_{0}} \cdot\left(\frac{\tau-1}{\tau}\right)\right]$
$\tau:=\operatorname{Find}\left(t \quad \tau=8.497 \quad \mathrm{~T}:=\mathrm{T}_{0} \cdot \tau \quad \mathrm{~T}=2533.5 \mathrm{~K} \quad\right.$ Ans.
Parts (b), (c), and (d) are worked the same way, the only change being in the numbers of moles of products.
(b)

$$
\mathrm{n}_{\mathrm{O}_{2}}=0.75
$$

$$
\mathrm{n}_{\mathrm{n}_{2}}=14.107
$$

$$
\mathrm{T}=2198.6 \cdot \mathrm{~K} \quad \text { Ans. }
$$

(c)

$$
\mathrm{n}_{\mathrm{O}_{2}}=1.5
$$

$$
\mathrm{n}_{\mathrm{n}_{2}}=16.929
$$

$$
\mathrm{T}=1950.9 \cdot \mathrm{~K}
$$

Ans.
(d)

$$
\mathrm{n}_{\mathrm{O}_{2}}=3.0
$$

$$
\mathrm{n}_{\mathrm{n}_{2}}=22.571
$$

$$
\mathrm{T}=1609.2 \cdot \mathrm{~K} \quad \text { Ans. }
$$

(e) $\mathbf{5 0 \%}$ xs air preheated to $\mathbf{5 0 0}$ degC. For this process,

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{air}}+\Delta \Delta \mathrm{H}_{298}+\mathrm{H}_{\mathrm{P}}=0 \\
& \Delta \mathrm{H}_{\mathrm{air}}=\mathrm{MCPH} \cdot(298.15-773.15)
\end{aligned}
$$

For one mole of air:

$\operatorname{MCPH}(\not) 73.15,298.15,3.355,0.575 \cdot 10^{-3}, 0.0,-0.016 \cdot 10^{5}=3.65606$
For $4.5 / 0.21=21.429$ moles of air:

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{air}}=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{MCPH} \cdot \mathrm{~T} \\
& \Delta \mathrm{H}_{\mathrm{air}}:=21.429 \cdot 8.314 \cdot 3.65606 \cdot(298.15-773.15) \cdot \frac{\mathrm{J}}{\mathrm{~mol}} \\
& \Delta \mathrm{H}_{\mathrm{air}}=-309399 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

The energy balance here gives: $\quad \Delta \mathrm{H}_{298}+\Delta \Delta \mathrm{H}_{\mathrm{air}}+\quad \mathrm{H}_{\mathrm{P}}=0$

$\mathrm{B}:=\left(\begin{array}{l}0.506 \\ 1.045 \\ 1.450 \\ \\ 0.593\end{array}\right) \cdot \frac{10^{-3}}{\mathrm{~K}}$
$\mathrm{D}:=\left(\left.\begin{array}{l}-0.227 \\ -1.157 \\ 0.121 \\ 0.040\end{array} \right\rvert\, \cdot 10^{5} \cdot \mathrm{~K}^{2}\right.$
$A:=\sum_{i}\left(\mu_{i} \cdot \mathrm{~A}_{\mathrm{i}}\right.$
$B:=\sum_{i}\left(h_{i} \cdot B_{i}\right.$
$\mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.$
$\mathrm{A}=78.84$
$B=0.016 \frac{1}{\mathrm{~K}}$
$D=-1.735 \times 10^{5} \mathrm{~K}^{2}$

$\tau:=2 \quad$ (guess)

Given

$$
-\Delta \mathrm{H}_{298}-\mathrm{H}_{\mathrm{air}}=\mathrm{R} \cdot\left[\begin{array}{l}
\mathrm{A} \cdot \mathrm{~T}_{0} \cdot()-1+\frac{\mathrm{B}}{2} \cdot \mathrm{~T}_{0}{ }^{2} \cdot()^{2}-1 \quad \ldots \\
+\frac{\mathrm{D}}{\mathrm{~T}_{0}} \cdot\left(\frac{\tau-1}{\tau}\right)
\end{array}\right]
$$

$\tau:=\operatorname{Find}(t$

$$
\tau=7.656
$$

$$
\mathrm{T}:=\mathrm{T}_{0} \cdot \mathrm{~K} \cdot \quad \mathrm{~T}=2282.5 \mathrm{~K} \mathrm{~K}
$$

Ans.
$4.20 \quad \mathrm{n}-\mathrm{C} 5 \mathrm{H} 12+8 \mathrm{O} 2=5 \mathrm{CO} 2+\mathbf{6 H} 2 \mathrm{O}(\mathrm{l})$
By Eq. (4.15) with data from Table C.4:

$$
\Delta H_{298}:=5 \cdot(-393509)+6 \cdot(-285830)-(-146760)
$$

$\Delta \mathrm{H}_{298}=-3,535,765 \cdot \mathrm{~J} \quad$ Ans.
4.21 The following answers are found by application of Eq. (4.15) with data from Table C.4.
(a) -92,220 J
(n) 180,500 J
(b) -905,468 J
(o) 178,321 J
(c) - $\mathbf{- 7 1 , 6 6 0 ~ J}$
(p) - 132,439 J
(d) $\mathbf{- 6 1 , 9 8 0} \mathbf{J}$
(q) -44,370 J
(e) - $\mathbf{- 3 6 7 , 5 8 2} \mathbf{J}$
(r) -68,910 J
(f) -2,732,016 J
(s) -492,640 J
(g) -105,140 J
(t) $\mathbf{1 0 9 , 7 8 0} \mathbf{J}$
(h) - 38,292 J
(u) 235,030 J
(i) $\mathbf{1 6 4 , 6 4 7} \mathbf{J}$
(v) -132,038 J
(j) -48,969 J
(w) -1,807,968 J
(k) - $\mathbf{- 1 4 9 , 7 2 8 ~ J}$
(x) 42,720 J
(l) -1,036,036 J
(y) $\mathbf{1 1 7 , 4 4 0} \mathbf{J}$
(m) 207,436 J
(z) $\mathbf{1 7 5 , 3 0 5} \mathbf{J}$
4.22 The solution to each of these problems is exactly like that shown in Example 4.6. In each case the value of $\Delta \mathbf{H}^{\mathbf{0}}{ }_{298}$ is calculated in Problem 4.21. Results are given in the following table. In the first column the letter in () indicates the part of problem 4.21 appropriate to the $\Delta \mathbf{H}^{\mathbf{0}}{ }_{298}$ value.

	\mathbf{T} / \mathbf{K}	$\Delta \mathbf{A}$	$\mathbf{1 0}^{\mathbf{3}} \Delta \mathbf{B}$	$\mathbf{1 0}^{\mathbf{6}} \Delta \mathbf{C}$	$\mathbf{1 0}^{-5} \Delta \mathbf{D}$	$\mathbf{I D C P H} / \mathbf{J}$	$\Delta \mathbf{H}^{\mathbf{0}} \mathbf{T}^{/ \mathbf{J}}$
(a)	873.15	-5.871	4.181	0.000	-0.661	$-17,575$	$-109,795$
(b)	773.15	1.861	-3.394	0.000	2.661	4,729	$-900,739$
(f)	923.15	6.048	-9.779	0.000	7.972	15,635	$-2,716,381$
(i)	973.15	9.811	-9.248	2.106	-1.067	25,229	189,876
(j)	583.15	-9.523	11.355	-3.450	1.029	$-10,949$	$-59,918$
(l)	683.15	-0.441	0.004	0.000	-0.643	$-2,416$	$-1,038,452$
(m)	850.00	4.575	-2.323	0.000	-0.776	13,467	220,903
(n)	1350.00	-0.145	0.159	0.000	0.215	345	180,845
(o)	1073.15	-1.011	-1.149	0.000	0.916	$-9,743$	168,578
(r)	723.15	-1.424	1.601	0.156	-0.083	$-2,127$	$-71,037$
(t)	733.15	4.016	-4.422	0.991	0.083	7,424	117,204
(u)	750.00	7.297	-9.285	2.520	0.166	12,172	247,202
(v)	900.00	2.418	-3.647	0.991	0.235	3,534	$-128,504$
(w)	673.15	2.586	-4.189	0.000	1.586	4,184	$-1,803,784$
(x)	648.15	0.060	0.173	0.000	-0.191	125	42,845
(y)	1083.15	4.175	-4.766	1.814	0.083	12,188	129,628

4.23 This is a simple application of a combination of Eqs. (4.18) \& (4.19) with evaluated parameters. In each case the value of $\Delta \mathbf{H}^{\mathbf{0}}{ }_{298}$ is calculated in $\mathbf{P b}$. 4.21. The values of $\Delta A, \Delta B, \Delta C$ and ΔD are given for all cases except for Parts (e), (g), (h), (k), and (z) in the preceding table. Those missing are as follows:

Part No.	$\Delta \mathrm{A}$	$10^{3} \Delta \mathrm{~B}$	$10^{6} \Delta C$	$10^{-5} \Delta \mathrm{D}$
(e)	-7.425	20.778	0.000	3.737
(g)	-3.629	8.816	-4.904	0.114
(h)	-9.987	20.061	-9.296	1.178
(k)	1.704	-3.997	1.573	0.234
(z)	-3.858	-1.042	0.180	0.919

$4.24 \mathrm{q}:=150 \cdot 10^{6} \frac{\mathrm{ft}^{3}}{\mathrm{day}} \quad \mathrm{T}:=(60-32) \cdot \frac{5}{9} \mathrm{~K}+273.15 \mathrm{~K} \quad \mathrm{~T}=288.71 \mathrm{~K} \quad \mathrm{P}:=1 \mathrm{~atm}$
The higher heating value is the negative of the heat of combustion with water as liquid product.

Calculate methane standard heat of combustion with water as liquid product:
$\mathrm{CH}_{4}+2 \mathrm{O}_{2}->\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Standard Heats of Formation:

$\Delta \mathrm{H}_{\mathrm{fCH} 4}:=-74520 \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\Delta \mathrm{H}_{\mathrm{fCO} 2}:=-393509 \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\Delta \mathrm{H}_{\mathrm{fO} 2}:=0 \frac{\mathrm{~J}}{\mathrm{~mol}}$

$$
\Delta \mathrm{H}_{\mathrm{fH} 2 \mathrm{Oliq}}:=-285830 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{H}_{\mathrm{c}}:=\Delta \mathrm{H}_{\mathrm{fCO} 2}+\Delta \cdot \Delta \mathrm{H}_{\mathrm{fH} 2 \mathrm{Oliq}}-\mathrm{H}_{\mathrm{fCH} 4}-2 \cdot \Delta \mathrm{H}_{\mathrm{fO} 2}
$$

HigherHeatingValue $:=-\Delta \mathrm{H}_{\mathrm{c}}$

$$
\Delta \mathrm{H}_{\mathrm{c}}=-8.906 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Assuming methane is an ideal gas at standard conditions:
$\mathrm{n}:=\mathrm{q} \cdot \frac{\mathrm{P}}{\mathrm{R} \cdot \mathrm{T}}$

$$
\mathrm{n}=1.793 \times 10^{8} \frac{\mathrm{~mol}}{\mathrm{day}}
$$

$\mathrm{n} \cdot$ HigherHeatingValue $\cdot \frac{5 \text { dollar }}{\text { GJ }}=7.985 \times 10^{5} \frac{\text { dollar }}{\text { day }}$
Ans.
4.25 Calculate methane standard heat of combustion with water as liquid product Standard Heats of Formation: $\mathrm{CH}_{\mathbf{4}}+\mathbf{2 O}_{\mathbf{2}}-->\mathrm{CO}_{\mathbf{2}}+\mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }}$

$$
\begin{array}{ll}
\Delta \mathrm{H}_{\mathrm{fCH} 4}:=-74520 \frac{\mathrm{~J}}{\mathrm{~mol}} & \Delta \mathrm{H}_{\mathrm{fO} 2}:=0 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\Delta \mathrm{H}_{\mathrm{fCO} 2}:=-393509 \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{H}_{\mathrm{fH} 2 \mathrm{Oliq}}:=-285830 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\Delta \mathrm{H}_{\mathrm{cCH} 4}:=\Delta \mathrm{H}_{\mathrm{fCO} 2}+\Delta \cdot \Delta \mathrm{H}_{\mathrm{fH} 2 \mathrm{Oliq}}-\mathrm{H}_{\mathrm{fCH} 4}-2 \cdot \Delta \mathrm{H}_{\mathrm{fO} 2} \\
\Delta \mathrm{H}_{\mathrm{cCH} 4}=-890649 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{array}
$$

Calculate ethane standard heat of combustion with water as liquid product:
Standard Heats of Formation: $\mathrm{C}_{2} \mathbf{H}_{\mathbf{6}}+\mathbf{7 / 2 \mathrm { O } _ { 2 }} \boldsymbol{- - >} \mathbf{2 \mathrm { CO } _ { 2 }}+\mathbf{3 \mathrm { H } _ { 2 } \mathrm { O }}$

$$
\Delta \mathrm{H}_{\mathrm{fC} 2 \mathrm{H6}}:=-83820 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\Delta \mathrm{H}_{\mathrm{cC} 2 \mathrm{H} 6}:=2 \Delta \mathrm{H}_{\mathrm{fCO} 2}+\Delta \cdot \Delta \mathrm{H}_{\mathrm{fH} 2 \mathrm{Oliq}}-\mathrm{H}_{\mathrm{fC} 2 \mathrm{H} 6}-\frac{7}{2} \cdot \Delta \mathrm{H}_{\mathrm{fO} 2}$
$\Delta \mathrm{H}_{\mathrm{cC} 2 \mathrm{H} 6}=-1560688 \frac{\mathrm{~J}}{\mathrm{~mol}}$
Calculate propane standard heat of combustion with water as liquid product
Standard Heats of Formation: $\mathrm{C}_{\mathbf{3}} \mathrm{H}_{\mathbf{8}}+\mathbf{5 O}_{\mathbf{2}}-\mathbf{- >} \mathbf{3 C O} \mathbf{2}+\mathbf{4 H _ { 2 } \mathrm { O }}$
$\Delta \mathrm{H}_{\mathrm{fC} 3 \mathrm{H} 8}:=-104680 \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\Delta \mathrm{H}_{\mathrm{cC} 3 \mathrm{H} 8}:=3 \Delta \mathrm{H}_{\mathrm{fCO} 2}+\Delta \cdot \Delta \mathrm{H}_{\mathrm{fH} 2 \mathrm{Oliq}}-\mathrm{H}_{\mathrm{fC} 3 \mathrm{H} 8}-5 \cdot \Delta \mathrm{H}_{\mathrm{fO} 2}$
$\Delta \mathrm{H}_{\mathrm{cC} 3 \mathrm{H} 8}=-2219.167 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
Calculate the standard heat of combustion for the mixtures
a)
$0.95 \cdot \Delta \mathrm{H}_{\mathrm{cCH} 4}+0.02 \cdot \Delta \mathrm{H}_{\mathrm{cC} 2 \mathrm{H} 6}+0.02 \cdot \Delta \mathrm{H}_{\mathrm{cC} 3 \mathrm{H} 8}=-921.714 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
b)
$0.90 \cdot \Delta \mathrm{H}_{\mathrm{cCH} 4}+0.05 \cdot \Delta \mathrm{H}_{\mathrm{cC} 2 \mathrm{H} 6}+0.03 \cdot \Delta \mathrm{H}_{\mathrm{cC} 3 \mathrm{H} 8}=-946.194 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
c)

$$
0.85 \cdot \Delta \mathrm{H}_{\mathrm{cCH} 4}+0.07 \cdot \Delta \mathrm{H}_{\mathrm{cC} 2 \mathrm{H} 6}+0.03 \cdot \Delta \mathrm{H}_{\mathrm{cC} 3 \mathrm{H} 8}=-932.875 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Gas b) has the highest standard heat of combustion.
Ans.
4.26

$$
\begin{array}{l|l}
\mathbf{2 H} 2+\mathbf{O 2}=\mathbf{2 H} 2 \mathrm{O}(\mathbf{l}) & \Delta \mathrm{H}_{\mathrm{f} 1}:=2 \cdot(-285830) \cdot \mathrm{J} \\
\mathbf{C}+\mathbf{O 2}=\mathbf{C O} 2(\mathrm{~g}) & \Delta \mathrm{H}_{\mathrm{f} 2}:=-393509 \cdot \mathrm{~J} \\
\mathbf{N} 2(\mathbf{g})+\mathbf{2 H} \mathbf{H} \mathbf{O}(\mathbf{l})+\mathbf{C O 2}(\mathbf{g})=\mathbf{(N H 2}) \mathbf{2 C O}(\mathbf{s})+\mathbf{3} / \mathbf{2 O 2} & \Delta \mathrm{H}:=631660 \cdot \mathbf{J}
\end{array}
$$

$\mathrm{N} 2(\mathrm{~g})+2 \mathrm{H} 2(\mathrm{~g})+\mathrm{C}(\mathrm{s})+\mathbf{1} / 2 \mathrm{O} 2(\mathrm{~g})=(\mathrm{NH} 2) 2 \mathrm{CO}(\mathrm{s})$

$$
\Delta \mathrm{H}_{298}:=\Delta \mathrm{H}_{\mathrm{f} 1}+\Delta \Delta \mathrm{H}_{\mathrm{f} 2}+\mathrm{H}
$$

$$
\Delta \mathrm{H}_{298}=-333509 \mathrm{~J}
$$

Ans.
4.28 On the basis of 1 mole of $\mathbf{C 1 0 H 1 8}$ (molar mass =162.27)

$$
\mathrm{Q}:=-43960 \cdot 162.27 \cdot \mathrm{~J}
$$

$$
\mathrm{Q}=-7.133 \times 10^{6} \mathrm{~J}
$$

This value is for the constant-volume reaction:
$\mathrm{C} 10 \mathrm{H} 18(\mathrm{l})+14.5 \mathrm{O} 2(\mathrm{~g})=10 \mathrm{CO} 2(\mathrm{~g})+9 \mathrm{H} 2 \mathrm{O}(\mathrm{l})$
Assuming ideal gases and with symbols representing total properties,
$\mathrm{Q}=\Delta \mathrm{U}=\Delta \mathrm{H}-\Delta(\mathrm{PV})=\Delta \mathrm{H}-\mathrm{R} \cdot \boldsymbol{T} \cdot \mathrm{n}_{\mathrm{gas}}$
$\mathrm{T}:=298.15 \cdot \mathrm{~K}$
$\Delta \mathrm{H}:=\mathrm{Q}+\mathrm{R} \cdot \bar{\pi} \cdot \mathrm{n}_{\text {gas }}$
$\Delta H=-7.145 \times 10^{6} \mathrm{~J}$
This value is for the constant-V reaction, whereas the STANDARD reaction is at const. P.However, for ideal gases $H=f(T)$, and for liquids H is a very weak function of P. We therefore take the above value as the standard value, and for the specified reaction:

$$
\begin{array}{ll}
\mathbf{C 1 0 H 1 8 (l)}+\mathbf{1 4 . 5 O 2}(\mathbf{g})=\mathbf{1 0 C O} 2(\mathrm{~g})+9 \mathrm{H} 2 \mathrm{O}(\mathbf{l}) & \Delta \mathrm{H} \\
\mathbf{9 H 2 O}(\mathbf{l})=9 \mathrm{H} 2 \mathrm{O}(\mathrm{~g}) & \Delta \mathrm{H}_{\mathrm{vap}}:=9 \cdot 44012 \cdot \mathrm{~J}
\end{array}
$$

$\mathrm{C} 10 \mathrm{H} 18(\mathrm{l})+14.5 \mathrm{O} 2(\mathrm{~g})=10 \mathrm{CO} 2(\mathrm{~g})+9 \mathrm{H} 2 \mathrm{O}(\mathrm{g})$

$$
\Delta \mathrm{H}_{298}:=\Delta \mathrm{H}+\Delta \mathrm{H}_{\mathrm{vap}} \quad \Delta \mathrm{H}_{298}=-6748436 \mathrm{~J}
$$

Ans.
4.29 FURNACE: Basis is 1 mole of methane burned with 30\% excess air.

$$
\mathrm{CH} 4+2 \mathrm{O} 2=\mathrm{CO} 2+2 \mathrm{H} 2 \mathrm{O}(\mathrm{~g})
$$

Entering:	Moles methane	$\mathrm{n}_{1}:=1$	
Moles oxygen	$\mathrm{n}_{2}:=2 \cdot 1.3$	$\mathrm{n}_{2}=2.6$	
	Moles nitrogen	$\mathrm{n}_{3}:=2.6 \cdot \frac{79}{21}$	$\mathrm{n}_{3}=9.781$

Total moles of dry gases entering

$$
\mathrm{n}:=\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}
$$

$$
\mathrm{n}=13.381
$$

At 30 degC the vapor pressure of water is
4.241 kPa . Moles of water vapor entering:

$$
\begin{equation*}
\mathrm{n}_{4}:=\frac{4.241}{101.325-4.241} \cdot 13.381 \quad \mathrm{n}_{4}=0.585 \tag{1}
\end{equation*}
$$

Leaving: CO2 -- 1 mol
H2O -- 2.585 mol
O2 -- 2.6-2 $=0.6 \mathrm{~mol}$
N2 -- $9.781 \mathbf{~ m o l}$
By an energy balance on the furnace:

$$
\mathrm{Q}=\Delta \mathrm{H}=\Delta \mathrm{H}_{298}+\Delta \mathrm{H}_{\mathrm{P}}
$$

For evaluation of ΔH_{P} we number species as above.

$\mathrm{i}:=1 . .4$

$$
\mathrm{R}=8.314 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
\mathrm{A}:=\sum_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}} \mathrm{~B}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}} \quad \mathrm{D}:=\sum_{\mathrm{i}}\left(\mu_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.\right.\right.
$$

$\mathrm{A}=48.692$
$B=10.89698310^{-3}$
C : = 0
$D=-5.892 \times 10^{4}$

The TOTAL value for MCPH of the product stream:

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{P}}:=\mathrm{R} \cdot \mathrm{MCPH}(303.15 \mathrm{~K}, 1773.15 \mathrm{~K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \cdot(1773.15-303.15) \mathrm{K} \\
& \Delta \mathrm{H}_{\mathrm{P}}=732.013 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

From Example 4.7: $\quad \Delta \mathrm{H}_{298}:=-802625 \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathrm{Q}:=\Delta \mathrm{H}_{\mathrm{P}}+\Delta \mathrm{H}_{298}$
$\mathrm{Q}=-70,612 \cdot \mathrm{~J} \quad$ Ans.

HEAT EXCHANGER: Flue gases cool from 1500 degC to 50 deg C . The partial pressure of the water in the flue gases leaving the furnace (in kPa) is
$\mathrm{pp}:=\frac{\mathrm{n}_{2}}{\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\mathrm{n}_{4}} \cdot 101.325 \quad \mathrm{pp}=18.754$
The vapor pressure of water at 50 degC (exit of heat exchanger) is $\mathbf{1 2 . 3 4}$ kPa , and water must condense to lower its partial pressure to this value.

Moles of dry flue gases: $\quad \mathrm{n}:=\mathrm{n}_{1}+\mathrm{n}_{3}+\mathrm{n}_{4} \quad \mathrm{n}=11.381$
Moles of water vapor leaving the heat exchanger:
$\mathrm{n}_{2}:=\frac{12.34}{101.325-12.34} \cdot \mathrm{n} \quad \mathrm{n}_{2}=1.578$
Moles water condensing: $\quad \Delta \mathrm{n}:=2.585-1.578$
Latent heat of water at $\mathbf{5 0} \mathbf{d e g C}$ in $\mathbf{J} / \mathrm{mol}$:

$$
\Delta \mathrm{H}_{50}:=2382.9 \cdot 18.015 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Sensible heat of cooling the flue gases to 50 degC with all the water as vapor (we assumed condensation at 50 degC):
$\mathrm{Q}:=\mathrm{R} \cdot \mathrm{MCPH}(323.15 \cdot \mathrm{~K}, 1773.15 \cdot \mathrm{~K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \cdot(323.15-1773.15) \mathrm{K}-\mathrm{n} \cdot \Delta \mathrm{H}_{50}$

$$
Q=-766,677 \cdot J \quad \text { Ans. }
$$

$4.30 \quad 4 \mathrm{NH} 3(\mathrm{~g})+\mathbf{5 O}(\mathrm{g})=\mathbf{4 N O}(\mathrm{g})+\mathbf{6 H 2 O}(\mathrm{g})$
BASIS: 4 moles ammonia entering reactor
Moles O2 entering $=(5)(1.3)=6.5$
Moles N 2 entering $=(6.5)(79 / 21)=24.45$
Moles NH3 reacting $=$ moles NO formed $=(4)(0.8)=3.2$
Moles $\mathbf{O 2}$ reacting $=(5)(0.8)=4.0$
Moles water formed $=(6)(0.8)=4.8$

ENERGY BALANCE:

$$
\Delta \mathrm{H}=\Delta \mathrm{H}_{\mathrm{R}}+\Delta \Delta \mathrm{H}_{298}+\mathrm{H}_{\mathrm{P}}=0
$$

REACTANTS: $1=\mathbf{N H} 3 ; 2=02 ; 3=\mathrm{N} 2$
$\mathrm{n}:=\left(\begin{array}{c}4 \\ 6.5 \\ 24.45\end{array}\right)$
$\mathrm{A}:=\left(\begin{array}{l}3.578 \\ 3.639 \\ 3.280\end{array}\right)$
$B:=\left(\begin{array}{l}3.020) \\ 0.506 \mid \cdot 10^{-3} \\ 0.593\end{array}\right)$
$\mathrm{D}:=\left(\begin{array}{l}-0.186 \\ -0.227 \\ \\ 0.040\end{array}\right) \cdot 10^{5}$
$\mathrm{i}:=1 . .3$

$$
\mathrm{A}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}} \quad \mathrm{~B}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}}\right.\right.
$$

$\mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.$
$\mathrm{A}=118.161$
$B=0.02987$
C := 0.0
$\mathrm{D}=-1.242 \times 10^{5}$

TOTAL mean heat capacity of reactant stream:
$\Delta \mathrm{H}_{\mathrm{R}}:=\mathrm{R} \cdot \mathrm{MCPH}(348.15 \mathrm{~K}, 298.15 \mathrm{~K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \cdot(298.15 \mathrm{~K}-348.15 \mathrm{~K})$

$$
\Delta \mathrm{H}_{\mathrm{R}}=-52.635 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

The result of $\mathrm{Pb} .4 .21(\mathrm{~b})$ is used to get

$$
\Delta \mathrm{H}_{298}:=0.8 \cdot(-905468) \frac{\mathrm{J}}{\mathrm{~mol}}
$$

PRODUCTS1=NH3; 2=02; 3=NO; 4=H2O; 5=N2
$\mathrm{n}:=\left(\begin{array}{c}0.8 \\ 2.5 \\ 3.2 \\ 4.8 \\ 24.45\end{array}\right)$
$\mathrm{i}:=1 . .5$
$A:=\sum_{i}\left(h_{i} \cdot A_{i}\right.$
$B:=\sum_{i}\left(\mu_{i} \cdot B_{i}\right.$
$\mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.$
$\mathrm{A}=119.65$
$B=0.027 \frac{1}{\mathrm{~K}}$
$\mathrm{D}=8.873 \times 10^{4} \mathrm{~K}^{2}$

By the energy balance and Eq. (4.7), we can write:
$\mathrm{T}_{0}:=298.15 \mathrm{~K} \quad \tau:=2 \quad$ (guess)

$$
\text { Given } \quad-\Delta H_{298}-H_{R}=R \cdot\left[\begin{array}{l}
A \cdot T_{0} \cdot()-1+\frac{B}{2} \cdot \mathrm{~T}_{0}{ }^{2} \cdot()^{2}-1 \ldots \\
+\frac{D}{T_{0}} \cdot\left(\frac{\tau-1}{\tau}\right)
\end{array}\right.
$$

$$
\tau:=\operatorname{Find}\left(t \quad \tau=3.283 \quad \mathrm{~T}:=\mathrm{T}_{0} \cdot \tau \quad \mathrm{~T}=978.9 \mathrm{~K} \quad\right. \text { Ans. }
$$

$4.31 \quad \mathrm{C} 2 \mathrm{H} 4(\mathrm{~g})+\mathrm{H} 2 \mathrm{O}(\mathrm{g})=\mathrm{C} 2 \mathrm{H} 5 \mathrm{OH}(\mathrm{l})$
BASIS: 1 mole ethanol produced $\quad \mathrm{n}:=1 \mathrm{~mol}$
Energy balance: $\Delta \mathrm{H}=\mathrm{Q}=\Delta \mathrm{H}_{\mathrm{R}}+\Delta \mathrm{H}_{298}$

$$
\Delta \mathrm{H}_{298}:=[-277690-(52510-241818)] \cdot \frac{\mathrm{J}}{\mathrm{~mol}} \quad \Delta \mathrm{H}_{298}=-8.838 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Reactant stream consists of 1 mole each of $\mathbf{C} 2 \mathrm{H} 4$ and H 2 O .

$$
\begin{aligned}
& \mathrm{i}:=1 . .2 \mathrm{n}:=\binom{1}{1} \\
& \mathrm{~A}:=\binom{1.424}{3.470} \mathrm{~B}:=\binom{14.394}{1.450} \cdot 10^{-3} \mathrm{C}:=\binom{-4.392}{0.0} \cdot 10^{-6} \quad \mathrm{D}:=\binom{0.0}{0.121} \cdot 10^{5} \\
& \mathrm{~A}:=\sum_{\mathrm{i}}\left(\mathrm{y}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}} \mathrm{~B}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}}\right.\right.
\end{aligned} \mathrm{C}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{i}} \quad \mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}{ }^{2} \quad \mathrm{C}=-4.392 \times 10^{-6} \quad \mathrm{D}=1.21 \times 10^{4} .\right.\right.
$$

$\Delta \mathrm{H}_{\mathrm{R}}:=\mathrm{R} \cdot \mathrm{MCPH}(298.15 \mathrm{~K}, 593.15 \mathrm{~K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \cdot(298.15 \mathrm{~K}-593.15 \mathrm{~K})$

$$
\Delta \mathrm{H}_{\mathrm{R}}=-2.727 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{Q}:=() \mathrm{UH}_{\mathrm{R}}+\Delta \mathrm{H}_{298} \cdot 1 \mathrm{~mol}
$$

4.32 One way to proceed is as in Example 4.8 with the alternative pair of reactions:

$$
\begin{array}{ll}
\mathbf{C H} 4+\mathbf{H} 2 \mathrm{O}=\mathbf{C O}+\mathbf{3 H} \mathbf{2} & \Delta \mathrm{H}_{298 \mathrm{a}}:=205813 \\
\mathbf{C H 4}+\mathbf{2 H} \mathbf{H} \mathbf{O}=\mathbf{C O} 2+\mathbf{4} \mathbf{2} \mathbf{2} & \Delta \mathrm{H}_{298 \mathrm{~b}}:=164647
\end{array}
$$

BASIS: 1 mole of product gases containing $0.0275 \mathrm{~mol} \mathrm{CO} ; \mathbf{0 . 1 7 2 5} \mathbf{m o l ~ C O}$; \& H2O 0.6275 mol H 2

Entering gas, by carbon $\&$ oxygen balances:
$0.0275+0.1725=0.2000 \mathrm{~mol} \mathrm{CH} 4$
$\mathbf{0 . 1 7 2 5}+\mathbf{0 . 1 7 2 5}+\mathbf{2 (0 . 0 2 7 5)}=\mathbf{0 . 4 0 0 0} \mathbf{~ m o l ~ H 2 O}$
$\Delta \mathrm{H}_{298}:=\left(0.1725 \cdot \Delta \mathrm{H}_{298 \mathrm{a}}+0.0275 \cdot \Delta \mathrm{H}_{298 \mathrm{~b}} \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{H}_{298}=4.003 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}\right.$
The energy balance is written
$\mathrm{Q}=\Delta \mathrm{H}_{\mathrm{R}}+\Delta \mathrm{H}_{298}+\mathrm{H}_{\mathrm{P}}$
REACTANTS: $\mathbf{1}=\mathbf{C H 4} \mathbf{2} \mathbf{2}=\mathbf{H 2 O} \quad \mathrm{i}:=1 . .2 \quad \mathrm{n}:=\binom{0.2}{0.4}$

$$
\mathrm{A}:=\binom{1.702}{3.470} \mathrm{~B}:=\binom{9.081}{1.450} \cdot 10^{-3} \quad \mathrm{C}:=\binom{-2.164}{0.0} \cdot 10^{-6} \mathrm{D}:=\binom{0.0}{0.121} \cdot 10^{5}
$$

$\mathrm{A}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{j}} \mathrm{B}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}}\right.\right.$
$\mathrm{C}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{i}}\right.$
$\mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.$
$\mathrm{A}=1.728$
$\mathrm{B}=2.396 \times 10^{-3}$
$C=-4.328 \times 10^{-7}$
D $=4.84 \times 10^{3}$
$\Delta \mathrm{H}_{\mathrm{R}}:=\mathrm{R} \cdot \mathrm{ICPH}(773.15 \mathrm{~K}, 298.15 \mathrm{~K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})$

$$
\Delta \mathrm{H}_{\mathrm{R}}=-1.145 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

PRODUCTS: $1=\mathrm{CO} 2 ; 2=\mathrm{CO} ; 3=\mathrm{H} 2 \mathrm{O} ; 4=\mathrm{H} 2$
$\mathrm{n}:=\left(\begin{array}{l}0.0275 \\ 0.1725 \\ 0.1725 \\ 0.6275\end{array}\right) \mathrm{A}:=\left(\begin{array}{l}5.457 \\ 3.376 \\ 3.470 \\ 3.249\end{array}\right) \quad \mathrm{B}:=\left(\begin{array}{l}1.045 \\ 0.557 \\ 1.450 \\ 0.422\end{array}\right) \cdot 10^{-3} \quad \mathrm{D}:=\left(\begin{array}{l}-1.157 \\ -0.031 \\ 0.121 \\ 0.083\end{array}\right) \cdot 10^{5}$
$\mathrm{i}:=1 . .4$
$A:=\sum_{i}\left(h_{i} \cdot A_{i} \quad B:=\sum_{i}\left(h_{i} \cdot B_{i}\right.\right.$
$\mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.$
$\mathrm{A}=3.37$
$B=6.397 \times 10^{-4}$
$C:=0.0$
$D=3.579 \times 10^{3}$
$\Delta \mathrm{H}_{\mathrm{P}}:=\mathrm{R} \cdot \mathrm{ICPH}(298.15 \mathrm{~K}, 1123.15 \mathrm{~K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})$
$\Delta \mathrm{H}_{\mathrm{P}}=2.63 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathrm{Q}:=\left(\Delta \mathrm{H}_{\mathrm{R}}+\Delta \mathrm{HH}_{298}+\mathrm{H} \cdot \mathrm{mol}\right.$
$\mathrm{Q}=54881 \mathrm{~J} \quad$ Ans.
$4.33 \mathrm{CH} 4+2 \mathrm{O} 2=\mathrm{CO} 2+2 \mathrm{H} 2 \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}_{298 \mathrm{a}}:=-802625$
$\mathrm{C} 2 \mathrm{H} 6+3.5 \mathrm{O} 2=2 \mathrm{CO} 2+3 \mathrm{H} 2 \mathrm{O}(\mathrm{g})$
$\Delta \mathrm{H}_{298 \mathrm{~b}}:=-1428652$
BASIS: 1 mole fuel ($0.75 \mathrm{~mol} \mathrm{CH} 4 ; 0.25 \mathrm{~mol} \mathrm{C2H6}$) burned completely with 80\% xs. air.
$\mathrm{O} 2 \mathrm{in}=1.8[(0.75)(2)+(0.25)(3.5)]=4.275 \mathrm{~mol}$
$\mathrm{N} 2 \mathrm{in}=4.275(79 / 21)=16.082 \mathrm{~mol}$
Product gases: $\mathrm{CO} 2=0.75+2(0.25)=1.25 \mathrm{~mol}$

$$
\mathrm{H} 2 \mathrm{O}=2(0.75)+3(0.25)=2.25 \mathrm{~mol}
$$

$$
\mathrm{O} 2=(0.8 / 1.8)(4.275)=1.9 \mathrm{~mol}
$$

$$
\mathrm{N} 2=16.082 \mathrm{~mol}
$$

$$
\Delta \mathrm{H}_{298}:=\left(0.75 \cdot \Delta \mathrm{H}_{298 \mathrm{a}}+0.25 \cdot \Delta \mathrm{H}_{298 \mathrm{~b}} \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{Q}:=-8 \cdot 10^{5} \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}\right.
$$

Energy balance: $\quad \mathrm{Q}=\Delta \mathrm{H}=\Delta \mathrm{H}_{298}+\Delta \mathrm{H}_{\mathrm{P}} \quad \Delta \mathrm{H}_{\mathrm{P}}=\mathrm{Q}-\Delta \mathrm{H}_{298}$
PRODUCTS: $1=\mathrm{CO} 2 ; 2=\mathrm{H} 2 \mathrm{O} ; 3=\mathbf{O 2} ; 4=\mathrm{N} 2$

By the energy balance and Eq. (4.7), we can write:
$\mathrm{T}_{0}:=303.15 \mathrm{~K} \quad \tau:=2 \quad$ (guess)
Given $\quad Q-\Delta H_{298}=R \cdot\left[\begin{array}{l}A \cdot T_{0} \cdot()-1+\frac{B}{2} \cdot T_{0}{ }^{2} \cdot()^{2}-1 \quad \ldots \\ +\frac{D}{T_{0}} \cdot\left(\frac{\tau-1}{\tau}\right)\end{array}\right] \quad \tau:=\operatorname{Find}(t$
$\tau=1.788$
$\mathrm{T}:=\mathrm{T}_{0} \cdot \tau$
$\mathrm{T}=542.2 \mathrm{~K}$
Ans.
4.34 BASIS: 1 mole of entering gases containing $0.15 \mathrm{~mol} \mathrm{SO2} ; \mathbf{0 . 2 0} \mathbf{~ m o l}$ O2; 0.65 mol N 2
$\mathrm{SO} 2+\mathbf{0 . 5 O 2}=\mathrm{SO} 3 \quad$ Conversion $=\mathbf{8 6} \%$

SO 2 reacted $=\mathbf{S O 3}$ formed $=(0.15)(0.86)=0.129 \mathrm{~mol}$
O 2 reacted $=(0.5)(0.129)=0.0645 \mathrm{~mol}$
Energy balance: $\Delta \mathrm{H}_{773}=\Delta \mathrm{H}_{\mathrm{R}}+\Delta \mathrm{H}_{298}+\mathrm{H}_{\mathrm{P}}$

Since ΔH_{R} and ΔH_{P} cancel for the gas that passes through the converter unreacted, we need consider only those species that react or are formed. Moreover, the reactants and products experience the same temperature change, and can therefore be considered together. We simply take the number of moles of reactants as being negative. The energy balance is then written: $\Delta \mathrm{H}_{773}=\Delta \mathrm{H}_{298}+\Delta \mathrm{H}_{\text {net }}$
$\Delta \mathrm{H}_{298}:=[-395720-(-296830)] \cdot 0.129 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$

1: SO2; 2: O2; 3: SO3

$$
\begin{array}{rl}
\mathrm{i}:=1 . .3 \quad \mathrm{~A}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}} \mathrm{~B}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}} \quad\right.\right. & \mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right. \\
\mathrm{A}=0.06985 & \mathrm{~B}=2.58 \times 10^{-7} \quad \mathrm{C}:=0
\end{array} \mathrm{D}=-1.16 \times 10^{4} .
$$

$$
\Delta \mathrm{H}_{\mathrm{net}}:=\mathrm{R} \cdot \mathrm{MCPH}(298.15 \mathrm{~K}, 773.15 \mathrm{~K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \cdot(773.15 \mathrm{~K}-298.15 \mathrm{~K})
$$

$$
\Delta \mathrm{H}_{\mathrm{net}}=77.617 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{H}_{773}:=\left(\Delta \mathrm{H}_{298}+\Delta \mathrm{H}_{\text {net }}\right.
$$

$$
\Delta \mathrm{H}_{773}=-12679 \frac{\mathrm{~J}}{\mathrm{~mol}} \text { Ans. }
$$

$4.35 \mathrm{CO}(\mathrm{g})+\mathrm{H} 2 \mathrm{O}(\mathrm{g})=\mathrm{CO} 2(\mathrm{~g})+\mathrm{H} 2(\mathrm{~g})$

BASIS: 1 mole of feed consisting of 0.5 mol CO and 0.5 mol H 2 O .
Moles $\mathbf{C O}$ reacted $=$ moles $\mathbf{H 2 O}$ reacted $=$ moles $\mathbf{C O 2}$ formed $=$ moles $\mathbf{H} 2$ formed $=(0.6)(0.5)=0.3$

Product stream: \quad moles $\mathbf{C O}=$ moles $\mathbf{H 2 O}=0.2$
moles $\mathbf{C O 2}=$ moles $\mathrm{H} 2=0.3$
Energy balance:

$$
\mathrm{Q}=\Delta \mathrm{H}=\Delta \mathrm{H}_{\mathrm{R}}+\Delta \Delta \mathrm{H}_{298}+\mathrm{H}_{\mathrm{P}}
$$

$$
\Delta \mathrm{H}_{298}:=0.3 \cdot[-393509-(-110525-214818)] \frac{\mathrm{J}}{\mathrm{~mol}} \Delta \mathrm{H}_{298}=-2.045 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Reactants: 1: CO 2: H2O

$\mathrm{n}:=\binom{0.5}{0.5}$	$\mathrm{~A}:=\binom{3.376}{3.470} \quad \mathrm{~B}:=\binom{0.557}{1.450} \cdot 10^{-3} \quad \mathrm{D}:=\binom{-0.031}{0.121} \cdot 10^{5}$
$\mathrm{i}:=1 . .2$	$\mathrm{~A}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{i}} \quad \mathrm{B}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}}\right.\right.$

$\Delta \mathrm{H}_{\mathrm{R}}:=\mathrm{R} \cdot \mathrm{MCPH}(298.15 \mathrm{~K}, 398.15 \mathrm{~K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \cdot(298.15 \mathrm{~K}-398.15 \mathrm{~K})$

$$
\Delta \mathrm{H}_{\mathrm{R}}=-3.168 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Products: 1: CO 2: H 2 O 3: CO 2 4: H2
$\mathrm{n}:=\left(\begin{array}{l}0.2 \\ 0.2 \\ 0.3 \\ 0.3\end{array}\right)$
$A:=\left(\begin{array}{l}3.376 \\ 3.470 \\ 5.457 \\ 3.249\end{array}\right)$
$\mathrm{B}:=\left(\begin{array}{l}0.557 \\ 1.450 \\ 1.045 \\ 0.422\end{array}\right) \cdot 10^{-3}$
$\mathrm{D}:=\left(\begin{array}{c}-0.031 \\ 0.121 \\ -1.157 \\ 0.083\end{array}\right) \cdot 10^{5}$

$$
\begin{array}{rlll}
\mathrm{i}:=1 . .4 & \mathrm{~A}:=\sum_{\mathrm{i}}\left(\mathrm{~m}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}}\right. & \mathrm{B}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}}\right. & \mathrm{D}:=\sum_{\mathrm{i}}\left(\mu_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right. \\
\mathrm{A}=3.981 & \mathrm{~B}=8.415 \times 10^{-4} & \mathrm{C}:=0 & \mathrm{D}=-3.042 \times 10^{4}
\end{array}
$$

$$
\Delta \mathrm{H}_{\mathrm{P}}:=\mathrm{R} \cdot \mathrm{MCPH}(298.15 \mathrm{~K}, 698.15 \mathrm{~K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \cdot(698.15 \mathrm{~K}-298.15 \mathrm{~K})
$$

$$
\Delta \mathrm{H}_{\mathrm{P}}=1.415 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{Q}:=\left(\left\langle\mathrm{H}_{\mathrm{R}}+\Delta \mathrm{H}_{298}+\mathrm{H}_{\mathrm{P}} \cdot \mathrm{~mol} \quad \mathrm{Q}=-9470 \mathrm{~J}\right.\right. \text { Ans. }
$$

4.36 BASIS: 100 lbmol DRY flue gases containing 3.00 lbmol CO 2 and 11.80 lbmol CO x lbmol O2 and 100-(14.8-x)= 85.2-x lbmol N2. The oil therefore contains 14.80 lbmol carbon; a carbon balance gives the mass of oil burned:

$$
14.8 \cdot \frac{12.011}{0.85} \cdot \mathrm{lb}_{\mathrm{m}}=209.133 \mathrm{lb}_{\mathrm{m}}
$$

The oil also contains H2O:

$$
\frac{209.133 \cdot 0.01}{18.015} \cdot \mathrm{lbmol}=0.116 \mathrm{lbmol}
$$

Also $\mathbf{H 2 O}$ is formed by combustion of $\mathbf{H 2}$ in the oil in the amount

$$
\frac{209.133 \cdot 0.12}{2.016} \cdot \mathrm{lbmol}=12.448 \mathrm{lbmol}
$$

Find amount of air entering by $\mathbf{N} 2 \& \mathbf{O} 2$ balances.
N 2 entering in oil:

$$
\frac{209.133 \cdot 0.02}{28.013} \cdot 1 \mathrm{bmol}=0.149 \mathrm{lbmol}
$$

lbmol N 2 entering in the air $=(85.2-\mathrm{x})-\mathbf{0 . 1 4 9}=85.051-\mathrm{x}$
lbmol $\mathbf{O 2}$ in flue gas entering with dry air $=$

$$
3.00+11.8 / 2+x+12.448 / 2=15.124+x \text { lbmol }
$$

(CO2) (CO) (O2) (H2O from combustion)
Total dry air $=\mathbf{N} 2$ in air $+\mathbf{O} 2$ in air $=85.051-x+15.124+x=100.175 \mathrm{lbmol}$

Since air is $21 \mathrm{~mol} \% \mathbf{0 2}$,

$$
0.21=\frac{15.124+\mathrm{x}}{100.175} \quad \mathrm{x}:=(0.21 \cdot 100.175-15.124) \cdot \mathrm{lbmol} \quad \mathrm{x}=5.913 \mathrm{lbmol}
$$

O2 in air $=15.124+x=21.037$ lbmols
N 2 in air $=85.051-\mathrm{x}=\mathbf{7 9 . 1 3 8}$ lbmoles
N 2 in flue gas $=79.138+\mathbf{0 . 1 4 9}=\mathbf{7 9 . 2 8 7}$ lbmols
[CHECK: Total dry flue gas

$$
\begin{aligned}
& =3.00+11.80+5.913+79.287 \\
& =100.00 \mathrm{lbmol}]
\end{aligned}
$$

Humidity of entering air, sat. at 77 degF in lbmol H2O/lbmol dry air, P(sat) $=0.4594$ (psia)

$$
\frac{0.4594}{14.696-0.4594}=0.03227
$$

lbmol H2O entering in air:

$$
0.03227 \cdot 100.175 \cdot \mathrm{lbmol}=3.233 \mathrm{lbmol}
$$

If $y=\operatorname{lbmol} \mathbf{H 2 O}$ evaporated in the drier, then
lbmol H2O in flue gas $=0.116+12.448+3.233+y$

$$
=15.797+y
$$

Entering the process are oil, moist air, and the wet material to be dried, all at 77 degF. The "products" at 400 degF consist of:
3.00 lbmol CO 2
11.80 lbmol CO
5.913 lbmol O 2
79.287 lbmol N2
($15.797+y)$ lbmol H2O(g)
Energy balance: $\quad \mathrm{Q}=\Delta \mathrm{H}=\Delta \mathrm{H}_{298}+\Delta \mathrm{H}_{\mathrm{P}}$
where $Q=\mathbf{3 0 \%}$ of net heating value of the oil:

$$
\mathrm{Q}:=-0.3 \cdot 19000 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \cdot 209.13 \cdot \mathrm{lb}_{\mathrm{m}} \quad \mathrm{Q}=-1.192 \times 10^{6} \mathrm{BTU}
$$

Reaction upon which net heating value is based:

$$
\mathrm{OIL}+(21.024) \mathrm{O} 2=(14.8) \mathrm{CO} 2+(12.448+0.116) \mathrm{H} 2 \mathrm{O}(\mathrm{~g})+(0.149) \mathrm{N} 2
$$

$$
\Delta \mathrm{H}_{298 \mathrm{a}}:=-19000 \cdot 209.13 \cdot \mathrm{BTU}
$$

$$
\Delta \mathrm{H}_{298 \mathrm{a}}=-3.973 \times 10^{6} \mathrm{BTU}
$$

To get the "reaction" in the drier, we add to this the following:
$(11.8) \mathrm{CO} 2=(11.8) \mathrm{CO}+(5.9) \mathrm{O} 2$

$$
\Delta \mathrm{H}_{298} \mathrm{~b}:=11.8 \cdot(-110525+393509) \cdot 0.42993 \cdot \mathrm{BTU}
$$

$(\mathbf{y}) \mathbf{H 2 O}(\mathbf{l})=(\mathbf{y}) \mathbf{H} 2 \mathrm{O}(\mathrm{g}) \quad$ Guess: $\mathrm{y}:=50$

$\Delta \mathrm{H}_{298 \mathrm{c}}(\mathrm{y}):=44012 \cdot 0.42993 \cdot \mathrm{y} \cdot \mathrm{BTU}$

[The factor 0.42993 converts from joules on the basis of moles to Btu on the basis of lbmol.]

Addition of these three reactions gives the "reaction" in the drier, except for some O 2 , N 2 , and H 2 O that pass through unchanged. Addition of the corresponding delta H values gives the standard heat of reaction at 298 K :

$$
\Delta \mathrm{H}_{298}(\mathrm{y}):=\Delta \mathrm{H}_{298 \mathrm{a}}+\Delta \Delta \mathrm{H}_{298 \mathrm{~b}}+\mathrm{H}_{298 \mathrm{c}}(\mathrm{y})
$$

For the product stream we need MCPH:
1: CO2 2: CO 3:O2 4: N2 5: H2O

Given

$$
\mathrm{C}_{\mathrm{P}}(\mathrm{y}) \cdot(400-77) \cdot \mathrm{BTU}=\mathrm{Q}-\Delta \mathrm{H}_{298}(\mathrm{y}) \quad \mathrm{y}:=\operatorname{Find}(\mathrm{y})
$$

$$
y=49.782 \quad \text { (lbmol H2O evaporated })
$$

Whence
$\frac{y \cdot 18.015}{209.13}=4.288$
(lb H2O evap. per lb oil burned) Ans.
4.37 BASIS: One mole of product gas containing 0.242 mol HCN , and $(1-0.242) / 2=0.379 \mathrm{~mol}$ each of N 2 and $\mathbf{C} 2 \mathrm{H} 2$. The energy balance is $\mathrm{Q}=\Delta \mathrm{H}=\Delta \mathrm{H}_{298}+\Delta \mathrm{H}_{\mathrm{P}}$
$\Delta \mathrm{H}_{298}:=(2 \cdot 135100-227480) \cdot \frac{0.242}{2} \cdot \mathrm{~J} \quad \Delta \mathrm{H}_{298}=5.169 \times 10^{3} \mathrm{~J}$

Products:

$$
\begin{aligned}
& \mathrm{n}:=\left(\begin{array}{l}
0.242 \\
0.379 \\
0.379
\end{array}\right) \quad \mathrm{A}:=\left(\begin{array}{l}
4.736 \\
3.280 \\
6.132
\end{array}\right) \quad \mathrm{B}:=\left(\begin{array}{l}
1.359 \\
0.593 \mid \cdot 10^{-3} \\
1.952
\end{array}\right) \quad \mathrm{D}:=\left(\begin{array}{c}
-0.725 \\
0.040 \mid \cdot 10^{5} \\
-1.299)
\end{array}\right. \\
& \mathrm{i}:=1 . .3 \mathrm{~A}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}} \quad \mathrm{~B}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}} \quad \mathrm{D}:=\sum_{\mathrm{i}}\left(\mu_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.\right.\right. \\
& \mathrm{A}=4.7133 \quad \mathrm{~B}=1.2934 \times 10^{-3} \quad \mathrm{C}:=0 \quad \mathrm{D}=-6.526 \times 10^{4}
\end{aligned}
$$

$\Delta \mathrm{H}_{\mathrm{P}}:=\mathrm{R} \cdot \mathrm{MCPH}(298.15 \mathrm{~K}, 873.15 \mathrm{~K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \cdot(873.15 \mathrm{~K}-298.15 \mathrm{~K}) \cdot \mathrm{mol}$
$\Delta H_{P}=2.495 \times 10^{4} \mathrm{~J}$
$\Delta H_{P}=2.495 \times 10^{4} \mathrm{~J}$
$\mathrm{Q}:=\Delta \mathrm{H}_{298}+\Delta \mathrm{H}_{\mathrm{P}}$
$\mathrm{Q}=30124 \mathrm{~J} \quad$ Ans.
4.38 BASIS: 1 mole gas entering reactor, containing $0.6 \mathrm{~mol} \mathrm{HCl}, 0.36 \mathrm{~mol} \mathrm{O}$, and 0.04 mol N 2.

HCl reacted $=(0.6)(0.75)=0.45 \mathrm{~mol}$
$4 \mathrm{HCl}(\mathrm{g})+\mathbf{O} 2(\mathrm{~g})=2 \mathrm{H} 2 \mathrm{O}(\mathrm{g})+2 \mathrm{Cl} 2(\mathrm{~g})$

For this reaction,

$$
\Delta \mathrm{H}_{298}:=[2 \cdot(-241818)-4 \cdot(-92307)] \cdot \frac{\mathrm{J}}{\mathrm{~mol}} \quad \Delta \mathrm{H}_{298}=-1.144 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Evaluate $\quad \Delta \mathrm{H}_{823} \quad$ by Eq. (4.21) with
$\mathrm{T}_{0}:=298.15 \mathrm{~K} \quad \mathrm{~T}:=823.15 \mathrm{~K}$
1: H 2 O 2: Cl 2 3: $\mathrm{HCl} 4=\mathbf{O} 2$
$\mathrm{n}:=\left(\begin{array}{c}2 \\ 2 \\ -4 \\ -1\end{array}\right)$
$\mathrm{A}:=\left(\begin{array}{l}3.470 \\ 4.442 \\ 3.156 \\ 3.639\end{array}\right)$
$B:=\left(\begin{array}{l}1.45 \\ 0.089 \\ 0.623 \\ 0.506\end{array}\right) \cdot 10^{-3}$
$\mathrm{D}:=\left(\begin{array}{c}0.121 \\ -0.344 \\ 0.151 \\ -0.227\end{array}\right) \cdot 10^{5}$
$\mathrm{i}:=1 . .4 \quad \Delta \mathrm{~A}:=\sum_{\mathrm{i}}\left(\mathrm{f}_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{i}}\right.$
$\Delta \mathrm{B}:=\sum_{\mathrm{i}}\left(\mathrm{m}_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}}\right.$
$\Delta \mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.$

$$
\Delta \mathrm{A}=-0.439 \quad \Delta \mathrm{~B}=8 \times 10^{-5} \quad \Delta \mathrm{C}:=0 \quad \Delta \mathrm{D}=-8.23 \times 10^{4}
$$

$\Delta \mathrm{H}_{823}:=\Delta \mathrm{H}_{298}+\mathrm{MCPH}() \Gamma_{0}, \bar{\Phi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \cdot \mathrm{R} \cdot() \Gamma-\mathrm{T}_{0}$
$\Delta \mathrm{H}_{823}=-117592 \frac{\mathrm{~J}}{\mathrm{~mol}}$
Heat transferred per mol of entering gas mixture:
$\mathrm{Q}:=\frac{\Delta \mathrm{H}_{823}}{4} \cdot 0.45 \cdot \mathrm{~mol}$

$$
Q=-13229 J
$$

Ans.
$4.39 \mathrm{CO} 2+\mathrm{C}=2 \mathrm{CO}$
$2 \mathrm{C}+\mathrm{O2}=2 \mathrm{CO}$
Eq. (4.21) applies to each reaction:

$$
\begin{aligned}
& \Delta \mathrm{H}_{298 \mathrm{a}}:=172459 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
& \Delta \mathrm{H}_{298 \mathrm{~b}}:=-221050 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

For (a):

$$
\mathrm{n}:=\left(\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right) \quad \mathrm{A}:=\left(\begin{array}{l}
3.376 \\
1.771 \\
5.457
\end{array}\right) \quad \mathrm{B}:=\left(\begin{array}{l}
0.557 \\
0.771 \mid \cdot 10^{-3} \\
1.045
\end{array}\right) \quad \mathrm{D}:=\left(\begin{array}{l}
-0.031 \\
-0.867 \mid \cdot 10^{5} \\
-1.157
\end{array}\right.
$$

$$
\begin{array}{rlrl}
\mathrm{i}:= & 1 . .3 \quad \Delta \mathrm{~A}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}} \quad \Delta \mathrm{~B}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}}\right.\right. & \Delta \mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right. \\
& \Delta \mathrm{A}=-0.476 \quad \Delta \mathrm{~B}=-7.02 \times 10^{-4} \quad \Delta \mathrm{C}:=0 & \Delta \mathrm{D}=1.962 \times 10^{5} \\
\Delta \mathrm{H}_{1148 \mathrm{a}}:= & \Delta \mathrm{H}_{298 \mathrm{a}} \cdots \\
& +\mathrm{R} \cdot \operatorname{MCPH}(298.15 \mathrm{~K}, \Delta 148.15 \mathrm{~K}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \cdot(1148.15 \mathrm{~K}-298.15 \mathrm{~K})
\end{array}
$$

$$
\Delta \mathrm{H}_{1148 \mathrm{a}}=1.696 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

For (b):

$\mathrm{n}:=\left(\begin{array}{c}2 \\ -1 \\ -2\end{array}\right)$
$\mathrm{A}:=\left(\begin{array}{l}3.376 \\ 3.639 \\ 1.771\end{array}\right)$
$B:=\left(\begin{array}{l}0.557 \\ 0.506 \mid \cdot 10^{-3} \\ 0.771\end{array}\right)$
$\mathrm{D}:=\left(\begin{array}{l}-0.031) \\ -0.227 \mid \cdot 10^{5} \\ -0.867)\end{array}\right.$
$\mathrm{i}:=1 . .3 \Delta \mathrm{~A}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{i}} \quad \Delta \mathrm{B}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}} \quad \Delta \mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.\right.\right.$

$$
\Delta \mathrm{A}=-0.429 \quad \Delta \mathrm{~B}=-9.34 \times 10^{-4} \quad \Delta \mathrm{C}:=0 \quad \Delta \mathrm{D}=1.899 \times 10^{5}
$$

$\Delta \mathrm{H}_{1148 \mathrm{~b}}:=\Delta \mathrm{H}_{298 \mathrm{~b}} \ldots$
$+\mathrm{R} \cdot \mathrm{MCPH}(298.15 \mathrm{~K}, \Delta 148.15 \mathrm{~K}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \cdot(1148.15 \mathrm{~K}-298.15 \mathrm{~K})$

$$
\Delta \mathrm{H}_{1148 \mathrm{~b}}=-2.249 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The combined heats of reaction must be zero:
$\mathrm{n}_{\mathrm{CO}_{2}} \cdot \Delta \mathrm{H}_{1148 \mathrm{a}}+\mathrm{n}_{\mathrm{O}_{2}} \cdot \Delta \mathrm{H}_{1148 \mathrm{~b}}=0$
Define: $\quad \mathrm{r}=\frac{\mathrm{n}_{\mathrm{CO}_{2}}}{\mathrm{n}_{\mathrm{O}_{2}}} \quad \mathrm{r}:=\frac{-\Delta \mathrm{H}_{1148 \mathrm{~b}}}{\Delta \mathrm{H}_{1148 \mathrm{a}}} \quad \mathrm{r}=1.327$

For $\mathbf{1 0 0} \mathbf{~ m o l}$ flue gas and x mol air, moles are:
Flue gas Air Feed mix

$\mathrm{CO2}$	12.8	0	12.8
CO	3.7	0	3.7
O 2	5.4	0.21 x	$5.4+0.21 \mathrm{x}$
N 2	78.1	0.79 x	$78.1+0.79 \mathrm{x}$

Whence in the feed mix: $\quad \mathrm{r}=\frac{12.8}{5.4+0.21 \cdot \mathrm{x}}$
$\mathrm{x}:=\frac{\frac{12.5}{\mathrm{r}}-5.4}{0.21} \cdot \mathrm{~mol}$
$\mathrm{x}=19.155 \mathrm{~mol}$

Flue gas to air ratio =

Ans.
Product composition:

$\mathrm{n}_{\mathrm{CO}}:=3.7+2 \cdot(12.8+5.4+0.21 \cdot 19.155)$	$\mathrm{n}_{\mathrm{CO}}=48.145$
$\mathrm{n}_{\mathrm{N}_{2}}:=78.1+0.79 \cdot 19.155$	$\mathrm{n}_{\mathrm{N}_{2}}=93.232$
Mole \% CO $=$	$\frac{\mathrm{n}_{\mathrm{CO}}}{\mathrm{n}_{\mathrm{CO}}+\mathrm{n}_{\mathrm{N}_{2}}} \cdot 100=34.054$
Mole \% N2 $=$	$100-34.054=65.946$

$4.40 \mathrm{CH} 4+2 \mathrm{O} 2=\mathrm{CO} 2+2 \mathrm{H} 2 \mathrm{O}(\mathrm{g})$

$$
\mathrm{CH} 4+(3 / 2) \mathrm{O} 2=\mathrm{CO}+2 \mathrm{H} 2 \mathrm{O}(\mathrm{~g})
$$

$$
\begin{aligned}
\Delta \mathrm{H}_{298 \mathrm{a}} & :=-802625 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\Delta \mathrm{H}_{298 \mathrm{~b}} & :=-519641 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

BASIS: 1 mole of fuel gas consisting of $\mathbf{0 . 9 4} \mathbf{~ m o l ~ C H 4 ~ a n d ~} 0.06 \mathbf{m o l} \mathbf{N} \mathbf{2}$ Air entering contains:

$$
\begin{array}{ll}
1.35 \cdot 2 \cdot 0.94=2.538 & \operatorname{mol~O2} \\
2.538 \cdot \frac{79}{21}=9.548 & \operatorname{mol~N2}
\end{array}
$$

Moles CO2 formed by reaction $=0.94 \cdot 0.7=0.658$
Moles CO formed by reaction $=\quad 0.94 \cdot 0.3=0.282$

$$
\Delta \mathrm{H}_{298}:=\left(0.658 \cdot \Delta \mathrm{H}_{298 \mathrm{a}}+0.282 \cdot \Delta \mathrm{H}_{298 \mathrm{~b}} \quad \Delta \mathrm{H}_{298}=-6.747 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mol}}\right.
$$

Moles H2O formed by reaction $=\quad 0.94 \cdot 2.0=1.88$
Moles $\mathbf{O 2}$ consumed by reaction $=\quad 2 \cdot 0.658+\frac{3}{2} \cdot 0.282=1.739$

Product gases contain the following numbers of moles:

(1) CO2: 0.658
(2) CO: 0.282
(3) H2O: 1.880
(4) O2: 2.538-1.739 = 0.799
(5) $\mathrm{N} 2: 9.548+0.060=9.608$
$\mathrm{n}:=\left(\begin{array}{l}0.658 \\ 0.282 \\ 1.880 \\ 0.799 \\ 9.608\end{array}\right) \mathrm{A}:=\left(\begin{array}{l}5.457 \\ 3.376 \\ 3.470 \\ 3.639 \\ 3.280\end{array}\right) \mathrm{B}:=\left(\begin{array}{l}1.045 \\ 0.557 \\ 1.450 \\ 0.506\end{array}\right) \cdot 10^{-3}\left(\mathrm{D}:=\left(\begin{array}{l}-1.157 \\ -0.031 \\ 0.593\end{array}\right) .121 .10^{5}\right.$

$$
\begin{aligned}
\mathrm{i}:=1 . .5 \mathrm{~A}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}} \quad \mathrm{~B}:=\sum_{\mathrm{i}}\left(\mu_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}} \quad \mathrm{D}:=\sum_{\mathrm{i}}\left(\mu_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.\right.\right. \\
\mathrm{A}=45.4881 \quad \mathrm{~B}=9.6725 \times 10^{-3} \quad \mathrm{C}:=0 \quad \mathrm{D}=-3.396 \times 10^{4}
\end{aligned}
$$

$\Delta \mathrm{H}_{\mathrm{P}}:=\mathrm{R} \cdot \mathrm{MCPH}(298.15 \mathrm{~K}, 483.15 \mathrm{~K}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}) \cdot(483.15 \mathrm{~K}-298.15 \mathrm{~K})$

$$
\Delta \mathrm{H}_{\mathrm{P}}=7.541 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Energy balance: $\quad \Delta \mathrm{H}_{\mathrm{rx}}:=\Delta \mathrm{H}_{298}+\Delta \mathrm{H}_{\mathrm{P}} \quad \Delta \mathrm{H}_{\mathrm{rx}}=-599.252 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\Delta \mathrm{H}_{\mathrm{H} 2 \mathrm{O}} \cdot \operatorname{dndot}_{\mathrm{H} 2 \mathrm{O}}+\mathrm{H}_{\mathrm{rx}} \cdot$ ndot $_{\text {fuel }}=0 \quad \operatorname{mdot}_{\mathrm{H} 2 \mathrm{O}}:=34.0 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}$

From Table C.1: $\quad \Delta \mathrm{H}_{\mathrm{H} 2 \mathrm{O}}:=(398.0-104.8) \cdot \frac{\mathrm{kJ}}{\mathrm{kg}}$

$$
\text { ndot }_{\text {fuel }}:=\frac{-\Delta \mathrm{H}_{\mathrm{H} 2 \mathrm{O}} \cdot \text { mdot }_{\mathrm{H} 2 \mathrm{O}}}{\Delta \mathrm{H}_{\mathrm{rx}}} \quad \text { ndot } f \text { fuel }=16.635 \frac{\mathrm{~mol}}{\mathrm{sec}}
$$

Volumetric flow rate of fuel, assuming ideal gas:

$$
\mathrm{V}:=\frac{\text { ndot }_{\text {fuel }} \cdot \mathrm{R} \cdot 298.15 \cdot \mathrm{~K}}{101325 \cdot \mathrm{~Pa}}
$$

Ans.

4.41 $\mathrm{C} 4 \mathrm{H} 8(\mathrm{~g})=\mathrm{C} 4 \mathrm{H} 6(\mathrm{~g})+\mathrm{H} 2(\mathrm{~g})$

$$
\Delta \mathrm{H}_{298}:=109780 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

BASIS: 1 mole C4H8 entering, of which 33% reacts.
The unreacted C 4 H 8 and the diluent H 2 O pass throught the reactor unchanged, and need not be included in the energy balance. Thus
$\mathrm{n}:=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$
$\mathrm{T}_{0}:=298.15 \cdot \mathrm{~K}$
$\mathrm{T}:=798.15 \cdot \mathrm{~K}$
Evaluate $\quad \Delta \mathrm{H}_{798} \quad$ by Eq. (4.21):
1: C4H6 2: H2 3: C4H8
$\mathrm{A}:=\left(\begin{array}{l}2.734 \\ 3.249 \\ 1.967\end{array}\right)$

$C:=\left(\begin{array}{c}-8.882 \\ 0.0 \quad \mid \cdot 10^{-6} \\ -9.873\end{array}\right)$
$\mathrm{D}:=\left(\begin{array}{c}0.0 \\ 0.083 \\ \\ 0.0\end{array}\right) \cdot 10^{5}$
$\mathrm{i}:=1 . .3$
$\Delta \mathrm{A}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \Delta \mathrm{B}:=\sum_{\mathrm{i}}\left(\hat{\mathrm{r}}_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}} \quad \Delta \mathrm{C}:=\sum_{\mathrm{i}}\left(\mu_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{i}} \quad \Delta \mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.\right.\right.\right.$
$\Delta \mathrm{A}=4.016 \quad \Delta \mathrm{~B}=-4.422 \times 10^{-3} \quad \Delta \mathrm{C}=9.91 \times 10^{-7} \quad \Delta \mathrm{D}=8.3 \times 10^{3}$
$\Delta \mathrm{H}_{798}:=\Delta \mathrm{H}_{298}+\operatorname{MCPH}\left(298.15 \mathrm{~K}, \boxed{2} 98.15 \mathrm{~K}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \cdot \mathrm{R} \cdot() \Gamma-\mathrm{T}_{0}\right.$
$\Delta \mathrm{H}_{798}=1.179 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathrm{Q}:=0.33 \cdot \mathrm{Anol} \cdot \mathrm{H}_{798}$
Ans.

4.42 Assume Ideal Gas and $P=1 \mathrm{~atm}$

$\mathrm{P}:=1 \mathrm{~atm} \quad \mathrm{R}=7.88 \times 10^{-3} \frac{\mathrm{BTU}}{\mathrm{mol} \cdot \mathrm{K}}$
a) $\mathrm{T} 0:=(70+459.67)$ rankine $\quad \mathrm{T}:=\mathrm{T} 0+20$ rankine $\quad \mathrm{Q}:=12 \frac{\mathrm{BTU}}{\mathrm{sec}}$
$\mathrm{T} 0=294.261 \mathrm{~K} \quad \mathrm{~T}=305.372 \mathrm{~K}$
ІСРН(Г0, Т, $3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5}=38.995 \mathrm{~K}$
ndot $:=\frac{\mathrm{Q}}{\mathrm{R} \cdot \mathrm{ICPH}\left(\mathrm{T} 0, \mathrm{~T}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5}\right.} \quad$ ndot $=39.051 \frac{\mathrm{~mol}}{\mathrm{~s}}$
Vdot $:=\frac{\mathrm{ndot} \cdot \mathrm{R} \cdot \mathrm{T} 0}{\mathrm{P}}$

Vdot $=33.298 \frac{\mathrm{ft}^{3}}{\mathrm{sec}}$
Ans.
b) $\mathrm{T} 0:=(24+273.15) \mathrm{K}$
$\mathrm{T}:=\mathrm{T} 0+13 \mathrm{~K}$
$\mathrm{Q}:=12 \frac{\mathrm{~kJ}}{\mathrm{~s}}$
$\mathrm{R}=8.314 \times 10^{-3} \frac{\mathrm{~kJ}}{\mathrm{~mol} \cdot \mathrm{~K}}$
ІСРН()Г0, T, 3.355, 0.575.10 ${ }^{-3}, 0,-0.016 \cdot 10^{5}=45.659 \mathrm{~K}$
ndot $:=\frac{\mathrm{Q}}{\mathrm{R} \cdot \mathrm{ICPH}() \mathrm{\Gamma} 0, \mathrm{~T}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5}} \quad$ ndot $=31.611 \frac{\mathrm{~mol}}{\mathrm{~s}}$
Vdot $:=\frac{\mathrm{ndot} \cdot \mathrm{R} \cdot \mathrm{T} 0}{\mathrm{P}}$

4.43 Assume Ideal Gas and $P=1 \mathbf{~ a t m} \quad P:=1 \mathrm{~atm}$

a) $\mathrm{T} 0:=(94+459.67)$ rankine $\quad \mathrm{T}:=(68+459.67)$ rankine
$\mathrm{R}=1.61 \times 10^{-3} \frac{\mathrm{~atm} \cdot \mathrm{ft}^{3}}{\mathrm{~mol} \cdot \text { rankine }}$
Vdot $:=50 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{sec}} \quad$ ndot $:=\frac{\mathrm{P} \cdot \mathrm{Vdot}}{\mathrm{R} \cdot \mathrm{T} 0} \quad \operatorname{ndot}=56.097 \frac{\mathrm{~mol}}{\mathrm{~s}}$
$\mathrm{T} 0=307.594 \mathrm{~K} \quad \mathrm{~T}=293.15 \mathrm{~K}$
$\operatorname{ICPH}()\left\ulcorner 0, T, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5}=-50.7 \mathrm{~K}\right.$
$\mathrm{R}=7.88 \times 10^{-3} \frac{\mathrm{BTU}}{\mathrm{mol} \cdot \mathrm{K}}$
$\mathrm{Q}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma 0, \mathrm{~T}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5} \cdot \mathrm{ndot}$

Ans.
b) $\mathrm{T} 0:=(35+273.15) \mathrm{K} \quad \mathrm{T}:=(25+273.15) \mathrm{K}$

$$
\begin{aligned}
& \mathrm{R}=8.205 \times 10^{-5} \frac{\mathrm{~atm} \cdot \mathrm{~m}^{3}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& \text { Vdot }:=1.5 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{sec}} \quad \text { ndot }:=\frac{\mathrm{P} \cdot \mathrm{Vdot}}{\mathrm{R} \cdot \mathrm{~T} 0} \quad \text { ndot }=59.325 \frac{\mathrm{~mol}}{\mathrm{~s}}
\end{aligned}
$$

$\operatorname{ICPH}() \Gamma 0, \mathrm{~T}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5}=-35.119 \mathrm{~K}$
$\mathrm{R}=8.314 \times 10^{-3} \frac{\mathrm{~kJ}}{\mathrm{~mol} \cdot \mathrm{~K}}$
$\mathrm{Q}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma 0, \mathrm{~T}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5} \cdot \mathrm{ndot}$

$$
\mathrm{Q}=-17.3216 \frac{\mathrm{~kJ}}{\mathrm{~s}}
$$

4.44 First calculate the standard heat of combustion of propane

$$
\begin{aligned}
& \mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{8}}+\mathbf{5 \mathbf { O } _ { \mathbf { 2 } }}=\mathbf{3} \mathbf{C O}_{\mathbf{2}} \mathbf{(g)}+\mathbf{4} \mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathbf{g}) \\
& \Delta \mathrm{H}_{298}:=3 \cdot\left(-393509 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}\right)+4 \cdot\left(-241818 \frac{\mathrm{~J}}{\mathrm{~mol}}\right)-\left(-104680 \frac{\mathrm{~J}}{\mathrm{~mol}}\right) \\
& \Delta \mathrm{H}_{298}=-2.043 \times 10^{6} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
& \text { Cost }:=2.20 \frac{\text { dollars }}{\mathrm{gal}} \quad \eta:=80 \%
\end{aligned}
$$

Estimate the density of propane using the Rackett equation

$$
4.45 \mathrm{~T} 0:=(25+273.15) \mathrm{K} \quad \mathrm{~T}:=(500+273.15) \mathrm{K}
$$

a) Acetylene

$$
\mathrm{Q}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma 0, \mathrm{~T}, 6.132,1.952 \cdot 10^{-3}, 0,-1.299 \cdot 10^{5}
$$

$$
\mathrm{Q}=2.612 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The calculations are repeated and the answers are in the following table:

J/mol
a) Acetylene

26,120
b) Ammonia

20,200
c) n-butane
d) Carbon dioxide
e) Carbon monoxide
f) Ethane
g) Hydrogen
h) Hydrogen chloride
i) Methane
j) Nitric oxide
k) Nitrogen
l) Nitrogen dioxide
m) Nitrous oxide
n) Oxygen
o) Propylene

71,964
21,779
14,457
38,420
13,866
14,040
23,318
14,730
14,276
20,846
22,019
15,052
46,147

$$
\begin{array}{rl}
4.46 & \mathrm{~T} 0
\end{array} \begin{aligned}
& :=(25+273.15) \mathrm{K} \\
& \mathrm{Q}
\end{aligned} \mathrm{:}=30000 \frac{\mathrm{~J}}{\mathrm{~mol}} \mathrm{l}
$$

$$
\mathrm{T}:=(500+273.15) \mathrm{K}
$$

a) Acetylene \quad Given $\mathrm{Q}=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma 0, \mathrm{~T}, 6.132,1.952 \cdot 10^{-3}, 0,-1.299 \cdot 10^{5}$

$$
\mathrm{T}:=\operatorname{Find}(\mathrm{T}) \quad \mathrm{T}=835.369 \mathrm{~K} \quad \mathrm{~T}-273.15 \mathrm{~K}=562.2 \mathrm{deg} \mathrm{C}
$$

The calculations are repeated and the answers are in the following table:

		T (K)	T (C)
a)	Acetylene	835.4	562.3
b)	Ammonia	964.0	690.9
c)	n-butane	534.4	261.3
d)	Carbon dioxide	932.9	659.8
e)	Carbon monoxide	1248.0	974.9
f)	Ethane	690.2	417.1
g)	Hydrogen	1298.4	1025.3
h)	Hydrogen chloride	1277.0	1003.9
i)	Methane	877.3	604.2
j)	Nitric oxide	1230.2	957.1
k)	Nitrogen	1259.7	986.6
1)	Nitrogen dioxide	959.4	686.3
m)	Nitrous oxide	927.2	654.1
n)	Oxygen	1209.9	936.8
o)	Propylene	636.3	363.2

$$
4.47 \mathrm{~T} 0:=(25+273.15) \mathrm{K}
$$

$$
\mathrm{T}:=(250+273.15) \cdot \mathrm{K}
$$

$$
\mathrm{Q}:=11500 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

a) Guess mole fraction of methane: $y:=0.5$

Given

$$
\begin{aligned}
& \mathrm{y} \cdot \mathrm{ICPH}() \Gamma 0, \mathrm{~T}, 1.702,9.081 \cdot 10^{-3},-2.164 \cdot 10^{-6}, 0 \cdot \mathrm{R} \ldots \\
& +(1-\mathrm{y}) \cdot \operatorname{ICPH}\left(\text { П0, } \mathrm{T}, 1.131,19.225 \cdot 10^{-3},-5.561 \cdot 10^{-6}, 0 \cdot \mathrm{R}\right. \\
& \mathrm{y}:=\operatorname{Find}(\mathrm{y}) \quad \mathrm{y}=0.637 \quad \text { Ans. }
\end{aligned}
$$

b) $\mathrm{T} 0:=(100+273.15) \mathrm{K}$

$$
\mathrm{T}:=(400+273.15) \cdot \mathrm{K}
$$

$$
\mathrm{Q}:=54000 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Guess mole fraction of benzene $\quad \mathrm{y}:=0.5$
Given
$\mathrm{y} \cdot \mathrm{ICPH}() \Gamma 0, \mathrm{~T},-0.206,39.064 \cdot 10^{-3},-13.301 \cdot 10^{-6}, 0 \cdot \mathrm{R} \ldots \quad=\mathrm{Q}$ $+(1-\mathrm{y}) \cdot \operatorname{ICPH}() \Gamma 0, \mathrm{~T},-3.876,63.249 \cdot 10^{-3},-20.928 \cdot 10^{-6}, 0 \cdot \mathrm{R}$
$y:=\operatorname{Find}(y) \quad y=0.245 \quad$ Ans.
c) $\mathrm{T} 0:=(150+273.15) \mathrm{K}$

$$
\mathrm{T}:=(250+273.15) \cdot \mathrm{K}
$$

$$
\mathrm{Q}:=17500 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Guess mole fraction of toluene $\quad \mathrm{y}:=0.5$
Given
$\mathrm{y} \cdot \mathrm{ICPH}\left(\right.$) $0, \mathrm{~T}, 0.290,47.052 \cdot 10^{-3},-15.716 \cdot 10^{-6}, 0 \cdot \mathrm{R} \ldots \quad=\mathrm{Q}$ $+(1-\mathrm{y}) \cdot \mathrm{ICPH}() Г 0, \mathrm{~T}, 1.124,55.380 \cdot 10^{-3},-18.476 \cdot 10^{-6}, 0 \cdot \mathrm{R}$
$y:=\operatorname{Find}(y) \quad y=0.512 \quad$ Ans.
4.48 Temperature profiles for the air and water are shown in the figures below.

There are two possible situations. In the first case the minimum temperature difference, or "pinch" point occurs at an intermediate location in the exchanger. In the second case, the pinch occurs at one end of the exchanger. There is no way to know a priori which case applies.

To solve the problem, apply an energy balance around each section of the exchanger.
Section I balance: $\operatorname{mot}_{\mathrm{C}} \cdot()_{\mathrm{C} 1}-\mathrm{H}_{\mathrm{Ci}}=\operatorname{ndot}_{\mathrm{H}} \cdot \int_{\mathrm{T}_{\mathrm{Hi}}}^{\mathrm{T}_{\mathrm{H} 1}} \mathrm{C}_{\mathrm{P}} \mathrm{dT}$
Section II balance: $\operatorname{mot}_{\mathrm{C}} \cdot\left(\mathrm{H}_{\mathrm{Ci}}-\mathrm{H}_{\mathrm{C} 2}=\right.$ ndot $_{\mathrm{H}} \cdot \int_{\mathrm{T}_{\mathrm{H} 2}}^{\mathrm{T}_{\mathrm{Hi}}} \mathrm{C}_{\mathrm{P}} \mathrm{dT}$
If the pinch is intermediate, then $\mathrm{T}_{\mathrm{Hi}}=\mathrm{T}_{\mathrm{Ci}}+\Delta \mathrm{T}$. If the pinch is at the end, then $\mathrm{T}_{\mathrm{H} 2}=\mathrm{T}_{\mathrm{C} 2}+\Delta \mathrm{T}$.
a) $\mathrm{T}_{\mathrm{H} 1}:=1000 \operatorname{deg} \mathrm{C}$

$$
\begin{array}{lll}
\mathrm{T}_{\mathrm{C} 1}:=100 \operatorname{deg} \mathrm{C} & \mathrm{~T}_{\mathrm{Ci}}:=100 \operatorname{deg} \mathrm{C} & \mathrm{~T}_{\mathrm{C} 2}:=25 \operatorname{degC} \\
\mathrm{H}_{\mathrm{C} 1}:=2676.0 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{H}_{\mathrm{Ci}}:=419.1 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{H}_{\mathrm{C} 2}:=104.8 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{array}
$$

$\Delta \mathrm{T}:=10 \operatorname{deg} \mathrm{C}$
For air from Table C. $1 \mathrm{~A}:=3.355 \quad \mathrm{~B}:=0.575 \cdot 10^{-3} \quad \mathrm{C}:=0 \quad \mathrm{D}:=-0.016 \cdot 10^{5}$
Assume as a basis ndot $=1 \mathbf{~ m o l} / \mathbf{s} . \quad \operatorname{ndot}_{\mathrm{H}}:=1 \frac{\mathrm{kmol}}{\mathrm{s}}$
Assume pinch at end:
$\mathrm{T}_{\mathrm{H} 2}:=\mathrm{T}_{\mathrm{C} 2}+\Delta \mathrm{T}$

Guess: $\operatorname{mdot}_{\mathrm{C}}:=1 \frac{\mathrm{~kg}}{\mathrm{~s}} \quad \mathrm{~T}_{\mathrm{Hi}}:=110 \operatorname{deg} \mathrm{C}$
Given
$\operatorname{mdot}_{\mathrm{C}} \cdot\left(\mathrm{H}_{\mathrm{C} 1}-\mathrm{H}_{\mathrm{Ci}}=\mathrm{ndot}_{\mathrm{H}} \cdot \mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{\mathrm{Hi}}, \mathrm{T}_{\mathrm{H} 1}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\right.$ Energy balances on Section I and
$\operatorname{mdot}_{\mathrm{C}} \cdot\left(\mathrm{H}_{\mathrm{Ci}}-\mathrm{H}_{\mathrm{C} 2}=\operatorname{ndot}_{\mathrm{H}} \cdot \mathrm{R} \cdot \mathrm{ICPH}\left(\Gamma_{\mathrm{H} 2}, \mathrm{~T}_{\mathrm{Hi}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\right.\right.$ II
$\binom{\operatorname{mdot}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{Hi}}}:=\operatorname{Find}() \operatorname{mdot}_{\mathrm{C}}, \mathrm{T}_{\mathrm{Hi}} \quad \mathrm{T}_{\mathrm{Hi}}=170.261 \operatorname{degC} \operatorname{mdot}_{\mathrm{C}}=11.255 \frac{\mathrm{~kg}}{\mathrm{~s}}$

$\mathrm{T}_{\mathrm{Hi}}-\mathrm{T}_{\mathrm{Ci}}=70.261 \operatorname{deg} \mathrm{C}$

Since the intermediate temperature difference, $\mathrm{T}_{\mathrm{Hi}}-\mathrm{T}_{\mathrm{Ci}}$ is greater than the temperature difference at the end point, $\mathrm{T}_{\mathrm{H} 2}-\mathrm{T}_{\mathrm{C} 2}$, the assumption of a pinch at the end is correct.
b) $\begin{array}{llll}\mathrm{T}_{\mathrm{H} 1}:=500 \operatorname{deg} \mathrm{C} & \mathrm{T}_{\mathrm{C} 1}:=100 \operatorname{degC} & \mathrm{~T}_{\mathrm{Ci}}:=100 \operatorname{degC} & \mathrm{~T}_{\mathrm{C} 2}:=25 \operatorname{degC} \\ \Delta \mathrm{~T}:=10 \operatorname{degC} & \mathrm{H}_{\mathrm{C} 1}:=2676.0 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{H}_{\mathrm{Ci}}:=419.1 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{H}_{\mathrm{C} 2}:=104.8 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\end{array}$

Assume as a basis ndot $=1 \mathbf{~ m o l} / \mathbf{s} . \quad \operatorname{ndot}_{\mathrm{H}}:=1 \frac{\mathrm{kmol}}{\mathrm{s}}$
Assume pinch is intermediate: $\quad \mathrm{T}_{\mathrm{Hi}}:=\mathrm{T}_{\mathrm{Ci}}+\Delta \mathrm{T}$
Guess: $\operatorname{mdot}_{\mathrm{C}}:=1 \frac{\mathrm{~kg}}{\mathrm{~s}} \quad \mathrm{~T}_{\mathrm{H} 2}:=110 \operatorname{deg} \mathrm{C}$
Given
$\operatorname{mdot}_{\mathrm{C}} \cdot\left(\mathrm{H}_{\mathrm{C} 1}-\mathrm{H}_{\mathrm{Ci}}=\operatorname{ndot}_{\mathrm{H}} \cdot \mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{\mathrm{Hi}}, \mathrm{T}_{\mathrm{H} 1}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \begin{array}{r}\text { Energy balances } \\ \text { on Section I and }\end{array}\right.$
$\operatorname{mdot}_{\mathrm{C}} \cdot\left(\mathrm{H}_{\mathrm{Ci}}-\mathrm{H}_{\mathrm{C} 2}=\operatorname{ndot}_{\mathrm{H}} \cdot \mathrm{R} \cdot \operatorname{ICPH}() \Gamma_{\mathrm{H} 2}, \mathrm{~T}_{\mathrm{Hi}}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\right.$ II
$\binom{\operatorname{mdot}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{H} 2}}:=\operatorname{Find}() \operatorname{mdot}_{\mathrm{C}}, \mathrm{T}_{\mathrm{H} 2} \quad \mathrm{~T}_{\mathrm{H} 2}=48.695 \operatorname{degC} \quad \operatorname{mdot}_{\mathrm{C}}=5.03 \frac{\mathrm{~kg}}{\mathrm{~s}}$

Ans.
$\mathrm{T}_{\mathrm{Hi}}-\mathrm{T}_{\mathrm{Ci}}=10 \mathrm{deg} \mathrm{C} \quad \mathrm{T}_{\mathrm{H} 2}-\mathrm{T}_{\mathrm{C} 2}=23.695 \operatorname{deg} \mathrm{C}$
Since the intermediate temperature difference, $\mathrm{T}_{\mathrm{Hi}}-\mathrm{T}_{\mathrm{Ci}}$ is less than the temperature difference at the end point, $\mathrm{T}_{\mathrm{H} 2}-\mathrm{T}_{\mathrm{C} 2}$, the assumption of an intermediate pinch is correct.
4.50 a) $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})=6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$1=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}, 2=\mathrm{O}_{\mathbf{2}}, 3=\mathrm{CO}_{2}, 4=\mathrm{H}_{2} \mathrm{O}$
$\Delta \mathrm{H}_{\mathrm{fl}}:=-1274.4 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

$$
\Delta \mathrm{H} 0_{\mathrm{f} 2}:=0 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

$$
\mathrm{M}_{1}:=180 \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{H} 0_{\mathrm{f} 3}:=-393.509 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{H} 0_{\mathrm{f} 4}:=-285.830 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \mathrm{M}_{3}:=44 \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{H} 0_{\mathrm{r}}:=6 \cdot \Delta \mathrm{H} 0_{\mathrm{f} 3}+\Delta 6 \cdot \Delta \mathrm{H} 0_{\mathrm{f} 4}-\mathrm{H} 0_{\mathrm{fl}}-6 \cdot \Delta \mathrm{H} 0_{\mathrm{f} 2} \quad \Delta \mathrm{H} 0_{\mathrm{r}}=-2801.634 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Ans.
b) energy_per_kg $:=150 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$ mass_person $:=57 \mathrm{~kg}$
mass_glucose $:=\frac{\text { mass_person } \cdot \text { energy_per_kg }}{-\Delta \mathrm{H} 0_{\mathrm{r}}} \cdot \mathrm{M}_{1} \quad$ mass_glucose $=0.549 \mathrm{~kg}$ Ans.
c) $\mathbf{6}$ moles of CO_{2} are produced for every mole of glucose consumed. Use molecular mass to get ratio of mass CO_{2} produced per mass of glucose.

$$
275 \cdot 10^{6} \cdot \text { mass_glucose } \cdot \frac{6 \cdot \mathrm{M}_{3}}{\mathrm{M}_{1}}=2.216 \times 10^{8} \mathrm{~kg}
$$

Ans.

4.51 Assume as a basis, 1 mole of fuel.

a) $\Delta \mathrm{H} 0_{\mathrm{c}}:=1.05 \cdot \Delta \mathrm{H} 0_{\mathrm{f} 4}+2 \cdot \Delta \mathrm{H} 0_{\mathrm{f} 5}-0.85 \cdot \Delta \mathrm{H} 0_{\mathrm{f} 1}-0.10 \cdot \Delta \mathrm{H} 0_{\mathrm{f} 2}-1.05 \cdot \Delta \mathrm{H} 0_{\mathrm{f}}$

$$
\Delta \mathrm{H} 0_{\mathrm{c}}=-825.096 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \text { Ans. }
$$

b) For complete combustion of 1 mole of fuel and $\mathbf{5 0 \%}$ excess air, the exit gas will contain the following numbers of moles:

$$
\mathrm{n}_{3}:=0.5 \cdot 2.05 \mathrm{~mol} \quad \mathrm{n}_{3}=1.025 \mathrm{~mol} \quad \text { Excess } \mathbf{O}_{\mathbf{2}}
$$

$$
\begin{aligned}
& 0.85\left(\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})=\mathbf{C O}_{\mathbf{2}}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right) \\
& 0.10\left(\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+3.5 \mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})\right) \\
& 0.85 \mathrm{CH}_{4}(\mathrm{~g})+0.10 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+2.05 \mathrm{O}_{2}(\mathrm{~g})=1.05 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \mathbf{1}=\mathrm{CH}_{4}, \mathbf{2}=\mathrm{C}_{\mathbf{2}} \mathrm{H}_{\mathbf{6}}, \mathbf{3}=\mathrm{O}_{\mathbf{2}}, 4=\mathrm{CO}_{\mathbf{2}}, 5=\mathrm{H}_{\mathbf{2}} \mathrm{O} \quad \mathbf{6}=\mathrm{N}_{\mathbf{2}} \\
& \Delta H 0_{\mathrm{f} 1}:=-74.520 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{H} 0_{\mathrm{f} 2}:=-83.820 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{H} 0_{\mathrm{f} 3}:=0 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Delta \mathrm{H} 0_{\mathrm{f} 4}:=-393.509 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \Delta \mathrm{H} 0_{\mathrm{f} 5}:=-241.818 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

$\mathrm{n}_{4}:=1.05 \mathrm{~mol}$
$\mathrm{n}_{5}:=2 \mathrm{~mol}$
$\mathrm{n}_{6}:=0.05 \mathrm{~mol}+\frac{79}{21} \cdot 1.5 \cdot 2.05 \mathrm{~mol} \quad \mathrm{n}_{6}=11.618 \mathrm{~mol} \quad$ Total \mathbf{N}_{2}
Air and fuel enter at 25 C and combustion products leave at 600 C .

$$
\mathrm{T}_{1}:=(25+273.15) \mathrm{K} \quad \mathrm{~T}_{2}:=(600+273.15) \mathrm{K}
$$

$$
\mathrm{A}:=\frac{\left(\mathrm{n}_{3} \cdot 3.639+\mathrm{n}_{4} \cdot 6.311+\mathrm{n}_{5} \cdot 3.470+\mathrm{n}_{6} \cdot 3.280\right.}{\mathrm{mol}}
$$

$$
B:=\frac{\left(\mathrm{n}_{3} \cdot 0.506+\mathrm{n}_{4} \cdot 0.805+\mathrm{n}_{5} \cdot 1.450+\mathrm{n}_{6} \cdot 0.593 \cdot 10^{-3}\right.}{\mathrm{mol}}
$$

$$
\mathrm{C}:=\frac{\left(\mathrm{h}_{3} \cdot 0+\mathrm{n}_{4} \cdot 0+\mathrm{n}_{5} \cdot 0+\mathrm{n}_{6} \cdot 0 \cdot 10^{-6}\right.}{\mathrm{mol}}
$$

$$
\mathrm{D}:=\frac{\left[\mathrm{n}_{3} \cdot(-0.227)+\mathrm{n}_{4} \cdot(-0.906)+\mathrm{n}_{5} \cdot 0.121+\mathrm{n}_{6} \cdot 0.040\right] \cdot 10^{5}}{\mathrm{~mol}}
$$

$$
\mathrm{Q}:=\Delta \mathrm{H} 0_{\mathrm{c}}+\operatorname{ICPH}() \Gamma_{1}, \mathrm{~T}_{2}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \cdot \mathrm{R}
$$

$$
\mathrm{Q}=-529.889 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Ans.

Chapter 5-Section A - Mathcad Solutions

5.2 Let the symbols Q and Work represent rates in kJ / s. Then by Eq. (5.8)

$$
\eta=\frac{\mid \text { Work } \mid}{\left|\mathrm{Q}_{\mathrm{H}}\right|}=1-\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{~T}_{\mathrm{H}}}
$$

$$
\begin{aligned}
\mathrm{T}_{\mathrm{C}}:=323.15 \cdot \mathrm{~K} & \mathrm{~T}_{\mathrm{H}}:=798.15 \cdot \mathrm{~K} \\
\text { Work }:=\left|\mathrm{Q}_{\mathrm{H}} \cdot\left(1-\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{~T}_{\mathrm{H}}}\right)\right| \quad & \mathrm{Q}_{\mathrm{H}}:=250 \cdot \frac{\mathrm{~kJ}}{\mathrm{~s}} \\
& \mid \text { Work } \left\lvert\,=148.78 \frac{\mathrm{~kJ}}{\mathrm{~s}}\right. \\
\text { or } & \mid \text { Work } \mid=148.78 \mathrm{~kW} \text { which is the power. Ans. }
\end{aligned}
$$

By Eq. (5.1),

$$
\mathrm{Q}_{\mathrm{C}}:=\left|\mathrm{Q}_{\mathrm{H}}\right|-\mid \text { Work } \left\lvert\, \quad \mathrm{Q}_{\mathrm{C}}=101.22 \frac{\mathrm{~kJ}}{\mathrm{~s}}\right.
$$

Ans.
5.3 (a) Let symbols Q and Work represent rates in kJ / s

$\mathrm{T}_{\mathrm{H}}:=750 \cdot \mathrm{~K}$	$\mathrm{~T}_{\mathrm{C}}:=300 \cdot \mathrm{~K}$	Work $:=-95000 \cdot \mathrm{~kW}$
By Eq. (5.8):	$\eta:=1-\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{H}}}$	$\eta=0.6$
But $\quad \eta=\frac{\mid \text { Work } \mid}{\left\|\mathrm{Q}_{\mathrm{H}}\right\|}$	Whence	$\mathrm{Q}_{\mathrm{H}}:=\frac{\mid \text { Work } \mid}{\eta}$
		$\mathrm{Q}_{\mathrm{H}}=1.583 \times 10^{5} \mathrm{~kW}$ Ans.

$\begin{array}{rll} & \mathrm{Q}_{\mathrm{C}}:=\left|\mathrm{Q}_{\mathrm{H}}\right|-\mid \text { Work } \mid & \mathrm{Q}_{\mathrm{C}}=6.333 \times 10^{4} \mathrm{~kW} \text { Ans. } \\ \text { (b) } \eta:=0.35 & \mathrm{Q}_{\mathrm{H}}:=\frac{\mid \text { Work } \mid}{\eta} & \mathrm{Q}_{\mathrm{H}}=2.714 \times 10^{5} \mathrm{~kW} \text { Ans. } \\ & \mathrm{Q}_{\mathrm{C}}:=\left|\mathrm{Q}_{\mathrm{H}}\right|-\mid \text { Work } \mid & \mathrm{Q}_{\mathrm{C}}=1.764 \times 10^{5} \mathrm{~kW} \text { Ans. }\end{array}$
5.4 (a) $\mathrm{T}_{\mathrm{C}}:=303.15 \cdot \mathrm{~K}$
$\mathrm{T}_{\mathrm{H}}:=623.15 \cdot \mathrm{~K}$
$\eta_{\text {Carnot }}:=1-\frac{T_{C}}{T_{H}}$
$\eta:=0.55 \cdot \eta_{\text {Carnot }}$
$\eta=0.282$
Ans.
(b) $\quad \eta:=0.35$
$\eta_{\text {Carnot }}:=\frac{\eta}{0.55}$
$\eta_{\text {Carnot }}=0.636$
By Eq. (5.8),

$$
\mathrm{T}_{\mathrm{H}}:=\frac{\mathrm{T}_{\mathrm{C}}}{1-\eta_{\text {Carnot }}} \quad \mathrm{T}_{\mathrm{H}}=833.66 \mathrm{~K}
$$

Ans.
5.7 Let the symbols represent rates where appropriate. Calculate mass rate of LNG evaporation:
$\mathrm{V}:=9000 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \mathrm{P}:=1.0133 \cdot \mathrm{bar} \quad \mathrm{T}:=298.15 \cdot \mathrm{~K}$
molwt $:=17 \frac{\mathrm{gm}}{\mathrm{mol}} \quad \mathrm{m}_{\mathrm{LNG}}:=\frac{\mathrm{P} \cdot \mathrm{V}}{\mathrm{R} \cdot \mathrm{T}} \cdot \mathrm{molwt} \quad \mathrm{m}_{\mathrm{LNG}}=6254 \frac{\mathrm{~kg}}{\mathrm{~s}}$
Maximum power is generated by a Carnot engine, for which
$\frac{\mid \text { Work } \mid}{\left|\mathrm{Q}_{\mathrm{C}}\right|}=\frac{\left|\mathrm{Q}_{\mathrm{H}}\right|-\left|\mathrm{Q}_{\mathrm{C}}\right|}{\left|\mathrm{Q}_{\mathrm{C}}\right|}=\frac{\left|\mathrm{Q}_{\mathrm{H}}\right|}{\left|\mathrm{Q}_{\mathrm{C}}\right|}-1=\frac{\mathrm{T}_{\mathrm{H}}}{\mathrm{T}_{\mathrm{C}}}-1$

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{H}}:=303.15 \cdot \mathrm{~K} & \mathrm{~T}_{\mathrm{C}}:=113.7 \cdot \mathrm{~K} \\
\mathrm{Q}_{\mathrm{C}}:=512 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \cdot \mathrm{~m}_{\mathrm{LNG}} & \mathrm{Q}_{\mathrm{C}}=3.202 \times 10^{6} \mathrm{~kW} \\
\text { Work }:=\mathrm{Q}_{\mathrm{C}} \cdot\left(\frac{\mathrm{~T}_{\mathrm{H}}}{\mathrm{~T}_{\mathrm{C}}}-1\right) & \text { Work }=5.336 \times 10^{6} \mathrm{~kW} \\
\mathrm{Q}_{\mathrm{H}}:=\mathrm{Q}_{\mathrm{C}}+\text { Work } & \mathrm{Q}_{\mathrm{H}}=8.538 \times 10^{6} \mathrm{~kW}
\end{array}
$$

Ans.

Ans.
5.8 Take the heat capacity of water to be constant at the valu $C_{P}:=4.184 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
(a) $\mathrm{T}_{1}:=273.15 \cdot \mathrm{~K}$
$\mathrm{T}_{2}:=373.15 \cdot \mathrm{~K}$
$\mathrm{Q}:=\mathrm{C}_{\mathrm{P}} \cdot() \Gamma_{2}-\mathrm{T}_{1} \quad \mathrm{Q}=418.4 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\Delta \mathrm{S}_{\mathrm{H} 2 \mathrm{O}}:=\mathrm{C}_{\mathrm{P}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)$
$\Delta \mathrm{S}_{\mathrm{H} 2 \mathrm{O}}=1.305 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\Delta \mathrm{S}_{\mathrm{res}}:=\frac{-\mathrm{Q}}{\mathrm{T}_{2}}$
$\Delta \mathrm{S}_{\text {res }}=-1.121 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
Ans.
$\Delta \mathrm{S}_{\text {total }}:=\Delta \mathrm{S}_{\mathrm{H} 2 \mathrm{O}}+\Delta \mathrm{S}_{\text {res }}$

$$
\Delta \mathrm{S}_{\text {total }}=0.184 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

Ans.
(b) The entropy change of the water is the same as in (a), and the total heat transfer is the same, but divided into two halves.

$$
\begin{aligned}
& \Delta \mathrm{S}_{\text {res }}:=\frac{-\mathrm{Q}}{2} \cdot\left(\frac{1}{323.15 \cdot \mathrm{~K}}+\frac{1}{373.15 \cdot \mathrm{~K}}\right) \quad \Delta \mathrm{S}_{\mathrm{res}}=-1.208 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
& \Delta \mathrm{~S}_{\text {total }}:=\Delta \mathrm{S}_{\text {res }}+\Delta \mathrm{S}_{\mathrm{H} 2 \mathrm{O}} \quad \Delta \mathrm{~S}_{\text {total }}=0.097 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \text { Ans. }
\end{aligned}
$$

(c) The reversible heating of the water requires an infinite number of heat reservoirs covering the range of temperatures from 273.15 to 373.15 K , each one exchanging an infinitesimal quantity of heat with the water and raising its temperature by a differential increment.
5.9

$\mathrm{P}_{1}:=1 \cdot \mathrm{bar}$	$\mathrm{T}_{1}:=500 \cdot \mathrm{~K}$	$\mathrm{~V}:=0.06 \cdot \mathrm{~m}^{3}$
$\mathrm{n}:=\frac{\mathrm{P}_{1} \cdot \mathrm{~V}}{\mathrm{R} \cdot \mathrm{T}_{1}}$	$\mathrm{n}=1.443 \mathrm{~mol}$	$\mathrm{C}_{\mathrm{V}}:=\frac{5}{2} \cdot \mathrm{R}$

(a) Const.-V heating; $\quad \Delta \mathrm{U}=\mathrm{Q}+\mathrm{W}=\mathrm{Q}=\mathrm{n} \cdot \mathrm{C}_{\mathrm{V}} \cdot() \Gamma_{2}-\mathrm{T}_{1}$
$\mathrm{T}_{2}:=\mathrm{T}_{1}+\frac{\mathrm{Q}}{\mathrm{n} \cdot \mathrm{C}_{\mathrm{V}}} \quad \mathrm{T}_{2}=1 \times 10^{3} \mathrm{~K}$
By Eq. (5.18),

$$
\Delta \mathrm{S}=\mathrm{n} \cdot\left(\mathrm{CP} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)\right)
$$

But $\quad \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}} \quad$ Whence $\quad \Delta \mathrm{S}:=\mathrm{n} \cdot \mathrm{C}_{\mathrm{V}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right) \quad \Delta \mathrm{S}=20.794 \frac{\mathrm{~J}}{\mathrm{~K}} \quad$ Ans.
(b) The entropy change of the gas is the same as in (a). The entropy change of the surroundings is zero. Whence

$$
\Delta \mathrm{S}_{\text {total }}=10.794 \cdot \frac{\mathrm{~J}}{\mathrm{~K}} \quad \text { Ans. }
$$

The stirring process is irreversible.
5.10 (a) The temperature drop of the second stream (B) in either case is the same as the temperature rise of the first stream (A), i.e., $\mathbf{1 2 0} \mathbf{~ d e g C}$. The exit temperature of the second stream is therefore $\mathbf{2 0 0}$ degC. In both cases we therefore have:

$$
\begin{array}{ll}
\Delta \mathrm{S}_{\mathrm{A}}:=\mathrm{C}_{\mathrm{P}} \cdot \ln \left(\frac{463.15}{343.15}\right) & \Delta \mathrm{S}_{\mathrm{B}}:=\mathrm{C}_{\mathrm{P}} \cdot \ln \left(\frac{473.15}{593.15}\right) \\
\Delta \mathrm{S}_{\mathrm{A}}=8.726 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} & \Delta \mathrm{~S}_{\mathrm{B}}=-6.577 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{array}
$$

Ans.
(b) For both cases:

$$
\Delta \mathrm{S}_{\text {total }}:=\Delta \mathrm{S}_{\mathrm{A}}+\Delta \mathrm{S}_{\mathrm{B}}
$$

$$
\Delta \mathrm{S}_{\text {total }}=2.149 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Ans.
(c) In this case the final temperature of steam B is $\mathbf{8 0} \operatorname{deg} C$, i.e., there is a 10-degC driving force for heat transfer throughout the exchanger. Now

$$
\begin{array}{ll}
\Delta \mathrm{S}_{\mathrm{A}}:=\mathrm{C}_{\mathrm{P}} \cdot \ln \left(\frac{463.15}{343.15}\right) & \Delta \mathrm{S}_{\mathrm{B}}:=\mathrm{C}_{\mathrm{P}} \cdot \ln \left(\frac{353.15}{473.15}\right) \\
\Delta \mathrm{S}_{\mathrm{A}}=8.726 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} & \Delta \mathrm{~S}_{\mathrm{B}}=-8.512 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
\Delta \mathrm{~S}_{\text {total }}:=\Delta \mathrm{S}_{\mathrm{A}}+\Delta \mathrm{S}_{\mathrm{B}} & \Delta \mathrm{~S}_{\text {total }}=0.214 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{array}
$$

Ans.

Ans.
5.16 By Eq. (5.8),

$$
\frac{d W}{d Q}=1-\frac{T_{\sigma}}{T} \quad d W=d Q-T_{\sigma} \cdot \frac{d Q}{T}
$$

Since dQ/T = dS,
$d W=d Q-T_{\sigma} \cdot d S$
Integration gives the required result.

$$
\begin{array}{lll}
\mathrm{T}_{1}:=600 \cdot \mathrm{~K} & \mathrm{~T}_{2}:=400 \cdot \mathrm{~K} & \mathrm{~T}_{\sigma}:=300 \cdot \mathrm{~K} \\
\mathrm{Q}:=\mathrm{C}_{\mathrm{P}} \cdot() \Gamma_{2}-\mathrm{T}_{1} & \mathrm{Q}=-5.82 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} &
\end{array}
$$

$$
\begin{array}{ll}
\Delta \mathrm{S}:=\mathrm{C}_{\mathrm{P}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right) & \Delta \mathrm{S}=-11.799 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
\text { Work }:=\mathrm{Q}-\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S} & \text { Work }=-2280 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathrm{Q}_{\sigma}:=|\mathrm{Q}|-\mid \text { Work } \mid & \mathrm{Q}_{\sigma}=3540 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\Delta \mathrm{~S}_{\text {reservoir }}:=\frac{\mathrm{Q}_{\sigma}}{\mathrm{T}_{\sigma}} & \Delta \mathrm{S}_{\text {reservoir }}=11.8 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
\Delta \mathrm{~S}+\Delta \mathrm{S}_{\text {reservoir }}=0 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} & \text { Process is reversible. }
\end{array}
$$

$$
\Delta \mathrm{S}+\Delta \mathrm{S}_{\text {reservoir }}=0 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Ans.

Ans.

Ans.
$5.17 \mathrm{~T}_{\mathrm{H} 1}:=600 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{C} 1}:=300 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{H} 2}:=300 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{C} 2}:=250 \cdot \mathrm{~K}$
For the Carnot engine, use Eq. (5.8):

$$
\frac{|\mathrm{W}|}{\left|\mathrm{Q}_{\mathrm{H} 1}\right|}=\frac{\mathrm{T}_{\mathrm{H} 1}-\mathrm{T}_{\mathrm{C} 1}}{\mathrm{~T}_{\mathrm{H} 1}}
$$

The Carnot refrigerator is a reverse Carnot engine.
Combine Eqs. (5.8) \& (5.7) to get:

$$
\frac{|\mathrm{W}|}{\left|\mathrm{Q}_{\mathrm{C} 2}\right|}=\frac{\mathrm{T}_{\mathrm{H} 2}-\mathrm{T}_{\mathrm{C} 2}}{\mathrm{~T}_{\mathrm{C} 2}}
$$

Equate the two work quantities and solve for the required ratio of the heat quantities:

$$
\mathrm{r}:=\frac{\mathrm{T}_{\mathrm{C} 2}}{\mathrm{~T}_{\mathrm{H} 1}} \cdot\left(\frac{\mathrm{~T}_{\mathrm{H} 1}-\mathrm{T}_{\mathrm{C} 1}}{\mathrm{~T}_{\mathrm{H} 2}-\mathrm{T}_{\mathrm{C} 2}}\right) \quad \mathrm{r}=2.5 \quad \text { Ans. }
$$

5.18 (a) $\mathrm{T}_{1}:=300 \mathrm{~K} \quad \mathrm{P}_{1}:=1.2 \mathrm{bar}$	$\mathrm{T}_{2}:=450 \mathrm{~K} \quad \mathrm{P}_{2}:=6 \mathrm{bar} \quad \mathrm{C}_{\mathrm{p}}:=\frac{7}{2} \mathrm{R}$
$\Delta \mathrm{H}:=\mathrm{C}_{\mathrm{p}} \cdot\left(\left(\Gamma_{2}-\mathrm{T}_{1}\right.\right.$	$\Delta \mathrm{H}=4.365 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad$ Ans.
$\Delta \mathrm{S}:=\mathrm{C}_{\mathrm{p}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$	$\Delta \mathrm{S}=-1.582 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad$ Ans.
(b) $\Delta \mathrm{H}=5.82 \cdot 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}$	$\Delta \mathrm{~S}=1.484 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$

(c) $\Delta \mathrm{H}=-3.118 \cdot 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{~S}=4.953 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
(d) $\Delta \mathrm{H}=-3.741 \cdot 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{~S}=2.618 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
(e) $\quad \Delta \mathrm{H}=-6.651 \cdot 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\Delta \mathrm{S}=-3.607 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
5.19 This cycle is the same as is shown in Fig. 8.10 on p. 305. The equivalent states are $A=3, B=4, C=1$, and $D=2$. The efficiency is given by Eq. (A) on p. 305 .

Temperature T_{4} is not given and must be calaculated. The following equations are used to derive and expression for T_{4}.

For adiabatic steps 1 to 2 and 3 to 4:

$$
\mathrm{T}_{1} \cdot \mathrm{~V}_{1}^{\gamma-1}=\mathrm{T}_{2} \cdot \mathrm{~V}_{2}^{\gamma-1} \quad \mathrm{~T}_{3} \cdot \mathrm{~V}_{3}^{\gamma-1}=\mathrm{T}_{4} \cdot \mathrm{~V}_{4}^{\gamma-1}
$$

For constant-volume step 4 to 1:

$$
\mathrm{V}_{1}=\mathrm{V}_{4}
$$

For isobaric step 2 to 3:

$$
\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}}=\frac{\mathrm{P}_{3}}{\mathrm{~T}_{3}}
$$

Solving these 4 equations for T_{4} yields: $\mathrm{T}_{4}=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{3}}\right)^{-\gamma}$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}:=\frac{7}{2} \mathrm{R} \quad \mathrm{C}_{\mathrm{V}}:=\frac{5}{2} \mathrm{R} \quad \gamma:=\frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{C}_{\mathrm{V}}} \quad \gamma=1.4 \\
& \mathrm{~T}_{1}:=(200+273.15) \mathrm{K} \quad \mathrm{~T}_{2}:=(1000+273.15) \mathrm{K} \quad \mathrm{~T}_{3}:=(1700+273.15) \mathrm{K} \\
& \mathrm{~T}_{4}:=\mathrm{T}_{1} \cdot\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{3}}\right)^{-\gamma} \quad \mathrm{T}_{4}=873.759 \mathrm{~K} \\
& \text { Eq. (A) p. } 306 \quad \eta:=1-\frac{1}{\gamma} \cdot\left(\frac{\mathrm{~T}_{4}-\mathrm{T}_{1}}{\mathrm{~T}_{3}-\mathrm{T}_{2}}\right) \quad \eta=0.591 \quad \text { Ans. }
\end{aligned}
$$

$\gamma:=\frac{C_{P}}{C_{V}}$

$$
\gamma=1.4
$$

With the reversible work given by Eq. (3.34), we get for the actual \mathbf{W} :
Work $:=1.35 \cdot \frac{\mathrm{R} \cdot \mathrm{T}_{1}}{\gamma-1} \cdot\left[\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\gamma-1}{\gamma}}-1\right] \quad$ Work $=3.6 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}$
But $\mathbf{Q}=0$, and $\mathrm{W}=\Delta \mathrm{U}=\mathrm{C}_{\mathrm{V}} \cdot() \Gamma_{2}-\mathrm{T}_{1} \quad$ Whence $\quad \mathrm{T}_{2}:=\mathrm{T}_{1}+\frac{\text { Work }}{\mathrm{C}_{\mathrm{V}}}$

$$
\mathrm{T}_{2}=471.374 \mathrm{~K}
$$

$\Delta \mathrm{S}:=\mathrm{C} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$

Ans.
5.25 $\mathrm{P}:=4 \quad \mathrm{~T}:=800$

Step 1-2: Volume decreases at constant P.
Heat flows out of the system. Work is done on the system.

$$
\mathrm{W}_{12}=-\left[\mathrm{P} \cdot\left(\mathrm{~N}_{2}-\mathrm{V}_{1}\right]=-\left[\mathrm{R} \cdot() \Gamma_{2}-\mathrm{T}_{1}\right]\right.
$$

Step 2-3: Isothermal compression. Work is done on the system. Heat flows out of the system.

$$
\mathrm{W}_{23}=\mathrm{R} \cdot \mathrm{~T}_{2} \cdot \ln \left(\frac{\mathrm{P}_{3}}{\mathrm{P}_{2}}\right)=\mathrm{R} \cdot \mathrm{~T}_{2} \cdot \ln \left(\frac{\mathrm{P}_{3}}{\mathrm{P}_{1}}\right)
$$

Step 3-1: Expansion process that produces work. Heat flows into the system. Since the $P T$ product is constant,

$$
\begin{array}{ll}
\mathrm{P} \cdot \mathrm{dT}+\mathrm{T} \cdot \mathrm{dP}=0 & \mathrm{~T} \cdot \frac{\mathrm{dP}}{\mathrm{P}}=-\mathrm{dT} \tag{A}\\
\mathrm{P} \cdot \mathrm{~V}=\mathrm{R} \cdot \mathrm{~T} & \mathrm{P} \cdot \mathrm{dV}+\mathrm{V} \cdot \mathrm{dP}=\mathrm{R} \cdot \mathrm{dT} \\
\mathrm{P} \cdot \mathrm{dV}=\mathrm{R} \cdot \mathrm{dT}-\mathrm{V} \cdot \mathrm{dP}=\mathrm{R} \cdot \mathrm{dT}-\mathrm{R} \cdot \mathrm{~T} \cdot \frac{\mathrm{dP}}{\mathrm{P}}
\end{array}
$$

In combination with (A) this becomes

$$
\mathrm{P} \cdot \mathrm{dV}=\mathrm{R} \cdot \mathrm{dT}+\mathrm{R} \cdot \mathrm{dT}=2 \cdot \mathrm{R} \cdot \mathrm{dT}
$$

Moreover, $\quad P_{3}=P_{1} \cdot \frac{T_{1}}{T_{3}}=\mathrm{P}_{1} \cdot \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}$
$W_{31}=-\int_{V_{3}}^{\mathrm{V}_{1}} \mathrm{PdV}=-2 \cdot \mathrm{R} \cdot\left(\Gamma_{1}-\mathrm{T}_{3}=-2 \cdot \mathrm{R} \cdot() \Gamma_{1}-\mathrm{T}_{2}\right.$
$\mathrm{Q}_{31}=\Delta \mathrm{U}_{31}-\mathrm{W}_{31}=\mathrm{C}_{\mathrm{V}} \cdot\left(\Gamma_{1}-\mathrm{T}_{3}+2 \cdot \mathrm{R} \cdot() \Gamma_{1}-\mathrm{T}_{3}\right.$
$\mathrm{Q}_{31}=\left(\mathrm{C}_{\mathrm{V}}+2 \cdot \mathrm{R} \cdot() \Gamma_{1}-\mathrm{T}_{3}=\left(\mathrm{C}_{\mathrm{P}}+\mathrm{R} \cdot() \Gamma_{1}-\mathrm{T}_{2}\right.\right.$
$\eta=\frac{\left|W_{\text {net }}\right|}{Q_{\text {in }}}=\frac{\left|W_{12}+W_{23}+W_{31}\right|}{Q_{31}}$
$\begin{array}{lll}\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \mathrm{R} & \mathrm{T}_{1}:=700 \cdot \mathrm{~K} & \mathrm{~T}_{2}:=350 \cdot \mathrm{~K} \\ & \mathrm{P}_{1}:=1.5 \cdot \mathrm{bar} & \mathrm{P}_{3}:=\mathrm{P}_{1} \cdot \frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\end{array}$

$$
\mathrm{W}_{12}:=-\left[\mathrm{R} \cdot() \Gamma_{2}-\mathrm{T}_{1}\right] \quad \mathrm{W}_{12}=2.91 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{W}_{23}:=\mathrm{R} \cdot \mathrm{~T}_{2} \cdot \ln \left(\frac{\mathrm{P}_{3}}{\mathrm{P}_{1}}\right) \quad \mathrm{W}_{23}=2.017 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{W}_{31}:=-2 \cdot \mathrm{R} \cdot\left(\Gamma_{1}-\mathrm{T}_{2}\right.
$$

$$
\mathrm{W}_{31}=-5.82 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{Q}_{31}:=\left(\mathrm{C}_{\mathrm{P}}+\mathrm{R} \cdot\left(\Gamma_{1}-\mathrm{T}_{2}\right.\right.
$$

$$
\mathrm{Q}_{31}=1.309 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\eta:=\frac{\left|\mathrm{W}_{12}+\mathrm{W}_{23}+\mathrm{W}_{31}\right|}{\mathrm{Q}_{31}}$

$$
5.26 \mathrm{~T}:=403.15 \cdot \mathrm{~K} \quad \mathrm{P}_{1}:=2.5 \cdot \mathrm{bar} \quad \mathrm{P}_{2}:=6.5 \cdot \mathrm{bar} \quad \mathrm{~T}_{\mathrm{res}}:=298.15 \cdot \mathrm{~K}
$$

By Eq. (5.18), $\quad \Delta \mathrm{S}:=-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right) \quad \Delta \mathrm{S}=-7.944 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
Ans.

With the reversible work given by Eq. (3.27), we get for the actual \mathbf{W} :
Work $:=1.3 \cdot \mathrm{R} \cdot \mathrm{T} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$ (Isothermal compresion) Work $=4.163 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathrm{Q}:=-$ Work $\quad \mathrm{Q}$ here is with respect to the system.
So for the heat reservoir, we have

$$
\begin{aligned}
& \Delta \mathrm{S}_{\mathrm{res}}:=\frac{-\mathrm{Q}}{\mathrm{~T}_{\mathrm{res}}} \\
& \Delta \mathrm{~S}_{\text {total }}:=\Delta \mathrm{S}+\Delta \mathrm{S}_{\mathrm{res}}
\end{aligned}
$$

Ans.

Ans.
5.27 (a) By Eq. (5.14) with $P=$ const. and Eq. (5.15), we get for the entropy change of 10 moles
$\mathrm{n}:=10 \cdot \mathrm{~mol}$
$\Delta \mathrm{S}:=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{ICPS}\left(473.15 \mathrm{~K}, 1373.15 \mathrm{~K}, 5.699,0.640 \cdot 10^{-3}, 0.0,-1.015 \cdot 10^{5}\right.$
$\Delta S=536.1 \frac{\mathrm{~J}}{\mathrm{~K}}$
Ans.
(b) By Eq. (5.14) with $P=$ const. and Eq. (5.15), we get for the entropy change of $\mathbf{1 2}$ moles
$\mathrm{n}:=12 \cdot \mathrm{~mol}$
$\Delta \mathrm{S}:=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{ICPS}(\not) 23.15 \mathrm{~K}, 1473.15 \mathrm{~K}, 1.213,28.785 \cdot 10^{-3},-8.824 \cdot 10^{-6}, 0.0$
$\Delta \mathrm{S}=2018.7 \frac{\mathrm{~J}}{\mathrm{~K}}$
Ans.
5.28 (a) The final temperature for this process was found in Pb .4 .2 a to be 1374.5 K . The entropy change for $\mathbf{1 0}$ moles is then found as follows

$$
\mathrm{n}:=10 \cdot \mathrm{~mol}
$$

$$
\Delta \mathrm{S}:=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{ICPS}\left(473.15 \mathrm{~K}, 1374.5 \mathrm{~K}, 1.424,14.394 \cdot 10^{-3},-4.392 \cdot 10^{-6}, 0.0\right.
$$

$\Delta \mathrm{S}=900.86 \frac{\mathrm{~J}}{\mathrm{~K}}$

Ans.
(b) The final temperature for this process was found in Pb .4 .2 b to be 1413.8 K . The entropy change for $\mathbf{1 5}$ moles is then found as follows:

$$
\mathrm{n}:=15 \cdot \mathrm{~mol}
$$

$$
\Delta \mathrm{S}:=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{ICPS}\left(\$ 33.15 \mathrm{~K}, 1413.8 \mathrm{~K}, 1.967,31.630 \cdot 10^{-3},-9.873 \cdot 10^{-6}, 0.0\right.
$$

$\Delta \mathrm{S}=2657.5 \frac{\mathrm{~J}}{\mathrm{~K}}$
Ans.
(c) The final temperature for this process was found in Pb .4 .2 c to be 1202.9 K . The entropy change for 18.14 kg moles is then found as follows

$$
\mathrm{n}:=18140 \cdot \mathrm{~mol}
$$

$$
\Delta \mathrm{S}:=\mathrm{n} \cdot \mathrm{R} \cdot \mathrm{ICPS}\left(\nmid 33.15 \mathrm{~K}, 1202.9 \mathrm{~K}, 1.424,14.394 \cdot 10^{-3},-4.392 \cdot 10^{-6}, 0.0\right.
$$

$$
\Delta \mathrm{S}=1.2436 \times 10^{6} \frac{\mathrm{~J}}{\mathrm{~K}}
$$

5.29 The relative amounts of the two streams are determined by an energy balance. Since $\mathbf{Q}=\mathbf{W}=0$, the enthalpy changes of the two streams must cancel. Take a basis of 1 mole of air entering, and let $x=$ moles of chilled air. Then 1-x = the moles of warm air.

$$
\begin{array}{ll}
\mathrm{T}_{0}:=298.15 \cdot \mathrm{~K} & \text { Temperature of entering air } \\
\mathrm{T}_{1}:=248.15 \cdot \mathrm{~K} & \text { Temperature of chilled air } \\
\mathrm{T}_{2}:=348.15 \cdot \mathrm{~K} & \text { Temperature of warm air } \\
\mathrm{x} \cdot \mathrm{C}_{\mathrm{P}} \cdot()_{1}-\mathrm{T}_{0}+(1-\mathrm{x}) \cdot \mathrm{C}_{\mathrm{P}} \cdot() \Gamma_{2}-\mathrm{T}_{0}=0 \\
\mathrm{x}:=0.3 & \text { (guess) }
\end{array}
$$

Given $\frac{x}{1-x}=-\left(\frac{T_{2}-T_{0}}{\mathrm{~T}_{1}-\mathrm{T}_{0}}\right) \quad \mathrm{x}:=\operatorname{Find}(\mathrm{x}) \quad \mathrm{x}=0.5$
Thus $x=0.5$, and the process produces equal amounts of chilled and warmed air. The only remaining question is whether the process violates the second law. On the basis of 1 mole of entering air, the total entropy change is as follows.
$C_{P}:=\frac{7}{2} \cdot R \quad \mathrm{P}_{0}:=5 \cdot \mathrm{bar} \quad \mathrm{P}:=1 \cdot \mathrm{bar}$
$\Delta \mathrm{S}_{\text {total }}:=\mathrm{x} \cdot \mathrm{C}_{\mathrm{P}} \cdot \ln \left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{0}}\right)+(1-\mathrm{x}) \cdot \mathrm{C}_{\mathrm{P}} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{0}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)$
$\Delta \mathrm{S}_{\text {total }}=12.97 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
Ans.

Since this is positive, there is no violation of the second law.

5.33 For the process of cooling the brine:

$$
\begin{array}{ll}
\mathrm{C}_{\mathrm{P}}:=3.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} & \Delta \mathrm{~T}:=-40 \cdot \mathrm{~K} \quad \mathrm{mdot}:=20 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}} \quad \eta_{\mathrm{t}}:=0.27 \\
\mathrm{~T}_{1}:=(273.15+25) \cdot \mathrm{K} & \mathrm{~T}_{1}=298.15 \mathrm{~K} \\
\mathrm{~T}_{2}:=(273.15-15) \cdot \mathrm{K} & \mathrm{~T}_{2}=258.15 \mathrm{~K} \\
\mathrm{~T}_{\sigma}:=(273.15+30) \cdot \mathrm{K} & \mathrm{~T}_{\sigma}=303.15 \mathrm{~K} \\
\Delta \mathrm{H}:=\mathrm{C}_{\mathrm{P}} \cdot \Delta \mathrm{~T} & \Delta \mathrm{H}=-140 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\Delta \mathrm{~S}:=\mathrm{C}_{\mathrm{P}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right) & \Delta \mathrm{S}=-0.504 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

Eq. (5.26): $\quad \mathrm{Wdot}_{i d e a l}:=\operatorname{mdot} \cdot\left(\left\langle\mathrm{H} \mathrm{H}-\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S} \quad \mathrm{Wdot}_{i d e a l}=256.938 \mathrm{~kW}\right.\right.$
$\begin{array}{lll}\text { By Eq. (5.28): } & W d o t:=\frac{W_{d o t}^{i d e a l}}{} \\ \eta_{t} & W d o t=951.6 \\ E:=110 \cdot \text { volt } & i:=9.7 \cdot \mathrm{amp} & T_{\sigma}:=300 \cdot \mathrm{~K}\end{array}$
Wdot $_{\text {mech }}:=-1.25 \cdot \mathrm{hp} \quad$ Wdotelect $:=\mathrm{i} \cdot \mathrm{E} \quad$ Wdotelect $=1.067 \times 10^{3} \mathrm{~W}$
At steady state: $Q d o t+W d_{\text {elect }}+W \operatorname{dot}_{\text {mech }}=\frac{d}{d t} U^{t}=0$

$$
\frac{\mathrm{Qdot}}{\mathrm{~T}_{\sigma}}+\operatorname{Sdot}_{\mathrm{G}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~S}^{\mathrm{t}}=0
$$

Qdot :=-Wdot elect $-\mathrm{Wdot}_{\text {mech }}$
Qdot $=-134.875 \mathrm{~W}$
$\operatorname{Sdot}_{G}:=\frac{-\mathrm{Qdot}}{\mathrm{T}_{\sigma}}$

Ans.
$5.35 \Omega:=25 \cdot \mathrm{ohm} \quad \mathrm{i}:=10 \cdot \mathrm{amp} \quad \mathrm{T}_{\sigma}:=300 \cdot \mathrm{~K}$
Wdotelect $:=\mathrm{i}^{2} \cdot \Omega \quad$ Wdot $_{\text {elect }}=2.5 \times 10^{3} \mathrm{~W}$
At steady state: \quad Qdot $+W^{\text {dotelect }}=\frac{d}{d t} U^{t}=0 \quad$ Qdot $:=-$ Wdotelect

$$
\frac{\mathrm{Qdot}}{\mathrm{~T}_{\sigma}}+\operatorname{Sdot}_{\mathrm{G}}=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~S}^{\mathrm{t}}=0 \quad \operatorname{Sdot}_{\mathrm{G}}:=\frac{-\mathrm{Qdot}}{\mathrm{~T}_{\sigma}}
$$

$$
\text { Qdot }=-2.5 \times 10^{3} \text { watt } \quad \operatorname{Sdot}_{G}=8.333 \frac{\mathrm{watt}}{\mathrm{~K}}
$$

Ans.

$$
\begin{array}{ll}
5.38 \text { mdot }:=10 \frac{\mathrm{kmol}}{\mathrm{hr}} & \mathrm{~T}_{1}:=(25+273.15) \mathrm{K} \quad \mathrm{P}_{1}:=10 \mathrm{bar} \\
\mathrm{C}_{\mathrm{p}}:=\frac{7}{2} \mathrm{R} & \mathrm{C}_{\mathrm{v}}:=\mathrm{C}_{\mathrm{p}}-\mathrm{R}
\end{array} \gamma:=\frac{\mathrm{C}_{2}}{\mathrm{C}_{\mathrm{v}}} \quad \gamma=\frac{7}{5} .
$$

(a) Assuming an isenthalpic process: $\quad \mathrm{T}_{2}:=\mathrm{T}_{1} \quad \mathrm{~T}_{2}=298.15 \mathrm{~K}$
Ans.
(b) $\frac{\Delta \mathrm{S}}{\mathrm{R}}=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\mathrm{C}_{\mathrm{p}}}{\mathrm{R}} \frac{1}{\mathrm{~T}} \mathrm{dT}-\ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$

$$
\Delta \mathrm{S}:=\frac{7}{2} \mathrm{R} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)
$$

(c) $\operatorname{Sdot}_{G}:=\operatorname{mdot} \cdot \Delta \mathrm{S}$ $\operatorname{Sdot}_{G}=48.966 \frac{\mathrm{~W}}{\mathrm{~K}}$

$$
\Delta \mathrm{S}=17.628 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \text { Ans. }
$$

(d) $\mathrm{T}_{\sigma}:=(20+273.15) \mathrm{K}$

$$
\mathrm{W}_{\text {lost }}:=\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S}
$$

$$
\mathrm{W}_{\text {lost }}=5.168 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

5.39 (a) $\mathrm{T}_{1}:=500 \mathrm{~K}$
$\mathrm{T}_{\sigma}:=300 \mathrm{~K}$
$\mathrm{P}_{1}:=6 \mathrm{bar}$

$$
\mathrm{T}_{2}:=371 \mathrm{~K}
$$

$\mathrm{P}_{2}:=1.2 \mathrm{bar}$
$C_{p}:=\frac{7}{2} R$

$$
\text { Basis: } 1 \mathbf{m o l} \mathrm{n}:=1 \mathrm{~mol}
$$

$\Delta \mathrm{H}:=\mathrm{n} \cdot \mathrm{C}_{\mathrm{p}} \cdot\left(\Gamma_{2}-\mathrm{T}_{1}\right.$
$\mathrm{W}_{\mathrm{s}}:=\Delta \mathrm{H} \quad \mathrm{W}_{\mathrm{s}}=-3753.8 \mathrm{~J}$
Ans.
$\Delta \mathrm{S}:=\mathrm{n} \cdot\left(\mathrm{C} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)\right)$
$\Delta \mathrm{S}=4.698 \frac{\mathrm{~J}}{\mathrm{~K}}$
Eq. (5.27)

$$
\mathrm{W}_{\text {ideal }}:=() \Delta \mathrm{H}-\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S}
$$

$$
\mathrm{W}_{\text {ideal }}=-5163 \mathrm{~J}
$$

Ans.

Eq. (5.30) $\quad \mathrm{W}_{\text {lost }}:=\left|\mathrm{W}_{\text {ideal }}-\mathrm{W}_{\mathrm{S}}\right|$

$$
\mathrm{W}_{\text {lost }}=1409.3 \mathrm{~J}
$$

Ans.

Ans.
Eq. (5.39)

$$
\mathrm{S}_{\mathrm{G}}:=\frac{\mathrm{W}_{\mathrm{lost}}}{\mathrm{~T}_{\sigma}}
$$

$$
\mathrm{S}_{\mathrm{G}}=4.698 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

	$\mathbf{W}_{\mathbf{s}}$	$\mathbf{W}_{\text {ideal }}$	$\mathbf{W}_{\text {lost }}$
(a) -3753.8 J	-5163 J	1409.3 J	$4.698 \frac{\mathbf{S}_{\mathbf{G}}}{\mathrm{K}}$
(b) -2460.9 J	-2953.9 J	493 J	$1.643 \frac{\mathrm{~J}}{\mathrm{~K}}$
(c) -3063.7 J	-4193.7 J	1130 J	$3.767 \frac{\mathrm{~J}}{\mathrm{~K}}$
(d) -3853.5 J	-4952.4 J	1098.8 J	$3.663 \frac{\mathrm{~J}}{\mathrm{~K}}$
(e) -3055.4 J	-4119.2 J	1063.8 J	$3.546 \frac{\mathrm{~J}}{\mathrm{~K}}$

5.41

$\mathrm{P}_{1}:=2500 \mathrm{kPa}$	$\mathrm{P}_{2}:=150 \mathrm{kPa} \quad \mathrm{T}_{\sigma}:=300 \mathrm{~K} \quad$ mdot $:=20 \frac{\mathrm{~mol}}{\mathrm{sec}}$
$\Delta \mathrm{S}:=-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)$	$\Delta \mathrm{S}=0.023 \frac{\mathrm{~kJ}}{\mathrm{~mol} \cdot \mathrm{~K}}$
$\operatorname{Sdot}_{\mathrm{G}}:=\operatorname{mdot} \cdot \Delta \mathrm{S}$	Sdot $_{\mathrm{G}}=0.468 \frac{\mathrm{~kJ}}{\mathrm{sec} \cdot \mathrm{K}} \quad$ Ans.
Wdot $_{\text {lost }}:=\mathrm{T}_{\sigma} \cdot \operatorname{Sdot}_{\mathrm{G}}$	Wdot $_{\text {lost }}=140.344 \mathrm{~kW} \quad$ Ans.

5.42 $\mathrm{Q}_{\mathrm{H}}:=1 \mathrm{~kJ} \quad \mathrm{~W}:=0.45 \mathrm{~kJ} \quad \mathrm{~T}_{\mathrm{H}}:=(250+273.15) \mathrm{K} \quad \mathrm{T}_{\mathrm{H}}=523.15 \mathrm{~K}$

$$
\mathrm{T}_{\mathrm{C}}:=(25+273.15) \mathrm{K} \quad \mathrm{~T}_{\mathrm{C}}=298.15 \mathrm{~K}
$$

$\eta_{\text {actual }}:=\frac{|\mathrm{W}|}{\left|\mathrm{Q}_{\mathrm{H}}\right|} \quad \eta_{\text {actual }}=0.45$

$$
\eta_{\max }:=1-\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{~T}_{\mathrm{H}}} \quad \eta_{\max }=0.43
$$

Since $\eta_{\text {actual }}>\eta_{\text {max }}$, the process is impossible.

5.43
$\mathrm{Q}_{\mathrm{H}}:=-150 \cdot \mathrm{~kJ}$
$\mathrm{Q}_{1}:=50 \cdot \mathrm{~kJ}$
$\mathrm{Q}_{2}:=100 \cdot \mathrm{~kJ}$
$\mathrm{T}_{\mathrm{H}}:=550 \cdot \mathrm{~K}$
$\mathrm{T}_{1}:=350 \cdot \mathrm{~K}$
$\mathrm{T}_{2}:=250 \cdot \mathrm{~K}$
$\mathrm{T}_{\sigma}:=300 \cdot \mathrm{~K}$
(a) $\quad \mathrm{S}_{\mathrm{G}}:=\frac{\mathrm{Q}_{\mathrm{H}}}{\mathrm{T}_{\mathrm{H}}}+\frac{\mathrm{Q}_{1}}{\mathrm{~T}_{1}}+\frac{\mathrm{Q}_{2}}{\mathrm{~T}_{2}}$
$\mathrm{S}_{\mathrm{G}}=0.27 \frac{\mathrm{~kJ}}{\mathrm{~K}}$
Ans.
(b) $\quad \mathrm{W}_{\text {lost }}:=\mathrm{T}_{\sigma} \cdot \mathrm{S}_{\mathrm{G}}$
$\mathrm{W}_{\text {lost }}=81.039 \mathrm{~kJ}$
Ans.
5.44

$$
\begin{array}{lll}
\text { Wdot }:=-750 \cdot \mathrm{MW} & \mathrm{~T}_{\mathrm{H}}:=(315+273.15) \cdot \mathrm{K} & \mathrm{~T}_{\mathrm{C}}:=(20+273.15) \cdot \mathrm{K} \\
& \mathrm{~T}_{\mathrm{H}}=588.15 \mathrm{~K} & \mathrm{~T}_{\mathrm{C}}=293.15 \mathrm{~K}
\end{array}
$$

$\begin{aligned} \text { (a) } \eta_{\max }:=1-\frac{T_{\mathrm{C}}}{T_{\mathrm{H}}} & \eta_{\max }=0.502 \quad \text { Ans. } \\ \text { Qdot }_{\mathrm{H}}:=\frac{|\mathrm{Wdot}|}{\eta_{\max }} & \text { Qdot } \mathrm{C}:=\operatorname{Qdot}_{\mathrm{H}}-|\mathrm{Wdot}|\end{aligned}$

$$
\text { Qdot } \mathrm{C}=745.297 \mathrm{MW} \quad \text { (minimum value) }
$$

(b) $\eta:=0.6 \cdot \eta_{\max } \quad \quad$ Qdot $_{H}:=\frac{|W \operatorname{dot}|}{\eta} \quad \mathrm{Qdot}_{\mathrm{H}}=2.492 \times 10^{9} \mathrm{~W}$
$\mathrm{Qdot}_{\mathrm{C}}:=\mathrm{Qdot}_{\mathrm{H}}-|\mathrm{Wdot}| \quad \mathrm{Qdot} \mathrm{C}=1.742 \times 10^{3} \mathrm{MW} \quad$ (actual value)
River temperature rise: $\operatorname{Vdot}:=165 \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \quad \rho:=1 \cdot \frac{\mathrm{gm}}{\mathrm{cm}^{3}}$

$$
\mathrm{Cp}:=1 \cdot \frac{\mathrm{cal}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

$$
\Delta \mathrm{T}:=\frac{\mathrm{Qdot}_{\mathrm{C}}}{\mathrm{Vdot} \cdot \rho \cdot \mathrm{Cp}}
$$

$$
\Delta \mathrm{T}=2.522 \mathrm{~K}
$$

Ans.

$$
\begin{array}{rlrl}
5.46 & \mathrm{~T}_{1}:=(20+273.15) \mathrm{K} & \mathrm{~T}_{2}:=(27+273.15) \cdot \mathrm{K} & \mathrm{~T}_{3}:=(-22+273.15) \mathrm{K} \\
\mathrm{P}_{1}:=5 \mathrm{bar} & \mathrm{P}_{2}:=1 \mathrm{~atm}
\end{array}
$$

First check the First Law using Eqn. (2.33) neglect changes in kinetic and potential energy.

$$
\begin{aligned}
\Delta \mathrm{H}:= & \frac{6}{7} \cdot \mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{1}, \mathrm{~T}_{2}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5} \ldots \\
& +\frac{1}{7} \mathrm{ICPH}() \Gamma_{1}, \mathrm{~T}_{3}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5} \cdot \mathrm{R} \\
\Delta \mathrm{H}= & 8.797 \times 10^{-4} \frac{\mathrm{~kJ}}{\mathrm{~mol}} \Delta \mathrm{H} \text { is essentially zero so the first law is satisfied. }
\end{aligned}
$$

Calculate the rate of entropy generation using Eqn. (5.23)

$$
\begin{aligned}
\mathrm{S}_{\mathrm{G}}:= & \frac{6}{7} \cdot \mathrm{R} \cdot \operatorname{ICPS}\left(\Gamma_{1}, \mathrm{~T}_{2}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5} \ldots\right. \\
& +\frac{1}{7} \cdot \mathrm{R} \cdot \operatorname{ICPS}() \Gamma_{1}, \mathrm{~T}_{3}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5}-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)
\end{aligned}
$$

$$
\mathrm{S}_{\mathrm{G}}=0.013 \frac{\mathrm{~kJ}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Since $S_{G} \geq 0$, this process is possible.
$\begin{array}{lll}\text { a) } \begin{array}{ll}\text { Vdot }:=100000 \frac{\mathrm{ft}^{3}}{\mathrm{hr}} & \mathrm{T}_{1}:=(70+459.67) \text { rankine } \mathrm{T}_{2}:=(20+459.67) \text { rankine } \\ & \mathrm{P}:=1 \mathrm{~atm}\end{array} & \mathrm{~T}_{\sigma}:=(70+459.67) \text { rankine }\end{array}$

Assume air is an Ideal Gas

ndot $:=\frac{\mathrm{P} \cdot \mathrm{Vdot}}{\mathrm{R} \cdot \mathrm{T}_{1}} \quad$ ndot $=258.555 \frac{\mathrm{lbmol}}{\mathrm{hr}}$
Calculate ideal work using Eqn. (5.26)
$\mathrm{W}_{\text {ideal }}:=$ ndot $\cdot\left[\begin{array}{l}\mathrm{R} \cdot \operatorname{ICPH}() \Gamma_{1}, \mathrm{~T}_{2}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5} \ldots \\ +-\mathrm{T}_{\sigma} \cdot\left(\mathrm{R} \cdot \operatorname{ICPS}() \Gamma_{1}, \mathrm{~T}_{2}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5}\right.\end{array}\right]$
$\mathrm{W}_{\text {ideal }}=1.776 \mathrm{hp}$
b) $\operatorname{Vdot}:=3000 \frac{\mathrm{~m}^{3}}{\mathrm{hr}}$
$\mathrm{T}_{1}:=(25+273.15) \mathrm{K}$
$\mathrm{T}_{2}:=(-8+273.15) \mathrm{K}$
$\mathrm{P}:=1 \mathrm{~atm}$

$$
\mathrm{T}_{\sigma}:=(25+273.15) \mathrm{K}
$$

Assume air is an Ideal Gas
ndot $:=\frac{\mathrm{P} \cdot \mathrm{Vdot}}{\mathrm{R} \cdot \mathrm{T}_{1}} \quad$ ndot $=34.064 \frac{\mathrm{~mol}}{\mathrm{~s}}$
Calculate ideal work using Eqn. (5.26)
$\mathrm{W}_{\text {ideal }}:=$ ndot $\cdot\left[\begin{array}{l}\mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{1}, \mathrm{~T}_{2}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5} \ldots \\ +-\mathrm{T}_{\sigma} \cdot\left(\mathrm{R} \cdot \operatorname{ICPS}() \Gamma_{1}, \mathrm{~T}_{2}, 3.355,0.575 \cdot 10^{-3}, 0,-0.016 \cdot 10^{5}\right.\end{array}\right]$
$\mathrm{W}_{\text {ideal }}=1.952 \mathrm{~kW}$
$5.48 \mathrm{~T}_{1}:=(2000+459.67)$ rankine

$$
\mathrm{T}_{2}:=(300+459.67) \text { rankine }
$$

$\mathrm{C}_{\mathrm{p}}(\mathrm{T}):=\left(3.83+0.000306 \cdot \frac{\mathrm{~T}}{\text { rankine }}\right) \cdot \mathrm{R}$

$\mathrm{T}_{\sigma}:=(70+459.67)$ rankine
$\mathrm{T}_{\text {steam }}:=(212+459.67)$ rankine
a) First apply an energy balance on the boiler to get the ratio of steam flow rate to gas flow rate.:

$$
\operatorname{ndot}_{\text {gas }} \cdot \int_{T_{1}}^{\mathrm{T}_{2}} \mathrm{C}_{\mathrm{p}}(\mathrm{~T}) \mathrm{dT}+\operatorname{mdot}_{\text {steam }} \cdot \Delta \mathrm{H}_{\mathrm{V}}=0
$$

$$
\text { mdotndot }:=\frac{-\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{C}_{\mathrm{p}}(\mathrm{~T}) \mathrm{dT}}{\Delta \mathrm{H}_{\mathrm{V}}} \quad \quad \text { mdotndot }=15.043 \frac{\mathrm{lb}}{\mathrm{lbmol}}
$$

Calculate the rate of entropy generation in the boiler. This is the sum of the entropy generation of the steam and the gas.
$\operatorname{Sdot}_{G}=\operatorname{Sdot}_{\text {Gsteam }}+\operatorname{Sdot}_{\text {Ggas }}$

Calculate entropy generation per lbmol of gas:

$$
\begin{aligned}
& \frac{\operatorname{Sdot}_{G}}{\text { ndot }_{\text {gas }}}=\frac{\text { mdot }_{\text {steam }}}{\text { ndot }_{\text {gas }}} \cdot \Delta \mathrm{S}_{\text {steam }}+\mathrm{S}_{\text {gas }} \\
& \Delta \mathrm{S}_{\text {steam }}:=\frac{\Delta \mathrm{H}_{\mathrm{V}}}{\mathrm{~T}_{\text {steam }}} \\
& \Delta \mathrm{S}_{\text {steam }}=1.444 \frac{\mathrm{BTU}}{\mathrm{lb} \cdot \text { rankine }} \\
& \Delta \mathrm{S}_{\mathrm{gas}}:=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\mathrm{C}_{\mathrm{p}}(\mathrm{~T})}{\mathrm{T}} \mathrm{dT} \\
& \Delta \mathrm{~S}_{\text {gas }}=-9.969 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~mol}} \frac{\mathrm{BTU}}{\mathrm{lb} \cdot \text { rankine }} \\
& \operatorname{Sdot}_{\mathrm{G}}:=\text { mdotndot }^{\Delta} \Delta \mathrm{S}_{\text {steam }}+\mathrm{S}_{\text {gas }} \\
& \operatorname{Sdot}_{\mathrm{G}}=11.756 \frac{\mathrm{BTU}}{\mathrm{lbmol} \cdot \text { rankine }} \\
& \text { Calculate lost work by Eq. (5.34) } \\
& \mathrm{W}_{\text {lost }}:=\operatorname{Sdot}_{\mathrm{G}} \cdot \mathrm{~T}_{\sigma} \\
& \mathrm{W}_{\text {lost }}=6227 \frac{\mathrm{BTU}}{\mathrm{lbmol}} \\
& \text { Ans. }
\end{aligned}
$$

b) $\Delta \mathrm{H}_{\text {steam }}:=-\Delta \mathrm{H}_{\mathrm{v}} \quad \Delta \mathrm{S}_{\text {steam }}:=\frac{-\Delta \mathrm{H}_{\mathrm{V}}}{\mathrm{T}_{\text {steam }}} \quad \Delta \mathrm{S}_{\text {steam }}=-1.444 \frac{\mathrm{BTU}}{\text { lb•rankine }}$

$$
\mathrm{W}_{\text {ideal }}:=\left(\Delta \mathrm{H}_{\text {steam }}-\mathrm{T}_{\sigma \cdot \Delta \mathrm{S}_{\text {steam }}} \quad \mathrm{W}_{\text {ideal }}=-205.071 \frac{\mathrm{BTU}}{\mathrm{lb}}\right.
$$

Calculate lbs of steam generated per lbmol of gas cooled.

$$
\mathrm{mn}:=\frac{\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{C}_{\mathrm{p}}(\mathrm{~T}) \mathrm{dT}}{-\Delta \mathrm{H}_{\mathrm{V}}} \quad \mathrm{mn}=15.043 \frac{\mathrm{lb}}{\mathrm{lbmol}}
$$

Use ratio to calculate ideal work of steam per lbmol of gas
$\mathrm{W}_{\text {ideal }} \cdot \mathrm{mn}=-3.085 \times 10^{3} \frac{\mathrm{BTU}}{\mathrm{lbmol}}$
c) $\Delta \mathrm{H}_{\mathrm{gas}}:=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{C}_{\mathrm{p}}(\mathrm{T}) \mathrm{dT}$
$\mathrm{W}_{\text {ideal }}:=\Delta \mathrm{H}_{\text {gas }}-\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S}_{\text {gas }} \quad \mathrm{W}_{\text {ideal }}=-9.312 \times 10^{3} \frac{\mathrm{BTU}}{\mathrm{lbmol}}$
Ans.

$$
\begin{array}{ll}
5.49 \mathrm{~T}_{1}:=(1100+273.15) \mathrm{K} & \mathrm{~T}_{2}:=(150+273.15) \mathrm{K} \\
\mathrm{C}_{\mathrm{p}}(\mathrm{~T}):=\left(3.83+0.000551 \cdot \frac{\mathrm{~T}}{\mathrm{~K}}\right) \cdot \mathrm{R} & \Delta \mathrm{H}_{\mathrm{V}}:=2256.9 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{M}:=29 \frac{\mathrm{gm}}{\mathrm{~mol}} \\
\mathrm{~T}_{\sigma}:=(25+273.15) \mathrm{K} & \mathrm{~T}_{\text {steam }}:=(100+273.15) \mathrm{K}
\end{array}
$$

a) First apply an energy balance on the boiler to get the ratio of steam flow rate to gas flow rate.:
$\operatorname{ndot}_{g a s} \cdot \int_{T_{1}}^{T_{2}} C_{p}(T) d T+$ mot $_{\text {steam }} \cdot \Delta H_{V}=0$
mdotndot $:=\frac{-\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{C}_{\mathrm{p}}(\mathrm{T}) \mathrm{dT}}{\Delta \mathrm{H}_{\mathrm{v}}} \quad$ mdotndot $=15.135 \frac{\mathrm{gm}}{\mathrm{mol}}$
Calculate the rate of entropy generation in the boiler. This is the sum of the entropy generation of the steam and the gas.
$\operatorname{Sdot}_{G}=$ Sdot $_{\text {Gsteam }}+$ Sdot $_{G}$ gas

Calculate entropy generation per lbmol of gas:

$$
\begin{array}{ll}
\frac{\mathrm{Sdot}_{\mathrm{G}}}{\text { ndot }} \mathrm{gas} & =\frac{\mathrm{mdot}_{\text {steam }}}{\text { ndot }_{\text {gas }}} \cdot \Delta \mathrm{S}_{\text {steam }}+\mathrm{S}_{\text {gas }} \\
\Delta \mathrm{S}_{\text {steam }}:=\frac{\Delta \mathrm{H}_{\mathrm{V}}}{\mathrm{~T}_{\text {steam }}} & \Delta \mathrm{S}_{\text {steam }}=6.048 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\Delta \mathrm{~S}_{\text {gas }}:=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \frac{\mathrm{C}_{\mathrm{p}}(\mathrm{~T})}{\mathrm{T}} \mathrm{dT} & \Delta \mathrm{~S}_{\text {gas }}=-41.835 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
\operatorname{Sdot}_{\mathrm{G}}:={\text { mdotndot } \cdot \Delta \mathrm{S}_{\text {steam }}+\mathrm{S}_{\text {gas }}}^{\operatorname{Sdot}_{\mathrm{G}}=49.708 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}}
\end{array}
$$

Calculate lost work by Eq. (5.34)
$\mathrm{W}_{\text {lost }}:=\operatorname{Sdot}_{\mathrm{G}} \cdot \mathrm{T}_{\sigma}$

$$
\mathrm{W}_{\text {lost }}=14.8 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Ans.
b) $\Delta \mathrm{H}_{\text {steam }}:=-\Delta \mathrm{H}_{\mathrm{V}} \quad \Delta \mathrm{S}_{\text {steam }}:=\frac{-\Delta \mathrm{H}_{\mathrm{V}}}{\mathrm{T}_{\text {steam }}} \quad \Delta \mathrm{S}_{\text {steam }}=-6.048 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$

$$
\mathrm{W}_{\text {ideal }}:=() \mathrm{H}_{\text {steam }}-\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S}_{\text {steam }} \quad \mathrm{W}_{\text {ideal }}=-453.618 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Calculate lbs of steam generated per lbmol of gas cooled.

$$
\mathrm{mn}:=\frac{\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{C}_{\mathrm{p}}(\mathrm{~T}) \mathrm{dT}}{-\Delta \mathrm{H}_{\mathrm{v}}} \quad \mathrm{mn}=15.135 \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

Use ratio to calculate ideal work of steam per lbmol of gas

$$
\mathrm{W}_{\text {ideal }} \cdot \mathrm{mn}=-6.866 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Ans.
c) $\Delta \mathrm{H}_{\text {gas }}:=\int_{\mathrm{T}_{1}}^{\mathrm{T}_{2}} \mathrm{C}_{\mathrm{p}}(\mathrm{T}) \mathrm{dT}$

$$
\mathrm{W}_{\text {ideal }}:=\Delta \mathrm{H}_{\mathrm{gas}}-\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S}_{\mathrm{gas}}
$$

$$
\mathrm{W}_{\text {ideal }}=-21.686 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Ans.
$5.50 \mathrm{~T}_{1}:=(830+273.15) \mathrm{K}$

$$
\mathrm{T}_{2}:=(35+273.15) \mathrm{K} \quad \mathrm{~T}_{\sigma}:=(25+273.15) \mathrm{K}
$$

a) $\Delta \mathrm{S}_{\text {ethylene }}:=\mathrm{R} \cdot \operatorname{ICPS}() \Gamma_{1}, \mathrm{~T}_{2}, 1.424,14.394 \cdot 10^{-3},-4.392 \cdot 10^{-6}, 0$
$\Delta \mathrm{S}_{\text {ethylene }}=-0.09 \frac{\mathrm{~kJ}}{\mathrm{~mol} \cdot \mathrm{~K}}$
$Q_{\text {ethylene }}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{1}, \mathrm{~T}_{2}, 1.424,14.394 \cdot 10^{-3},-4.392 \cdot 10^{-6}, 0$
Qethylene $=-60.563 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\mathrm{W}_{\text {lost }}:=\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S}_{\text {ethylene }}-$ Qethylene

$$
\mathrm{W}_{\text {lost }}=33.803 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Now place a heat engine between the ethylene and the surroundings. This would constitute a reversible process, therefore, the total entropy generated must be zero. calculate the heat released to the surroundings for $\Delta S_{\text {total }}=0$.

$$
\begin{aligned}
\Delta \mathrm{S}_{\text {ethylene }}-\frac{\mathrm{Q}_{\mathrm{C}}}{\mathrm{~T}_{\sigma}}=0 \quad \text { Solving for } \mathbf{Q}_{\mathrm{C}} \text { gives: } \quad & \mathrm{Q}_{\mathrm{C}}:=\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S}_{\text {ethylene }} \\
& \mathrm{Q}_{\mathrm{C}}=-26.76 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{aligned}
$$

Now apply an energy balance around the heat engine to find the work produced. Note that the heat gained by the heat engine is the heat lost by the ethylene.

$$
\mathrm{Q}_{\mathrm{H}}:=-\mathrm{Q}_{\text {ethylene }} \quad \mathrm{W}_{\mathrm{HE}}:=\mathrm{Q}_{\mathrm{H}}+\mathrm{Q}_{\mathrm{C}} \quad \mathrm{~W}_{\mathrm{HE}}=33.803 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

The lost work is exactly equal to the work that could be produced by the heat engine

Chapter 6 - Section A - Mathcad Solutions

6.7 At constant temperature Eqs. (6.25) and (6.26) can be written:

$$
\mathrm{dS}=-\beta \cdot \mathrm{V} \cdot \mathrm{dP} \quad \text { and } \quad \mathrm{dH}=()-\beta \cdot \mathrm{T} \cdot \mathrm{~V} \cdot \mathrm{dP}
$$

For an estimate, assume properties independent of pressure.

$$
\mathrm{T}:=270 \cdot \mathrm{~K} \quad \mathrm{P}_{1}:=381 \cdot \mathrm{kPa} \quad \mathrm{P}_{2}:=1200 \cdot \mathrm{kPa}
$$

$$
\mathrm{V}:=1.551 \cdot 10^{-3} \cdot \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} \quad \beta:=2.095 \cdot 10^{-3} \cdot \mathrm{~K}^{-1}
$$

$$
\Delta \mathrm{S}:=-\beta \cdot \mathrm{V} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1} \quad \Delta \mathrm{H}:=\left(\mathrm{l}-\beta \cdot \mathrm{T} \cdot \mathrm{~V} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right.\right.\right.
$$

$$
\Delta \mathrm{S}=-2.661 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \text { Ans. }
$$

$$
\Delta \mathrm{H}=551.7 \frac{\mathrm{~J}}{\mathrm{~kg}} \quad \text { Ans. }
$$

6.8 Isobutane:
$\mathrm{P}_{1}:=4000 \cdot \mathrm{kPa}$
$\mathrm{P}_{2}:=2000 \cdot \mathrm{kPa}$

$$
\text { molwt }:=58.123 \cdot \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{P}}:=2.78 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \\
& \mathrm{~V}_{\mathrm{c}}:=262.7 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

Eq. (3.63) for volume of a saturated liquid may be used for the volume of a compressed liquid if the effect of pressure on liquid volume is neglected.

$$
\mathrm{T}:=\left(\begin{array}{l}
359 \\
360 \mid \cdot \mathrm{K} \\
361
\end{array}\right)
$$

$$
\mathrm{T}_{\mathrm{r}}=\left(\begin{array}{c}
0.88 \\
0.882 \\
0.885
\end{array}\right)
$$

(The elements are denoted by subscripts $\mathbf{1 , 2 , \& 3}$

$$
\left.\mathrm{V}:=\overline{\left[\mathrm { V } _ { \mathrm { c } } \cdot \mathrm { Z } _ { \mathrm { C } } \left[\left(\mathrm{l}-\mathrm{T}_{\mathrm{r}}\right.\right.\right.} \frac{\left.\frac{2}{7}\right]}{}\right]
$$

$$
\mathrm{V}=\left(\begin{array}{l}
131.604 \\
132.138 \\
132.683
\end{array}\right) \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}
$$

Assume that changes in T and V are negligible during throtling. Then Eq. (6.8) is integrated to yield:

$$
\begin{array}{lr}
\Delta \mathrm{H}=\mathrm{T} \cdot \Delta \mathrm{~S}+\mathrm{V} \cdot \Delta \mathrm{P} & \text { but } \quad \Delta \mathrm{H}=0 \quad \text { Then at } 360 \mathrm{~K}, \\
\Delta \mathrm{~S}:=\frac{-\mathrm{V}_{1} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right.}{\mathrm{T}_{1}} & \Delta \mathrm{~S}=0.733 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{array}
$$

Ans.

We use the additional values of T and V to estimate the volume expansivity:

$$
\begin{array}{ll}
\Delta \mathrm{V}:=\mathrm{V}_{3}-\mathrm{V}_{1} & \Delta \mathrm{~V}=1.079 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \Delta \mathrm{~T}:=\mathrm{T}_{3}-\mathrm{T}_{1} \quad \Delta \mathrm{~T}=2 \mathrm{~K} \\
\beta:=\frac{1}{\mathrm{~V}_{1}} \cdot \frac{\Delta \mathrm{~V}}{\Delta \mathrm{~T}} & \beta=4.098835 \times 10^{-3} \mathrm{~K}^{-1}
\end{array}
$$

Assuming properties independent of pressure,
Eq. (6.29) may be integrated to give

$$
\Delta \mathrm{S}=\mathrm{C}_{\mathrm{P}} \cdot \frac{\Delta \mathrm{~B}}{\mathrm{~T}}-\cdot \boldsymbol{N} \cdot \mathrm{P} \quad \Delta \mathrm{P}:=\mathrm{P}_{2}-\mathrm{P}_{1} \quad \Delta \mathrm{P}=-2 \times 10^{3} \mathrm{kPa}
$$

Whence $\Delta T:=\frac{T_{1}}{C_{P}} \cdot \frac{\left(\Delta \mathrm{~S}+\beta \cdot \boldsymbol{V}_{1} \cdot \mathrm{P}\right.}{\text { molwt }} \quad \Delta \mathrm{T}=-0.768 \mathrm{~K} \quad$ Ans.
6.9 $\quad \mathrm{T}:=298.15 \cdot \mathrm{~K} \quad \mathrm{P}_{1}:=1 \cdot \mathrm{bar} \quad \mathrm{P}_{2}:=1500 \cdot \mathrm{bar}$

$$
\beta:=250 \cdot 10^{-6} \cdot \mathrm{~K}^{-1} \quad \kappa:=45 \cdot 10^{-6} \cdot \mathrm{bar}^{-1} \quad \mathrm{~V}_{1}:=1003 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~kg}}
$$

By Eq. (3.5),

$$
\mathrm{V}_{2}:=\mathrm{V}_{1} \cdot \exp \left[-\kappa \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right] \quad \mathrm{V}_{2}=937.574 \frac{\mathrm{~cm}^{3}}{\mathrm{~kg}}\right.
$$

$\mathrm{V}_{\mathrm{ave}}:=\frac{\mathrm{V}_{1}+\mathrm{V}_{2}}{2} \quad \mathrm{~V}_{\mathrm{ave}}=970.287 \frac{\mathrm{~cm}^{3}}{\mathrm{~kg}} \quad$ By Eqs. (6.28) \& (6.29),
$\Delta \mathrm{H}:=\mathrm{V}_{\text {ave }} \cdot\left(\mathrm{l}-\beta \cdot \mathrm{T} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1} \quad \Delta \mathrm{U}:=\Delta \mathrm{H}-\left(\mathrm{P}_{2} \cdot \mathrm{~V}_{2}-\mathrm{P}_{1} \cdot \mathrm{~V}_{1}\right.\right.\right.$
$\Delta \mathrm{H}=134.6 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
Ans.
$\Delta \mathrm{U}=-5.93 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
Ans.
$\Delta \mathrm{S}:=-\beta \cdot \mathrm{V}_{\text {ave }} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right.$
$\mathrm{Q}:=\mathrm{T} \cdot \Delta \mathrm{S}$
Work $:=\Delta \mathrm{U}-\mathrm{Q}$
$\Delta \mathrm{S}=-0.03636 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
Ans. $Q=-10.84 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
Ans. Work $=4.91 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
6.10 For a constant-volume change, by Eq. (3.5),

$$
\begin{array}{lll}
\beta \cdot() \mathrm{T}_{2}-\mathrm{T}_{1}-\cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1}=0\right. & \mathrm{T}_{1}:=298.15 \cdot \mathrm{~K} & \mathrm{~T}_{2}:=323.15 \cdot \mathrm{~K} \\
\beta:=36.2 \cdot 10^{-5} \cdot \mathrm{~K}^{-1} & \kappa:=4.42 \cdot 10^{-5} \cdot \mathrm{bar}^{-1} & \mathrm{P}_{1}:=1 \cdot \mathrm{bar}
\end{array}
$$

$$
\mathrm{P}_{2}:=\frac{\beta \cdot() \Gamma_{2}-\mathrm{T}_{1}}{\kappa}+\mathrm{P}_{1}
$$

$$
\mathrm{P}_{2}=205.75 \mathrm{bar}
$$

Ans.
6.14---6.16 Vectors containing T, P, Tc, Pc, and ω for Parts (a) through (n):

	(300)			(40)			(308.3)			(61.39)			(.187)
	175			75			150.9			48.98			. 000
	575			30			562.2			48.98			. 210
	500			50			425.1			37.96			. 200
	325			60			304.2			73.83			. 224
	175			60			132.9			34.99			. 048
	575			35			556.4			45.60			. 193
T :=	650	-	$\mathrm{P}:=$	50		Tc :=	553.6	-K	Pc :=	40.73	bar	ω :=	. 210
	300			35			282.3			50.40			. 087
	400			70			373.5			89.63			. 094
	150			50			126.2			34.00			. 038
	575			15			568.7			24.90			. 400
	375			25			369.8			42.48			. 152
	(475)			75)			(365.6)			46.65)			(.140)

$\operatorname{Tr}:=\frac{\vec{T}}{\mathrm{Tc}} \quad \operatorname{Pr}:=\frac{\overrightarrow{\mathrm{P}}}{\mathrm{Pc}}$
6.14 Redlich/Kwong equation: $\Omega:=0.08664 \quad \Psi:=0.42748$

$$
\beta \Omega=\overrightarrow{\left(\cdot \frac{\operatorname{Pr}}{\operatorname{Tr}}\right)} \text { Eq. (3.53) } \quad q:=\overrightarrow{\left(\frac{\Psi}{\left.\Omega \cdot \operatorname{Tr}^{1.5}\right)}\right.} \text { Eq. (3.54) }
$$

Guess: $\quad \mathrm{z}:=1$

$$
\text { Given } \quad z=1+\beta-q \cdot \beta \cdot \frac{z-\beta}{z \cdot(z+\beta} \text { Eq. (3.52) }
$$

$$
\mathrm{Z}(\beta, \mathrm{q}:=\operatorname{Find}(\mathrm{z})
$$

$$
i:=1 . .14 \quad I_{i}:=\ln \left(\frac{Z\left(\beta_{i}, q_{i}+\beta_{i}\right)}{Z\left(\beta_{i}, q_{i}\right.}\right) \text { Eq. (6.65b) }
$$

$$
\mathrm{HR}_{\mathrm{i}}:=\mathrm{R} \cdot \mathrm{~T}_{\mathrm{i}} \cdot\left[\left(\not \subset\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}-1-1.5 \cdot \mathrm{q}_{\mathrm{i}} \cdot \mathrm{I}_{\mathrm{i}}\right]\right.\right. \text { Eq. (6.67) The derivative in these }
$$

$$
\mathrm{SR}_{\mathrm{i}}:=\mathrm{R} \cdot() \mathrm{n}(\not)\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}-\beta_{\mathrm{i}}-0.5 \cdot \mathrm{q}_{\mathrm{i}} \cdot \mathrm{I}_{\mathrm{i}} \quad \text { Eq. (6.68) equations equals }-\mathbf{0 . 5}\right.
$$

$\mathrm{Z}\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}=\right.$
0.695
0.605
0.772
0.685
0.729
0.75
0.709
0.706
0.771
0.744
0.663
0.766
0.775
0.75

$\mathrm{HR}_{\mathrm{i}}=$		$\mathrm{SR}_{\mathrm{i}}=$	
-2.302.103	J	-5.461	J
-2.068.103	mol	-8.767	$\mathrm{mol} \cdot \mathrm{K}$
$-3.319 \cdot 10^{3}$		-4.026	
-4.503.103		-6.542	
$-2.3 \cdot 10^{3}$		-5.024	
-1.362.103		-5.648	
$-4.316 \cdot 10^{3}$		-5.346	
$-5.381 \cdot 10^{3}$		-5.978	
$-1.764 \cdot 10^{3}$		-4.12	
$-2.659 \cdot 10^{3}$		-4.698	
$-1.488 \cdot 10^{3}$		-7.257	
$-3.39 \cdot 10^{3}$		-4.115	
-2.122.103		-3.939	
$-3.623 \cdot 10^{3}$		-5.523	

Ans.

6.15 Soave/Redlich/Kwong equation:

$$
\begin{array}{rl}
\Omega:=0.08664 \quad \Psi:=0.42748 & \mathrm{c}:=\left(b .480+1.574 \cdot \omega-0.176 \cdot \omega^{2}\right. \\
\alpha:= & {\left[1+\mathrm{c} \cdot\left(h-\operatorname{Tr}^{0.5}\right]^{2} \quad \beta \Omega=\left(\frac{\operatorname{Pr})}{\operatorname{Tr})}\right.\right.} \\
\text { Eq. (3.53) } \mathrm{q}:=\left(\frac{\Psi \alpha}{\Omega \cdot \operatorname{Tr})}\right. \text { Eq. (3.54) }
\end{array}
$$

Guess: $\quad \mathrm{z}:=1$
Given $\quad z=1+\beta-q \cdot \beta \cdot \frac{z-\beta}{z \cdot(z+\beta} \quad$ Eq. (3.52) $\quad z(\beta, q:=\operatorname{Find}(z)$
The derivative in the following equations equals: $-\mathrm{c}_{\mathrm{i}} \cdot\left(\frac{\mathrm{Tr}_{i}}{\alpha_{i}}\right)^{0.5}$

$$
\begin{gathered}
i:=1 . .14 \quad I_{i}:=\ln \left(\frac{Z\left(\beta_{i}, q_{i}+\beta_{i}\right)}{Z\left(\beta_{i}, q_{i}\right.}\right) \quad \text { Eq. (6.65b) } \\
H R_{i}:=R \cdot T_{i} \cdot\left[Z\left(\beta_{i}, q_{i}-1-\left[c_{i} \cdot\left(\frac{T_{i}}{\alpha_{i}}\right)^{0.5}+1\right] \cdot q_{i} \cdot I_{i}\right]\right. \text { Eq. (6.67) }
\end{gathered}
$$

$\mathrm{SR}_{\mathrm{i}}:=\mathrm{R} \cdot\left[\ln \left(\notin\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}-\beta_{\mathrm{i}}-\mathrm{c}_{\mathrm{i}} \cdot\left(\frac{\mathrm{Tr}_{\mathrm{i}}}{\alpha_{i}}\right)^{0.5} \cdot \mathrm{q}_{\mathrm{i}} \cdot \mathrm{I}_{\mathrm{i}}\right]\right.\right.$
Eq. (6.68)

$\mathrm{Z}\left(\mathrm{\beta}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}\right.$
0.691 0.606 0.774 0.722 0.741 0.768 0.715 0.741 0.774 0.749 0.673 0.769 0.776 0.787

$\mathrm{HR}_{\mathrm{i}}=$		$\mathrm{SR}_{\mathrm{i}}=$	
$-2.595 \cdot 10^{3}$		-6.412	J
$-2.099 \cdot 10^{3}$	mol	-8.947	$\mathrm{mol} \cdot \mathrm{K}$
$-3.751 \cdot 10^{3}$		-4.795	
$-4.821 \cdot 10^{3}$		-7.408	
$-2.585 \cdot 10^{3}$		-5.974	
$-1.406 \cdot 10^{3}$		-6.02	
-4.816.103		-6.246	
$-5.806 \cdot 10^{3}$		-6.849	
$-1.857 \cdot 10^{3}$		-4.451	
$-2.807 \cdot 10^{3}$		-5.098	
$-1.527 \cdot 10^{3}$		-7.581	
-4.244.103		-5.618	
$-2.323 \cdot 10^{3}$		-4.482	
$-3.776 \cdot 10^{3}$		-6.103	

Ans.

6.16 Peng/Robinson equation: $\sigma:=1+\sqrt{2} \quad \varepsilon:=1-\sqrt{2}$

$$
\text { Given } \quad z=1+\beta-q \cdot \beta \cdot \frac{z-\beta}{(z+\varepsilon \beta \cdot(z+\sigma \beta} \quad \text { Eq. (3.52) } z(\beta, q:=\operatorname{Find}(z)
$$

The derivative in the following equations equals: $-\mathrm{c}_{\mathrm{i}} \cdot\left(\frac{\mathrm{Tr}_{\mathrm{i}}}{\alpha_{\mathrm{i}}}\right)^{0.5}$

$$
\mathrm{i}:=1 . .14 \quad \mathrm{I}_{\mathrm{i}}:=\frac{1}{2 \cdot \sqrt{2}} \cdot \ln \left(\frac{\mathrm{Z}\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}+\sigma \beta_{\mathrm{i}}\right)}{\mathrm{Z}\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}+\varepsilon \beta_{\mathrm{i}}\right)} \quad \quad\right. \text { Eq. (6.65b) }
$$

$$
\begin{equation*}
\mathrm{HR}_{\mathrm{i}}:=\mathrm{R} \cdot \mathrm{~T}_{\mathrm{i}} \cdot\left[\mathrm{Z}\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}-1-\left[\mathrm{c}_{\mathrm{i}} \cdot\left(\frac{\mathrm{Tr}_{\mathrm{i}}}{\alpha_{\mathrm{i}}}\right)^{0.5}+1\right] \cdot \mathrm{q}_{\mathrm{i}} \cdot \mathrm{I}_{\mathrm{i}}\right]\right. \tag{6.67}
\end{equation*}
$$

$\mathrm{SR}_{\mathrm{i}}:=\mathrm{R} \cdot\left[\ln \left(\not z\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}-\beta_{\mathrm{i}}-\mathrm{c}_{\mathrm{i}} \cdot\left(\frac{\operatorname{Tr}_{\mathrm{i}}}{\alpha_{\mathrm{i}}}\right)^{0.5} \cdot \mathrm{q}_{\mathrm{i}} \cdot \mathrm{I}_{\mathrm{i}}\right]\right.\right.$

Ans.

$$
\begin{aligned}
& \Omega:=0.07779 \quad \Psi:=0.45724 \quad \mathrm{c}:=\overrightarrow{\left(\hat{0.37464+1.54226 \cdot \omega-0.26992 \cdot \omega^{2}}\right.} \\
& \alpha:=\left[1+\mathrm{c} \cdot\left(\hat{\mu}-\mathrm{Tr}^{0.5}\right]^{2} \quad \beta \Omega=\overrightarrow{\left(\cdot \frac{\operatorname{Pr}}{\mathrm{Tr}}\right)} \quad \text { Eq. (3.53) } \mathrm{q}:=\overrightarrow{\left(\frac{\Psi \alpha}{\Omega \cdot \operatorname{Tr})}\right)}\right. \text { Eq. (3.54) } \\
& \text { Guess: } \quad \mathrm{z}:=1
\end{aligned}
$$

Lee/Kesler Correlation --- By linear interpolation in Tables E.1--E.12:

h0 equals $\frac{(\mathrm{HR})^{0}}{\mathrm{RTc}}$	h1 equals $\frac{(\mathrm{HR})^{1}}{\mathrm{RTc}}$	h equals	$\frac{\mathrm{HR}}{\mathrm{RTc}}$
s0 equals $\frac{(\mathrm{SR})^{0}}{\mathrm{R}}$	s1 equals $\frac{(\mathrm{SR})^{1}}{\mathrm{R}}$	s equals	$\frac{\mathrm{SR}}{\mathrm{R}}$

$\mathrm{Z} 0:=\left(\begin{array}{c}.686 \\ .590 \\ .774 \\ .675 \\ .725 \\ .744 \\ .705 \\ .699 \\ .770 \\ .742 \\ .651 \\ .767 \\ .776\end{array}\right) \quad \mathrm{Z} 1:=\left(\begin{array}{c}-.093 \\ .155 \\ -.024 \\ .118 \\ .746\end{array}\right)\left(\begin{array}{c}-.950 \\ -1.709 \\ -.705 \\ .165 \\ -1.319 \\ -.019 \\ .102 \\ -.001 \\ -1.265 \\ .007 \\ .144 \\ -.034 \\ -.962 \\ -.032 \\ -1.200 \\ -.770 \\ -.875 \\ -1.466 \\ -.723 \\ - \\ -.701\end{array}\right) \quad \mathrm{h} 0:=\left(\begin{array}{l}-1.003 \\ -.471 \\ -.591 \\ -1.216\end{array}\right)$

$$
\mathrm{Z}:=\overrightarrow{(\mathrm{z} 0+\omega \cdot \mathrm{Z} 1} \quad \text { Eq. (3.57) } \quad \mathrm{h}:=\overrightarrow{(\mathrm{h} 0+\omega \cdot \mathrm{h} 1} \quad \text { (6.85) } \quad \mathrm{HR}:=\overrightarrow{(\mathrm{h} \cdot \mathrm{Tc} \cdot \mathrm{R})}
$$

$\mathrm{Z}_{\mathrm{i}}=$	$\mathrm{h}_{\mathrm{i}}=$	$\mathrm{s}_{\mathrm{i}}=$	$\mathrm{R}_{\mathrm{i}}=$		$\mathrm{SR}_{\mathrm{i}}=$	
0.669	-1.138	-0.891	$-2.916 \cdot 10^{3}$	J	-7.405	J
0.59	-1.709	-1.11	-2.144•103	mol	-9.229	$\mathrm{mol} \cdot \mathrm{K}$
0.769	-0.829	-0.612	-3.875.103		-5.091	
0.699	-1.406	-0.918	-4.971 10^{3}		-7.629	
0.727	-1.135	-0.763	-2.871.103		-6.345	
0.752	-1.274	-0.723	-1.407.103		-6.013	
0.701	-1.107	-0.809	$-5.121 \cdot 10^{3}$		-6.727	
0.72	-1.293	-0.843	-5.952.103		-7.005	
0.77	-0.818	-0.561	-1.92.103		-4.667	
0.743	-0.931	-0.639	-2.892.103		-5.314	
0.656	-1.481	-0.933	-1.554.103		-7.759	
0.753	-0.975	-0.747	-4.612.103		-6.207	
0.771	-0.793	-0.577	-2.438.103		-4.794	
0.768	-1.246	-0.728	$-3.786 \cdot 10^{3}$		-6.054	

Ans.
6.17 $\mathrm{T}:=323.15 \cdot \mathrm{~K}$

$$
\mathrm{t}:=\frac{\mathrm{T}}{\mathrm{~K}}-273.15 \quad \mathrm{t}=50
$$

The pressure is the vapor pressure given by the Antoine equation:

$$
\begin{array}{ll}
\mathrm{P}(\mathrm{t}):=\exp \left(13.8858-\frac{2788.51}{\mathrm{t}+220.79}\right) & \mathrm{P}(50)=36.166 \\
\frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{P}(\mathrm{t})=1.375 & \mathrm{P}:=36.166 \cdot \mathrm{kPa} \\
\mathrm{dPdt}:=1.375 \cdot \frac{\mathrm{kPa}}{\mathrm{~K}}
\end{array}
$$

(a) The entropy change of vaporization is equal to the latent heat divided by the temperature. For the Clapeyron equation, Eq. (6.69), we need the volume change of vaporization. For this we estimate the liquid volume by Eq. (3.63) and the vapor volume by the generalized virial correlation. For benzene:

$$
\begin{array}{llll}
\omega:=0.210 & \mathrm{~T}_{\mathrm{c}}:=562.2 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=48.98 \cdot \mathrm{bar} & \mathrm{Z}_{\mathrm{c}}:=0.271 \\
\mathrm{~V}_{\mathrm{c}}:=259 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} & \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.575 \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.007
\end{array}
$$

By Eqs. (3.65), (3.66), (3.61), \& (3.63)
$\mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}} \quad \mathrm{~B}_{0}=-0.941 \quad \mathrm{~B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=-1.621$
$V_{\text {vap }}:=\frac{\mathrm{R} \cdot \mathrm{T}}{\mathrm{P}} \cdot\left[1+\left(\beta_{0}+\omega \cdot \mathrm{B}_{1} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}}\right] \quad \mathrm{V}_{\text {vap }}=7.306 \times 104 \frac{4 \mathrm{~cm}^{3}}{\mathrm{~mol}}\right.$

By Eq. (3.72),

$$
\mathrm{V}_{\mathrm{liq}}:=\mathrm{V}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{c}}^{\left[\left(\mathrm{l}-\mathrm{T}_{\mathrm{r}}^{2 / 7}\right]\right.} \quad \mathrm{V}_{\mathrm{liq}}=93.151 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Solve Eq. (6.72) for the latent heat and divide by T to get the entropy change of vaporization:

$$
\Delta \mathrm{S}:=\mathrm{dPdt} \cdot()_{\mathrm{vap}}-\mathrm{V}_{\mathrm{liq}}
$$

$$
\Delta \mathrm{S}=100.34 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Ans.
(b) Here for the entropy change of vaporization:

$$
\Delta \mathrm{S}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \cdot \mathrm{dPdt}
$$

Ans.
6.20 The process may be assumed to occur adiabatically and at constant pressure. It is therefore isenthalpic, and may for calculational purposes be considered to occur in two steps:
(1) Heating of the water from -6 degC to the final equilibrium temperature of 0 degC.
(2) Freezing of a fraction x of the water at the equilibrium T.

Enthalpy changes for these two steps sum to zero:

$$
\mathrm{C}_{\mathrm{P}} \cdot \Delta \mathrm{t}+\mathrm{x} \cdot \Delta \mathrm{H}_{\text {fusion }}=0 \quad \mathrm{C}_{\mathrm{P}}:=4.226 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \quad \Delta \mathrm{t}:=6 \cdot \mathrm{~K}
$$

$$
\Delta \mathrm{H}_{\text {fusion }}:=-333.4 \cdot \frac{\text { joule }}{\mathrm{gm}}
$$

$$
\mathrm{x}:=\frac{-\mathbb{C}_{\mathrm{P}} \cdot \mathrm{t}}{\Delta \mathrm{H}_{\text {fusion }}} \quad \mathrm{x}=0.076
$$

Ans.

The entropy change for the two steps is:

$$
\mathrm{T}_{2}:=273.15 \cdot \mathrm{~K}
$$

$$
\mathrm{T}_{1}:=(273.15-6) \cdot \mathrm{K}
$$

$$
\Delta \mathrm{S}:=\mathrm{C}_{\mathrm{P}} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)+\frac{\mathrm{x} \cdot \Delta \mathrm{H}_{\text {fusion }}}{\mathrm{T}_{2}} \quad \Delta \mathrm{~S}=1.034709 \times 10^{-3} \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \quad \text { Ans. }
$$

The freezing process itself is irreversible, because it does not occur at the equilibrium temperature of 0 deg C .
6.21 Data, Table F.4: $\quad \mathrm{H}_{1}:=1156.3 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{H}_{2}:=1533.4 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$

$$
\mathrm{S}_{1}:=1.7320 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \mathrm{S}_{2}:=1.9977 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

$\Delta \mathrm{H}:=\mathrm{H}_{2}-\mathrm{H}_{1}$

$$
\Delta \mathrm{S}:=\mathrm{S}_{2}-\mathrm{S}_{1}
$$

$$
\Delta \mathrm{H}=377.1 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\Delta \mathrm{S}=0.266 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

Ans.

For steam as an ideal gas, apply Eqs. (4.9) and (5.18). [t in degF]

$$
\mathrm{T}_{1}:=(227.96+459.67) \text { rankine } \quad \mathrm{T}_{2}:=(1000+459.67) \text { rankine }
$$

$$
\mathrm{P}_{1}:=20 \cdot \mathrm{psi} \quad \mathrm{P}_{2}:=50 \cdot \mathrm{psi}
$$

$$
\mathrm{T}_{1}=382.017 \mathrm{~K} \quad \mathrm{~T}_{2}=810.928 \mathrm{~K}
$$

$$
\begin{aligned}
& \text { molwt }:=18 \frac{\mathrm{lb}}{\mathrm{lbmol}} \\
& \Delta \mathrm{H}:=\frac{\mathrm{R} \cdot \mathrm{MCPH}\left(\Gamma_{1}, \mathrm{~T}_{2}, 3.470,1.450 \cdot 10^{-3}, 0.0,0.121 \cdot 10^{5} \cdot() \Gamma_{2}-\mathrm{T}_{1}\right.}{\mathrm{molwt}} \\
& \Delta \mathrm{H}=372.536 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \text { Ans. } \\
& \Delta \mathrm{S}:=\frac{\mathrm{R} \cdot\left(\operatorname{MCPS}\left(\Gamma_{1}, \mathrm{~T}_{2}, 3.470,1.450 \cdot 10^{-3}, 0.0,0.121 \cdot 10^{5} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)\right)\right.}{\mathrm{molwt}} \\
& \Delta \mathrm{~S}=0.259 \frac{\mathrm{BTU}}{\mathrm{lb} \cdot \mathrm{rankine}} \text { Ans. }
\end{aligned}
$$

6.22 Data, Table F. 2 at 8000 kPa :

$$
\begin{aligned}
& \mathrm{V}_{\text {liq }}:=1.384 \cdot \frac{\mathrm{~cm}^{\mathrm{g}}}{\mathrm{gm}} \\
& \mathrm{~V}_{\text {vap }}:=23.525 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \\
& \mathrm{H}_{\text {vap }}:=2759.9 \cdot \frac{\mathrm{~J}}{\mathrm{gm}} \\
& \mathrm{~S}_{\text {liq }}:=3.2076 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \\
& \mathrm{H}_{\mathrm{liq}}:=1317.1 \cdot \frac{\mathrm{~J}}{\mathrm{gm}} \\
& \mathrm{~S}_{\text {vap }}:=5.7471 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \\
& \mathrm{~m}_{\mathrm{liq}}:=\frac{\frac{0.15 \cdot 10^{6}}{2} \cdot \mathrm{~cm}^{3}}{\mathrm{~V}_{\mathrm{liq}}} \\
& \mathrm{~m}_{\text {vap }}:=\frac{\frac{0.15 \cdot 10^{6}}{2} \cdot \mathrm{~cm}^{3}}{\mathrm{~V}_{\text {vap }}} \\
& \mathrm{m}_{\mathrm{liq}}=54.191 \mathrm{~kg} \\
& \mathrm{~m}_{\text {vap }}=3.188 \mathrm{~kg} \\
& \mathrm{H}_{\text {total }}:=\mathrm{m}_{\mathrm{liq}} \cdot \mathrm{H}_{\text {liq }}+\mathrm{m}_{\mathrm{vap}} \cdot \mathrm{H}_{\mathrm{vap}} \\
& \mathrm{H}_{\text {total }}=80173.5 \mathrm{~kJ} \\
& \mathrm{~S}_{\text {total }}:=\mathrm{m}_{\mathrm{liq}} \cdot \mathrm{~S}_{\mathrm{liq}}+\mathrm{m}_{\mathrm{vap}} \cdot \mathrm{~S}_{\mathrm{vap}} \\
& S_{\text {total }}=192.145 \frac{\mathrm{~kJ}}{\mathrm{~K}} \\
& \text { Ans. } \\
& \text { Ans. }
\end{aligned}
$$

6.23 Data, Table F. 2 at 1000 kPa :

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{liq}}:=1.127 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \\
& \mathrm{~V}_{\mathrm{vap}}:=194.29 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{\text {liq }}:=762.605 \cdot \frac{\mathrm{~J}}{\mathrm{gm}} \\
& \mathrm{H}_{\text {vap }}:=2776.2 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
\end{aligned}
$$

Let $\mathbf{x}=$ fraction of mass that is vapor (quality)

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{liq}}:=2.1382 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \\
& \mathrm{~S}_{\mathrm{vap}}:=6.5828 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
\end{aligned}
$$

$$
x:=0.5 \quad \text { (Guess) }
$$

$$
\begin{array}{ll}
\text { Given } \frac{\mathrm{x} \cdot \mathrm{~V}_{\text {vap }}}{(1-\mathrm{x}) \cdot \mathrm{V}_{\text {liq }}}=\frac{70}{30} & \mathrm{x}:=\operatorname{Find}(\mathrm{x}) \\
\mathrm{H}:=(1-\mathrm{x}) \cdot \mathrm{H}_{\mathrm{liq}}+\mathrm{x} \cdot \mathrm{H}_{\text {vap }} & \mathrm{x}=0.013 \\
\mathrm{H}=789.495 \frac{\mathrm{~J}}{\mathrm{gm}} & \mathrm{~S}:=(1-\mathrm{x}) \cdot \mathrm{S}_{\mathrm{liq}}+\mathrm{x} \cdot \mathrm{~S}_{\mathrm{vap}} \\
&
\end{array}
$$

6.24 Data, Table F. 3 at 350 degF:

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{liq}}:=0.01799 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{~V}_{\text {vap }}:=3.342 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}} \\
\mathrm{H}_{\mathrm{liq}}:=321.76 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{H}_{\text {vap }}:=1192.3 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
\end{array}
$$

$$
\mathrm{m}_{\mathrm{liq}}+\mathrm{m}_{\mathrm{vap}}=3 \cdot \mathrm{lb}_{\mathrm{m}} \mathrm{~m}_{\mathrm{vap}} \cdot \mathrm{~V}_{\mathrm{vap}}=50 \cdot \mathrm{~m}_{\mathrm{liq}} \cdot \mathrm{~V}_{\mathrm{liq}} \mathrm{~m}_{\mathrm{liq}}+\frac{50 \cdot \mathrm{~m}_{\mathrm{liq}} \cdot \mathrm{~V}_{\mathrm{liq}}}{\mathrm{~V}_{\mathrm{vap}}}=3 \cdot \mathrm{lb}_{\mathrm{m}}
$$

$$
\mathrm{m}_{\mathrm{liq}}:=\frac{3 \cdot \mathrm{lb}_{\mathrm{m}}}{1+\frac{50 \cdot \mathrm{~V}_{\mathrm{liq}}}{\mathrm{~V}_{\mathrm{vap}}}}
$$

$$
\mathrm{m}_{\mathrm{liq}}=2.364 \mathrm{lb}
$$

$$
\mathrm{m}_{\mathrm{vap}}:=3 \cdot 1 \mathrm{~b}_{\mathrm{m}}-\mathrm{m}_{\mathrm{liq}} \quad \mathrm{~m}_{\mathrm{vap}}=0.636 \mathrm{lb}
$$

$$
\mathrm{H}_{\mathrm{total}}:=\mathrm{m}_{\mathrm{liq}} \cdot \mathrm{H}_{\mathrm{liq}}+\mathrm{m}_{\mathrm{vap}} \cdot \mathrm{H}_{\mathrm{vap}}
$$

$$
\mathrm{H}_{\text {total }}=1519.1 \mathrm{BTU}
$$

Ans.
$6.25 \mathrm{~V}:=\frac{1}{0.025} \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$ $\mathrm{V}_{\text {liq }}:=1.209 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
$\mathrm{V}_{\text {vap }}:=71.45 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$

Data, Table F. 1 at 230 degC:

$$
\begin{array}{ll}
\mathrm{V}=(1-\mathrm{x}) \cdot \mathrm{V}_{\mathrm{liq}}+\mathrm{x} \cdot \mathrm{~V}_{\text {vap }} & \mathrm{x}:=\frac{\mathrm{V}-\mathrm{V}_{\mathrm{liq}}}{\mathrm{~V}_{\mathrm{vap}}-\mathrm{V}_{\mathrm{liq}}} \\
\mathrm{H}:=(1-\mathrm{x}) \cdot \mathrm{H}_{\mathrm{liq}}+\mathrm{x} \cdot \mathrm{H}_{\text {vap }} & \mathrm{S}:=(1-\mathrm{x}) \cdot \mathrm{S}_{\mathrm{liq}}+\mathrm{x} \cdot \mathrm{~S}_{\mathrm{vap}} \\
\mathrm{x}=0.552 & \mathrm{H}=1991 \frac{\mathrm{~J}}{\mathrm{gm}}
\end{array} \quad \mathrm{~S}=4.599 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \quad \text { Ans. }
$$

6.26 $\quad \mathrm{V}_{\text {total }}=\mathrm{m}_{\text {total }} \cdot \mathrm{V}_{\text {liq }}+\mathrm{m}_{\text {vap }} \cdot \Delta \mathrm{V}_{\text {lv }}$
$\mathrm{V}_{\text {total }}:=0.15 \cdot \mathrm{~m}^{3}$
Table F.1, 30 degC:
$\mathrm{m}_{\text {total }}:=\frac{\mathrm{V}_{\text {total }}}{\mathrm{V}_{\mathrm{vap}}}$
$\mathrm{m}_{\text {vap }}:=\frac{\mathrm{V}_{\text {total }}-\mathrm{m}_{\text {total }} \cdot \mathrm{V}_{\text {liq }}}{\Delta \mathrm{V}_{\mathrm{lv}}}$
$\mathrm{m}_{\text {total }}=0.382 \mathrm{~kg}$

$$
\mathrm{m}_{\mathrm{vap}}=4.543 \times 10^{-3} \mathrm{~kg}
$$

$m_{\text {liq }}:=m_{\text {total }}-m_{\text {vap }}$
$\mathrm{V}_{\text {tot.liq }}:=\mathrm{m}_{\mathrm{liq}} \cdot \mathrm{V}_{\mathrm{liq}}$
$\mathrm{m}_{\mathrm{liq}}=377.72 \mathrm{gm}$
$\mathrm{V}_{\text {tot.liq }}=379.23 \mathrm{~cm}^{3}$
Ans.
$\begin{array}{lll}\text { Table F.2, } 1100 \mathrm{kPa}: & \mathrm{H}_{\mathrm{liq}}:=781.124 \cdot \frac{\mathrm{~J}}{\mathrm{gm}} & \mathrm{H}_{\mathrm{vap}}:=2779.7 \cdot \frac{\mathrm{~J}}{\mathrm{gm}} \\ \text { Interpolate @101.325 kPa \& } 105 \mathrm{degC}: & \mathrm{H}_{2}:=2686.1 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}\end{array}$
Const.-H throttling: $\quad \mathrm{H}_{2}=\mathrm{H}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\text {liq }}\right.$
$\mathrm{x}:=\frac{\mathrm{H}_{2}-\mathrm{H}_{\text {liq }}}{\mathrm{H}_{\text {vap }}-\mathrm{H}_{\text {liq }}} \quad \mathrm{x}=0.953 \quad$ Ans.
6.28 Data, Table F. 2 at 2100 kPa and 260 degC , by interpolation:

$$
\begin{aligned}
& \mathrm{H}_{1}:=2923.5 \cdot \frac{\mathrm{~J}}{\mathrm{gm}} \\
& \mathrm{H}_{2}:=2923.5 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
\end{aligned}
$$

$$
\mathrm{S}_{1}:=6.5640 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

$$
\text { molwt }:=18.015 \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

Final state is at this enthalpy and a pressure of 125 kPa.

By interpolation at these conditions, the final temperature is $\mathbf{2 2 4 . 8 0} \mathbf{~ d e g C}$ and

$$
\mathrm{S}_{2}:=7.8316 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \quad \Delta \mathrm{~S}:=\mathrm{S}_{2}-\mathrm{S}_{1} \quad \Delta \mathrm{~S}=1.268 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \quad \text { Ans. }
$$

For steam as an ideal gas, there would be no temperature change and the entropy change would be given by:

$$
\begin{aligned}
& \mathrm{P}_{1}:=2100 \cdot \mathrm{kPa} \\
& \mathrm{P}_{2}:=125 \cdot \mathrm{kPa}
\end{aligned}
$$

$$
\Delta \mathrm{S}:=\frac{-\mathrm{R}}{\mathrm{molwt}} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)
$$

$$
\Delta \mathrm{S}=1.302 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

Ans.
6.29 Data, Table F. 4 at $\mathbf{3 0 0}$ (psia) and 500 degF :

$$
\begin{aligned}
\mathrm{H}_{1} & :=1257.7 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \\
\mathrm{H}_{2} & :=1257.7 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
\end{aligned}
$$

$$
\mathrm{S}_{1}:=1.5703 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

Final state is at this enthalpy and a pressure of 20 (psia).

By interpolation at these conditions, the final temperature is $\mathbf{4 3 8 . 8 7} \mathbf{d e g F}$ and

$$
\mathrm{S}_{2}:=1.8606 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \quad \Delta \mathrm{S}:=\mathrm{S}_{2}-\mathrm{S}_{1} \quad \Delta \mathrm{~S}=0.29 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

For steam as an ideal gas, there would be no temperature change and the entropy change would be given by:
$\mathrm{P}_{1}:=300 \cdot \mathrm{psi}$
$\mathrm{P}_{2}:=20 \cdot \mathrm{psi}$
molwt $:=18 \frac{\mathrm{lb}}{\mathrm{lbmol}}$
$\Delta \mathrm{S}:=\frac{-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)}{\mathrm{molwt}}$

Ans.
6.30 Data, Table F. 2 at 500 kPa and 300 degC
$\mathrm{S}_{1}:=7.4614 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
The final state is at this entropy and a pressure of 50 kPa . This is a state of wet steam, for which
$\mathrm{S}_{\text {liq }}:=1.0912 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
$\mathrm{H}_{\text {liq }}:=340.564 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}$
$\mathrm{S}_{2}=\mathrm{S}_{1}=\mathrm{S}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}\right.$
$\mathrm{x}:=\frac{\mathrm{S}_{1}-\mathrm{S}_{\text {liq }}}{\mathrm{S}_{\text {vap }}-\mathrm{S}_{\text {liq }}} \quad \mathrm{x}=0.98$
$\mathrm{H}_{2}:=\mathrm{H}_{\text {liq }}+\mathrm{x} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\text {liq }}\right.$

$$
\mathrm{H}_{2}=2599.6 \frac{\mathrm{~J}}{\mathrm{gm}}
$$

Ans.

6.31 Vapor pressures of water from Table F.1:

At 25 degC:

$$
\mathrm{P}_{\mathrm{sat}}:=3.166 \cdot \mathrm{kPa}
$$

$\mathrm{P}:=101.33 \cdot \mathrm{kPa}$

$$
\mathrm{x}_{\mathrm{water}}:=\frac{\mathrm{P}_{\mathrm{sat}}}{\mathrm{P}}
$$

$$
\mathrm{x}_{\text {water }}=0.031 \quad \text { Ans. }
$$

At 50 deg C :

$$
\mathrm{P}_{\mathrm{sat}}:=12.34 \cdot \mathrm{kPa}
$$

$$
\mathrm{x}_{\mathrm{water}}:=\frac{\mathrm{P}_{\mathrm{sat}}}{\mathrm{P}}
$$

$$
\mathrm{x}_{\text {water }}=0.122
$$

Ans.

6.32 Process occurs at constant total volume:

$\mathrm{V}_{\text {total }}:=(0.014+0.021) \cdot \mathrm{m}^{3}$
Data, Table F. 1 at $100 \mathrm{degC}: \quad \mathrm{U}_{\text {liq }}:=419.0 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}$

$$
\mathrm{U}_{\mathrm{vap}}:=2506.5 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{liq}}:=1.044 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \\
& \mathrm{~m}_{\mathrm{liq}}:=\frac{0.021 \cdot \mathrm{~m}^{3}}{\mathrm{~V}_{\mathrm{liq}}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{\text {vap }}:=1673.0 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \\
& \mathrm{~m}_{\text {vap }}:=\frac{0.014 \cdot \mathrm{~m}^{3}}{\mathrm{~V}_{\text {vap }}}
\end{aligned}
$$

$$
\text { mass }:=m_{\mathrm{liq}}+\mathrm{m}_{\mathrm{vap}}
$$

$$
\mathrm{x}:=\frac{\mathrm{m}_{\mathrm{vap}}}{\text { mass }}
$$

$$
\mathrm{x}=4.158 \times 10^{-4}
$$

(initial quality)

$$
\mathrm{V}_{2}:=\frac{\mathrm{V}_{\text {total }}}{\text { mass }}
$$

$$
\mathrm{V}_{2}=1.739 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

This state is first reached as saturated liquid at 349.83 deg C

For this state, $P=16,500.1 \mathbf{k P a}$, and

$$
\mathrm{U}_{2}:=1641.7 \cdot \frac{\mathrm{~J}}{\mathrm{gm}} \quad \mathrm{U}_{1}:=\mathrm{U}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{U}_{\mathrm{vap}}-\mathrm{U}_{\mathrm{liq}} \quad \mathrm{U}_{1}=419.868 \frac{\mathrm{~J}}{\mathrm{gm}}\right.
$$

$\mathrm{Q}:=\mathrm{U}_{2}-\mathrm{U}_{1}$

$$
\mathrm{Q}=1221.8 \frac{\mathrm{~J}}{\mathrm{gm}}
$$

Ans.

6.33
 $\mathrm{V}_{\text {total }}:=0.25 \cdot \mathrm{~m}^{3}$

Data, Table F.2, sat. vapor at 1500 kPa :

$$
\mathrm{V}_{1}:=131.66 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

$$
\mathrm{U}_{1}:=2592.4 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\text { mass }:=\frac{\mathrm{V}_{\text {total }}}{\mathrm{V}_{1}}
$$

Of this total mass, $\mathbf{2 5 \%}$ condenses making the quality $0.75 \quad \mathrm{x}:=0.75$
Since the total volume and mass don't change, we have for the final state:

$$
\begin{aligned}
& \mathrm{V}_{2}=\mathrm{V}_{1}=\mathrm{V}_{\text {liq }}+\mathrm{x} \cdot\left(\mathrm{~V}_{\text {vap }}-\mathrm{V}_{\text {liq }} \quad\right. \text { Whence } \\
& \mathrm{x}=\frac{\mathrm{V}_{1}-\mathrm{V}_{\text {liq }}}{\mathrm{V}_{\text {vap }}-\mathrm{V}_{\mathrm{liq}}} \quad \text { (A) } \quad \begin{array}{l}
\text { Find } P \text { for which (A) yields the value } \\
\mathrm{x}=\mathbf{0 . 7 5} \text { for wet steam }
\end{array}
\end{aligned}
$$

Since the liquid volume is much smaller than the vapor volume, we make a preliminary calculation to estimate:
$\mathrm{V}_{\text {vap }}:=\frac{\mathrm{V}_{1}}{\mathrm{x}} \quad \mathrm{V}_{\text {vap }}=175.547 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
This value occurs at a pressure a bit above 1100 kPa . Evaluate \mathbf{x} at 1100 and 1150 kPa by (A). Interpolate on x to find $P=1114.5 \mathrm{kPa}$ and
$\mathrm{U}_{\mathrm{liq}}:=782.41 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}$
$\mathrm{U}_{2}:=\mathrm{U}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{U}_{\text {vap }}-\mathrm{U}_{\mathrm{liq}}\right.$
$\mathrm{Q}:=\operatorname{mass} \cdot\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right.$
$\mathrm{U}_{\text {vap }}:=2584.9 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}$
$\mathrm{U}_{2}=2134.3 \frac{\mathrm{~J}}{\mathrm{gm}}$
$Q=-869.9 k J$
Ans.
6.34 Table F.2,101.325 kPa:
$\mathrm{U}_{\text {liq }}:=418.959 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}$
$\mathrm{m}_{\text {vap }}:=\frac{1.98 \cdot \mathrm{~m}^{3}}{\mathrm{~V}_{\text {vap }}}$
$\mathrm{V}_{1}:=\mathrm{V}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{N}_{\mathrm{vap}}-\mathrm{V}_{\mathrm{liq}}\right.$

$$
\mathrm{V}_{\mathrm{liq}}:=1.044 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

$\mathrm{U}_{\text {vap }}:=2506.5 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}$
$\mathrm{m}_{\text {total }}:=\mathrm{m}_{\text {liq }}+\mathrm{m}_{\text {vap }} \quad \mathrm{x}:=\frac{\mathrm{m}_{\text {vap }}}{\mathrm{m}_{\text {total }}}$
$\mathrm{U}_{1}:=\mathrm{U}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{U} \mathrm{U}_{\mathrm{vap}}-\mathrm{U}_{\mathrm{liq}}\right.$

$$
\mathrm{U}_{1}=540.421 \frac{\mathrm{~J}}{\mathrm{gm}}
$$

Since the total volume and the total mass do not change during the process, the initial and final specific volumes are the same. The final state is therefore the state for which the specific volume of saturated vapor is $98.326 \mathrm{cu} \mathrm{cm} / \mathrm{gm}$. By interpolation in Table F.1, we find $t=213.0 \mathrm{degC}$ and

$$
\mathrm{U}_{2}:=2598.4 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{Q}:=\mathrm{m}_{\mathrm{total}} \cdot\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right.
$$

$$
\mathrm{Q}=41860.5 \mathrm{~kJ}
$$

Ans.
6.35 Data, Table F. 2 at 800 kPa and 350 degC :

$$
\mathrm{V}_{1}:=354.34 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

$$
\mathrm{U}_{1}:=2878.9 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{V}_{\text {total }}:=0.4 \cdot \mathrm{~m}^{3}
$$

The final state at 200 degC has the same specific volume as the initial state, and this occurs for superheated steam at a pressure between 575 and 600 kPa . By interpolation, we find $P=596.4 \mathrm{kPa}$ and
$\mathrm{U}_{2}:=2638.7 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}$
$\mathrm{Q}:=\frac{\mathrm{V}_{\text {total }}}{\mathrm{V}_{1}} \cdot\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right.$
$Q=-271.15 \mathrm{~kJ}$
Ans.
6.36 Data, Table F. 2 at 800 kPa and 200 degC :
$\mathrm{U}_{1}:=2629.9 \cdot \frac{\mathrm{~J}}{\mathrm{gm}} \quad \mathrm{S}_{1}:=6.8148 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}} \quad$ mass $:=1 \cdot \mathrm{~kg}$
(a) Isothermal expansion to 150 kPa and 200 deg C
$\mathrm{U}_{2}:=2656.3 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}$
$\mathrm{S}_{2}:=7.6439 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
$\mathrm{T}:=473.15 \cdot \mathrm{~K}$
$\mathrm{Q}:=\operatorname{mass} \cdot \mathrm{T} \cdot\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right.$
$\mathrm{Q}=392.29 \mathrm{~kJ}$
Ans.
Also: \quad Work := mass. $\left(\mathrm{U}_{2}-\mathrm{U}_{1}-\mathrm{Q} \quad\right.$ Work $=-365.89 \mathrm{~kJ}$
(b) Constant-entropy expansion to 150 kPa . The final state is wet steam:

$$
\begin{array}{ll}
\mathrm{S}_{\mathrm{liq}}:=1.4336 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} & \mathrm{~S}_{\mathrm{vap}}:=7.2234 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \\
\mathrm{U}_{\mathrm{liq}}:=444.224 \cdot \frac{\mathrm{~J}}{\mathrm{gm}} & \mathrm{U}_{\mathrm{vap}}:=2513.4 \cdot \frac{\mathrm{~J}}{\mathrm{gm}} \\
\mathrm{x}:=\frac{\mathrm{S}_{1}-\mathrm{S}_{\mathrm{liq}}}{\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}} & \mathrm{x}=0.929 \\
\mathrm{U}_{2}:=\mathrm{U}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{U}_{\mathrm{vap}}-\mathrm{U}_{\mathrm{liq}}\right. & \mathrm{U}_{2}=2.367 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{gm}} \\
\mathrm{~W}:=\operatorname{mass} \cdot\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right. & \mathrm{W}=-262.527 \mathrm{~kJ}
\end{array}
$$

Ans.

6.37 Data, Table F. 2 at 2000 kPa :

For superheated vapor at 2000 kPa and 575 degC , by interpolation:

$$
\mathrm{H}_{2}:=3633.4 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{Q}:=\operatorname{mass} \cdot\left(\mathrm{H}_{2}-\mathrm{H}_{1} \quad \mathrm{Q}=949.52 \mathrm{~kJ}\right.
$$

Ans.

6.38 First step:

Second step:

$$
\mathrm{Q}_{12}=0
$$

$$
\mathrm{W}_{12}=\mathrm{U}_{2}-\mathrm{U}_{1}
$$

$$
\mathrm{W}_{23}=0
$$

$$
\mathrm{Q}_{23}=\mathrm{U}_{3}-\mathrm{U}_{2}
$$

For process:

$$
\mathrm{Q}=\mathrm{U}_{3}-\mathrm{U}_{2}
$$

$$
\mathrm{W}=\mathrm{U}_{2}-\mathrm{U}_{1}
$$

Table F.2, 2700 kPa :

$$
\mathrm{U}_{\mathrm{liq}}:=977.968 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{U}_{\text {vap }}:=2601.8 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{S}_{\mathrm{liq}}:=2.5924 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

$$
\mathrm{S}_{\mathrm{vap}}:=6.2244 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

$\mathrm{x}_{1}:=0.9$

$$
\mathrm{U}_{1}:=\mathrm{U}_{\mathrm{liq}}+\mathrm{x}_{1} \cdot\left(\mathrm{U}_{\mathrm{vap}}-\mathrm{U}_{\mathrm{liq}} \mathrm{U}_{1}=2.439 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{gm}}\right.
$$

$$
\mathrm{S}_{1}:=\mathrm{S}_{\mathrm{liq}}+\mathrm{x}_{1} \cdot\left(\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}} \quad \mathrm{~S}_{1}=5.861 \times 10^{3} \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2} \mathrm{~K}}\right.
$$

Table F.2, $400 \mathrm{kPa}: \quad \mathrm{S}_{\text {liq }}:=1.7764 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$

$$
\mathrm{S}_{\mathrm{vap}}:=6.8943 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

$$
\mathrm{U}_{\mathrm{liq}}:=604.237 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{U}_{\text {vap }}:=2552.7 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{V}_{\mathrm{liq}}:=1.084 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

$$
\mathrm{V}_{\text {vap }}:=462.22 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

Since step 1 is isentropic,
$\mathrm{S}_{2}=\mathrm{S}_{1}=\mathrm{S}_{\mathrm{liq}}+\mathrm{x}_{2} \cdot\left(\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}\right.$
$\mathrm{x}_{2}:=\frac{\mathrm{S}_{1}-\mathrm{S}_{\text {liq }}}{\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}} \quad \mathrm{x}_{2}=0.798$
$\mathrm{U}_{2}:=\mathrm{U}_{\mathrm{liq}}+\mathrm{x}_{2} \cdot\left(\mathrm{U}_{\mathrm{vap}}-\mathrm{U}_{\mathrm{liq}}\right.$
$\mathrm{U}_{2}=2.159 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{gm}}$
$\mathrm{V}_{2}:=\mathrm{V}_{\mathrm{liq}}+\mathrm{x}_{2} \cdot\left(\mathrm{~N}_{\mathrm{vap}}-\mathrm{V}_{\mathrm{liq}}\right.$
$\mathrm{V}_{2}=369.135 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
$V_{3}=V_{2} \quad$ and the final state is sat. vapor with this specific volume. Interpolate to find that this V occurs at $T=509.23 \mathrm{deg} \mathrm{C}$ and
$\mathrm{U}_{3}:=2560.7 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}$
$Q=401.317 \frac{\mathrm{~J}}{\mathrm{gm}}$

Whence
$\mathrm{Q}:=\mathrm{U}_{3}-\mathrm{U}_{2}$
Work := $\mathrm{U}_{2}-\mathrm{U}_{1}$

Ans.
Work $=-280.034 \frac{\mathrm{~J}}{\mathrm{gm}}$
Ans.
6.39 Table F.2, 400 kPa \& 175 degC:

$$
\mathrm{U}_{1}:=2605.8 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{S}_{1}:=7.0548 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

Table F.1,sat. vapor, 175 deg C
mass $:=4 \cdot \mathrm{~kg}$

$$
\mathrm{T}:=(175+273.15) \cdot \mathrm{K}
$$

$$
\mathrm{Q}:=\operatorname{mass} \cdot \mathrm{T} \cdot\left(\mathrm{~S}_{2}-\mathrm{S}_{1} \quad \mathrm{~W}:=\operatorname{mass} \cdot\left(\mathrm{U}_{2}-\mathrm{U}_{1}-\mathrm{Q}\right.\right.
$$

$Q=-775.66 k J$
Ans. $\quad W=667.66 \mathrm{~kJ}$
Ans.
6.40 (a) Table F.2, 3000 kPa and 450 deg C :

$$
\mathrm{H}_{1}:=3344.6 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{S}_{1}:=7.0854 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

Table F.2, interpolate 235 kPa and 140 degC :

$$
\mathrm{H}_{2}:=2744.5 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{S}_{2}:=7.2003 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

$\Delta \mathrm{H}:=\mathrm{H}_{2}-\mathrm{H}_{1}$

$$
\Delta \mathrm{H}=-600.1 \frac{\mathrm{~J}}{\mathrm{gm}}
$$

Ans.

$$
\Delta \mathrm{S}:=\mathrm{S}_{2}-\mathrm{S}_{1}
$$

$$
\Delta \mathrm{S}=0.115 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

Ans.

(b) $\mathrm{T}_{1}:=(450+273.15) \cdot \mathrm{K}$

$$
\mathrm{T}_{2}:=(140+273.15) \cdot \mathrm{K}
$$

$$
\mathrm{T}_{1}=723.15 \mathrm{~K}
$$

$$
\mathrm{T}_{2}=413.15 \mathrm{~K}
$$

$$
\mathrm{P}_{1}:=3000 \cdot \mathrm{kPa}
$$

$$
\mathrm{P}_{2}:=235 \cdot \mathrm{kPa}
$$

Eqs. (6.95) \& (6.96) for an ideal gas: molwt $:=18 \frac{\mathrm{gm}}{\mathrm{mol}}$
$\Delta \mathrm{H}_{\mathrm{ig}}:=\frac{\mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{1}, \mathrm{~T}_{2}, 3.470,1.450 \cdot 10^{-3}, 0.0,0.121 \cdot 10^{5}}{\mathrm{molwt}}$
$\Delta \mathrm{S}_{\mathrm{ig}}:=\frac{\operatorname{R} \cdot\left(\operatorname{ICPS}\left(\Gamma_{1}, \mathrm{~T}_{2}, 3.470,1.450 \cdot 10^{-3}, 0.0,0.121 \cdot 10^{5}-\ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)\right)\right.}{\text { molwt }}$
$\Delta \mathrm{H}_{\mathrm{ig}}=-620.6 \frac{\mathrm{~J}}{\mathrm{gm}}$
(c) $\mathrm{T}_{\mathrm{c}}:=647.1 \cdot \mathrm{~K}$
$\mathrm{P}_{\mathrm{c}}:=220.55 \cdot \mathrm{bar}$
$\omega:=0.345$
$\mathrm{T}_{\mathrm{r} 1}:=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r} 1}:=\frac{\mathrm{P}_{1}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r} 2}:=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r} 2}:=\frac{\mathrm{P}_{2}}{\mathrm{P}_{\mathrm{c}}}$
$\mathrm{T}_{\mathrm{r} 1}=1.11752$
$\mathrm{P}_{\mathrm{r} 1}=0.13602$
$\mathrm{T}_{\mathrm{r} 2}=0.63846$
$\mathrm{P}_{\mathrm{r} 2}=0.01066$
Ans.

The generalized virial-coefficient correlation is suitable here

$$
\begin{aligned}
& \Delta \mathrm{H}:=\Delta \mathrm{H}_{\mathrm{ig}}+\frac{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot\left(\mathrm{HRB}() \Gamma_{\mathrm{r} 2}, \mathrm{~B}_{\mathrm{r} 2}, \quad-\mathrm{HRB}() \Gamma_{\mathrm{r} 1}, \mathrm{~B}_{\mathrm{r} 1},\right.}{\mathrm{molwt}} \\
& \Delta \mathrm{H}=-593.95 \frac{\mathrm{~J}}{\mathrm{gm}} \text { Ans. } \\
& \Delta \mathrm{S}:=\Delta \mathrm{S}_{\mathrm{ig}}+\frac{\mathrm{R} \cdot\left(\mathrm{SRB}() \Gamma_{\mathrm{r} 2}, \mathrm{~B}_{\mathrm{r} 2}, \quad-\mathrm{SRB}() \Gamma_{\mathrm{r} 1}, \mathrm{~B}_{\mathrm{r} 1},\right.}{\mathrm{molwt}} \\
& \Delta \mathrm{~S}=0.078 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \text { Ans. }
\end{aligned}
$$

6.41 Data, Table F. 2 superheated steam at 550 kPa and 200 degC :
$\mathrm{V}_{1}:=385.19 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
$\mathrm{U}_{1}:=2640.6 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}$
$\mathrm{S}_{1}:=7.0108 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$

Step 1--2: Const.-V heating to 800 kPa . At the initial specific volume and this P, interpolation gives $t=401.74 \mathrm{deg} C$, and

$$
\mathrm{U}_{2}:=2963.1 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$\mathrm{S}_{2}:=7.5782 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$

$$
\mathrm{Q}_{12}:=\mathrm{U}_{2}-\mathrm{U}_{1}
$$

Step 2--3: Isentropic expansion to initial T.

$$
\mathrm{Q}_{12}=322.5 \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{Q}_{23}=0 \quad \mathrm{~S}_{3}=\mathrm{S}_{2} \quad \mathrm{~S}_{3}:=7.5782 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

Step 3-1: Constant-T compression to initial P.
$\mathrm{T}:=473.15 \cdot \mathrm{~K}$
$\mathrm{Q}_{31}:=\mathrm{T} \cdot\left(\mathrm{S}_{1}-\mathrm{S}_{3}\right.$
$\mathrm{Q}_{31}=-268.465 \frac{\mathrm{~J}}{\mathrm{gm}}$

For the cycle, the internal energy change $=0$.
$\mathrm{W}_{\text {cycle }}=-\mathrm{Q}_{\text {cycle }}=-\mathrm{Q}_{12}-\mathrm{Q}_{31} \quad \eta=\frac{-\mathrm{W}_{\text {cycle }}}{\mathrm{Q}_{12}}$
$\eta:=1+\frac{\mathrm{Q}_{31}}{\mathrm{Q}_{12}} \quad \eta=0.1675 \quad$ Ans.
6.42 Table F.4, sat.vapor, 300 (psi):
$\mathrm{T}_{1}:=(417.35+459.67) \cdot$ rankine $\mathrm{H}_{1}:=1202.9 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{T}_{1}=877.02$ rankine

$$
\mathrm{S}_{1}:=1.5105 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

Superheated steam at $\mathbf{3 0 0}(\mathrm{psi}) \& 900$ degF

$$
\begin{array}{llc}
\mathrm{H}_{2}:=1473.6 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{~S}_{2}:=1.7591 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} & \mathrm{S}_{3}:=\mathrm{S}_{2} \\
\mathrm{Q}_{12}:=\mathrm{H}_{2}-\mathrm{H}_{1} & \mathrm{Q}_{31}:=\mathrm{T}_{1} \cdot\left(\mathrm{~S}_{1}-\mathrm{S}_{3}\right. & \mathrm{Q}_{31}=-218.027 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
\end{array}
$$

For the cycle, the internal energy change $=0$.

$$
\begin{array}{ll}
\mathrm{W}_{\text {cycle }}=-\mathrm{Q}_{\text {cycle }}=-\mathrm{Q}_{12}-\mathrm{Q}_{31} & \eta=\frac{-\mathrm{W}_{\text {cycle }}}{\mathrm{Q}_{12}} \quad \text { Whence } \\
\eta:=1+\frac{\mathrm{Q}_{31}}{\mathrm{Q}_{12}} \quad \eta=0.1946 \quad \text { Ans. }
\end{array}
$$

6.43 Data, Table F.2, superheated steam at 4000 kPa and 400 degC :

$$
\mathrm{S}_{1}:=6.7733 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \quad \text { For both parts of the problem: } \quad \mathrm{S}_{2}:=\mathrm{S}_{1}
$$

(a) So we are looking for the pressure at which saturated vapor has the given entropy. This occurs at a pressure just below 575 kPa . By interpolation,

$$
\mathrm{P}_{2}=572.83 \cdot \mathrm{kPa} \quad \text { Ans. }
$$

(b) For the wet vapor the entropy is given by
$x:=0.95$
$\mathrm{S}_{2}=\mathrm{S}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}\right.$
So we must find the presure for which this equation is satisfied. This occurs at a pressure just above 250 kPa . At 250 kPa :
$\mathrm{S}_{\mathrm{liq}}:=1.6071 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
$\mathrm{S}_{\text {vap }}:=7.0520 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
$\mathrm{S}_{2}:=\mathrm{S}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}\right.$
$\mathrm{S}_{2}=6.7798 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
By interpolation

$$
P_{2}=250.16 \cdot \mathrm{kPa} \quad \text { Ans. }
$$

6.44 (a) Table F. 2 at the final conditions of saturated vapor at 50 kPa :

$$
\mathrm{S}_{2}:=7.5947 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{H}_{2}:=2646.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{1}:=\mathrm{S}_{2}
$$

Find the temperature of superheated vapor at 2000 kPa with this entropy. It occurs between 550 and $\mathbf{6 0 0}$ degC. By interpolation

$$
\mathrm{t}_{1}:=559.16 \quad \text { (degC) } \quad \mathrm{H}_{1}:=3598.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Superheat: $\Delta \mathrm{t}:=(559.16-212.37) \cdot \mathrm{K} \quad \Delta \mathrm{t}=346.79 \mathrm{~K} \quad$ Ans.
(b) mdot $:=5 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}} \quad \mathrm{Wdot}:=\mid \mathrm{mdot} \cdot\left(\mathrm{H}_{2}-\mathrm{H}_{1} \mid \quad \mathrm{Wdot}=4760 \mathrm{~kW}\right.$ Ans.
6.45 Table F. 2 for superheated vapor at the initial conditions, 1350 kPa and 375 degC, and for the final condition of sat. vapor at 10 kPa :

$$
\mathrm{H}_{1}:=3205.4 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{1}:=7.2410 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{H}_{2}:=2584.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

If the turbine were to operate isentropically, the final entropy would be

$$
\mathrm{S}_{2}:=\mathrm{S}_{1}
$$

Table F. 2 for sat. liquid and vapor at 10 kPa :
$\mathrm{S}_{\text {liq }}:=0.6493 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{H}_{\text {liq }}:=191.832 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{x}_{2}:=\frac{\mathrm{S}_{2}-\mathrm{S}_{\text {liq }}}{\mathrm{S}_{\text {vap }}-\mathrm{S}_{\text {liq }}} \quad \mathrm{x}_{2}=0.879$
$\eta:=\frac{\mathrm{H}_{2}-\mathrm{H}_{1}}{\mathrm{H}^{\prime}-\mathrm{H}_{1}}$
$\eta=0.681$
$\mathrm{S}_{\text {vap }}:=8.1511 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{H}_{\mathrm{vap}}:=2584.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

$$
\begin{aligned}
& \mathrm{H}^{\prime}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}_{2} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}\right. \\
& \mathrm{H}^{\prime}=2.294 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

6.46 Table F. 2 for superheated vapor at the initial conditions, 1300 kPa and 400 $\operatorname{deg} \mathrm{C}$, and for the final condition of 40 kPa and 100 degC :

$$
\mathrm{H}_{1}:=3259.7 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{S}_{1}:=7.3404 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\mathrm{H}_{2}:=2683.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

If the turbine were to operate isentropically, the final entropy would be $\mathrm{S}_{2}:=\mathrm{S}_{1}$

Table F. 2 for sat. liquid and vapor at 40 kPa :

$$
\begin{array}{ll}
\mathrm{S}_{\mathrm{liq}}:=1.0261 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} & \mathrm{~S}_{\mathrm{vap}}:=7.6709 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\mathrm{H}_{\mathrm{liq}}:=317.16 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{H}_{\mathrm{vap}}:=2636.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\mathrm{x}_{2}:=\frac{\mathrm{S}_{2}-\mathrm{S}_{\mathrm{liq}}}{\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}} & \mathrm{x}_{2}=0.95
\end{array} \quad \mathrm{H}^{\prime}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}_{2} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}\right) \quad \mathrm{H}^{\prime}=2.522 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} .
$$

6.47 Table F. 2 at 1600 kPa and 225 degC :

$$
\mathrm{P}:=1600 \cdot \mathrm{kPa}
$$

$$
\mathrm{V}:=132.85 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

$$
\mathrm{H}:=2856.3 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{S}:=6.5503 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

Table F. 2 (ideal-gas values, 1 kPa and 225 degC)

$$
\begin{array}{lll}
\mathrm{H}_{\mathrm{ig}}:=2928.7 \cdot \frac{\mathrm{~J}}{\mathrm{gm}} & \mathrm{~S}_{\mathrm{ig}}:=10.0681 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} & \mathrm{P}_{0}:=1 \cdot \mathrm{kPa} \\
\mathrm{~T}:=(225+273.15) \cdot \mathrm{K} & \mathrm{~T}=498.15 \mathrm{~K} & \mathrm{~V}_{\mathrm{R}}:=\mathrm{V}-\frac{\mathrm{R}}{\mathrm{molwt}} \cdot \frac{\mathrm{~T}}{\mathrm{P}}
\end{array}
$$

The enthalpy of an ideal gas is independent of pressure, but the entropy DOES depend on P:

$$
\begin{array}{lll}
\mathrm{H}_{\mathrm{R}}:=\mathrm{H}-\mathrm{H}_{\mathrm{ig}} & \Delta \mathrm{~S}_{\mathrm{ig}}:=\frac{-\mathrm{R}}{\mathrm{molwt}} \cdot \ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right) & \mathrm{S}_{\mathrm{R}}:=\mathrm{S}-\left(\mathrm{S}_{\mathrm{ig}}+\Delta \mathrm{S}_{\mathrm{ig}}\right. \\
\mathrm{V}_{\mathrm{R}}=-10.96 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} & \mathrm{H}_{\mathrm{R}}=-72.4 \frac{\mathrm{~J}}{\mathrm{gm}} & \mathrm{~S}_{\mathrm{R}}=-0.11 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \text { Ans. }
\end{array}
$$

Reduced conditions:

$$
\omega:=0.345
$$

$$
\mathrm{T}_{\mathrm{c}}:=647.1 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=220.55 \cdot \mathrm{bar}
$$

$$
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.76982 \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.072546
$$

The generalized virial-coefficient correlation is suitable here

$$
\mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}} \quad \mathrm{~B}_{0}=-0.558 \quad \mathrm{~B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=-0.377
$$

By Eqs. (3.61) + (3.62) \& (3.63) along with Eq. (6.40)
$\mathrm{Z}:=1+\left(\mathrm{B}_{0}+\omega \cdot \mathrm{B}_{1} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}} \quad \mathrm{Z}=0.935 \quad \mathrm{~V}_{\mathrm{R}}:=\frac{\mathrm{R} \cdot \mathrm{T}}{\mathrm{P} \cdot \mathrm{molwt}} \cdot(\mathrm{Z}-1)\right.$
$\mathrm{H}_{\mathrm{R}}:=\frac{\mathrm{R} \cdot \mathrm{T}_{\mathrm{c}}}{\mathrm{molwt}} \cdot \mathrm{HRB}() \Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}, \quad \mathrm{S}_{\mathrm{R}}:=\frac{\mathrm{R}}{\mathrm{molwt}} \cdot \operatorname{SRB}() \Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}$,

Ans.
$6.48 \quad \mathrm{P}:=1000 \cdot \mathrm{kPa}$
(Table F.2)
$\mathrm{V}_{1}:=1.127 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
$\mathrm{V}_{\mathrm{V}}:=194.29 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
$\Delta \mathrm{V}_{\mathrm{lv}}:=\mathrm{V}_{\mathrm{v}}-\mathrm{V}_{\mathrm{l}}$
$\mathrm{H}_{1}:=762.605 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}$
$\mathrm{H}_{\mathrm{V}}:=2776.2 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}$
$\Delta \mathrm{H}_{\mathrm{lv}}:=\mathrm{H}_{\mathrm{v}}-\mathrm{H}_{\mathrm{l}}$
$\mathrm{S}_{1}:=2.1382 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
$\mathrm{S}_{\mathrm{V}}:=6.5828 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
$\Delta \mathrm{S}_{\mathrm{lv}}:=\mathrm{S}_{\mathrm{v}}-\mathrm{S}_{\mathrm{l}}$
$\Delta \mathrm{V}_{\mathrm{lv}}=193.163 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
$\Delta \mathrm{H}_{\mathrm{lv}}=2.014 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{gm}}$ $\Delta \mathrm{S}_{\mathrm{lv}}=4.445 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
(a) $\mathrm{G}_{\mathrm{l}}:=\mathrm{H}_{\mathrm{l}}-\mathrm{T} \cdot \mathrm{S}_{\mathrm{l}} \quad \mathrm{G}_{\mathrm{l}}=-206.06 \frac{\mathrm{~J}}{\mathrm{gm}} \quad \mathrm{G}_{\mathrm{v}}:=\mathrm{H}_{\mathrm{V}}-\mathrm{T} \cdot \mathrm{S}_{\mathrm{v}} \quad \mathrm{G}_{\mathrm{V}}=-206.01 \frac{\mathrm{~J}}{\mathrm{gm}}$
(b) $\Delta \mathrm{S}_{\mathrm{lv}}=4.445 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
$\mathrm{r}:=\frac{\Delta \mathrm{H}_{\mathrm{lv}}}{\mathrm{T}}$
$\mathrm{r}=4.445 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
(c) $\quad \mathrm{V}_{\mathrm{R}}:=\mathrm{V}_{\mathrm{V}}-\frac{\mathrm{R}}{\text { molwt }} \cdot \frac{\mathrm{T}}{\mathrm{P}}$

Ans.

For enthalpy and entropy, assume that steam at 179.88 degC and 1 kPa is an ideal gas. By interpolation in Table F. 2 at 1 kPa :

$$
\mathrm{H}_{\mathrm{ig}}:=2841.1 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}
$$

$$
\mathrm{S}_{\mathrm{ig}}:=9.8834 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}
$$

$$
\mathrm{P}_{0}:=1 \cdot \mathrm{kPa}
$$

The enthalpy of an ideal gas is independent of pressure; the entropy DOES depend on P:

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{R}}:=\mathrm{H}_{\mathrm{V}}-\mathrm{H}_{\mathrm{ig}} \quad \Delta \mathrm{~S}_{\mathrm{ig}}:=\frac{-\mathrm{R}}{\mathrm{molwt}} \cdot \ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right) \quad \Delta \mathrm{S}_{\mathrm{ig}}=-3.188 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \\
& \mathrm{~S}_{\mathrm{R}}:=\mathrm{S}_{\mathrm{v}}-\left(\mathrm{S}_{\mathrm{ig}}+\Delta \mathrm{S}_{\mathrm{ig}} \quad \mathrm{H}_{\mathrm{R}}=-64.9 \frac{\mathrm{~J}}{\mathrm{gm}} \text { Ans. } \mathrm{S}_{\mathrm{R}}=-0.1126 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}\right. \text { Ans. }
\end{aligned}
$$

(d) Assume ln P vs. 1/T linear and fit three data pts @ 975, 1000, \& 1050 kPa .

$$
\begin{array}{ll}
\text { Data: } \quad \mathrm{pp}:=\left(\begin{array}{l}
975 \\
1000 \mid \cdot \mathrm{kPa} \\
1050
\end{array}\right) & \mathrm{t}:=\left(\begin{array}{l}
178.79 \\
179.88 \\
182.02
\end{array}\right) \\
\mathrm{x}_{\mathrm{i}}:=\frac{1}{\mathrm{t}_{\mathrm{i}}+273.15} \quad \mathrm{y}_{\mathrm{i}}:=\ln \left(\frac{\mathrm{pp}_{\mathrm{i}}}{\mathrm{kPa}}\right) & \text { Slope }:=\operatorname{slope}(\mathrm{x}, \mathrm{y}) \quad \text { Slope }=-4717 \\
\text { dPdT }:=\frac{-\mathrm{P}}{\mathrm{~T}^{2}} \cdot \text { Slope } \cdot \mathrm{K} & \mathrm{dPdT}=22.984 \frac{\mathrm{kPa}}{\mathrm{~K}} \\
\Delta \mathrm{~S}_{\mathrm{lv}}:=\Delta \mathrm{V}_{\mathrm{lv}} \cdot \mathrm{dPdT} & \Delta \mathrm{~S}_{\mathrm{lv}}=4.44 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \quad \text { Ans. } \\
\text { Reduced conditions: } \omega:=0.345 & \mathrm{~T}_{\mathrm{c}}:=647.1 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=220.55 \cdot \mathrm{bar} \\
\quad \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.7001 & \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \quad \mathrm{P}_{\mathrm{r}}=0.0453
\end{array}
$$

The generalized virial-coefficient correlation is suitable here

$$
\mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}} \quad \mathrm{~B}_{0}=-0.664 \quad \mathrm{~B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=-0.63
$$

By Eqs. (3.61) + (3.62) \& (3.63) along with Eq. (6.40)

$$
\mathrm{Z}:=1+\left(\mathrm{B}_{0}+\omega \cdot \mathrm{B}_{1} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}} \quad \mathrm{Z}=0.943 \quad \mathrm{~V}_{\mathrm{R}}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P} \cdot \mathrm{molwt}} \cdot(\mathrm{Z}-1)\right.
$$

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{R}}:=\frac{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}}}{\mathrm{molwt}} \cdot \operatorname{HRB}() \Gamma_{\mathrm{r}}, B_{\mathrm{r}}, \quad \mathrm{~S}_{\mathrm{R}}:=\frac{\mathrm{R}}{\mathrm{molwt}} \cdot \operatorname{SRB}\left(\Gamma_{\mathrm{r}}, B_{\mathrm{r}},\right. \\
& \mathrm{V}_{\mathrm{R}}=-11.93 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \quad \mathrm{H}_{\mathrm{R}}=-43.18 \frac{\mathrm{~J}}{\mathrm{gm}} \quad \mathrm{~S}_{\mathrm{R}}=-0.069 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \quad \text { Ans. }
\end{aligned}
$$

6.49 $\mathrm{T}:=(358.43+459.67) \cdot$ rankine

$$
\mathrm{T}=818.1 \text { rankine }
$$

$$
\mathrm{P}:=150 \cdot \mathrm{psi}
$$

(Table F.4)
$\mathrm{V}_{1}:=0.0181 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{H}_{\mathrm{l}}:=330.65 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{S}_{1}:=0.5141 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$
$\mathrm{S}_{\mathrm{V}}:=1.5695 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$
$\Delta \mathrm{V}_{\mathrm{lv}}=2.996 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}$
$\Delta \mathrm{H}_{\mathrm{lv}}=863.45 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$

$$
\mathrm{G}_{\mathrm{v}}:=\mathrm{H}_{\mathrm{v}}-\mathrm{T} \cdot \mathrm{~S}_{\mathrm{v}}
$$

$$
\mathrm{G}_{\mathrm{l}}=-89.94 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{G}_{\mathrm{v}}=-89.91 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

(b) $\Delta \mathrm{S}_{\mathrm{lv}}=1.055 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$

$$
\mathrm{r}:=\frac{\Delta \mathrm{H}_{\mathrm{lv}}}{\mathrm{~T}}
$$

$$
\mathrm{r}=1.055 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

(c) $\quad \mathrm{V}_{\mathrm{R}}:=\mathrm{V}_{\mathrm{V}}-\frac{\mathrm{R}}{\text { molwt }} \cdot \frac{\mathrm{T}}{\mathrm{P}}$
$\mathrm{V}_{\mathrm{R}}=-0.235 \frac{\mathrm{ft}^{3}}{1 \mathrm{~b}_{\mathrm{m}}}$
Ans.

For enthalpy and entropy, assume that steam at 358.43 degF and 1 psi is an ideal gas. By interpolation in Table F. 4 at 1 psi:

$$
\mathrm{H}_{\mathrm{ig}}:=1222.6 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{S}_{\mathrm{ig}}:=2.1492 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

$$
\mathrm{P}_{0}:=1 \cdot \mathrm{psi}
$$

The enthalpy of an ideal gas is independent of pressure; the entropy DOES depend on P :

$$
\begin{array}{ll}
\mathrm{H}_{\mathrm{R}}:=\mathrm{H}_{\mathrm{v}}-\mathrm{H}_{\mathrm{ig}} & \mathrm{H}_{\mathrm{R}}=-28.5 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \text { Ans. } \\
\Delta \mathrm{S}_{\mathrm{ig}}:=\frac{-\mathrm{R}}{\mathrm{molwt}} \cdot \ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right) & \Delta \mathrm{S}_{\mathrm{ig}}=-0.552 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \\
\mathrm{S}_{\mathrm{R}}:=\mathrm{S}_{\mathrm{V}}-\left(\mathrm{S}_{\mathrm{ig}}+\Delta \mathrm{S}_{\mathrm{ig}}\right. & \mathrm{S}_{\mathrm{R}}=-0.0274 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
\end{array}
$$

Ans.
(d) Assume $\ln \mathbf{P}$ vs. 1/T linear and fit threedata points (@ 145, 150, \& 155 psia)

Reduced conditions: $\omega:=0.345 \quad \mathrm{~T}_{\mathrm{c}}:=647.1 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=220.55 \cdot \mathrm{bar}$

$$
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.7024 \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.0469
$$

The generalized virial-coefficient correlation is suitable here

$$
\mathrm{B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}} \quad \mathrm{~B}_{0}=-0.66 \quad \mathrm{~B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=-0.62
$$

By Eqs. (3.61) + (3.62) \& (3.63) along with Eq. (6.40)

$$
\begin{gathered}
\mathrm{Z}:=1+\left(\mathrm{B}_{0}+\omega \cdot \mathrm{B}_{1} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}} \quad \mathrm{Z}=0.942 \quad \mathrm{~V}_{\mathrm{R}}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P} \cdot \mathrm{molwt}} \cdot(\mathrm{Z}-1)\right. \\
\mathrm{H}_{\mathrm{R}}:=\mathrm{R} \cdot \frac{\mathrm{~T}_{\mathrm{c}}}{\mathrm{molwt}} \cdot \mathrm{HRB}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{~B}_{\mathrm{r}}, \quad \mathrm{~S}_{\mathrm{R}}:=\frac{\mathrm{R}}{\mathrm{molwt}} \cdot \mathrm{SRB}() \Gamma_{\mathrm{r}}, \mathrm{~B}_{\mathrm{r}},\right. \\
\mathrm{V}_{\mathrm{R}} \\
=-0.1894 \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}} \mathrm{H}_{\mathrm{R}}=-19.024 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{~S}_{\mathrm{R}}=-0.0168 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \text { Ans. }
\end{gathered}
$$

6.50 For propane:

$$
\begin{array}{llll}
\text { For propane: } & \mathrm{T}_{\mathrm{c}}:=369.8 \cdot \mathrm{~K} & \mathrm{P}_{\mathrm{c}}:=42.48 \cdot \mathrm{bar} & \omega:=0.152 \\
\mathrm{~T}:=(195+273.15) \cdot \mathrm{K} & \mathrm{~T}=468.15 \mathrm{~K} & \mathrm{P}:=135 \cdot \mathrm{bar} & \mathrm{P}_{0}:=1 \cdot \mathrm{bar}
\end{array}
$$

$\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}$
$\mathrm{T}_{\mathrm{r}}=1.266$
$\mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}$

$$
\mathrm{P}_{\mathrm{r}}=3.178
$$

Use the Lee/Kesler correlation; by interpolation,
$\mathrm{Z}_{0}:=0.6141$
$Z_{1}:=0.1636$
$\mathrm{Z}:=\mathrm{Z}_{0}+\omega \cdot \mathrm{Z}_{1}$
$Z=0.639$
$\mathrm{V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}}{\mathrm{P}}$

$$
\mathrm{V}=184.2 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Ans.
$\mathrm{H}_{\mathrm{R} 0}:=-2.496 \cdot \mathrm{R} \cdot \mathrm{T}_{\mathrm{c}}$
$\mathrm{H}_{\mathrm{R} 1}:=-0.586 \cdot \mathrm{R} \cdot \mathrm{T}_{\mathrm{c}}$
$\mathrm{H}_{\mathrm{R} 0}=-7.674 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}$

$$
\mathrm{H}_{\mathrm{R} 1}=-1.802 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\mathrm{S}_{\mathrm{R} 0}:=-1.463 \cdot \mathrm{R}$
$\mathrm{S}_{\mathrm{R} 0}=-12.163 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
$\mathrm{S}_{\mathrm{R} 1}:=-0.717 \cdot \mathrm{R}$
$\mathrm{S}_{\mathrm{R} 1}=-5.961 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
$\mathrm{H}_{\mathrm{R}}:=\mathrm{H}_{\mathrm{R} 0}+\omega \cdot \mathrm{H}_{\mathrm{R} 1}$
$\mathrm{S}_{\mathrm{R}}:=\mathrm{S}_{\mathrm{R} 0}+\omega \cdot \mathrm{S}_{\mathrm{R} 1}$
$H_{R}=-7.948 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}$

$$
\mathrm{S}_{\mathrm{R}}=-13.069 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$\Delta \mathrm{H}:=\mathrm{R} \cdot \mathrm{ICPH}\left(\beta 08.15 \mathrm{~K}, \mathrm{~T}, 1.213,28.785 \cdot 10^{-3},-8.824 \cdot 10^{-6}, 0.0+\mathrm{H}_{\mathrm{R}}\right.$

$$
\Delta \mathrm{S}:=\mathrm{R} \cdot\left(\operatorname{ICPS}\left(\beta 08.15 \mathrm{~K}, \mathrm{~T}, 1.213,28.785 \cdot 10^{-3},-8.824 \cdot 10^{-6}, 0.0-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)\right)+\mathrm{S}_{\mathrm{R}}\right.
$$

$$
\Delta \mathrm{H}=6734.9 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Ans.

$$
\Delta \mathrm{S}=-15.9 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Ans.
6.51 For propane: $\begin{array}{lll}\mathrm{T}_{\mathrm{c}}:=369.8 \cdot \mathrm{~K} & \mathrm{P}_{\mathrm{c}}:=42.48 \cdot \mathrm{bar} & \omega:=0.152 \\ \mathrm{~T}=343.15 \mathrm{~K} & \mathrm{P}_{0}:=101.33 \cdot \mathrm{kPa} & \mathrm{P}:=1500 \cdot \mathrm{kPa}\end{array}$ $\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r}}=0.92793 \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.35311$

Assume propane an ideal gas at the initial conditions. Use generalized virial correlation at final conditions.

$$
\begin{array}{ll}
\Delta \mathrm{H}:=\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot \operatorname{HRB}() \Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}, & \Delta \mathrm{H}=-1431.3 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\Delta \mathrm{~S}:=\mathrm{R} \cdot\left(\operatorname{SRB}() \Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}},\right. & \left.-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)\right) \\
\Delta \mathrm{S}=-25.287 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{array}
$$

Ans.

Ans.
6.52 For propane:

$$
\omega:=0.152
$$

$\mathrm{T}_{\mathrm{c}}:=369.8 \cdot \mathrm{~K}$
$\mathrm{P}_{\mathrm{c}}:=42.48 \cdot$ bar
$Z_{c}:=0.276$
$\mathrm{V}_{\mathrm{c}}:=200.0 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
If the final state is a two-phase mixture, it must exist at its saturation temperature at $\mathbf{1}$ bar. This temperature is found from the vapor pressure equation:

$\mathrm{P}:=1 \cdot \mathrm{bar}$	$\mathrm{A}:=-6.72219$	$\mathrm{~B}:=1.33236$	$\mathrm{C}:=-2.13868$
$\mathrm{D}:=-1.38551$	$\tau(\mathrm{~T}):=1-\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}$	Guess:	$\mathrm{T}:=200 \cdot \mathrm{~K}$
Given			

Given

$$
P=P_{C} \cdot \exp \left[\frac{A \cdot \tau(T)+B \cdot\left(t(T)^{1.5}+C \cdot\left(t(T)^{3}+D \cdot\left(t(T)^{6}\right.\right.\right.}{1-\tau(T)}\right]
$$

$$
\mathrm{T}:=\operatorname{Find}(\mathrm{T}) \quad \mathrm{T}=230.703 \mathrm{~K}
$$

The latent heat of vaporization at the final conditions will be needed for an energy balance. It is found by the Clapeyron equation. We proceed exactly as in Pb. 6.17.

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~T}):=\mathrm{P}_{\mathrm{C}} \cdot \exp \left[\frac{\mathrm{~A} \cdot \tau(\mathrm{~T})+\mathrm{B} \cdot\left(\lambda(\mathrm{~T})^{1.5}+\mathrm{C} \cdot\left(\lambda(\mathrm{~T})^{3}+\mathrm{D} \cdot\left(\mathrm{t}(\mathrm{~T})^{6}\right.\right.\right.}{1-\tau(\mathrm{T})}\right] \\
& \mathrm{T}:=230.703 \cdot \mathrm{~K} \quad \frac{\mathrm{~d}}{\mathrm{dT}} \mathrm{P}(\mathrm{~T})=4.428 \frac{\mathrm{kPa}}{\mathrm{~K}} \quad \mathrm{dPdT}:=4.428124 \cdot \frac{\mathrm{kPa}}{\mathrm{~K}} \\
& \mathrm{P}:=1 \cdot \text { bar } \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.024 \quad \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.624 \\
& \mathrm{~B}_{0}:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{r}}^{1.6}} \quad \mathrm{~B}_{0}=-0.815 \quad \mathrm{~B}_{1}:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{r}}^{4.2}} \quad \mathrm{~B}_{1}=-1.109 \\
& \mathrm{~V}_{\text {vap }}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \cdot\left[1+\left(\mathrm{\beta}_{0}+\omega \cdot \mathrm{B}_{1} \cdot \frac{\mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}}\right]\right. \\
& \mathrm{V}_{\mathrm{liq}}:=\mathrm{V}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{c}}^{\left[\left(\mathrm{l}-\mathrm{T}_{\mathrm{r}}{ }^{\frac{2}{7}}\right]\right.} \\
& V_{\text {vap }}=1.847 \times 10^{4} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \mathrm{~V}_{\mathrm{liq}}=75.546 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \Delta \mathrm{H}_{\mathrm{lv}}:=\mathrm{T} \cdot()_{\text {vap }}-\mathrm{V}_{\text {liq }} \cdot \mathrm{dPdT} \\
& \Delta \mathrm{H}_{\mathrm{lv}}=1.879 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

ENERGY BALANCE: For the throttling process there is no enthalpy change. The calculational path from the initial state to the final is made up of the following steps:
(1) Transform the initial gas into an ideal gas at the initial $T \& P$.
(2) Carry out the temperature and pressure changes to the final $\mathbf{T} \& P$ in the ideal-gas state.
(3) Transform the ideal gas into a real gas at the final $T \& P$.
(4) Partially condense the gas at the final $T \& P$.

The sum of the enthalpy changes for these steps is set equal to zero, and the resulting equation is solved for the fraction of the stream that is liquid.

For Step (1), use the generalized correlation of Tables E. 7 \& E.8, and let

$$
\mathrm{r}_{0}=\left(\frac{\mathrm{H}^{\mathrm{R}}}{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}}}\right)^{0} \quad \text { and } \quad \mathrm{r}_{1}=\left(\frac{\mathrm{H}^{\mathrm{R}}}{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}}}\right)^{1}
$$

$\mathrm{T}_{1}:=370 \cdot \mathrm{~K}$
$P_{1}:=200 \cdot$ bar
$\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r}}=1.001$
$\mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}_{1}}{\mathrm{P}_{\mathrm{c}}}$
$\mathrm{P}_{\mathrm{r}}=4.708$

By interpolation, find: $\quad r_{0}:=-3.773$

$$
\mathrm{r}_{1}:=-3.568
$$

By Eq. (6.85)

$$
\Delta \mathrm{H}_{1}:=-\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot\left(\mathrm{~F}_{0}+\mathrm{r}_{1} \cdot \omega \quad \Delta \mathrm{H}_{1}=1.327 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}\right.
$$

For Step (2) the enthalpy change is given by Eq. (6.95), for which

$$
\begin{aligned}
\Delta \mathrm{H}_{2} & :=\mathrm{R} \cdot\left(\mathrm{tCPH}() \Gamma_{1}, \mathrm{~T}, 1.213,28.785 \cdot 10^{-3},-8.824 \cdot 10^{-6}, 0.0\right. \\
\Delta \mathrm{H}_{2} & =-1.048 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

For Step (3) the enthalpy change is given by Eq. (6.87), for which

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}}:=\frac{230.703 \cdot \mathrm{~K}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.6239 \quad \mathrm{P}_{\mathrm{r}}:=\frac{1 \cdot \mathrm{bar}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.0235 \\
& \Delta \mathrm{H}_{3}:=\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot \mathrm{HRB}\left(\Pi_{\mathrm{r}}, \mathrm{~B}_{\mathrm{r}}, \quad\right. \text { For Step (4), } \\
& \Delta \mathrm{H}_{3}=-232.729 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

For the process,
$\mathrm{x}:=\frac{\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\mathrm{H}_{3}}{\Delta \mathrm{H}_{\mathrm{lv}}}$

$$
\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\mathrm{H}_{3}-\mathrm{x} \cdot \Delta \mathrm{H}_{\mathrm{lv}}=0
$$

$$
x=0.136 \quad \text { Ans }
$$

6.53 For 1,3-butadiene: $\omega:=0.190$

$\mathrm{P}_{\mathrm{c}}:=42.77 \cdot \mathrm{bar}$	$\mathrm{Z}_{\mathrm{c}}:=0.267$
$\mathrm{~T}:=380 \cdot \mathrm{~K}$	$\mathrm{P}:=1919.4 \cdot \mathrm{kPa}$
$\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}$	$\mathrm{T}_{\mathrm{r}}=0.894$

$$
\mathrm{T}_{\mathrm{c}}:=425.2 \cdot \mathrm{~K}
$$

$$
\mathrm{V}_{\mathrm{c}}:=220.4 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{~T}_{\mathrm{n}}:=268.7 \cdot \mathrm{~K}
$$

$$
\mathrm{T}_{0}:=273.15 \cdot \mathrm{~K} \quad \mathrm{P}_{0}:=101.33 \cdot \mathrm{kPa}
$$

$$
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}}
$$

$$
\mathrm{T}_{\mathrm{r}}=0.894
$$

$$
\mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}
$$

$$
\mathrm{P}_{\mathrm{r}}=0.449
$$

Use Lee/Kesler correlation. HOWEVER, the values for a saturated vapor lie on the very edge of the vapor region, and some adjacent numbers are for the liquid phase. These must NOT be used for interpolation. Rather, EXTRAPOLATIONS must be made from the vapor side. There may be some choice in how this is done, but the following values are as good as any:

$$
\begin{array}{ll}
\mathrm{Z}_{0}:=0.7442 & \mathrm{Z}_{1}:=-0.1366 \quad \mathrm{Z}:=\mathrm{Z}_{0}+\omega \cdot \mathrm{Z}_{1} \quad \mathrm{Z}=0.718 \\
\mathrm{~V}_{\text {vap }}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} & \mathrm{~V}_{\text {vap }}=1182.2 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \text { Ans. }
\end{array}
$$

$\mathrm{H}_{\mathrm{R} 0}:=-0.689 \cdot \mathrm{R} \cdot \mathrm{T}_{\mathrm{c}}$
$\mathrm{H}_{\mathrm{R} 0}=-2.436 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathrm{H}_{\mathrm{R} 1}:=-0.892 \cdot \mathrm{R} \cdot \mathrm{T}_{\mathrm{c}}$

$$
\mathrm{H}_{\mathrm{R} 1}=-3.153 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{S}_{\mathrm{R} 0}:=-0.540 \cdot \mathrm{R}
$$

$$
\mathrm{S}_{\mathrm{R} 0}=-4.49 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
\mathrm{H}_{\mathrm{R}}:=\mathrm{H}_{\mathrm{R} 0}+\omega \cdot \mathrm{H}_{\mathrm{R} 1}
$$

$$
\mathrm{H}_{\mathrm{R}}=-3.035 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~S}_{\mathrm{R}}=-5.892 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
\mathrm{S}_{\mathrm{vap}}:=\mathrm{R} \cdot\left(\operatorname{ICPS}\left(\mid \Gamma_{0}, \mathrm{~T}, 2.734,26.786 \cdot 10^{-3},-8.882 \cdot 10^{-6}, 0.0-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)\right)+\mathrm{S}_{\mathrm{R}}\right.
$$

$$
\mathrm{H}_{\text {vap }}=6315.9 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Ans.

$$
\mathrm{S}_{\mathrm{vap}}=-1.624 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Ans.

For saturated vapor, by Eqs. (3.63) \& (4.12)
$\mathrm{V}_{\mathrm{liq}}:=\mathrm{V}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{c}}\left[\left(\mathrm{X}^{\frac{2}{7}-\mathrm{T}_{\mathrm{r}}}\right]\right.$

Ans.

$$
\Delta \mathrm{H}_{\mathrm{n}}:=\mathrm{R} \cdot \mathrm{~T}_{\mathrm{n}} \cdot\left[\frac{1.092 \cdot\left(\ln \left(\frac{\left.\mathrm{P}_{\mathrm{c}}\right)}{\mathrm{bar}}\right)-1.013\right)}{0.930-\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{~T}_{\mathrm{c}}}}\right] \quad \Delta \mathrm{H}_{\mathrm{n}}=22449 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

By Eq. (4.13)

$$
\Delta \mathrm{H}:=\Delta \mathrm{H}_{\mathrm{n}} \cdot\left(\frac{1-\mathrm{T}_{\mathrm{r}}}{1-\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{~T}_{\mathrm{c}}}}\right)^{0.38} \quad \Delta \mathrm{H}=14003 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\mathrm{H}_{\text {liq }}:=\mathrm{H}_{\mathrm{vap}}-\Delta \mathrm{H}$

$$
\mathrm{H}_{\mathrm{liq}}=-7687.4 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Ans.

$$
\mathrm{S}_{\mathrm{liq}}:=\mathrm{S}_{\mathrm{vap}}-\frac{\Delta \mathrm{H}}{\mathrm{~T}}
$$

$$
\mathrm{S}_{\mathrm{liq}}=-38.475 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Ans.
$\begin{array}{llll}\text { 6.54 } & \text { For n-butane: } & \omega:=0.200 & \mathrm{~T}_{\mathrm{c}}:=425.1 \cdot \mathrm{~K} \\ & \mathrm{P}_{\mathrm{c}}:=37.96 \cdot \mathrm{bar} & \mathrm{Z}_{\mathrm{c}}:=0.274 & \mathrm{~V}_{\mathrm{c}}:=255 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}\end{array} \quad \mathrm{~T}_{\mathrm{n}}:=272.7 \cdot \mathrm{~K}$
Use Lee/Kesler correlation. HOWEVER, the values for a saturated vapor lie on the very edge of the vapor region, and some adjacent numbers are for the liquid phase. These must NOT be used for interpolation. Rather, EXTRAPOLATIONS must be made from the vapor side. There may be some choice in how this is done, but the following values are as good as any:
$\begin{aligned} \mathrm{Z}_{0} & :=0.7692 \\ \mathrm{~V} & :=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}}{\mathrm{P}}\end{aligned}$
$\mathrm{H}_{\mathrm{R} 0}:=-0.607 \cdot \mathrm{R} \cdot \mathrm{T}_{\mathrm{c}}$
$\mathrm{H}_{\mathrm{R} 0}=-2.145 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}$

$$
Z:=Z_{0}+\omega \cdot Z_{1} \quad Z=0.742
$$

$$
\mathrm{V}=1590.1 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Ans.
$\mathrm{H}_{\mathrm{R} 1}:=-0.831 \cdot \mathrm{R} \cdot \mathrm{T}_{\mathrm{c}}$
$\mathrm{H}_{\mathrm{R} 1}=-2.937 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}$

$$
\begin{array}{cl}
\mathrm{S}_{\mathrm{R} 0}:=-0.485 \cdot \mathrm{R} & \mathrm{~S}_{\mathrm{R} 1}:=-0.835 \cdot \mathrm{R} \\
\mathrm{~S}_{\mathrm{R} 0}=-4.032 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} & \mathrm{~S}_{\mathrm{R} 1}=-6.942 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
\mathrm{H}_{\mathrm{R}}:=\mathrm{H}_{\mathrm{R} 0}+\omega \cdot \mathrm{H}_{\mathrm{R} 1} & \mathrm{~S}_{\mathrm{R}}:=\mathrm{S} \mathrm{R} 0+\omega \cdot \mathrm{S}_{\mathrm{R} 1} \\
\mathrm{H}_{\mathrm{R}}=-2.733 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} & \mathrm{~S}_{\mathrm{R}}=-5.421 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
\mathrm{H}_{\mathrm{Vap}}:=\mathrm{R} \cdot \mathrm{ICPH}\left(\Gamma_{0}, \mathrm{~T}, 1.935,36.915 \cdot 10^{-3},-11.402 \cdot 10^{-6}, 0.0+\mathrm{H}_{\mathrm{R}}\right. \\
\mathrm{S}_{\mathrm{vap}}:=\mathrm{R} \cdot\left(\operatorname{ICPS}\left(\Gamma_{0}, \mathrm{~T}, 1.935,36.915 \cdot 10^{-3},-11.402 \cdot 10^{-6}, 0.0-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)\right)+\mathrm{S}_{\mathrm{R}}\right. \\
\mathrm{H}_{\mathrm{Vap}}=7427.4 \frac{\mathrm{~J}}{\mathrm{~mol}} \text { Ans. } & \mathrm{S}_{\mathrm{Vap}}=4.197 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \text { Ans. }
\end{array}
$$

For saturated vapor, by Eqs. (3.72) \& (4.12)

$$
\begin{aligned}
& \left.\mathrm{V}_{\mathrm{liq}}:=\mathrm{V}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{c}}^{\left[\left(\mathrm{l}-\mathrm{T}_{\mathrm{r}}\right.\right.}{ }^{2 / 7}\right] \\
& \Delta \mathrm{H}_{\mathrm{n}}:=\mathrm{R} \cdot \mathrm{~T}_{\mathrm{n}} \cdot\left[\frac{1.092 \cdot\left(\ln \left(\frac{\left.\mathrm{P}_{\mathrm{c}}\right)}{\mathrm{bar})}-1.013\right)\right.}{0.930-\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{~T}_{\mathrm{c}}}}\right] \quad \mathrm{V}_{\mathrm{liq}}=123.86 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \text { Ans. } \\
& \Delta \mathrm{H}_{\mathrm{n}}=22514 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

By Eq. (4.13)

$$
\Delta H:=\Delta H_{\mathrm{n}} \cdot\left(\frac{1-\mathrm{T}_{\mathrm{r}}}{1-\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{~T}_{\mathrm{c}}}}\right)^{0.38} \quad \Delta \mathrm{H}=15295.2 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{H}_{\mathrm{liq}}:=\mathrm{H}_{\mathrm{vap}}-\Delta \mathrm{H}
$$

$$
\mathrm{H}_{\mathrm{liq}}=-7867.8 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Ans.
$\mathrm{S}_{\text {liq }}:=\mathrm{S}_{\mathrm{vap}}-\frac{\Delta \mathrm{H}}{\mathrm{T}}$
$\mathrm{S}_{\mathrm{liq}}=-37.141 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
Ans.
6.55 Under the stated conditions the worst possible cycling of demand can be represented as follows:

This situation is also represented by the equation:

$$
4000 \theta+10000 \cdot() 1-\theta=6000
$$

where $\theta=$ time of storage liquid
Solution gives $\theta:=\frac{2}{3} \mathrm{hr}$
The steam stored during this leg is: $\mathrm{m}_{\text {prime }}:=\left(6000 \frac{\mathrm{~kg}}{\mathrm{hr}}-4000 \frac{\mathrm{~kg}}{\mathrm{hr}}\right) \cdot \theta$

$$
\mathrm{m}_{\text {prime }}=1333.3 \mathrm{~kg}
$$

We consider this storage leg, and for this process of steam addition to a tank the equation developed in Problem 6-74 is applicable:

$$
\mathrm{m}_{2}=\frac{\mathrm{m}_{1} \cdot\left(\mathrm{H}_{\text {prime }}-\mathrm{H}_{1}-\mathrm{V}_{\text {tank }} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1}-\frac{\mathrm{H}_{\mathrm{fg} 2}}{\mathrm{~V}_{\mathrm{fg} 2}}\right)\right.}{\mathrm{H}_{\text {prime }}-\mathrm{H}_{\mathrm{f} 2}+\mathrm{V}_{\mathrm{f} 2} \cdot \frac{\mathrm{H}_{\mathrm{fg} 2}}{\mathrm{~V}_{\mathrm{fg} 2}}}
$$

We can replace $V_{\text {tank }}$ by $m_{2} V_{2}$, and rearrange to get

$$
\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}} \cdot\left[\mathrm{H}_{\text {prime }}-\mathrm{H}_{\mathrm{f} 2}+\mathrm{V}_{\mathrm{f} 2} \cdot \frac{\mathrm{H}_{\mathrm{fg} 2}}{\mathrm{~V}_{\mathrm{fg} 2}}+\mathrm{V}_{2} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1}-\frac{\mathrm{H}_{\mathrm{fg} 2}}{\mathrm{~V}_{\mathrm{fg} 2}}\right)\right]=\mathrm{H}_{\text {prime }}-\mathrm{H}_{1}
$$

However $\mathrm{M}_{1} \cdot \mathrm{v}_{1}=\mathrm{m}_{2} \cdot \mathrm{~V}_{2}=\mathrm{V}_{\text {tank }} \quad$ and therefore $\quad \frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}$

Making this substitution and rearranging we get

$$
\frac{\mathrm{H}_{\text {prime }}-\mathrm{H}_{\mathrm{f} 2}+\mathrm{V}_{\mathrm{f} 2} \cdot \frac{\mathrm{H}_{\mathrm{fg} 2}}{\mathrm{~V}_{\mathrm{fg} 2}}}{\mathrm{~V}_{2}}+\mathrm{P}_{2}-\mathrm{P}_{1}-\frac{\mathrm{H}_{\mathrm{fg} 2}}{\mathrm{~V}_{\mathrm{fg} 2}}=\frac{\mathrm{H}_{\text {prime }}-\mathrm{H}_{1}}{\mathrm{~V}_{1}}
$$

In this equation we can determine from the given information everything except $H_{\text {prime }}$ and $\mathbf{V}_{\text {prime }}$. These quantities are expressed by

$$
\mathrm{H}_{1}=\mathrm{H}_{\mathrm{fl}}+\mathrm{x}_{1} \cdot \mathrm{H}_{\mathrm{fg} 1} \quad \text { and } \quad \mathrm{V}_{1}=\mathrm{V}_{\mathrm{f} 1}+\mathrm{x}_{1} \cdot \mathrm{~V}_{\mathrm{fg} 1}
$$

Therefore our equation becomes (with $H_{\text {prime }}=H_{g 2}$)

$$
\frac{\left(\mathrm{H}_{\mathrm{g} 2}-\mathrm{H}_{\mathrm{f} 2}+\mathrm{V}_{\mathrm{f} 2} \cdot\left(\frac{\mathrm{H}_{\mathrm{fg} 2}}{\mathrm{~V}_{\mathrm{fg} 2}}\right)\right.}{\mathrm{V}_{2}}+\mathrm{P}_{2}-\mathrm{P}_{1}-\frac{\mathrm{H}_{\mathrm{fg} 2}}{\mathrm{~V}_{\mathrm{fg} 2}}=\frac{\mathrm{H}_{\mathrm{g} 2}-\mathrm{H}_{\mathrm{f} 1}-\mathrm{x}_{1} \cdot \mathrm{H}_{\mathrm{fg} 1}}{\mathrm{~V}_{\mathrm{f} 1}+\mathrm{x}_{1} \cdot \mathrm{~V}_{\mathrm{fg} 1}} \text { Eq. (B) }
$$

In this equation only \mathbf{x}_{1} is unknown and we can solve for it as follows. First we need V_{2} :

From the given information we can write:
$0.95 \mathrm{~V}_{2}=(1)-\mathrm{x}_{2} \cdot \mathrm{~V}_{\mathrm{f} 2} \quad 0.05 \mathrm{~V}_{2}=\mathrm{x}_{2} \cdot \mathrm{~V}_{\mathrm{g} 2}$
therefore $\quad 19=\frac{\left(1-x_{2} \cdot V_{f 2}\right.}{x_{2} \cdot V_{\mathrm{g} 2}} \quad$ or $\quad x_{2}=\frac{V_{f 2}}{19 V_{\mathrm{g} 2}+V_{f 2}}$

Then

$$
\begin{equation*}
\mathrm{V}_{2}=\frac{\mathrm{V}_{\mathrm{g} 2}}{0.05} \cdot\left(\frac{\mathrm{~V}_{\mathrm{f} 2}}{19 \mathrm{~V}_{\mathrm{g} 2}+\mathrm{V}_{\mathrm{f} 2}}\right)=\frac{20}{\frac{19}{\mathrm{~V}_{\mathrm{f} 2}}+\frac{1}{\mathrm{~V}_{\mathrm{g} 2}}} \tag{C}
\end{equation*}
$$

Now we need property values:
Initial state in accumulator is wet steam at $700 \mathrm{kPa} . \quad \mathrm{P}_{1}:=700 \mathrm{kPa}$
We find from the steam tables

$$
\mathrm{H}_{\mathrm{f} 1}:=697.061 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \mathrm{H}_{\mathrm{g} 1}:=2762.0 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{H}_{\mathrm{fg} 1}:=\mathrm{H}_{\mathrm{g} 1}-\mathrm{H}_{\mathrm{f} 1} \mathrm{H}_{\mathrm{fg} 1}=2064.939 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{V}_{\mathrm{f} 1}:=1.108 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \quad \mathrm{~V}_{\mathrm{g} 1}:=272.68 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \mathrm{~V}_{\mathrm{fg} 1}:=\mathrm{V}_{\mathrm{g} 1}-\mathrm{V}_{\mathrm{f} 1} \mathrm{~V}_{\mathrm{fg} 1}=271.572 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

Final state in accumulator is wet steam at $1000 \mathrm{kPa} . \quad \mathrm{P}_{2}:=1000 \mathrm{kPa}$
From the steam tables

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{f} 2}:=762.605 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \mathrm{H}_{\mathrm{g} 2}:=2776.2 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{H}_{\mathrm{fg} 2}:=\mathrm{H}_{\mathrm{g} 2}-\mathrm{H}_{\mathrm{f} 2} \mathrm{H}_{\mathrm{fg} 2}=2013.595 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \mathrm{~V}_{\mathrm{f} 2}:=1.127 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \quad \mathrm{~V}_{\mathrm{g} 2}:=194.29 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \quad \mathrm{~V}_{\mathrm{fg} 2}:=\mathrm{V}_{\mathrm{g} 2}-\mathrm{V}_{\mathrm{f} 2} \mathrm{~V}_{\mathrm{fg} 2}=193.163 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
\end{aligned}
$$

Solve Eq. (C) for $\mathbf{V}_{\mathbf{2}}$

$$
\mathrm{V}_{2}:=\frac{\mathrm{V}_{\mathrm{g} 2}}{0.05} \cdot\left(\frac{\mathrm{~V}_{\mathrm{f} 2}}{19 \mathrm{~V}_{\mathrm{g} 2}+\mathrm{V}_{\mathrm{f} 2}}\right) \quad \mathrm{V}_{2}=1.18595 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

Next solve Eq. (B) for $\mathbf{x}_{1} \quad$ Guess: $\mathrm{x}_{1}:=0.1$
Given

$$
\frac{\left(\mathrm{H}_{\mathrm{g} 2}-\mathrm{H}_{\mathrm{f} 2}+\mathrm{V}_{\mathrm{f} 2} \cdot\left(\frac{\mathrm{H}_{\mathrm{fg} 2}}{\mathrm{~V}_{\mathrm{fg} 2}}\right)\right.}{\mathrm{V}_{2}}+\mathrm{P}_{2}-\mathrm{P}_{1}-\frac{\mathrm{H}_{\mathrm{fg} 2}}{\mathrm{~V}_{\mathrm{fg} 2}}=\frac{\mathrm{H}_{\mathrm{g} 2}-\mathrm{H}_{\mathrm{f} 1}-\mathrm{x}_{1} \cdot \mathrm{H}_{\mathrm{fg} 1}}{\mathrm{~V}_{\mathrm{f} 1}+\mathrm{x}_{1} \cdot \mathrm{~V}_{\mathrm{fg} 1}}
$$

$x_{1}:=\operatorname{Find}()_{1} \quad x_{1}=4.279 \times 10^{-4}$
Thus $\quad \mathrm{V}_{1}:=\mathrm{V}_{\mathrm{f} 1}+\mathrm{x}_{1} \cdot \mathrm{~V}_{\mathrm{fg} 1} \quad \mathrm{~V}_{1}=1.22419 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
Eq. (A) gives $\quad \frac{\mathrm{m} 2}{\mathrm{~m} 1}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} \quad$ and \quad mprime $=\mathrm{m}_{2}-\mathrm{m}_{1}=2667 \mathrm{~kg}$
Solve for $\mathbf{m 1}$ and $\mathbf{m} \mathbf{2}$ using a Mathcad Solve Block:
Guess: $\quad \mathrm{m}_{1}:=\frac{\mathrm{m}_{\text {prime }}}{2} \quad \mathrm{~m}_{2}:=\mathrm{m}_{1}$

$$
\begin{array}{ll}
\text { Given } \quad \frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} & \mathrm{~m}_{2}-\mathrm{m}_{1}=2667 \mathrm{lb}
\end{array}\binom{\mathrm{~m}_{1}}{\mathrm{~m}_{2}}:=\operatorname{Find}() \mathrm{m}_{1}, \mathrm{~m}_{2}
$$

Finally, find the tank volume $\mathrm{V}_{\operatorname{tank}}:=\mathrm{m}_{2} \cdot \mathrm{~V}_{2} \quad \mathrm{~V}_{\operatorname{tank}}=45.9 \mathrm{~m}^{3} \quad$ Ans.
Note that just to store 1333.3 kg of saturated vapor at 1000 kPa would require a volume of:

$$
1333.3 \mathrm{~kg} \cdot \mathrm{~V}_{\mathrm{g} 2}=259 \mathrm{~m}^{3}
$$

One can work this problem very simply and almost correctly by ignoring the vapor present. By first equation of problem 3-15

$$
\begin{aligned}
& \frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}=\frac{\text { Hprime }-\mathrm{U}_{1}}{\text { Hprime }-\mathrm{U}_{2}}=\frac{\mathrm{H}_{\text {prime }}-\mathrm{U}_{\mathrm{f} 1}}{\mathrm{H}_{\text {prime }}-\mathrm{U}_{\mathrm{f} 2}}=\frac{\mathrm{H}_{\text {prime }}-\mathrm{H}_{\mathrm{fl}}}{\mathrm{H}_{\text {prime }}-\mathrm{H}_{\mathrm{f} 2}} \\
& \mathrm{H}_{\text {prime }}:=\mathrm{H}_{\mathrm{g} 2} \quad \mathrm{H}_{\text {prime }}=2.776 \times 103 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

Given

$\frac{\mathrm{m}_{2}}{\mathrm{~m}_{1}}=\frac{\mathrm{H}_{\text {prime }}-\mathrm{H}_{\mathrm{f} 1}}{\mathrm{H}_{\text {prime }}-\mathrm{H}_{\mathrm{f} 2}} \quad \mathrm{~m}_{2}-\mathrm{m}_{1}=2667 \mathrm{lb} \quad\binom{\left.\mathrm{m}_{1}\right)}{\mathrm{m}_{2}}:=\operatorname{Find}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right.$
$\mathrm{m}_{2}=3.837 \times 10^{4} \mathrm{~kg}$
$\mathrm{V}:=\frac{\mathrm{m}_{2} \cdot \mathrm{~V}_{\mathrm{f} 2}}{0.95} \quad \mathrm{~V}=45.5 \mathrm{~m}^{3} \quad$ Ans.
6.56 Propylene:

$$
\begin{array}{lll}
\omega:=0.140 & \mathrm{~T}_{\mathrm{c}}:=365.6 \cdot \mathrm{~K} & \mathrm{P}_{\mathrm{c}}:=46.65 \cdot \mathrm{bar} \\
\mathrm{~T}:=400.15 \cdot \mathrm{~K} & \mathrm{P}:=38 \cdot \mathrm{bar} & \mathrm{P}_{0}:=1 \cdot \mathrm{bar}
\end{array}
$$

The throttling process, occurring at constant enthalpy, may be split into two steps:
(1) Transform into an ideal gas at the initial conditions, evaluating property changes from a generalized correlation.
(2) Change T and P in the ideal-gas state to the
final conditions, evaluating property changes by equations for an ideal gas.
Property changes for the two steps sum to the property change for the process. For the initial conditions:

$$
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=1.095 \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.815
$$

Step (1): Use the Lee/Kesler correlation, interpolate.

$$
\begin{array}{lll}
\mathrm{H}_{0}:=-0.863 \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} & \mathrm{H}_{1}:=-0.534 \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} & \mathrm{H}_{\mathrm{R}}:=\mathrm{H}_{0}+\omega \cdot \mathrm{H}_{1} \\
\mathrm{H}_{0}=-2.623 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} & \mathrm{H}_{1}=-1.623 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} & \mathrm{H}_{\mathrm{R}}=-2.85 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathrm{~S}_{0}:=-0.565 \cdot \mathrm{R} & \mathrm{~S}_{1}:=-0.496 \cdot \mathrm{R} & \mathrm{~S}_{\mathrm{R}}:=\mathrm{S}_{0}+\omega \cdot \mathrm{S}_{1} \\
\mathrm{~S}_{0}=-4.697 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} & \mathrm{~S}_{1}=-4.124 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} & \mathrm{~S}_{\mathrm{R}}=-5.275 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{array}
$$

Step (2): For the heat capacity of propylene,
$\mathrm{A}:=1.637$
$\mathrm{B}:=\frac{22.706 \cdot 10^{-3}}{\mathrm{~K}}$
$C:=\frac{-6.915 \cdot 10^{-6}}{K^{2}}$

Solve energy balance for final T. See Eq. (4.7).
$\tau:=1 \quad$ (guess) \quad Given
$H_{R}=R \cdot\left[\left[A \cdot T \cdot()-1+\frac{B}{2} \cdot T^{2} \cdot()^{2}-1\right]+\frac{C}{3} \cdot T^{3} \cdot()^{3}-1\right]$
$\tau:=\operatorname{Find}\left(t \quad \tau=0.908 \quad T_{\mathrm{f}}:=\tau \cdot \mathrm{T} \quad \mathrm{T}_{\mathrm{f}}=363.27 \mathrm{~K}\right.$ Ans.
$\Delta \mathrm{S}_{\mathrm{ig}}:=\mathrm{R} \cdot\left(\operatorname{ICPS}() \Gamma, \mathrm{T}_{\mathrm{f}}, 1.637,22.706 \cdot 10^{-3},-6.915 \cdot 10^{-6}, 0.0-\ln \left(\frac{\mathrm{P}_{0}}{\mathrm{P}}\right)\right)$
$\Delta \mathrm{S}_{\mathrm{ig}}=22.774 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
$\Delta \mathrm{S}:=-\mathbb{Z}_{\mathrm{R}}+\mathrm{S}_{\mathrm{ig}}$

Ans.

$$
\begin{array}{lll}
\omega:=0.152 & \mathrm{~T}_{\mathrm{c}}:=369.8 \cdot \mathrm{~K} & \mathrm{P}_{\mathrm{c}}:=42.48 \cdot \text { bar } \\
\mathrm{T}:=423 \cdot \mathrm{~K} & \mathrm{P}:=22 \cdot \mathrm{bar} & \mathrm{P}_{0}:=1 \cdot \mathrm{bar}
\end{array}
$$

The throttling process, occurring at constant enthalpy, may be split into two steps:
(1) Transform into an ideal gas at the initial conditions, evaluating property changes from a generalized correlation.
(2) Change T and P in the ideal-gas state to the final conditions, evaluating property changes by equations for an ideal gas. Property changes for the two steps sum to the property change for the process. For the initial conditions:
$\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}$
$\mathrm{T}_{\mathrm{r}}=1.144$
$\mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}$
$P_{r}=0.518$

Step (1): Use the generalized virial correlation

$$
\begin{array}{ll}
\mathrm{H}_{\mathrm{R}}:=\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot \mathrm{HRB}()_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}, & \mathrm{H}_{\mathrm{R}}=-1.366 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathrm{~S}_{\mathrm{R}}:=\mathrm{R} \cdot \mathrm{SRB}() \Gamma_{\mathrm{r}}, B_{\mathrm{r}}, & \mathrm{~S}_{\mathrm{R}}=-2.284 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{array}
$$

Step (2): For the heat capacity of propane,
$\mathrm{A}:=1.213$
$B:=\frac{28.785 \cdot 10^{-3}}{\mathrm{~K}}$
$C:=\frac{-8.824 \cdot 10^{-6}}{\mathrm{~K}^{2}}$

Solve energy balance for final T. See Eq. (4.7).

$$
\tau:=1 \quad \text { (guess) } \quad \text { Given }
$$

$$
\mathrm{H}_{\mathrm{R}}=\mathrm{R} \cdot\left[\left[\mathrm{~A} \cdot \mathrm{~T} \cdot()-1+\frac{\mathrm{B}}{2} \cdot \mathrm{~T}^{2} \cdot()^{2}-1\right]+\frac{\mathrm{C}}{3} \cdot \mathrm{~T}^{3} \cdot()^{3}-1\right]
$$

$$
\tau:=\operatorname{Find}\left(t \quad \tau=0.967 \quad \mathrm{~T}_{\mathrm{f}}:=\tau \cdot \mathrm{T} \quad \mathrm{~T}_{\mathrm{f}}=408.91 \mathrm{~K} \quad\right. \text { Ans. }
$$

$$
\begin{aligned}
& \Delta \mathrm{S}_{\mathrm{ig}}:=\mathrm{R} \cdot\left(\operatorname{ICPS}() \Gamma, \mathrm{T}_{\mathrm{f}}, 1.213,28.785 \cdot 10^{-3},-8.824 \cdot 10^{-6}, 0.0-\ln \left(\frac{\mathrm{P}_{0}}{\mathrm{P}}\right)\right) \\
& \Delta \mathrm{S}_{\mathrm{ig}}=22.415 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{aligned}
$$

$$
\Delta \mathrm{S}:=-\mathbb{S}_{\mathrm{R}}+\mathrm{S}_{\mathrm{ig}}
$$

Ans.

$$
\begin{array}{llll}
\text { 6.58 For propane: } & \mathrm{T}_{\mathrm{c}}:=369.8 \cdot \mathrm{~K} & \mathrm{P}_{\mathrm{c}}:=42.48 \cdot \mathrm{bar} & \omega:=0.152 \\
\mathrm{~T}:=(100+273.15) \cdot \mathrm{K} & \mathrm{~T}=373.15 \mathrm{~K} & \mathrm{P}_{0}:=1 \cdot \mathrm{bar} & \mathrm{P}:=10 \cdot \mathrm{bar} \\
\qquad \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{~T}_{\mathrm{r}}=1.009 & \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} & \mathrm{P}_{\mathrm{r}}=0.235
\end{array}
$$

Assume ideal gas at initial conditions. Use virial correlation at final conditions.
$\Delta \mathrm{H}:=\mathrm{R} \cdot \mathrm{T}_{\mathrm{c}} \cdot \mathrm{HRB}() \Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}$,

Ans.
$\Delta \mathrm{S}:=\mathrm{R} \cdot\left(\operatorname{SRB}() \Gamma_{\mathrm{r}}, \mathrm{B}_{\mathrm{r}}, \quad-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)\right)$

Ans.
$6.59 H_{2} S$:

$$
\omega:=0.094
$$

$$
\mathrm{T}_{\mathrm{c}}:=373.5 \cdot \mathrm{~K}
$$

$$
\mathrm{P}_{\mathrm{c}}:=89.63 \cdot \mathrm{bar}
$$

$\mathrm{T}_{1}:=400 \cdot \mathrm{~K}$
$\mathrm{P}_{1}:=5 \cdot \mathrm{bar}$
$\mathrm{T}_{2}:=600 \cdot \mathrm{~K}$
$\mathrm{P}_{2}:=25 \cdot \mathrm{bar}$
$\mathrm{T}_{\mathrm{r} 1}:=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{c}}}$
$\mathrm{P}_{\mathrm{r} 1}:=\frac{\mathrm{P}_{1}}{\mathrm{P}_{\mathrm{c}}}$
$\mathrm{T}_{\mathrm{r} 2}:=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{c}}}$
$\mathrm{P}_{\mathrm{r} 2}:=\frac{\mathrm{P}_{2}}{\mathrm{P}_{\mathrm{c}}}$
$\mathrm{T}_{\mathrm{r} 1}=1.071$
$P_{r 1}=0.056$
$\mathrm{T}_{\mathrm{r} 2}=1.606$
$\mathrm{P}_{\mathrm{r} 2}=0.279$
Use generalized virial-coefficient correlation for both sets of conditions.
Eqs. (6.91) \& (6.92) are written

$$
\begin{aligned}
\Delta \mathrm{H}:= & \mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{1}, \mathrm{~T}_{2}, 3.931,1.490 \cdot 10^{-3}, 0.0,-0.232 \cdot 10^{5} \ldots \\
& +\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot() \operatorname{HRB}() \Gamma_{\mathrm{r} 2}, \boldsymbol{B}_{\mathrm{r} 2}, \quad-\operatorname{HRB}() \Gamma_{\mathrm{r} 1}, \boldsymbol{B}_{\mathrm{r} 1}, \\
\Delta \mathrm{~S}:= & \mathrm{R} \cdot\left(\operatorname{ICPS}() \Gamma_{1}, \mathrm{~T}_{2}, 3.931,1.490 \cdot 10^{-3}, 0.0,-0.232 \cdot 10^{5}-\ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)\right) \cdots \\
& +\mathrm{R} \cdot\left(\operatorname{SRB}() \Gamma_{\mathrm{r} 2}, \mathrm{~B}_{\mathrm{r} 2}, \quad-\operatorname{SRB}() \Gamma_{\mathrm{r} 1}, \boldsymbol{B}_{\mathrm{r} 1},\right.
\end{aligned}
$$

$$
\Delta \mathrm{H}=7407.3 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{S}=1.828 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Ans.
6.60 Carbon dioxide:
$\omega:=0.224$
$\mathrm{T}_{\mathrm{c}}:=304.2 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=73.83 \cdot \mathrm{bar}$
$\mathrm{T}:=318.15 \cdot \mathrm{~K} \quad \mathrm{P}:=1600 \cdot \mathrm{kPa} \quad \mathrm{P}_{0}:=101.33 \cdot \mathrm{kPa}$
Throttling process, constant enthalpy, may be split into two steps:
(1) Transform to ideal gas at initial conditions, generalized correlation for property changes.
(2) Change T and P of ideal gas to final $T \& P$.

Property changes by equations for an ideal gas.
Assume ideal gas at final T \& P. Sum property changes for the process. For the initial T \& P:

$$
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=1.046 \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.217
$$

Step (1): Use the generalized virial correlation

$$
\begin{array}{ll}
\mathrm{H}_{\mathrm{R}}:=\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot \mathrm{HRB}() \Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}, & \mathrm{H}_{\mathrm{R}}=-587.999 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathrm{~S}_{\mathrm{R}}:=\mathrm{R} \cdot \mathrm{SRB}() \Gamma_{\mathrm{r}}, B_{\mathrm{r}}, & \mathrm{~S}_{\mathrm{R}}=-1.313 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{array}
$$

Step (2): For the heat capacity of carbon dioxide,

$$
\mathrm{A}:=5.457 \quad \mathrm{~B}:=\frac{1.045 \cdot 10^{-3}}{\mathrm{~K}} \quad \mathrm{D}:=-1.157 \cdot 10^{5} \cdot \mathrm{~K}^{2}
$$

Solve energy balance for final T. See Eq. (4.7).

$$
\tau:=1 \quad \text { (guess) } \quad \text { Given }
$$

$$
\mathrm{H}_{\mathrm{R}}=\mathrm{R} \cdot\left[\mathrm{~A} \cdot \tau \cdot()-1+\frac{\mathrm{B}}{2} \cdot \mathrm{~T}^{2} \cdot()^{2}-1+\frac{\mathrm{D}}{\mathrm{~T}} \cdot\left(\frac{\tau-1}{\tau}\right)\right]
$$

$$
\tau:=\operatorname{Find}\left(t \quad \tau=0.951 \quad \mathrm{~T}_{\mathrm{f}}:=\tau \cdot \mathrm{T} \quad \mathrm{~T}_{\mathrm{f}}=302.71 \mathrm{~K} \quad\right. \text { Ans. }
$$

$$
\Delta \mathrm{S}_{\mathrm{ig}}:=\mathrm{R} \cdot\left(\operatorname{ICPS}() \Gamma, \mathrm{T}_{\mathrm{f}}, 5.457,1.045 \cdot 10^{-3}, 0.0,-1.157 \cdot 10^{5}-\ln \left(\frac{\mathrm{P}_{0}}{\mathrm{P}}\right)\right)
$$

$$
\Delta \mathrm{S}_{\mathrm{ig}}=21.047 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
\Delta \mathrm{S}:=-\mathbb{S}_{\mathrm{R}}+\mathrm{S}_{\mathrm{ig}} \quad \Delta \mathrm{~S}=22.36 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \text { Ans. }
$$

$$
\begin{array}{lll}
\mathrm{T}_{0}:=523.15 \cdot \mathrm{~K} & \mathrm{P}_{0}:=3800 \cdot \mathrm{kPa} & \mathrm{P}:=120 \cdot \mathrm{kPa} \\
\Delta \mathrm{~S}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} & \text { For the heat capacity of ethylene: } \\
\mathrm{A}:=1.424 & \mathrm{~B}:=\frac{14.394 \cdot 10^{-3}}{\mathrm{~K}} & \mathrm{C}:=\frac{-4.392 \cdot 10^{-6}}{\mathrm{~K}^{2}}
\end{array}
$$

(a) For the entropy change of an ideal gas, combine Eqs. (5.14) \& (5.15) with $\mathrm{D}=0$:

$$
\tau:=0.4 \quad \text { (guess) } \quad \text { Given }
$$

$$
\Delta \mathrm{S}=\mathrm{R} \cdot\left[\mathrm { A } \cdot \operatorname { l n } \left(t+\left[\mathrm{B} \cdot \mathrm{~T}_{0}+\mathrm{C} \cdot \mathrm{~T}_{0}{ }^{2} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(t-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)\right]\right.\right.
$$

$$
\tau:=\operatorname{Find}\left(t \quad \tau=0.589 \quad \mathrm{~T}_{\mathrm{f}}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}_{\mathrm{f}}=308.19 \mathrm{~K} \quad\right. \text { Ans. }
$$

$$
\Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \operatorname{ICPH}()_{0}, \mathrm{~T}_{\mathrm{f}}, 1.424,14.394 \cdot 10^{-3},-4.392 \cdot 10^{-6}, 0.0
$$

$$
\Delta \mathrm{H}_{\mathrm{ig}}=-1.185 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{W}_{\mathrm{s}}:=\Delta \mathrm{H}_{\mathrm{ig}}
$$

$$
\mathrm{W}_{\mathrm{s}}=-11852 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Ans.
(b) Ethylene:

$$
\omega:=0.087
$$

$$
\mathrm{T}_{\mathrm{c}}:=282.3 \cdot \mathrm{~K}
$$

$$
\mathrm{P}_{\mathrm{c}}:=50.40 \cdot \mathrm{bar}
$$

$$
\mathrm{T}_{\mathrm{r} 0}:=\frac{\mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r} 0}=1.85317 \quad \mathrm{P}_{\mathrm{r} 0}:=\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{c}}} \quad \quad \mathrm{P}_{\mathrm{r} 0}=0.75397
$$

At final conditions as calculated in (a)

$$
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=1.12699 \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.02381
$$

Use virial-coefficient correlation.

The entropy change is now given by Eq. (6.92):
$\tau:=0.5 \quad$ (guess) Given

$$
\Delta \mathrm{S}=\mathrm{R} \cdot\left[\begin{array}{l}
\mathrm{A} \cdot \ln \left(\mathrm{t}+\left[\mathrm{B} \cdot \mathrm{~T}_{0}+\mathrm{C} \cdot \mathrm{~T}_{0}^{2} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(t-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right) \cdots\right.\right. \\
+\operatorname{SRB}\left(\frac{\tau \cdot \mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}}, \mathrm{~B}_{\mathrm{r}}, \quad\right)-\operatorname{SRB}() \Gamma_{\mathrm{r} 0}, \mathrm{~B}_{\mathrm{r} 0},
\end{array}\right]
$$

$$
\tau:=\operatorname{Find}\left(\mathrm{t} \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=303.11 \mathrm{~K} \quad\right. \text { Ans. }
$$

$$
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=1.074
$$

The work is given by Eq. (6.91):

$$
\Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \mathrm{ICPH}()_{0}, \mathrm{~T}, 1.424,14.394 \cdot 10^{-3},-4.392 \cdot 10^{-6}, 0.0
$$

$$
\Delta \mathrm{H}_{\mathrm{ig}}=-1.208 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{W}_{\mathrm{s}}:=\Delta \mathrm{H}_{\mathrm{ig}}+\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot\left(\operatorname{HRB}() \Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}, \quad-\operatorname{HRB}() \Gamma_{\mathrm{r} 0}, \boldsymbol{B}_{\mathrm{r} 0},\right.
$$

Ans.
6.62

$\mathrm{P}_{0}:=30 \cdot \mathrm{bar}$
P := 2.6.bar
$\Delta \mathrm{S}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
For the heat capacity of ethane:
$\mathrm{A}:=1.131$
$B:=\frac{19.225 \cdot 10^{-3}}{K}$
$\mathrm{C}:=\frac{-5.561 \cdot 10^{-6}}{\mathrm{~K}^{2}}$
(a) For the entropy change of an ideal gas, combine Eqs. (5.14) \& (5.15) with $\mathbf{D}=0$:
$\tau:=0.4 \quad$ (guess) Given
$\Delta \mathrm{S}=\mathrm{R} \cdot\left[\mathrm{A} \cdot \ln \left(\mathrm{t}+\left[\mathrm{B} \cdot \mathrm{T}_{0}+\mathrm{C} \cdot \mathrm{T}_{0}^{2} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(\mathrm{t}-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)\right]\right.\right.$
$\tau:=\operatorname{Find}\left(t \quad \tau=0.745 \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=367.59 \mathrm{~K}\right.$
Ans.
$\Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \mathrm{ICPH}()_{0}, \mathrm{~T}, 1.131,19.225 \cdot 10^{-3},-5.561 \cdot 10^{-6}, 0.0$

$$
\Delta \mathrm{H}_{\mathrm{ig}}=-8.735 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{W}_{\mathrm{s}}:=\Delta \mathrm{H}_{\mathrm{ig}} \quad \mathrm{~W}_{\mathrm{s}}=-8735 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Ans.
(b) Ethane:
$\omega:=0.100$
$\mathrm{T}_{\mathrm{c}}:=305.3 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=48.72 \cdot \mathrm{bar}$
$\mathrm{T}_{\mathrm{r} 0}:=\frac{\mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r} 0}=1.6153 \quad \mathrm{P}_{\mathrm{r} 0}:=\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r} 0}=0.61576$
At final conditions as calculated in (a)

$$
\mathrm{T}_{\mathrm{r}}(\mathrm{~T}):=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}(\mathrm{~T})=1.20404 \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.05337
$$

Use virial-coefficient correlation.

The entropy change is now given by Eq. (6.83):
$\tau:=0.5 \quad$ (guess) Given
$\Delta \mathrm{S}=\mathrm{R} \cdot\left[\begin{array}{l}\mathrm{A} \cdot \ln \left(t+\left[\mathrm{B} \cdot \mathrm{T}_{0}+\mathrm{C} \cdot \mathrm{T}_{0}^{2} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(t-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right) \cdots\right.\right. \\ +\operatorname{SRB}\left(\frac{\tau \cdot \mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}}, \mathrm{B}_{\mathrm{r}},\right)-\operatorname{SRB}() \Gamma_{\mathrm{r} 0}, \mathrm{~B}_{\mathrm{r} 0},\end{array}\right]$
$\tau:=\operatorname{Find}\left(t \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=362.73 \mathrm{~K} \quad\right.$ Ans.
$\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}}$
$\mathrm{T}_{\mathrm{r}}=1.188$
The work is given by Eq. (6.91):
$\Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{0}, \mathrm{~T}, 1.131,19.225 \cdot 10^{-3},-5.561 \cdot 10^{-6}, 0.0$
$\Delta \mathrm{H}_{\mathrm{ig}}=-9.034 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathrm{W}_{\mathrm{s}}:=\Delta \mathrm{H}_{\mathrm{ig}}+\mathrm{R} \cdot \mathrm{T}_{\mathrm{c}} \cdot\left(\operatorname{HRB}() \Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}, \quad-\operatorname{HRB}() \Gamma_{\mathrm{r} 0}, \boldsymbol{B}_{\mathrm{r} 0}\right.$,
$W_{S}=-8476 \frac{\mathrm{~J}}{\mathrm{~mol}}$
Ans.

n-Butane:	$\omega:=0.200$	$\mathrm{~T}_{\mathrm{c}}:=425.1 \cdot \mathrm{~K}$	$\mathrm{P}_{\mathrm{c}}:=37.96 \cdot \mathrm{bar}$
	$\mathrm{T}_{0}:=323.15 \cdot \mathrm{~K}$	$\mathrm{P}_{0}:=1 \cdot \mathrm{bar}$	$\mathrm{P}:=7.8 \cdot \mathrm{bar}$

$\Delta \mathrm{S}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
For the heat capacity of n-butane:
$\mathrm{A}:=1.935$
$\mathrm{B}:=\frac{36.915 \cdot 10^{-3}}{\mathrm{~K}}$
$\mathrm{C}:=\frac{-11.402 \cdot 10^{-6}}{\mathrm{~K}^{2}}$
$\mathrm{T}_{\mathrm{r} 0}:=\frac{\mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r} 0}=0.76017$
$\mathrm{P}_{\mathrm{r} 0}:=\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r} 0}=0.02634$
$\mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.205$
$\operatorname{HRB}() \Gamma_{\mathrm{r} 0}, \mathrm{~B}_{\mathrm{r} 0}, \quad=-0.05679$
$\mathrm{HRB}_{0}:=-0.05679$

The entropy change is given by Eq. (6.92) combined with Eq. (5.15) with $\mathbf{D}=0$: (guess) $\quad \tau:=0.4$
Given $\quad \Delta \mathrm{S}=\mathrm{R} \cdot\left[\begin{array}{l}\mathrm{A} \cdot \ln \left(t+\left[\mathrm{B} \cdot \mathrm{T}_{0}+\mathrm{C} \cdot \mathrm{T}_{0}{ }^{2} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(t-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right) \ldots\right.\right. \\ +\operatorname{SRB}\left(\frac{\mathrm{T}_{0} \cdot \tau}{\mathrm{~T}_{\mathrm{c}}}, \mathrm{B}_{\mathrm{r}}, \quad\right)-\operatorname{SRB}\left(\Gamma_{\mathrm{r} 0}, \mathrm{~B}_{\mathrm{r} 0},\right.\end{array}\right]$

$$
\begin{array}{lll}
\tau:=\operatorname{Find}(\mathrm{t} & \tau=1.18 \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=381.43 \mathrm{~K} \quad \text { Ans. } \\
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{~T}_{\mathrm{r}}=0.89726 &
\end{array}
$$

The work is given by Eq. (6.91):
$\Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \operatorname{ICPH}()_{0}, \mathrm{~T}, 1.935,36.915 \cdot 10^{-3},-11.402 \cdot 10^{-6}, 0.0$
$\Delta \mathrm{H}_{\mathrm{ig}}=6.551 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathrm{W}_{\mathrm{s}}:=\Delta \mathrm{H}_{\mathrm{ig}}+\mathrm{R} \cdot \mathrm{T}_{\mathrm{c}} \cdot\left(\operatorname{HRB}() \Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}, \quad-\operatorname{HRB}() \Gamma_{\mathrm{r} 0}, \boldsymbol{B}_{\mathrm{r} 0}\right.$,

Ans.

6.64 The maximum work results when the 1 kg of steam is reduced in a completely reversible process to the conditions of the surroundings, where it is liquid at $300 \mathrm{~K}(26.85 \mathrm{deg} \mathrm{C})$. This is the ideal work.
From Table F. 2 for the initial state of superheated steam:
$\mathrm{H}_{1}:=3344.6 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{S}_{1}:=7.0854 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
From Table F.1, the state of sat. liquid at 300 K is essentially correct:

$$
\mathrm{H}_{2}:=112.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{2}:=0.3928 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{~T}_{\sigma}:=300 \cdot \mathrm{~K}
$$

By Eq. (5.27),

$$
\mathrm{W}_{\text {ideal }}:=\left(\mathrm{H}_{2}-\mathrm{H}_{1}-\mathrm{T}_{\sigma} \cdot\left(\mathrm{S}_{2}-\mathrm{S}_{1} \quad \mathrm{~W}_{\text {ideal }}=-1224.3 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.\right.
$$

Ans.
6.65 Sat. liquid at $325 \mathrm{~K}(51.85 \mathrm{deg} C)$, Table F.1:
$\mathrm{H}_{\text {liq }}:=217.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{P}_{\text {sat }}:=12.87 \cdot \mathrm{kPa}$
$\mathrm{P}_{1}:=8000 \cdot \mathrm{kPa}$
$\mathrm{T}:=325 \cdot \mathrm{~K}$

$$
\mathrm{S}_{\mathrm{liq}}:=0.7274 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\mathrm{V}_{\mathrm{liq}}:=1.013 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

For the compressed liquid at
325 K and 8000 kPa , apply
Eqs. (6.28) and (6.29) with

$$
\beta:=460 \cdot 10^{-6} \cdot \mathrm{~K}^{-1}
$$

$$
\begin{array}{ll}
\mathrm{H}_{1}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{V}_{\mathrm{liq}} \cdot\left(\mathrm{l}-\beta \cdot \mathrm{T} \cdot\left(\mathrm{P}_{1}-\mathrm{P}_{\mathrm{sat}}\right.\right. & \mathrm{H}_{1}=223.881 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\mathrm{~S}_{1}:=\mathrm{S}_{\mathrm{liq}}-\beta \cdot \mathrm{V}_{\mathrm{liq}} \cdot\left(\mathrm{P}_{1}-\mathrm{P}_{\mathrm{sat}}\right. & \mathrm{S}_{1}=0.724 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

For sat. vapor at 8000 kPa , from Table F.2:

$$
\mathrm{H}_{2}:=2759.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{S}_{2}:=5.7471 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\mathrm{T}_{\sigma}:=300 \cdot \mathrm{~K}
$$

Heat added in boiler:

$$
\mathrm{Q}:=\mathrm{H}_{2}-\mathrm{H}_{1}
$$

Maximum work from steam, by Eq. (5.27):

$$
\mathrm{W}_{\text {ideal }}:=\left(\mathrm{H}_{1}-\mathrm{H}_{2}-\mathrm{T}_{\sigma} \cdot\left(\mathrm{S}_{1}-\mathrm{S}_{2}\right.\right.
$$

$$
\mathrm{W}_{\text {ideal }}=-1029 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Work as a fraction of heat added:
Frac $:=\frac{\left|W_{\text {ideal }}\right|}{Q}$
Frac $=0.4058 \quad$ Ans.
The heat not converted to work ends up in the surroundings.

$$
\begin{array}{ll}
\operatorname{Sdot}_{\mathrm{G} . \mathrm{surr}}:=\frac{\mathrm{Q}+\mathrm{W}_{\text {ideal }}}{\mathrm{T}_{\sigma}} \cdot 10 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}} & \operatorname{Sdot}_{\mathrm{G} . \mathrm{surr}}=50.234 \frac{\mathrm{~kW}}{\mathrm{~K}} \\
\operatorname{Sdot}_{\mathrm{G} . \text { system }}:=\left(\mathrm{S}_{1}-\mathrm{S}_{2} \cdot 10 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}\right. & \operatorname{Sdot}_{\mathrm{G} . \text { system }}=-50.234 \frac{\mathrm{~kW}}{\mathrm{~K}}
\end{array}
$$

Obviously the TOTAL rate of entropy generation is zero. This is because the ideal work is for a completely reversible process.

6.66 Treat the furnace as a heat reservoir, for which

Qdot $:=-2536 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \cdot 10 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}$ $\mathrm{T}:=(600+273.15) \cdot \mathrm{K} \quad \mathrm{T}=873.15 \mathrm{~K}$
$\operatorname{Sdot}_{G}:=\frac{\text { Qdot }}{\mathrm{T}}+50.234 \cdot \frac{\mathrm{~kW}}{\mathrm{~K}}$

$$
\operatorname{Sdot}_{\mathrm{G}}=21.19 \frac{\mathrm{~kW}}{\mathrm{~K}}
$$

Ans.

By Eq. (5.34)
$\mathrm{T}_{\sigma}:=300 \cdot \mathrm{~K} \quad \mathrm{Wdot}_{\text {lost }}:=\mathrm{T}_{\sigma} \cdot \operatorname{Sdot}_{\mathrm{G}} \quad$ Wdot ${ }_{\text {lost }}=6356.9 \mathrm{~kW} \quad$ Ans.
6.67 For sat. liquid water at 20 degC, Table F.1:

$$
\mathrm{H}_{1}:=83.86 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{1}:=0.2963 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

For sat. liquid water at 0 degC, Table F.1:

$$
\mathrm{H}_{0}:=-0.04 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{S}_{0}:=0.0000 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

For ice at at 0 degC :

$$
\mathrm{H}_{2}:=\mathrm{H}_{0}-333.4 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{2}:=\mathrm{S}_{0}-\frac{333.4}{273.15} \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\begin{array}{ll}
\mathrm{H}_{2}=-333.44 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~S}_{2}=-1.221 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\mathrm{~T}_{\sigma}:=293.15 \cdot \mathrm{~K} & \text { mot }:=0.5 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}
\end{array} \quad \eta_{\mathrm{t}}:=0.32
$$

By Eqs. (5.26) and (5.28):
Wdot $_{\text {ideal }}:=\operatorname{mdot} \cdot\left[\mathrm{H}_{2}-\mathrm{H}_{1}-\mathrm{T}_{\sigma} \cdot\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right] \quad \mathrm{Wdot}_{\text {ideal }}=13.686 \mathrm{~kW}\right.$
Wdot $:=\frac{\text { Wdotideal }^{\eta_{\mathrm{t}}}}{\text { Wdot }=42.77 \mathrm{~kW} \quad \text { Ans. } \text {. } \quad \text {. } \quad \text {. }}$
6.68 This is a variation on Example 5.6., pp. 175-177, where all property values are given. We approach it here from the point of view that if the process is completely reversible then the ideal work is zero. We use the notation of Example 5.6:
$\mathrm{H}_{1}:=2676.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{S}_{1}:=7.3554 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{H}_{2}:=0.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{S}_{2}:=0.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$Q^{\prime}:=-2000 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{T}_{\sigma}:=273.15 \cdot \mathrm{~K}$

The system consists of two parts: the apparatus and the heat reservoir at elevated temperature, and in the equation for ideal work, terms must be included for each part.
$\mathrm{W}_{\text {ideal }}=\Delta \mathrm{H}_{\text {apparatus.reservoir }}-\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S}_{\text {apparatus.reservoir }}$
$\Delta \mathrm{H}_{\text {apparatus.reservoir }}=\mathrm{H}_{2}-\mathrm{H}_{1}-\mathrm{Q}^{\prime}$
$\Delta \mathrm{S}_{\text {apparatus.reservoir }}=\mathrm{S}_{2}-\mathrm{S}_{1}-\frac{\mathrm{Q}^{\prime}}{\mathrm{T}^{\prime}}$

$$
\mathrm{W}_{\text {ideal }}=0.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$\mathrm{T}^{\prime}:=450 \cdot \mathrm{~K} \quad$ (Guess)
Given

$$
\begin{aligned}
& 0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}=\mathrm{H}_{2}-\mathrm{H}_{1}-\mathrm{Q}^{\prime}-\mathrm{T}_{\sigma} \cdot\left(\mathrm{S}_{2}-\mathrm{S}_{1}-\frac{\mathrm{Q}^{\prime}}{\mathrm{T}^{\prime}}\right) \\
& \mathrm{T}^{\prime}:=\operatorname{Find}\left(\mathrm{T}^{\prime}\right) \quad \mathrm{T}^{\prime}=409.79 \mathrm{~K} \\
& \\
& (\mathbf{1 3 6 . 6 4} \mathbf{~ d e g} \mathrm{C})
\end{aligned}
$$

6.69 From Table F. 4 at 200(psi):

$$
\left.\begin{array}{ll}
\mathrm{H}_{1}:=1222.6 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{~S}_{1}:=1.5737 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
\end{array} \quad \begin{array}{l}
\text { (at 420 degF) } \\
\text { (Sat. liq. } \\
\text { and vapor) }
\end{array}\right) \quad \mathrm{H}_{\mathrm{vap}}:=1198.3 \cdot \frac{\mathrm{BTU}}{\mathrm{H}_{\mathrm{liq}}}:=355.51 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \begin{aligned}
& \mathrm{x}:=0.96 \\
& \mathrm{~S}_{\mathrm{liq}}:=0.5438 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \\
& \mathrm{S}_{\mathrm{vap}}:=1.5454 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \quad \mathrm{S}_{2}:=\mathrm{S}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}\right. \\
& \mathrm{H}_{2}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}\right. \\
& \mathrm{H}_{2}=1.165 \times 10^{3} \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
\end{aligned}
$$

Neglecting kinetic- and potential-energy changes, on the basis of 1 pound mass of steam after mixing, Eq. (2.30) yields for the exit stream:

$$
\begin{array}{ll}
\mathrm{H}:=0.5 \cdot \mathrm{H}_{1}+0.5 \cdot \mathrm{H}_{2} & \mathrm{H}=1193.6 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \text { (wet steam) } \\
\mathrm{x}:=\frac{\mathrm{H}-\mathrm{H}_{\mathrm{liq}}}{\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}} & \mathrm{x}=0.994 \quad \text { Ans. } \\
\mathrm{S}:=\mathrm{S}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}\right. & \mathrm{S}=1.54 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
\end{array}
$$

By Eq. (5.22) on the basis of 1 pound mass of exit steam,

$$
\mathrm{S}_{\mathrm{G}}:=\mathrm{S}-0.5 \cdot \mathrm{~S}_{1}-0.5 \cdot \mathrm{~S}_{2} \quad \mathrm{~S}_{\mathrm{G}}=2.895 \times 10^{-4} \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

Ans.
6.70 From Table F. 3 at 430 degF (sat. liq. and vapor):

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{liq}}:=0.01909 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}} \\
& \mathrm{U}_{\mathrm{liq}}:=406.70 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \\
& \mathrm{VOL}_{\mathrm{liq}}:=\mathrm{m}_{\mathrm{liq}} \cdot \mathrm{~V}_{\mathrm{liq}}
\end{aligned}
$$

$$
\mathrm{V}_{\mathrm{vap}}:=1.3496 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{V}_{\text {tank }}:=80 \cdot \mathrm{ft}^{3}
$$

$$
\mathrm{U}_{\text {vap }}:=1118.0 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{m}_{\mathrm{liq}}:=4180 \cdot \mathrm{lb}_{\mathrm{m}}
$$

$$
\mathrm{VOL}_{\mathrm{liq}}=79.796 \mathrm{ft}^{3}
$$

$$
\begin{array}{ll}
\mathrm{VOL}_{\text {vap }}:=\mathrm{V}_{\mathrm{tank}}-\mathrm{VOL}_{\text {liq }} & \mathrm{VOL}_{\text {vap }}=0.204 \mathrm{ft}^{3} \\
\mathrm{~m}_{\text {vap }}:=\frac{\mathrm{VOL}_{\text {vap }}}{\mathrm{V}_{\text {vap }}} & \mathrm{m}_{\text {vap }}=0.151 \mathrm{lb}_{\mathrm{m}} \\
\mathrm{U}_{1}:=\frac{\mathrm{m}_{\mathrm{liq}} \cdot \mathrm{U}_{\mathrm{liq}}+\mathrm{m}_{\text {vap }} \cdot \mathrm{U}_{\text {vap }}}{\mathrm{m}_{\mathrm{liq}}+\mathrm{m}_{\text {vap }}} & \mathrm{U}_{1}=406.726 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
\end{array}
$$

By Eq. (2.29) multiplied through by dt, we can write,
$\mathrm{d}\left(\mathrm{m}_{\mathrm{t}} \cdot \mathrm{U}_{\mathrm{t}}+\mathrm{H} \cdot \mathrm{dm}=0 \quad \begin{array}{l}\mathrm{H} \text { and } \mathrm{m} \text { refer to the exit stream.) }\end{array}\right.$
Integration gives: $\quad \mathrm{m}_{2} \cdot \mathrm{U}_{2}-\mathrm{m}_{1} \cdot \mathrm{U}_{1}+\int_{0}^{\mathrm{m}} \mathrm{Hdm}=0$
From Table F. 3 we see that the enthalpy of saturated vapor changes from 1203.9 to $\mathbf{1 2 0 3 . 1}(\mathrm{Btu} / \mathrm{lb})$ as the temperature drops from 430 to $\mathbf{4 2 0}$ degF. This change is so small that use of an average value for H of $1203.5(\mathrm{Btu} / \mathrm{lb})$ is fully justified. Then

$$
\begin{aligned}
& \mathrm{m}_{2} \cdot \mathrm{U}_{2}-\mathrm{m}_{1} \cdot \mathrm{U}_{1}+\mathrm{H}_{\mathrm{ave}} \cdot \mathrm{~m}=0 \\
& \mathrm{~m}_{1}:=\mathrm{m}_{\mathrm{liq}}+\mathrm{m}_{\mathrm{vap}}
\end{aligned}
$$

$$
\mathrm{H}_{\mathrm{ave}}:=1203.5 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{m}_{2} \text { (mass) }:=\mathrm{m}_{1}-\text { mass }
$$

Property values below are for sat. liq. and vap. at 420 degF

$$
\begin{array}{ll}
\mathrm{V}_{\mathrm{liq}}:=0.01894 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{~V}_{\mathrm{vap}}:=1.4997 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}} \\
\mathrm{U}_{\mathrm{liq}}:=395.81 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{U}_{\text {vap }}:=1117.4 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \\
\mathrm{~V}_{2} \text { (mass) }:=\frac{\mathrm{V}_{\text {tank }}}{\mathrm{m}_{2} \text { (mass) }} \quad \mathrm{x} \text { (mass) }:=\frac{\mathrm{V}_{2}(\text { mass })-\mathrm{V}_{\text {liq }}}{\mathrm{V}_{\text {vap }}-\mathrm{V}_{\mathrm{liq}}} \\
\mathrm{U}_{2} \text { (mass) }:=\mathrm{U}_{\mathrm{liq}}+\mathrm{x} \text { (mass) } \cdot\left(\mathrm{U}_{\text {vap }}-\mathrm{U}_{\mathrm{liq}}\right.
\end{array}
$$

Given mass $=\frac{m_{1} \cdot() \mu_{1}-U_{2} \text { (mass) }}{H_{\text {ave }}-U_{2} \text { (mass) }}$

$$
\operatorname{mass}:=\operatorname{Find}(\text { mass }) \quad \text { mass }=55.36 \mathrm{lb}_{\mathrm{m}}
$$

Ans.
6.71 The steam remaining in the tank is assumed to have expanded isentropically. Data from Table F. 2 at 4500 kPa and 400 degC :

$$
\begin{array}{ll}
\mathrm{S}_{1}:=6.7093 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \quad & \mathrm{~V}_{1}:=64.721 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \quad \mathrm{~V}_{\mathrm{tank}}:=50 \cdot \mathrm{~m}^{3} \\
\mathrm{~S}_{2}=\mathrm{S}_{1}=6.7093 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}} \quad \begin{array}{l}
\text { By interpolation in Table F.2 } \\
\text { at this entropy and 3500 kPa: }
\end{array} \\
\mathrm{V}_{2}:=78.726 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \quad \mathrm{t}_{2}=362.46 \cdot \mathrm{C} \quad \text { Ans. } \\
\mathrm{m}_{1}:=\frac{\mathrm{V}_{\text {tank }}}{\mathrm{V}_{1}} \quad \mathrm{~m}_{2}:=\frac{\mathrm{V}_{\text {tank }}}{\mathrm{V}_{2}} \quad \Delta \mathrm{~m}:=\mathrm{m}_{1}-\mathrm{m}_{2} \quad \Delta \mathrm{~m}=137.43 \mathrm{~kg} \text { Ans. }
\end{array}
$$

6.72 This problem is similar to Example 6.8, where it is shown that

$$
\mathrm{Q}=\Delta\left(\mathrm{m}_{\mathrm{t}} \cdot \mathrm{H}_{\mathrm{t}}-\mathrm{H} \cdot \Delta \mathrm{~m}_{\mathrm{t}}\right.
$$

Here, the symbols with subscript t refer to the contents of the tank, whereas H refers to the entering stream.

We illustrate here development of a simple expression for the first term on the right. The 1500 kg of liquid initially in the tank is unchanged during the process. Similarly, the vapor initially in the tank that does NOT condense is unchanged. The only two enthalpy changes within the tank result from:

1. Addition of 1000 kg of liquid water. This contributes an enthalpy change of

$$
\mathrm{H}_{\mathrm{liq}} \cdot \Delta \mathrm{~m}_{\mathrm{t}}
$$

2. Condensation of y kg of sat. vapor to sat. liq. This contributes an enthalpy change of

$$
\mathrm{y} \cdot() \mathrm{H}_{\mathrm{liq}}-\mathrm{H}_{\mathrm{vap}}=-\mathrm{y} \cdot \mathrm{H}_{\mathrm{lv}}
$$

Thus

$$
\Delta\left(\mathrm{m}_{\mathrm{t}} \cdot \mathrm{H}_{\mathrm{t}}=\mathrm{H}_{\mathrm{liq}} \cdot \Delta \mathrm{~m}_{\mathrm{t}}-\mathrm{y} \cdot \Delta \mathrm{H}_{\mathrm{lv}}\right.
$$

Similarly,

$$
\Delta\left(\mathrm{m}_{\mathrm{t}} \cdot \mathrm{~V}_{\mathrm{t}}=\mathrm{V}_{\mathrm{liq}} \cdot \Delta \mathrm{~m}_{\mathrm{t}}-\mathrm{y} \cdot \Delta \mathrm{~V}_{\mathrm{lv}}=0\right.
$$

Whence

$$
\mathrm{Q}=\mathrm{H}_{\mathrm{liq}} \cdot \Delta \mathrm{~m}_{\mathrm{t}}-\mathrm{y} \cdot \Delta \mathrm{H}_{\mathrm{lv}}-\mathrm{H} \cdot \Delta \mathrm{~m}_{\mathrm{t}}
$$

$\Delta \mathrm{m}_{\mathrm{t}}:=1000 \cdot \mathrm{~kg}$
At 50 degC:

Required data from Table F. 1 are:

$$
\mathrm{H}:=209.3 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

At 250 degC:

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{liq}}:=1085.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \Delta \mathrm{H}_{\mathrm{lv}}:=1714.7 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

$$
\mathrm{y}:=\frac{\mathrm{V}_{\mathrm{liq}} \cdot \Delta \mathrm{~m}_{\mathrm{t}}}{\Delta \mathrm{~V}_{\mathrm{lv}}} \quad \mathrm{y}=25.641 \mathrm{~kg}
$$

$$
\mathrm{Q}:=\Delta \mathrm{m}_{\mathrm{t}} \cdot\left(\mathrm{H}_{\mathrm{liq}}-\mathrm{H}-\mathrm{y} \cdot \Delta \mathrm{H}_{\mathrm{lv}}\right.
$$

$$
\mathrm{Q}=832534 \mathrm{~kJ}
$$

$\mathrm{V}_{\text {liq }}:=1.251 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
$\Delta \mathrm{V}_{\mathrm{lv}}:=48.79 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
6.73

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{tank}}:=0.5 \cdot \mathrm{~m}^{3} \\
& \mathrm{~T}_{1}:=295 \cdot \mathrm{~K}
\end{aligned}
$$

$$
\mathrm{H}_{\mathrm{in}}:=-120.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{C}:=0.43 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\mathrm{m}_{\mathrm{tank}}:=30 \cdot \mathrm{~kg}
$$

Data for saturated nitrogen vapor:

$\mathrm{V}:=\left(\left.\begin{array}{l}0.1640 \\ 0.1017 \\ 0.06628 \\ 0.04487 \\ 0.03126 \\ 0.02223\end{array} \right\rvert\, \cdot \frac{\mathrm{m}^{3}}{\mathrm{~kg}}\right.$

At the point when liquid nitrogen starts to accumulate in the tank, it is filled with saturated vapor nitrogen at the final temperature and having properties

$$
\mathrm{m}_{\text {vap }}, \mathrm{T}_{\text {vap }}, \mathrm{V}_{\text {vap }}, \mathrm{H}_{\text {vap }}, \mathrm{U}_{\text {vap }}
$$

By Eq. (2.29) multiplied through by dt, $\mathrm{d}\left(\mathrm{h}_{\mathrm{t}} \cdot \mathrm{U}_{\mathrm{t}}-\mathrm{H} \cdot \mathrm{dm}=\mathrm{dQ}\right.$
Subscript t denotes the contents of the tank; H and m refer to the inlet stream. Since the tank is initially evacuated, integration gives
$\mathrm{m}_{\text {vap }} \cdot \mathrm{U}_{\text {vap }}-\mathrm{H}_{\text {in }} \cdot \mathrm{m}_{\text {vap }}=\mathrm{Q}=\mathrm{m}_{\text {tank }} \cdot \mathrm{C} \cdot() \Gamma_{\text {vap }}-\mathrm{T}_{1}$

Also,

$$
\begin{equation*}
\mathrm{m}_{\mathrm{vap}}=\frac{\mathrm{V}_{\mathrm{tank}}}{\mathrm{~V}_{\mathrm{vap}}} \tag{A}
\end{equation*}
$$

Calculate internal-energy values for saturated vapor nitrogen at the given values of T :

$$
\mathrm{U}:=\overrightarrow{(\mathrm{H}-\mathrm{P} \cdot \mathrm{~V})}
$$

$U=\left(\left.\begin{array}{l}56.006 \\ 59.041 \\ 61.139 \\ 62.579 \\ 63.395 \\ 63.325\end{array} \right\rvert\, \begin{array}{l}\text { kJ } \\ 62.157\end{array}\right)$

Fit tabulated data with cubic spline:

Us $:=1$ spline (T, U)
$\mathrm{U}_{\text {vap }}(\mathrm{t}):=\operatorname{interp}(\mathrm{Us}, \mathrm{T}, \mathrm{U}, \mathrm{t})$
$\mathrm{T}_{\text {vap }}:=100 \cdot \mathrm{~K} \quad$ (guess)
Combining Eqs. (A) \& (B) gives:

Given

$$
\begin{array}{cc}
\mathrm{U}_{\text {vap }}() \Gamma_{\text {vap }}-\mathrm{H}_{\text {in }}=\frac{\mathrm{m}_{\text {tank }} \cdot \mathrm{C} \cdot() \Gamma_{1}-\mathrm{T}_{\text {vap }} \cdot \mathrm{V}_{\text {vap }}() \Gamma_{\text {vap }}}{\mathrm{V}_{\text {tank }}} \\
\mathrm{T}_{\text {vap }}:=\mathrm{Find}() \Gamma_{\text {vap }} & \mathrm{T}_{\text {vap }}=97.924 \mathrm{~K} \\
\mathrm{~m}_{\text {vap }}:=\frac{\mathrm{V}_{\text {tank }}}{\mathrm{V}_{\text {vap }}() \Gamma_{\text {vap }}} \quad & \mathrm{m}_{\text {vap }}=13.821 \mathrm{~kg}
\end{array}
$$

Ans.
6.74 The result of Part (a) of $\mathbf{P b} .3 .15$ applies, with m replacing n :
$\mathrm{m}_{2} \cdot\left(\mathrm{U}_{2}-\mathrm{H}-\mathrm{m}_{1} \cdot\left(\mathrm{U}_{1}-\mathrm{H}=\mathrm{Q}=0\right.\right.$
Whence

$$
m_{2} \cdot\left(H-U_{2}=m_{1} \cdot\left(H-U_{1}\right.\right.
$$

Also

$$
\begin{array}{ll}
\mathrm{U}_{2}=\mathrm{U}_{\mathrm{liq} .2}+\mathrm{x}_{2} \cdot \Delta \mathrm{U}_{\mathrm{lv} .2} \\
\mathrm{~V}_{2}=\mathrm{V}_{\mathrm{liq} .2}+\mathrm{x}_{2} \cdot \Delta \mathrm{~V}_{\mathrm{lv} .2} & \mathrm{~V}_{2}=\frac{\mathrm{V}_{\text {tank }}}{\mathrm{m}_{2}}
\end{array}
$$

Eliminating $\mathbf{x}_{\mathbf{2}}$ from these equations gives
$\mathrm{m}_{2} \cdot\left(\mathrm{H}-\mathrm{U}_{\text {liq. } 2}-\frac{\frac{\mathrm{V}_{\text {tank }}}{\mathrm{m}_{2}}-\mathrm{V}_{\text {liq. } 2}}{\Delta \mathrm{~V}_{\mathrm{lv} .2}} \cdot \Delta \mathrm{U}_{\mathrm{lv} .2}\right)=\mathrm{m}_{1} \cdot\left(\mathrm{H}-\mathrm{U}_{1}\right.$
which is later solved for $\mathbf{m}_{\mathbf{2}}$
$\mathrm{V}_{\text {tank }}:=50 \cdot \mathrm{~m}^{3}$
$\mathrm{m}_{1}:=16000 \cdot \mathrm{~kg}$
$\mathrm{V}_{1}:=\frac{\mathrm{V}_{\text {tank }}}{\mathrm{m}_{1}}$
$\mathrm{V}_{1}=3.125 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}$

Data from Table F. 1

$\mathrm{V}_{\text {liq. } .1}:=1.003 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
$\Delta \mathrm{V}_{\mathrm{lv} .1}:=43400 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
$\mathrm{U}_{\text {liq. } 1}:=104.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\Delta \mathrm{U}_{\mathrm{lv} .1}:=2305.1 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

$$
\begin{array}{ll}
\mathrm{x}_{1}:=\frac{\mathrm{V}_{1}-\mathrm{V}_{\text {liq. } 1}}{\Delta \mathrm{~V}_{\mathrm{lv.} .1}} & \mathrm{U}_{1}:=\mathrm{U}_{\text {liq. } 1}+\mathrm{x}_{1} \cdot \Delta \mathrm{U}_{\mathrm{lv} .1} \\
\mathrm{x}_{1}=4.889 \times 10^{-5} & \mathrm{U}_{1}=104.913 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{array}
$$

Data from Table F. 2 @ 800 kPa :

$$
\mathrm{V}_{\text {liq. } 2}:=1.115 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

$$
\mathrm{U}_{\text {liq. } 2}:=720.043 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\begin{array}{ll}
\Delta \mathrm{V}_{\mathrm{lv} .2}:=(240.26-1.115) \cdot \frac{\mathrm{cm}^{3}}{\mathrm{gm}} & \Delta \mathrm{U}_{\mathrm{lv} .2}:=(2575.3-720.043) \cdot \frac{\mathrm{kJ}}{\mathrm{~kg}} \\
\Delta \mathrm{~V}_{\mathrm{lv} .2}=0.239 \frac{\mathrm{~m}^{3}}{\mathrm{~kg}} & \Delta \mathrm{U}_{\mathrm{lv} .2}=1.855 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\text { Data from Table F.2@1500 kPa: } & \mathrm{H}:=2789.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{m}_{2}:=\frac{\mathrm{m}_{1} \cdot\left(\mathrm{H}-\mathrm{U}_{1}+\mathrm{V}_{\text {tank }} \cdot\left(\frac{\Delta \mathrm{U}_{\mathrm{lv} .2}}{\Delta \mathrm{~V}_{\mathrm{lv} .2}}\right)\right.}{\mathrm{H}-\mathrm{U}_{\text {liq. } 2}+\mathrm{V}_{\text {liq.2 }} \cdot\left(\frac{\Delta \mathrm{U}_{\mathrm{lv} .2}}{\Delta \mathrm{~V}_{\mathrm{lv} .2}}\right)} \quad \mathrm{m}_{2}=2.086 \times 10^{4} \mathrm{~kg} \\
& \mathrm{~m}_{\text {steam }}:=\mathrm{m}_{2}-\mathrm{m}_{1} \quad \quad \mathrm{~m}_{\text {steam }}=4.855 \times 10^{3} \mathrm{~kg} \quad \text { Ans. }
\end{aligned}
$$

6.75 The result of Part (a) of Pb. 3.15 applies, with $\quad n_{1}=Q=0$ Whence $\quad U_{2}=H$

From Table F. 2 at 400 kPa and 240 degC
$\mathrm{H}=2943.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$ and V for a given P where $U=2943.9 \mathrm{~kJ} / \mathrm{kg}$.
$P_{2}:=\left(\begin{array}{c}1 \\ 100 \\ 200 \\ 300 \\ 400\end{array}\right)$
$i:=1 . .5$

$\mathrm{V}_{\text {tank }}:=1.75 \cdot \mathrm{~m}^{3}$

$$
\operatorname{mass}_{\mathrm{i}}:=\frac{\mathrm{V}_{\text {tank }}}{\mathrm{V}_{2_{\mathrm{i}}}}
$$

$6.76 \quad V_{\text {tank }}:=2 \cdot \mathrm{~m}^{3}$
$\mathrm{V}_{\mathrm{liq}}:=1.216 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
$\mathrm{H}_{\mathrm{liq}}:=1008.4 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{x}_{1}:=0.1$

Data from Table F. $2 @ 3000 \mathrm{kPa}$:
$\mathrm{V}_{\text {vap }}:=66.626 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
$\mathrm{H}_{\text {vap }}:=2802.3 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{V}_{1}:=\mathrm{V}_{\mathrm{liq}}+\mathrm{x}_{1} \cdot\left(\mathrm{~N}_{\text {vap }}-\mathrm{V}_{\text {liq }} \quad \mathrm{m}_{1}:=\frac{\mathrm{V}_{\text {tank }}}{\mathrm{V}_{1}}\right.$

$$
\mathrm{V}_{1}=7.757 \times 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~kg}}
$$

$$
\mathrm{m}_{1}=257.832 \mathrm{~kg}
$$

The process is the same as that of Example 6.8, except that the stream flows out rather than in. The energy balance is the same, except for a sign:
$\mathrm{Q}=\Delta\left(\mathrm{m}_{\mathrm{t}} \cdot \mathrm{H}_{\mathrm{t}}+\mathrm{H} \cdot \Delta \mathrm{m}_{\text {tank }}\right.$
where subscript t denotes conditions in the tank, and H is the enthalpy of the stream flowing out of the tank. The only changes affecting the enthalpy of the contents of the tank are:

1. Evaporation of y kg of sat. liq.:
$y \cdot() H_{\text {vap }}-H_{\text {liq }}$
2. Exit of $\quad 0.6 \cdot \mathrm{~m}_{1} \cdot \mathrm{~kg} \quad$ of liquid from the tank:
$-0.6 \cdot \mathrm{~m}_{1} \cdot \mathrm{H}_{\text {liq }}$
Thus
$\Delta()_{\mathrm{t}} \cdot \mathrm{H}_{\mathrm{t}}=\mathrm{y} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\text {liq }}-0.6 \cdot \mathrm{~m}_{1} \cdot \mathrm{H}_{\text {liq }}\right.$
Similarly, since the volume of the tank is constant, we can write,
$\Delta\left(\mathrm{m}_{\mathrm{t}} \cdot \mathrm{V}_{\mathrm{t}}=\mathrm{y} \cdot()_{\mathrm{vap}}-\mathrm{V}_{\text {liq }}-0.6 \cdot \mathrm{~m}_{1} \cdot \mathrm{~V}_{\mathrm{liq}}=0\right.$
Whence $\mathrm{y}=\frac{0.6 \cdot \mathrm{~m}_{1} \cdot \mathrm{~V}_{\text {liq }}}{\mathrm{V}_{\text {vap }}-\mathrm{V}_{\mathrm{liq}}}$
$\mathrm{Q}=\frac{0.6 \cdot \mathrm{~m}_{1} \cdot \mathrm{~V}_{\text {liq }}}{\mathrm{V}_{\mathrm{vap}}-\mathrm{V}_{\mathrm{liq}}} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\text {liq }}-0.6 \cdot \mathrm{~m}_{1} \cdot \mathrm{H}_{\text {liq }}+\mathrm{H} \cdot \Delta \mathrm{m}_{\text {tank }}\right.$
But $\quad \mathrm{H}=\mathrm{H}_{\text {liq }}$ and $0.6 \cdot \mathrm{~d}_{1}=\mathrm{m}_{\text {tank }}$
and therefore the last two terms of the energy equation cancel:

$$
\mathrm{Q}:=\frac{0.6 \cdot \mathrm{~m}_{1} \cdot \mathrm{~V}_{\mathrm{liq}}}{\mathrm{~V}_{\mathrm{vap}}-\mathrm{V}_{\mathrm{liq}}} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}\right.
$$

$$
\mathrm{Q}=5159 \mathrm{~kJ}
$$

Ans.
6.77 Data from Table F. 1 for sat. liq.:

$$
\begin{equation*}
\mathrm{H}_{1}:=100.6 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \tag{85degC}
\end{equation*}
$$

(24 degC)

$$
\mathrm{H}_{3}:=355.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Data from Table F. 2 for sat. vapor @ 400 kPa :
$\mathrm{H}_{2}:=2737.6 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
By Eq. (2.30), neglecting kinetic and potential energies and setting the heat and work terms equal to zero:
$\mathrm{H}_{3} \cdot \mathrm{mdot}_{3}-\mathrm{H}_{1} \cdot \mathrm{mdot}_{1}-\mathrm{H}_{2} \cdot \mathrm{mdot}_{2}=0$
Also $\quad \operatorname{mdot}_{1}=\operatorname{mdot}_{3}-$ mdot $_{2} \quad \operatorname{mdot}_{3}:=5 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}$

Whence $\quad \operatorname{mdot}_{2}:=\frac{\operatorname{mot}_{3} \cdot()_{1}-\mathrm{H}_{3}}{\mathrm{H}_{1}-\mathrm{H}_{2}}$
$\operatorname{mdot}_{1}:=\operatorname{mdot}_{3}-\operatorname{mdot}_{2}$
$\operatorname{mdot}_{2}=0.484 \frac{\mathrm{~kg}}{\mathrm{sec}}$
Ans.

Ans.

6.78 Data from Table F. 2 for sat. vapor @ 2900 kPa:

$$
\mathrm{H}_{3}:=2802.2 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{3}:=6.1969 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \operatorname{mdot}_{3}:=15 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}
$$

Table F.2, superheated vap., $3000 \mathrm{kPa}, 375$ degC:

$$
\mathrm{H}_{2}:=3175.6 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{2}:=6.8385 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

Table F.1, sat. liq.@ 50 degC:

| $\mathrm{V}_{\text {liq }}:=1.012 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$ | $\mathrm{H}_{\mathrm{liq}}:=209.3 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$ |
| :--- | :--- |$\quad \mathrm{~S}_{\mathrm{liq}}:=0.7035 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$

Find changes in H and S caused by pressure increase from 12.34 to 3100 kPa. First estimate the volume expansivity from sat. liq, data at 45 and 55 degC:

$$
\begin{array}{lll}
\Delta \mathrm{V}:=(1.015-1.010) \cdot \frac{\mathrm{cm}^{3}}{\mathrm{gm}} & \Delta \mathrm{~T}:=10 \cdot \mathrm{~K} & \mathrm{P}:=3100 \cdot \mathrm{kPa} \\
\Delta \mathrm{~V}=5 \times 10^{-3} \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} & \beta:=\frac{1}{\mathrm{~V}_{\mathrm{liq}}} \cdot \frac{\Delta \mathrm{~V}}{\Delta \mathrm{~T}} & \beta=4.941 \times 10^{-4} \mathrm{~K}^{-1}
\end{array}
$$

Apply Eqs. (6.28) \& (6.29) at constant T:

$$
\begin{array}{ll}
\mathrm{H}_{1}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{V}_{\mathrm{liq}} \cdot() \mathrm{l}-\beta \cdot \mathrm{T} \cdot\left(\mathrm{P}-\mathrm{P}_{\mathrm{sat}}\right. & \mathrm{H}_{1}=211.926 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\mathrm{~S}_{1}:=\mathrm{S}_{\mathrm{liq}}-\beta \cdot \mathrm{V}_{\mathrm{liq}} \cdot\left(\mathrm{P}-\mathrm{P}_{\mathrm{sat}}\right. & \mathrm{S}_{1}=0.702 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

By Eq. (2.30), neglecting kinetic and potential energies and setting the heat and work terms equal to zero:
$\mathrm{H}_{3} \cdot \mathrm{mdot}_{3}-\mathrm{H}_{1} \cdot \mathrm{mdot}_{1}-\mathrm{H}_{2} \cdot \mathrm{mdot}_{2}=0$
Also $\quad \operatorname{mdot}_{2}=\operatorname{mdot}_{3}-\operatorname{mdot}_{1}$
Whence $\operatorname{mdot}_{1}:=\frac{\operatorname{mdot}_{3} \cdot\left(\mathrm{H}_{3}-\mathrm{H}_{2}\right.}{\mathrm{H}_{1}-\mathrm{H}_{2}} \quad \operatorname{mot}_{1}=1.89 \frac{\mathrm{~kg}}{\mathrm{sec}}$
Ans.
$\operatorname{mdot}_{2}:=\operatorname{mdot}_{3}-\operatorname{mdot}_{1}$

$$
\operatorname{mdot}_{2}=13.11 \frac{\mathrm{~kg}}{\mathrm{sec}}
$$

For adiabatic conditions, Eq. (5.22) becomes
$\mathrm{Sdot}_{\mathrm{G}}:=\mathrm{S}_{3} \cdot \mathrm{mdot}_{3}-\mathrm{S}_{1} \cdot \mathrm{mdot}_{1}-\mathrm{S}_{2} \cdot \mathrm{mdot}_{2}$

$$
\operatorname{Sdot}_{\mathrm{G}}=1.973 \frac{\mathrm{~kJ}}{\mathrm{sec} \cdot \mathrm{~K}}
$$

Ans.

The mixing of two streams at different temperatures is irreversible.
6.79 Table F.2, superheated vap. @ $700 \mathrm{kPa}, 200 \mathrm{degC}$:

$$
\mathrm{H}_{3}:=2844.2 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{3}:=6.8859 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

Table F.2, superheated vap. @ $700 \mathrm{kPa}, 280 \mathrm{degC}$:

$$
\mathrm{H}_{1}:=3017.7 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{S}_{1}:=7.2250 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\operatorname{mdot}_{1}:=50 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}
$$

Table F.1, sat. liq.@ 40 degC:

$$
\mathrm{H}_{\mathrm{liq}}:=167.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{\mathrm{liq}}:=0.5721 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

By Eq. (2.30), neglecting kinetic and potential energies and setting the heat and work terms equal to zero:

$$
\mathrm{H}_{2}:=\mathrm{H}_{\mathrm{liq}} \quad \mathrm{H}_{3} \cdot \mathrm{mdot}_{3}-\mathrm{H}_{1} \cdot \mathrm{mdot}_{1}-\mathrm{H}_{2} \cdot \mathrm{mdot}_{2}=0
$$

Also $\quad \operatorname{mdot}_{3}=\operatorname{mdot}_{2}+\operatorname{mdot}_{1}$

$$
\operatorname{mdot}_{2}:=\frac{\operatorname{mdot}_{1} \cdot\left(\mathrm{H}_{1}-\mathrm{H}_{3}\right.}{\mathrm{H}_{3}-\mathrm{H}_{2}} \quad \operatorname{mdot}_{2}=3.241 \frac{\mathrm{~kg}}{\mathrm{sec}}
$$

Ans.

For adiabatic conditions, Eq. (5.22) becomes
$\mathrm{S}_{2}:=\mathrm{S}_{\text {liq }} \quad \operatorname{mdot}_{3}:=\operatorname{mdot}_{2}+\operatorname{mdot}_{1}$
$\operatorname{Sdot}_{G}:=\mathrm{S}_{3} \cdot \mathrm{mdot}_{3}-\mathrm{S}_{1} \cdot \mathrm{mdot}_{1}-\mathrm{S}_{2} \cdot \mathrm{mdot}_{2}$
$\operatorname{Sdot}_{\mathrm{G}}=3.508 \frac{\mathrm{~kJ}}{\mathrm{sec} \cdot \mathrm{K}}$

Ans.

The mixing of two streams at different temperatures is irreversible.

Basis: 1 mol air at 12 bar and 900 K

> +2.5 mol air at 2 bar and 400 K
> $=3.5 \mathrm{~mol}$ air at T and P.

$\mathrm{T}_{1}:=900 \cdot \mathrm{~K}$	$\mathrm{~T}_{2}:=400 \cdot \mathrm{~K}$	$\mathrm{P}_{1}:=12 \cdot \mathrm{bar}$	$\mathrm{P}_{2}:=2 \cdot \mathrm{bar}$
$\mathrm{n}_{1}:=1 \cdot \mathrm{~mol}$	$\mathrm{n}_{2}:=2.5 \cdot \mathrm{~mol}$	$\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \mathrm{R}$	$\mathrm{C}_{\mathrm{P}}=29.099 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$

1st law: $\quad \mathrm{T}:=600 \cdot \mathrm{~K} \quad$ (guess)
Given

$$
\mathrm{n}_{1} \cdot \mathrm{C}_{\mathrm{P}} \cdot() \Gamma-\mathrm{T}_{1}+\mathrm{n}_{2} \cdot \mathrm{C}_{\mathrm{P}} \cdot() \Gamma-\mathrm{T}_{2}=0 \cdot \mathrm{~J}
$$

$$
\mathrm{T}:=\operatorname{Find}(\mathrm{T})
$$

$$
\mathrm{T}=542.857 \mathrm{~K} \quad \text { Ans. }
$$

2nd law: $\quad P:=5 \cdot$ bar \quad (guess)
Given

$$
\left[\begin{array}{l}
\mathrm{n}_{1} \cdot\left(\mathrm{CP} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}}{\mathrm{P}_{1}}\right)\right) \cdots \\
+\mathrm{n}_{2} \cdot\left(\mathrm{CP} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{2}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}}{\mathrm{P}_{2}}\right)\right)
\end{array}\right]=0 \cdot \frac{\mathrm{~J}}{\mathrm{~K}}
$$

$\mathrm{P}:=\operatorname{Find}(\mathrm{P})$
$\mathrm{P}=4.319 \mathrm{bar}$
Ans.
6.81

$$
\text { molwt }:=28.014 \cdot \frac{\mathrm{lb}}{\mathrm{lbmol}}
$$

$\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \frac{\mathrm{R}}{\mathrm{molwt}}$

$$
\mathrm{C}_{\mathrm{P}}=0.248 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

$M_{S}=$ steam rate in lbm/sec
$M_{n}=$ nitrogen rate in lbm/sec

$$
\mathrm{M}_{\mathrm{n}}:=40 \cdot \frac{\mathrm{l} \mathrm{~b}_{\mathrm{m}}}{\mathrm{sec}}
$$

(1) = sat. liq. water @ 212 degF entering
(2) = exit steam at 1 atm and 300 degF
(3) $=$ nitrogen in at $750 \operatorname{deg} F$
(4) = nitrogen out at $325 \operatorname{degF}$
$\mathrm{T}_{3}:=1209.67 \cdot$ rankine
$\mathrm{T}_{4}:=784.67 \cdot$ rankine
$\mathrm{H}_{1}:=180.17 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{S}_{1}:=0.3121 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$
(Table F.3)
$\mathrm{S}_{2}:=1.8158 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$
(Table F.4)

Eq. (2.30) applies with negligible kinetic and potential energies and with the work term equal to zero and with the heat transfer rate given by

$$
\mathrm{M}_{\mathrm{s}}:=3 \cdot \frac{1 \mathrm{~b}_{\mathrm{m}}}{\mathrm{sec}} \quad \text { (guess) } \quad \mathrm{Q}=-60 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \cdot \mathrm{M}_{\mathrm{s}}
$$

Given

$$
\mathrm{M}_{\mathrm{s}}:=\operatorname{Find}\left(\mathrm{M}_{\mathrm{s}} \quad \mathrm{M}_{\mathrm{S}}=3.933 \frac{\mathrm{lb} \frac{\mathrm{~m}}{\mathrm{sec}}}{}\right.
$$

Ans.

Eq. (5.22) here becomes

$$
\begin{aligned}
& \operatorname{Sdot}_{G}=M_{S} \cdot\left(S_{2}-S_{1}+M_{n} \cdot\left(S_{4}-S_{3}-\frac{Q}{T_{\sigma}}\right.\right. \\
& S_{4}-S_{3}=C_{P} \cdot \ln \left(\frac{T_{4}}{T_{3}}\right) \quad Q:=-60 \cdot \frac{B T U}{1 b_{m}} \cdot M_{S} \quad Q=-235.967 \frac{B T U}{\sec }
\end{aligned}
$$

$\mathrm{T}_{\sigma}:=529.67 \cdot$ rankine
$\operatorname{Sdot}_{G}:=M_{S} \cdot\left(S_{2}-S_{1}+M_{n} \cdot\left(C_{P} \cdot \ln \left(\frac{T_{4}}{T_{3}}\right)\right)-\frac{Q}{T_{\sigma}}\right.$
$\mathrm{Sdot}_{\mathrm{G}}=2.064 \frac{\mathrm{BTU}}{\mathrm{sec} \cdot \text { rankine }}$
Ans.
6.82 molwt $:=28.014 \cdot \frac{\mathrm{gm}}{\mathrm{mol}}$
$\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \frac{\mathrm{R}}{\mathrm{molwt}}$
$\mathrm{C}_{\mathrm{P}}=1.039 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
$\mathrm{M}_{\mathrm{s}}=$ steam rate in $\mathrm{kg} / \mathrm{sec}$
$M_{n}=$ nitrogen rate in $\mathbf{k g} / \mathbf{s e c}$

$$
\mathrm{M}_{\mathrm{n}}:=20 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}
$$

(1) = sat. liq. water @ 101.33 kPa entering
(2) = exit steam at 101.33 kPa and 150 degC
(3) = nitrogen in @ 400 deg C

$$
\mathrm{T}_{3}:=673.15 \cdot \mathrm{~K}
$$

(4) = nitrogen out at 170 degC

$$
\mathrm{T}_{4}:=443.15 \cdot \mathrm{~K}
$$

$$
\begin{array}{ll}
\mathrm{H}_{1}:=419.064 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~S}_{1}:=1.3069 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \tag{TableF.2}\\
\mathrm{H}_{2}:=2776.2 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~S}_{2}:=7.6075 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

(Table F.2)

By Eq. (2.30), neglecting kinetic and potential energies and setting the work term to zero and with the heat transfer rate given by

$$
\mathrm{M}_{\mathrm{s}}:=1 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}} \quad \text { (guess) } \quad \mathrm{Q}=-80 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \cdot \mathrm{M}_{\mathrm{s}}
$$

Given

$$
\mathrm{M}_{\mathrm{s}}:=\operatorname{Find}\left(\mathrm{M}_{\mathrm{S}} \quad \mathrm{M}_{\mathrm{S}}=1.961 \frac{\mathrm{~kg}}{\mathrm{sec}}\right.
$$

Ans.
Eq. (5.22) here becomes

$$
\begin{aligned}
& \operatorname{Sdot}_{\mathrm{G}}=\mathrm{M}_{\mathrm{S}} \cdot\left(\mathrm{~S}_{2}-\mathrm{S}_{1}+\mathrm{M}_{\mathrm{n}} \cdot\left(\mathrm{~S}_{4}-\mathrm{S}_{3}-\frac{\mathrm{Q}}{\mathrm{~T}_{\sigma}}\right.\right. \\
& \mathrm{S}_{4}-\mathrm{S}_{3}=\mathrm{C}_{\mathrm{P}} \cdot \ln \left(\frac{\mathrm{~T}_{4}}{\mathrm{~T}_{3}}\right) \quad \mathrm{T}_{\sigma}:=298.15 \cdot \mathrm{~K} \quad \mathrm{Q}:=-80 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \cdot \mathrm{M}_{\mathrm{S}} \\
& \operatorname{Sdot}_{\mathrm{G}}:=\mathrm{M}_{\mathrm{S}} \cdot\left(\mathrm{~S}_{2}-\mathrm{S}_{1}+\mathrm{M}_{\mathrm{n}} \cdot\left(\mathrm{C}_{\mathrm{P}} \cdot \ln \left(\frac{\mathrm{~T}_{4}}{\mathrm{~T}_{3}}\right)\right)-\frac{\mathrm{Q}}{\mathrm{~T}_{\sigma}}\right. \\
& \operatorname{Sdot}_{\mathrm{G}}=4.194 \frac{\mathrm{~kJ}}{\mathrm{sec} \cdot \mathrm{~K}} \quad \text { Ans. }
\end{aligned}
$$

6.86 Methane = 1; propane $=2$

$\mathrm{T}:=363.15 \cdot \mathrm{~K}$	$\mathrm{P}:=5500 \cdot \mathrm{kPa}$	$\mathrm{y}_{1}:=0.5$	$\mathrm{y}_{2}:=1-\mathrm{y}_{1}$
$\omega_{1}:=0.012$	$\omega_{2}:=0.152$	$\mathrm{Z}_{\mathrm{c} 1}:=0.286$	$\mathrm{Z}_{\mathrm{c} 2}:=0.276$
$\mathrm{~T}_{\mathrm{c} 1}:=190.6 \cdot \mathrm{~K}$	$\mathrm{~T}_{\mathrm{c} 2}:=369.8 \cdot \mathrm{~K}$	$\mathrm{P}_{\mathrm{c} 1}:=45.99 \cdot \mathrm{bar}$	$\mathrm{P}_{\mathrm{c} 2}:=42.48 \cdot \mathrm{bar}$

The elevated pressure here requires use of either an equation of state or the Lee/Kesler correlation with pseudocritical parameters. We choose the latter.
$\mathrm{T}_{\mathrm{pc}}:=\mathrm{y}_{1} \cdot \mathrm{~T}_{\mathrm{c} 1}+\mathrm{y}_{2} \cdot \mathrm{~T}_{\mathrm{c} 2}$
$\mathrm{P}_{\mathrm{pc}}:=\mathrm{y}_{1} \cdot \mathrm{P}_{\mathrm{c} 1}+\mathrm{y}_{2} \cdot \mathrm{P}_{\mathrm{c} 2}$
$\mathrm{T}_{\mathrm{pc}}=280.2 \mathrm{~K}$
$\mathrm{P}_{\mathrm{pc}}=44.235 \mathrm{bar}$
$\mathrm{T}_{\mathrm{pr}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{pc}}} \quad \mathrm{T}_{\mathrm{pr}}=1.296$
$\mathrm{P}_{\mathrm{pr}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{pc}}} \quad \mathrm{P}_{\mathrm{pr}}=1.243$

By interpolation in Tables E. 3 and E.4:

$\mathrm{Z} 0:=0.8010$
Z1 := 0.1100
$\omega:=y_{1} \cdot \omega_{1}+y_{2} \cdot \omega_{2}$
$\omega=0.082$
$Z:=Z 0+\omega \cdot Z 1$
$\mathrm{Z}=0.81$

For the molar mass of the mixture, we have:
molwt $:=\left(y_{1} \cdot 16.043+y_{2} \cdot 44.097 \cdot \frac{\mathrm{gm}}{\mathrm{mol}} \quad\right.$ molwt $=30.07 \frac{\mathrm{gm}}{\mathrm{mol}}$
$\mathrm{V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}}{\mathrm{P} \cdot \mathrm{molwt}} \quad \mathrm{V}=14.788 \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \quad \mathrm{mdot}:=1.4 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}} \quad \mathrm{u}:=30 \cdot \frac{\mathrm{~m}}{\mathrm{sec}}$
Vdot $:=V \cdot m d o t \quad V d o t=2.07 \times 10^{4} \frac{\mathrm{~cm}^{3}}{\mathrm{sec}} \quad A:=\frac{V d o t}{u} \quad A=6.901 \mathrm{~cm}^{2}$
$\mathrm{D}:=\sqrt{\frac{4 \cdot \mathrm{~A}}{\pi}} \quad \mathrm{D}=2.964 \mathrm{~cm}$
Ans.
6.87 Vectors containing T, P, Tc, and Pc for the calculation of Tr and Pr :
$\mathrm{T}:=\left(\begin{array}{l}500 \\ 400 \\ 450 \\ 600 \\ 620 \\ 250 \\ 150 \\ 500 \\ 450\end{array}\right)$
$\mathrm{Tc}:=\left(\begin{array}{l}425.2 \\ 304.2 \\ 552.0 \\ 617.7 \\ 617.2 \\ 190.6 \\ 154.6 \\ 469.7 \\ 430.8 \\ 374.2\end{array}\right)$
$P:=\left(\begin{array}{c}20 \\ 200 \\ 60 \\ 20 \\ 20 \\ 90 \\ 20 \\ 10 \\ 35\end{array}\right)$
$P c:=\left(\begin{array}{l}42.77 \\ 73.83 \\ 79.00 \\ 21.10 \\ 36.06 \\ 45.99 \\ 50.43 \\ 33.70 \\ 78.84 \\ 40.60\end{array}\right)$
$\begin{aligned} \operatorname{Tr}:= & \frac{\vec{T}}{\mathrm{Tc}} \\ \operatorname{Pr}:= & \frac{\mathrm{P}}{\mathrm{Pc}}\end{aligned}$

$\operatorname{Tr}=$| 1.176 |
| ---: |
| 1.315 |
| 0.815 |
| 0.971 |
| 1.005 |
| 1.312 |
| 0.97 |
| 1.065 |
| 1.045 |
| 1.069 |

$\operatorname{Pr}=$| 0.468 |
| :---: |
| 2.709 |
| 0.759 |
| 0.948 |
| 0.555 |
| 1.957 |
| 0.397 |
| 0.297 |
| 0.444 |
| 0.369 |

Parts (a), (g), (h), (i), and (j) --- By virial equation:

$$
\begin{aligned}
& \operatorname{Tr}=\left(\begin{array}{c}
1.176 \\
0.97 \\
1.065 \\
1.045 \\
1.069
\end{array}\right) \quad \operatorname{Pr}=\left(\begin{array}{c}
0.468 \\
0.397 \\
0.297 \\
0.444 \\
0.369
\end{array}\right) \\
& \mathrm{B} 0:=\overline{\left(0.073-\frac{0.422}{\mathrm{Tr}^{1.6}}\right)} \quad \text { Eq. (3.65) } \quad \mathrm{B} 1:=\overline{\left(0.139-\frac{0.172}{\left.\mathrm{Tr}^{4.2}\right)}\right.} \quad \text { Eq. (3.66) } \\
& \text { DB } 0:=\frac{\overrightarrow{0.675}}{\operatorname{Tr}^{2.6}} \quad \text { Eq. (6.89) } \quad \text { DB } 1:=\frac{\overrightarrow{0.722}}{T^{5.2}} \quad \text { Eq. (6.90) } \\
& \mathrm{B} 0=\left(\begin{array}{c}
-0.253 \\
-0.37 \\
-0.309 \\
-0.321 \\
-0.306
\end{array}\right) \quad \mathrm{B} 1=\left(\begin{array}{c}
0.052 \\
-0.056 \\
6.718 \times 10^{-3} \\
-4.217 \times 10^{-3} \\
9.009 \times 10^{-3}
\end{array}\right) \quad \mathrm{DB} 0=\left(\begin{array}{c}
0.443 \\
0.73 \\
0.574 \\
0.603 \\
0.568
\end{array}\right) \quad \mathrm{DB} 1=\left(\begin{array}{c}
0.311 \\
0.845 \\
0.522 \\
0.576 \\
0.51
\end{array}\right)
\end{aligned}
$$

Combine Eqs. (3.61) + (3.62), (3.63), and (6.40) and the definitions of Tr and Pr to get:

$$
\begin{align*}
& \mathrm{VR}:=\overrightarrow{\left[\mathrm{R} \cdot \frac{\mathrm{Tc}}{\mathrm{Pc}} \cdot(\mathrm{~B} 0+\omega \cdot \mathrm{B} 1]\right.} \\
& \mathrm{HR}:=\overrightarrow{[\mathrm{R} \cdot \mathrm{Tc} \cdot \operatorname{Pr} \cdot[\mathrm{~B} 0-\omega \mathrm{Tr} \cdot \mathrm{DB} 0+} \cdot(\mathrm{B} 1-\mathrm{Tr} \cdot \mathrm{DB} 1)]] \\
& \mathrm{SR}:=\overrightarrow{[-\mathrm{R} \cdot \operatorname{Pr} \cdot(\mathrm{DB} 0+\omega \cdot \mathrm{DB} 1]} \quad \text { Eq. (6.88) }
\end{align*}
$$

$$
\mathrm{VR}=\left(\begin{array}{c}
-200.647 \\
-94.593 \\
-355.907 \\
-146.1 \\
-232.454
\end{array}\right) \frac{\mathrm{cm}^{3}}{\mathrm{~mol}} \quad \mathrm{HR}=\left(\begin{array}{c}
-1.377 \times 10^{3} \\
-559.501 \\
-1.226 \times 10^{3} \\
-1.746 \times 10^{3}
\end{array} \left\lvert\, \frac{\mathrm{J}}{\mathrm{~mol}} \quad \mathrm{SR}=\left(\begin{array}{c}
-1.952 \\
-2.469 \\
-1.74 \\
-1.251 \times 10^{3}
\end{array}\right) \frac{\mathrm{J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right.\right.
$$

Parts (b), (c), (d), (e), and (f) --- By Lee/Kesler correlation:
By linear interpolation in Tables E.1--E.12:
DEFINE: h0 equals $\frac{(H R)^{0}}{R T c} \quad$ h1 equals $\frac{(H R)^{1}}{R T c} \quad$ h equals $\frac{H R}{R T c}$ s0 equals $\frac{(\mathrm{SR})^{0}}{\mathrm{R}} \quad$ s1 equals $\frac{(\mathrm{SR})^{1}}{\mathrm{R}} \quad$ s equals $\quad \frac{\mathrm{SR}}{\mathrm{R}}$
$\mathrm{Z} 0:=\left(\begin{array}{l}.663 \\ .124 \\ .278 \\ .783\end{array}\right)$
$\mathrm{Z} 1:=\left(\begin{array}{c}0.208 \\ -.050 \\ -.088 \\ -.036 \\ 0.138\end{array}\right)$
$h 0:=\left(\begin{array}{l}-2.008 \\ -4.445 \\ -3.049 \\ -0.671 \\ -1.486\end{array}\right)$
$h 1:=\left(\begin{array}{c}-0.233 \\ -5.121 \\ -2.970 \\ -0.596 \\ -0.169\end{array}\right)$
$\mathrm{s} 0:=\left(\begin{array}{c}-1.137 \\ -4.381 \\ -2.675 \\ -0.473 \\ -0.824\end{array}\right)$

$\mathrm{Tc}:=\left(\begin{array}{l}304.2 \\ 552.0 \\ 617.7 \\ 617.2 \\ 190.6\end{array}\right) \cdot \mathrm{K} \quad \omega:=\left(\begin{array}{l}.224 \\ .111 \\ .492 \\ .303 \\ .012\end{array}\right)$
$Z:=\overrightarrow{(Z 0+\omega \cdot Z 1}$ Eq. (3.57) $\quad h:=\overrightarrow{(h 0+\omega \cdot h 1} \quad$ Eq. (6.85) $\mathrm{s}:=\overrightarrow{\left({ }_{\delta 0} 0+\omega \cdot \mathrm{s} 1\right.}$ (6.86)

$$
\mathrm{HR}:=\overrightarrow{(\mathrm{h} \cdot \mathrm{Tc} \cdot \mathrm{R})} \quad \mathrm{SR}:=\overrightarrow{(\mathrm{s} \cdot \mathrm{R})}
$$

$$
\mathrm{Z}=\left(\begin{array}{c}
0.71 \\
0.118 \\
0.235 \\
0.772 \\
0.709
\end{array}\right) \quad \mathrm{HR}=\left(\begin{array}{c}
-5.21 \times 10^{3} \\
-2.301 \times 10^{4} \\
-2.316 \times 10^{4} \\
-4.37 \times 10^{3}
\end{array} \left\lvert\, \frac{\mathrm{J}}{\mathrm{~mol}} \quad \mathrm{SR}=\left(\begin{array}{c}
-10.207 \\
-41.291 \\
-34.143 \\
-5.336 \\
-2.358 \times 10^{3}
\end{array}\right) \frac{\mathrm{J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right.\right.
$$

$$
\mathrm{VR}:=\overrightarrow{\left[\mathrm{R} \cdot \frac{\mathrm{~T}}{\mathrm{P}} \cdot(\mathrm{Z}-1)\right]}
$$

And.

The Lee/Kesler tables indicate that the state in Part (c) is liquid.
6.88 Vectors containing T, P, Tc1, Tc2, Pc1, Pc2, $\omega 1$, and $\omega 2$ for Parts (a) through (h)
$\mathrm{T}:=\left(\left.\begin{array}{c}650 \\ 300 \\ 600 \\ 350 \\ 400 \\ 200 \\ 450\end{array} \right\rvert\, \cdot \mathrm{K}\right.$
$P:=\left(\begin{array}{c}60 \\ 100 \\ 100 \\ 75 \\ 150 \\ 75 \\ 80\end{array}\right) \cdot$ bar
$\mathrm{Tc} 1:=\left(\begin{array}{c}562.2 \\ 304.2 \\ 304.2 \\ 305.3 \\ 373.5 \\ 190.6 \\ 190.6 \\ 126.2\end{array}\right) \cdot \mathrm{K} \quad \mathrm{Tc} 2:=\left(\begin{array}{c}553.6 \\ 132.9 \\ 568.7 \\ 282.3 \\ 190.6 \\ 126.2 \\ 469.7 \\ 154.6\end{array}\right) \cdot \mathrm{K}$

Pc1 :=	$\left(\begin{array}{l}48.98 \\ 73.83 \\ 73.83 \\ 48.72 \\ 89.63 \\ 45.99 \\ 45.99 \\ 34.00\end{array}\right)$		Pc2 :=	$\left(\begin{array}{l}40.73 \\ 34.99 \\ 24.90 \\ 50.40 \\ 45.99 \\ 34.00 \\ 33.70 \\ 50.43\end{array}\right) \cdot$	-bar	$\omega 1:=$	$\left(\begin{array}{l}.210 \\ .224 \\ .224 \\ .100 \\ .094 \\ .012 \\ .012\end{array}\right)$	$\omega 2$:	$\left(\begin{array}{l}.210 \\ .048 \\ .400 \\ .087 \\ .012 \\ .038 \\ .252\end{array}\right)$
Tpc :=	5. Tcl) Pp	$:=(.5 \cdot \mathrm{P}$				$5 \cdot \omega$	$\xrightarrow{.5 \cdot \omega 2}$

$\mathrm{Tpr}:=\frac{\overrightarrow{\mathrm{T}}}{\mathrm{Tpc}} \quad \mathrm{Ppr}:=\frac{\overrightarrow{\mathrm{P}}}{\mathrm{Ppc}}$
$\left.\left.\begin{array}{rl}\mathrm{Tpc}=\left(\begin{array}{c}557.9 \\ 218.55 \\ 436.45 \\ 293.8 \\ 282.05 \\ 158.4 \\ 330.15\end{array}\right) \mathrm{K} \quad \mathrm{Ppc}=\left(\begin{array}{c}44.855 \\ 54.41 \\ 49.365 \\ 49.56 \\ 67.81 \\ 39.995 \\ 39.845\end{array}\right) \mathrm{bar} \quad \omega=\left(\begin{array}{c}0.21 \\ 0.136 \\ 0.312 \\ 42.215\end{array}\right) \\ \mathrm{Tpr}=\left(\begin{array}{c}1.165 \\ 0.094 \\ 0.053 \\ 0.025 \\ 1.373 \\ 1.375 \\ 1.191 \\ 1.418 \\ 1.263 \\ 1.363\end{array}\right) \\ 1.781\end{array}\right) \quad \begin{array}{c}1.338 \\ 0.132 \\ 0.03\end{array}\right)$

Lee/Kesler Correlation --- By linear interpolation in Tables E.1--E.12:
$\mathrm{Z} 0:=\left(\begin{array}{l}.6543 \\ .7706 \\ .7527 \\ .6434 \\ .7744 \\ .6631 \\ .7436\end{array}\right)$

$\mathrm{h} 0:=\left(\begin{array}{c}-1.395 \\ -1.217 \\ -1.346 \\ -1.510 \\ -1.340 \\ -1.623 \\ -1.372 \\ -0.820\end{array}\right)$
$\mathrm{h} 1:=\left(\begin{array}{l}-.461 \\ -.116 \\ -.097 \\ -.400 \\ -.049 \\ -.254 \\ -.110 \\ 0.172\end{array}\right)$

$$
\mathrm{s} 0:=\left(\begin{array}{l}
-.890 \\
-.658 \\
-.729 \\
-.944 \\
-.704 \\
-.965 \\
-.750 \\
-.361
\end{array}\right)
$$

$$
\text { s1 : = (}\left(\begin{array}{l}
-.466 \\
-.235 \\
-.242 \\
-.430 \\
-.224 \\
-.348 \\
-.250 \\
-.095
\end{array}\right)
$$

h0 equals $\frac{(\mathrm{HR})^{0}}{\mathrm{RTpc}}$
h1 equals $\frac{(\mathrm{HR})^{1}}{\mathrm{RTpc}}$
h equals $\frac{\mathrm{HR}}{\mathrm{RTpc}}$
s0 equals $\frac{(\mathrm{SR})^{0}}{\mathrm{R}}$
s1 equals $\frac{(\mathrm{SR})^{1}}{\mathrm{R}}$
s equals $\frac{S R}{R}$

$$
Z:=\overrightarrow{(Z 0+\omega \cdot Z 1}
$$

Eq. (3.57)
$h:=\overrightarrow{(h 0+\omega \cdot h 1}$
Eq. (6.85)
$\mathrm{s}:=\overrightarrow{(\neq 0+\omega \cdot \mathrm{s} 1}$
Eq. (6.86)

$$
\mathrm{HR}:=\overrightarrow{(\mathrm{h} \cdot \mathrm{Tpc} \cdot \mathrm{R})} \quad \mathrm{SR}:=\overrightarrow{(\mathrm{s} \cdot \mathrm{R})}
$$

$Z=\left(\begin{array}{c}0.68 \\ 0.794 \\ 0.813 \\ 0.657 \\ 0.785 \\ 0.668 \\ 0.769\end{array}\right) \quad \mathrm{HR}=\left(\begin{array}{c}-6919.583 \\ -2239.984 \\ -4993.974 \\ -3779.762 \\ -3148.341 \\ -2145.752 \\ -3805.813\end{array}\right) \frac{\mathrm{J}}{\mathrm{mol}} \quad \mathrm{SR}=\left(\begin{array}{c}-8.213 \\ -951736 \\ -6.689 \\ -8.183 \\ -5.952 \\ -8.095 \\ -6.51\end{array}\right) \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}$

Ans.
$6.95 \mathrm{~T}_{\mathrm{c}}:=647.1 \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=220.55 \mathrm{bar}$
At $\mathbf{T r}=\mathbf{0 . 7}: \quad \mathrm{T}:=0.7 \cdot \mathrm{~T}_{\mathrm{c}} \quad \mathrm{T}=452.97 \mathrm{~K}$
Find Psat in the Saturated Steam Tables at $\mathbf{T}=\mathbf{4 5 2 . 9 7} \mathrm{K}$
$\mathrm{T} 1:=451.15 \mathrm{~K} \quad \mathrm{P} 1:=957.36 \mathrm{kPa} \quad \mathrm{T} 2:=453.15 \mathrm{~K} \quad \mathrm{P} 2:=1002.7 \mathrm{kPa}$
Psat $:=\frac{\mathrm{P} 2-\mathrm{P} 1}{\mathrm{~T} 2-\mathrm{T} 1} \cdot(\mathrm{~T}-\mathrm{T} 1)+\mathrm{P} 1 \quad$ Psat $=998.619 \mathrm{kPa} \quad$ Psat $=9.986 \mathrm{bar}$
Psat $_{r}:=\frac{\text { Psat }}{\mathrm{P}_{\mathrm{c}}} \quad$ Psat $_{\mathrm{r}}=0.045 \quad \omega:=-1-\log \left(\right.$ Psat $_{\mathrm{r}} \quad \omega=0.344 \quad$ Ans.
This is very close to the value reported in Table B. $1(\omega=0.345)$.
$6.96 \mathrm{~T}_{\mathrm{c}}:=374.2 \mathrm{~K}$

$$
\mathrm{P}_{\mathrm{c}}:=40.60 \mathrm{bar}
$$

At $\mathbf{T r}=\mathbf{0 . 7}: \quad \mathrm{T}:=0.7 \cdot \mathrm{~T}_{\mathrm{c}} \quad \mathrm{T}=471.492$ rankine

$$
\mathrm{T}:=\mathrm{T}-459.67 \text { rankine } \quad \mathrm{T}=11.822 \mathrm{degF}
$$

Find Psat in Table 9.1 at $\mathbf{T}=\mathbf{1 1 . 8 2 2} \mathbf{F}$

$$
\mathrm{T} 1:=10 \mathrm{degF} \quad \mathrm{P} 1:=26.617 \mathrm{psi} \quad \mathrm{~T} 2:=15 \mathrm{degF} \quad \mathrm{P} 2:=29.726 \mathrm{psi}
$$

Psat $:=\frac{\mathrm{P} 2-\mathrm{P} 1}{\mathrm{~T} 2-\mathrm{T} 1} \cdot(\mathrm{~T}-\mathrm{T} 1)+\mathrm{P} 1 \quad$ Psat $=27.75 \mathrm{psi} \quad$ Psat $=1.913 \mathrm{bar}$ Psat $_{\mathrm{r}}:=\frac{\text { Psat }^{P_{c}}}{\mathrm{Psat}_{\mathrm{r}}=0.047 \quad \omega:=-1-\log \left(\text { Psat }_{\mathrm{r}} \quad \omega=0.327 \quad \text { Ans. }\right.}$

This is exactly the same as the value reported in Table B.1.

6.101 For benzene

a) $\omega:=0.210 \quad \mathrm{~T}_{\mathrm{c}}:=562.2 \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=48.98 \mathrm{bar} \quad \mathrm{Z}_{\mathrm{c}}:=0.271 \quad \mathrm{~T}_{\mathrm{n}}:=353.2 \mathrm{~K}$

$$
\begin{equation*}
\ln \operatorname{Pr} 0(\mathrm{Tr}):=5.92714-\frac{6.09648}{\operatorname{Tr}}-1.28862 \cdot \ln (\operatorname{Tr})+0.169347 \cdot \operatorname{Tr}^{6} \tag{6.79}
\end{equation*}
$$

$$
\begin{equation*}
\ln \operatorname{Pr} 1(\operatorname{Tr}):=15.2518-\frac{15.6875}{\operatorname{Tr}}-13.4721 \cdot \ln (\operatorname{Tr})+0.43577 \cdot \mathrm{Tr}^{6} \tag{6.80}
\end{equation*}
$$

$\omega:=\frac{\ln \left(\text { Psat }_{\mathrm{rn}}-\ln \operatorname{Pr} 0() \Gamma_{\mathrm{rn}}\right.}{\ln \operatorname{Pr} 1() \Gamma_{\mathrm{rn}}}$
Eqn. (6.81). $\omega=0.207$
$\ln \operatorname{Psatr}(\mathrm{Tr}):=\ln \mathrm{Pr} 0(\mathrm{Tr})+\omega \cdot \ln \operatorname{Pr} 1(\mathrm{Tr}) \quad$ Eqn. (6.78)
$\mathrm{Zsat}_{\mathrm{liq}}:=\frac{\text { Psat }_{\mathrm{rn}}}{\mathrm{T}_{\mathrm{rn}}} \cdot \mathrm{Z}_{\mathrm{c}}\left[1+\left(\mathrm{n}-\mathrm{T}_{\mathrm{rn}} \frac{\frac{2}{7}}{}\right]\right.$
Eqn. (3.73) $\quad Z_{\text {sat }}^{\text {liq }}=0.00334$
$\mathrm{B} 0:=0.083-\frac{0.422}{\mathrm{~T}_{\mathrm{rn}}^{1.6}}$
Eqn. (3.65) $\quad \mathrm{Z} 0:=1+\mathrm{B} 0 \cdot \frac{\text { Psat }_{\mathrm{rn}}}{\mathrm{T}_{\mathrm{rn}}}$
Eqn. (3.64)
$B 0=-0.805$
$Z 0=0.974$
$\mathrm{B} 1:=0.139-\frac{0.172}{\mathrm{~T}_{\mathrm{rn}}^{4.2}}$
$\mathrm{B} 1=-1.073$

Eqn. (3.66) $\quad \mathrm{Z} 1:=\mathrm{B} 1 \cdot \frac{\mathrm{Psat}_{\mathrm{rn}}}{\mathrm{T}_{\mathrm{rn}}} \quad \begin{aligned} & \begin{array}{l}\text { Equation } \\ \text { following } \\ \text { Eqn. (3.64) }\end{array}\end{aligned}$
$\mathrm{Z} 1=-0.035$

$$
\begin{array}{cl}
\mathrm{Zsat}_{\text {vap }}:=\mathrm{Z} 0+\omega \cdot \mathrm{Z1} & \text { Eqn. (3.57) } \\
\Delta \mathrm{Zsat}_{\mathrm{vap}}=0.966 \\
\Delta \mathrm{Z}_{\mathrm{lv}}:=\mathrm{Zsat}_{\mathrm{vap}}-\mathrm{Zsat}_{\mathrm{liq}} & \Delta \mathrm{Z}_{\mathrm{lv}}=0.963
\end{array}
$$

Ans.

This compares well with the value in Table B. 2 of $30.19 \mathrm{~kJ} / \mathrm{mol}$
The results for the other species are given in the table below.

	Estimated Value (kJ/mol)	Table B.2 (kJ/mol)
Benzene	30.80	30.72
iso-Butane	21.39	21.30
Carbon tetrachloride	29.81	29.82
Cyclohexane	30.03	29.97
n-Decane	39.97	38.75
n-Hexane	29.27	28.85
n-Octane	34.70	34.41
Toluene	33.72	33.18
o-Xylene	37.23	36.24

6.103 For $\mathrm{CO}_{2}: \quad \omega:=0.224$	$\mathrm{~T}_{\mathrm{c}}:=304.2 \mathrm{~K}$	$\mathrm{P}_{\mathrm{c}}:=73.83 \mathrm{bar}$
At the triple point:	$\mathrm{T}_{\mathrm{t}}:=216.55 \mathrm{~K}$	$\mathrm{P}_{\mathrm{t}}:=5.170 \mathrm{bar}$
a) At $\mathrm{T}_{\mathrm{r}}=\mathbf{0 . 7}$	$\mathrm{T}:=0.7 \mathrm{~T}_{\mathrm{c}}$	$\mathrm{T}=212.94 \mathrm{~K}$

$$
\mathrm{T}_{\mathrm{tr}}:=\frac{\mathrm{T}_{\mathrm{t}}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{tr}}=0.712 \quad \mathrm{P}_{\mathrm{tr}}:=\frac{\mathrm{P}_{\mathrm{t}}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{tr}}=0.07
$$

$$
\begin{equation*}
\ln \operatorname{Pr} 0(\mathrm{Tr}):=5.92714-\frac{6.09648}{\operatorname{Tr}}-1.28862 \cdot \ln (\operatorname{Tr})+0.169347 \cdot \operatorname{Tr}^{6} \tag{6.79}
\end{equation*}
$$

$\ln \operatorname{Pr} 1(\mathrm{Tr}):=15.2518-\frac{15.6875}{\operatorname{Tr}}-13.4721 \cdot \ln (\operatorname{Tr})+0.43577 \cdot \operatorname{Tr}^{6}$
$\omega:=\frac{\ln ()_{\operatorname{tr}}-\ln \operatorname{Pr} 0() \Gamma_{\text {tr }}}{\ln \operatorname{Pr} 1() \Gamma_{\mathrm{tr}}} \quad$ Eqn. (6.81). $\omega=0.224 \quad$ Ans.

This is exactly the same value as given in Table B. 1
b) Psat $_{\mathrm{r}}:=\frac{1 \mathrm{~atm}}{\mathrm{P}_{\mathrm{c}}} \quad$ Psat $_{\mathrm{r}}=0.014 \quad$ Guess: $\mathrm{T}_{\mathrm{rn}}:=0.7$

Given $\quad \ln \left(\right.$ psat $_{\mathrm{r}}=\ln \operatorname{Pr} 0() \Gamma_{\mathrm{rn}}+\omega \cdot \ln \operatorname{Pr} 1()_{\mathrm{rn}} \quad \mathrm{T}_{\mathrm{rn}}:=\operatorname{Find}() \Gamma_{\mathrm{rn}}$
$\mathrm{T}_{\mathrm{rn}}=0.609 \quad \mathrm{~T}_{\mathrm{n}}:=\mathrm{T}_{\mathrm{rn}} \cdot \mathrm{T}_{\mathrm{c}} \quad \mathrm{T}_{\mathrm{n}}=185.3 \mathrm{~K} \quad$ Ans.
This seems reasonable; a \mathbf{T}_{rn} of about 0.6 is common for triatomic species.

Chapter 7 - Section A - Mathcad Solutions

7.1

$$
\mathrm{u}_{2}:=325 \cdot \frac{\mathrm{~m}}{\mathrm{sec}} \quad \mathrm{R}:=8.314 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \mathrm{molwt}:=28.9 \frac{\mathrm{gm}}{\mathrm{~mol}} \quad \mathrm{C}_{P}:=\frac{7}{2} \cdot \frac{\mathrm{R}}{\mathrm{molwt}}
$$

With the heat, work, and potential-energy terms set equal to zero and with the initial velocity equal to zero, Eq. (2.32a) reduces to

$$
\Delta \mathrm{H}+\frac{\mathrm{u}_{2}^{2}}{2}=0 \quad \text { But } \quad \Delta \mathrm{H}=\mathrm{C}_{\mathrm{P}} \cdot \Delta \mathrm{~T}
$$

Whence

$$
\begin{aligned}
& \Delta \mathrm{T}:=\frac{-\mathrm{u}_{2}^{2}}{2 \cdot \mathrm{C}_{\mathrm{P}}} \quad \Delta \mathrm{~T}=-5 \\
& \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{at} 800 \mathrm{kPa} \text { and } \mathbf{2 8 0} \mathrm{degC}: \\
& \mathrm{S}_{1}:=7.1595 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{aligned}
$$

Interpolation in Table $F .2$ at $P=525 \mathrm{kPa}$ and $S=7.1595 \mathrm{~kJ} /(\mathrm{kg} * K)$ yields:

$$
\mathrm{H}_{2}:=2855.2 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~V}_{2}:=531.21 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \quad \operatorname{mdot}:=0.75 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}
$$

With the heat, work, and potential-energy terms set equal to zero and with the initial velocity equal to zero, Eq. (2.32a) reduces to:

$$
\Delta \mathrm{H}+\frac{\mathrm{u}_{2}^{2}}{2}=0
$$

Whence

$$
\begin{array}{r}
\mathrm{u}_{2}:=\sqrt{-2 \cdot() \mathrm{H}_{2}-\mathrm{H}_{1}} \\
\mathrm{u}_{2}=565.2 \frac{\mathrm{~m}}{\mathrm{sec}}
\end{array}
$$

Ans.

By Eq. (2.27), $\quad \mathrm{A}_{2}:=\frac{\mathrm{mdot} \cdot \mathrm{V}_{2}}{\mathrm{u}_{2}} \quad \mathrm{~A}_{2}=7.05 \mathrm{~cm}^{2} \quad$ Ans.
7.5 The calculations of the preceding problem may be carried out for a series of exit pressures until a minimum cross-sectional area is found. The corresponding pressure is the minimum obtainable in the converging nozzle. Initial property values are as in the preceding problem.
$\mathrm{H}_{1}:=3014.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{1}:=7.1595 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{~S}_{2}=\mathrm{S}_{1}$
Interpolations in Table F. 2 at several pressures and at the given entropy yield the following values:
$\mathrm{P}:=\left(\begin{array}{l}400 \\ 425 \\ 450 \\ 475 \\ 500\end{array}\right) \cdot \mathrm{kPa}$
$\mathrm{H}_{2}:=\left(\left.\begin{array}{l}2855.2 \\ 2868.2 \\ 2880.7 \\ 2892.5\end{array} \right\rvert\, \cdot \frac{\mathrm{kJ}}{\mathrm{kg}}\right.$

mdot $:=0.75 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}$
$\mathrm{u}_{2}:=\xrightarrow{-2 \cdot() \mathrm{H}_{2}-\mathrm{H}_{1}}$

$$
\mathrm{A}_{2}:=\frac{\overrightarrow{\mathrm{mdot} \cdot \mathrm{~V}_{2}}}{\mathrm{u}_{2}}
$$

$$
\mathrm{u}_{2}=\left(\begin{array}{l}
565.2 \\
541.7 \\
518.1 \\
494.8
\end{array}\right) \frac{\mathrm{m}}{\mathrm{sec}}
$$

Fit the P vs. A2 data with cubic spline and find the minimum P at the point where the first derivative of the spline is zero.
$\mathrm{i}:=1 . .5 \quad \mathrm{p}_{\mathrm{i}}:=\mathrm{P}_{\mathrm{i}}$ $\mathrm{a}_{2_{\mathrm{i}}}:=\mathrm{A}_{2_{i}}$
$\mathrm{s}:=\operatorname{cspline}\left(\mathrm{P}, \mathrm{A}_{2}\right.$ $\mathrm{A}(\mathrm{P}):=\operatorname{interp}\left(\$, \mathrm{p}, \mathrm{a}_{2}, \mathrm{P}\right.$
$\mathrm{p}_{\text {min }}:=400 \cdot \mathrm{kPa} \quad$ (guess)

Given $\quad \frac{\mathrm{d}}{\mathrm{dp}_{\min }} \mathrm{A}\left(\mathrm{p}_{\text {min }}=0 \cdot \frac{\mathrm{~cm}^{2}}{\mathrm{kPa}} \quad \quad \mathrm{p}_{\text {min }}:=\operatorname{Find}\left(\mathrm{p}_{\text {min }}\right.\right.$
$\mathrm{p}_{\text {min }}=431.78 \mathrm{kPa}$
Ans.

Ans.

Show spline fit graphically:

$$
\mathrm{p}:=400 \cdot \mathrm{kPa}, 401 \cdot \mathrm{kPa} . .500 \cdot \mathrm{kPa}
$$

7.9 From Table F. 2 at 1400 kPa and 325 degC :

$$
\mathrm{H}_{1}:=3096.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{1}:=7.0499 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{~S}_{2}:=\mathrm{S}_{1}
$$

Interpolate in Table F. 2 at a series of downstream pressures and at $\mathrm{S}=$ $7.0499 \mathrm{~kJ} /(\mathrm{kg} * \mathrm{~K})$ to find the minimum cross-sectional area.

$\mathrm{u}_{2}:=\sqrt{-2 \cdot\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right.}$
$A_{2}=\left(\frac{\mathrm{V}_{2}}{\mathrm{u}_{2}}\right) \cdot \operatorname{mdot}$

Since mdot is constant, the quotient $\mathrm{V} 2 / \mathrm{u} 2$ is a measure of the area. Its minimum value occurs very close to the value at vector index $i=3$.

$$
\overrightarrow{\left(\frac{\mathrm{V}_{2}}{\mathrm{u}_{2}}\right)}=\left(\left.\begin{array}{l}
5.561 \\
5.553 \\
5.552 \\
5.557 \\
5.577)
\end{array} \right\rvert\, \frac{\mathrm{cm}^{2} \cdot \mathrm{sec}}{\mathrm{~kg}}\right.
$$

At the throat,
$\mathrm{A}_{2}:=6 \cdot \mathrm{~cm}^{2}$
$\operatorname{mdot}:=\frac{\mathrm{A}_{2} \cdot \mathrm{u}_{2}}{\mathrm{~V}_{2_{3}}}$

Ans.

At the nozzle exit, $P=140 \mathrm{kPa}$ and $\mathrm{S}=\mathrm{S} 1$, the initial value. From
Table F. 2 we see that steam at these conditions is wet. By interpolation,
$\mathrm{S}_{\text {liq }}:=1.4098 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{S}_{\mathrm{vap}}:=7.2479 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{x}:=\frac{\mathrm{S}_{1}-\mathrm{S}_{\text {liq }}}{\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}}$
$x=0.966$
$7.10 \quad \mathrm{u}_{1}:=230 \cdot \frac{\mathrm{ft}}{\mathrm{sec}} \quad \mathrm{u}_{2}:=2000 \cdot \frac{\mathrm{ft}}{\mathrm{sec}}$
From Table F. 4 at $\mathbf{1 3 0 (p s i) ~ a n d ~} 420$ degF:

$$
\mathrm{H}_{1}:=1233.6 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}
$$

$\mathrm{S}_{1}:=1.6310 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$
By Eq. (2.32a),

$$
\Delta \mathrm{H}:=\frac{\mathrm{u}_{1}^{2}-\mathrm{u}_{2}^{2}}{2}
$$

$\Delta \mathrm{H}=-78.8 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{H}_{2}:=\mathrm{H}_{1}+\Delta \mathrm{H}$

$$
\mathrm{H}_{2}=1154.8 \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}
$$

From Table F. 4 at $\mathbf{3 5 (p s i)}$, we see that the final state is wet steam:

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{liq}}:=228.03 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}} \\
& \mathrm{~S}_{\mathrm{liq}}:=0.3809 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
\end{aligned}
$$

$$
\mathrm{H}_{\text {vap }}:=1167.1 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{S}_{\text {vap }}:=1.6872 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

$$
\begin{array}{ll}
\mathrm{x}:=\frac{\mathrm{H}_{2}-\mathrm{H}_{\mathrm{liq}}}{\mathrm{H}_{\mathrm{Vap}}-\mathrm{H}_{\mathrm{liq}}} & \mathrm{x}=0.987 \quad \text { (quality) } \\
\mathrm{S}_{2}:=\mathrm{S}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}\right. & \mathrm{S}_{2}=1.67 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \\
\mathrm{Sdot}_{\mathrm{G}}:=\mathrm{S}_{2}-\mathrm{S}_{1} & \mathrm{Sdot}_{\mathrm{G}}=0.039 \frac{\mathrm{Btu}}{\mathrm{lb} \cdot \text { rankine }}
\end{array}
$$

Ans.
$7.11 \mathrm{u}_{2}:=580 \cdot \frac{\mathrm{~m}}{\mathrm{sec}} \mathrm{T}_{2}:=(273.15+15) \cdot \mathrm{K}$ molwt $:=28.9 \frac{\mathrm{gm}}{\mathrm{mol}} \mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \frac{\mathrm{R}}{\mathrm{molwt}}$

By Eq. (2.32a),

$$
\Delta \mathrm{H}=\frac{\mathrm{u}_{1}^{2}-\mathrm{u}_{2}^{2}}{2}=\frac{-\mathrm{u}_{2}^{2}}{2}
$$

But $\quad \Delta \mathrm{H}=\mathrm{C}_{\mathrm{P}} \cdot \Delta \mathrm{T} \quad$ Whence
$\Delta \mathrm{T}:=\frac{{ }_{-\mathrm{u}_{2}}{ }^{2}}{2 \cdot \mathrm{C}_{\mathrm{P}}} \quad \Delta \mathrm{T}=-167.05 \mathrm{~K} \quad$ Ans.
Initial $\mathrm{t}=\mathbf{1 5}+\mathbf{1 6 7 . 0 5}=\mathbf{1 8 2 . 0 5} \mathbf{d e g C}$ Ans.
7.12 Values from the steam tables for saturated-liquid water:

At $15 \mathrm{degC}: V:=1.001 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \quad \mathrm{T}:=288.15 \cdot \mathrm{~K}$
Enthalpy difference for saturated liquid for a temperature change from 14 to 15 degC:
$\Delta H:=(67.13-58.75) \cdot \frac{\mathrm{J}}{\mathrm{gm}}$
$\Delta t:=2 \cdot K$
$\mathrm{Cp}:=\frac{\Delta \mathrm{H}}{\Delta \mathrm{t}}$
$\beta:=\frac{1.5 \cdot 10^{-4}}{\mathrm{~K}}$
$\Delta \mathrm{P}:=-4 \cdot \mathrm{~atm}$
$\mathrm{Cp}=4.19 \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$

Apply Eq. (7.25) to the constant-enthalpy throttling process. Assumes very small temperature change and property values independent of P.

$$
\Delta \mathrm{T}:=\frac{-\mathrm{V} \cdot(\mathrm{LI}-\beta \cdot \mathrm{T} \cdot \mathrm{P}}{\mathrm{Cp}} \cdot\left(\frac{1}{9.86923} \cdot \frac{\text { joule }}{\mathrm{cm}^{3} \cdot \mathrm{~atm}}\right) \quad \Delta \mathrm{T}=0.093 \mathrm{~K}
$$

The entropy change for this process is given by Eq. (7.26):
$\Delta \mathrm{S}:=\mathrm{Cp} \cdot \operatorname{\beta n}\left(\frac{\mathrm{T}+\Delta \mathrm{T}}{\mathrm{T}}\right)-\cdot \boldsymbol{\boldsymbol { N }} \cdot \mathrm{P} \quad \Delta \mathrm{S}=1.408 \times 10^{-3} \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}$
Apply Eq. (5.36) with $\mathbf{Q}=\mathbf{0}: \quad \mathrm{T} \sigma:=293.15 \cdot \mathrm{~K}$
Wlost $:=\mathrm{T} \sigma \Delta \mathrm{S} \quad$ Wlost $=0.413 \frac{\mathrm{~J}}{\mathrm{gm}} \quad$ or \quad Wlost $=0.413 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad$ Ans.

As in Example 7.4, Eq. (6.93) is applied to this constant-enthalpy process. If the final state at 1.2 bar is assumed an ideal gas, then Eq. (A) of Example 7.4 (pg. 265) applies. Its use requires expressions for HR and Cp at the initial conditions.
$\operatorname{Tr}:=\frac{\overrightarrow{\mathrm{T} 1}}{\mathrm{Tc}} \quad \operatorname{Tr}=\left(\begin{array}{c}1.151 \\ 1.24 \\ 1.981\end{array}\right) \quad \operatorname{Pr}:=\frac{\overrightarrow{\mathrm{P} 1}}{\mathrm{Pc}} \quad \operatorname{Pr}=\left(\begin{array}{c}1.084 \\ 1.19 \\ 1.082\end{array}\right)$
7.13 Redlich/Kwong equation: $\quad \Omega:=0.08664 \quad \Psi:=0.42748$
$\beta \Omega=\overrightarrow{\left(\cdot \frac{\operatorname{Pr}}{\mathrm{Tr}}\right)}$ Eq. (3.53) $\quad \mathrm{q}:=\overrightarrow{\left(\frac{\Psi}{\Omega \cdot \mathrm{Tr}^{1.5}}\right)} \quad$ Eq. (3.54)
Guess: $\quad \mathrm{z}:=1$
Given $\quad z=1+\beta-q \cdot \beta \cdot \frac{z-\beta}{z \cdot(z+\beta} \quad$ Eq. (3.52)
$\mathrm{Z}(\beta, \mathrm{q}:=\operatorname{Find}(\mathrm{z})$
$\mathrm{i}:=1 . .4 \quad \mathrm{I}_{\mathrm{i}}:=\ln \left(\frac{\mathrm{Z}\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}+\beta_{\mathrm{i}}\right)}{\mathrm{Z}\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}\right.}\right)$ Eq. (6.65b)
$H R_{i}:=R \cdot T 1_{i} \cdot\left[\left(z\left(\beta_{i}, q_{i}-1-1.5 \cdot q_{i} \cdot \mathrm{I}_{\mathrm{i}}\right]\right.\right.$ Eq. (6.67) The derivative in these
$\mathrm{SR}_{\mathrm{i}}:=\mathrm{R} \cdot() \mathrm{n}(\not)\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}} \quad-\beta_{\mathrm{i}}-0.5 \cdot \mathrm{q}_{\mathrm{i}} \cdot \mathrm{I}_{\mathrm{i}} \quad\right.$ Eq. (6.68) \quad equations equals $-\mathbf{0 . 5}$
The simplest procedure here is to iterate by guessing $T 2$, and then calculating it.

Guesses $\quad \mathrm{T} 2:=\left(\begin{array}{l}280 \\ 302 \\ 232 \\ 385\end{array}\right) \mathrm{K}$

$$
\begin{aligned}
& \mathrm{Z}\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}\right. \\
& \begin{array}{|r|}
\hline 0.721 \\
\hline 0.773 \\
\hline 0.956 \\
\hline 0.862 \\
\hline
\end{array} \quad \mathrm{HR}=\left(\begin{array}{l}
-2.681 \\
-2.253 \\
-0.521 \\
-1.396
\end{array}\right) \quad \mathrm{kJ} \\
& \mathrm{~mol}
\end{aligned} \quad \mathrm{SR}=\left(\begin{array}{l}
-5.177 \\
-4.346 \\
-1.59 \\
-2.33
\end{array}\right) \frac{\mathrm{J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
\left.\tau:=\frac{\overrightarrow{\mathrm{T} 2}}{\mathrm{~T} 1} \quad \mathrm{Cp}:=\overrightarrow{\left[\mathrm{R} \cdot\left[\mathrm{~A}+\frac{\mathrm{B}}{2} \cdot \mathrm{T1} \cdot()+1+\frac{\mathrm{C}}{3} \cdot \mathrm{T1} 1^{2} \cdot()^{2}+\tau+1+\frac{\mathrm{D}}{\tau \cdot \mathrm{~T} 1^{2}}\right]\right.}\right]
$$

$$
\mathrm{T} 2:=\overrightarrow{\left(\frac{\mathrm{HR}}{\mathrm{Cp}}+\mathrm{T} 1\right)}
$$

$$
\Delta \mathrm{S}:=\overrightarrow{\left(\mathrm{Cp} \cdot \ln \left(\frac{\mathrm{~T} 2}{\mathrm{~T} 1}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)-\mathrm{SR}\right)}
$$

$\mathrm{T} 2=\left(\left.\begin{array}{l}279.971 \\ 302.026 \\ 232.062\end{array} \right\rvert\, \mathrm{K}\right.$
$\Delta \mathrm{S}=\left(\begin{array}{l}31.545 \\ 29.947 \\ 31.953 \\ 22.163\end{array}\right) \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}$

Ans.
7.14 Soave/Redlich/Kwong equation:

$$
\Omega:=0.08664 \quad \Psi:=0.42748
$$

$c:=\overrightarrow{\left(0.480+1.574 \cdot \omega-0.176 \cdot \omega^{2}\right.}$
$\alpha:=\left[1+\mathrm{c} \cdot()-\operatorname{Tr}^{0.5}\right]^{2}$
$\beta \Omega=\overrightarrow{\left(\cdot \frac{\operatorname{Pr}}{\mathrm{Tr}}\right)}$
Eq. (3.53)

$$
\begin{equation*}
\mathrm{q}:=\overrightarrow{\left(\frac{\Psi \alpha}{\Omega \cdot \operatorname{Tr}}\right)} \tag{3.54}
\end{equation*}
$$

Guess: $\quad \mathrm{z}:=1$

$$
\begin{array}{lll}
\text { Given } & z=1+\beta-q \cdot \beta \cdot \frac{z-\beta}{z \cdot(z+\beta} & \text { Eq. (3.52) } \quad Z(\beta, q:=\operatorname{Find}(z) \\
i:=1 . .4 & \mathrm{I}_{\mathrm{i}}:=\ln \left(\frac{\mathrm{Z}\left(\beta_{\mathrm{i}}, q_{i}+\beta_{i}\right)}{Z\left(\beta_{i}, q_{i}\right.}\right) & \text { Eq. (6.65b) }
\end{array}
$$

$$
\mathrm{HR}_{\mathrm{i}}:=\mathrm{R} \cdot \mathrm{T1}_{\mathrm{i}} \cdot\left[\mathrm{Z}\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}-1-\left[\mathrm{c}_{\mathrm{i}} \cdot\left(\frac{\mathrm{Tr}_{\mathrm{i}}}{\alpha_{\mathrm{i}}}\right)^{0.5}+1\right] \cdot \mathrm{q}_{\mathrm{i}} \cdot \mathrm{I}_{\mathrm{i}}\right]\right.
$$

Eq. (6.67)

$$
\mathrm{SR}_{\mathrm{i}}:=\mathrm{R} \cdot\left[\operatorname { l n } \left(\mathcal{Z}\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}-\beta_{\mathrm{i}}-\mathrm{c}_{\mathrm{i}} \cdot\left(\frac{\mathrm{Tr}_{\mathrm{i}}}{\alpha_{\mathrm{i}}}\right)^{0.5} \cdot \mathrm{qi}_{i} \cdot \mathrm{I}_{\mathrm{i}}\right]\right.\right. \text { Eq. (6.68) }
$$

The derivative in these equations equals: $\quad-\mathrm{c}_{\mathrm{i}} \cdot\left(\frac{\mathrm{Tr}}{\mathrm{r}_{\mathrm{i}}}\right)^{0.5}$

Now iterate for T2:

$\left.\begin{array}{l}\text { Guesses } \quad \mathrm{T} 2:=\left(\left.\begin{array}{l}273 \\ 300 \\ 232\end{array} \right\rvert\, \mathrm{K}\right. \\ 384) \\ \mathrm{Z}\left(\mathrm{\beta}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}\right. \\ \hline 0.75 \\ \begin{array}{r}0.79 \\ \hline 0.975 \\ \hline 0.866 \\ \hline\end{array} \quad \mathrm{HR}=\left(\begin{array}{l|l}-2.936 \\ -2.356 \\ -0.526 & \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\ -1.523\end{array}\right) \quad \mathrm{SR}=\left(\left.\begin{array}{l}-6.126 \\ -4.769 \\ -1.789\end{array} \right\rvert\, \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}\right. \\ -2.679\end{array}\right)$
$\left.\tau:=\frac{\overrightarrow{\mathrm{T} 2}}{\mathrm{~T} 1} \quad \mathrm{Cp}:=\overrightarrow{\mathrm{R} \cdot\left[\mathrm{A}+\frac{\mathrm{B}}{2} \cdot \mathrm{Tl} 1 \cdot()+1+\frac{\mathrm{C}}{3} \cdot \mathrm{~T} 1^{2} \cdot()^{2}+\tau+1+\frac{\mathrm{D}}{\tau \cdot \mathrm{T} 1^{2}}\right]}\right]$
$\mathrm{T} 2:=\overrightarrow{\left(\frac{\mathrm{HR}}{\mathrm{Cp}}+\mathrm{T} 1\right)}$
$\mathrm{T} 2=\left(\left.\begin{array}{l}272.757 \\ 299.741 \\ 231.873\end{array} \right\rvert\, \mathrm{K}\right.$

Ans.
$\Delta \mathrm{S}:=\overrightarrow{\left(\mathrm{Cp} \cdot \ln \left(\frac{\mathrm{T} 2}{\mathrm{~T} 1}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)-\mathrm{SR}\right)}$
$\Delta \mathrm{S}=\left(\begin{array}{l}31.565 \\ 30.028 \\ 32.128 \\ 22.18\end{array}\right) \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}$

Ans.

7.15 Peng/Robinson equation:

$\sigma:=1+\sqrt{2}$
$\varepsilon:=1-\sqrt{2}$
$\Omega:=0.07779$
$\Psi:=0.45724$
$c:=\overrightarrow{\left(b .37464+1.54226 \cdot \omega-0.26992 \cdot \omega^{2}\right.}$
$\alpha:=\overrightarrow{\left[1+\mathrm{c} \cdot\left(\mathrm{h}-\mathrm{Tr}^{0.5}\right]^{2}\right.}$
$\beta \Omega=\overrightarrow{\left(\cdot \frac{\operatorname{Pr}}{\mathrm{Tr}}\right)} \quad$ Eq. (3.53) $\quad q:=\overrightarrow{\left(\frac{\Psi \alpha}{\Omega \cdot \mathrm{Tr})}\right.} \quad$ Eq. (3.54)

Guess: $\quad \mathrm{z}:=1$
Given $\quad z=1+\beta-q \cdot \beta \cdot \frac{z-\beta}{(z+\varepsilon \beta \cdot(z+\sigma \beta}$
$\mathrm{Z}(\beta, \mathrm{q}:=\operatorname{Find}(\mathrm{z})$
$\mathrm{i}:=1 . .4$ $I_{i}:=\frac{1}{2 \cdot \sqrt{2}} \cdot \ln \left(\frac{Z\left(\beta_{i}, q_{i}+\sigma \beta_{i}\right)}{Z\left(\beta_{i}, q_{i}+\varepsilon \beta_{i}\right)}\right.$ Eq. (6.65b)
$H R_{i}:=\mathrm{R} \cdot \mathrm{T} 1_{\mathrm{i}} \cdot\left[\mathrm{Z}\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}-1-\left[\mathrm{c}_{\mathrm{i}} \cdot\left(\frac{\mathrm{Tr}}{\alpha_{\mathrm{i}}}\right)^{0.5}+1\right] \cdot \mathrm{q}_{\mathrm{i}} \cdot \mathrm{I}_{\mathrm{i}}\right]\right.$
Eq. (6.67)
$\mathrm{SR}_{\mathrm{i}}:=\mathrm{R} \cdot\left[\ln \left(\nexists\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}} \quad-\beta_{\mathrm{i}}-\mathrm{c}_{\mathrm{i}} \cdot\left(\frac{\mathrm{Tr}_{\mathrm{i}}}{\alpha_{\mathrm{i}}}\right)^{0.5} \cdot \mathrm{q}_{\mathrm{i}} \cdot \mathrm{I}_{\mathrm{i}}\right]\right.\right.$

The derivative in these equations equals: $\quad-\mathrm{c}_{\mathrm{i}} \cdot\left(\frac{\mathrm{Tr}_{i}}{\alpha_{i}}\right)^{0.5}$
Now iterate for T2:
Guesses $\quad \mathrm{T} 2:=\left(\left.\begin{array}{l}270 \\ 297 \\ 229\end{array} \right\rvert\, \mathrm{K}\right.$

$$
\begin{aligned}
\mathrm{Z}\left(\mathrm{\beta}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}\right. \\
\hline 0.722 \\
\hline 0.76 \\
\hline 0.95 \\
\hline 0.85 \\
\hline
\end{aligned} \quad \mathrm{HR}=\left(\begin{array}{l}
-3.041 \\
-2.459 \\
-0.6 \\
-1.581
\end{array}\right) \quad \mathrm{kJ} \quad \mathrm{~mol}=\left(\begin{array}{c}
-6.152 \\
-4.784 \\
-1.847 \\
-2.689
\end{array}\right) \frac{\mathrm{J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$\left.\tau:=\frac{\overrightarrow{\mathrm{T} 2}}{\mathrm{~T} 1} \quad \mathrm{Cp}:=\overline{\mathrm{R} \cdot\left[\mathrm{A}+\frac{\mathrm{B}}{2} \cdot \mathrm{T1} \cdot()+1+\frac{\mathrm{C}}{3} \cdot \mathrm{~T} 1^{2} \cdot()^{2}+\tau+1+\frac{\mathrm{D}}{\tau \cdot \mathrm{T1}}{ }^{2}\right]}\right]$
$\mathrm{T} 2:=\overrightarrow{\left(\frac{\mathrm{HR}}{\mathrm{Cp}}+\mathrm{T} 1\right)} \quad \mathrm{T} 2=\left(\begin{array}{c}269.735 \\ 297.366 \\ 229.32 \\ 382.911)\end{array} \mathrm{K}\right.$
Ans.
$\Delta \mathrm{S}:=\overrightarrow{\left(\mathrm{Cp} \cdot \ln \left(\frac{\mathrm{T} 2}{\mathrm{~T} 1}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)-\mathrm{SR}\right)}$
$\Delta \mathrm{S}=\left(\begin{array}{c}31.2 \\ 29.694 \\ 31.865\end{array}\right) \frac{\mathrm{J}}{\mathrm{mol} \cdot \mathrm{K}}$

Ans.
7.18 $\mathrm{Wdot}:=-3500 \cdot \mathrm{~kW}$
$\mathrm{H}_{1}:=3462.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
Data from Table F.2:
$\mathrm{H}_{2}:=2609.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{S}_{1}:=7.3439 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
By Eq. (7.13),
mdot $:=\frac{\mathrm{Wdot}}{\mathrm{H}_{2}-\mathrm{H}_{1}}$

$$
\mathrm{mdot}=4.103 \frac{\mathrm{~kg}}{\mathrm{sec}}
$$

Ans.

For isentropic expansion, exhaust is wet steam:
$\mathrm{S}_{\text {liq }}:=0.8321 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{x}:=\frac{\mathrm{S}_{2}-\mathrm{S}_{\mathrm{liq}}}{\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}}$
$\mathrm{S}_{\text {vap }}:=7.9094 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{S}_{2}:=\mathrm{S}_{1}$

$$
\begin{array}{ll}
\mathrm{H}_{\mathrm{liq}}:=251.453 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{H}_{\mathrm{vap}}:=2609.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\mathrm{H}_{2}^{\prime}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}\right. & \mathrm{H}_{2}^{\prime}=2.421 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\eta:=\frac{\mathrm{H}_{2}-\mathrm{H}_{1}}{\mathrm{H}_{2}^{\prime}-\mathrm{H}_{1}} & \eta=0.819 \quad \text { Ans. }
\end{array}
$$

7.19 The following vectors contain values for Parts (a) through (g). For intake conditions:
$\mathrm{H}_{1}:=\left(\begin{array}{c}3274.3 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 3509.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 3634.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 3161.2 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 2801.4 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 1444.7 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}} \\ 1389.6 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}}\end{array}\right)$
$\mathrm{S}_{1}:=\left(\begin{array}{c}6.5597 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 6.8143 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 6.9813 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 6.4536 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 6.4941 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 1.6000 \cdot \frac{\mathrm{Btu}}{\mathrm{lb} \cdot \mathrm{rankine}} \\ 1.5677 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \mathrm{rankine}}\end{array}\right)$
$\eta:=\left(\begin{array}{l}0.80 \\ 0.77 \\ 0.82 \\ 0.75 \\ 0.75 \\ 0.80 \\ 0.75\end{array}\right)$

For discharge conditions:

$\mathrm{H}_{\text {vap }}:=\left(\begin{array}{c}2625.4 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 2609.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 2584.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 2646.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 2706.3 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 1116.1 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}} \\ 1127.3 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}}\end{array}\right)$
$\operatorname{mdot}:=\left(\begin{array}{c}80 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}} \\ 90 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}} \\ 70 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}} \\ 65 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}} \\ 50 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}} \\ 150 \cdot \frac{\mathrm{lb} \mathrm{b}_{\mathrm{m}}}{\mathrm{sec}} \\ 100 \cdot \frac{\mathrm{lb} \mathrm{m}}{\mathrm{sec}}\end{array}\right)$

$$
\begin{aligned}
& x^{\prime} 2:=\frac{\overrightarrow{S_{1}-S_{\text {liq }}}}{\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}} \\
& \mathrm{H}_{2}:=\overline{\left[\mathrm{H}_{\mathrm{liq}}+\mathrm{x}^{\prime} 2 \cdot\left(\mathrm{H}_{\text {vap }}-\mathrm{H}_{\text {liq }}\right]\right.} \\
& \Delta \mathrm{H}:=\overrightarrow{\left[\eta \cdot\left(\mathrm{H}^{\prime} 2-\mathrm{H}_{1}\right]\right.} \\
& \mathrm{H}_{2}:=\mathrm{H}_{1}+\Delta \mathrm{H} \quad \text { Wdot }:=\overrightarrow{(\Delta \mathrm{H} \cdot \mathrm{mdot}} \\
& \mathrm{x}_{2}:=\frac{\mathrm{H}_{2}-\mathrm{H}_{\text {liq }}}{\mathrm{H}_{\text {vap }}-\mathrm{H}_{\text {liq }}} \\
& \left(\begin{array}{l}
\mathrm{H}_{2}{ }_{1} \\
\mathrm{H}_{2} \\
\mathrm{H}_{2} \\
\mathrm{H}_{2} \\
\mathrm{H}_{4} \\
\mathrm{H}_{2}
\end{array}\right)=\left(\begin{array}{l}
2423.9 \\
2535.9 \\
2467.8 \\
2471.4 \\
\\
2543.4
\end{array}\right) \\
& \binom{\mathrm{H}_{2}{ }_{6}}{\mathrm{H}_{2}{ }_{7}}=\binom{1031.9}{1057.4} \frac{\mathrm{Btu}}{\mathrm{lb}} \\
& \text { Ans. }
\end{aligned}
$$

7.20 $\mathrm{T}:=423.15 \cdot \mathrm{~K} \quad \mathrm{P}_{0}:=8.5 \cdot$ bar $\quad \mathrm{P}:=1 \cdot$ bar

For isentropic expansion,

$$
\Delta \mathrm{S}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

For the heat capacity of nitrogen:
A : $=3.280$
$B:=\frac{0.593 \cdot 10^{-3}}{K}$
$\mathrm{D}:=0.040 \cdot 10^{5} \cdot \mathrm{~K}^{2}$

For the entropy change of an ideal gas, combine Eqs. (5.14) \& (5.15) with $\mathbf{C}=0$. Substitute:
$\tau:=0.5 \quad$ (guess)
Given
$\Delta S=R \cdot\left[A \cdot \ln \left(t+\left[B \cdot \frac{T}{\tau}+\frac{D}{T^{2}} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(t-1-\ln \left(\frac{P}{P_{0}}\right)\right]\right.\right.$
$\tau:=\operatorname{Find}\left(t \quad \mathrm{~T}_{0}:=\frac{\mathrm{T}}{\tau} \quad \mathrm{T}_{0}=762.42 \mathrm{~K} \quad\right.$ Ans.

Thus the initial temperature is $\mathbf{4 8 9 . 2 7}$ degC
7.21
$\mathrm{T}_{1}:=1223.15 \cdot \mathrm{~K}$
$P_{1}:=10 \cdot$ bar
$\mathrm{P}_{2}:=1.5 \cdot \mathrm{bar}$
$\mathrm{C}_{\mathrm{P}}:=32 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
$\eta:=0.77$

Eqs. (7.18) and (7.19) derived for isentropic compression apply equally well for isentropic expansion. They combine to give:

$$
\begin{array}{ll}
\mathrm{W}_{\mathrm{s}}^{\prime}:=\mathrm{C}_{\mathrm{P}} \cdot \mathrm{~T}_{1} \cdot\left[\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{P}}}}-1\right] & \mathrm{W}_{\mathrm{s}}=-15231 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathrm{~W}_{\mathrm{s}}:=\mathrm{\eta} \cdot \mathrm{~W}_{\mathrm{s}}^{\prime} & \Delta \mathrm{H}:=\mathrm{W}_{\mathrm{s}}
\end{array} \quad \mathrm{~W}_{\mathrm{s}}=-11728 \frac{\mathrm{~J}}{\mathrm{~mol}} .
$$

Ans.

Eq. (7.21) also applies to expansion:

$$
\mathrm{T}_{2}:=\mathrm{T}_{1}+\frac{\Delta \mathrm{H}}{\mathrm{C}_{\mathrm{P}}} \quad \mathrm{~T}_{2}=856.64 \mathrm{~K}
$$

Ans.

7.22	Isobutane:	$\mathrm{T}_{\mathrm{c}}:=408.1 \cdot \mathrm{~K}$	$\mathrm{P}_{\mathrm{c}}:=36.48 \cdot \mathrm{bar}$	$\omega:=0.181$
	$\mathrm{~T}_{0}:=523.15 \cdot \mathrm{~K}$	$\mathrm{P}_{0}:=5000 \cdot \mathrm{kPa}$	$\mathrm{P}:=500 \cdot \mathrm{kPa}$	

$\Delta \mathrm{S}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad$ For the heat capacity of isobutane:

$$
\begin{array}{rlr}
\mathrm{A}:=1.677 & \mathrm{~B}:=\frac{37.853 \cdot 10^{-3}}{\mathrm{~K}} & \mathrm{C}:=\frac{-11.945 \cdot 10^{-6}}{\mathrm{~K}^{2}} \\
\mathrm{~T}_{\mathrm{r} 0}:=\frac{\mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{~T}_{\mathrm{r} 0}=1.282 & \mathrm{P}_{\mathrm{r} 0}:=\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{c}}} \\
& \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} & \mathrm{P}_{\mathrm{r}}=0.137
\end{array}
$$

The entropy change is given by Eq. (6.92) combined with Eq. (5.15) with $\mathbf{D}=0$:

$$
\tau:=0.5 \quad \text { (guess) }
$$

Given

$$
\begin{aligned}
& \Delta \mathrm{S}=\mathrm{R} \cdot\left[\begin{array}{l}
\mathrm{A} \cdot \ln \left(t+\left[\mathrm{B} \cdot \mathrm{~T}_{0}+\mathrm{C} \cdot \mathrm{~T}_{0}^{2} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(t-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)\right.\right. \\
+\operatorname{SRB}\left(\frac{\tau \cdot \mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}}, \mathrm{~B}_{\mathrm{r}}, \quad\right)-\operatorname{SRB}() \Gamma_{\mathrm{r} 0}, B_{\mathrm{r} 0},
\end{array}\right] \\
& \tau:=\operatorname{Find}\left(t \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=445.71 \mathrm{~K}\right. \\
& \mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=1.092
\end{aligned}
$$

The enthalpy change is given by Eq. (6.91):
$\Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \mathrm{ICPH}()_{0}, \mathrm{~T}, 1.677,37.853 \cdot 10^{-3},-11.945 \cdot 10^{-6}, 0.0$
$\Delta \mathrm{H}_{\mathrm{ig}}=-11.078 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\Delta \mathrm{H}^{\prime}:=\Delta \mathrm{H}_{\mathrm{ig}}+\mathrm{R} \cdot \mathrm{T}_{\mathrm{c}} \cdot() \operatorname{HRB}() \Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}, \quad-\operatorname{HRB}() \Gamma_{\mathrm{r} 0}, \boldsymbol{B}_{\mathrm{r} 0}$,
$\Delta \mathrm{H}^{\prime}=-8331.4 \frac{\mathrm{~J}}{\mathrm{~mol}}$
The actual enthalpy change from Eq. (7.16):
$\eta:=0.8 \quad$ ndot $:=700 \cdot \frac{\mathrm{~mol}}{\mathrm{sec}} \quad \Delta \mathrm{H}:=\eta \Delta \mathrm{H}^{\prime} \quad \Delta \mathrm{H}=-6665.1 \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathrm{Wdot}:=$ ndot $\cdot \Delta \mathrm{H}$
$\mathrm{Wdot}=-4665.6 \mathrm{~kW}$
Ans.
The actual final temperature is now found from Eq. (6.91) combined with $\mathbf{E q}$ (4.7), written:
$\tau:=0.7 \quad$ (guess)
Given

$$
\Delta \mathrm{H}=\mathrm{R} \cdot\left[\begin{array}{l}
\mathrm{A} \cdot \mathrm{~T}_{0} \cdot()-1+\frac{\mathrm{B}}{2} \cdot \mathrm{~T}_{0}{ }^{2} \cdot()^{2}-1+\frac{\mathrm{C}}{3} \cdot \mathrm{~T}_{0}{ }^{3} \cdot()^{3}-1 \ldots \\
+\mathrm{T}_{\mathrm{c}} \cdot\left(\operatorname{HRB}\left(\frac{\tau \cdot \mathrm{~T}_{0}}{\mathrm{~T}_{\mathrm{c}}}, \mathbb{B}_{\mathrm{r}}, \quad\right)-\operatorname{HRB}()_{\mathrm{r} 0}, \mathrm{~B}_{\mathrm{r} 0}, \quad\right)
\end{array}\right]
$$

$$
\tau:=\operatorname{Find}\left(t \quad \tau=0.875 \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=457.8 \mathrm{~K}\right.
$$

Ans.
7.23 From Table F. 2 @ $1700 \mathrm{kPa} \& 225 \mathrm{degC}$:
$\mathrm{H}_{1}:=2851.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
At 10 kPa :

$$
\mathrm{S}_{1}:=6.5138 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$\mathrm{x}_{2}:=0.95$

$$
\mathrm{S}_{\text {liq }}:=0.6493 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$\mathrm{H}_{\mathrm{liq}}:=191.832 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{\text {vap }}:=2584.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{S}_{\text {vap }}:=8.1511 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
mdot $:=0.5 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}$
Wdot $:=-180 \cdot \mathrm{~kW}$
$\mathrm{H}_{2}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}_{2} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}\right.$
$\Delta \mathrm{H}:=\mathrm{H}_{2}-\mathrm{H}_{1}$
$\mathrm{H}_{2}=2.465 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\Delta \mathrm{H}=-385.848 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
(a) $\quad \mathrm{Qdot}:=\mathrm{mdot} \cdot \Delta \mathrm{H}-\mathrm{W} \operatorname{dot}$
Qdot $=-12.92 \frac{\mathrm{~kJ}}{\mathrm{sec}}$

Ans.
(b) For isentropic expansion to 10 kPa , producing wet steam:
$\mathrm{x}_{2}^{\prime}:=\frac{\mathrm{S}_{1}-\mathrm{S}_{\mathrm{liq}}}{\mathrm{S}_{\text {vap }}-\mathrm{S}_{\mathrm{liq}}}$

$$
\mathrm{H}_{2}^{\prime}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}_{2}^{\prime} \cdot() \mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}
$$

$\mathrm{x}^{\prime}{ }_{2}=0.782$
$\mathrm{H}_{2}^{\prime}=2.063 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
Wdot' := mdot $\cdot\left(\mathrm{H}^{\prime} 2-\mathrm{H}_{1}\right.$
Wdot ${ }^{\prime}=-394.2 \mathrm{~kW} \quad$ Ans.
7.24 $\mathrm{T}_{0}:=673.15 \cdot \mathrm{~K}$

$$
\mathrm{P}_{0}:=8 \cdot \mathrm{bar}
$$

$$
\mathrm{P}:=1 \cdot \text { bar }
$$

For isentropic expansion,
For the heat capacity of carbon dioxide:

$$
\Delta \mathrm{S}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$\mathrm{A}:=5.457$
$\mathrm{B}:=\frac{1.045 \cdot 10^{-3}}{\mathrm{~K}}$
$\mathrm{D}:=-1.157 \cdot 10^{5} \cdot \mathrm{~K}^{2}$

For the entropy change of an ideal gas, combine Eqs. (5.14) \& (5.15) with $C=0$:
$\tau:=0.5$
(guess)
Given

$$
\Delta \mathrm{S}=\mathrm{R} \cdot\left[\mathrm { A } \cdot \operatorname { l n } \left(\mathrm{t}+\left[\mathrm{B} \cdot \mathrm{~T}_{0}+\frac{\mathrm{D}}{\left(\Gamma_{0} \cdot \tau\right.} \mathrm{\tau}^{2} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(t-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)\right]\right.\right.
$$

$\tau:=\operatorname{Find}(t$
$\tau=0.693$
$\mathrm{T}^{\prime}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}^{\prime}=466.46 \mathrm{~K}$

$$
\Delta \mathrm{H}^{\prime}:=\mathrm{R} \cdot \mathrm{ICPH}()_{0}, \mathrm{~T}^{\prime}, 5.457,1.045 \cdot 10^{-3}, 0.0,-1.157 \cdot 10^{5}
$$

$$
\Delta \mathrm{H}^{\prime}=-9.768 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

$\eta:=0.75 \quad$ Work $:=\eta \Delta \mathrm{H}^{\prime} \quad$ Work $=-7.326 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Ans.
$\Delta \mathrm{H}:=$ Work

$$
\Delta \mathrm{H}=-7.326 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

For the enthalpy change of an ideal gas, combine Eqs. (4.2) and (4.7) with $\mathbf{C}=0$:

Given

$$
\Delta \mathrm{H}=\mathrm{R} \cdot\left[\mathrm{~A} \cdot \mathrm{~T}_{0} \cdot()-1+\frac{\mathrm{B}}{2} \cdot \mathrm{~T}_{0}{ }^{2} \cdot()^{2}-1+\frac{\mathrm{D}}{\mathrm{~T}_{0}} \cdot\left(\frac{\tau-1}{\tau}\right)\right]
$$

$$
\tau:=\operatorname{Find}\left(t \quad \tau=0.772 \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=519.9 \mathrm{~K}\right.
$$

Ans.
Thus the final temperature is $\mathbf{2 4 6} .75 \mathrm{degC}$
7.25 Vectors containing data for Parts (a) through (e):
$\mathrm{T} 1:=\left(\begin{array}{l}500 \\ 450 \\ 525 \\ 475 \\ 550\end{array}\right) \mathrm{P} 1:=\left(\begin{array}{c}6 \\ 5 \\ 10 \\ 7\end{array}\right) \mathrm{T} 2:=\left(\begin{array}{c}371 \\ 376 \\ 458 \\ 372\end{array}\right) \mathrm{P} 2:=\left(\begin{array}{l}1.2 \\ 2.0 \\ 3.0 \\ 403\end{array}\right) \mathrm{Cp}:=\left(\begin{array}{l}3.5 \\ 4.0 \\ 5.5 \\ 1.5 \\ 1.2\end{array}\right) \cdot \mathrm{R}$
$\Delta \mathrm{H}:=\overrightarrow{[\mathrm{Cp} \cdot(\mathrm{T} 2-\mathrm{T} 1)]} \quad$ Ideal gases with constant heat capacities
$\Delta \mathrm{H}_{\mathrm{S}}:=\overline{\left.\mathrm{Cp} \cdot \mathrm{T} 1 \cdot\left[\left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)^{\frac{\mathrm{R}}{\mathrm{Cp}}}-1\right]\right]}$
Eq. (7.22) Applies to expanders as well as to compressors
$\eta:=\frac{\overrightarrow{\Delta H}}{\Delta \mathrm{H}_{\mathrm{S}}} \quad \eta=\left(\begin{array}{c}0.7 \\ 0.803 \\ 0.649 \\ 0.748 \\ 0.699\end{array}\right)$
7.26

$$
\mathrm{Cp}:=\frac{7}{2} \cdot \mathrm{R} \quad \text { ndot }:=175 \frac{\mathrm{~mol}}{\mathrm{sec}} \quad \mathrm{~T} 1:=550 \mathrm{~K} \quad \mathrm{P} 1:=6 \mathrm{bar} \quad \mathrm{P} 2:=1.2 \mathrm{bar}
$$

Guesses: $\quad \eta:=0.75 \quad$ Wdot $:=600 \mathrm{~kW}$
Given
$\mathrm{Wdot}=-\left(0.065+.08 \cdot \ln \left(\frac{\mathrm{Wdot}}{\mathrm{kW}}\right)\right)^{\prime} \cdot$ ndot $\cdot \mathrm{Cp} \cdot \mathrm{T} 1 \cdot\left[\left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)^{\frac{\mathrm{R}}{\mathrm{Cp}}}-1\right]$
$\mathrm{Wdot}:=\operatorname{Find}(\mathrm{Wdot}) \quad \mathrm{Wdot}=594.716 \mathrm{~kW} \quad$ Ans.
$\eta:=\left(0.065+0.08 \cdot \ln \left(\frac{\mathrm{Wdot}}{\mathrm{kW}}\right)\right) \quad \eta=0.576 \quad$ Ans.
For an expander operating with an ideal gas with constant $\mathbf{C p}$, one can show that:
$\mathrm{T} 2:=\mathrm{T} 1 \cdot\left[1+\eta \cdot\left[\left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)^{\frac{\mathrm{R}}{\mathrm{Cp}}}-1\right]\right] \quad \mathrm{T} 2=433.213 \mathrm{~K}$
By Eq. (5.14):

$$
\Delta \mathrm{S}:=\mathrm{R} \cdot\left(\frac{\mathrm{Cp}}{\mathrm{R}} \cdot \ln \left(\frac{\mathrm{~T} 2}{\mathrm{~T} 1}\right)-\ln \left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)\right) \quad \Delta \mathrm{S}=6.435 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

By Eq. (5.37), for adiabatic operation :
$\operatorname{Sdot}_{\mathrm{G}}:=\operatorname{ndot} \cdot \Delta \mathrm{S}$

$$
\operatorname{Sdot}_{\mathrm{G}}=1.126 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~K} \cdot \mathrm{sec}}
$$

Ans.
7.27 Properties of superheated steam at 4500 kPa and 400 C from Table F.2, p. 742 .

$$
\text { H1 }:=3207.1 \quad \text { S1 }:=6.7093
$$

If the exhaust steam (Point 2, Fig. 7.4) is "dry," i.e., saturated vapor, then isentropicexpansion to the same pressure (Point 2', Fig. 7.4) must produce "wet" steam, withentropy:

$$
\mathrm{S} 2=\mathrm{S} 1=6.7093=(\mathrm{x})(\text { Svap })+(1-\mathrm{x})(\text { Sliq }) \quad[\mathrm{x} \text { is quality }]
$$

A second relation follows from Eq. (7.16), written:

$$
\Delta H=\text { Hvap - } 3207.1=(\eta)\left(\Delta H_{S}\right)=(0.75)[(\mathbf{x})(\text { Hvap })+(1-x)(H l i q)-3207.1]
$$

Each of these equations may be solved for x. Given a final temperature and the corresponding vapor pressure, values for Svap, Sliq, Hvap, and Hliq are found from the table for saturated steam, and substitution into the equations for x produces two values. The required pressure is the one for which the two values of x agree. This is clearly a trial process. For a final trial temperature of $\mathbf{1 2 0} \mathbf{d e g C}$, the following values of H and S for saturated liquid and saturated vapor are found in the steam table:

$$
\begin{array}{ll}
\mathrm{Hl}:=503.7 & \mathrm{Hv}:=2706.0 \\
\mathrm{Sl}:=1.5276 & \mathrm{~Sv}:=7.1293
\end{array}
$$

The two equations for x are:

$$
\mathrm{x}_{\mathrm{H}}:=\frac{\mathrm{Hv}-801.7-.75 \cdot \mathrm{Hl}}{.75 \cdot(\mathrm{Hv}-\mathrm{Hl})} \quad \mathrm{x}_{\mathrm{S}}:=\frac{6.7093-\mathrm{Sl}}{\mathrm{~Sv}-\mathrm{Sl}}
$$

The trial values given produce: $\mathrm{x}_{\mathrm{H}}=0.924 \quad \mathrm{x}_{\mathrm{S}}=0.925$
These are sufficiently close, and we conclude that:
$t=120$ degC; $\quad P=198.54 \mathrm{kPa}$
If η were 0.8 , the pressure would be higher, because a smaller pressure drop would be required to produce the same work and $\Delta \mathrm{H}$.

$$
\mathrm{P} 2:=1 \cdot \mathrm{~atm}
$$

$$
\mathrm{T} 1:=15 \cdot \operatorname{deg} \mathrm{C}
$$

$$
\eta:=0.55
$$

Data in Table F. 1 for saturated liquid water at 15 degC give:

$$
\mathrm{V}:=1001 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~kg}}
$$

$$
\mathrm{Cp}:=4.190 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \operatorname{degC}}
$$

Eqs. (7.16) and (7.24) combine to give: $\quad \Delta H:=\eta \cdot V \cdot(P 2-P 1)$

$$
\mathrm{Ws}:=\Delta \mathrm{H} \quad \text { (7.14) } \quad \mathrm{Ws}=-0.223 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Eq. (7.25) with $\beta=\mathbf{0}$ is solved for $\Delta T: \quad \Delta T:=\frac{\Delta H-V \cdot(P 2-P 1)}{C p}$

$$
\Delta \mathrm{T}=0.044 \operatorname{deg} \mathrm{C} \quad \text { Ans. }
$$

7.30 Assume nitrogen an ideal gas. First find the temperature after isentropic expansion from a combination of Eqs. (5.14) \& (5.15) with $C=0$. Then find the work (enthalpy change) of isentropic expansion by a combination of Eqs. (4.2) and (4.7) with $C=0$. The actual work (enthalpy change) is found from Eq. (7.20). From this value, the actual temperature is found by a second application of the preceding equation, this time solving it for the temperature. The following vectors contain values for Parts (a) through (e):
$\mathrm{T}_{0}:=\left(\left.\begin{array}{l}753.15 \\ 673.15 \\ 773.15 \\ 723.15\end{array} \right\rvert\, \cdot \mathrm{K}\right.$
$\mathrm{P}_{0}:=\left(\begin{array}{c}6 \cdot \mathrm{bar} \\ 5 \cdot \mathrm{bar} \\ 7 \cdot \mathrm{bar} \\ 8 \cdot \mathrm{bar} \\ 95 \cdot \mathrm{psi}\end{array}\right)$
$P:=\left(\begin{array}{c}1 \cdot \mathrm{bar} \\ 1 \cdot \mathrm{bar} \\ 1 \cdot \mathrm{bar} \\ 2 \cdot \mathrm{bar} \\ 15 \cdot \mathrm{psi}\end{array}\right)$
$\operatorname{ndot}:=\left(\begin{array}{cl}200 &) \\ 150 \\ 175 & \\ 100 & \cdot \frac{\mathrm{~mol}}{\mathrm{sec}} \\ 0.5 \cdot 453.59\end{array}\right)$
$\eta:=\left(\begin{array}{l}0.80 \\ 0.75 \\ 0.78 \\ 0.85 \\ 0.80\end{array}\right)$

$$
\Delta \mathrm{S}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
i:=1 . .5
$$

For the heat capacity of nitrogen:
A $:=3.280$
$\mathrm{B}:=\frac{0.593 \cdot 10^{-3}}{\mathrm{~K}}$
$\mathrm{D}:=0.040 \cdot 10^{5} \cdot \mathrm{~K}^{2}$
$\tau:=0.5 \quad$ (guess)

Given
$\Delta \mathrm{S}=\mathrm{R} \cdot\left[\mathrm{A} \cdot \ln \left(\mathrm{t}+\left[\mathrm{B} \cdot \mathrm{T}_{0}+\frac{\mathrm{D}}{\mathrm{T}_{0}{ }^{2} \cdot \tau^{2}} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(\mathrm{t}-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)\right]\right.\right.$
$\operatorname{Tau}() \Gamma_{0}, \mathrm{P}_{0}, \mathrm{P}:=\operatorname{Find}\left(t \quad \quad \tau_{\mathrm{i}}:=\operatorname{Tau}\left(\Gamma_{0_{\mathrm{i}}}, \mathrm{P}_{0_{\mathrm{i}}}, \mathrm{P}_{\mathrm{i}}\right.\right.$
$\mathrm{T}_{\mathrm{i}}:=\mathrm{T}_{0_{\mathrm{i}}} \cdot \tau_{\mathrm{i}} \quad \mathrm{T}=\left(\begin{array}{l}460.67 \\ 431.36 \\ 453.48 \\ 494.54 \\ 455.14\end{array}\right) \mathrm{K}$
$\Delta \mathrm{H}_{\mathrm{i}}^{\prime}:=\mathrm{R} \cdot \operatorname{ICPH}\left(\mathrm{T}_{0_{\mathrm{i}}}, \mathrm{T}_{\mathrm{i}}, 3.280,0.593 \cdot 10^{-3}, 0.0,0.040 \cdot 10^{5}\right)$

$$
\begin{aligned}
& \Delta \mathrm{H}^{\prime}=\left(\left.\begin{array}{l}
-8879.2 \\
-7279.8 \\
-9714.4 \\
-6941.7
\end{array} \right\rvert\, \frac{\mathrm{J}}{\mathrm{~mol}} \quad \Delta \mathrm{H}:=\overrightarrow{\left(\Delta \mathrm{H}^{\prime} \cdot \eta\right.} \quad \Delta \mathrm{H}=\left(\begin{array}{l}
-7103.4 \\
-5459.8 \\
-7577.2 \\
-5900.5 \\
-7289.7
\end{array}\right) \frac{\mathrm{J}}{\mathrm{~mol}}\right. \\
& \tau:=0.5 \text { (guess) }
\end{aligned}
$$

Given

$$
\begin{aligned}
& \Delta H=R \cdot\left[A \cdot T_{0} \cdot()-1+\frac{B}{2} \cdot \mathrm{~T}_{0}{ }^{2} \cdot()^{2}-1+\frac{\mathrm{D}}{\mathrm{~T}_{0}} \cdot\left(\frac{\tau-1}{\tau}\right)\right] \\
& \operatorname{Tau}\left(\Gamma_{0}, \Delta \mathrm{H}:=\operatorname{Find}\left(t \quad \tau_{\mathrm{i}}:=\operatorname{Tau}\left(\Gamma_{0_{i}}, \Delta \mathrm{H}_{\mathrm{i}} \quad \mathrm{~T}_{\mathrm{i}}:=\mathrm{T}_{0_{\mathrm{i}}} \cdot \tau_{\mathrm{i}}\right.\right.\right.
\end{aligned}
$$

7.31 Property values and data from Example 7.6:

$\mathrm{H}_{1}:=3391.6 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{2}:=2436.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{T}_{\sigma}:=300 \cdot \mathrm{~K}$

$$
\mathrm{S}_{1}:=6.6858 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \operatorname{mdot}:=59.02 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}
$$

$$
\mathrm{S}_{2}:=7.6846 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\text { Wdot }:=-56400 \cdot \mathrm{~kW}
$$

$\mathrm{Wdot} \mathrm{t}_{\text {ideal }}:=\operatorname{mdot} \cdot\left[\mathrm{H}_{2}-\mathrm{H}_{1}-\mathrm{T}_{\sigma} \cdot\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right] \quad \mathrm{Wdot}_{\text {ideal }}=-74084 \mathrm{~kW}\right.$
$\eta_{\mathrm{t}}:=\frac{\text { Wdot }}{\text { Wdot }_{\text {ideal }}}$

$$
\eta_{t}=0.761 \quad \text { Ans. }
$$

The process is adiabatic; Eq. (5.33) becomes:
$\operatorname{Sdot}_{G}:=\operatorname{mdot} \cdot\left(S_{2}-\mathrm{S}_{1}\right.$
$\operatorname{Sdot}_{G}=58.949 \frac{\mathrm{~kW}}{\mathrm{~K}}$
$\mathrm{Wdot}_{\text {lost }}=17685 \mathrm{~kW}$

Ans.

Ans.
7.32 For sat. vapor steam at 1200 kPa , Table F.2:
$\mathrm{H}_{2}:=2782.7 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{2}:=6.5194 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
The saturation temperature is $\mathbf{1 8 7 . 9 6}$ degC.
The exit temperature of the exhaust gas is therefore 197.96 degC , and the temperature CHANGE of the exhaust gas is $\mathbf{- 2 0 2 . 0 4} \mathrm{K}$.
For the water at $\mathbf{2 0}$ degC from Table F.1,

$$
\mathrm{H}_{1}:=83.86 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{1}:=0.2963 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

The turbine exhaust will be wet vapor steam.
For sat. liquid and sat. vapor at the turbine exhaust pressure of 25 kPa , the best property values are found from Table F. 1 by interpolation between 64 and 65 degC:

$$
\mathrm{H}_{\mathrm{lv}}:=2346.3 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{S}_{\mathrm{liq}}:=0.8932 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{~S}_{\mathrm{lv}}:=6.9391 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\eta:=0.72
$$

For isentropic expansion of steam in the turbine:

$$
\begin{array}{ll}
\mathrm{S}_{3}^{\prime}:=\mathrm{S}_{2} & \mathrm{x}_{3}^{\prime}:=\frac{\mathrm{S}_{3}-\mathrm{S}_{\mathrm{liq}}}{\mathrm{~S}_{\mathrm{lv}}} \quad \mathrm{H}_{3}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}_{3} \cdot \mathrm{H}_{\mathrm{lv}} \\
\mathrm{~S}_{3}^{\prime}=6.519 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} & \mathrm{x}_{3}^{\prime}=0.811 \quad \mathrm{H}_{3}^{\prime}=2.174 \times 10 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\Delta \mathrm{H}_{23}:=\eta \cdot\left(\mathrm{H}_{3}^{\prime}-\mathrm{H}_{2}\right. & \mathrm{H}_{3}:=\mathrm{H}_{2}+\Delta \mathrm{H}_{23} \\
\Delta \mathrm{H}_{23}=-437.996 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{H}_{3}=2.345 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\mathrm{x}_{3}:=\frac{\mathrm{H}_{3}-\mathrm{H}_{\mathrm{liq}}}{\mathrm{H}_{\mathrm{lv}}} & \mathrm{~S}_{3}:=\mathrm{S}_{\mathrm{liq}}+\mathrm{x}_{3} \cdot \mathrm{~S}_{\mathrm{lv}} \\
\mathrm{x}_{3}=0.883 & \mathrm{~S}_{3}=7.023 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\text { For the exhaust gases: } & \mathrm{ndot}:=125 \cdot \frac{\mathrm{~mol}}{\mathrm{sec}} \\
\mathrm{~T}_{1}:=(273.15+400) \cdot \mathrm{K} & \mathrm{~T}_{2}:=(273.15+197.96) \cdot \mathrm{K} \\
\mathrm{~T}_{1}=673.15 \mathrm{~K} & \mathrm{~T}_{2}=471.11 \mathrm{~K}
\end{array}
$$

$$
\text { molwt }:=18 \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{H}_{\mathrm{gas}}:=\mathrm{R} \cdot \mathrm{MCPH}() \Gamma_{1}, \mathrm{~T}_{2}, 3.34,1.12 \cdot 10^{-3}, 0.0,0.0 \cdot() \Gamma_{2}-\mathrm{T}_{1}
$$

$$
\Delta \mathrm{S}_{\mathrm{gas}}:=\mathrm{R} \cdot \operatorname{MCPS}\left(\Gamma_{1}, \mathrm{~T}_{2}, 3.34,1.12 \cdot 10^{-3}, 0.0,0.0 \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)\right.
$$

$$
\Delta \mathrm{H}_{\mathrm{gas}}=-6.687 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{kmol}}
$$

$$
\Delta \mathrm{S}_{\mathrm{gas}}=-11.791 \frac{\mathrm{~kJ}}{\mathrm{kmol} \cdot \mathrm{~K}}
$$

Energy balance on boiler:

mdot $:=\frac{- \text { adot } \cdot \mathrm{H}_{\mathrm{gas}}}{\mathrm{H}_{2}-\mathrm{H}_{1}}$

$$
\operatorname{mdot}=0.30971 \frac{\mathrm{~kg}}{\mathrm{sec}}
$$

(a) $\quad \mathrm{Wdot}:=\operatorname{mdot} \cdot\left(\mathrm{H}_{3}-\mathrm{H}_{2}\right.$ $\mathrm{Wdot}=-135.65 \mathrm{~kW}$ Ans.
(b) By Eq. (5.25):

$$
\mathrm{T}_{\sigma}:=293.15 \cdot \mathrm{~K}
$$

Wdot ${ }_{i d e a l}:=\operatorname{ndot} \cdot \Delta \mathrm{H}_{\text {gas }}+\operatorname{mdot} \cdot() \mathrm{H}_{3}-\mathrm{H}_{1} \ldots$

$$
+-\mathrm{T}_{\sigma} \cdot\left[\operatorname{ndot} \cdot \Delta \mathrm{S}_{\mathrm{gas}}+\operatorname{mdot} \cdot\left(\mathrm{S}_{3}-\mathrm{S}_{1}\right]\right.
$$

Wdot $_{\text {ideal }}=-314.302 \mathrm{~kW} \quad \eta_{\mathrm{t}}:=\frac{\mathrm{Wdot}}{\text { Wdot }_{\mathrm{ideal}}} \quad \eta_{\mathrm{t}}=0.4316 \quad$ Ans.
(c) For both the boiler and the turbine, Eq. (5.33) applies with $\mathbf{Q}=0$.

For the boiler:
$\operatorname{Sdot}_{\mathrm{G}}:=\operatorname{ndot} \cdot \Delta \mathrm{S}_{\mathrm{gas}}+\operatorname{mdot} \cdot\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right.$

Boiler:

$$
\operatorname{Sdot}_{\mathrm{G}}=0.4534 \frac{\mathrm{~kW}}{\mathrm{~K}}
$$

Ans.

For the turbine: $\operatorname{Sdot}_{G}:=\operatorname{mdot} \cdot() S_{3}-S_{2}$

Turbine:

$$
\operatorname{Sdot}_{\mathrm{G}}=0.156 \frac{\mathrm{~kW}}{\mathrm{~K}}
$$

Ans.
(d) $\mathrm{Wdot}_{\text {lost.boiler }}:=0.4534 \cdot \frac{\mathrm{~kW}}{\mathrm{~K}} \cdot \mathrm{~T}_{\sigma} \quad \mathrm{Wdot}_{\text {lost.boiler }}=132.914 \mathrm{~kW}$

Wdot $_{\text {lost.turbine }}:=0.1560 \cdot \frac{\mathrm{~kW}}{\mathrm{~K}} \cdot \mathrm{~T}_{\sigma} \quad$ Wdot lost.turbine $=45.731 \mathrm{~kW}$
Fraction $_{\text {boiler }}:=\frac{\text { Wdot }_{\text {lost.boiler }}}{\mid \text { Wdot }_{\text {ideal }} \mid} \quad$ Fraction $_{\text {boiler }}=0.4229 \quad$ Ans.

$$
\text { Fraction }_{\text {turbine }}:=\frac{\text { Wdot }_{\text {lost.turbine }}}{\mid \text { Wdot }_{\text {ideal }} \mid} \quad \text { Fraction }_{\text {turbine }}=0.1455 \text { Ans. }
$$

Note that: $\quad \eta_{\mathrm{t}}+$ Fraction $_{\text {boiler }}+$ Fraction $_{\text {turbine }}=1$

7.34 From Table F. 2 for sat. vap. at 125 kPa :

$$
\mathrm{H}_{1}:=2685.2 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{1}:=7.2847 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

For isentropic expansion, $\mathrm{S}_{2}=\mathrm{S}_{1}=7.2847 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
Interpolation in Table $F .2$ at 700 kPa for the enthalpy of steam with this entropy gives
$\mathrm{H}_{2}:=3051.3 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\eta:=0.78$
$\Delta \mathrm{H}:=\frac{\mathrm{H}_{2}^{\prime}-\mathrm{H}_{1}}{\eta}$
$\Delta \mathrm{H}=469.359 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{2}:=\mathrm{H}_{1}+\Delta \mathrm{H}$ $\mathrm{H}_{2}=3154.6 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
Ans.

Interpolation in Table $\mathbf{F . 2}$ at 700 kPa for the entropy of steam with this enthalpy gives

$$
\mathrm{S}_{2}:=7.4586 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

Ans.
mdot $:=2.5 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}$
$\mathrm{Wdot}:=\operatorname{mdot} \cdot \Delta \mathrm{H}$
$\mathrm{Wdot}=1173.4 \mathrm{~kW}$
Ans.
7.35 Assume air an ideal gas. First find the temperature after isentropic compression from a combination of Eqs. (5.14) \& (5.15) with $C=0$. Then find the work (enthalpy change) of isentropic compression by a combination of Eqs. (4.2) and (4.7) with $C=0$. The actual work (enthalpy change) is found from Eq. (7.20). From this value, the actual temperature is found by a second application of the preceding equation, this time solving it for the temperature. The following vectors contain values for Parts (a) through (f):

$P:=\left(\begin{array}{c}375 \cdot \mathrm{kPa} \\ 1000 \cdot \mathrm{kPa} \\ 500 \cdot \mathrm{kPa} \\ 1300 \cdot \mathrm{kPa} \\ 55 \cdot \mathrm{psi} \\ 135 \cdot \mathrm{psi}\end{array}\right)$
ndot $:=\left(\begin{array}{c}100 \\ 100 \\ 150 \\ 50 \\ 0.5 \cdot 453.59 \\ 0.5 \cdot 453.59\end{array}\right) \cdot \frac{\mathrm{mol}}{\mathrm{sec}}$
$\eta:=\left(\begin{array}{l}0.75 \\ 0.70 \\ 0.80 \\ 0.75 \\ 0.75 \\ 0.70\end{array}\right)$

$$
\Delta \mathrm{S}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
\mathrm{i}:=1 . .6
$$

For the heat capacity of air:
$\mathrm{A}:=3.355$
$B:=\frac{0.575 \cdot 10^{-3}}{K}$
D : $=-0.016 \cdot 10^{5} \cdot K^{2}$

$$
\tau:=0.5 \quad \text { (guess) }
$$

Given

$$
\begin{aligned}
& \Delta \mathrm{S}=\mathrm{R} \cdot\left[\mathrm { A } \cdot \operatorname { l n } \left(t+\left[\mathrm{B} \cdot \mathrm{~T}_{0}+\frac{\mathrm{D}}{\mathrm{~T}_{0}^{2} \cdot \tau^{2}} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(t-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right)\right]\right.\right. \\
& \operatorname{Tau}() \Gamma_{0}, \mathrm{P}_{0}, \mathrm{P}:=\operatorname{Find}(t
\end{aligned} \quad \tau_{\mathrm{i}}:=\operatorname{Tau}\left(\Gamma_{0_{\mathrm{i}}}, \mathrm{P}_{0_{\mathrm{i}}}, \mathrm{P}_{\mathrm{i}} . ~ l\right.
$$

$\mathrm{T}_{\mathrm{i}}:=\mathrm{T}_{0} \cdot \tau_{\mathrm{i}} \quad \mathrm{T}=\left(\begin{array}{c}431.06 \\ 464.5 \\ 476.19 \\ 486.87 \\ 434.74 \\ 435.71\end{array}\right) \mathrm{K}$
$\Delta \mathrm{H}_{\mathrm{i}}^{\prime}:=\mathrm{R} \cdot \mathrm{ICPH}\left(\mathrm{T}_{0_{\mathrm{i}}}, \mathrm{T}_{\mathrm{i}}, 3.355,0.575 \cdot 10^{-3}, 0.0,-0.016 \cdot 10^{5}\right)$
$\Delta \mathrm{H}^{\prime}=\left(\begin{array}{l}3925.2 \\ 3314.6 \\ 5133.2 \\ 3397.5 \\ 3986.4\end{array}\right) \frac{\mathrm{J}}{\mathrm{mol}}$
2876.6)
$\Delta \mathrm{H}:=\overrightarrow{\left(\frac{\Delta \mathrm{H}^{\prime}}{\eta}\right)}$
$\Delta \mathrm{H}=\left(\begin{array}{c}5233.6 \\ 4735.1 \\ 6416.5 \\ 4530 \\ 5315.2 \\ 4109.4\end{array}\right) \frac{\mathrm{J}}{\mathrm{mol}}$
$\tau:=1.5 \quad$ (guess)
Given $\quad \Delta H=R \cdot\left[A \cdot T_{0} \cdot()-1+\frac{B}{2} \cdot T_{0}^{2} \cdot()^{2}-1+\frac{D}{T_{0}} \cdot\left(\frac{\tau-1}{\tau}\right)\right]$
$\operatorname{Tau}\left(\Gamma_{0}, \Delta \mathrm{H}:=\operatorname{Find}\left(t \quad \quad \tau_{\mathrm{i}}:=\operatorname{Tau}\left(\Gamma_{0_{\mathrm{i}}}, \Delta \mathrm{H}_{\mathrm{i}} \quad \mathrm{T}_{\mathrm{i}}:=\mathrm{T}_{0_{\mathrm{i}}} \cdot \tau_{\mathrm{i}}\right.\right.\right.$
Wdot $:=\overrightarrow{(n d o t \cdot \Delta \mathrm{H}}$
$T=\left(\begin{array}{c}474.68 \\ 511.58 \\ 518.66 \\ 524.3 \\ 479.01 \\ 476.79\end{array}\right) \mathrm{K}$
Wdot $=\left(\begin{array}{c}702 \\ 635 \\ 1291 \\ 304 \\ 1617 \\ 1250\end{array}\right) \mathrm{hp}$
$W \operatorname{dot}=\left(\begin{array}{c}523 \\ 474 \\ 962 \\ 227 \\ 1205\end{array}\right) \mathrm{kW}$

Ans.
$7 \begin{array}{llll}7.36 \text { Ammonia: } & \mathrm{T}_{\mathrm{c}}:=405.7 \cdot \mathrm{~K} & \mathrm{P}_{\mathrm{c}}:=112.8 \cdot \mathrm{bar} & \omega:=0.253 \\ & \mathrm{~T}_{0}:=294.15 \cdot \mathrm{~K} & \mathrm{P}_{0}:=200 \cdot \mathrm{kPa} & \mathrm{P}:=1000 \cdot \mathrm{kPa}\end{array}$

$\mathrm{A}:=3.578$
$B:=\frac{3.020 \cdot 10^{-3}}{K}$
$\mathrm{D}:=-0.186 \cdot 10^{5} \cdot \mathrm{~K}^{2}$
$\begin{array}{lll}\mathrm{T}_{\mathrm{r} 0}:=\frac{\mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{T}_{\mathrm{r} 0}=0.725 & \mathrm{P}_{\mathrm{r} 0}:=\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{c}}}\end{array} \quad \mathrm{P}_{\mathrm{r} 0}=0.0177$
Use generalized second-virial correlation:
The entropy change is given by Eq. (6.92) combined with Eq. (5.15); $\mathbf{C}=\mathbf{0}$:
$\tau:=1.4 \quad$ (guess)
Given

$\tau:=\operatorname{Find}(t$

$$
\tau=1.437
$$

$$
\begin{array}{ll}
\mathrm{T}:=\tau \cdot \mathrm{T}_{0} & \mathrm{~T}=422.818 \mathrm{~K} \\
\mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{~T}_{\mathrm{r}}=1.042
\end{array}
$$

$\Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{0}, \mathrm{~T}, 3.578,3.020 \cdot 10^{-3}, 0.0,-0.186 \cdot 10^{5}$
$\Delta \mathrm{H}_{\mathrm{ig}}=4.826 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\Delta \mathrm{H}^{\prime}:=\Delta \mathrm{H}_{\mathrm{ig}}+\mathrm{R} \cdot \mathrm{T}_{\mathrm{c}} \cdot\left(\operatorname{HRB}() \Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}, \quad-\operatorname{HRB}() \Gamma_{\mathrm{r} 0}, \boldsymbol{B}_{\mathrm{r} 0}\right.$,
$\Delta \mathrm{H}^{\prime}=4652 \frac{\mathrm{~J}}{\mathrm{~mol}}$
The actual enthalpy change from Eq. (7.17):
$\eta:=0.82$

$$
\Delta \mathrm{H}:=\frac{\Delta \mathrm{H}^{\prime}}{\eta}
$$

$$
\Delta \mathrm{H}=5673.2 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The actual final temperature is now found from Eq. (6.91) combined with $\mathbf{E q}$ (4.7), written:
$\tau:=1.4 \quad$ (guess)
Given
$\Delta H=R \cdot\left[\begin{array}{l}A \cdot T_{0} \cdot()-1+\frac{B}{2} \cdot T_{0}^{2} \cdot()^{2}-1+\frac{D}{T_{0}} \cdot\left(\frac{\tau-1}{\tau}\right), \cdots \\ +T_{\mathrm{c}} \cdot\left(\operatorname{HRB}\left(\frac{\tau \cdot \mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}}, \boldsymbol{B}_{\mathrm{r}}, \quad\right)-\operatorname{HRB}() \Gamma_{\mathrm{r} 0}, \boldsymbol{B}_{\mathrm{r} 0},\right. \\)\end{array}\right]$

$$
\tau:=\text { Find }\left(t \quad \tau=1.521 \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=447.47 \mathrm{~K}\right.
$$

Ans.
$\Delta \mathrm{S}:=\mathrm{R} \cdot\left[\begin{array}{l}\mathrm{A} \cdot \ln \left(t+\left[\mathrm{B} \cdot \mathrm{T}_{0}+\frac{\mathrm{D}}{\left(\mathrm{t} \cdot \mathrm{T}_{0}{ }^{2}\right.} \cdot\left(\frac{\tau+1}{2}\right)\right.\right. \\ +\operatorname{SRB}\left(\Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}, \quad-\operatorname{SRB}\left(\Gamma_{\mathrm{r} 0}, \boldsymbol{B}_{\mathrm{r} 0},\right.\right.\end{array}\right] \cdot\left(t-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right) \cdots\right]$
$\Delta \mathrm{S}=2.347 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
Ans.

$$
\begin{array}{rr}
\Delta \mathrm{S}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} & \text { For the heat capacity of propylene: } \\
\mathrm{A}:=1.637 & \mathrm{~B}:=\frac{22.706 \cdot 10^{-3}}{\mathrm{~K}} \quad \mathrm{C}:=\frac{-6.915 \cdot 10^{-6}}{\mathrm{~K}^{2}} \\
\mathrm{~T}_{\mathrm{r} 0}:=\frac{\mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}} \quad & \mathrm{~T}_{\mathrm{r} 0}=0.8292
\end{array} \mathrm{P}_{\mathrm{r} 0}:=\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r} 0}=0.24650
$$

Use generalized second-virial correlation:

The entropy change is given by Eq. (6.92) combined with Eq. (5.15) with $\mathbf{D}=0$:

$$
\tau:=1.1 \quad \text { (guess) }
$$

Given

$$
\begin{aligned}
& \Delta \mathrm{S}=\mathrm{R} \cdot\left[\begin{array}{l}
\mathrm{A} \cdot \ln \left(t+\left[\mathrm{B} \cdot \mathrm{~T}_{0}+\mathrm{C} \cdot \mathrm{~T}_{0}^{2} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(\mathrm{t}-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right) \cdots\right.\right. \\
+\mathrm{SRB}\left(\frac{\tau \cdot \mathrm{~T}_{0}}{\mathrm{~T}_{\mathrm{c}}}, \mathrm{~B}_{\mathrm{r}}, \quad\right)-\mathrm{SRB}() \mathrm{T}_{\mathrm{r} 0}, \mathrm{~B}_{\mathrm{r} 0},
\end{array}\right] \\
& \tau:=\operatorname{Find}(t \quad \tau=1.069 \\
& \mathrm{T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=324.128 \mathrm{~K} \\
& \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}}
\end{aligned}
$$

The enthalpy change for the final T is given by Eq. (6.91), with HRB for this T:

$$
\Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{0}, \mathrm{~T}, 1.637,22.706 \cdot 10^{-3},-6.915 \cdot 10^{-6}, 0.0
$$

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{ig}}=1.409 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
& \Delta \mathrm{H}^{\prime}:=\Delta \mathrm{H}_{\mathrm{ig}}+\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot\left(\mathrm{HRB}() \Gamma_{\mathrm{r}}, B_{\mathrm{r}}, \quad-\operatorname{HRB}() \Gamma_{\mathrm{r} 0}, B_{\mathrm{r} 0},\right.
\end{aligned}
$$

$\Delta \mathrm{H}^{\prime}=964.1 \frac{\mathrm{~J}}{\mathrm{~mol}}$
The actual enthalpy change from Eq. (7.17):
$\eta:=0.80$
$\Delta \mathrm{H}:=\frac{\Delta \mathrm{H}^{\prime}}{\eta}$
$\Delta \mathrm{H}=1205.2 \frac{\mathrm{~J}}{\mathrm{~mol}}$
ndot $:=1000 \cdot \frac{\mathrm{~mol}}{\mathrm{sec}}$
$\mathrm{Wdot}:=$ ndot $\cdot \Delta \mathrm{H}$
Wdot $=1205.2 \mathrm{~kW} \quad$ Ans.

The actual final temperature is now found from Eq. (6.91) combined with $\mathbf{E q}$ (4.7), written:
$\tau:=1.1 \quad$ (guess)
Given

$$
\begin{aligned}
& \Delta H=R \cdot\left[\begin{array}{l}
A \cdot T_{0} \cdot()-1+\frac{B}{2} \cdot \mathrm{~T}_{0}{ }^{2} \cdot()^{2}-1+\frac{\mathrm{C}}{3} \cdot \mathrm{~T}_{0}{ }^{3} \cdot()^{3}-1 \quad \ldots \\
+\mathrm{T}_{\mathrm{c}} \cdot\left(\operatorname{HRB}\left(\frac{\tau \cdot \mathrm{~T}_{0}}{\mathrm{~T}_{\mathrm{c}}}, \mathrm{~B}_{\mathrm{r}}, \quad\right) \quad-\operatorname{HRB}\left(\mid \mathrm{T}_{\mathrm{r} 0}, \mathrm{~B}_{\mathrm{r} 0}, \quad\right) \quad\right.
\end{array}\right] \\
& \tau:=\operatorname{Find}\left(t \quad \tau=1.079 \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=327.15 \mathrm{~K} \quad \text { Ans. } \quad\right.
\end{aligned}
$$

$\begin{array}{llll}7.38 \text { Methane: } & \mathrm{T}_{\mathrm{c}}:=190.6 \cdot \mathrm{~K} & \mathrm{P}_{\mathrm{c}}:=45.99 \cdot \mathrm{bar} & \omega:=0.012 \\ & \mathrm{~T}_{0}:=308.15 \cdot \mathrm{~K} & \mathrm{P}_{0}:=3500 \cdot \mathrm{kPa} & \mathrm{P}:=5500 \cdot \mathrm{kPa}\end{array}$
$\Delta \mathrm{S}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad$ For the heat capacity of methane:

$$
\begin{array}{rlrl}
\mathrm{A}:=1.702 & \mathrm{~B}:=\frac{9.081 \cdot 10^{-3}}{\mathrm{~K}} & \mathrm{C}:=\frac{-2.164 \cdot 10^{-6}}{\mathrm{~K}^{2}} \\
\mathrm{~T}_{\mathrm{r} 0}:=\frac{\mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{~T}_{\mathrm{r} 0}=1.6167 & \mathrm{P}_{\mathrm{r} 0}:=\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{c}}} & \mathrm{P}_{\mathrm{r} 0}=0.761 \\
& \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} & \mathrm{P}_{\mathrm{r}}=1.196
\end{array}
$$

Use generalized second-virial correlation:

The entropy change is given by Eq. (6.92) combined with Eq. (5.15) with $\mathbf{D}=0$:

$$
\tau:=1.1 \quad \text { (guess) }
$$

Given

$$
\begin{aligned}
& \Delta \mathrm{S}=\mathrm{R} \cdot\left[\begin{array}{l}
\mathrm{A} \cdot \ln \left(\mathrm{t}+\left[\mathrm{B} \cdot \mathrm{~T}_{0}+\mathrm{C} \cdot \mathrm{~T}_{0}^{2} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(\mathrm{t}-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right) \cdots\right.\right. \\
+\mathrm{SRB}\left(\frac{\tau \cdot \mathrm{~T}_{0}}{\mathrm{~T}_{\mathrm{c}}}, \mathrm{~B}_{\mathrm{r}}, \quad\right)-\operatorname{SRB}() \Gamma_{\mathrm{r} 0}, B_{\mathrm{r} 0},
\end{array}\right] \\
& \tau:=\operatorname{Find}(t \quad \tau=1.114 \\
& \mathrm{T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=343.379 \mathrm{~K} \\
& \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}}
\end{aligned}
$$

The enthalpy change for the final T is given by Eq. (6.91), with HRB for this T:

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \mathrm{ICPH}()_{0}, \mathrm{~T}, 1.702,9.081 \cdot 10^{-3},-2.164 \cdot 10^{-6}, 0.0 \\
& \Delta \mathrm{H}_{\mathrm{ig}}=1.298 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
& \Delta \mathrm{H}^{\prime}:=\Delta \mathrm{H}_{\mathrm{ig}}+\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot\left(\mathrm{HRB}()_{\mathrm{r}}, B_{\mathrm{r}}, \quad-\mathrm{HRB}() \Gamma_{\mathrm{r} 0}, \otimes_{\mathrm{r} 0},\right. \\
& \Delta \mathrm{H}^{\prime}=1158.8 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

The actual enthalpy change from Eq. (7.17):
$\eta:=0.78$

$$
\Delta \mathrm{H}:=\frac{\Delta \mathrm{H}^{\prime}}{\eta}
$$

$\Delta \mathrm{H}=1485.6 \frac{\mathrm{~J}}{\mathrm{~mol}}$
ndot $:=1500 \cdot \frac{\mathrm{~mol}}{\mathrm{sec}}$
$\mathrm{Wdot}:=\operatorname{ndot} \cdot \Delta \mathrm{H}$
$\mathrm{Wdot}=2228.4 \mathrm{~kW}$
Ans.

The actual final temperature is now found from Eq. (6.91) combined with Eq (4.7), written:
$\tau:=1.1 \quad$ (guess)

Given

$$
\begin{aligned}
& \Delta H=R \cdot\left[\begin{array}{l}
A \cdot T_{0} \cdot()-1+\frac{B}{2} \cdot T_{0}{ }^{2} \cdot()^{2}-1+\frac{C}{3} \cdot T_{0}^{3} \cdot()^{3}-1 \quad \ldots \\
+T_{\mathrm{c}} \cdot\left(\operatorname{HRB}\left(\frac{\tau \cdot \mathrm{~T}_{0}}{\mathrm{~T}_{\mathrm{c}}}, B_{\mathrm{r}}, \quad-\operatorname{HRB}() \Gamma_{\mathrm{r} 0}, B_{\mathrm{r} 0}, \quad\right)\right.
\end{array}\right] \\
& \tau:=\operatorname{Find}\left(t \quad \tau=1.14 \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=351.18 \mathrm{~K} \quad\right. \text { Ans. }
\end{aligned}
$$

7.39 From the data and results of Example 7.9,

$$
\begin{aligned}
& \mathrm{T}_{1}:=293.15 \cdot \mathrm{~K} \quad \mathrm{~T}_{2}:=428.65 \cdot \mathrm{~K} \quad \mathrm{P}_{1}:=140 \cdot \mathrm{kPa} \quad \mathrm{P}_{2}:=560 \cdot \mathrm{kPa} \\
& \text { Work }:=5288.3 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \mathrm{~T}_{\sigma}:=293.15 \cdot \mathrm{~K} \\
& \Delta \mathrm{H}:=\mathrm{R} \cdot \mathrm{ICPH}()_{1}, \mathrm{~T}_{2}, 1.702,9.081 \cdot 10^{-3},-2.164 \cdot 10^{-6}, 0.0 \\
& \Delta \mathrm{H}=5288.2 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
& \Delta \mathrm{~S}:=\mathrm{R} \cdot\left(\operatorname{ICPS}\left(\Gamma_{1}, \mathrm{~T}_{2}, 1.702,9.081 \cdot 10^{-3},-2.164 \cdot 10^{-6}, 0.0-\ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)\right)\right. \\
& \Delta \mathrm{S}=3.201 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{aligned}
$$

Since the process is adiabatic: $\mathrm{S}_{\mathrm{G}}:=\Delta \mathrm{S}$
$\mathrm{S}_{\mathrm{G}}=3.2012 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$

$$
\mathrm{W}_{\text {ideal }}:=\Delta \mathrm{H}-\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S} \quad \mathrm{~W}_{\text {ideal }}=4349.8 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{W}_{\text {lost }}:=\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S}
$$

$$
\mathrm{W}_{\text {lost }}=938.4 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Ans.

$$
\eta_{\mathrm{t}}:=\frac{\mathrm{W}_{\text {ideal }}}{\text { Work }}
$$

Ans.

$\mathrm{P} 1:=1 \mathrm{~atm}$	$\mathrm{~T} 1:=(35+273.15) \mathrm{K}$	$\mathrm{T} 1=308.15 \mathrm{~K}$
$\mathrm{P} 2:=50 \mathrm{~atm}$	$\mathrm{~T} 2:=(200+273.15) \mathrm{K}$	$\mathrm{T} 2=473.15 \mathrm{~K}$
$\eta:=0.65$	Vdot $:=0.5 \frac{\mathrm{~m}^{3}}{\mathrm{sec}}$	$\mathrm{Cp}:=3.5 \cdot \mathrm{R}$
$\mathrm{V}:=\frac{\mathrm{R} \cdot \mathrm{T} 1}{\mathrm{P} 1}$	ndot $:=\frac{\mathrm{Vdot}}{\mathrm{V}}$	ndot $=19.775 \frac{\mathrm{~mol}}{\mathrm{sec}}$

With compression from the same initial conditions ($\mathrm{P} 1, \mathrm{~T} 1$) to the same final conditions ($\mathbf{P} 2, T 2$) in each stage, the same efficiency in each stage, and the same power delivered to each stage, the applicable equations are:

$$
\mathrm{r}=\left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)^{\frac{1}{\mathrm{~N}}} \quad \begin{aligned}
& \text { (where } \mathrm{r} \text { is the pressure ratio in each stage and } \mathrm{N} \text { is } \\
& \text { the number of stages.) }
\end{aligned}
$$

Eq. (7.23) may be solved for T2prime: $T^{\prime} 2:=[(T 2-T 1) \cdot \eta+T 1]$
$T^{\prime} 2=415.4 \mathrm{~K} \quad$ Eq. (7.18) written for a single stage is:
$\mathrm{T}^{\prime} 2=\mathrm{T} 1 \cdot\left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)^{\frac{\mathrm{R} 1}{\mathrm{~N} \cdot \mathrm{Cp}}}$
$\mathrm{N}:=\frac{\mathrm{R}}{\mathrm{Cp}} \cdot \frac{\ln \left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)}{\ln \left(\frac{\mathrm{T} 2}{\mathrm{~T} 1}\right)} \quad \mathrm{N}=3.743$
(a) Although any number of stages greater than this would serve, design for 4 stages.
(b) Calculate r for 4 stages: $N:=4 \quad r:=\left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)^{\frac{1}{\mathrm{~N}}} \quad \mathrm{r}=2.659$

Power requirement per stage follows from Eq. (7.22). In kW/stage:
$\mathrm{Wdot}_{\mathrm{r}}:=\frac{\operatorname{ndot} \cdot \mathrm{Cp} \cdot \mathrm{T1} \cdot\left(\mathrm{r}^{\left.\frac{\mathrm{R}}{\mathrm{Cp}}-1\right)}\right.}{\eta}$
$\mathrm{W} \operatorname{dot}_{\mathrm{r}}=87.944 \mathrm{~kW}$
Ans.
(c) Because the gas (ideal) leaving the intercooler and the gas entering the compressor are at the same temperature $(308.15 \mathrm{~K})$, there is no enthalpy change for the compressor/interchanger system, and the first law yields:

Qdot $_{r}:=-$ Wdot $_{r} \quad$ Qdot $_{r}=-87.944 \mathrm{~kW} \quad$ Ans.
Heat duty $=87.94 \mathbf{k W} /$ interchanger
(d) Energy balance on each interchanger (subscript w denotes water):

With data for saturated liquid water from the steam tables:

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{w}}:=(188.4-104.8) \frac{\mathrm{kJ}}{\mathrm{~kg}} \quad \Delta \mathrm{H}_{\mathrm{w}}=83.6 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \operatorname{mdot}_{\mathrm{W}}:=\frac{\left|\mathrm{Qdot}_{\mathrm{r}}\right|}{\Delta \mathrm{H}_{\mathrm{W}}} \quad \operatorname{mdot}_{\mathrm{w}}=1.052 \frac{\mathrm{~kg}}{\mathrm{sec}} \quad \text { Ans. (in each interchanger) }
\end{aligned}
$$

7.44
$\mathrm{T} 1:=\left(\left.\begin{array}{l}300 \\ 290 \\ 295 \\ 300\end{array} \right\rvert\, \mathrm{K}\right.$

$\Delta \mathrm{H}:=\overrightarrow{[\mathrm{Cp} \cdot(\mathrm{T} 2-\mathrm{T} 1)]}$
Ideal gases with constant heat capacities
$\Delta \mathrm{H}_{\mathrm{S}}:=\overline{\left.\mathrm{Cp} \cdot \mathrm{T} 1 \cdot\left[\left(\frac{\mathrm{P} 2}{\mathrm{P} 1}\right)^{\frac{\mathrm{R}}{\mathrm{Cp}}}-1\right]\right]}$

$$
\Delta \mathrm{H}_{\mathrm{S}}=\left(\left.\begin{array}{l}
3.219 \\
3.729 \\
4.745 \\
5.959
\end{array} \right\rvert\, \frac{\mathrm{kJ}}{\mathrm{~mol}} \quad \eta:=\frac{\overrightarrow{\Delta \mathrm{H}_{\mathrm{S}}}}{\Delta \mathrm{H}} \quad \eta=\left(\begin{array}{c}
0.675 \\
0.698 \\
4.765
\end{array}\right)\right.
$$

Ans.
7.47 The following vectors contain values for Parts (a) through (e). Intake conditions first:
$\mathrm{T}_{1}:=\left(\left.\begin{array}{l}298.15 \\ 363.15 \\ 333.15 \\ 294.26\end{array} \right\rvert\, \cdot \mathrm{K}\right.$
$P_{1}:=\left(\begin{array}{c}100 \cdot \mathrm{kPa} \\ 200 \cdot \mathrm{kPa} \\ 20 \cdot \mathrm{kPa} \\ 1 \cdot \mathrm{~atm} \\ 15 \cdot \mathrm{psi}\end{array}\right)$
$\operatorname{mdot}:=\left(\left.\begin{array}{l}20 \cdot \mathrm{~kg} \\ 30 \cdot \mathrm{~kg} \\ 15 \cdot \mathrm{~kg} \\ 50 \cdot \mathrm{lb}\end{array} \right\rvert\, \begin{array}{l} \\ \hline \mathrm{sec} \\ 80 \cdot \mathrm{lb}\end{array}\right)$
$\mathrm{P}_{2}:=\left(\begin{array}{c}2000 \cdot \mathrm{kPa} \\ 5000 \cdot \mathrm{kPa} \\ 5000 \cdot \mathrm{kPa} \\ 20 \cdot \mathrm{~atm} \\ 1500 \cdot \mathrm{psi}\end{array}\right)$
$\eta:=\left(\begin{array}{l}0.75 \\ 0.70 \\ 0.75 \\ 0.70 \\ 0.75\end{array}\right)$
$\beta:=\left(\begin{array}{l|l}257.2 & \\ 696.2 & \\ 523.1 \\ 217.3 & \cdot \frac{10^{-6}}{K} \\ 714.3\end{array}\right)$

From the steam tables for sat.liq. water at the initial temperature (heat capacity calculated from enthalpy values):

$C_{P}:=\left(\begin{array}{c|c}4.15 & \\ 4.20 & \\ 4.20 & \cdot \\ 4.185 & \mathrm{~kJ} \cdot \mathrm{~K} \\ 4.20 & \end{array}\right.$

By Eq. (7.24)

$$
\Delta \mathrm{H}_{\mathrm{S}}:=\overrightarrow{\left[\mathrm{V} \cdot\left(\mathrm{p}_{2}-\mathrm{P}_{1}\right]\right.} \quad \Delta \mathrm{H}:=\frac{\overrightarrow{\Delta \mathrm{H}_{\mathrm{S}}}}{\eta}
$$

7.48 Results from Example 7.10:

$$
\begin{array}{lll}
\Delta \mathrm{H}:=11.57 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~W}:=11.57 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \Delta \mathrm{~S}:=0.0090 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\mathrm{~T}_{\sigma}:=300 \cdot \mathrm{~K} & \mathrm{~W}_{\text {ideal }}:=\Delta \mathrm{H}-\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S} & \eta_{\mathrm{t}}:=\frac{\mathrm{W}_{\text {ideal }}}{\mathrm{W}} \\
& \mathrm{~W}_{\text {ideal }}=8.87 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \text { Ans. } & \eta_{\mathrm{t}}=0.767 \quad \text { Ans. }
\end{array}
$$

Since the process is adiabatic.
$\mathrm{S}_{\mathrm{G}}:=\Delta \mathrm{S}$

$$
\mathrm{S}_{\mathrm{G}}=9 \times 10^{-3} \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

Ans.
$\mathrm{W}_{\text {lost }}:=\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S}$

$$
\mathrm{W}_{\text {lost }}=2.7 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Ans.
7.53
$\mathrm{T}_{1}:=(25+273.15) \mathrm{K}$
$\mathrm{P}_{1}:=1.2 \mathrm{bar}$
$\mathrm{P}_{2}:=5 \mathrm{bar}$
$\mathrm{T}_{3}:=(200+273.15) \mathrm{K}$
$\mathrm{P}_{3}:=5 \mathrm{bar}$
$\mathrm{C}_{\mathrm{pv}}:=105 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$

$$
\Delta \mathrm{H}_{\mathrm{lv}}:=30.72 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

$$
\eta:=0.7
$$

Estimate the specific molar volume of liquid benzene using the Rackett equation (3.72).
From Table B. 1 for benzene: $T_{c}:=562.2 \mathrm{~K} \quad \mathrm{Z}_{\mathrm{c}}:=0.271 \quad \mathrm{~V}_{\mathrm{c}}:=259 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
From Table B. 2 for benzene: $\mathrm{T}_{\mathrm{n}}:=(80.0+273.15) \mathrm{K} \quad \mathrm{T}_{\mathrm{rn}}:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{T}_{\mathrm{c}}}$
Assume $V^{\text {liq }}=V^{\text {sat }}: \quad \mathrm{V}:=\mathrm{V}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{c}}^{\left(\mathrm{l}-\mathrm{T}_{\mathrm{rn}}{ }^{\frac{2}{7}}\right.}$ Eq. (3.72) $\quad \mathrm{V}=96.802 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$

Calculate pump power

$$
\mathrm{W}_{\mathrm{s}}:=\frac{\mathrm{V} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right.}{\eta}
$$

$$
\mathrm{W}_{\mathrm{s}}=0.053 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Ans.

Assume that no temperature change occurs during the liquid compression.
Therefore: $\quad \mathrm{T}_{2}:=\mathrm{T}_{1}$
Estimate the saturation temperature at $P=5$ bar using the Antoine Equation and values from Table B. 2
For benzene from A $:=13.7819 \quad$ B $:=2726.81 \quad$ C $:=217.572$
Table B.2:
$\mathrm{T}_{\mathrm{sat}}:=\left(\frac{\mathrm{B}}{\mathrm{A}-\ln \left(\frac{\mathrm{P}_{2}}{\mathrm{kPa}}\right)}-\mathrm{C}\right) \operatorname{degC} \quad \begin{aligned} & \mathrm{T}_{\mathrm{sat}}=142.77 \operatorname{degC} \\ & \end{aligned} \quad \mathrm{~T}_{\mathrm{sat}}:=\mathrm{T}_{\mathrm{sat}}+273.15 \mathrm{~K} \quad \mathrm{~T}_{\mathrm{sat}}=415.9 \mathrm{~K}$
Estimate the heat of vaporization at $T^{\text {sat }}$ using Watson's method
From Table B. $2 \Delta \mathrm{H}_{\mathrm{lv}}:=30.72 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
At 80 C :
$\mathrm{T}_{\mathrm{r} 1}:=\frac{(80+273.15) \mathrm{K}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r} 1}=0.628 \quad \mathrm{~T}_{\mathrm{r} 2}:=\frac{\mathrm{T}_{\mathrm{sat}}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r} 2}=0.74$
$\Delta \mathrm{H}_{\mathrm{lv} 2}:=\Delta \mathrm{H}_{\mathrm{lv}} \cdot\left(\frac{1-\mathrm{T}_{\mathrm{r} 2}}{1-\mathrm{T}_{\mathrm{r} 1}}\right)^{0.38} \quad$ Eq. (4.13) $\quad \Delta \mathrm{H}_{\mathrm{lv} 2}=26.822 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
Calculate the heat exchanger heat duty.

$$
\begin{aligned}
\mathrm{Q}:= & \mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{2}, \mathrm{~T}_{\mathrm{sat}},-0.747,67.96 \cdot 10^{-3},-37.78 \cdot 10^{-6}, 0 \quad \ldots \\
& +\Delta \mathrm{H}_{\mathrm{lv} 2}+\mathrm{C}_{\mathrm{pv}} \cdot() \Gamma_{3}-\mathrm{T}_{\mathrm{sat}} \\
\mathrm{Q}= & 51.1 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \text { Ans. }
\end{aligned}
$$

$7.54 \quad \mathrm{~T}_{1}:=(25+273.15) \mathrm{K} \quad \mathrm{P}_{1}:=1.2 \mathrm{bar} \quad \mathrm{P}_{2}:=1.2 \mathrm{bar}$

$$
\begin{array}{ll}
\mathrm{T}_{3}:=(200+273.15) \mathrm{K} & \mathrm{P}_{3}:=5 \mathrm{bar} \\
\mathrm{C}_{\mathrm{pv}}:=105 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} & \eta:=0.75
\end{array}
$$

Calculate the compressor inlet temperature.
Combining equations (7.17), (7.21) and (7.22) yields:

$$
\begin{array}{ll}
\mathrm{T}_{2}:=\frac{\mathrm{T}_{3}}{1+\frac{1}{\eta} \cdot\left[\left(\frac{\mathrm{P}_{3}}{\mathrm{P}_{2}}\right)^{\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{pv}}}}-1\right]} & \mathrm{T}_{2}=408.06 \mathrm{~K} \\
& \mathrm{~T}_{2}-273.15 \mathrm{~K}=134.91 \mathrm{degC}
\end{array}
$$

Calculate the compressor power

$$
\mathrm{W}_{\mathrm{s}}:=\mathrm{C}_{\mathrm{pv}} \cdot() \Gamma_{3}-\mathrm{T}_{2} \quad \mathrm{~W}_{\mathrm{s}}=6.834 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \text { Ans. }
$$

Calculate the heat exchanger duty. Note that the exchanger outlet temperature, $\mathbf{T} 2$, is equal to the compressor inlet temperature. The benzene enters the exchanger as a subcooled liquid. In the exchanger the liquid is first heated to the saturation temperature at P_{1}, vaporized and
finally the vapor is superheated to temperature T_{2}.
Estimate the saturation temperature at $\mathbf{P}=1.2$ bar using the Antoine Equation and values from Table B. 2

For benzene from
Table B.2:

$$
\mathrm{A}:=13.7819
$$

$$
\text { B }:=2726.81
$$

$$
\mathrm{C}:=217.572
$$

$$
\mathrm{T}_{\mathrm{sat}}:=\left(\begin{array}{ll}
\left.\frac{\mathrm{B}}{\mathrm{~A}-\ln \left(\frac{\mathrm{P}_{1}}{\mathrm{kPa}}\right)}-\mathrm{C}\right) \operatorname{degC} & \mathrm{T}_{\mathrm{sat}}=85.595 \operatorname{degC} \\
& \mathrm{~T}_{\mathrm{sat}}:=\mathrm{T}_{\mathrm{sat}}+273.15 \mathrm{~K} \quad \mathrm{~T}_{\mathrm{sat}}=358.7 \mathrm{~K}
\end{array}\right.
$$

Estimate the heat of vaporization at $T^{\text {sat }}$ using Watson's method
From Table B. 2 At 25 C:

$$
\Delta \mathrm{H}_{\mathrm{lv}}:=30.72 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

From Table B. 1
$\mathrm{T}_{\mathrm{c}}:=562.2 \mathrm{~K}$ for benzene:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r} 1}:=\frac{(80+273.15) \mathrm{K}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r} 1}=0.628 \quad \mathrm{~T}_{\mathrm{r} 2}:=\frac{\mathrm{T}_{\mathrm{sat}}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r} 2}=0.638 \\
& \Delta \mathrm{H}_{\mathrm{lv} 2}:=\Delta \mathrm{H}_{\mathrm{lv}} \cdot\left(\frac{1-\mathrm{T}_{\mathrm{r} 2}}{1-\mathrm{T}_{\mathrm{r} 1}}\right)^{0.38} \quad \text { Eq. (4.13) } \quad \Delta \mathrm{H}_{\mathrm{lv} 2}=30.405 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \begin{aligned}
\mathrm{Q}:= & \mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{1}, \mathrm{~T}_{\mathrm{sat}},-0.747,67.96 \cdot 10^{-3},-37.78 \cdot 10^{-6}, 0 \ldots \\
& +\Delta \mathrm{H}_{\mathrm{lv} 2}+\mathrm{C}_{\mathrm{pv}} \cdot\left(\mathrm{~T}_{2}-\mathrm{T}_{\mathrm{sat}}\right.
\end{aligned} \\
& \begin{aligned}
\mathrm{Q}= & 44.393 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \text { Ans. }
\end{aligned}
\end{aligned}
$$

Assume the compressor is adaiabatic.

$$
\begin{aligned}
& \mathrm{T}_{2}:=\left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)^{\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{p}}}} \cdot \mathrm{~T}_{1} \quad \text { (Pg. 77) } \quad \mathrm{T}_{2}=390.812 \mathrm{~K} \\
& \text { Wdot }_{\mathrm{s}}:=\operatorname{ndot} \cdot \mathrm{C}_{\mathrm{p}} \cdot\left(\Gamma_{2}-\mathrm{T}_{1} \quad \mathrm{Wdot}_{\mathrm{s}}=127.641 \mathrm{~kW}\right. \\
& \text { Wdote }_{e}:=\frac{\text { Wdot }_{\text {s }}}{\eta} \quad \quad \text { Wdot }_{e}=182.345 \mathrm{~kW} \\
& \text { C_compressor }:=3040 \text { dollars } \cdot\left(\frac{\mathrm{Wdot}_{\mathrm{s}}}{\mathrm{~kW}}\right)^{0.952} \text { C_compressor }=307452 \text { dollars Ans. } \\
& \text { C_motor }:=380 \text { dollars. }\left(\frac{\mathrm{Wdot}_{\mathrm{e}}}{\mathrm{~kW}}\right)^{0.855} \quad \text { C_motor }=32572 \text { dollars Ans. }
\end{aligned}
$$

a) For throttling process, assume the process is adiabatic. Find T_{2} such that $\Delta H=0$.

$$
\begin{equation*}
\Delta \mathrm{H}=\mathrm{C}_{\mathrm{pmig}} \cdot\left(\Gamma_{2}-\mathrm{T}_{1}+\mathrm{HR}_{2}-\mathrm{HR}_{1}\right. \tag{6-93}
\end{equation*}
$$

Use the MCPH function to calculate the mean heat capacity and the HRB function for the residual enthalpy.

Guess: $\quad \mathrm{T}_{2}:=\mathrm{T}_{1}$
Given

$$
\begin{aligned}
0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}= & \operatorname{MCPH}() \Gamma_{1}, \mathrm{~T}_{2}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \cdot \mathrm{R} \cdot() \Gamma_{2}-\mathrm{T}_{1} \ldots \\
& +\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot \operatorname{HRB}\left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{\mathrm{c}}}, \boldsymbol{B}_{\mathrm{r} 2}, \quad-\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot \operatorname{HRB}() \Gamma_{\mathrm{r} 1}, \boldsymbol{B}_{\mathrm{r} 1}\right.
\end{aligned}
$$

$$
\mathrm{T}_{2}:=\operatorname{Find}() \Gamma_{2} \quad \mathrm{~T}_{2}=365.474 \mathrm{~K} \quad \text { Ans. } \quad \mathrm{T}_{\mathrm{r} 2}:=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r} 2}=1.295
$$

Calculate change in entropy using Eq. (6-94) along with MCPS function for the mean heat capacity and SRB function for the residual entropy.

$$
\begin{align*}
\Delta \mathrm{S}:= & \left(\mathrm{R} \cdot \mathrm{MCPS}() \Gamma_{1}, \mathrm{~T}_{2}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)\right) \cdots \tag{6-94}\\
& +\mathrm{R} \cdot \mathrm{SRB}() \Gamma_{\mathrm{r} 2}, \mathrm{~B}_{\mathrm{r} 2}, \quad-\mathrm{R} \cdot \operatorname{SRB}\left(\Gamma_{\mathrm{r} 1}, \mathrm{~B}_{\mathrm{r} 1},\right. \\
\Delta \mathrm{S}= & 22.128 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \text { Ans. }
\end{align*}
$$

$$
\begin{aligned}
& 7.59 \quad \mathrm{~T}_{1}:=375 \mathrm{~K} \\
& \text { For ethylene: } \\
& \mathrm{P}_{1}:=18 \mathrm{bar} \\
& \mathrm{P}_{2}:=1.2 \mathrm{bar} \\
& \omega:=0.087 \\
& \mathrm{~T}_{\mathrm{c}}:=282.3 \mathrm{~K} \\
& \mathrm{P}_{\mathrm{c}}:=50.40 \mathrm{bar} \\
& \mathrm{~T}_{\mathrm{r} 1}:=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r} 1}=1.328 \quad \mathrm{P}_{\mathrm{r} 1}:=\frac{\mathrm{P}_{1}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r} 1}=0.357 \\
& \mathrm{P}_{\mathrm{r} 2}:=\frac{\mathrm{P}_{2}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r} 2}=0.024 \\
& \mathrm{~A}:=1.424 \\
& B:=14.394 \cdot 10^{-3} \\
& C:=-4.392 \cdot 10^{-6} \\
& \text { D := } 0
\end{aligned}
$$

b) For expansion process. $\eta:=70 \%$

First find T2 for isentropic expansion. Solve Eq. (6-94) with $\Delta \mathbf{S}=\mathbf{0}$.
Guess: $\quad \mathrm{T}_{2}:=\mathrm{T}_{1}$
Given

$$
\begin{aligned}
\begin{aligned}
& 0 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}= \mathrm{R} \cdot \operatorname{MCPS}() \Gamma_{1}, \mathrm{~T}_{2}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right) \cdots \\
&+\operatorname{SRB}\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{c}}}, B_{\mathrm{r} 2}, \quad, \mathrm{Rq} \cdot\left(6-\mathbf{R}-\mathrm{SRB}() \Gamma_{\mathrm{r} 1}, B_{\mathrm{r} 1}, \quad \cdot \mathrm{R}\right.\right. \\
& \mathrm{T}_{2}:=\operatorname{Find}() \Gamma_{2} \quad \mathrm{~T}_{2}=219.793 \mathrm{~K} \quad \mathrm{~T}_{\mathrm{r} 2}:=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r} 2}=0.779
\end{aligned}
\end{aligned}
$$

Now calculate the isentropic enthalpy change, ΔH_{S}.

$$
\begin{aligned}
\mathrm{HR}_{2}:= & \mathrm{HRB}() \Gamma_{\mathrm{r} 2}, \mathrm{~B}_{\mathrm{r} 2}, \quad \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \\
\Delta \mathrm{H}_{\mathrm{S}}:= & {\left[\mathrm{R} \cdot \mathrm{MCPH}()_{1}, \mathrm{~T}_{2}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \cdot() \Gamma_{2}-\mathrm{T}_{1}\right] \ldots } \\
& +\mathrm{HRB}() \Gamma_{\mathrm{r} 2}, B_{\mathrm{r} 2}, \quad \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}}-\mathrm{HRB}() \Gamma_{\mathrm{r} 1}, B_{\mathrm{r} 1}, \quad \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \\
& \\
\Delta \mathrm{H}_{\mathrm{S}}= & -6.423 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

Calculate actual enthalpy change using the expander efficiency.

$$
\Delta \mathrm{H}:=\eta \Delta \mathrm{H}_{\mathrm{S}} \quad \Delta \mathrm{H}=-4.496 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Find $\mathbf{T} 2$ such that ΔH matches the value above.
Given

$$
\begin{aligned}
& \eta \Delta H_{S}= M C P H() \Gamma_{1}, T_{2}, A, B, C, D \cdot R \cdot() \Gamma_{2}-T_{1} \ldots \\
&+R \cdot T_{\mathrm{c}} \cdot \operatorname{HRB}\left(\frac{T_{2}}{T_{\mathrm{c}}}, \boldsymbol{B}_{\mathrm{r} 2},\right)-\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot \operatorname{HRB}() \Gamma_{\mathrm{r} 1}, \boldsymbol{B}_{\mathrm{r} 1}, \\
& \mathrm{~T}_{2}:=\operatorname{Find}() \Gamma_{2} \quad \mathrm{~T}_{2}=268.536 \mathrm{~K} \quad \text { Ans. }
\end{aligned}
$$

Now recalculate ΔS at calculated T_{2}

$$
\begin{align*}
\Delta \mathrm{S}:= & \left(\mathrm{R} \cdot \operatorname{MCPS}() \Gamma_{1}, \mathrm{~T}_{2}, \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \cdot \ln \left(\frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)\right) \tag{6-94}\\
& +\mathrm{R} \cdot \operatorname{SRB}() \Gamma_{\mathrm{r} 2}, B_{\mathrm{r} 2}, \quad-\mathrm{R} \cdot \operatorname{SRB}() \Gamma_{\mathrm{r} 1}, \mathrm{~B}_{\mathrm{r} 1},
\end{align*}
$$

$\Delta \mathrm{S}=7.77 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad$ Ans.
Calculate power produced by expander
$P:=\eta \Delta \mathrm{H} \quad \mathrm{P}=-3.147 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad$ Ans.
The advantage of the expander is that power can be produced in the expander which can be used in the plant. The disadvantages are the extra capital and operating cost of the expander and the low temperature of the gas leaving the expander compared to the gas leaving the throttle valve.
7.60 Hydrocarbon gas: $\quad \mathrm{T}_{1}:=500 \mathrm{degC}$ $\mathrm{C}_{\mathrm{pgas}}:=150 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
Light oil: $\quad \mathrm{T}_{2}:=25 \mathrm{degC} \quad \mathrm{C}_{\text {poil }}:=200 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \Delta \mathrm{H}_{\mathrm{lv}}:=35000 \frac{\mathrm{~J}}{\mathrm{~mol}}$
Exit stream: $\quad T_{3}:=200 \mathrm{degC}$
b) Assume that the oil vaporizes at $\mathbf{2 5}$ C. For an adiabatic column, the overall energy balance is as follows.
F. $\mathrm{C}_{\text {pgas }} \cdot\left(\Gamma_{3}-\mathrm{T}_{1}+\mathrm{D} \cdot\left[\Delta \mathrm{H}_{\mathrm{lv}}+\mathrm{C}_{\text {oilp }} \cdot() \Gamma_{3}-\mathrm{T}_{2}\right]=0\right.$

Solving for D/F gives:

$$
\mathrm{DF}:=\frac{-\left[\mathrm{C}_{\text {pgas }} \cdot() \Gamma_{3}-\mathrm{T}_{1}\right]}{\left[\Delta \mathrm{H}_{\mathrm{lv}}+\mathrm{C}_{\text {poil }} \cdot() \Gamma_{3}-\mathrm{T}_{2}\right]} \quad \mathrm{DF}=0.643 \quad \text { Ans. }
$$

c) Using liquid oil to quench the gas stream requires a smaller oil flow rate. This is because a significant portion of the energy lost by the gas is used to vaporize the oil.

Chapter 8 - Section A - Mathcad Solutions

8.1 With reference to Fig. 8.1, SI units,

At point 2: Table F.2, $\quad \mathrm{H}_{2}:=3531.5$

$$
S_{2}:=6.9636
$$

At point 4: Table F.1, $\quad \mathrm{H}_{4}:=209.3$
At point 1: $\quad \mathrm{H}_{1}:=\mathrm{H}_{4}$
At point 3: Table F.1, $\quad \mathrm{H}_{\mathrm{liq}}:=\mathrm{H}_{4} \quad \Delta \mathrm{H}_{\mathrm{lv}}:=2382.9$
$\mathrm{x}_{3}:=0.96$
$\mathrm{H}_{3}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}_{3} \cdot \Delta \mathrm{H}_{\mathrm{lv}} \quad \mathrm{H}_{3}=2496.9$

$$
\mathrm{S}_{\mathrm{liq}}:=0.7035 \quad \Delta \mathrm{~S}_{\mathrm{lv}}:=7.3241
$$

For isentropic expansion, $\quad S_{3}^{\prime}:=S_{2}$

$$
\begin{array}{ll}
\mathrm{x}_{3}^{\prime}:=\frac{\mathrm{S}_{3}^{\prime}-\mathrm{S}_{\text {liq }}}{\Delta \mathrm{S}_{\mathrm{lv}}} & \mathrm{x}_{3}=0.855 \\
\mathrm{H}_{3}^{\prime}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}_{3}^{\prime} \cdot \Delta \mathrm{H}_{\mathrm{lv}} & \mathrm{H}_{3}^{\prime}=2246 \\
\eta_{\text {turbine }}:=\frac{\mathrm{H}_{3}-\mathrm{H}_{2}}{\mathrm{H}_{3}^{\prime}-\mathrm{H}_{2}} & \eta_{\text {turbine }}=0.805 \\
\mathrm{~W}_{\mathrm{s}}:=\mathrm{H}_{3}-\mathrm{H}_{2} & \mathrm{Q}_{\mathrm{H}}:=\mathrm{H}_{2}-\mathrm{H}_{1} \\
\mathrm{~W}_{\mathrm{s}}=-1.035 \times 10^{3} & \mathrm{Q}_{\mathrm{H}}=3.322 \times 10^{3} \\
\eta_{\text {cycle }}:=\frac{\left|\mathrm{W}_{\mathrm{s}}\right|}{\mathrm{Q}_{\mathrm{H}}} & \eta_{\text {cycle }}=0.311
\end{array}
$$

Ans.

Ans.
$8.2 \mathrm{mdot}:=1.0(\mathrm{~kg} / \mathbf{s})$
The following property values are found by linear interpolation in Table F.1:
State 1, Sat. Liquid at TH: H1 :=860.7 S1 :=2.3482 P1:=3.533
State 2, Sat. Vapor at TH: H2 := 2792.0
$\mathrm{S} 2:=6.4139 \quad \mathrm{P} 2:=3.533$
State 3, Wet Vapor at TC: Hliq :=112.5 Hvap :=2550.6 P3 :=1616.0
State 4, Wet Vapor at TC: Sliq $:=0.3929 \quad$ Svap $:=8.5200 \quad$ P4 $:=1616.0$
(a) The pressures in kPa appear above.
(b) Steps 2--3 and 4-1 (Fig. 8.2) are isentropic, for which $\mathrm{S} 3=\mathrm{S} 2$ and $\mathrm{S} 1=\mathrm{S} 4$. Thus by Eq. 6.82):

$$
\mathrm{x} 3:=\frac{\mathrm{S} 2-\text { Sliq }}{\text { Svap - Sliq }} \quad \mathrm{x} 3=0.741 \quad \mathrm{x} 4:=\frac{\text { S1 - Sliq }}{\text { Svap - Sliq }} \quad \mathrm{x} 4=0.241
$$

(c) The rate of heat addition, Step 1--2:

$$
\mathrm{Qdot} 12:=\operatorname{mdot} \cdot(\mathrm{H} 2-\mathrm{H} 1) \quad \text { Qdot } 12=1.931 \times 10^{3} \quad(\mathbf{k J} / \mathbf{s})
$$

(d) The rate of heat rejection, Step 3--4:
$\mathrm{H} 3:=\mathrm{Hliq}+\mathrm{x} 3 \cdot(\mathrm{Hvap}-\mathrm{Hliq}) \quad \mathrm{H} 4:=\mathrm{Hliq}+\mathrm{x} 4 \cdot(\mathrm{Hvap}-\mathrm{Hliq})$
$\mathrm{H} 3=1.919 \times 10^{3} \quad \mathrm{H} 4=699.083$
Qdot34 := mdot•(H4-H3)

$$
\begin{equation*}
\mathrm{Q} \operatorname{dot} 34=-1.22 \times 10^{3} \tag{kJ/s}
\end{equation*}
$$

(e) $W \operatorname{dot} 12:=0 \quad W \operatorname{dot} 34:=0$
$\mathrm{Wdot} 23:=\operatorname{mdot} \cdot(\mathrm{H} 3-\mathrm{H} 2) \quad \mathrm{W} \operatorname{dot} 23=-873.222$
$\mathrm{W} \operatorname{dot} 41:=\operatorname{mdot} \cdot(\mathrm{H} 1-\mathrm{H} 4)$
$W \operatorname{dot} 41=161.617$
(f) $\eta:=\left|\frac{W \operatorname{dot} 23+W \operatorname{dot} 41}{Q \operatorname{dot} 12}\right|$

$$
\eta=0.368
$$

Note that the first law is satisfied:

$$
\begin{aligned}
& \Sigma \mathrm{Q}:=\mathrm{Qdot} 12+\mathrm{Qdot} 34 \quad \Sigma \mathrm{~W}:=\mathrm{W} \operatorname{dot} 23+\mathrm{W} \operatorname{dot} 41 \\
& \Sigma \mathrm{Q}+\Sigma \mathrm{W}=0
\end{aligned}
$$

8.3 The following vectors contain values for Parts (a) through (f).

Enthalpies and entropies for superheated vapor, Tables F. 2 and F. 4 @ P2 and T2 (see Fig. 8.4):
$\mathrm{H}_{2}:=\left(\begin{array}{c}3622.7 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 3529.6 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 3635.4 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 3475.6 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 1507.0 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}} \\ 1558.8 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}\end{array}\right)$
$\mathrm{S}_{2}:=\left(\begin{array}{c}6.9013 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 6.9485 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 6.9875 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 6.9145 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 1.6595 \cdot \frac{\mathrm{BTU}}{\mathrm{lb} \cdot \mathrm{rankine}} \\ 1.6759 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}\end{array}\right)$

Sat. liq. and sat. vap. values from Tables F. 2 and F. 4 @ P3 = P4:
$\mathrm{H}_{\mathrm{liq}}:=\left(\begin{array}{c}191.832 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 251.453 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 191.832 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 419.064 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ 180.17 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \\ 69.73 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}\end{array}\right)$

$$
H_{\text {vap }}:=\left(\begin{array}{c}
2584.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
2609.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
2584.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
2676.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
1150.5 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \\
1105.8 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
\end{array}\right)
$$

$\mathrm{S}_{\mathrm{liq}}:=\left(\begin{array}{c}0.6493 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 0.8321 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 0.6493 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 1.3069 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 0.3121 \cdot \frac{\mathrm{BTU}}{\mathrm{lb} \cdot r a n k i n e} \\ 0.1326 \cdot \frac{\mathrm{BTU}}{\mathrm{lb} \cdot \mathrm{rankine}}\end{array}\right)$
$\mathrm{S}_{\text {vap }}:=\left(\begin{array}{c}8.1511 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 7.9094 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 8.1511 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 7.3554 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\ 1.7568 \cdot \frac{\mathrm{BTU}}{\mathrm{lb} \mathrm{b}_{\mathrm{m}} \cdot \mathrm{rankine}} \\ 1.9781 \cdot \frac{\mathrm{BTU}}{\mathrm{lb} \cdot \mathrm{rankine}}\end{array}\right)$

$$
\mathrm{V}_{\mathrm{liq}}:=\left(\begin{array}{c}
1.010 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \\
1.017 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \\
1.010 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \\
1.044 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}^{2}} \\
0.0167 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}} \\
0.0161 \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}}}
\end{array}\right)
$$

$\mathrm{W}_{\text {pump }}:=\frac{\overrightarrow{\mathrm{V}_{\text {liq }} \cdot\left(\mathrm{P}_{1}-\mathrm{P}_{4}\right.}}{\eta_{\text {pump }}}$ $\mathrm{H}_{4}:=\mathrm{H}_{\text {liq }}$ $\mathrm{H}_{1}:=\mathrm{H}_{4}+\mathrm{W}_{\text {pump }}$

$$
\mathrm{S}_{3}^{\prime}=\mathrm{S}_{2} \quad \mathrm{x}_{3}:=\frac{\overrightarrow{\mathrm{S}_{2}-\mathrm{S}_{\mathrm{liq}}}}{\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}}
$$

$$
\mathrm{H}_{3}:=\overrightarrow{\left[\mathrm{H}_{2}+\eta_{\text {turbine }} \cdot()^{\prime}{ }_{3}-\mathrm{H}_{2}\right]}
$$

$$
\text { mdot }:=\frac{\mathrm{Wdot}}{\mathrm{~W}_{\text {turbine }}+\mathrm{W}_{\text {pump }}}
$$

$W_{\text {turbine }}:=\mathrm{H}_{3}-\mathrm{H}_{2}$
$\mathrm{Qdot}_{\mathrm{H}}:=\overrightarrow{()\left|\mathrm{H}_{2}-\mathrm{H}_{1}\right| \cdot \operatorname{mdot}}$
$\mathrm{Q} \operatorname{dot}_{\mathrm{C}}:=\mathrm{Qdot}_{\mathrm{H}}+\mathrm{Wdot}$

Answers follow:

$\left(\begin{array}{l}\operatorname{mdot}_{1} \\ \operatorname{mdot}_{2} \\ \operatorname{mdot}_{3}\end{array}\right)=\binom{70.43}{\operatorname{mdot}_{4}}=\left(\begin{array}{l}08.64 \\ 62.13\end{array} \frac{\mathrm{~kg}}{\mathrm{sec}}\right.$

$\binom{\operatorname{mdot}_{5}}{\operatorname{mdot}_{6}}=\left(\begin{array}{l}\left.145.733) \stackrel{\mathrm{lb}_{\mathrm{m}}}{153.598}\right) \overline{\mathrm{sec}}\end{array}\right.$

8.4 Subscripts refer to Fig. 8.3.

Saturated liquid at 50 kPa (point 4)
$\mathrm{V}_{4}:=1.030 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$

$$
\mathrm{H}_{4}:=340.564 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{P}_{4}:=3300 \cdot \mathrm{kPa}
$$

$$
\mathrm{P}_{1}:=50 \cdot \mathrm{kPa}
$$

Saturated liquid and vapor at 50 kPa :

$$
\begin{array}{ll}
\mathrm{H}_{\mathrm{liq}}:=\mathrm{H}_{4} & \mathrm{H}_{\mathrm{vap}}:=2646.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\mathrm{~S}_{\mathrm{liq}}:=1.0912 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} & \mathrm{~S}_{\mathrm{vap}}:=7.5947 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

By Eq. (7.24),

$$
\mathrm{W}_{\text {pump }}:=\mathrm{V}_{4} \cdot\left(\mathrm{P}_{4}-\mathrm{P}_{1} \quad \mathrm{~W}_{\text {pump }}=3.348 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.
$$

$$
\mathrm{H}_{1}:=\mathrm{H}_{4}+\mathrm{W}_{\text {pump }} \quad \mathrm{H}_{1}=343.911 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

The following vectors give values for temperatures of 450, 550, and 650 degC :

$$
\mathrm{H}_{2}:=\left(\begin{array}{l}
3340.6 \\
3565.3 \\
3792.9
\end{array}\right) \mathrm{kg}
$$

$$
\mathrm{S}_{2}:=\left(\begin{array}{l}
7.0373 \\
7.3282 \\
7.5891
\end{array}\right) \cdot \frac{\mathrm{kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\begin{array}{ll}
\mathrm{S}_{3}^{\prime}:=\mathrm{S}_{2} & \mathrm{x}_{3}:=\frac{\mathrm{S}^{\prime} 3-\mathrm{S}_{\text {liq }}}{\mathrm{S}_{\text {vap }}-\mathrm{S}_{\text {liq }}} \\
\mathrm{H}_{3}^{\prime}:=\mathrm{H}_{\text {liq }}+\mathrm{x}_{3} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\text {liq }}\right. & \mathrm{W}_{\text {turbine }}:=\mathrm{H}_{3}^{\prime}-\mathrm{H}_{2} \\
\mathrm{Q}_{\mathrm{H}}:=\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right. & \eta:=\frac{\overrightarrow{\left|\mathrm{W}_{\text {turbine }}+\mathrm{W}_{\text {pump }}\right|}}{\mathrm{Q}_{\mathrm{H}}} \\
\mathrm{x}_{3}^{\prime}=\left(\begin{array}{ll}
0.914 \\
0.959 \mid \\
0.999
\end{array}\right) & \eta=\left(\begin{array}{l}
0.297) \\
0.314 \mid \\
0.332)
\end{array}\right.
\end{array}
$$

8.5 Subscripts refer to Fig. 8.3.

Saturated liquid at 30 kPa (point 4)

$$
\mathrm{V}_{4}:=1.022 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}
$$

$$
\mathrm{H}_{4}:=289.302 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{P}_{1}:=30 \cdot \mathrm{kPa}
$$

Saturated liquid and vapor at 30 kPa :
$\begin{array}{ll}\mathrm{H}_{\text {liq }}:=\mathrm{H}_{4} & \mathrm{H}_{\text {vap }}:=2625.4 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\ \mathrm{~S}_{\mathrm{liq}}:=0.9441 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \quad \mathrm{~S}_{\mathrm{vap}}:=7.7695 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\end{array}$

By Eq. (7.24),
$\mathrm{H}_{1}:=\mathrm{H}_{4}+\mathrm{W}_{\text {pump }} \quad \mathrm{H}_{1}=\left(\begin{array}{l}294.381 \\ 296.936 \\ 299.491\end{array}\right) \frac{\mathrm{kJ}}{\mathrm{kg}}$
The following vectors give values for pressures of 5000,7500 , and 10000 kPa at 600 degC

$$
\mathrm{H}_{2}:=\left(\begin{array}{l}
3664.5 \\
3643.7 \\
3622.7
\end{array}\right) \mathrm{kg}
$$

$$
\mathrm{S}_{2}:=\left(\begin{array}{l}
7.2578 \\
7.0526 \\
6.9013
\end{array}\right) \cdot \frac{\mathrm{kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\begin{array}{ll}
\mathrm{S}_{3}^{\prime}:=\mathrm{S}_{2} & \mathrm{x}_{3}:=\frac{\mathrm{S}_{3}-\mathrm{S}_{\mathrm{liq}}}{\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}} \\
\mathrm{H}_{3}^{\prime}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}_{3} \cdot() \mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\text {liq }} & \mathrm{W}_{\text {turbine }}:=\mathrm{H}_{3}-\mathrm{H}_{2} \\
\mathrm{Q}_{\mathrm{H}}:=\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right. & \eta:=\frac{\left|\mathrm{W}_{\text {turbine }}+\mathrm{W}_{\mathrm{pump}}\right|}{\mathrm{QH}_{\mathrm{H}}} \\
\mathrm{x}_{3}=\left(\begin{array}{ll}
0.925) \\
0.895 \mid \\
0.873
\end{array}\right) & \eta=\left(\begin{array}{l}
0.359) \\
0.375 \mid \\
0.386)
\end{array}\right. \text { Ans. }
\end{array}
$$

8.6 From Table F. 2 at 7000 kPa and 640 degC:

$$
\mathrm{H}_{1}:=3766.4 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{S}_{1}:=7.2200 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\mathrm{S}_{2}^{\prime}:=\mathrm{S}_{1}
$$

For sat. liq. and sat. vap. at 20 kPa :
$\mathrm{H}_{\text {liq }}:=251.453 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{S}_{\text {liq }}:=0.8321 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{H}_{\text {vap }}:=2609.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{S}_{\mathrm{vap}}:=7.9094 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$

The following enthalpies are interpolated in Table F. 2 at four values for intermediate pressure P2:

$\mathrm{H}_{2}^{\prime}:=\left(\begin{array}{l}3023.9 \\ 3032.5 \\ 3040.9 \\ \hline 3049.0\end{array}\right)$

$$
\begin{aligned}
& \eta:=0.78 \quad W_{12}:=\eta \cdot\left(H_{2}^{\prime}-\mathrm{H}_{1}\right.
\end{aligned} \quad \mathrm{H}_{2}:=\mathrm{H}_{1}+\mathrm{W}_{12} .
$$

where the entropy values are by interpolation in Table F. 2 at P2.
$\mathrm{x}_{3}^{\prime}:=\frac{\mathrm{S}_{2}-\mathrm{S}_{\mathrm{liq}}}{\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}}$

$$
\mathrm{H}_{3}^{\prime}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}_{3}^{\prime} \cdot()_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}
$$

$W_{23}:=\eta \cdot\left(H_{3}^{\prime}-H_{2}\right.$
$\Delta \mathrm{W}:=\mathrm{W}_{12}-\mathrm{W}_{23}$

$$
\Delta \mathrm{W}=\left(\begin{array}{cl}
-20.817 \\
-7.811 & \mathrm{~kJ} \\
5.073 & \frac{\mathrm{~kg}}{17.723}
\end{array}\right)
$$

The work difference is essentially linear in P 2 , and we interpolate linearly to find the value of $\mathbf{P} 2$ for which the work difference is zero:
$\operatorname{linterp}\left[\frac{\Delta \mathrm{W}}{\left(\frac{\mathrm{kJ})}{\mathrm{kg}}\right)}, \mathrm{P}_{2}, 0.0\right]=765.16 \mathrm{kPa}$
Also needed are values of $\mathbf{H 2}$ and S 2 at this pressure. Again we do linear interpolations:

$$
\begin{array}{ll}
\operatorname{linterp}\left(\mathrm{P}_{2}, \mathrm{H}_{2}, 765.16 \cdot \mathrm{kPa}=3197.9 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right. & \mathrm{H}_{2}:=3197.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\operatorname{linterp}\left(\mathrm{P}_{2}, \mathrm{~S}_{2}, 765.16 \cdot \mathrm{kPa}=7.4869 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}\right. & \mathrm{S}_{2}:=7.4869 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

We can now find the temperature at this state by interplation in Table F.2. This gives an intermediate steam temperature $t 2$ of 366.6 degC.

The work calculations must be repeated for THIS case:

$$
\begin{array}{ll}
\mathrm{W}_{12}:=\mathrm{H}_{2}-\mathrm{H}_{1} & \mathrm{x}_{3}:=\frac{\mathrm{S}_{2}-\mathrm{S}_{\text {liq }}}{\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\text {liq }}} \\
\mathrm{W}_{12}=-568.5 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{x}_{3} 3=0.94 \\
\mathrm{H}_{3}^{\prime}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}_{3}^{\prime} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\text {liq }}\right. & \mathrm{W}_{23}:=\mathrm{\eta} \cdot\left(\mathrm{H}_{3}^{\prime}-\mathrm{H}_{2}\right. \\
\mathrm{H}_{3}=2.469 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~W}_{23}=-568.46 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{array}
$$

Work $:=\mathrm{W}_{12}+\mathrm{W}_{23}$

$$
\text { Work }=-1137 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

For a single isentropic expansion from the initial pressure to the final pressure, which yields a wet exhaust:
$\mathrm{x}_{3}:=\frac{\mathrm{S}_{1}-\mathrm{S}_{\mathrm{liq}}}{\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}}$
$x^{\prime} 3=0.903$
$\mathrm{W}^{\prime}:=\mathrm{H}_{3}{ }_{3}-\mathrm{H}_{1}$
Whence the overall efficiency is:
$\eta_{\text {overall }}:=\frac{\text { Work }}{\mathrm{W}^{\prime}}$
$\mathrm{H}_{3}^{\prime}:=\mathrm{H}_{\text {liq }}+\mathrm{x}_{3}^{\prime} \cdot\left(\mathrm{H}_{\text {vap }}-\mathrm{H}_{\text {liq }}\right.$
$\mathrm{H}_{3}^{\prime}=2.38 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

$$
\mathrm{W}^{\prime}=-1386.2 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$\mathrm{W}^{\prime}=-1386.2 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\eta_{\text {overall }}=0.8202$
Ans.
8.7

From Table F. 2 for steam at 4500 kPa and 500 degC:
$\mathrm{H}_{2}:=3439.3 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{2}:=7.0311 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{~S}_{3}:=\mathrm{S}_{2}$
By interpolation at 350 kPa and this entropy,
$\mathrm{H}_{3}:=2770.6 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\eta:=0.78$
$\mathrm{H}_{3}=2.918 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$W_{I}:=\eta \cdot\left(H_{3}^{\prime}-H_{2}\right.$
$\mathrm{H}_{3}:=\mathrm{H}_{2}+\mathrm{W}_{\mathrm{I}}$
$\mathrm{W}_{\mathrm{I}}=-521.586 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

Isentropic expansion to 20 kPa :
$S^{\prime} 4:=S_{2} \quad$ Exhaust is wet: for sat. liq. \& vap.:
$\mathrm{H}_{\text {liq }}:=251.453 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{S}_{\text {liq }}:=0.8321 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{H}_{\text {vap }}:=2609.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{S}_{\text {vap }}:=7.9094 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$

$$
\begin{array}{ll}
\mathrm{x}_{4}^{\prime}:=\frac{\mathrm{S}_{4}^{\prime}-\mathrm{S}_{\mathrm{liq}}}{\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}} & \mathrm{H}_{4}^{\prime}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}^{\prime} 4 \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}\right. \\
\mathrm{x}_{4}^{\prime}=0.876 & \mathrm{H}_{4}=2.317 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\mathrm{H}_{4}:=\mathrm{H}_{2}+\eta \cdot\left(\mathrm{H}^{\prime} 4-\mathrm{H}_{2}\right. & \mathrm{H}_{4}=2.564 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\mathrm{H}_{5}:=\mathrm{H}_{\mathrm{liq}} \quad \mathrm{~V}_{5}:=1.017 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \quad \mathrm{P}_{5}:=20 \cdot \mathrm{kPa} \quad \mathrm{P}_{6}:=4500 \cdot \mathrm{kPa} \\
\mathrm{~W}_{\text {pump }}:=\frac{\mathrm{V}_{5} \cdot\left(\mathrm{P}_{6}-\mathrm{P}_{5}\right.}{\eta} & \mathrm{H}_{6}:=\mathrm{H}_{5}+\mathrm{W}_{\text {pump }} \\
\mathrm{W}_{\text {pump }}=5.841 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{H}_{6}=257.294 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{array}
$$

For sat. liq. at 350 kPa (Table F.2):

$$
\mathrm{H}_{7}:=584.270 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

$$
\mathrm{t}_{7}:=138.87 \quad \text { (degC) }
$$

We need the enthalpy of compressed liquid at point 1 , where the pressure is 4500 kPa and the temperature is:
$\mathrm{t}_{1}:=138.87-6$
$\mathrm{T}_{1}:=()_{1}+273.15 \cdot \mathrm{~K}$
$\mathrm{t}_{1}=132.87$

At this temperature, 132.87 degC, interpolation in Table $\mathbf{F} .1$ gives:
$\mathrm{H}_{\mathrm{sat} . \mathrm{liq}}:=558.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{P}_{\mathrm{sat}}:=294.26 \cdot \mathrm{kPa} \quad \mathrm{V}_{\mathrm{sat} . \mathrm{liq}}:=1.073 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
Also by approximation, the definition of the volume expansivity yields:

$$
\begin{aligned}
& \beta:=\frac{1}{V_{\text {sat.liq }}} \cdot\left(\frac{1.083-1.063}{20}\right) \cdot \frac{\mathrm{cm}^{3}}{\mathrm{gm} \cdot \mathrm{~K}} \\
& \beta=9.32 \times 10^{-4} \frac{1}{\mathrm{~K}}
\end{aligned}
$$

By Eq. (7.25),

$$
\mathrm{H}_{1}:=\mathrm{H}_{\text {sat.liq }}+\mathrm{V}_{\text {sat.liq }} \cdot\left(\mathrm{l}-\beta \cdot \mathrm{T}_{1} \cdot\left(\mathrm{P}_{1}-\mathrm{P}_{\text {sat }} \quad \mathrm{H}_{1}=561.305 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.\right.
$$

By an energy balance on the feedwater heater:

$$
\text { mass }:=\frac{\mathrm{H}_{1}-\mathrm{H}_{6}}{\mathrm{H}_{3}-\mathrm{H}_{7}} \cdot \mathrm{~kg}
$$

Work in 2nd section of turbine:

$$
\begin{array}{ll}
\mathrm{W}_{\mathrm{II}}:=(1 \cdot \mathrm{~kg}-\text { mass }) \cdot\left(\mathrm{H}_{4}-\mathrm{H}_{3}\right. & \mathrm{W}_{\mathrm{II}}=-307.567 \mathrm{~kJ} \\
\mathrm{~W}_{\text {net }}:=\left(\mathrm{N}_{\mathrm{I}}+\mathrm{W}_{\text {pump }} \cdot 1 \cdot \mathrm{~kg}+\mathrm{W}_{\mathrm{II}}\right. & \mathrm{W}_{\mathrm{net}}=-823.3 \mathrm{~kJ} \\
\mathrm{Q}_{\mathrm{H}}:=\left(\mathrm{H}_{2}-\mathrm{H}_{1} \cdot 1 \cdot \mathrm{~kg}\right. & \\
\mathrm{Q}_{\mathrm{H}}=2878 \mathrm{~kJ} & \eta:=\frac{\left|\mathrm{W}_{\mathrm{net}}\right|}{\mathrm{Q}_{\mathrm{H}}} \\
\eta=0.2861
\end{array}
$$

Ans.
8.8 Refer to figure in preceding problem.

Although entropy values are not needed for most points in the process, they are recorded here for future use in Problem 15.8.

From Table F. 4 for steam at $\mathbf{6 5 0}$ (psia) \& 900 degF :

$$
\mathrm{H}_{2}:=1461.2 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{~S}_{2}:=1.6671 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \quad \mathrm{S}^{\prime} 3:=\mathrm{S}_{2}
$$

By interpolation at $\mathbf{5 0}(\mathrm{psia})$ and this entropy,
$\mathrm{H}_{3}^{\prime}:=1180.4 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\eta:=0.78$
$W_{I}:=\eta \cdot\left(H^{\prime}{ }_{3}-\mathrm{H}_{2}\right.$
$\mathrm{H}_{3}:=\mathrm{H}_{2}+\mathrm{W}_{\mathrm{I}}$
$\mathrm{H}_{3}=1242.2 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{W}_{\mathrm{I}}=-219.024 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{S}_{3}:=1.7431 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$

Isentropic expansion to 1(psia): $\quad \mathrm{S}^{\prime} 4:=\mathrm{S}_{2}$
Exhaust is wet: for sat. liq. \& vap.:
$\begin{aligned} \mathrm{H}_{\mathrm{liq}} & :=69.73 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \\ \mathrm{S}_{\text {liq }} & :=0.1326 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}\end{aligned}$
$\mathrm{x}_{4}^{\prime}:=\frac{\mathrm{S}_{4}^{\prime}-\mathrm{S}_{\mathrm{liq}}}{\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}}$
$\mathrm{x}^{\prime} 4=0.831$
$\mathrm{H}_{4}:=\mathrm{H}_{2}+\eta \cdot()^{\prime} \mathrm{H}_{4}-\mathrm{H}_{2}$
$\mathrm{x}_{4}:=\frac{\mathrm{H}_{4}-\mathrm{H}_{\mathrm{liq}}}{\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}}$
$\mathrm{x}_{4}=0.944$
$\mathrm{P}_{5}:=1 \cdot \mathrm{psi}$
$\mathrm{W}_{\text {pump }}:=\frac{\mathrm{V}_{5} \cdot\left(\mathrm{P}_{6}-\mathrm{P}_{5}\right.}{\eta}$
$\mathrm{W}_{\text {pump }}=2.489 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{P}_{6}:=650 \cdot \mathrm{psi}$

$$
\mathrm{H}_{6}:=\mathrm{H}_{5}+\mathrm{W}_{\text {pump }} \quad \mathrm{H}_{6}=72.219 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

For sat. liq. at 50(psia) (Table F.4):

$$
\mathrm{H}_{7}:=250.21 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{t}_{7}:=281.01 \quad \mathrm{~S}_{7}:=0.4112 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

We need the enthalpy of compressed liquid at point 1 , where the pressure is $\mathbf{6 5 0}(\mathrm{psia})$ and the temperature is
$\mathrm{t}_{1}:=281.01-11$

$$
\mathrm{T}_{1}:=()_{1}+459.67 \cdot \text { rankine }
$$

$$
\mathrm{t}_{1}=270.01
$$

At this temperature, 270.01 degF , interpolation in Table F. 3 gives:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{sat}}:=41.87 \cdot \mathrm{psi} \\
& \mathrm{H}_{\text {sat.liq }}:=238.96 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
\end{aligned}
$$

The definition of the volume expansivity yields:

$$
\begin{aligned}
& \beta:=\frac{1}{\mathrm{~V}_{\text {sat.liq }}} \cdot\left(\frac{0.01726-0.01709}{20}\right) \cdot \frac{\mathrm{ft}^{3}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \quad \mathrm{P}_{1}:=\mathrm{P}_{6} \\
& \beta=4.95 \times 10^{-5} \frac{1}{\text { rankine }}
\end{aligned}
$$

By Eq. (7.25) and (7.26),

$$
\begin{array}{ll}
\mathrm{H}_{1}:=\mathrm{H}_{\mathrm{sat} . l \mathrm{liq}}+\mathrm{V}_{\mathrm{sat} . l \mathrm{liq}} \cdot\left(\mathrm{l}-\beta \cdot \mathrm{T}_{1} \cdot\left(\mathrm{P}_{1}-\mathrm{P}_{\mathrm{sat}}\right.\right. & \mathrm{H}_{1}=257.6 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \\
\mathrm{~S}_{1}:=\mathrm{S}_{\mathrm{sat} . \mathrm{liq}}+\mathrm{V}_{\mathrm{sat} . \mathrm{liq}} \cdot \beta \cdot\left(\mathrm{P}_{1}-\mathrm{P}_{\mathrm{sat}}\right. & \mathrm{S}_{1}=0.397 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
\end{array}
$$

By an energy balance on the feedwater heater:

$$
\text { mass }:=\frac{\mathrm{H}_{1}-\mathrm{H}_{6}}{\mathrm{H}_{3}-\mathrm{H}_{7}} \cdot \mathrm{lb}_{\mathrm{m}}
$$

$$
\text { mass }=0.18687 \mathrm{lb}_{\mathrm{m}} \quad \text { Ans. }
$$

Work in 2nd section of turbine:

$\mathrm{W}_{\mathrm{II}}:=() \cdot 1 \mathrm{~b}_{\mathrm{m}}-$ mass $\cdot\left(\mathrm{H}_{4}-\mathrm{H}_{3}\right.$
$\mathrm{W}_{\mathrm{II}}=-158.051 \mathrm{BTU}$
$\mathrm{W}_{\text {net }}:=\left(\mathrm{N}_{\mathrm{I}}+\mathrm{W}_{\text {pump }} \cdot 1 \cdot 1 \mathrm{~b}_{\mathrm{m}}+\mathrm{W}_{\text {II }}\right.$
$\mathrm{W}_{\text {net }}=-374.586 \mathrm{BTU}$
$\mathrm{Q}_{\mathrm{H}}:=\left(\mathrm{H}_{2}-\mathrm{H}_{1} \cdot 1 \cdot \mathrm{lb}_{\mathrm{m}}\right.$
$\mathrm{Q}_{\mathrm{H}}=1.204 \times 10^{3} \mathrm{BTU}$
$\eta:=\frac{\left|W_{\text {net }}\right|}{Q_{H}} \quad \eta=0.3112 \quad$ Ans.
8.9

Steam at $6500 \mathrm{kPa} \& 600 \mathrm{degC}$ (point 2) Table F.2:
$\mathrm{H}_{2}:=3652.1 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

$$
\mathrm{S}_{2}:=7.1258 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\mathrm{P}_{2}:=6500 \cdot \mathrm{kPa}
$$

At point 3 the pressure must be such that the steam has a condensation temperature in feedwater heater I of $195 \mathrm{degC}, 5 \mathrm{deg}$ higher than the temperature of the feed water to the boiler at point 1. Its saturation pressure, corresponding to 195 deg C, from Table $F .1$, is 1399.0 kPa . The steam at point 3 is superheated vapor at this pressure, and if expansion from P 2 to P 3 is isentropic,
$\mathrm{S}_{3}:=\mathrm{S}_{2} \quad$ By double interpolation in Table F.2,

$$
\begin{array}{lll}
\mathrm{H}_{3}^{\prime}:=3142.6 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \eta:=0.80 & \mathrm{~W}_{\mathrm{I}}:=\eta \cdot\left(\mathrm{H}_{3}^{\prime}-\mathrm{H}_{2}\right. \\
\mathrm{H}_{3}:=\mathrm{H}_{2}+\mathrm{W}_{\mathrm{I}} & \mathrm{H}_{3}=3.244 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~W}_{\mathrm{I}}=-407.6 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{array}
$$

$$
\mathrm{H}_{10}:=829.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Similar calculations are required for feedwater heater II.
At the exhaust conditions of 20 kPa , the properties of sat. liq. and sat.
vap. are:
$\mathrm{H}_{\text {liq }}:=251.453 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{\mathrm{vap}}:=2609.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{V}_{\text {liq }}:=1.017 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}}$
$\mathrm{S}_{\text {liq }}:=0.8321 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{S}_{\text {vap }}:=7.9094 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$

If we find $t 7$, then $\mathbf{t 8}$ is the mid-temperature between $\mathbf{t 7}$ and $\mathbf{t} \mathbf{1}(190 \mathrm{degC})$, and that fixes the pressure of stream 4 so that its saturation temperature is $5 \mathbf{d e g C}$ higher. At point 6, we have saturated liquid at 20 kPa , and its properties from Table F. 2 are:

$$
\begin{array}{ll}
\mathrm{t}_{\mathrm{sat}}:=60.09 & \mathrm{~T}_{\mathrm{sat}}:=\left(\mathrm{t}_{\mathrm{sat}}+273.15 \cdot \mathrm{~K}\right. \\
\mathrm{H}_{6}:=\mathrm{H}_{\mathrm{liq}} & \mathrm{~V}_{6}:=\mathrm{V}_{\mathrm{lqq}}
\end{array}
$$

$W_{\text {pump }}:=\frac{\mathrm{V}_{6} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{6}\right.}{\eta}$

$$
\mathrm{W}_{\text {pump }}=8.238 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \Delta \mathrm{H}_{67}:=\mathrm{W}_{\text {pump }}
$$

We apply Eq. (7.25) for the calculation of the temperature change from point 6 to point 7. For this we need values of the heat capacity and volume expansivity of water at about 60 degC. They can be estimated from data in Table F.1:

$$
\begin{array}{ll}
\beta:=\frac{1}{\mathrm{~V}_{\mathrm{liq}}} \cdot\left(\frac{1.023-1.012}{20}\right) \cdot \frac{\mathrm{cm}^{3}}{\mathrm{gm} \cdot \mathrm{~K}} & \mathrm{C}_{\mathrm{P}}:=\frac{272.0-230.2}{10} \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\beta=5.408 \times 10^{-4} \frac{1}{\mathrm{~K}} & \mathrm{C}_{\mathrm{P}}=4.18 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

Solving Eq. (7.25) for delta T gives:

$$
\begin{array}{ll}
\Delta \mathrm{T}_{67}:=\frac{\Delta \mathrm{H}_{67}-\mathrm{V}_{\text {liq }} \cdot() \mathrm{l}-\beta \cdot \mathrm{T}_{\text {sat }} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{6}\right.}{\mathrm{C}_{\mathrm{P}}} & \Delta \mathrm{~T}_{67}=0.6 \\
\mathrm{t}_{7}:=\mathrm{t}_{\text {sat }}+\frac{\Delta \mathrm{T}_{67}}{\mathrm{~K}} & \mathrm{t}_{9}:=\frac{190-\mathrm{t}_{7}}{2}+\mathrm{t}_{7}
\end{array} \quad \mathrm{t}_{8}:=\mathrm{t}_{9}+5
$$

$\mathrm{t}_{7}=60.768$

$\mathrm{t}_{8}=130.38$	From Table F.1:	$\mathrm{H}_{8}:=547.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{7}:=\mathrm{H}_{\mathrm{liq}}+\Delta \mathrm{H}_{67}$	$\mathrm{t}_{9}=125.38$	$\mathrm{~T}_{9}:=\left(273.15+\mathrm{t}_{9} \cdot \mathrm{~K}\right.$
$\mathrm{H}_{7}=259.691 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$		

At points 9 and 1, the streams are compressed liquid ($\mathrm{P}=6500 \mathrm{kPa}$), and we find the effect of pressure on the liquid by Eq. (7.25). Values by interpolation in Table F. 1 at saturation temperatures $\mathbf{t} 9$ and $\mathbf{t 1}$:

Now we can make an energy balance on feedwater heater I to find the mass of steam condensed:

$$
\mathrm{m}_{\mathrm{I}}:=\frac{\mathrm{H}_{1}-\mathrm{H}_{9}}{\mathrm{H}_{3}-\mathrm{H}_{10}} \cdot \mathrm{~kg}
$$

$$
\mathrm{m}_{\mathrm{I}}=0.11563 \mathrm{~kg}
$$

Ans.

$$
\begin{aligned}
& \begin{array}{lll}
\mathrm{H}_{\mathrm{sat} .9}:=526.6 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~V}_{\text {sat. } 9}:=1.065 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \quad & \mathrm{P}_{\mathrm{sat} .9}:=234.9 \cdot \mathrm{kPa} \\
\mathrm{H}_{\text {sat. } 1}:=807.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~V}_{\text {sat. } 1}:=1.142 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \quad & \mathrm{P}_{\mathrm{sat} .1}:=1255.1 \cdot \mathrm{kPa} \\
\Delta \mathrm{~V}_{9}:=(1.075-1.056) \cdot \frac{\mathrm{cm}^{3}}{\mathrm{gm}} \quad \Delta \mathrm{~V}_{1}:=(1.156-1.128) \cdot \frac{\mathrm{cm}^{3}}{\mathrm{gm}}
\end{array} \\
& \begin{aligned}
& \Delta \mathrm{T}:=20 \cdot \mathrm{~K} \beta_{9}:=\frac{1}{\mathrm{~V}_{\text {sat. } 9}} \cdot \frac{\Delta \mathrm{~V}_{9}}{\Delta \mathrm{~T}} \quad \\
& \beta_{1}:=\frac{1}{\mathrm{~V}_{\text {sat. } 1}} \cdot \frac{\Delta \mathrm{~V}_{1}}{\Delta \mathrm{~T}} \\
& \beta_{9}=8.92 \times 10^{-4} \frac{1}{\mathrm{~K}} \beta_{1}=1.226 \times 10^{-3} \frac{1}{\mathrm{~K}}
\end{aligned} \\
& \mathrm{H}_{9}:=\mathrm{H}_{\text {sat. } 9}+\mathrm{V}_{\text {sat. } 9} \cdot\left(\mathrm{fl}-\beta_{9} \cdot \mathrm{~T}_{9} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{\text {sat. } 9}\right.\right. \\
& \mathrm{H}_{9}=530.9 \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \mathrm{~T}_{1}:=(273.15+190) \cdot \mathrm{K} \\
& \mathrm{~T}_{1}=463.15 \mathrm{~K} \\
& \mathrm{H}_{1}:=\mathrm{H}_{\text {sat. } 1}+\mathrm{V}_{\text {sat. } 1} \cdot\left(\mathrm{l}-\beta_{1} \cdot \mathrm{~T}_{1} \cdot\left(\mathrm{P}_{2}-\mathrm{P}_{\text {sat. } 1}\right.\right. \\
& \mathrm{H}_{1}=810.089 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

The temperature at point $8, \mathbf{t 8}=\mathbf{1 3 0 . 3 8}$ (see above) is the saturation temperture in feedwater heater II. The saturation pressure by interpolation in Table F. 1 is 273.28 kPa.

Isentropic expansion of steam from the initial conditions to this pressure results in a slightly superheated vapor, for which by double interpolation in Table F.2:
$\mathrm{H}^{\prime} 4:=2763.2 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
Then $\quad \mathrm{H}_{4}:=\mathrm{H}_{2}+\eta \cdot\left(\mathrm{H}_{4}^{\prime}-\mathrm{H}_{2}\right.$
$\mathrm{H}_{4}=2.941 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

We can now make an energy balance on feedwater heater II to find the mass of steam condensed:

$$
\mathrm{m}_{\mathrm{II}}:=\frac{\left(\mathrm{H}_{9}-\mathrm{H}_{7} \cdot 1 \cdot \mathrm{~kg}-\mathrm{m}_{\mathrm{I}} \cdot\left(\mathrm{H}_{10}-\mathrm{H}_{8}\right.\right.}{\mathrm{H}_{4}-\mathrm{H}_{8}} \quad \mathrm{~m}_{\mathrm{II}}=0.09971 \mathrm{~kg}
$$

Ans.

The final stage of expansion in the turbine is to 20 kPa , where the exhaust is wet. For isentropic expansion,
$\mathrm{x}_{5}:=\frac{\mathrm{S}_{2}-\mathrm{S}_{\mathrm{liq}}}{\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}}$

$$
\mathrm{H}_{5}^{\prime}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}_{5}^{\prime} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}\right.
$$

$\mathrm{x}^{\prime} 5=0.889$

$$
\mathrm{H}^{\prime} 5=2.349 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Then

$$
\mathrm{H}_{5}:=\mathrm{H}_{2}+\eta \cdot()^{\prime} \mathrm{H}_{5}-\mathrm{H}_{2}
$$

$$
\mathrm{H}_{5}=2609.4 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

The work of the turbine is:
$\mathrm{W}_{\text {turbine }}:=\mathrm{W}_{\mathrm{I}} \cdot 1 \cdot \mathrm{~kg}+() \mathrm{l} \cdot \mathrm{kg}-\mathrm{m}_{\mathrm{I}} \cdot\left(\mathrm{H}_{4}-\mathrm{H}_{3} \quad \ldots\right.$

$$
+() \cdot \mathrm{kg}-\mathrm{m}_{\mathrm{I}}-\mathrm{m}_{\mathrm{II}} \cdot\left(\mathrm{H}_{5}-\mathrm{H}_{4}\right.
$$

$\mathrm{W}_{\text {turbine }}=-936.2 \mathrm{~kJ}$
$\mathrm{Q}_{\mathrm{H}}:=\left(\mathrm{H}_{2}-\mathrm{H}_{1} \cdot 1 \cdot \mathrm{~kg}\right.$
$\mathrm{Q}_{\mathrm{H}}=2.842 \times 10^{3} \mathrm{~kJ}$
$\eta:=\frac{\left|W_{\text {turbine }}+W_{\text {pump }} \cdot 1 \cdot \mathrm{~kg}\right|}{\mathrm{Q}_{\mathrm{H}}}$
$\eta=0.3265 \quad$ Ans.
8.10 Isobutane: $\quad \mathrm{T}_{\mathrm{c}}:=408.1 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=36.48 \cdot$ bar $\quad \omega:=0.181$

For isentropic expansion in the turbine, let the initial state be represented by symbols with subscript zero and the final state by symbols with no subscript. Then

$$
\begin{array}{rll}
\mathrm{T}_{0}:=533.15 \cdot \mathrm{~K} & \mathrm{P}_{0}:=4800 \cdot \mathrm{kPa} \quad \mathrm{P}:=450 \cdot \mathrm{kPa} \\
\Delta \mathrm{~S}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} & \text { For the heat capacity of isobutane: } \\
\mathrm{A}:=1.677 & \mathrm{~B}:=\frac{37.853 \cdot 10^{-3}}{\mathrm{~K}} & \mathrm{C}:=\frac{-11.945 \cdot 10^{-6}}{\mathrm{~K}^{2}} \\
\mathrm{~T}_{\mathrm{r} 0}:=\frac{\mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{~T}_{\mathrm{r} 0}=1.3064 & \mathrm{P}_{\mathrm{r} 0}:=\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r} 0}=1.3158 \\
& & \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad
\end{array}
$$

Use generalized second-virial correlation:
The entropy change is given by Eq. (6.92) combined with Eq. (5.15) with $\mathbf{D}=0$:

$$
\tau:=0.8 \quad \text { (guess) }
$$

Given

$$
\Delta \mathrm{S}=\mathrm{R} \cdot\left[\mathrm{~A} \cdot \ln \left(t+\left[\mathrm{B} \cdot \mathrm{~T}_{0}+\mathrm{C} \cdot \mathrm{~T}_{0}^{2} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(t-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right) \ldots\right] .{ }^{2}\right)\right]
$$

$$
\begin{array}{lll}
\tau:=\text { Find }(t & \tau=0.852 & \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \\
& \mathrm{~T}=454.49 \mathrm{~K} \\
& \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{~T}_{\mathrm{r}}=1.114
\end{array}
$$

The enthalpy change for this final temperature is given by Eq. (6.91), with HRB at the above T :

$$
\Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{0}, \mathrm{~T}, 1.677,37.853 \cdot 10^{-3},-11.945 \cdot 10^{-6}, 0.0
$$

$$
\Delta \mathrm{H}_{\mathrm{ig}}=-1.141 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\begin{array}{ll}
\Delta \mathrm{H}_{\text {turbine }}:=\Delta \mathrm{H}_{\mathrm{ig}}+\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot\left(\mathrm { HRB } \left(\Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}},\right.\right. & -\mathrm{HRB}() \Gamma_{\mathrm{r} 0}, \boldsymbol{B}_{\mathrm{r} 0}, \\
\Delta \mathrm{H}_{\text {turbine }}=-8850.6 \frac{\mathrm{~J}}{\mathrm{~mol}} & \mathrm{~W}_{\text {turbine }}:=\Delta \mathrm{H}_{\text {turbine }}
\end{array}
$$

The work of the pump is given by Eq. (7.24), and for this we need an estimate of the molar volume of isobutane as a saturated liquid at 450 kPa . This is given by Eq. (3.72). The saturation temperature at 450 kPa is given by the Antoine equation solved for t degC:
$\mathrm{VP}:=450 \cdot \mathrm{kPa}$

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{vp}}:=14.57100 & \mathrm{~B}_{\mathrm{vp}}:=2606.775 \\
\mathrm{C}_{\mathrm{vp}}:=274.068 \\
\mathrm{~B}_{\mathrm{sat}}:=\frac{\mathrm{T}_{\mathrm{vat}}:=()_{\mathrm{sat}}+273.15 \cdot \mathrm{~K}}{\mathrm{~A}_{\mathrm{vp}}-\ln \left(\frac{\mathrm{VP}}{\mathrm{kPa}}\right)}-\mathrm{C}_{\mathrm{vp}} \quad \mathrm{t}_{\mathrm{sat}}=34 & \mathrm{~T}_{\mathrm{sat}}=307.15 \mathrm{~K}
\end{array}
$$

$$
\mathrm{V}_{\mathrm{c}}:=262.7 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{Z}_{\mathrm{c}}:=0.282 \quad \mathrm{~T}_{\mathrm{rsat}}:=\frac{\mathrm{T}_{\mathrm{sat}}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{rsat}}=0.753
$$

$$
\mathrm{W}_{\text {pump }}:=\mathrm{V}_{\text {liq }} \cdot\left(\mathrm{P}_{0}-\mathrm{P} \quad \mathrm{~W}_{\text {pump }}=488.8 \frac{\mathrm{~J}}{\mathrm{~mol}}\right.
$$

The flow rate of isobutane can now be found:

$$
\text { mdot }:=\frac{1000 \cdot \mathrm{~kW}}{\left|\mathrm{~W}_{\text {turbine }}+\mathrm{W}_{\text {pump }}\right|}
$$

Ans.

The enthalpy change of the isobutane in the cooler/condenser is calculated in two steps:
a. Cooling of the vapor from 454.48 to 307.15 K
b. Condensation of the vapor at 307.15 K

Enthalpy change of cooling: HRB at the initial state has already been calculated. For saturated vapor at $\mathbf{3 0 7 . 1 5} \mathrm{K}$:

$$
\Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma, \mathrm{T}_{\mathrm{sat}}, 1.677,37.853 \cdot 10^{-3},-11.945 \cdot 10^{-6}, 0.0
$$

$$
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{ig}} & =-1.756 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\Delta \mathrm{H}_{\mathrm{a}} & :=\Delta \mathrm{H}_{\mathrm{ig}}+\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot\left(\mathrm{HRB}() \Gamma_{\mathrm{rsat}}, B_{\mathrm{r}}, \quad-\operatorname{HRB}() \Gamma_{\mathrm{r}}, B_{\mathrm{r}}\right. \\
\Delta \mathrm{H}_{\mathrm{a}} & =-18082 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

For the condensation process, we estimate the latent heat by Eqs. (4.12) and (4.13):
8.11 Isobutane: $\mathrm{T}_{\mathrm{c}}:=408.1 \cdot \mathrm{~K}$

$$
\mathrm{P}_{\mathrm{c}}:=36.48 \cdot \mathrm{bar}
$$

$$
\omega:=0.181
$$

For isentropic expansion in the turbine, let the initial (inlet) state be represented by symbols with subscript zero and the final (exit) state by symbols with no subscript. Then
$\mathrm{T}_{0}:=413.15 \cdot \mathrm{~K}$
$\Delta \mathrm{~S}:=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{n}}:=261.4 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{rn}}:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{rn}}=0.641 \\
& \Delta \mathrm{H}_{\mathrm{n}}:=\frac{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{n}} \cdot 1.092 \cdot\left(\ln \left(\frac{\mathrm{P}_{\mathrm{c}}}{\mathrm{bar}}\right)-1.013\right)}{0.930-\mathrm{T}_{\mathrm{rn}}} \\
& \Delta \mathrm{H}_{\mathrm{n}}=2.118 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
& \Delta \mathrm{H}_{\mathrm{b}}:=-\Delta \mathrm{H}_{\mathrm{n}} \cdot\left(\frac{1-\mathrm{T}_{\mathrm{rsat}}}{1-\mathrm{T}_{\mathrm{rn}}}\right)^{0.38} \\
& \Delta \mathrm{H}_{\mathrm{b}}=-18378 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
& Q \operatorname{dot}_{\text {out }}:=\operatorname{mdot} \cdot\left(\Delta \mathrm{H}_{\mathrm{a}}+\Delta \mathrm{H}_{\mathrm{b}}\right. \\
& \text { Qdot }_{\text {in }}:=\left|\mathrm{W}_{\text {turbine }}+\mathrm{W}_{\text {pump }}\right| \cdot \operatorname{mdot}+\left|\operatorname{Qdot}_{\text {out }}\right| \quad \eta:=\frac{1000 \cdot \mathrm{~kW}}{\operatorname{Qdot}_{\mathrm{in}}} \\
& \text { Qdot }_{\text {out }}=-4360 \mathrm{~kW} \\
& \text { Qdot }{ }_{\mathrm{in}}=5360 \mathrm{~kW} \\
& \eta=0.187 \\
& \text { Ans. }
\end{aligned}
$$

For the heat capacity of isobutane:
$\mathrm{A}:=1.677$

$\mathrm{C}:=\frac{-11.945 \cdot 10^{-6}}{\mathrm{~K}^{2}}$
$\mathrm{T}_{\mathrm{r} 0}:=\frac{\mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r} 0}=1.0124$
$\mathrm{P}_{\mathrm{r} 0}:=\frac{\mathrm{P}_{0}}{\mathrm{P}_{\mathrm{c}}} \quad \quad \mathrm{P}_{\mathrm{r} 0}=0.932$
$\mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}=0.123$

Use Lee/Kesler correlation for turbine-inlet state, designating values by HRLK and SRLK:

$$
\operatorname{HRLK}_{0}:=-1.530 \quad \text { SRLK }_{0}:=-1.160
$$

The entropy change is given by Eq. (6.92) combined with Eq. (5.15) with $\mathbf{D}=0$

$$
\tau:=0.8 \quad \text { (guess) }
$$

Given

$$
\begin{aligned}
& \Delta \mathrm{S}=\mathrm{R} \cdot\left[\begin{array}{l}
\mathrm{A} \cdot \ln \left(t+\left[\mathrm{B} \cdot \mathrm{~T}_{0}+\mathrm{C} \cdot \mathrm{~T}_{0}{ }^{2} \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot\left(t-1-\ln \left(\frac{\mathrm{P}}{\mathrm{P}_{0}}\right) \ldots\right.\right. \\
+\operatorname{SRB}\left(\frac{\mathrm{T}_{0} \cdot \tau}{\mathrm{~T}_{\mathrm{c}}}, \mathrm{BB}_{\mathrm{r}},\right)-\mathrm{SRLK}_{0}
\end{array}\right] \\
& \tau:=\operatorname{Find}\left(t \quad \tau=0.809 \quad \mathrm{~T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=334.08 \mathrm{~K}\right. \\
& \mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.819
\end{aligned}
$$

The enthalpy change for this final temperature is given by Eq. (6.91), with HRB at the above T:

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \operatorname{ICPH}()_{0}, \mathrm{~T}, 1.677,37.853 \cdot 10^{-3},-11.945 \cdot 10^{-6}, 0.0 \\
& \Delta \mathrm{H}_{\mathrm{ig}}=-9.3 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \\
& \Delta \mathrm{H}_{\text {turbine }}:=\Delta \mathrm{H}_{\mathrm{ig}}+\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot\left(\mathrm{HRB}() \Gamma_{\mathrm{r}}, B_{\mathrm{r}}, \quad-\mathrm{HRLK}_{0}\right. \\
& \Delta \mathrm{H}_{\text {turbine }}=-4852.6 \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~W}_{\text {turbine }}:=\Delta \mathrm{H}_{\text {turbine }}
\end{aligned}
$$

The work of the pump is given by Eq. (7.24), and the required value for the molar volume of saturated-liquid isobutane at $450 \mathrm{kPa}(34 \mathrm{degC})$ is the value calculated in Problem 8.10:
$\mathrm{V}_{\text {liq }}:=112.36 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$

$$
\mathrm{W}_{\text {pump }}:=\mathrm{V}_{\mathrm{liq}} \cdot\left(\mathrm{P}_{0}-\mathrm{P} \quad \mathrm{~W}_{\text {pump }}=331.462 \frac{\mathrm{~J}}{\mathrm{~mol}}\right.
$$

For the cycle the net power OUTPUT is:

$$
\begin{aligned}
\text { mdot }:=\frac{75}{\text { molwt }} \cdot \frac{\mathrm{kg}}{\mathrm{sec}} & \text { Wdot }:=-\operatorname{mdot} \cdot() \mathrm{W}_{\text {turbine }}+\mathrm{W}_{\text {pump }} \\
& \text { Wdot }=5834 \mathrm{~kW} \quad \text { Ans. }
\end{aligned}
$$

The enthalpy change of the isobutane in the cooler/condenser is calculated in two steps:
a. Cooling of the vapor from 334.07 to 307.15 K
b. Condensation of the vapor at 307.15 K

Enthalpy change of cooling: HRB at the initial state has already been calculated. For saturated vapor at 307.15 K it was found in Problem 8.10 as:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{sat}}:=307.15 \mathrm{~K} \quad \mathrm{~T}_{\mathrm{rsat}}:=\frac{\mathrm{T}_{\mathrm{sat}}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{rsat}}=0.753 \\
& \Delta \mathrm{H}_{\mathrm{ig}}:=\mathrm{R} \cdot \mathrm{ICPH}() \Gamma, \mathrm{T}_{\mathrm{sat}}, 1.677,37.853 \cdot 10^{-3},-11.945 \cdot 10^{-6}, 0.0 \\
& \Delta \mathrm{H}_{\mathrm{ig}}=-2.817 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Delta \mathrm{H}_{\mathrm{a}}:=\Delta \mathrm{H}_{\mathrm{ig}}+\mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}} \cdot() \mathrm{HRB}() \Gamma_{\mathrm{rsat}}, B_{\mathrm{r}}, \quad-\operatorname{HRB}() \Gamma_{\mathrm{r}}, \mathbb{B}_{\mathrm{r}}, \\
& \Delta \mathrm{H}_{\mathrm{a}}=-2975 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

For the condensation process, the enthalpy change was found in Problem 8.10:

$$
\Delta \mathrm{H}_{\mathrm{b}}:=-18378 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\begin{aligned}
& \text { Qdot }_{\text {out }}:=\operatorname{mdot} \cdot\left(\Delta \mathrm{H}_{\mathrm{a}}+\Delta \mathrm{H}_{\mathrm{b}}\right. \\
& \text { Qdot }_{\text {out }}=-27553 \mathrm{~kW} \text { Ans. }
\end{aligned}
$$

For the heater/boiler:
Qdot ${ }_{\text {in }}:=W \operatorname{dot}+\mid$ Qdot $_{\text {out }} \mid \quad$ Qdot $_{\text {in }}=33387 \mathrm{~kW}$ Ans.
$\eta:=\frac{\text { Wdot }}{\text { Qdot }_{\mathrm{in}}}$
$\eta=0.175$
Ans.

We now recalculate results for a cycle for which the turbine and pump each have an efficiency of 0.8 . The work of the turbine is $\mathbf{8 0 \%}$ of the value calculated above, i.e.,
$\mathrm{W}_{\text {turbine }}^{\prime}:=0.8 \cdot \mathrm{~W}_{\text {turbine }}$

$$
\mathrm{W}_{\text {turbine }}^{\prime}=-3882 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The work of the pump is:
$\mathrm{W}_{\text {'pump }}^{\prime}:=\frac{\mathrm{W}_{\text {pump }}}{0.8}$

$$
\mathrm{W}_{\text {pump }}^{\prime}=414.3 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Wdot :=-mdot•(W^{\prime} 'turbine $+\mathrm{W}_{\text {'pump }}^{\prime}$
W dot $=4475 \mathrm{~kW}$
Ans.
The decrease in the work output of the turbine shows up as an increase in the heat transferred out of the cooler condenser. Thus

Qdot $_{\text {out }}:=$ Qdot $_{\text {out }}+() W_{\text {turbine }}-W_{\text {turbine }}^{\prime} \cdot m$ dot
Qdot $_{\text {out }}=-28805 \mathrm{~kW} \quad$ Ans.
The increase in pump work shows up as a decrease in the heat added in the heater/boiler. Thus

Qdot $_{\mathrm{in}}:=\mathrm{Qdot}_{\mathrm{in}}-()^{\prime} \mathrm{p}_{\text {pump }}-\mathrm{W}_{\text {pump }} \cdot \operatorname{mdot} \quad \mathrm{Qdot}_{\mathrm{in}}=33280 \mathrm{~kW}$
Ans.
$\eta:=\frac{W \operatorname{dot}}{\text { Qdot }_{\mathrm{in}}} \quad \eta=0.134 \quad$ Ans.
8.13 Refer to Fig. 8.10. $\quad C_{P}:=\frac{7}{2} \cdot R$
$\mathrm{P}_{\mathrm{C}}:=1 \cdot \mathrm{bar}$

$$
\mathrm{T}_{\mathrm{C}}:=293.15 \cdot \mathrm{~K}
$$

$$
P_{D}:=5 \cdot \mathrm{bar}
$$

$$
\gamma:=1.4
$$

By Eq. (3.30c):

$$
\begin{array}{lll}
\frac{\mathrm{V}_{\mathrm{C}}}{\mathrm{~V}_{\mathrm{D}}}=\left(\frac{\mathrm{P}_{\mathrm{D}}}{\mathrm{P}_{\mathrm{C}}}\right)^{\frac{1}{\gamma}} & \text { or } \quad \mathrm{r}:=\left(\frac{\mathrm{P}_{\mathrm{D}}}{\mathrm{P}_{\mathrm{C}}}\right)^{\frac{1}{\gamma}} & \mathrm{r}=3.157 \quad \text { Ans. } \\
\text { Eq. (3.30b): } & \mathrm{T}_{\mathrm{D}}:=\mathrm{T}_{\mathrm{C}} \cdot\left(\frac{\mathrm{P}_{\mathrm{D}}}{\mathrm{P}_{\mathrm{C}}}\right)^{\frac{\gamma-1}{\gamma}} & \mathrm{Q}_{\mathrm{DA}}:=1500 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{array}
$$

$$
\mathrm{P}_{\mathrm{C}} \cdot \mathrm{~V}_{\mathrm{C}}^{\gamma}=\mathrm{P}_{\mathrm{D}} \cdot \mathrm{~V}_{\mathrm{D}}^{\gamma}
$$

$$
\mathrm{Q}_{\mathrm{DA}}=\mathrm{C}_{\mathrm{P}} \cdot() \mathrm{\Gamma}_{\mathrm{A}}-\mathrm{T}_{\mathrm{D}} \quad \mathrm{~T}_{\mathrm{A}}:=\frac{\mathrm{Q}_{\mathrm{DA}}}{\mathrm{C}_{\mathrm{P}}}+\mathrm{T}_{\mathrm{D}} \quad \mathrm{~T}_{\mathrm{A}}=515.845 \mathrm{~K}
$$

$$
r_{e}=\frac{V_{B}}{V_{A}}=\frac{V_{C}}{V_{A}}=\frac{\frac{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{C}}}}{\frac{\mathrm{R} \cdot \mathrm{~T}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{A}}}}
$$

$$
\mathrm{P}_{\mathrm{A}}:=\mathrm{P}_{\mathrm{D}} \quad \mathrm{r}_{\mathrm{e}}:=\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{~T}_{\mathrm{A}}} \cdot \frac{\mathrm{P}_{\mathrm{A}}}{\mathrm{P}_{\mathrm{C}}}
$$

$$
\mathrm{r}_{\mathrm{e}}=2.841 \quad \text { Ans }
$$

8.14

Eq. (8.12) now becomes:
$\eta:=\overline{\left[1-\left(\frac{1}{\text { Ratio }}\right)^{\frac{\gamma-1}{\gamma}}\right]}$

Ans.
8.16

Figure shows the air-standard turbojet power plant on a PV diagram.
$\mathrm{T}_{\mathrm{A}}:=303.15 \cdot \mathrm{~K}$
$\mathrm{T}_{\mathrm{C}}:=1373.15 \cdot \mathrm{~K}$
$\mathrm{C}_{\mathrm{P}}:=\frac{7}{2} \cdot \mathrm{R}$
By Eq. (7.22)
$\mathrm{W}_{\mathrm{AB}}=\mathrm{C}_{\mathrm{P}} \cdot \mathrm{T}_{\mathrm{A}} \cdot\left[\left(\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{A}}}\right)^{\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{P}}}}-1\right]=\mathrm{C}_{\mathrm{P}} \cdot \mathrm{T}_{\mathrm{A}} \cdot\left(\mathrm{cr}^{\frac{2}{7}}-1\right)$
$\mathrm{W}_{\mathrm{CD}}=\mathrm{C}_{\mathrm{P}} \cdot \mathrm{T}_{\mathrm{C}} \cdot\left[\left(\frac{\mathrm{P}_{\mathrm{D}}}{\mathrm{P}_{\mathrm{C}}}\right)^{\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{P}}}}-1\right]=\mathrm{C}_{\mathrm{P}} \cdot \mathrm{T}_{\mathrm{C}} \cdot\left(\mathrm{er}^{\left.\frac{2}{7}-1\right)}\right.$
where cr is the compression ratio and er is the expansion ratio. Since the two work terms are equal but of opposite signs,

$$
\begin{array}{ll}
\text { cr }:=6.5 & \text { er }:=0.5 \quad \text { (guess) } \\
\text { Given } & \mathrm{T}_{\mathrm{C}} \cdot\left(\mathrm{er}^{\left.\frac{2}{7}-1\right)}=-\mathrm{T}_{\mathrm{A}} \cdot\left(\mathrm{cr}^{\left.\frac{2}{7}-1\right)}\right.\right.
\end{array}
$$

By Eq. (7.18):

$$
\mathrm{T}_{\mathrm{D}}=\mathrm{T}_{\mathrm{C}} \cdot\left(\frac{\mathrm{P}_{\mathrm{D}}}{\mathrm{P}_{\mathrm{C}}}\right)^{\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{P}}}}
$$

This may be written: $\mathrm{T}_{\mathrm{D}}:=\mathrm{T}_{\mathrm{C}} \cdot \mathrm{er}^{\frac{2}{7}}$

By Eq. (7.11)

$$
\begin{equation*}
\mathrm{u}_{\mathrm{E}}^{2}-\mathrm{u}_{\mathrm{D}}^{2}=\frac{2 \cdot \gamma \cdot \mathrm{P}_{\mathrm{D}} \cdot \mathrm{~V}_{\mathrm{D}}}{\gamma-1} \cdot\left[1-\left(\frac{\left.\left.\left.\mathrm{P}_{\mathrm{E}}\right)^{\frac{\gamma-1}{\gamma}}\right)^{\gamma}\right]}{}\right]\right. \tag{A}
\end{equation*}
$$

We note the following:

$$
\text { er }=\frac{\mathrm{P}_{\mathrm{D}}}{\mathrm{P}_{\mathrm{C}}} \quad \text { cr }=\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{P}_{\mathrm{A}}}=\frac{\mathrm{P}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{E}}} \quad \text { cr.er }=\frac{\mathrm{P}_{\mathrm{D}}}{\mathrm{P}_{\mathrm{E}}}
$$

The following substitutions are made in (A):
$\mathrm{u}_{\mathrm{D}}=0 \quad \frac{\gamma-1}{\gamma}=\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{P}}}=\frac{2}{7} \quad \mathrm{P}_{\mathrm{D}} \cdot \mathrm{V}_{\mathrm{D}}=\mathrm{R} \cdot \mathrm{T}_{\mathrm{D}} \quad \frac{\mathrm{P}_{\mathrm{E}}}{\mathrm{P}_{\mathrm{D}}}=\frac{1}{\mathrm{cr} \cdot \mathrm{er}}$

Then

$$
\mathrm{u}_{\mathrm{E}}:=\sqrt{2 \cdot \frac{7}{2} \cdot \frac{\mathrm{R}}{\mathrm{molwt}} \cdot \mathrm{~T}_{\mathrm{D}} \cdot\left[1-\left(\frac{1}{\mathrm{cr} \cdot \mathrm{er}}\right)^{\frac{2}{7}}\right]}
$$

$\mathrm{P}_{\mathrm{E}}:=1 \cdot$ bar
$\mathrm{P}_{\mathrm{D}}:=\mathrm{cr} \cdot \mathrm{er} \cdot \mathrm{P}_{\mathrm{E}}$

$$
\mathrm{u}_{\mathrm{E}}=843.4 \frac{\mathrm{~m}}{\mathrm{sec}}
$$

$\mathrm{P}_{\mathrm{D}}=3.589 \mathrm{bar}$
Ans.

Ans.

$$
8.17 \mathrm{~T}_{\mathrm{A}}:=305 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{A}}:=1.05 \mathrm{bar} \quad \mathrm{P}_{\mathrm{B}}:=7.5 \mathrm{bar} \quad \eta:=0.8
$$

Assume air to be an ideal gas with mean heat capacity (final temperature by iteration):

$$
\begin{aligned}
\mathrm{Cpm}_{\text {air }} & :=\mathrm{MCPH}\left(298.15 \mathrm{~K}, 582 \mathrm{~K}, 3.355,0.575 \cdot 10^{-3}, 0.0,-0.016 \cdot 10^{5} \cdot \mathrm{R}\right. \\
\mathrm{Cpm}_{\text {air }} & =29.921 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{aligned}
$$

Compressor:

$\mathrm{Ws}_{\text {air }}:=\frac{\mathrm{Cpm}_{\text {air }} \cdot \mathrm{T}_{\mathrm{A}}}{\eta} \cdot\left[\left(\frac{\left.\mathrm{P}_{\mathrm{B}}\right)^{\left.\frac{\mathrm{R}}{\mathrm{P}_{\mathrm{A}}}\right)}{ }^{\frac{\mathrm{Cpm}}{\mathrm{air}}}}{}-1\right] \quad \mathrm{Ws}_{\text {air }}=8.292 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}\right.$
$\mathrm{T}_{\mathrm{B}}:=\mathrm{T}_{\mathrm{A}}+\frac{\mathrm{Ws}_{\text {air }}}{\mathrm{Cpm}_{\text {air }}} \quad \mathrm{T}_{\mathrm{B}}=582.126 \mathrm{~K}$
Combustion: $\quad \mathrm{CH} 4+2 \mathrm{O} 2=\mathrm{CO} 2+2 \mathrm{H} 2 \mathrm{O}$
Basis: Complete combustion of $\mathbf{1 ~ m o l ~ C H 4}$. Reactants are $\mathbf{N} \mathbf{~ m o l}$ of air and $1 \mathrm{~mol} \mathrm{CH4}$.

Because the combustion is adiabatic, the basic equation is:
$\Delta \mathrm{H}_{\mathrm{R}}+\Delta \mathrm{H}_{298}+\mathrm{H}_{\mathrm{P}}=0$
For $\Delta H_{-} \mathbf{R}$, the mean heat capacities for air and methane are required. The value for air is given above. For methane the temperature change is very small; use the value given in Table C. 1 for $298 \mathrm{~K}: 4.217 *$ R.

The solution process requires iteration for \mathbf{N}. Assume a value for \mathbf{N} until the above energy balance is satisfied.
(a) $\mathrm{T}_{\mathrm{C}}:=1000 \mathrm{~K} \quad \mathrm{~N}:=57.638$ (This is the final value after iteration)

$$
\Delta \mathrm{H}_{\mathrm{R}}:=\mathrm{Cpm}_{\mathrm{air}} \cdot \mathrm{~N} \cdot(298.15-582.03) \cdot \mathrm{K}+4.217 \cdot \mathrm{R} \cdot(298.15-300) \cdot \mathrm{K}
$$

$$
\Delta \mathrm{H}_{\mathrm{R}}=-4.896 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The product stream contains:
$1 \mathrm{~mol} \mathrm{CO} 2,2 \mathrm{~mol} \mathrm{H} 2 \mathrm{O}, 0.79 \mathrm{Nmol} \mathrm{N} 2$, and ($0.21 \mathrm{~N}-2$) mol O 2

$\mathrm{A}:=\left(\begin{array}{l}5.457 \\ 3.470 \\ 3.280 \\ 3.639\end{array}\right)$
$B:=\left(\left.\begin{array}{l}1.045 \\ 1.450 \\ 0.593\end{array} \right\rvert\, \cdot 10^{-3}\right.$
D : $=\left(\begin{array}{c}-1.157 \\ 0.121 \\ 0.040 \\ -0.227\end{array}\right) \cdot 10^{5}$
$\mathrm{i}:=1 . .4$

$$
\begin{array}{rlll}
\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}}=58.638 & \mathrm{~A}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}}\right. & \mathrm{B}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}}\right. & \mathrm{D}:=\sum_{\mathrm{i}}\left(\mathrm{~h}_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right. \\
\mathrm{A}=198.517 & \mathrm{~B}=0.036 & \mathrm{D}=-1.387 \times 10^{5}
\end{array}
$$

Cpmp $:=\operatorname{MCPH}\left(298.15 \mathrm{~K}, 1000 . \mathrm{K}, 198.517,0.0361,0.0,-1.3872 \cdot 10^{5} \cdot \mathrm{R}\right.$

$$
\Delta \mathrm{H}_{\mathrm{P}}:=\mathrm{Cpm}_{\mathrm{P}} \cdot\left(\Gamma_{\mathrm{C}}-298.15 \mathrm{~K} \quad \Delta \mathrm{H}_{\mathrm{P}}=1.292 \times 10^{6} \frac{\mathrm{~J}}{\mathrm{~mol}}\right.
$$

From Ex. 4.7:

$$
\Delta \mathrm{H}_{298}:=-802625 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\Delta H_{R}+\Delta H_{298}+H_{P}=136.223 \frac{\mathrm{~J}}{\mathrm{~mol}}$ (This result is sufficiently close to zero.)

Thus, $\mathbf{N}=\mathbf{5 7 . 6 3 8}$ moles of air per mole of methane fuel. Ans.

Assume expansion of the combustion products in the turbine is to $\mathbf{1}$ (atm), i.e., to $\mathbf{1 . 0 1 3 3}$ bar:

$$
\mathrm{P}_{\mathrm{D}}:=1.0133 \mathrm{bar} \quad \mathrm{P}_{\mathrm{C}}:=7.5 \mathrm{bar}
$$

The pertinent equations are analogous to those for the compressor. The mean heat capacity is that of the combustion gases, and depends on the temperature of the exhaust gases from the turbine, which must therefore be found by iteration. For an initial calculation use the mean heat capacity already determined. This calculation yields an exhaust temperature of about 390 K. Thus iteration starts with this value. Parameters A, B, and D have the final values determined above.

$$
\begin{aligned}
& \mathrm{Cpm}:=\mathrm{MCPH}(), 1000 \mathrm{~K}, 343.12 \mathrm{~K}, 198.517,0.0361,0.0,-1.3872 \cdot 10^{5} \cdot \mathrm{R} \\
& \mathrm{Cpm}=1.849 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \quad \text { For } 58.638 \text { moles of combustion product: }
\end{aligned}
$$

$$
\mathrm{Ws}:=\frac{58.638 \cdot \mathrm{Cpm} \cdot \mathrm{~T}_{\mathrm{C}}}{\eta} \cdot\left[\left(\frac{\mathrm{P}_{\mathrm{D}}}{\mathrm{P}_{\mathrm{C}}}\right)^{\frac{\mathrm{R}}{\mathrm{Cpm}}}-1\right] \quad \mathrm{Ws}=-1.214 \times 10^{6} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{T}_{\mathrm{D}}:=\mathrm{T}_{\mathrm{C}}+\frac{\mathrm{Ws}}{\mathrm{Cpm}} \quad \mathrm{~T}_{\mathrm{D}}=343.123 \mathrm{~K} \quad \text { (Final result of iteration.) Ans. }
$$

$$
\mathrm{Ws}_{\mathrm{net}}:=\mathrm{Ws}+\mathrm{Ws}_{\mathrm{air}} \cdot \mathrm{~N} \quad \mathrm{Ws}_{\text {net }}=-7.364 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Ans.

(J per mole of methane)

Parts (b) and (c) are solved in exactly the same way, with the following results:
(b) $\mathrm{T}_{\mathrm{C}}:=1200 \quad \mathrm{~N}:=37.48 \quad \mathrm{Ws}_{\text {net }}:=-7.365 \cdot 10^{5} \quad \mathrm{~T}_{\mathrm{D}}:=343.123$
(c) $\mathrm{T}_{\mathrm{C}}:=1500 \quad \mathrm{~N}:=24.07 \quad \mathrm{Ws}_{\text {net }}:=-5.7519 \cdot 10^{5} \quad \mathrm{~T}_{\mathrm{D}}:=598.94$
$8.18 \eta_{\mathrm{tm}}:=0.35 \quad \eta_{\mathrm{me}}:=0.95 \quad$ line_losses $:=20 \%$ Cost_fuel $:=4.00 \frac{\text { dollars }}{\text { GJ }}$
Cost_electricity $:=\frac{\text { Cost_fuel }}{\left[\eta_{\mathrm{tm}} \cdot \eta_{\text {me }} \cdot(1-\text { line_losses })\right]}$
Cost_electricity $=0.05 \frac{\text { cents }}{\mathrm{kW} \cdot \mathrm{hr}}$
Ans.

This is about $\mathbf{1 / 2}$ to $\mathbf{1 / 3}$ of the typical cost charged to residential customers.

$$
\begin{array}{llr}
8.19 \mathrm{~T}_{\mathrm{C}}:=111.4 \mathrm{~K} & \mathrm{~T}_{\mathrm{H}}:=300 \mathrm{~K} & \Delta \mathrm{Hn}_{\mathrm{lv}}:=8.206 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\eta_{\text {Carnot }}:=1-\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{~T}_{\mathrm{H}}} & \eta_{\text {Carnot }}=0.629 & \eta_{\mathrm{HE}}:=0.6 \cdot \eta_{\text {Carnot }} \quad \eta_{\mathrm{HE}}=0.377
\end{array}
$$

Assume as a basis: $\mathrm{W}:=1 \mathrm{~kJ}$

$$
\mathrm{Q}_{\mathrm{H}}:=\frac{\mathrm{W}}{\eta_{\mathrm{HE}}} \quad \mathrm{Q}_{\mathrm{H}}=2.651 \mathrm{~kJ} \quad \mathrm{Q}_{\mathrm{C}}:=\mathrm{Q}_{\mathrm{H}} \cdot\left(1-\eta_{\mathrm{HE}} \quad \mathrm{Q}_{\mathrm{C}}=1.651 \mathrm{~kJ}\right.
$$

$\frac{\frac{\mathrm{Q}_{\mathrm{C}}}{\Delta \mathrm{Hn}_{\mathrm{l}}}}{\mathrm{W}}=0.201 \frac{\mathrm{~mol}}{\mathrm{~kJ}}$

Ans.
$8.20 \mathrm{~T}_{\mathrm{H}}:=(27+273.15) \mathrm{K} \quad \mathrm{T}_{\mathrm{C}}:=(6+273.15) \mathrm{K}$
a) $\eta_{\text {Carnot }}:=1-\frac{T_{C}}{T_{H}}$
$\eta_{\text {Carnot }}=0.07 \quad$ Ans.
b) $\eta_{\text {actual }}:=\eta_{\text {Carnot }} \cdot 0.6 \cdot \frac{2}{3} \quad \eta_{\text {actual }}=0.028 \quad$ Ans.
c) The thermal efficiency is low and high fluid rates are required to generate reasonable power. This argues for working fluids that are relatively inexpensive. Candidates that provide reasonable pressures at the required temperature levels include ammonia, n-butane, and propane.

Chapter 9 - Section A - Mathcad Solutions

$9.2 \quad \mathrm{~T}_{\mathrm{H}}:=(20+273.15) \mathrm{K}$
$\mathrm{T}_{\mathrm{C}}:=(-20+273.15) \mathrm{K}$
$\mathrm{T}_{\mathrm{H}}=293.15 \mathrm{~K}$

Qdot ${ }_{C}:=125000 \cdot \frac{\mathrm{~kJ}}{\mathrm{day}}$
$\omega_{\text {Carnot }}:=\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}} \quad$ (9.3) $\quad \omega:=0.6 \cdot \omega_{\text {Carnot }} \quad \omega=3.797$
Wdot $:=\frac{\text { Qdot }_{C}}{\omega}$
$\mathrm{Wdot}=0.381 \mathrm{~kW}$
Cost $:=\frac{0.08}{\mathrm{~kW} \cdot \mathrm{hr}}$. Wdot

$$
\text { Cost }=267.183 \frac{\text { dollars }}{\mathrm{yr}}
$$

Ans.
9.4 Basis: 1 lbm of tetrafluoroethane

The following property values are found from Table 9.1:
State 1, Sat. Liquid at TH: H1 := 44.943 S1 :=0.09142 P1 :=138.83
State 2, Sat. Vapor at TH: H2 :=116.166 \quad S2 $:=0.21868 \quad$ P2 $:=138.83$
State 3, Wet Vapor at TC: Hliq $:=15.187$ Hvap $:=104.471$ P3 $:=26.617$
State 4, Wet Vapor at TC: Sliq $:=0.03408$ Svap $:=0.22418$ P4 $:=26.617$
(a) The pressures in (psia) appear above.
(b) Steps 3--2 and 1--4 (Fig. 8.2) are isentropic, for which $\mathrm{S} 3=\mathrm{S} 2$ and $\mathrm{S} 1=\mathrm{S} 4$. Thus by Eq. 6.82):
$\mathrm{x} 3:=\frac{\text { S2 - Sliq }}{\text { Svap - Sliq }} \quad \mathrm{x} 3=0.971 \quad \mathrm{x} 4:=\frac{\text { S } 1-\text { Sliq }}{\text { Svap }- \text { Sliq }} \quad \mathrm{x} 4=0.302$
(c) Heat addition, Step 4-3:

$$
\begin{array}{ll}
\mathrm{H} 3:=\mathrm{Hliq}+\mathrm{x} 3 \cdot(\text { Hvap }- \text { Hliq }) & \mathrm{H} 4:=\text { Hliq }+\mathrm{x} 4 \cdot(\text { Hvap }- \text { Hliq) } \\
\mathrm{H} 3=101.888 & \mathrm{H} 4=42.118 \\
\mathrm{Q} 43:=(\mathrm{H} 3-\mathrm{H} 4) & \mathrm{Q} 43=59.77 \quad(\text { Btu/lb} \mathbf{m})
\end{array}
$$

(d) Heat rejection, Step 2--1:
$\mathrm{Q} 21:=(\mathrm{H} 1-\mathrm{H} 2)$
(e) $\mathrm{W} 21:=0$ W32 := (H2 - H3)
$\mathrm{W} 14:=(\mathrm{H} 4-\mathrm{H} 1)$ $\mathrm{Q} 21=-71.223 \quad\left(\mathbf{B t u} / \mathbf{l b}_{\mathbf{m}}\right)$
W43 := 0
$\mathrm{W} 32=14.278$
$\mathrm{W} 14=-2.825$
(f) $\quad \omega:=\frac{\mathrm{Q} 43}{\mathrm{~W} 14+\mathrm{W} 32}$
$\omega=5.219$

Note that the first law is satisfied:
$\Sigma \mathrm{Q}:=\mathrm{Q} 21+\mathrm{Q} 43$
$\Sigma \mathrm{W}:=\mathrm{W} 32+\mathrm{W} 14$
$\Sigma \mathrm{Q}+\Sigma \mathrm{W}=0$
$\begin{aligned} & 9.7 \mathrm{~T}_{\mathrm{C}}:=298.15 \cdot \mathrm{~K} \\ & \mathrm{~T}^{\prime} \mathrm{C}:=273.15 \cdot \mathrm{~K}\end{aligned}$

$$
\mathrm{T}_{\mathrm{H}}:=523.15 \cdot \mathrm{~K}
$$

(Engine) (Refrigerator)

By Eq. (5.8):

$$
\eta_{\text {Carnot }}:=1-\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{~T}_{\mathrm{H}}} \quad \eta_{\text {Carnot }}=0.43
$$

By Eq. (9.3):

$$
\omega_{\text {Carnot }}:=\frac{\mathrm{T}_{\mathrm{C}}^{\prime}}{\mathrm{T}_{\mathrm{H}}^{\prime}-\mathrm{T}_{\mathrm{C}}^{\prime}} \quad \omega_{\text {Carnot }}=10.926
$$

By definition:

$$
\eta=\frac{\left|W_{\text {engine }}\right|}{Q_{H}}
$$

$$
\omega=\frac{\mathrm{Q}^{\prime} \mathrm{C}}{\mathrm{~W}_{\mathrm{refrig}}}
$$

But

$$
\begin{aligned}
& \left|\mathrm{W}_{\text {engine }}\right|=\mathrm{W}_{\text {refrig }} \\
& \mathrm{Q}_{\mathrm{H}}:=\frac{\mathrm{Q}^{\prime} \mathrm{C}}{\eta_{\text {Carnot }}{ }^{\cdot \omega} \text { Carnot }}
\end{aligned}
$$

$$
\mathrm{Q}^{\prime} \mathrm{C}:=35 \cdot \frac{\mathrm{~kJ}}{\mathrm{sec}}
$$

Whence

$$
\mathrm{Q}_{\mathrm{H}}=7.448 \frac{\mathrm{~kJ}}{\mathrm{sec}}
$$

Ans.

Given that:

$$
\eta:=0.6 \cdot \eta_{\text {Carnot }}
$$

$\omega:=0.6 \cdot \omega_{\text {Carnot }}$

$$
\omega=6.556
$$

$$
\mathrm{Q}_{\mathrm{H}}:=\frac{\mathrm{Q}^{\prime} \mathrm{C}}{\eta \omega} \quad \mathrm{Q}_{\mathrm{H}}=20.689 \frac{\mathrm{~kJ}}{\mathrm{sec}}
$$

Ans.
9.8
(a) $\mathrm{Q}_{\mathrm{C}}:=4 \cdot \frac{\mathrm{~kJ}}{\mathrm{sec}}$ $\omega:=\frac{\mathrm{Q}_{\mathrm{C}}}{\mathrm{W}}$
$\omega=2.667$
Ans.
(b) $\mathrm{Q}_{\mathrm{H}}:=\mathrm{Q}_{\mathrm{C}}+\mathrm{W}$
$\mathrm{Q}_{\mathrm{H}}=5.5 \frac{\mathrm{~kJ}}{\mathrm{sec}}$
Ans.
(c) $\omega=\frac{T_{C}}{T_{H}-T_{C}}$
$\mathrm{T}_{\mathrm{H}}:=(40+273.15) \cdot \mathrm{K} \quad \mathrm{T}_{\mathrm{H}}=313.15 \mathrm{~K}$

$$
\mathrm{T}_{\mathrm{C}}:=\mathrm{T}_{\mathrm{H}} \cdot\left(\frac{\omega}{\omega+1}\right)
$$

$$
\mathrm{T}_{\mathrm{C}}=227.75 \mathrm{~K}
$$

Ans. or - 45.4 degC
9.9 The following vectors contain data for parts (a) through (e). Subscripts refer to Fig. 9.1. Values of H2 and S2 for saturated vapor come from Table 9.1.
$\mathrm{H}_{2}:=\left(\begin{array}{l}107.320 \\ 105.907 \\ 104.471 \\ 103.015 \\ 101.542\end{array}\right) \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}$

$\mathrm{T}_{4}:=539.67 \cdot$ rankine
$\mathrm{H}_{4}:=37.978 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}$
From Table 9.1
for sat. liquid
$S_{3}=S_{2} \quad$ (isentropic compression)

The saturation pressure at Point 4 from Table 9.1 is $\mathbf{1 0 1 . 3 7 (p s i a) . ~ F o r ~}$ isentropic compression, from Point 2 to Point 3', we must read values for the enthalpy at Point 3' from Fig. G. 2 at this pressure and at the entropy values $S 2$. This cannot be done with much accuracy. The most satisfactory procedure is probably to read an enthalpy at $\mathrm{S}=\mathbf{0 . 2 2}(\mathrm{H}=114)$ and at $S=0.24(H=126)$ and interpolate linearly for intermediate values of H. This leads to the following values (rounded to $\mathbf{1}$ decimal):

Ans.
9.10 Subscripts in the following refer to Fig. 9.1. All property values come from Tables F. 1 and F.2.
$\mathrm{T}_{2}:=(4+273.15) \cdot \mathrm{K}$
$\mathrm{Qdot} \mathrm{C}:=1200 \cdot \frac{\mathrm{~kJ}}{\mathrm{sec}}$
$\mathrm{H}_{4}:=142.4 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

The saturation pressure at Point 4 from Table $F .1$ is 5.318 kPa . We must find in Table F. 2 the enthalpy (Point 3^{\prime} ') at this pressure and at the entropy $\mathbf{S 2}$. This requires double interpolation. The pressure lies between entries for pressures of 1 and 10 kPa , and linear interpolation with P is unsatisfactory. Steam is here very nearly an ideal gas, for which the entropy is linear in the logarithm of P, and interpolation must be in accord with this relation. The enthalpy, on the other hand, changes very little with P and can be interpolated linearly. Linear interpolation with temperture is satisfactory in either case.
The result of interpolation is
$\mathrm{H}_{3}:=2814.7 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

$$
\begin{aligned}
& \Delta \mathrm{H}_{23}:=\frac{\mathrm{H}_{3}-\mathrm{H}_{2}}{\eta} \\
& \Delta \mathrm{H}_{23}=402.368 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{H}_{3}:=\mathrm{H}_{2}+\Delta \mathrm{H}_{23} & \mathrm{H}_{3}=2.911 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\text { mdot }:=\frac{\text { Qdot } \mathrm{C}}{\mathrm{H}_{2}-\mathrm{H}_{1}} & \text { mdot }=0.507 \frac{\mathrm{~kg}}{\mathrm{sec}} \text { Ans. } \\
\text { Qdot } \mathrm{H}:=\operatorname{mdot} \cdot\left(\mathrm{H}_{4}-\mathrm{H}_{3}\right. & \text { Qdot }_{\mathrm{H}}=-1404 \frac{\mathrm{~kJ}}{\mathrm{sec}} \text { An }
\end{array}
$$

$\mathrm{Wdot}:=\mathrm{mdot} \cdot \Delta \mathrm{H}_{23}$
$\omega:=\frac{\mathrm{Qdot}_{\mathrm{C}}}{\mathrm{Wdot}}$
$\mathrm{Wdot}=204 \mathrm{~kW}$
Ans.
$\omega_{\text {Carnot }}:=\frac{\mathrm{T}_{2}}{\mathrm{~T}_{4}-\mathrm{T}_{2}}$
${ }^{\omega}$ Carnot $=9.238$
Ans.
9.11 Parts (a) \& (b): subscripts refer to Fig. 9.1

At the conditions of Point $2[t=-15 \mathrm{degF}$ and $P=14.667$ (psia)] for sat. liquid and sat. vapor from Table 9.1:
$\mathrm{H}_{\mathrm{liq}}:=7.505 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}$

$$
\mathrm{H}_{\text {vap }}:=100.799 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{H}_{2}:=\mathrm{H}_{\text {vap }}
$$

$\mathrm{S}_{\text {liq }}:=0.01733 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$

$$
\mathrm{S}_{\mathrm{vap}}:=0.22714 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

For sat. liquid at Point 4 (80 degF):

$$
\mathrm{H}_{4}:=37.978 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{S}_{4}:=0.07892 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

(a) Isenthalpic expansion: $\mathrm{H}_{1}:=\mathrm{H}_{4}$
$\mathrm{Qdot}_{\mathrm{C}}:=5 \cdot \frac{\mathrm{Btu}}{\mathrm{sec}} \quad \operatorname{mdot}:=\frac{\mathrm{Qdot}_{\mathrm{C}}}{\mathrm{H}_{2}-\mathrm{H}_{1}} \quad \operatorname{mdot}=0.0796 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}} \quad$ Ans.
(b) Isentropic expansion:
$S_{1}:=S_{4}$
$\mathrm{x}_{1}:=\frac{\mathrm{S}_{1}-\mathrm{S}_{\text {liq }}}{\mathrm{S}_{\text {vap }}-\mathrm{S}_{\text {liq }}} \quad \mathrm{H}_{1}:=\mathrm{H}_{\text {liq }}+\mathrm{x}_{1} \cdot\left(\mathrm{H}_{\text {vap }}-\mathrm{H}_{\text {liq }} \quad \mathrm{H}_{1}=34.892 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}\right.$

$$
\text { mdot }:=\frac{\text { Qdot }_{\mathrm{C}}}{\mathrm{H}_{2}-\mathrm{H}_{1}} \quad \operatorname{mdot}=0.0759 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}}
$$

Ans.
(c) The sat. vapor from the evaporator is superheated in the heat exchanger to 70 degF at a pressure of 14.667 (psia). Property values for this state are read (with considerable uncertainty) from Fig. G.2:

$$
\begin{array}{ll}
\mathrm{H}_{2 \mathrm{~A}}:=117.5 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{~S}_{2 \mathrm{~A}}:=0.262 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \\
\text { mdot }:=\frac{\mathrm{Qdot} \mathrm{C}}{\mathrm{H}_{2 \mathrm{~A}}-\mathrm{H}_{4}} & \text { mdot }=0.0629 \frac{\mathrm{lb} \mathrm{~m}}{\mathrm{sec}} \quad \text { Ans. }
\end{array}
$$

(d) For isentropic compression of the sat. vapor at Point 2,

$$
S_{3}:=S_{\text {vap }} \quad \text { and from Fig. G. } 2 \text { at this entropy and } P=101.37 \text { (psia) }
$$

$$
\mathrm{H}_{3}:=118.3 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}
$$

Eq. (9.4) may now be applied to the two cases:

In the first case H 1 has the value of H 4 :

$$
\omega_{\mathrm{a}}:=\frac{\mathrm{H}_{2}-\mathrm{H}_{4}}{\mathrm{H}_{3}-\mathrm{H}_{2}}
$$

$$
\omega_{\mathrm{a}}=3.5896
$$

Ans.

In the second case H 1 has its last calculated value [Part (b)]:
$\omega_{\mathrm{b}}:=\frac{\mathrm{H}_{2}-\mathrm{H}_{1}}{\mathrm{H}_{3}-\mathrm{H}_{2}}$
$\omega_{\mathrm{b}}=3.7659$
Ans.

In Part (c), compression is at constant entropy of 0.262 to the final pressure. Again from Fig. G.2:

$$
\begin{array}{ll}
\mathrm{H}_{3}:=138 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{Wdot}:=\left(\mathrm{H}_{3}-\mathrm{H}_{2 \mathrm{~A}} \cdot\right. \text { mdot } \\
& \begin{array}{l}
\text { (Last calculated } \\
\text { value of mdot) }
\end{array} \\
\omega_{\mathrm{c}}:=\frac{|\mathrm{Qdot} \mathrm{C}|}{\mathrm{Wdot}} & \omega_{\mathrm{c}}=389 \frac{\mathrm{BTU}}{\mathrm{sec}}
\end{array}
$$

9.12 Subscripts: see figure of the preceding problem.

At the conditions of Point 2 [sat. vapor, $t=20 \mathrm{degF}$ and $P=\mathbf{3 3 . 1 1 0}$ (psia)] from Table 9.1:

$$
\mathrm{H}_{2}:=105.907 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{~S}_{2}:=0.22325 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

At Point 2A we have a superheated vapor at the same pressure and at 70 degF. From Fig. G.2:
$\mathrm{H}_{2 \mathrm{~A}}:=116 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}$

$$
\mathrm{S}_{2 \mathrm{~A}}:=0.2435 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

For sat. liquid at Point 4 (80 degF):

$$
\mathrm{H}_{4}:=37.978 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{S}_{4}:=0.07892 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \mathrm{R}}
$$

Energy balance, heat exchanger:

$$
\begin{array}{ll}
\mathrm{H}_{1}:=\mathrm{H}_{4}-\mathrm{H}_{2 \mathrm{~A}}+\mathrm{H}_{2} & \mathrm{H}_{1}=27.885 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \\
\text { Qdot } \mathrm{C}:=2000 \cdot \frac{\mathrm{Btu}}{\mathrm{sec}} & \text { mdot }:=\frac{\mathrm{Qdot} \mathrm{C}}{\mathrm{H}_{2}-\mathrm{H}_{1}} \quad \text { mdot }=25.634 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}}
\end{array}
$$

For compression at constant entropy of 0.2435 to the final pressure of 101.37(psia), by Fig. G.2:
mdot $=25.634 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}}$
If the heat exchanger is omitted, then $\mathrm{H} 1=\mathrm{H} 4$.
Points 2A \& 2 coincide, and compression is at a constant entropy of 0.22325 to $P=101.37$ (psia).

$$
\begin{array}{lll}
\operatorname{mdot}:=\frac{\mathrm{Qdot}_{\mathrm{C}}}{\mathrm{H}_{2}-\mathrm{H}_{4}} & \mathrm{H}_{3}^{\prime}:=116 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}} & \Delta \mathrm{H}_{\mathrm{comp}}:=\frac{\mathrm{H}_{3}-\mathrm{H}_{2}}{\eta} \\
\text { Wdot }:=\operatorname{mdot} \cdot \Delta \mathrm{H}_{\mathrm{comp}} & \Delta \mathrm{H}_{\mathrm{comp}}=13.457 \frac{\mathrm{Btu}}{\mathrm{lh}_{\mathrm{m}}}
\end{array}
$$

mdot $=29.443 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}}$
$\mathrm{Wdot}=418.032 \mathrm{~kW}$
Ans.
9.13 Subscripts refer to Fig. 9.1.

At Point 2 [sat. vapor @ 10 degF] from Table 9.1:

$$
\mathrm{H}_{2}:=104.471 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{S}_{2}:=0.22418 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \mathrm{R}}
$$

$$
\mathrm{S}_{3}^{\prime}:=\mathrm{S}_{2}
$$

H values for sat. liquid at Point 4 come from Table 9.1 and H values for Point 3 ` come from Fig. G.2. The vectors following give values for condensation temperatures of $\mathbf{6 0}, \mathbf{8 0}, \boldsymbol{\&} 100 \mathrm{degF}$ at pressures of 72.087, 101.37, \& 138.83(psia) respectively.

$$
\mathrm{H}_{4}:=\left(\begin{array}{l}
31.239 \\
37.978 \\
44.943
\end{array}\right) \quad . \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{H}_{3}^{\prime}:=\left(\begin{array}{l}
113.3 \\
116.5 \\
119.3
\end{array}\right) \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{H}_{1}:=\mathrm{H}_{4}
$$

$$
\begin{aligned}
& \mathrm{H}_{3}^{\prime}:=127 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}} \quad \eta:=0.75 \quad \Delta \mathrm{H}_{\mathrm{comp}}:=\frac{\mathrm{H}_{3}^{\prime}-\mathrm{H}_{2 \mathrm{~A}}}{\eta} \\
& \mathrm{Wdot}:=\mathrm{mdot} \cdot \Delta \mathrm{H}_{\mathrm{comp}}
\end{aligned}
$$

(a) By Eq. (9.4):

$$
\omega:=\frac{\overrightarrow{\mathrm{H}_{2}-\mathrm{H}_{1}}}{\mathrm{H}_{3}-\mathrm{H}_{2}}
$$

$\omega=\left(\begin{array}{l}8.294 \\ 5.528 \\ 4.014\end{array}\right)$

Ans.
(b) $\Delta H:=\frac{\mathrm{H}_{3}-\mathrm{H}_{2}}{0.75} \quad$ Since $\quad \Delta H=H_{3}-H_{2}$

Eq. (9.4) now becomes
$\omega:=\frac{\overrightarrow{\mathrm{H}_{2}-\mathrm{H}_{1}}}{\Delta \mathrm{H}}$
$\omega=\left(\begin{array}{l}6.221 \\ 4.146 \\ 3.011\end{array}\right)$

Ans.

9.14 WINTER

WINTER

$\mathrm{T}_{\mathrm{H}}:=293.15$
Wdot := 1.5
$\mathrm{Qdot}_{\mathrm{H}}=-0.75 \cdot()_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}$
$\frac{\text { Wdot }}{\left|\operatorname{Qdot}_{\mathrm{H}}\right|}=\frac{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{H}}}$
$\mathrm{T}_{\mathrm{C}}:=250 \quad$ (Guess)
Given
$\frac{\text { Wdot }}{0.75 \cdot() \Gamma_{H}-T_{C}}=\frac{T_{H}-T_{C}}{T_{H}}$
$\mathrm{T}_{\mathrm{C}}:=\operatorname{Find}() \Gamma_{\mathrm{C}}$
$\mathrm{T}_{\mathrm{C}}=268.94 \mathrm{~K} \quad$ Ans.
Minimum $t=\mathbf{- 4 . 2 1} \operatorname{deg} C$

SUMMER
SUMMER

$\mathrm{T}_{\mathrm{C}}:=298.15$
Qdot $_{C}:=0.75 \cdot() \Gamma_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}$
$\frac{W \operatorname{dot}}{Q \operatorname{dot}_{\mathrm{C}}}=\frac{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{C}}}$
$\mathrm{T}_{\mathrm{H}}:=300 \quad$ (Guess)
Given
$\frac{\text { Wdot }}{0.75 \cdot() \Gamma_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}=\frac{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{C}}}$
$\mathrm{T}_{\mathrm{H}}:=\operatorname{Find}() \Gamma_{\mathrm{H}}$
$\mathrm{T}_{\mathrm{H}}=322.57 \mathbf{K} \quad$ Ans.
Maximum $t=49.42 \operatorname{deg} C$
9.15 and 9.16 Data in the following vectors for Pbs. 9.15 and 9.16 come from Perry's Handbook, 7th ed.
$\mathrm{H}_{4}:=\binom{1033.5}{785.3} \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{9}:=284.7 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{15}:=\binom{1186.7}{1056.4} \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$

By Eq. (9.8): $\quad z:=\frac{\overrightarrow{H_{4}-\mathrm{H}_{15}}}{\mathrm{H}_{9}-\mathrm{H}_{15}} \quad \mathrm{z}=\binom{0.17}{0.351}$

$$
\mathrm{z}:=\frac{\overrightarrow{\mathrm{H}_{4}-\mathrm{H}_{15}}}{\mathrm{H}_{9}-\mathrm{H}_{15}}
$$

$$
\mathrm{z}=\binom{0.17}{0.351}
$$

9.17 Advertized combination unit:

$$
\mathrm{T}_{\mathrm{H}}:=(150+459.67) \cdot \text { rankine }
$$

$$
\mathrm{T}_{\mathrm{C}}:=(30+459.67) \cdot \text { rankine }
$$

$$
\mathrm{T}_{\mathrm{H}}=609.67 \text { rankine }
$$

$$
\mathrm{T}_{\mathrm{C}}=489.67 \text { rankine }
$$

$$
\mathrm{Q}_{\mathrm{C}}:=50000 \cdot \frac{\mathrm{Btu}}{\mathrm{hr}}
$$

$$
\mathrm{W}_{\text {Carnot }}:=\mathrm{Q}_{\mathrm{C}} \cdot \frac{\mathrm{~T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{~T}_{\mathrm{C}}}
$$

$$
\mathrm{W}_{\text {Carnot }}=12253 \frac{\mathrm{Btu}}{\mathrm{hr}}
$$

$\mathrm{W}_{\mathrm{I}}:=1.5 \cdot \mathrm{~W}_{\text {Carnot }} \quad \mathrm{W}_{\mathrm{I}}=18380 \frac{\mathrm{Btu}}{\mathrm{hr}}$
This is the TOTAL power requirement for the advertized combination unit. The amount of heat rejected at the higher temperature of 150 degF is
$\mathrm{Q}_{\mathrm{H}}:=\mathrm{W}_{\mathrm{I}}+\mathrm{Q}_{\mathrm{C}} \quad \mathrm{Q}_{\mathrm{H}}=68380 \frac{\mathrm{Btu}}{\mathrm{hr}}$
For the conventional water heater, this amount of energy must be supplied by resistance heating, which requires power in this amount.
For the conventional cooling unit,
$\mathrm{T}_{\mathrm{H}}:=(120+459.67) \cdot$ rankine
$\mathrm{W}_{\text {Carnot }}:=\mathrm{Q}_{\mathrm{C}} \cdot \frac{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{C}}} \quad \mathrm{W}_{\text {Carnot }}=9190 \frac{\mathrm{Btu}}{\mathrm{hr}}$
Work $:=1.5 \cdot \mathrm{~W}_{\text {Carnot }} \quad$ Work $=13785 \frac{\mathrm{Btu}}{\mathrm{hr}}$
The total power required is
$\mathrm{W}_{\mathrm{II}}:=\mathrm{Q}_{\mathrm{H}}+$ Work

NO CONTEST
9.18
$\mathrm{T}_{\mathrm{C}}:=210$
$\mathrm{T}^{\prime} \mathrm{H}:=260$

$$
\mathrm{T}_{\mathrm{C}}^{\prime}:=255
$$

$\mathrm{T}_{\mathrm{H}}:=305$
By Eq. (9.3):

$$
\omega:=\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{~T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}} \quad \omega_{\mathrm{I}}:=0.65 \cdot \frac{\mathrm{~T}_{\mathrm{C}}}{\mathrm{~T}_{\mathrm{H}}^{\prime}-\mathrm{T}_{\mathrm{C}}} \quad \omega_{\mathrm{II}}:=0.65 \cdot \frac{\mathrm{~T}_{\mathrm{C}}^{\prime}}{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}^{\prime}}
$$

$\mathrm{W}_{\text {Carnot }}=\frac{\mathrm{Q}_{\mathrm{C}}}{\omega}$
$\mathrm{W}_{\mathrm{I}}=\frac{\mathrm{Q}_{\mathrm{C}}}{\omega_{\mathrm{I}}}$
$\mathrm{W}_{\mathrm{II}}=\frac{\mathrm{Q}_{\mathrm{C}}}{\omega_{\mathrm{II}}}$
Define r as the ratio of the actual work, WI + WII, to the $\quad \mathrm{r}:=\omega \cdot\left(\frac{1}{\omega_{\mathrm{I}}}+\frac{1}{\omega_{\mathrm{II}}}\right) \quad \mathrm{r}=1.477 \quad$ Ans.
Carnot work:
9.19 This problem is just a reworking of Example 9.3 with different values of \mathbf{x}. It could be useful as a group project.
$9.22 \mathrm{~T}_{\mathrm{H}}:=290 \mathrm{~K} \quad \mathrm{~T}_{\mathrm{C}}:=250 \mathrm{~K} \quad \mathrm{~W}_{\mathrm{S}}:=0.40 \mathrm{~kW}$
$\omega_{\text {Carnot }}:=\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}} \quad \omega_{\text {Carnot }}=6.25 \quad \omega:=65 \%_{\text {Carnot }} \quad \omega=4.063$
Ans.
$\mathrm{Q}_{\mathrm{C}}:=\mathrm{W}_{\mathrm{S}} \cdot \omega \quad \mathrm{Q}_{\mathrm{C}}=1.625 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s} \mathrm{Q}_{\mathrm{H}}:=\mathrm{W}_{\mathrm{S}}+\left|\mathrm{Q}_{\mathrm{C}}\right| \quad \mathrm{Q}_{\mathrm{H}}=2.025 \mathrm{~kW}$

9.23 Follow the notation from Fig. 9.1

With air at 20 C and the specification of a minimum approach $\Delta \mathrm{T}=10 \mathrm{C}$:
$\mathrm{T}_{1}:=(10+273.15) \mathrm{K} \quad \mathrm{T}_{4}:=(30+273.15) \mathrm{K} \quad \mathrm{T}_{2}:=\mathrm{T}_{1}$
Calculate the high and low operating pressures using the given vapor pressure equation

Guess: $\quad P_{L}:=1$ bar $\quad P_{H}:=2 b a r$
Given $\ln \left(\frac{\mathrm{P}_{\mathrm{L}}}{\mathrm{bar}}\right)=45.327-\frac{4104.67}{\frac{\mathrm{~T}_{1}}{\mathrm{~K}}}-5.146 \cdot \ln \left(\frac{\mathrm{~T}_{1}}{\mathrm{~K}}\right)+615.0 \frac{\frac{\mathrm{P}_{\mathrm{L}}}{\mathrm{bar}}}{\left(\frac{\mathrm{T}_{1}}{\mathrm{~K}}\right)^{2}}$
$\mathrm{P}_{\mathrm{L}}:=\operatorname{Find}\left(\mathrm{P}_{\mathrm{L}} \quad \mathrm{P}_{\mathrm{L}}=6.196 \mathrm{bar}\right.$
Given $\ln \left(\frac{\mathrm{P}_{\mathrm{H}}}{\mathrm{bar}}\right)=45.327-\frac{4104.67}{\frac{\mathrm{~T}_{4}}{\mathrm{~K}}}-5.146 \cdot \ln \left(\frac{\mathrm{~T}_{4}}{\mathrm{~K}}\right)+615.0 \frac{\frac{\mathrm{P}_{\mathrm{H}}}{\mathrm{bar}}}{\left(\frac{\mathrm{T}_{4}}{\mathrm{~K}}\right)^{2}}$
$\mathrm{P}_{\mathrm{H}}:=\operatorname{Find}()_{\mathrm{H}} \quad \mathrm{P}_{\mathrm{H}}=11.703$ bar

Calculate the heat load

$$
\text { ndot }_{\text {toluene }}:=50 \frac{\mathrm{kmol}}{\mathrm{hr}} \quad \mathrm{~T} 1:=(100+273.15) \mathrm{K} \quad \mathrm{~T} 2:=(20+273.15) \mathrm{K}
$$

Using values from Table C. 3

Qdot ${ }_{C}:=-$ ndot $_{\text {toluene }} \cdot \mathrm{R} \cdot \mathrm{ICPH}() \Gamma 1, \mathrm{~T} 2,15.133,6.79 \cdot 10^{-3}, 16.35 \cdot 10^{-6}, 0$
$\mathrm{Qdot}_{\mathrm{C}}=177.536 \mathrm{~kW}$

Since the throttling process is adiabatic: $\quad \mathrm{H}_{4}=\mathrm{H}_{1}$
But: $\quad \mathrm{Hliq}_{4}=\mathrm{Hliq}_{1}+\mathrm{x}_{1} \cdot \Delta \mathrm{Hlv}_{1} \quad$ so: $\quad \mathrm{Hliq}_{4}-\mathrm{Hliq}_{1}=\mathrm{x}_{1} \cdot \Delta \mathrm{Hlv}$
and: \quad Hliq$_{4}-$ Hliq $_{1}=\mathrm{V}_{\mathrm{liq}} \cdot\left(\mathrm{P}_{4}-\mathrm{P}_{1}+\int_{\mathrm{T}_{1}}^{\mathrm{T}_{4}} \mathrm{C}_{\mathrm{pliq}}(\mathrm{T}) \mathrm{dT}\right.$
Estimate $\mathbf{V}_{\text {liq }}$ using the Rackett Eqn.

$\omega:=0.253$	$\mathrm{~T}_{\mathrm{c}}:=405.7 \mathrm{~K}$	$\mathrm{P}_{\mathrm{c}}:=112.80 \mathrm{bar}$
$\mathrm{Z}_{\mathrm{c}}:=0.242$	$\mathrm{~V}_{\mathrm{c}}:=72.5 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$	$\mathrm{~T}_{\mathrm{n}}:=239.7 \mathrm{~K}$

$\mathrm{T}_{\mathrm{r}}:=\frac{(20+273.15) \mathrm{K}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r}}=0.723$

Estimate $\Delta H_{l v}$ at 10 C using Watson correlation

$$
\begin{array}{ll}
\mathrm{T}_{\mathrm{rn}}:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{rn}}=0.591 & \mathrm{~T}_{\mathrm{r} 1}:=\frac{\mathrm{T}_{1}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r} 1}=0.698 \\
\Delta \mathrm{H}_{\mathrm{lv}}:=\Delta \mathrm{H}_{\mathrm{lvn}} \cdot\left(\frac{1-\mathrm{T}_{\mathrm{r} 1}}{1-\mathrm{T}_{\mathrm{rn}}}\right)^{0.38} & \Delta \mathrm{H}_{\mathrm{lv}}=20.798 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{array}
$$

$\Delta \mathrm{Hliq}_{41}:=\mathrm{V}_{\text {liq }} \cdot\left(\mathrm{P}_{\mathrm{H}}-\mathrm{P}_{\mathrm{L}}+\mathrm{R} \cdot \operatorname{ICPH}()_{1}, \mathrm{~T}_{4}, 22.626,-100.75 \cdot 10^{-3}, 192.71 \cdot 10^{-6}, 0\right.$

$$
\Delta \mathrm{Hliq}_{41}=1.621 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \mathrm{x}_{1}:=\frac{\Delta \mathrm{Hliq}_{41}}{\Delta \mathrm{H}_{\mathrm{lv}}} \quad \mathrm{x}_{1}=0.078
$$

For the evaporator

$$
\begin{aligned}
& \Delta H_{12}=H_{2}-H_{1}=H_{1 \text { vap }}-\left(H_{1 l i q}+x_{1} \cdot \Delta H_{l v}=()-x_{1} \cdot \Delta H_{l v}\right. \\
& \Delta \mathrm{H}_{12}:=\left(\mathrm{l}-\mathrm{x}_{1} \cdot \Delta \mathrm{H}_{\mathrm{lv}} \quad \Delta \mathrm{H}_{12}=19.177 \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right. \\
& \text { ndot }:=\frac{\text { Qdot }_{C}}{\Delta \mathrm{H}_{12}} \\
& \text { ndot }=9.258 \frac{\mathrm{~mol}}{\mathrm{sec}} \\
& \text { Ans. }
\end{aligned}
$$

Chapter 10 - Section A - Mathcad Solutions

$\begin{array}{lllll}10.1 & \text { Benzene: } & \mathrm{A}_{1}:=13.7819 & \mathrm{~B}_{1}:=2726.81 & \mathrm{C}_{1}:=217.572 \\ & \text { Toluene: } & \mathrm{A}_{2}:=13.9320 & \mathrm{~B}_{2}:=3056.96 & \mathrm{C}_{2}:=217.625\end{array}$
Toluene: $\quad \mathrm{A}_{2}:=13.9320$
$\mathrm{B}_{2}:=3056.96$
$\mathrm{C}_{2}:=217.625$
$\operatorname{Psat}_{1}(\mathrm{~T}):=\mathrm{e}^{\mathrm{A}_{1}-\frac{\mathrm{B}_{1}}{\frac{\mathrm{~T}}{\operatorname{degC}}+\mathrm{C}_{1}} \cdot \mathrm{kPa} \quad \operatorname{Psat}_{2}(\mathrm{~T}):=\mathrm{e}^{\mathrm{A}_{2}-\frac{\mathrm{B}_{2}}{\frac{\mathrm{~T}}{\operatorname{degC}}+\mathrm{C}_{2}}} \cdot \mathrm{kPa}, ~}$
(a) Given: $\mathrm{x}_{1}:=0.33 \quad \mathrm{~T}:=100 \cdot \operatorname{deg} \mathrm{C} \quad$ Guess: $\mathrm{y}_{1}:=0.5 \quad \mathrm{P}:=100 \cdot \mathrm{kPa}$

Given $\quad \mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})+\left(1-\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{2}(\mathrm{~T})=\mathrm{P}$
$\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})=\mathrm{y}_{1} \cdot \mathrm{P}$
$\binom{\mathrm{y}_{1}}{\mathrm{P}}:=\operatorname{Find}\left(\mathrm{y}_{1}, \mathrm{P}\right) \quad \mathrm{y}_{1}=0.545 \quad$ Ans. $\quad \mathrm{P}=109.303 \mathrm{kPa} \quad$ Ans.
(b) Given: $\mathrm{y}_{1}:=0.33 \quad \mathrm{~T}:=100 \cdot \mathrm{degC} \quad$ Guess: $\mathrm{x}_{1}:=0.33 \quad \mathrm{P}:=100 \cdot \mathrm{kPa}$

Given $\quad \mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})+\left(1-\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{2}(\mathrm{~T})=\mathrm{P}$
$\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})=\mathrm{y}_{1} \cdot \mathrm{P}$
$\binom{x_{1}}{P}:=\operatorname{Find}\left(x_{1}, P\right) \quad x_{1}=0.169 \quad$ Ans. $\quad P=92.156 \mathrm{kPa} \quad$ Ans.
(c) Given: $\mathrm{x}_{1}:=0.33 \quad \mathrm{P}:=120 \cdot \mathrm{kPa} \quad$ Guess: $\quad \mathrm{y}_{1}:=0.5 \quad \mathrm{~T}:=100 \cdot \mathrm{degC}$

Given $\quad \mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})+\left(1-\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{2}(\mathrm{~T})=\mathrm{P}$
$\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})=\mathrm{y}_{1} \cdot \mathrm{P}$
$\binom{\mathrm{y}_{1}}{\mathrm{~T}}:=\operatorname{Find}\left(\mathrm{y}_{1}, \mathrm{~T}\right) \quad \mathrm{y}_{1}=0.542 \quad$ Ans. $\quad \mathrm{T}=103.307 \mathrm{degC} \quad$ Ans.
(d) Given: $\mathrm{y}_{1}:=0.33 \quad \mathrm{P}:=120 \cdot \mathrm{kPa}$ Guess: $\mathrm{x}_{1}:=0.33 \quad \mathrm{~T}:=100 \cdot \operatorname{deg} \mathrm{C}$

Given $\quad x_{1} \cdot \operatorname{Psat}_{1}(T)+\left(1-x_{1}\right) \cdot \operatorname{Psat}_{2}(T)=P$

$$
\begin{gathered}
\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})=\mathrm{y}_{1} \cdot \mathrm{P} \\
\binom{\mathrm{x}_{1}}{\mathrm{~T}}:=\operatorname{Find}\left(\mathrm{x}_{1}, \mathrm{~T}\right) \quad \mathrm{x}_{1}=0.173 \quad \text { Ans. } \quad \mathrm{T}=109.131 \operatorname{degC} \text { Ans. }
\end{gathered}
$$

(e) Given: $\quad \mathrm{T}:=105 \cdot \operatorname{degC} \quad \mathrm{P}:=120 \cdot \mathrm{kPa}$ Guess: $\mathrm{x}_{1}:=0.33 \quad \mathrm{y}_{1}:=0.5$

Given $\quad \mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})+\left(1-\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{2}(\mathrm{~T})=\mathrm{P}$

$$
\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})=\mathrm{y}_{1} \cdot \mathrm{P}
$$

$$
\binom{x_{1}}{\mathrm{y}_{1}}:=\operatorname{Find}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \quad \mathrm{x}_{1}=0.282 \quad \text { Ans. } \quad \mathrm{y}_{1}=0.484 \quad \text { Ans. }
$$

(f)

$$
\begin{array}{ll}
\mathrm{z}_{1}:=0.33 & \mathrm{x}_{1}=0.282 \\
\text { Guess: } & \mathrm{L}:=0.5 \\
\text { Given } & \mathrm{z}_{1}=\mathrm{L} \cdot \mathrm{x}_{1}+\mathrm{V} \cdot \mathrm{y}_{1} \\
& \mathrm{~L}+\mathrm{V}=1
\end{array}
$$

$$
\mathrm{y}_{1}=0.484
$$

$$
\mathrm{V}:=0.5
$$

$$
\binom{\mathrm{L}}{\mathrm{~V}}:=\operatorname{Find}(\mathrm{L}, \mathrm{~V}) \quad \text { Vapor Fraction: } \quad \mathrm{V}=0.238 \quad \text { Ans. }
$$

(g) Benzene and toluene are both non-polar and similar in shape and size. Therefore one would expect little chemical interaction between the components. The temperature is high enough and pressure low enough to expect ideal behavior.

10.2 Pressures in kPa ; temperatures in degC

(a) Antoine coefficients: Benzene=1; Ethylbenzene=2
$\mathrm{A}_{1}:=13.7819$
$B_{1}:=2726.81$
$\mathrm{C}_{1}:=217.572$
$\mathrm{A}_{2}:=13.9726$
$\mathrm{B}_{2}:=3259.93$
$\mathrm{C}_{2}:=212.300$
$\operatorname{Psat}_{1}(T):=\exp \left(A_{1}-\frac{B_{1}}{T+C_{1}}\right)$
$\operatorname{Psat}_{2}(T):=\exp \left(A_{2}-\frac{B_{2}}{T+C_{2}}\right)$
P-x-y diagram: $\quad \mathrm{T}:=90$

$$
\mathrm{P}\left(\mathrm{x}_{1}\right):=\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})+\left(1-\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{2}(\mathrm{~T}) \quad \mathrm{y}_{1}\left(\mathrm{x}_{1}\right):=\frac{\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})}{\mathrm{P}\left(\mathrm{x}_{1}\right)}
$$

T-x-y diagram: $\quad P^{\prime}:=90$
Guess \mathbf{t} for root function: $\mathrm{t}:=90$

$$
\begin{aligned}
& \mathrm{T}\left(\mathrm{x}_{1}\right):=\operatorname{root}\left[\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{t})+\left(1-\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{2}(\mathrm{t})-\mathrm{P}^{\prime}, \mathrm{t}\right] \\
& \mathrm{y}^{\prime}\left(\mathrm{x}_{1}\right):=\frac{\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}\left(\mathrm{~T}\left(\mathrm{x}_{1}\right)\right)}{\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}\left(\mathrm{~T}\left(\mathrm{x}_{1}\right)\right)+\left(1-\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{2}\left(\mathrm{~T}\left(\mathrm{x}_{1}\right)\right)}
\end{aligned}
$$

$$
x_{1}:=0,0.05 . .1 .0
$$

(b) Antoine coefficients: 1-Chlorobutane=1; Chlorobenzene=2
$\mathrm{A}_{1}:=13.7965$
$\mathrm{B}_{1}:=2723.73$
$\mathrm{C}_{1}:=218.265$
$\mathrm{A}_{2}:=13.8635$
$\mathrm{B}_{2}:=3174.78$
$\mathrm{C}_{2}:=211.700$
$\operatorname{Psat}_{1}(T):=\exp \left(A_{1}-\frac{B_{1}}{T+C_{1}}\right) \quad \operatorname{Psat}_{2}(T):=\exp \left(A_{2}-\frac{B_{2}}{T+C_{2}}\right)$
P-x-y diagram: $\quad \mathrm{T}:=90$

$$
\mathrm{P}\left(\mathrm{x}_{1}\right):=\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})+\left(1-\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{2}(\mathrm{~T}) \quad \mathrm{y}_{1}\left(\mathrm{x}_{1}\right):=\frac{\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})}{\mathrm{P}\left(\mathrm{x}_{1}\right)}
$$

T-x-y diagram: $\quad P^{\prime}:=90$
Guess \mathbf{t} for root function: $\mathrm{t}:=90$
$\mathrm{T}\left(\mathrm{x}_{1}\right):=\operatorname{root}\left[\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{t})+\left(1-\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{2}(\mathrm{t})-\mathrm{P}^{\prime}, \mathrm{t}\right]$
$\mathrm{y}^{\prime}\left(\mathrm{x}_{1}\right):=\frac{\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}\left(\mathrm{~T}\left(\mathrm{x}_{1}\right)\right)}{\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}\left(\mathrm{~T}\left(\mathrm{x}_{1}\right)\right)+\left(1-\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{2}\left(\mathrm{~T}\left(\mathrm{x}_{1}\right)\right)}$
$\mathrm{x}_{1}:=0,0.05 . .1 .0$

10.3 Pressures in kPa ; temperatures in degC

(a) Antoine coefficinets: n-Pentane=1; n-Heptane=2
$\mathrm{A}_{1}:=13.7667$
$\mathrm{A}_{2}:=13.8622$
$\mathrm{B}_{1}:=2451.88$
$\mathrm{C}_{1}:=232.014$
$\mathrm{B}_{2}:=2911.26$
$\mathrm{C}_{2}:=216.432$
$\operatorname{Psat}_{1}(T):=\exp \left(\mathrm{A}_{1}-\frac{\left.\mathrm{B}_{1}\right)}{\left.\mathrm{T}+\mathrm{C}_{1}\right)} \quad \operatorname{Psat}_{2}(\mathrm{~T}):=\exp \left(\mathrm{A}_{2}-\frac{\mathrm{B}_{2}}{\mathrm{~T}+\mathrm{C}_{2}}\right)\right.$
$\mathrm{T}:=55 \quad \mathrm{P}:=\left(\frac{\operatorname{Psat}_{1}(\mathrm{~T})+\operatorname{Psat}_{2}(\mathrm{~T})}{2}\right) \quad \mathrm{P}=104.349$

Since for Raoult's law P is linear in x, at the specified $P, x 1$ must be 0.5 :
$\mathrm{x}_{1}:=0.5$

$$
\mathrm{y}_{1}:=\frac{\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})}{\mathrm{P}}
$$

$$
\mathrm{y}_{1}=0.89
$$

For a given pressure, z1 ranges from the liquid composition at the bubble point to the vapor composition at the dew point. Material balance:

$$
\begin{array}{ll}
\mathrm{z}_{1}=\mathrm{x}_{1} \cdot(1-\mathrm{V})+\mathrm{y}_{1} \cdot \mathrm{~V} \\
\mathrm{z}_{1}:=\mathrm{x}_{1}, \mathrm{x}_{1}+0.01 . . \mathrm{y}_{1} & \mathrm{~V}\left(\mathrm{z}_{1}\right):=\frac{\mathrm{z}_{1}-\mathrm{x}_{1}}{\mathrm{y}_{1}-\mathrm{x}_{1}}
\end{array}
$$

V is obviously linear in z 1 :

(b) At fixed T and $z 1$, calculate $x 1, y 1$ and P as functions of fraction vapor (V).
$\mathrm{z}_{1}:=0.5$
Guess: $\mathrm{x}:=0.5 \quad \mathrm{y}:=0.5 \quad \mathrm{p}:=\left(\frac{\operatorname{Psat}_{1}(\mathrm{~T})+\operatorname{Psat}_{2}(\mathrm{~T})}{2}\right)$
Given Three equations relate $\mathbf{x} 1, \mathbf{y} \mathbf{1}, \& \mathbf{P}$ for given V :

$$
\begin{aligned}
& p=x \cdot \operatorname{Psat}_{1}(T)+(1-x) \cdot \operatorname{Psat}_{2}(T) \\
& y \cdot p=x \cdot \operatorname{Psat}_{1}(T) \\
& z_{1}=(1-V) \cdot x+V \cdot y
\end{aligned}
$$

$\mathrm{f}(\mathrm{V}):=\operatorname{Find}(\mathrm{x}, \mathrm{y}, \mathrm{p})$
$\mathrm{x}_{1}(\mathrm{~V}):=\mathrm{f}(\mathrm{V})_{1} \quad \mathrm{y}_{1}(\mathrm{~V}):=\mathrm{f}(\mathrm{V})_{2} \quad \mathrm{P}(\mathrm{V}):=\mathrm{f}(\mathrm{V})_{3}$
Plot $P, x 1$ and $y 1$ vs. vapor fraction (V)

$$
\mathrm{V}:=0,0.1 . .1 .0
$$

10.4 Each part of this problem is exactly like Problem 10.3, and is worked in exactly the same way. All that is involved is a change of numbers. In fact, the Mathcad solution for Problem 10.3 can be converted into the solution for any part of this problem simply by changing one number, the temperature.
10.7 Benzene: $\quad A_{1}:=13.7819$
Ethylbenzene $\mathrm{A}_{2}:=13.9726$
$B_{1}:=2726.81$
$C_{1}:=217.572$
$\operatorname{Psat}_{1}(T):=e^{A_{1}-\frac{B_{1}}{\frac{T}{\operatorname{degC}}+C_{1}} \cdot \mathrm{kPa}}$

(a) Given: $\mathrm{x}_{1}:=0.35 \quad \mathrm{y}_{1}:=0.70$ Guess: $\mathrm{T}:=116 \cdot \operatorname{degC} \quad \mathrm{P}:=132 \cdot \mathrm{kPa}$

Given $\quad x_{1} \cdot \operatorname{Psat}_{1}(T)+\left(1-x_{1}\right) \cdot \operatorname{Psat}_{2}(T)=P$

$$
\mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})=\mathrm{y}_{1} \cdot \mathrm{P}
$$

$\binom{\mathrm{T}}{\mathrm{P}}:=\operatorname{Find}(\mathrm{T}, \mathrm{P}) \quad \mathrm{T}=134.1 \mathrm{degC} \quad$ Ans. $\quad \mathrm{P}=207.46 \mathrm{kPa} \quad$ Ans.
For parts (b), (c) and (d) use the same structure. Set the defined variables and change the variables in the Find statement at the end of the solve block.
(b) $\mathrm{T}=111.88 \cdot \mathrm{deg} _\mathrm{C} \quad \mathrm{P}=118.72 \cdot \mathrm{kPa}$
(c) $\mathrm{T}=91.44 \cdot \mathrm{deg} _\mathrm{C} \quad \mathrm{P}=66.38 \cdot \mathrm{kPa}$
(d) $\mathrm{T}=72.43 \cdot \mathrm{deg}_{-} \mathrm{C} \quad \mathrm{P}=36.02 \cdot \mathrm{kPa}$

To calculate the relative amounts of liquid and vapor phases, one must know the composition of the feed.
10.8 To increase the relative amount of benzene in the vapor phase, the temperature and pressure of the process must be lowered. For parts (c) and (d), the process must be operated under vacuum conditions. The temperatures are well within the bounds of typical steam and cooling water temperatures.
10.9
(1) = benzene
(2) = toluene
(3) = ethylbenzene

$$
A:=\left(\begin{array}{l}
13.7819 \\
13.9320 \\
13.9726
\end{array}\right)
$$

$$
B:=\left(\begin{array}{l}
2726.81 \\
3056.96 \\
3259.93
\end{array}\right)
$$

$$
C:=\left(\begin{array}{l}
217.572 \\
217.625 \\
212.300
\end{array}\right)
$$

(a) $\mathrm{n}:=\operatorname{rows}(\mathrm{A}) \quad \mathrm{i}:=1 . . \mathrm{n} \quad \mathrm{T}:=110 \cdot \operatorname{degC} \quad \mathrm{P}:=90 \cdot \mathrm{kPa} \quad \mathrm{z}_{\mathrm{i}}:=\frac{1}{\mathrm{n}}$
$\operatorname{Psat}(\mathrm{i}, \mathrm{T}):=\mathrm{e}^{\mathrm{A}_{\mathrm{i}}-\frac{\mathrm{B}_{\mathrm{i}}}{\frac{\mathrm{T}}{\operatorname{degC}}+\mathrm{C}_{\mathrm{i}}}} \cdot \mathrm{kPa} \quad \mathrm{k}_{\mathrm{i}}:=\frac{\operatorname{Psat}(\mathrm{i}, \mathrm{T})}{\mathrm{P}} \quad$ Guess: $\quad \mathrm{V}:=0.5$

Given $\sum_{i=1}^{n} \frac{z_{i} \cdot k_{i}}{1+V \cdot\left(k_{i}-1\right)}=1 \quad$ Eq. (10.17)
$\mathrm{V}:=\operatorname{Find}(\mathrm{V}) \quad \mathrm{V}=0.836 \quad$ Ans.
$y_{i}:=\frac{z_{i} \cdot k_{i}}{1+\mathrm{V} \cdot\left(\mathrm{k}_{\mathrm{i}}-1\right)}$ Eq. (10.16)

Ans.

Ans.
(b) $\mathrm{T}=110 \cdot \mathrm{deg} _\mathrm{C}$

$$
V=0.575
$$

$$
\mathrm{P}=100 \cdot \mathrm{kPa}
$$

(c) $\mathrm{T}=110 \cdot$ deg_C

$$
V=0.352
$$

$$
\mathrm{P}=110 \cdot \mathrm{kPa}
$$

(d) $\mathrm{T}=110 \cdot$ deg_C
$V=0.146$
$\mathrm{P}=120 \cdot \mathrm{kPa}$
$x_{i}:=\frac{y_{i} \cdot P}{\operatorname{Psat}(i, T)}$
$x=\left(\begin{array}{l}0.142 \\ 0.306 \\ 0.552\end{array}\right)$
$y=\left(\begin{array}{l}0.441 \\ 0.333 \\ 0.226\end{array}\right)$
$x=\left(\begin{array}{l}0.238 \\ 0.345 \\ 0.417\end{array}\right)$
$y=\left(\begin{array}{c}0.508 \\ 0.312 \\ 0.18\end{array}\right)$

$y=\left(\begin{array}{l}0.572 \\ 0.284 \\ 0.144\end{array}\right)$
10.10 As the pressure increases, the fraction of vapor phase formed (V) decreases, the mole fraction of benzene in both phases increases and the the mole fraction of ethylbenzene in both phases decreases.
10.11
(a) $\begin{aligned} & \mathbf{(1)}=\text { acetone } \\ & \text { (2) }=\text { acetonitrile }\end{aligned} \mathrm{A}:=\binom{14.3145}{14.8950}$
$B:=\binom{2756.22}{3413.10}$
$C:=\binom{228.060}{250.523}$
$\mathrm{n}:=\operatorname{rows}(\mathrm{A}) \quad \mathrm{i}:=1 . . \mathrm{n}$
$\mathrm{z}_{1}:=0.75 \quad \mathrm{~T}:=(340-273.15) \cdot \operatorname{deg} \mathrm{C} \quad \mathrm{P}:=115 \cdot \mathrm{kPa}$
$\mathrm{z}_{2}:=1-\mathrm{z}_{1}$
$\operatorname{Psat}(\mathrm{i}, \mathrm{T}):=\mathrm{e}^{\mathrm{A}_{\mathrm{i}}-\frac{\mathrm{B}_{\mathrm{i}}}{\frac{T}{\operatorname{deg} \mathrm{C}}+\mathrm{C}_{\mathrm{i}}} \cdot \mathrm{kPa} \quad \mathrm{k}_{\mathrm{i}}:=\frac{\operatorname{Psat}(\mathrm{i}, \mathrm{T})}{\mathrm{P}}}$
Guess: $\quad \mathrm{V}:=0.5$
Given $\sum_{i=1}^{n} \frac{z_{i} \cdot k_{i}}{1+V \cdot\left(k_{i}-1\right)}=1 \quad$ Eq. (10.17)

$$
\mathrm{V}:=\operatorname{Find}(\mathrm{V}) \quad \mathrm{V}=0.656 \quad \text { Ans. }
$$

Eq. (10.16)

$$
\begin{array}{lll}
\mathrm{y}_{\mathrm{i}}:=\frac{\mathrm{z}_{\mathrm{i}} \cdot \mathrm{k}_{\mathrm{i}}}{1+\mathrm{V} \cdot\left(\mathrm{k}_{\mathrm{i}}-1\right)} & \mathrm{y}_{1}=0.805 & \text { Ans. } \\
\mathrm{x}_{\mathrm{i}}:=\frac{\mathrm{y}_{\mathrm{i}} \cdot \mathrm{P}}{\operatorname{Psat}(\mathrm{i}, \mathrm{~T})} & \mathrm{x}_{1}=0.644 & \text { Ans. } \\
\mathrm{r}:=\frac{\mathrm{y}_{1} \cdot \mathrm{~V}}{\mathrm{z}_{1}} & \mathrm{r}=0.705 & \text { Ans. }
\end{array}
$$

(b) $\mathrm{x}_{1}=0.285 \quad \mathrm{y}_{1}=0.678 \quad \mathrm{~V}=0.547 \quad \mathrm{r}=0.741$
(c) $\mathrm{x}_{1}=0.183 \quad \mathrm{y}_{1}=0.320 \quad \mathrm{~V}=0.487 \quad \mathrm{r}=0.624$
(d) $\mathrm{x}_{1}=0.340 \quad \mathrm{y}_{1}=0.682 \quad \mathrm{~V}=0.469 \quad \mathrm{r}=0.639$

Assume at 1 bar that the vapor is an ideal gas. The vapor-phase fugacities are then equal to the partial presures. Assume the Lewis/Randall rule applies to concentrated species 2 and that Henry's law applies to dilute species 1. Then:
$\mathrm{y}_{1} \cdot \mathrm{P}=\mathrm{H}_{1} \cdot \mathrm{x}_{1}$
$\mathrm{y}_{2} \cdot \mathrm{P}=\mathrm{x}_{2} \cdot \mathrm{Psat}_{2}$
$\mathrm{P}=\mathrm{y}_{1} \cdot \mathrm{P}+\mathrm{y}_{2} \cdot \mathrm{P}$
$\mathrm{x}_{1}+\mathrm{x}_{2}=1 \quad \mathrm{P}=\mathrm{H}_{1} \cdot \mathrm{x}_{1}+\left(1-\mathrm{x}_{1}\right) \cdot$ Psat $_{2}$

Solve for x 1 and y 1 :
$\mathrm{x}_{1}:=\frac{\mathrm{P}-\text { Psat }_{2}}{\mathrm{H}_{1}-\text { Psat }_{2}}$
$\mathrm{y}_{1}:=\frac{\mathrm{H}_{1} \cdot \mathrm{x}_{1}}{\mathrm{P}}$
$x_{1}=4.502 \times 10^{-3}$
$\mathrm{y}_{1}=0.9 \quad$ Ans.

10.16 Pressures in $\mathbf{k P a}$

$$
\begin{aligned}
& \text { Psat } 1:=32.27 \quad \text { Psat } 2:=73.14 \quad \text { A }:=0.67 \quad \mathrm{z}_{1}:=0.65 \\
& \gamma_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right):=\exp \left({\left.\mathrm{A} \cdot \mathrm{x}_{2}^{2}\right)} \begin{array}{l}
\gamma_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right):=\exp \left(\mathrm{A} \cdot \mathrm{x}_{1}^{2}\right)
\end{array}\right. \\
& \mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right):=\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \cdot \text { Psat }_{1}+\mathrm{x}_{2} \cdot \gamma_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \cdot \text { Psat }_{2}
\end{aligned}
$$

(a) BUBL P calculation:

$$
\mathrm{P}_{\text {bubl }}:=\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)
$$

DEW P calculation:

$$
\mathrm{x}_{1}:=0.5
$$

$$
\mathrm{P}^{\prime}:=\frac{\text { Psat }_{1}+\text { Psat }_{2}}{2}
$$

Given

$$
\begin{aligned}
\mathrm{y}_{1} \cdot \mathrm{P}^{\prime} & =\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right) \cdot \text { Psat }_{1} \\
\mathrm{P}^{\prime}= & \mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right) \cdot \text { Psat }_{1} \ldots \\
& +\left(1-\mathrm{x}_{1}\right) \cdot \gamma_{2}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right) \cdot \text { Psat }_{2}
\end{aligned}
$$

$$
\binom{\mathrm{x}_{1}}{\mathrm{P}_{\mathrm{dew}}}:=\operatorname{Find}\left(\mathrm{x}_{1}, \mathrm{P}^{\prime}\right)
$$

$$
\mathrm{P}_{\mathrm{dew}}=43.864
$$

Ans.

The pressure range for two phases is from the dewpoint to the bubblepoint: From 43.864 to 56.745 kPa
(b) BUBL P calculation: $\quad x_{1}:=0.75 \quad x_{2}:=1-x_{1}$

$$
\mathrm{y}_{1}\left(\mathrm{x}_{1}\right):=\frac{\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right) \cdot \mathrm{Psat}_{1}}{\mathrm{P}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right)}
$$

The fraction vapor, by material balance is:

$$
\mathrm{V}:=\frac{\mathrm{z}_{1}-\mathrm{x}_{1}}{\mathrm{y}_{1}\left(\mathrm{x}_{1}\right)-\mathrm{x}_{1}} \quad \mathrm{~V}=0.379 \quad \mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=51.892 \quad \text { Ans. }
$$

(c) See Example 10.3(e).
$\alpha_{12.0}:=\frac{\gamma_{1}(0,1) \cdot \text { Psat }_{1}}{\text { Psat }_{2}}$
$\alpha_{12.1}:=\frac{\text { Psat }_{1}}{\gamma_{2}(1,0) \cdot \text { Psat }_{2}}$
$\alpha_{12.0}=0.862$
$\alpha_{12.1}=0.226$

Since alpha does not pass through 1.0 for $0<x 1<1$, there is no azeotrope.

$$
\begin{aligned}
& \text { 10.17 } \text { Psat }_{1}:=79.8 \\
& \text { Psat } 2 \text { := } 40.5 \\
& \text { A : }=0.95 \\
& \gamma_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right):=\exp \left(\mathrm{A} \cdot \mathrm{x}_{2}^{2}\right) \quad \gamma_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right):=\exp \left(\mathrm{A} \cdot \mathrm{x}_{1}{ }^{2}\right) \\
& \mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right):=\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \cdot \text { Psat }_{1}+\mathrm{x}_{2} \cdot \gamma_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \cdot \text { Psat }_{2} \\
& \mathrm{y}_{1}\left(\mathrm{x}_{1}\right):=\frac{\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right) \cdot \text { Psat }_{1}}{\mathrm{P}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right)} \\
& \text { (a) BUBL P calculation: } \\
& \mathrm{P}_{\text {bubl }}:=\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \\
& P_{\text {bubl }}=47.971 \\
& \mathrm{x}_{1}:=0.05 \quad \mathrm{x}_{2}:=1-\mathrm{x}_{1} \\
& y_{1}\left(\mathrm{x}_{1}\right)=0.196 \\
& \text { Ans. } \\
& \text { (b) DEW P calculation: } \\
& \mathrm{y}_{1}:=0.05 \quad \mathrm{y}_{2}:=1-\mathrm{y}_{1} \\
& \mathrm{x}_{1}:=0.1 \quad \mathrm{P}^{\prime}:=\frac{\text { Psat }_{1}+\text { Psat }_{2}}{2}
\end{aligned}
$$

Given

$$
\begin{aligned}
\mathrm{y}_{1} \cdot \mathrm{P}^{\prime}= & \mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right) \cdot \text { Psat }_{1} \\
\mathrm{P}^{\prime}= & \mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right) \cdot \text { Psat }_{1} \ldots \\
& +\left(1-\mathrm{x}_{1}\right) \cdot \gamma_{2}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right) \cdot \text { Psat }_{2}
\end{aligned}
$$

$$
\binom{\mathrm{x}_{1}}{\mathrm{P}_{\mathrm{dew}}}:=\operatorname{Find}\left(\mathrm{x}_{1}, \mathrm{P}^{\prime}\right) \quad \begin{aligned}
& \mathrm{P}_{\mathrm{dew}}=42.191 \\
& \\
& \mathrm{x}_{1}=0.0104
\end{aligned} \quad \text { Ans. }
$$

(c) Azeotrope Calculation:

$$
\text { Guess: } \quad \mathrm{x}_{1}:=0.8 \quad \mathrm{y}_{1}:=\mathrm{x}_{1} \quad \mathrm{P}:=\frac{\text { Psat }_{1}+\text { Psat }_{2}}{2}
$$

Given $\mathrm{y}_{1}=\frac{\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right) \cdot \text { Psat }_{1}}{\mathrm{P}} \quad \mathrm{x}_{1} \geq 0 \quad \mathrm{x}_{1} \leq 1 \quad \mathrm{x}_{1}=\mathrm{y}_{1}$
$P=x_{1} \cdot \gamma_{1}\left(x_{1}, 1-x_{1}\right) \cdot$ Psat $_{1}+\left(1-x_{1}\right) \cdot \gamma_{2}\left(x_{1}, 1-x_{1}\right) \cdot$ Psat $_{2}$

$$
\left(\begin{array}{c}
\left.\mathrm{x}_{\mathrm{az}}{ }_{1}\right) \\
\mathrm{y}_{\mathrm{az}_{1}} \\
\mathrm{P}_{\mathrm{az}}
\end{array}\right):=\operatorname{Find}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{P}\right)
$$

Ans.
10.18 Psat $_{1}:=75.20 \cdot \mathrm{kPa}$

Psat $2:=31.66 \cdot \mathrm{kPa}$
At the azeotrope: $\quad \mathrm{y}_{1}=\mathrm{x}_{1} \quad$ and $\quad \gamma_{i}=\frac{\mathrm{P}}{\text { Psat }_{\mathrm{i}}}$
$\begin{array}{lll}\text { Therefore } & \frac{\gamma_{2}}{\gamma_{1}}=\frac{\text { Psat }_{1}}{\text { Psat }_{2}} & x_{1}:=0.294 \quad x_{2}:=1 \\ \ln \gamma_{1}=A \cdot x_{2}{ }^{2} & \ln \gamma_{2}=A \cdot x_{1}{ }^{2} & \ln \left(\frac{\left.\gamma_{2}\right)}{\left.\gamma_{1}\right)}=A \cdot\left(x_{1}{ }^{2}-x_{2}{ }^{2}\right)\right.\end{array}$
Whence $\quad A:=\frac{\ln \left(\frac{\left.\text { Psat }_{1}\right)}{\text { Psat }_{2}}\right)}{\mathrm{x}_{2}{ }^{2}-\mathrm{x}_{1}{ }^{2}} \quad \mathrm{~A}=2.0998$
For

$$
x_{1}:=0.6 \quad x_{2}:=1-x_{1}
$$

$\gamma_{1}:=\exp \left(A \cdot \mathrm{x}_{2}{ }^{2}\right) \quad \gamma_{2}:=\exp \left(\mathrm{A} \cdot \mathrm{x}_{1}{ }^{2}\right) \quad \mathrm{P}:=\mathrm{x}_{1} \cdot \gamma_{1} \cdot$ Psat $_{1}+\mathrm{x}_{2} \cdot \gamma_{2} \cdot$ Psat $_{2}$
$\mathrm{y}_{1}:=\frac{\mathrm{x}_{1} \cdot \gamma_{1} \cdot \text { Psat }_{1}}{\mathrm{P}} \quad \mathrm{P}=90.104 \mathrm{kPa} \quad \mathrm{y}_{1}=0.701 \quad$ Ans.
10.19 Pressures in bars:

Psat $_{1}:=1.24$
Psat2 $:=0.89$
A $:=1.8$
$\mathrm{x}_{1}:=0.65$
$\mathrm{x}_{2}:=1-\mathrm{x}_{1}$
$\gamma_{1}:=\exp \left(\mathrm{A} \cdot \mathrm{x}_{2}{ }^{2}\right)$
$\gamma_{2}:=\exp \left(\mathrm{A} \cdot \mathrm{x}_{1}{ }^{2}\right)$
$\mathrm{P}:=\mathrm{x}_{1} \cdot \gamma_{1} \cdot$ Psat $_{1}+\mathrm{x}_{2} \cdot \gamma_{2} \cdot$ Psat $_{2}$
$\mathrm{y}_{1}:=\frac{\mathrm{x}_{1} \cdot \gamma_{1} \cdot \text { Psat }_{1}}{\mathrm{P}}$
$y_{1}=0.6013 \quad P=1.671 \quad$ Answer to Part (b)
By a material balance,

$$
\mathrm{V}=\frac{\mathrm{z}_{1}-\mathrm{x}_{1}}{\mathrm{y}_{1}-\mathrm{x}_{1}} \quad \text { For } \quad 0 \leq \mathrm{V} \leq 1 \quad 0.6013 \leq \mathrm{z}_{1} \leq 0.65
$$

Ans. (a)
(c) Azeotrope calculation:

Guess: $\quad \mathrm{x}_{1}:=0.6 \quad \mathrm{y}_{1}:=\mathrm{x}_{1} \quad \mathrm{P}:=\frac{\text { Psat }_{1}+\text { Psat }_{2}}{2}$
$\gamma_{1}\left(x_{1}\right):=\exp \left[A \cdot\left(1-x_{1}\right)^{2}\right] \quad \gamma_{2}\left(x_{1}\right):=\exp \left(A \cdot x_{1}^{2}\right)$
Given $\quad P=x_{1} \cdot \gamma_{1}\left(x_{1}\right) \cdot$ Psat $_{1}+\left(1-x_{1}\right) \cdot \gamma_{2}\left(x_{1}\right) \cdot$ Psat $_{2}$
$\mathrm{y}_{1}=\frac{\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}\right) \cdot \text { Psat }_{1}}{\mathrm{P}} \quad \mathrm{x}_{1} \geq 0 \quad \mathrm{x}_{1} \leq 1 \quad \mathrm{x}_{1}=\mathrm{y}_{1}$
$\left(\begin{array}{l}\left.x_{1}\right) \\ y_{1} \mid:=\operatorname{Find}\left(x_{1}, y_{1}, P\right) \\ P\end{array}\right)$
$\left(\begin{array}{l}x_{1} \\ y_{1} \\ \mathrm{P}\end{array}\right)=\left(\begin{array}{l}0.592 \\ 0.592 \\ 1.673\end{array}\right)$

Ans.
10.20 Antoine coefficients:

Acetone(1): $\quad \mathrm{A}_{1}:=14.3145$
Methanol(2): $\quad \mathrm{A}_{2}:=16.5785$

P in kPa ; T in degC

$$
\mathrm{B}_{1}:=2756.22
$$

$$
\mathrm{C}_{1}:=228.060
$$

$$
\mathrm{B}_{2}:=3638.27
$$

$$
C_{2}:=239.500
$$

$$
\mathrm{P}_{2 \text { sat }}(\mathrm{T}):=\exp \left(\mathrm{A}_{2}-\frac{\mathrm{B}_{2}}{\mathrm{~T}+\mathrm{C}_{2}}\right)
$$

A : $=0.64$
$\mathrm{x}_{1}:=0.175$
$z_{1}:=0.25$
$p:=100 \quad$ (kPa)
$\gamma_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right):=\exp \left(\mathrm{A} \cdot \mathrm{x}_{2}{ }^{2}\right)$
$\gamma_{2}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right):=\exp \left(\mathrm{A} \cdot \mathrm{x}_{1}^{2}\right)$
$\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{~T}\right):=\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right) \cdot \mathrm{P}_{1 \text { sat }}(\mathrm{T}) \ldots$ $+\left(1-x_{1}\right) \cdot \gamma_{2}\left(x_{1}, 1-x_{1}\right) \cdot P_{2 \text { sat }}(T)$
$\mathrm{y}_{1}\left(\mathrm{x}_{1}, \mathrm{~T}\right):=\frac{\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}, 1-\mathrm{x}_{1}\right) \cdot \mathrm{P}_{1 \text { sat }}(\mathrm{T})}{\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{~T}\right)} \quad \mathrm{F}:=1$

Guesses: $\quad \mathrm{V}:=0.5 \quad \mathrm{~L}:=0.5 \quad \mathrm{~T}:=100$
Given
$\mathrm{F}=\mathrm{L}+\mathrm{V} \quad \mathrm{z}_{1} \cdot \mathrm{~F}=\mathrm{x}_{1} \cdot \mathrm{~L}+\mathrm{y}_{1}\left(\mathrm{x}_{1}, \mathrm{~T}\right) \cdot \mathrm{V} \quad \mathrm{p}=\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{~T}\right)$
$\left(\begin{array}{l}\mathrm{L}) \\ \mathrm{V} \mid:=\operatorname{Find}(\mathrm{L}, \mathrm{V}, \mathrm{T}) \\ \mathrm{T})\end{array}\right.$
$\left(\begin{array}{l}\mathrm{L} \\ \mathrm{V} \left\lvert\,=\binom{0.431}{\mathrm{~T}}\right. \\ 0.569 \\ 59.531\end{array}\right)$
$T=59.531 \quad$ (degC)
$\mathrm{y}_{1}\left(\mathrm{x}_{1}, \mathrm{~T}\right)=0.307$ Ans.

Problems 10.25 to 10.34 have been solved using MS-EXCEL 2000 We give the resulting spreadsheets.

Problem 10.25

a) BUBL P	$\mathrm{T}=-60 \mathrm{~F}(-51.11 \mathrm{C})$							
	$\mathrm{P}=200$ psia			$\mathrm{P}=250$ psia		$\mathrm{P}=215$ psia (14.824 bar)		ANSWER
Component	xi	Ki	$\mathrm{y}=\mathrm{Ki}^{*} \mathbf{x i}$	Ki	$y i=K i * x i$	Ki	$\mathbf{y i}=\mathrm{Ki}^{*} \mathbf{x i}$	
methane	0.100	5.600	0.560	4.600	0.460	5.150	0.515	
ethylene	0.500	0.700	0.350	0.575	0.288	0.650	0.325	
ethane	0.400	0.445	0.178	0.380	0.152	0.420	0.168	
		SUM =	1.088	SUM =	0.900	SUM =	1.008 clos	nough
b) DEW P	$\mathrm{T}=-60 \mathrm{~F}(-51.11 \mathrm{C})$							
	$\mathrm{P}=190$ psia			$\mathrm{P}=200$ psia (13.79 bar)			ANSWER	
Component	yi	Ki	$\mathbf{x i}=\mathbf{y i} / \mathbf{K i}$	Ki	$\mathbf{x i}=\mathbf{y} \mathbf{/} \mathbf{K i}$			
methane	0.500	5.900	0.085	5.600	0.089			
ethylene	0.250	0.730	0.342	0.700	0.357			
ethane	0.250	0.460	0.543	0.445	0.562			
	SUM $=0.971$			SUM $=1.008$ close enough				
c) BUBL T	$\mathrm{P}=250$ psia (17.24 bar)							

		$=-50 \mathrm{~F}$		T=-60 F		T=-57 F (-	49.44 C)	ANSWER
Component	xi	Ki	yi=Ki*xi	Ki	yi=Ki*xi	Ki	yi=Ki*xi	
methane	0.120	4.900	0.588	4.600	0.552	4.700	0.564	
ethylene	0.400	0.680	0.272	0.570	0.228	0.615	0.246	
ethane	0.480	0.450	0.216	0.380	0.182	0.405	0.194	
		SUM =	1.076	SUM =	0.962	SUM =	1.004	close enough

d) DEW T $\mathrm{P}=250$ psia (17.24 bar)

	T=-40 F			$\mathrm{T}=-50 \mathrm{~F}$		$\mathrm{T}=-45 \mathrm{~F}(-27.33 \mathrm{C})$		ANSWER
Component	yi	Ki	$\mathbf{x i}=\mathbf{y} \mathbf{i} / \mathbf{K i}$	Ki	xi=yi/Ki	Ki	xi=yi/Ki	
methane	0.430	5.200	0.083	4.900	0.088	5.050	0.085	
ethylene	0.360	0.800	0.450	0.680	0.529	0.740	0.486	
ethane	0.210	0.520	0.404	0.450	0.467	0.485	0.433	
		SUM =	0.937	SUM =	1.084	SUM =	1.005	close enough

Problem 10.26
a) BUBL $P \quad T=60 C(140 F)$

Component	P=200 psia			$\mathrm{P}=50 \mathrm{psia}$		$\mathrm{P}=80$ psia (5.516 bar)		ANSWER
	xi	Ki	$\mathbf{y i}=\mathrm{Ki}^{*} \mathbf{x i}$	Ki	$\mathbf{y i}=\mathrm{Ki}^{*} \mathbf{x i}$	Ki	$\mathrm{yi}=\mathrm{Ki}^{*} \mathrm{xi}$	
ethane	0.10	2.015	0.202	6.800	0.680	4.950	0.495	
propane	0.20	0.620	0.124	2.050	0.410	1.475	0.295	
isobutane	0.30	0.255	0.077	0.780	0.234	0.560	0.168	
isopentane	0.40	0.071	0.028	0.205	0.082	0.12	0.048	
		SUM =	0.430	SUM =	1.406	SUM =	1.006	enough

b) DEW P $\quad \mathrm{T}=60 \mathrm{C}(140 \mathrm{~F})$

	$\mathrm{P}=80$ psia			$\mathrm{P}=50 \mathrm{psia}$		$\mathrm{P}=52 \mathrm{psia}$ (3.585 bar)		ANSWER
Component	yi	$\mathbf{K i}$	$\mathbf{x i}=\mathbf{y} \mathbf{i} / \mathbf{K i}$	Ki	$\mathbf{x i}=\mathbf{y} \mathbf{i} / \mathrm{Ki}$	Ki	$\mathbf{x i}=\mathbf{y} / \mathrm{Ki}$	
ethane	0.48	4.950	0.097	6.800	0.071	6.600	0.073	
propane	0.25	1.475	0.169	2.050	0.122	2.000	0.125	
isobutane	0.15	0.560	0.268	0.780	0.192	0.760	0.197	
isopentane	0.12	0.12	1.000	0.205	0.585	0.195	0.615	
		SUM =	1.534	SUM =	0.970	SUM =	1.010 clo	enough

c) BUBL T P=15 bar (217.56 psia)

Component	T=220 F			$\mathrm{T}=150 \mathrm{~F}$		T=145 F (62.78 C)		ANSWER
	xi	Ki	$\mathbf{y i}=\mathrm{Ki}^{*} \mathbf{x i}$	Ki	$\mathrm{yi}=\mathrm{Ki}^{*} \mathrm{xi}$	Ki	$\mathbf{y i}=\mathrm{Ki}^{*} \mathbf{x i}$	
ethane	0.14	5.350	0.749	3.800	0.532	3.700	0.518	
propane	0.13	2.500	0.325	1.525	0.198	1.475	0.192	
isobutane	0.25	1.475	0.369	0.760	0.190	0.720	0.180	
isopentane	0.48	0.57	0.274	0.27	0.130	0.25	0.120	
		SUM =	1.716	SUM $=$	1.050	SUM =	1.010	close enough

d) DEW T P=15 bar (217.56 psia)

		$\mathrm{T}=150 \mathrm{~F}$		$\mathrm{T}=145 \mathrm{~F}$		T=148 F (64.44 C)		ANSWER
Component	yi	Ki	$\mathbf{x i = y i / K i}$	Ki	xi=yi/Ki	Ki	xi=yi/Ki	
ethane	0.42	3.800	0.111	3.700	0.114	3.800	0.111	
propane	0.30	1.525	0.197	1.475	0.203	1.500	0.200	
isobutane	0.15	0.760	0.197	0.720	0.208	0.740	0.203	
isopentane	0.13	0.27	0.481	0.25	0.520	0.26	0.500	
		SUM =	0.986	SUM =	1.045	SUM =	1.013	close enough

FLASH	T=80 F (14.81 C)			$\mathrm{P}=250$ psia (17.24 bar)	
				Fraction condensed	
		$V=0.855$		$L=0.145$	ANSWER
Component	zi	Ki	yi	$\mathbf{x i}=\mathbf{y i} / \mathbf{K i}$	
methane	0.50	10.000	0.575	0.058	
ethane	0.10	2.075	0.108	0.052	
propane	0.20	0.680	0.187	0.275	
n-butane	0.20	0.21	0.129	0.616	
		SUM =	1.000	SUM = 1.001	

Problem 10.28

First calculate equilibrium composition
T=95 C (203 F)

	$\mathrm{P}=80$ psia			$\mathrm{P}=65$ psia		$\mathrm{P}=69$ psia (4.83 bar)		ANSWER
Component	xi	Ki	yi=Ki* ${ }^{\text {a }}$	Ki	$\mathbf{y i}=\mathrm{Ki}^{*} \mathbf{x i}$	Ki	$\mathbf{y i}=\mathrm{Ki}^{*} \mathbf{x i}$	
n-butane	0.25	2.25	0.5625	2.7	0.675	2.6	0.633	
n-hexane	0.75	0.45	0.3375	0.51	0.3825	0.49	0.3675	
		SUM =	0.9000	SUM =	1.0575	SUM =	1.0005	enough

Now calculate liquid fraction from mole balances

	$z 1=0.5$
	$\mathrm{x} 1=0.25$
	$\mathrm{y} 1=0.633$
ANSWER	L= 0.347

Problem 10.29

FLASH $\quad P=2.00$ atm (29.39 psia)
T=200 F (93.3 C)

Fraction condensed

		$\mathbf{V =}=\mathbf{0 . 2 6 6}$		$\mathbf{L}=\mathbf{0 . 7 3}$	ANSWER
Component	$\mathbf{z i}$	$\mathbf{K i}$	$\mathbf{y i}$	0.191	
n-pentane	0.25	2.150	0.412	0.455	
n-hexane	0.45	0.960	0.437	0.354	
n-heptane	0.30	0.430	0.152		
		SUM $=$	$\mathbf{1 . 0 0 0}$	SUM $=$	$\mathbf{1 . 0 0 0}$

Problem 10.30
FLASH $\quad T=40 \mathrm{C}(104 \mathrm{~F})$

	Fraction condensed									
	$\mathrm{V}=0.60$			$\mathrm{L}=0.40$			ANSWER			
	$\mathrm{P}=110$ psia			$\mathrm{P}=100 \mathrm{psia}$				$\mathrm{P}=120$ psia (8.274 bar)		
Component	zi	Ki	yi	xi=yi/Ki	Ki	yi	xi=yi/Ki	Ki	yi	xi=yi/Ki
ethane	0.15	5.400	0.223	0.041	4.900	0.220	0.045	4.660	0.219	0.047
propane	0.35	1.900	0.432	0.227	1.700	0.419	0.246	1.620	0.413	0.255
n-butane	0.50	0.610	0.398	0.653	0.540	0.373	0.691	0.525	0.367	0.699
		SUM $=$	1.053	0.921	SUM $=$	1.012	0.982	SUM $=$	0.999	1.001

Problem 10.31
FLASH \quad T=70 F (21.11 C)

				Fraction	condense					
					0.80				ANSW	
		= 50 psi			$\mathrm{P}=40 \mathrm{psi}$			$\mathrm{P}=44 \mathrm{p}$	sia (3.03	34 bar)
Component	zi	Ki	yi	xi=yi/Ki	Ki	yi	xi=yi/Ki	Ki	yi	xi=yi/Ki
ethane	0.01	7.400	0.032	0.004	9.300	0.035	0.004	8.500	0.034	0.004
propane	0.05	2.400	0.094	0.039	3.000	0.107	0.036	2.700	0.101	0.037
i-butane	0.50	0.925	0.470	0.508	1.150	0.558	0.485	1.060	0.524	0.494
n-butane	0.44	0.660	0.312	0.472	0.810	0.370	0.457	0.740	0.343	0.464
		SUM $=$	0.907	1.023	SUM =	1.071	0.982	SUM =	1.002	1.000

Problem 10.32

FLASH	$\mathrm{T}=-15 \mathrm{C}(5 \mathrm{~F})$		Target: $\mathbf{y} 1=0.8$			
	$\mathrm{P}=300$ psia			$L=0.8145$		
	$V=0.1855$					
Component	zi	Ki	yi		$\mathbf{x i}=\mathbf{y} / \mathbf{/ K i}$	
methane	0.30	5.600	0.906		0.162	
ethane	0.10	0.820	0.085		0.103	
propane	0.30	0.200	0.070		0.352	
n-butane	0.30	0.047	0.017		0.364	
		SUM =	1.079	SUM $=$	0.982	
	$\mathrm{P}=150$ psia					
	$V=0.3150$				0.6850	
Component	zi	Ki	yi		$\mathbf{x i}=\mathbf{y} \mathbf{i} / \mathbf{K i}$	
methane	0.30	10.900	0.794		0.073	
ethane	0.10	1.420	0.125		0.088	
propane	0.30	0.360	0.135		0.376	
n-butane	0.30	0.074	0.031		0.424	
		SUM =	1.086	SUM $=$	0.960	
	$\mathrm{P}=270$ psia (18.616 bar)					
		$\mathrm{V}=$	0.2535		0.7465	ANSWER
Component	zi	Ki	yi		$\mathbf{x i}=\mathbf{y} \mathbf{i} / \mathrm{Ki}$	
methane	0.30	6.200	0.802		0.129	
ethane	0.10	0.900	0.092		0.103	
propane	0.30	0.230	0.086		0.373	
n-butane	0.30	0.0495	0.020		0.395	
		SUM =	1.000	SUM =	1.000	

Problem 10.33

First calculate vapor composition and temperature on top tray
BUBL T: $\quad \mathrm{P}=20$ psia

	T=70 F		$\mathrm{T}=60 \mathrm{~F}$			T=69 F (20.56 C)		ANSWER
Component	xi	Ki	$y \mathrm{l}=\mathrm{Ki}^{*} \mathrm{xi}$	Ki	$\mathrm{yi}=\mathrm{Ki}^{*} \mathrm{xi}$	Ki	$\mathrm{yi}=\mathrm{Ki*}{ }^{*} \mathrm{i}$	
n-butane	0.50	1.575	0.788	1.350	0.675	1.550	0.775	
n-pentane	0.50	0.450	0.225	0.360	0.180	0.440	0.220	
		SUM =	1.013	SUM =	0.855	SUM =	0.995	enough

Using calculated vapor composition from top tray, calculate composition out of condenser

FLASH $\quad \mathrm{P}=20$ psia (1.379 bar)

Problem 10.34

FLASH $\quad T=40 \mathrm{C}(104 \mathrm{~F})$

10.35 a) The equation from NIST is: $M_{i}=k_{i} \cdot y_{i} \cdot P \quad$ Eq. (1)

The equation for Henry's Law $i_{x_{i}} \cdot H_{i}=y_{i} \cdot P \quad$ Eq. (2)
Solving to eliminate P gives: $\quad H_{i}=\frac{M_{i}}{k_{i} \cdot x_{i}} \quad$ Eq. (3)
By definition: $\quad M_{i}=\frac{n_{i}}{n_{S} \cdot M_{S}} \quad \begin{aligned} & \text { where } M \text { is the molar mass and the } \\ & \text { subscript } s \text { refers to the solvent. }\end{aligned}$
Dividing by the toal number of moles gives: $M_{i}=\frac{x_{i}}{x_{S} \cdot M_{S}}$
Eq. (4)

Combining Eqs. (3) and (4) gives: $H_{i}=\frac{1}{x_{S} \cdot M_{S} \cdot k_{i}}$
If $\mathbf{x}_{\mathbf{i}}$ is small, then $\mathbf{x}_{\mathbf{s}}$ is approximately equal to 1 and: $H_{i}=\frac{1}{M_{s} \cdot k_{i}}$
Eq. (5)
b) For water as solvent: $\mathrm{M}_{\mathrm{S}}:=18.015 \frac{\mathrm{gm}}{\mathrm{mol}}$

For CO2 in H2O: $\mathrm{k}_{\mathrm{i}}:=0.034 \frac{\mathrm{~mol}}{\mathrm{~kg} \cdot \mathrm{bar}}$
By Eq. (5): $\quad H_{i}:=\frac{1}{M_{\mathrm{S}} \cdot \mathrm{k}_{\mathrm{i}}}$
$H_{i}=1633$ bar Ans.

The value is Table 10.1 is $\mathbf{1 6 7 0}$ bar. The values agree within about $\mathbf{2 \%}$.
10.36

Acetone:

a) Find BUBL P and DEW P values
$\mathrm{T}:=50 \mathrm{deg} \mathrm{C}$
$\mathrm{x}_{1}:=0.5$
$y_{1}:=0.5$

BUBLP $:=x_{1} \cdot \operatorname{Psat}_{1}(T)+\left(1-x_{1} \cdot \operatorname{Psat}_{2}(T)\right.$
BUBLP $=0.573 \mathrm{~atm}$ Ans.
DEWP $:=\frac{1}{\frac{\mathrm{y}_{1}}{\operatorname{Psat}_{1}(\mathrm{~T})}+\frac{\left(\mathrm{y}-\mathrm{y}_{1}\right.}{\operatorname{Psat}_{2}(\mathrm{~T})}}$
DEWP $=0.478 \mathrm{~atm} \quad$ Ans.

At $T=50 \mathrm{C}$ two phases will form between $P=0.478 \mathrm{~atm}$ and 0.573 atm
b) Find BUBL T and DEW T values
$\mathrm{P}:=0.5 \mathrm{~atm} \quad \mathrm{x}_{1}:=0.5 \quad \mathrm{y}_{1}:=0.5 \quad$ Guess: $\quad \mathrm{T}:=50 \operatorname{deg} \mathrm{C}$

Given $\quad x_{1} \cdot \operatorname{Psat}_{1}(T)+()-x_{1} \cdot \operatorname{Psat}_{2}(T)=P$
BUBLT $:=\operatorname{Find}(T) \quad B U B L T=46.316 \operatorname{deg} \mathrm{C} \quad$ Ans.

Given $\quad \mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})=\mathrm{y}_{1} \cdot \mathrm{P} \quad\left(\mathrm{l}-\mathrm{x}_{1} \cdot \operatorname{Psat}_{2}(\mathrm{~T})=\left(\mathrm{l}-\mathrm{y}_{1} \cdot \mathrm{P}\right.\right.$
$\binom{\mathrm{x}_{1}}{$ DEWT }$:=\operatorname{Find}\left(\mathrm{x}_{1}, \mathrm{~T} \quad\right.$ DEWT $=51.238 \operatorname{degC} \quad$ Ans.
At $P=0.5 \mathrm{~atm}$, two phases will form between $T=46.3 \mathrm{C}$ and 51.2 C
10.37 Calculate x and y at $T=90 \mathrm{C}$ and $P=75 \mathrm{kPa}$

Benzene:

Toluene:
Psat $_{2}(\mathrm{~T}):=\mathrm{e} \quad 13.9320-\frac{3056.96}{\frac{\mathrm{~T}}{\operatorname{degC}}+217.625} \cdot \mathrm{kPa}$
a) Calculate the equilibrium composition of the liquid and vapor at the flash T and P

$$
\mathrm{T}:=90 \operatorname{deg} \mathrm{C} \quad \mathrm{P}:=75 \mathrm{kPa} \quad \text { Guess: } \quad \mathrm{x}_{1}:=0.5 \quad \mathrm{y}_{1}:=0.5
$$

Given $\quad \mathrm{x}_{1} \cdot \operatorname{Psat}_{1}(\mathrm{~T})=\mathrm{y}_{1} \cdot \mathrm{P} \quad\left(\mathrm{l}-\mathrm{x}_{1} \cdot \operatorname{Psat}_{2}(\mathrm{~T})=\left(\mathrm{l}-\mathrm{y}_{1} \cdot \mathrm{P}\right.\right.$
$\left(\begin{array}{l}x_{1} \\ \left.y_{1}\right)\end{array}:=\operatorname{Find}()_{1}, y_{1} \quad x_{1}=0.252 \quad y_{1}=0.458\right.$
The equilibrium compositions do not agree with the measured values.
b) Assume that the measured values are correct. Since air will not dissolve in the liquid to any significant extent, the mole fractions of toluene in the liquid can be calculated.

$$
x_{1}:=0.1604 \quad y_{1}:=0.2919 \quad x_{2}:=1-x_{1} \quad x_{2}=0.8396
$$

Now calculate the composition of the vapor. y_{3} represents the mole fraction of air in the vapor.

Guess: $\quad y_{2}:=0.5 \quad y_{3}:=1-y_{2}-y_{1}$
Given
() $1-x_{1} \cdot \operatorname{Psat}_{2}(T)=() 1-y_{1}-y_{3} \cdot P \quad y_{1}+y_{2}+y_{3}=1$
$\binom{\mathrm{y}_{2}}{\mathrm{y}_{3}}:=\operatorname{Find}()_{2}, \mathrm{y}_{3}$

$$
\begin{aligned}
& \mathrm{y}_{2}=0.608 \\
& \mathrm{y}_{3}=0.1 \quad \text { Ans. }
\end{aligned}
$$

Conclusion: An air leak is consistent with the measured compositions.

Calculate the mole fraction of water in the exit gas if the exit gas is saturated with water.

$$
\mathrm{yH}_{2} \mathrm{O}_{2}:=\frac{\mathrm{Psat}_{\mathrm{H} 2 \mathrm{O}}() \Gamma_{2}}{\mathrm{P}} \quad \mathrm{yH}_{2} \mathrm{O}_{2}=0.0315
$$

This is less than the mole fraction of water in the feed. Therefore, some of the water will condense.

Assume that two streams leave the process: a liquid water stream at rate ndot $_{\text {liq }}$ and a vapor stream at rate ndot vap. . Apply mole balances around the cooler to calculate the exit composition of the vapor phase.

$$
\begin{aligned}
& \text { Guess: } \quad \text { ndot }_{\text {vap }}:=\frac{\text { ndot }}{2} \quad \text { ndot }_{\text {liq }}:=\frac{\text { ndot }}{2} \\
& \\
& \qquad \mathrm{yO}_{2}:=0.0387 \quad \mathrm{yN}_{2}:=0.7288 \quad \mathrm{yCO}_{2}:=0.0775
\end{aligned}
$$

 $\left(\left.\begin{array}{c}\left.\text { ndot }_{\text {liq }}\right) \\ \text { ndot }_{\text {vap }} \\ \mathrm{yO}_{2} \\ \mathrm{yN}_{2} \\ \left.\mathrm{yCO} 2_{2}\right)\end{array} \right\rvert\,:=\operatorname{Find}\left(\right.\right.$ hdot $_{\text {liq }}$, ndot $_{\text {vap }}, \mathrm{yO}_{2}, \mathrm{yN}_{2}, \mathrm{yCO}_{2}$

$$
\operatorname{ndot}_{\mathrm{liq}}=1.276 \frac{\mathrm{kmol}}{\mathrm{hr}} \quad \text { ndot }_{\mathrm{vap}}=8.724 \frac{\mathrm{kmol}}{\mathrm{hr}}
$$

$$
\mathrm{yO} 2_{2}=0.044 \quad \mathrm{yN} 2_{2}=0.835 \quad \mathrm{yCO} 2_{2}=0.089 \quad \mathrm{yH} 2 \mathrm{O}_{2}=0.031
$$

Apply an energy balance around the cooler to calculate heat transfer rate.

$$
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{lvH} 2 \mathrm{O}} & :=40.66 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \mathrm{~T}_{1}:=\mathrm{T}_{1}+273.15 \mathrm{~K} \quad \mathrm{~T}_{2}:=\mathrm{T}_{2}+273.15 \mathrm{~K} \\
\mathrm{Qdot}:= & \text { ndot }_{\mathrm{vap}} \cdot \mathrm{yO} 2_{2} \cdot \mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{1}, \mathrm{~T}_{2}, 3.639,0.506 \cdot 10^{-3}, 0,-0.227 \cdot 10^{5} \ldots \\
& + \text { ndot }_{\mathrm{vap}} \cdot \mathrm{yN} 2_{2} \cdot \mathrm{R} \cdot \mathrm{ICPH}()_{1}, \mathrm{~T}_{2}, 3.280,0.539 \cdot 10^{-3}, 0,0.040 \cdot 10^{5} \ldots \\
& + \text { ndot }_{\mathrm{vap}} \cdot \mathrm{yCO} 22 \cdot \mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{1}, \mathrm{~T}_{2}, 5.457,1.045 \cdot 10^{-3}, 0,-1.157 \cdot 10^{5} \ldots \\
& + \text { ndot }_{\mathrm{vap}} \cdot \mathrm{yH} 2 \mathrm{O}_{2} \cdot \mathrm{R} \cdot \mathrm{ICPH}() \Gamma_{1}, \mathrm{~T}_{2}, 3.470,1.450 \cdot 10^{-3}, 0,0.121 \cdot 10^{5} \ldots \\
& +-() \mathrm{AH}_{\mathrm{lvH} 2 \mathrm{O}} \cdot \text { ndot }_{\mathrm{liq}}
\end{aligned}
$$

Qdot $=-19.895 \mathrm{~kW} \quad$ Ans.
10.39 Assume the liquid is stored at the bubble point at $T=40 \mathrm{~F}$

Taking values from Fig 10.14 at pressure: $\quad \mathrm{P}:=18 \mathrm{psia}$ Ans.

$\mathrm{x}_{\mathrm{C} 3}:=0.05$	$\mathrm{~K}_{\mathrm{C} 3}:=3.9$
$\mathrm{x}_{\mathrm{C} 4}:=0.85$	$\mathrm{~K}_{\mathrm{C} 4}:=0.925$
$\mathrm{x}_{\mathrm{C} 5}:=0.10$	$\mathrm{~K}_{\mathrm{C} 5}:=0.23$

The vapor mole fractions must sum to 1 .

$$
\mathrm{x}_{\mathrm{C} 3} \cdot \mathrm{~K}_{\mathrm{C} 3}+\mathrm{x}_{\mathrm{C} 4} \cdot \mathrm{~K}_{\mathrm{C} 4}+\mathrm{x}_{\mathrm{C} 5} \cdot \mathrm{~K}_{\mathrm{C} 5}=1.004
$$

$10.40 \quad \mathbf{H}_{\mathbf{2}} \mathrm{S}+\mathbf{3 / 2} \mathrm{O}_{\mathbf{2}}->\mathrm{H}_{\mathbf{2}} \mathrm{O}+\mathrm{SO}_{\mathbf{2}}$
By a stoichiometric balance, calculate the following total molar flow rates
Feed: \quad ndot $_{\mathrm{H} 2 \mathrm{~S}}:=10 \frac{\mathrm{kmol}}{\mathrm{hr}} \quad$ ndot $_{\mathrm{O} 2}:=\frac{3}{2}$ ndot $_{\mathrm{H} 2 \mathrm{~S}}$
Products \quad ndots $_{S 2}:=$ ndot $_{\mathrm{H} 2 \mathrm{~S}} \quad$ ndot $_{\mathrm{H} 2 \mathrm{O}}:=$ ndot $_{\mathrm{H} 2 \mathrm{~S}}$

a) Calculate the mole fraction of $\mathrm{H}_{2} \mathrm{O}$ and SO_{2} in the exiting vapor stream assuming vapor is saturated with $\mathrm{H}_{2} \mathrm{O}$
$\begin{array}{cll}\text { yH2Ovap }:=\frac{\text { Psat }_{\mathrm{H} 2 \mathrm{O}}() \Gamma_{2}}{\mathrm{P}} & \text { УH2Ovap }=0.308 & \text { Ans. } \\ \text { ySO2 }:=1-\text { yH2Ovap } & \text { YSO2 }^{2}=0.692 & \text { Ans. }\end{array}$
b) Calculate the vapor stream molar flow rate using balance on $\mathbf{S O}_{\mathbf{2}}$
ndot $_{\text {vap }}:=\frac{\text { ndotsO2 }}{\text { ySO2 }}$

Ans.
Calculate the liquid $\mathrm{H}_{2} \mathrm{O}$ flow rate using balance on $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{array}{ll}
\text { ndot }_{\mathrm{H} 2 \mathrm{Ovap}}:=\text { ndot }_{\mathrm{vap}} \cdot \mathrm{yH}_{\mathrm{H} 2 \mathrm{Ovap}} & \text { ndot }_{\mathrm{H} 2 \mathrm{Ovap}}=4.461 \frac{\mathrm{kmol}}{\mathrm{hr}} \\
\text { ndot }_{\mathrm{H} 2 \mathrm{Oliq}}:=\text { ndot }_{\mathrm{H} 2 \mathrm{O}}-\text { ndot }_{\mathrm{H} 2 \mathrm{Ovap}} & \text { ndot }_{\mathrm{H} 2 \mathrm{Oliq}}=5.539 \frac{\mathrm{kmol}}{\mathrm{hr}}
\end{array}
$$

Ans.
$10.41 \mathrm{NCL}:=0.01 \frac{\mathrm{~kg}}{\mathrm{~kg}}$

$$
\mathrm{M}_{\mathrm{H} 2 \mathrm{O}}:=18.01 \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

$\mathrm{M}_{\text {air }}:=29 \frac{\mathrm{gm}}{\mathrm{mol}}$
a) $\quad \mathrm{Y}_{\mathrm{H} 2 \mathrm{O}}:=\mathrm{NCL} \cdot \frac{\mathrm{M}_{\text {air }}}{\mathrm{M}_{\mathrm{H} 2 \mathrm{O}}} \quad \mathrm{Y}_{\mathrm{H} 2 \mathrm{O}}=0.0161$

$$
\mathrm{yH}_{2 \mathrm{O}}:=\frac{\mathrm{Y}_{\mathrm{H} 2 \mathrm{O}}}{1+\mathrm{Y}_{\mathrm{H} 2 \mathrm{O}}} \quad \mathrm{y}_{\mathrm{H} 2 \mathrm{O}}=0.0158
$$

b) $\mathrm{P}:=1 \mathrm{~atm}$

$$
\mathrm{pp}_{\mathrm{H} 2 \mathrm{O}}:=\mathrm{y}_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{P}
$$

Ans.
c) $\quad \operatorname{Psat}_{\mathrm{H} 2 \mathrm{O}}(\mathrm{T}):=\mathrm{e}^{16.3872-\frac{3885.70}{\frac{\mathrm{~T}}{\operatorname{degC}}+230.170}} \cdot \mathrm{kPa} \quad$ Guess: $\mathrm{T}:=20 \operatorname{degC}$

$$
\text { Given } \quad \text { YH2O }^{2} \cdot \mathrm{P}=\operatorname{Psat}_{\mathrm{H} 2 \mathrm{O}}(\mathrm{~T}) \quad \mathrm{T}_{\mathrm{dp}}:=\operatorname{Find}(\mathrm{T})
$$

$$
\mathrm{T}_{\mathrm{dp}}=14.004 \operatorname{deg} \mathrm{C} \quad \mathrm{~T}_{\mathrm{dp}}:=\mathrm{T}_{\mathrm{dp}}+32 \mathrm{degF} \quad \mathrm{~T}_{\mathrm{dp}}=57.207 \mathrm{degF} \text { Ans. }
$$

By a mole balances on the process

Guess: ndot $_{2 \text { liq }}:=$ ndot $_{1}$ ndot $_{2 \mathrm{vap}}:=$ ndot $_{1}$

$$
\begin{aligned}
& \text { Given } \quad \operatorname{ndot}_{1} \cdot \mathrm{y}_{1}=\text { ndot }_{2 \mathrm{vap}} \cdot \mathrm{y}_{2}+\text { ndot }_{2 \mathrm{liq}} \quad \text { H2O balance } \\
& \text { ndot }_{1}=\text { ndot }_{2 \text { vap }}+\text { ndot }_{2 l i q} \quad \text { Overall balance } \\
& \binom{\text { ndot }_{2 l i q}}{\text { ndot }_{2 \text { vap }}}:=\operatorname{Find}\left(\text { ndot }_{2 \text { liq }}, \text { ndot }_{2 \text { vap }}\right. \\
& \text { ndot }_{2 \mathrm{vap}}=49.441 \frac{\mathrm{kmol}}{\mathrm{hr}} \quad \operatorname{ndot}_{2 \mathrm{liq}}=0.559 \frac{\mathrm{kmol}}{\mathrm{hr}} \\
& \text { mdot }_{2 \mathrm{liq}}:=\text { ndot }_{2 \mathrm{liq}} \cdot \mathrm{M}_{\mathrm{H} 2 \mathrm{O}} \\
& \text { motot }_{2 \mathrm{liq}}=10.074 \frac{\mathrm{~kg}}{\mathrm{hr}} \\
& \text { Ans. }
\end{aligned}
$$

10.43 Benzene:

$$
\text { A1 }:=13.7819 \quad \text { B1 }:=2726.81
$$

Cyclohexane: \quad A2 $:=13.6568 \quad$ B2 $:=2723.44 \quad$ C2 $:=220.618$
$\operatorname{Psat1}(\mathrm{T}):=\exp \left(\mathrm{A} 1-\frac{\mathrm{B} 1}{\frac{\mathrm{~T}}{\operatorname{deg} \mathrm{C}}+\mathrm{C} 1}\right) \mathrm{kPa}$
$\operatorname{Psat} 2(\mathrm{~T}):=\exp \left(\mathrm{A} 2-\frac{\mathrm{B} 2}{\frac{\mathrm{~T}}{\operatorname{deg} \mathrm{C}}+\mathrm{C} 2}\right) \mathrm{kPa}$

Guess: $\mathrm{T}:=66 \mathrm{deg} \mathrm{C}$
Given Psat1 $(\mathrm{T})=\operatorname{Psat} 2(\mathrm{~T}) \quad \mathrm{T}:=\operatorname{Find}(\mathrm{T})$
The Bancroft point for this system is:
Psat1 $(T)=39.591 \mathrm{kPa} \quad \mathrm{T}=52.321 \mathrm{degC} \quad$ Ans.

Component 1	Component 2	T (C)	P (kPa)
Benzene	Cyclohexane	52.3	39.6
2-Butanol	Water	87.7	64.2
Acetonitrile	Ethanol	65.8	60.6

Chapter 11 - Section A-Mathcad Solutions

11.1 For an ideal gas mole fraction = volume fraction
CO2 (1):
N2 (2):
$\mathrm{x}_{1}:=0.7$
$\mathrm{V}_{1}:=0.7 \mathrm{~m}^{3}$
$\mathrm{x}_{2}:=0.3$
$\mathrm{V}_{2}:=0.3 \mathrm{~m}^{3}$
$\mathrm{i}:=1 . .2 \quad \mathrm{P}:=1 \mathrm{bar} \quad \mathrm{T}:=(25+273.15) \mathrm{K}$
$\mathrm{n}:=\frac{\mathrm{P} \cdot \sum_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}}{\mathrm{R} \cdot \mathrm{T}} \quad \mathrm{n}=40.342 \mathrm{~mol}$
$\Delta \mathrm{S}:=-\mathrm{n} \cdot \mathrm{R} \cdot \sum_{\mathrm{i}}\left(\mathrm{k}_{\mathrm{i}} \cdot \ln \left(\mathrm{k}_{\mathrm{i}}\right.\right.$
$\Delta S=204.885 \frac{\mathrm{~J}}{\mathrm{~K}}$

Ans.
11.2 For a closed, adiabatic, fixed-volume system, $\Delta \mathrm{U}=\mathbf{0}$. Also, for an ideal gas, $\Delta \mathbf{U}=\mathbf{C v} \Delta T$. First calculate the equilibrium T and P.

$\mathrm{n}_{\mathrm{N} 2}:=4 \cdot \mathrm{~mol}$	$\mathrm{~T}_{\mathrm{N} 2}:=[(75+273.15) \cdot \mathrm{K}]$	$\mathrm{P}_{\mathrm{N} 2}:=30 \cdot \mathrm{bar}$
$\mathrm{n}_{\mathrm{Ar}}:=2.5 \cdot \mathrm{~mol}$	$\mathrm{~T}_{\mathrm{Ar}}:=(130+273.15) \cdot \mathrm{K}$	$\mathrm{P}_{\mathrm{Ar}}:=20 \cdot \mathrm{bar}$
$\mathrm{T}_{\mathrm{N} 2}=348.15 \mathrm{~K}$	$\mathrm{~T}_{\mathrm{Ar}}=403.15 \mathrm{~K}$	$\mathrm{i}:=1 . .2$
$\mathrm{n}_{\text {total }}:=\mathrm{n}_{\mathrm{N} 2}+\mathrm{n}_{\mathrm{Ar}}$	$\mathrm{x}_{1}:=\frac{\mathrm{n}_{\mathrm{N} 2}}{\mathrm{n}_{\text {total }}}$	$\mathrm{x}_{2}:=\frac{\mathrm{n}_{\mathrm{Ar}}}{\mathrm{n}_{\text {total }}}$
	$\mathrm{x}_{1}=0.615$	$\mathrm{x}_{2}=0.385$
$\mathrm{Cv}_{\mathrm{Ar}}:=\frac{3}{2} \cdot \mathrm{R}$	$\mathrm{Cv}_{\mathrm{N} 2}:=\frac{5}{2} \cdot \mathrm{R}$	
$\mathrm{Cp}_{\mathrm{Ar}}:=\mathrm{Cv}_{\mathrm{Ar}}+\mathrm{R}$	$\mathrm{Cp}_{\mathrm{N} 2}:=\mathrm{Cv}_{\mathrm{N} 2}+\mathrm{R}$	

Find T after mixing by energy balance:
$\mathrm{T}:=\frac{\mathrm{T}_{\mathrm{N} 2}+\mathrm{T}_{\mathrm{Ar}}}{2}$
(guess)
Given
$\mathrm{n}_{\mathrm{N} 2} \cdot \mathrm{Cv}_{\mathrm{N} 2} \cdot() \Gamma-\mathrm{T}_{\mathrm{N} 2}=\mathrm{n}_{\mathrm{Ar}} \cdot \operatorname{Cv}_{\mathrm{Ar}} \cdot() \Gamma_{\mathrm{Ar}}-\mathrm{T} \quad \mathrm{T}:=\operatorname{Find}(\mathrm{T})$

$$
T-273.15 \cdot \mathrm{~K}=90 \mathrm{degC}
$$

Find P after mixing:

$\mathrm{P}:=\frac{\mathrm{P}_{\mathrm{N} 2}+\mathrm{P}_{\mathrm{Ar}}}{2}$
Given
$\frac{\left(\mathrm{h}_{\mathrm{N} 2}+\mathrm{n}_{\mathrm{Ar}} \cdot \mathrm{R} \cdot \mathrm{T}\right.}{\mathrm{P}}=\frac{\mathrm{n}_{\mathrm{N} 2} \cdot \mathrm{R} \cdot \mathrm{T}_{\mathrm{N} 2}}{\mathrm{P}_{\mathrm{N} 2}}+\frac{\mathrm{n}_{\mathrm{Ar}} \cdot \mathrm{R} \cdot \mathrm{T}_{\mathrm{Ar}}}{\mathrm{P}_{\mathrm{Ar}}}$
$\mathrm{P}:=\operatorname{Find}(\mathrm{P}) \quad \mathrm{P}=24.38$ bar

Calculate entropy change by two-step path:

1) Bring individual stream to mixture T and P.
2) Then mix streams at mixture T and P.

$$
\begin{array}{ll}
\Delta \mathrm{S}_{\mathrm{N} 2}:=\mathrm{n}_{\mathrm{N} 2} \cdot\left(\mathrm{Cp}_{\mathrm{N} 2} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{\mathrm{N} 2}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{N} 2}}\right)\right) & \Delta \mathrm{S}_{\mathrm{N} 2}=11.806 \frac{\mathrm{~J}}{\mathrm{~K}} \\
\Delta \mathrm{~S}_{\mathrm{Ar}}:=\mathrm{n}_{\mathrm{Ar}} \cdot\left(\mathrm{Cp}_{\mathrm{Ar}} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~T}_{\mathrm{Ar}}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{Ar}}}\right)\right) & \Delta \mathrm{S}_{\mathrm{Ar}}=-9.547 \frac{\mathrm{~J}}{\mathrm{~K}} \\
\Delta \mathrm{~S}_{\mathrm{mix}}:=\mathrm{n}_{\text {total }} \cdot\left[-\mathrm{R} \cdot \sum_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}} \cdot \ln \left(\mathrm{k}_{\mathrm{i}}\right]\right.\right. & \Delta \mathrm{S}_{\mathrm{mix}}=36.006 \frac{\mathrm{~J}}{\mathrm{~K}} \\
\Delta \mathrm{~S}:=\Delta \mathrm{S}_{\mathrm{N} 2}+\Delta \mathrm{S}_{\mathrm{Ar}}+\mathrm{S}_{\mathrm{mix}} \quad \Delta \mathrm{~S}=38.27 \frac{\mathrm{~J}}{\mathrm{~K}} & \text { Ans. }
\end{array}
$$

$11.3 \quad \operatorname{mdot}_{\mathrm{N} 2}:=2 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}$

$$
\operatorname{mdot}_{\mathrm{H} 2}:=0.5 \cdot \frac{\mathrm{~kg}}{\mathrm{sec}}
$$

$$
\operatorname{molwt}_{\mathrm{N} 2}:=28.014 \cdot \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

$$
\text { molwt }_{\mathrm{H} 2}:=2.016 \cdot \frac{\mathrm{gm}}{\mathrm{~mol}} \quad \mathrm{i}:=1 . .2
$$

molarflow $_{\mathrm{N} 2}:=\frac{\operatorname{mdot}_{\mathrm{N} 2}}{\operatorname{molwt}_{\mathrm{N} 2}} \quad$ molarflow $_{\mathrm{H} 2}:=\frac{\operatorname{mdot}_{\mathrm{H} 2}}{\operatorname{molwt}_{\mathrm{H} 2}}$
molarflow $_{\text {total }}:=$ molarflow $_{\mathrm{N} 2}+$ molarflow $_{\mathrm{H} 2}$ molarflow $_{\text {total }}=319.409 \frac{\mathrm{~mol}}{\mathrm{sec}}$

$$
\mathrm{y}_{1}:=\frac{\text { molarflow }_{\mathrm{N} 2}}{\text { molarflow }_{\text {total }}} \quad \mathrm{y}_{1}=0.224 \quad \mathrm{y}_{2}:=\frac{\text { molarflow }_{\mathrm{H} 2}}{\text { molarflow }_{\text {total }}} \quad \mathrm{y}_{2}=0.776
$$

$\Delta \mathrm{S}:=-\mathrm{R} \cdot$ molarflow $_{\text {total }} \cdot \sum_{\mathrm{i}}\left(y_{\mathrm{i}} \cdot \ln \left(y_{\mathrm{i}}\right.\right.$

$$
\Delta \mathrm{S}=1411 \frac{\mathrm{~J}}{\mathrm{sec} \cdot \mathrm{~K}} \quad \text { Ans. }
$$

$11.4 \quad \mathrm{~T}_{1}:=448.15 \cdot \mathrm{~K} \quad \mathrm{~T}_{2}:=308.15 \cdot \mathrm{~K} \quad \mathrm{P}_{1}:=3 \cdot \mathrm{bar} \quad \mathrm{P}_{2}:=1 \cdot \mathrm{bar}$

For methane:

$$
\begin{aligned}
& \mathrm{MCPH}_{\mathrm{m}}:=\operatorname{MCPH}() \Gamma_{1}, \mathrm{~T}_{2}, 1.702,9.081 \cdot 10^{-3},-2.164 \cdot 10^{-6}, 0.0 \\
& \mathrm{MCPS}_{\mathrm{m}}:=\operatorname{MCPS}()_{1}, \mathrm{~T}_{2}, 1.702,9.081 \cdot 10^{-3},-2.164 \cdot 10^{-6}, 0.0
\end{aligned}
$$

For ethane:

$\mathrm{MCPH}_{\mathrm{e}}:=\mathrm{MCPH}()_{1}, \mathrm{~T}_{2}, 1.131,19.225 \cdot 10^{-3},-5.561 \cdot 10^{-6}, 0.0$
$\operatorname{MCPS}_{\mathrm{e}}:=\operatorname{MCPS}()_{1}, \mathrm{~T}_{2}, 1.131,19.225 \cdot 10^{-3},-5.561 \cdot 10^{-6}, 0.0$
$\mathrm{MCPH}_{\text {mix }}:=0.5 \cdot \mathrm{MCPH}_{\mathrm{m}}+0.5 \cdot \mathrm{MCPH}_{\mathrm{e}} \quad \mathrm{MCPH}_{\text {mix }}=6.21$
$\mathrm{MCPS}_{\text {mix }}:=0.5 \cdot \mathrm{MCPS}_{\mathrm{m}}+0.5 \cdot \mathrm{MCPS}_{\mathrm{e}} \quad \mathrm{MCPS}_{\text {mix }}=6.161$
$\Delta \mathrm{H}:=\mathrm{R} \cdot \mathrm{MCPH}_{\text {mix }} \cdot() \Gamma_{2}-\mathrm{T}_{1} \quad \Delta \mathrm{H}=-7228 \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\Delta \mathrm{S}:=\mathrm{R} \cdot \mathrm{MCPS}_{\text {mix }} \cdot \ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)-\mathrm{R} \cdot \ln \left(\frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}\right)+\mathrm{R} \cdot 2 \cdot 0.5 \cdot \ln (0.5)$
The last term is the entropy change of UNmixing
$\Delta \mathrm{S}=-15.813 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
$\mathrm{T}_{\sigma}:=300 \cdot \mathrm{~K}$
$\mathrm{W}_{\text {ideal }}:=\Delta \mathrm{H}-\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S}$

Ans.
11.5 Basis: 1 mole entering air.
$\mathrm{y}_{1}:=0.21 \quad \mathrm{y}_{2}:=0.79 \quad \eta_{\mathrm{t}}:=0.05 \quad \mathrm{~T}_{\sigma}:=300 \cdot \mathrm{~K}$
Assume ideal gases; then $\quad \Delta \mathrm{H}=0$
The entropy change of mixing for ideal gases is given by the equation following Eq. (11.26). For UNmixing of a binary mixture it becomes:

$$
\Delta \mathrm{S}:=\mathrm{R} \cdot()_{1} \cdot \ln \left(y_{1}+\mathrm{y}_{2} \cdot \ln \left(y_{2}\right.\right.
$$

$$
\Delta \mathrm{S}=-4.273 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

By Eq. (5.27):

$$
\mathrm{W}_{\text {ideal }}:=-\mathbb{T}_{\sigma} \cdot \mathrm{S} \quad \mathrm{~W}_{\text {ideal }}=1.282 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

By Eq. (5.28): \quad Work $:=\frac{W_{\text {ideal }}}{\eta_{t}}$

$$
\text { Work }=25638 \frac{\mathrm{~J}}{\mathrm{~mol}} \text { Ans. }
$$

11.16

$\mathrm{Z}:=\left(\begin{array}{l}1.000 \\ 0.985 \\ 0.970 \\ 0.942 \\ 0.913 \\ 0.885 \\ 0.869 \\ 0.765 \\ 0.762 \\ 0.824 \\ 0.910\end{array}\right)$

$$
\ln \phi_{1}:=0
$$

$$
\phi_{1}:=1
$$

$$
\text { end }:=\operatorname{rows}(\mathrm{P})
$$

$$
\mathrm{i}:=2 . . \text { end }
$$

$$
\mathrm{F}_{\mathrm{i}}:=\frac{\mathrm{Z}_{\mathrm{i}}-1}{\mathrm{P}_{\mathrm{i}}}
$$

Fi is a well behaved function; use the trapezoidal rule to integrate Eq. (11.35) numerically.

$$
\begin{array}{ll}
\mathrm{A}_{\mathrm{i}}:=\frac{\mathrm{F}_{\mathrm{i}}+\mathrm{F}_{\mathrm{i}-1}}{2} \cdot\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{i}-1}\right. & \ln \phi_{\mathrm{i}}:=\ln \phi_{\mathrm{i}-1}+\mathrm{A}_{\mathrm{i}} \\
\phi_{\mathrm{i}}:=\exp ()_{n \phi_{\mathrm{i}}} & \mathrm{f}_{\mathrm{i}}:=\phi_{\mathrm{i}} \cdot \mathrm{P}_{\mathrm{i}}
\end{array}
$$

Generalized correlation for fugacity coefficient:

$$
\begin{array}{llll}
\text { For CO2: } & \mathrm{T}_{\mathrm{c}}:=304 \cdot 2 \cdot \mathrm{~K} & \mathrm{P}_{\mathrm{c}}:=73.83 \cdot \text { bar } & \omega:=0.224 \\
\mathrm{~T}:=(150+273.15) \cdot \mathrm{K} & \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} & \mathrm{~T}_{\mathrm{r}}=1.391 \\
\phi_{\mathrm{G}}(\mathrm{P}):=\exp & {\left[\frac { \frac { \mathrm { P } } { \mathrm { P } _ { \mathrm { c } } } } { \mathrm { T } _ { \mathrm { r } } } \cdot \left(\beta_{0}()\left(\Pi_{\mathrm{r}}+\omega \cdot \mathrm{B}_{1}() \Gamma_{\mathrm{r}}\right]\right.\right.} & \mathrm{f}_{\mathrm{G}}(\mathrm{P}):=\phi_{\mathrm{G}}(\mathrm{P}) \cdot \mathrm{P}
\end{array}
$$

Calculate values:	$\frac{\mathrm{P}_{\mathrm{i}}}{\mathrm{bar}}=$	$\phi_{\mathrm{i}}=$	$\frac{\mathrm{f}_{\mathrm{i}}}{\mathrm{bar}}=$
	10	0.993	9.925
	20	0.978	19.555
	40	0.949	37.973
	60	0.922	55.332
	80	0.896	71.676
	100	0.872	87.167
	200	0.77	153.964
	300	0.698	209.299
	400	0.656	262.377
	500	0.636	317.96

Agreement looks good up to about 200 bar ($\mathrm{Pr}=\mathbf{2 . 7}$ @ $\mathbf{T r}=1.39$)
11.17 For SO2:

$$
\mathrm{T}_{\mathrm{c}}:=430.8 \cdot \mathrm{~K}
$$

$$
\mathrm{P}_{\mathrm{c}}:=78.84 \cdot \mathrm{bar}
$$

$$
\omega:=0.245
$$

$$
\mathrm{T}:=600 \cdot \mathrm{~K}
$$

$$
\mathrm{P}:=300 \cdot \mathrm{bar}
$$

$$
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=1.393
$$

$$
\mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}}
$$

$$
\mathrm{P}_{\mathrm{r}}=3.805
$$

For the given conditions, we see from Fig. 3.14 that the Lee/Kesler correlation is appropriate.

Data from Tables E. 15 \& E. 16 and by Eq. (11.67):
$\phi_{0}:=0.672$
$\phi_{1}:=1.354$
$\mathrm{f}:=\phi \cdot \mathrm{P} \quad$ GRRT $:=\ln (\phi$
$\mathrm{f}=217.14 \mathrm{bar} \quad$ GRRT $=-0.323$ Ans.
11.18 Isobutylene: $\quad T_{c}:=417.9 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=40.00 \cdot \mathrm{bar} \quad \omega:=0.194$
a) At 280 degC and 20 bar: $\quad T:=(280+273.15) \cdot K \quad P:=20 \cdot$ bar
$\mathrm{T}_{\mathrm{r}}(\mathrm{T}):=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r}}(\mathrm{T})=1.3236 \quad \mathrm{P}_{\mathrm{r}}(\mathrm{P}):=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \mathrm{P}_{\mathrm{r}}(\mathrm{P})=0.5$
At these conditions use the generalized virial-coeffieicnt correlation.
$\mathrm{f}:=\operatorname{PHIB}() \Gamma_{\mathrm{r}}(\mathrm{T}), \mathrm{B}_{\mathrm{r}}(\mathrm{P}), \quad \cdot \mathrm{P}$
$\mathrm{f}=18.76$ bar \quad Ans.
b) At 280 degC and 100 bar: $T:=(280+273.15) \cdot \mathrm{K}$
$\mathrm{P}:=100 \cdot \mathrm{bar}$
$\mathrm{P}_{\mathrm{r}}(\mathrm{P})=2.5$

At these conditions use the Lee/Kesler correlation, Tables E. 15 \& E. 16 and Eq. (11.67).

$$
\begin{array}{rll}
\phi 0:=0.7025 \quad \phi 1:=1.2335 & \phi \phi=0 \cdot \phi 1^{\omega} & \mathrm{f}:=\phi \cdot \mathrm{P} \\
& \phi=0.732 & \mathrm{f}=73.169 \mathrm{bar} \quad \text { Ans. }
\end{array}
$$

11.19 The following vectors contain data for Parts (a) and (b):
(a) = Cyclopentane;
(b) = 1-butene

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{c}}:=\binom{511.8}{420.0} \cdot \mathrm{~K} \\
& \mathrm{Z}_{\mathrm{c}}:=\binom{0.273}{0.277} \\
& \mathrm{~T}:=\binom{383.15}{393.15} \cdot \mathrm{~K}
\end{aligned}
$$

$$
\mathrm{P}_{\mathrm{c}}:=\binom{45.02}{40.43} \cdot \mathrm{bar}
$$

$$
\omega:=\binom{0.196}{0.191}
$$

$$
\mathrm{V}_{\mathrm{c}}:=\binom{258}{239.3} \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

$$
\mathrm{T}_{\mathrm{n}}:=\binom{322.4}{266.9} \cdot \mathrm{~K}
$$

$$
\mathrm{P}:=\binom{275}{34} \cdot \text { bar }
$$

$$
\text { Psat }:=\binom{5.267}{25.83} \cdot \text { bar }
$$

$\mathrm{T}_{\mathrm{r}}:=\frac{\overrightarrow{\mathrm{T}}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r}}=\binom{0.7486}{0.9361} \quad$ Psat $_{\mathrm{r}}:=\frac{\overrightarrow{\text { Psat }}}{\mathrm{P}_{\mathrm{c}}} \quad \quad$ Psat $_{\mathrm{r}}=\binom{0.117}{0.6389}$
Calculate the fugacity coefficient at the vapor pressure by Eq. (11.68):
(a) $\quad \operatorname{PHIB}() \Gamma_{r_{1}}$, Bsat $_{r_{1}}, \quad 1=0.900$
(b) $\quad \operatorname{PHIB}\left(\mid \Gamma_{r_{2}}\right.$, Bsat $_{r_{2}}, \quad 2=0.76$

Eq. (3.72), the Rackett equation:
$\mathrm{T}_{\mathrm{r}}:=\frac{\overrightarrow{\mathrm{T}}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{r}}=\binom{0.749}{0.936}$
Eq. (11.44):

11.21 Table F.1, 150 degC:

$$
\mathrm{P}_{\text {sat }}:=476.00 \cdot \mathrm{kPa}
$$

molwt $:=18 \cdot \frac{\mathrm{gm}}{\mathrm{mol}}$
$\mathrm{V}_{\mathrm{sat}}:=1.091 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{gm}} \cdot$ molwt
$T:=(150+273.15) \cdot K \quad P:=150 \cdot$ bar
$\mathrm{V}_{\mathrm{sat}}=19.638 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
$\mathrm{T}=423.15 \mathrm{~K}$

Equation Eq. (11.44) with $\phi_{\text {sat }} P_{\text {sat }}=f_{\text {sat }}$
$\mathrm{r}:=\exp \left[\frac{\mathrm{V}_{\mathrm{sat}} \cdot\left(\mathrm{P}-\mathrm{P}_{\mathrm{sat}}\right.}{\mathrm{R} \cdot \mathrm{T}}\right] \quad \mathrm{r}=1.084 \quad \mathrm{r}=\frac{\mathrm{f}}{\mathrm{f}_{\mathrm{sat}}}=1.084$
Ans.
11.22 The following vectors contain data for Parts (a) and (b): molwt $:=18 \cdot \frac{\mathrm{gm}}{\mathrm{mol}}$

Table F.2: (a) $9000 \mathrm{kPa} \& 400 \mathrm{degC}$; (b) 1000 (psia) \& 800 degF :
$\mathrm{T}_{1}:=\left[\begin{array}{c}(400+273.15) \cdot \mathrm{K} \\ (800+459.67) \cdot \text { rankine }\end{array}\right]$
$\mathrm{H}_{1}:=\binom{3121.2 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}}{1389.6 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}} \quad \mathrm{S}_{1}:=\binom{6.2915 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{K}}}{1.5677 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}}$
Table F.2: (a) $300 \mathrm{kPa} \& 400 \mathrm{degC}$; (b) $\mathbf{5 0}(\mathrm{psia}) \& 800 \mathrm{degF}: \mathrm{T}_{2}:=\mathrm{T}_{1}$

$$
\mathrm{H}_{2}:=\binom{3275.2 \cdot \frac{\mathrm{~J}}{\mathrm{gm}}}{1431.7 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}}}}
$$

$$
\mathrm{S}_{2}:=\binom{8.0338 \cdot \frac{\mathrm{~J}}{\mathrm{gm} \cdot \mathrm{~K}}}{1.9227 \cdot \frac{\mathrm{Btu}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}}
$$

Eq. (A) on page 399 may be recast for this problem as:

$$
\begin{aligned}
& \mathrm{r}:=\exp \left[\frac{\mathrm{molwt}}{\mathrm{R}} \cdot\left[\frac{\mathrm{H}_{2}-\mathrm{H}_{1}}{\mathrm{~T}_{1}}-\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right]\right] \quad \mathrm{r}=\binom{0.0377}{0.0542}\right. \\
& \begin{array}{ll}
\text { (a) } \quad \mathrm{r}=\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}=0.0377 & \text { (b) } \quad \mathrm{r}=\frac{\mathrm{f}_{2}}{\mathrm{f}_{1}}=0.0542 \quad \text { Ans. }
\end{array}
\end{aligned}
$$

11.23 The following vectors contain data for Parts (a), (b), and (c):
(a) = n-pentane
(b) = Isobutylene
(c) = 1-Butene:
$\mathrm{T}_{\mathrm{c}}:=\left(\begin{array}{l}469.7 \\ 417.9 \\ 420.0\end{array}\right)$
$\mathrm{P}_{\mathrm{c}}:=\left(\begin{array}{l}33.70 \\ 40.0 \\ 40.43\end{array}\right)$. bar
$\omega:=\left(\begin{array}{l}0.252 \\ 0.194 \\ 0.191\end{array}\right)$
$Z_{c}:=\left(\begin{array}{l}0.270 \\ 0.275 \\ 0.277\end{array}\right)$
$\mathrm{V}_{\mathrm{c}}:=\left(\begin{array}{l}313.0 \\ 238.9 \left\lvert\, \cdot \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}\right. \\ 239.3\end{array}\right)$
$\mathrm{T}_{\mathrm{n}}:=\left(\begin{array}{l}309.2) \\ 266.3 \mid \cdot \mathrm{K} \\ 266.9)\end{array}\right.$

Calculate the fugacity coefficient at the nbp by Eq. (11.68):
(a) $\operatorname{PHIB}() \Gamma_{\mathrm{r}_{1}}, \boldsymbol{B}_{\mathrm{r}_{1}}, \quad 1=0.9572$
(b) $\operatorname{PHIB}() \Gamma_{r_{2}}, B_{r_{2}}, \quad 2=0.9618$
(c) $\quad \operatorname{PHIB}() \Gamma_{r_{3}}, B_{r_{3}}, \quad 3=0.9620$

Eq. (3.72): \quad Vsat $:=\left[\mathrm{V}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{c}}{ }^{\left(1-\mathrm{T}_{\mathrm{r}}\right.}{ }^{0.2857}\right]$
Eq. (11.44): $\left.\quad \mathrm{f}:=\overline{\operatorname{PHIB}() \Gamma_{\mathrm{r}}, \boldsymbol{B}_{\mathrm{r}}, \quad \cdot \operatorname{Psat} \cdot \exp \left[\frac{\mathrm{Vsat} \cdot(\mathrm{P}-\mathrm{Psat})}{\mathrm{R} \cdot \mathrm{T}_{\mathrm{n}}}\right]}\right]$
$\mathrm{f}=\left(\begin{array}{l}2.445) \\ 3.326 \mid \text { bar } \\ 1.801\end{array}\right) \quad$ Ans.
11.24 (a) Chloroform: $\mathrm{T}_{\mathrm{c}}:=536.4 \cdot \mathrm{~K} \quad \mathrm{P}_{\mathrm{c}}:=54.72 \cdot$ bar $\quad \omega:=0.222$
$Z_{c}:=0.293$
$\mathrm{V}_{\mathrm{c}}:=239.0 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{~T}_{\mathrm{n}}:=334.3 \cdot \mathrm{~K} \quad$ Psat $:=22.27 \cdot \mathrm{bar}$
$\mathrm{T}:=473.15 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{-}} \quad \mathrm{T}_{\mathrm{r}}=0.882 \quad \mathrm{~T}_{\mathrm{rn}}:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{T}_{\mathrm{c}}} \quad \mathrm{T}_{\mathrm{rn}}=0.623$
Eq. (3.72):

$$
\text { Vsat }:=\mathrm{V}_{\mathrm{c}} \cdot \mathrm{Z}_{\mathrm{c}}^{()-\mathrm{T}_{\mathrm{rn}}^{\frac{2}{7}}} \quad \mathrm{Vsat}=94.41 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Calculate fugacity coefficients by Eqs. (11.68):

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{r}}(\mathrm{P}):=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \phi(\mathrm{P}):=\exp \left[\frac { \mathrm { P } _ { \mathrm { r } } (\mathrm { P }) } { \mathrm { T } _ { \mathrm { r } } } \cdot \left(\mathrm{B}_{0}\left(\Gamma_{\mathrm{r}}+\omega \cdot \mathrm{B}_{1}() \Gamma_{\mathrm{r}}\right]\right.\right. \\
& \mathrm{f}(\mathrm{P}):=\text { if }\left[\mathrm{P} \leq \phi \text { Psat }, \phi(\mathrm{P}) \cdot \mathrm{P}, \quad(\text { Psat }) \cdot \mathrm{Psat} \cdot \exp \left[\frac{\mathrm{Vsat} \cdot(\mathrm{P}-\mathrm{Psat})}{\mathrm{R} \cdot \mathrm{~T}}\right]\right] \\
& \phi(\mathrm{P}):=\text { if }\left[\mathrm{P} \leq \phi \text { Psat }, \phi(\mathrm{P}), \quad(\text { Psat }) \cdot \frac{\mathrm{Psat}}{\mathrm{P}} \cdot \exp \left[\frac{\mathrm{Vsat} \cdot(\mathrm{P}-\mathrm{Psat})}{\mathrm{R} \cdot \mathrm{~T}}\right]\right] \\
& \mathrm{P}:=0 \cdot \text { bar }, 0.5 \cdot \text { bar.. } 40 \cdot \text { bar }
\end{aligned}
$$

$$
\frac{\mathrm{P}}{\mathrm{bar}}, \frac{\mathrm{P}}{\mathrm{bar}}
$$

$$
\frac{\mathrm{P}}{\mathrm{bar}}
$$

(b) Isobutane
$\mathrm{T}_{\mathrm{c}}:=408.1 \cdot \mathrm{~K}$

$$
\mathrm{P}_{\mathrm{c}}:=36.48 \cdot \mathrm{bar}
$$

$$
\omega:=0.181
$$

$$
\mathrm{Z}_{\mathrm{c}}:=0.282
$$

$$
\mathrm{V}_{\mathrm{c}}:=262.7 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

$$
\mathrm{T}:=313.15 \cdot \mathrm{~K} \quad \mathrm{~T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{r}}=0.767 \quad \mathrm{~T}_{\mathrm{rn}}:=\frac{\mathrm{T}_{\mathrm{n}}}{\mathrm{~T}_{\mathrm{c}}} \quad \mathrm{~T}_{\mathrm{rn}}=0.641
$$

Eq. (3.72):

$$
\text { Vsat }:=V_{c} \cdot Z_{c}\left(\eta-T_{\mathrm{rn}}^{\frac{2}{7}} \quad \text { Vsat }=102.107 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}\right.
$$

Calculate fugacity coefficients by Eq. (11.68):

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{r}}(\mathrm{P}):=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}}} \quad \phi(\mathrm{P}):=\exp \left[\frac{\mathrm{P}_{\mathrm{r}}(\mathrm{P})}{\mathrm{T}_{\mathrm{r}}} \cdot\left(\mathrm{\beta}_{0}() \Gamma_{\mathrm{r}}+\omega \cdot \mathrm{B}_{1}() \Gamma_{\mathrm{r}}\right]\right. \\
& \mathrm{f}(\mathrm{P}):=\mathrm{if}\left[\mathrm{P} \leq \phi \text { Psat }, \phi(\mathrm{P}) \cdot \mathrm{P}, \quad(\text { Psat }) \cdot \operatorname{Psat} \cdot \exp \left[\frac{\mathrm{Vsat} \cdot(\mathrm{P}-\mathrm{Psat})}{\mathrm{R} \cdot \mathrm{~T}}\right]\right] \\
& \phi(\mathrm{P}):=\text { if }\left[\mathrm{P} \leq \phi P \operatorname{sat}, \phi(\mathrm{P}), \quad(\text { Psat }) \cdot \frac{\mathrm{Psat}}{\mathrm{P}} \cdot \exp \left[\frac{\mathrm{Vsat} \cdot(\mathrm{P}-\mathrm{Psat})}{\mathrm{R} \cdot \mathrm{~T}}\right]\right] \\
& \mathrm{P}:=0 \cdot \text { bar, 0.5•bar.. 10.bar }
\end{aligned}
$$

11.25 Ethylene = species 1; Propylene = species 2
$\mathrm{Tc}:=\binom{282.3}{365.6} \cdot \mathrm{~K}$
$\mathrm{Zc}:=\binom{0.281}{0.289}$

$\mathrm{w}:=\binom{0.087}{0.140}$
$\mathrm{Vc}:=\binom{131.0}{188.4} \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
$\mathrm{T}:=423.15 \cdot \mathrm{~K}$
$\mathrm{n}:=2$
$\mathrm{P}:=30 \cdot \mathrm{bar}$
$y_{1}:=0.35$
$y_{2}:=1-y_{1}$
$\mathrm{i}:=1 . . \mathrm{n}$
$\mathrm{j}:=1 . . \mathrm{n}$
$\mathrm{k}:=1 . . \mathrm{n}$

By Eqs. (11.70) through (11.74)

$$
\begin{aligned}
& \omega_{\mathrm{i}, \mathrm{j}}:=\frac{\mathrm{w}_{\mathrm{i}}+\mathrm{w}_{\mathrm{j}}}{2} \quad \mathrm{~T}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}}:=\sqrt{\mathrm{Tc}_{\mathrm{i}} \cdot \mathrm{Tc}_{\mathrm{j}}} \quad \quad \mathrm{Z}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}}:=\frac{\mathrm{Zc}_{\mathrm{i}}+\mathrm{Zc}_{\mathrm{j}}}{2} \\
& \mathrm{~V}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}}:=\left[\frac{\left(N \mathrm{c}_{\mathrm{i}}^{\frac{1}{3}}+() N \mathrm{c}_{\mathrm{j}}^{\frac{1}{3}}\right.}{2}\right]^{3} \\
& P_{c_{i, j}}:=\frac{Z_{c_{i, j}} \cdot R \cdot T_{c_{i, j}}}{V_{c_{i, j}}} \\
& \mathrm{~T}_{\mathrm{r}_{\mathrm{i}, \mathrm{j}}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}}} \\
& \mathrm{~T}_{\mathrm{r}}=\left(\begin{array}{ll}
1.499 & 1.317 \\
1.317 & 1.157
\end{array}\right) \\
& \mathrm{V}_{\mathrm{c}}=\left(\begin{array}{cc}
131 & 157.966 \\
157.966 & 188.4
\end{array}\right) \frac{\mathrm{cm}^{3}}{\mathrm{~mol}} \quad \mathrm{P}_{\mathrm{c}}=\left(\begin{array}{ll}
50.345 & 48.189 \\
48.189 & 46.627
\end{array}\right) \mathrm{bar} \\
& \omega=\left(\begin{array}{cc}
0.087 & 0.114 \\
0.114 & 0.14
\end{array}\right) \quad \mathrm{T}_{\mathrm{c}}=\left(\begin{array}{cc}
282.3 & 321.261 \\
321.261 & 365.6
\end{array}\right) \mathrm{K} \quad \mathrm{Z}_{\mathrm{c}}=\left(\begin{array}{cc}
0.281 & 0.285 \\
0.285 & 0.289
\end{array}\right)
\end{aligned}
$$

By Eqs. (3.65) and (3.66):

$$
\begin{array}{ll}
B 0_{i, j}:=B_{0}\left(\Gamma_{r_{i, j}}\right. & B 1_{i, j}:=B 1\left(\Gamma_{r_{i, j}}\right. \\
B 0=\left(\begin{array}{ll}
-0.138 & -0.189 \\
-0.189 & -0.251
\end{array}\right) & B 1=\left(\begin{array}{ll}
0.108 & 0.085 \\
0.085 & 0.046
\end{array}\right) \\
B_{i, j}:=\frac{R \cdot T_{c_{i, j}}}{P_{c_{i, j}}} \cdot\left(B 0_{i, j}+\omega_{i, j} \cdot B 1_{i, j}\right. & B=\left(\begin{array}{ll}
-59.892 & -99.181 \\
-99.181 & -159.43
\end{array}\right) \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}
\end{array}
$$

By Eq. (11.64):

$$
\left.\left.\left.\begin{array}{l}
\delta_{\mathrm{i}, \mathrm{j}}:=2 \cdot \mathrm{~B}_{\mathrm{i}, \mathrm{j}}-\mathrm{B}_{\mathrm{i}, \mathrm{i}}-\mathrm{B}_{\mathrm{j}, \mathrm{j}} \\
\text { фhat }_{\mathrm{k}}:=\exp \left[\frac { \mathrm { P } } { \mathrm { R } \cdot \mathrm { T } } \cdot \left[\mathrm{B}_{\mathrm{k}, \mathrm{k}}+\frac{1}{2} \cdot \sum_{\mathrm{i}} \sum_{\mathrm{j}}\left[\mathrm{y}_{\mathrm{i}} \cdot \mathrm{y}_{\mathrm{j}} \cdot\left(\mathrm{k} \cdot \boldsymbol{\delta}_{\mathrm{i}, \mathrm{k}}-\mathrm{i}, \mathrm{j}\right]\right.\right.\right.
\end{array}\right]\right] \begin{array}{cc}
0 & 20.96 \\
20.96 & 0
\end{array}\right) \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}
$$

Ans.

For an ideal solution, $\phi i d=\phi$ pure species

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{k}}:=\frac{\mathrm{P}}{\mathrm{Pc}_{\mathrm{k}}} \quad \mathrm{P}_{\mathrm{r}}=\binom{0.595}{0.643} \quad \phi \mathrm{id}_{\mathrm{k}}:=\exp \left[\frac{\mathrm{P}_{\mathrm{r}_{\mathrm{k}}}}{\mathrm{~T}_{\mathrm{r}_{\mathrm{k}, \mathrm{k}}}} \cdot\left(\mathrm{\beta} 0_{\mathrm{k}, \mathrm{k}}+\omega_{\mathrm{k}, \mathrm{k}} \cdot \mathrm{~B} 1_{\mathrm{k}, \mathrm{k}}\right]\right. \\
& \text { fhat }_{\mathrm{id}}^{\mathrm{k}} \\
& :=\operatorname{idd}_{\mathrm{k}} \cdot \mathrm{y}_{\mathrm{k}} \cdot \mathrm{P} \quad \phi \mathrm{id}=\binom{0.95}{0.873} \quad \quad \text { fhat }_{\mathrm{id}}=\binom{9.978}{17.022} \text { bar } \quad \text { Ans. }
\end{aligned}
$$

Alternatively,

$$
\mathrm{P}_{\mathrm{r}_{\mathrm{i}, \mathrm{j}}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}}} \quad \phi \mathrm{id}_{\mathrm{k}}:=\exp \left[\frac{\mathrm{P}_{\mathrm{r}_{\mathrm{k}, \mathrm{k}}}}{\mathrm{~T}_{\mathrm{r}_{\mathrm{k}, \mathrm{k}}}} \cdot\left(\mathrm{\beta} 0_{\mathrm{k}, \mathrm{k}}+\omega_{\mathrm{k}, \mathrm{k}} \cdot \mathrm{~B} 1_{\mathrm{k}, \mathrm{k}}\right] \quad \phi i d=\binom{0.95}{0.873}\right.
$$

11.27 Methane = species 1

Ethane = species 2

$$
\mathrm{T}:=373.15 \cdot \mathrm{~K}
$$

$$
\mathrm{P}:=35 \cdot \mathrm{bar}
$$

Propane $=$ species 3
$y:=\left(\begin{array}{l}0.21 \\ 0.43 \\ 0.36\end{array}\right)$
$\mathrm{w}:=\left(\begin{array}{l}0.012 \\ 0.100 \\ 0.152\end{array}\right)$
$\operatorname{Pc}:=\left(\begin{array}{l}45.99 \\ 48.72 \mid \cdot \mathrm{bar} \\ 42.48)\end{array}\right.$
$\mathrm{j}:=1$.. n
$\mathrm{n}:=3 \quad \mathrm{i}:=1 . . \mathrm{n}$

$$
\rho .-1 . . n
$$

Vc $:=\left(\begin{array}{c}98.6 \\ 145.5 \\ 200.0\end{array}\right) . \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}$

$$
\mathrm{k}:=1 . . \mathrm{n}
$$

By Eqs. (11.70) through (11.74)

$$
\begin{array}{ll}
\omega_{\mathrm{i}, \mathrm{j}}:=\frac{\mathrm{w}_{\mathrm{i}}+\mathrm{w}_{\mathrm{j}}}{2} \quad \mathrm{~T}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}}:=\sqrt{\mathrm{Tc}_{\mathrm{i}} \cdot \mathrm{Tc}_{\mathrm{j}}} \quad \mathrm{Z}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}}:=\frac{\mathrm{Zc}_{\mathrm{i}}+\mathrm{Zc}_{\mathrm{j}}}{2} \\
\mathrm{~V}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}}:=\left[\frac{\left(\frac{\mathrm{Nc}_{\mathrm{i}}}{\frac{1}{3}}+() \mathrm{Nc}_{\mathrm{j}}^{\frac{1}{3}}\right.}{2}\right]^{3} & \mathrm{P}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}}:=\frac{\mathrm{Z}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}} \cdot \mathrm{R} \cdot \mathrm{~T}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}}}{\mathrm{~V}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}}}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{r}_{\mathrm{i}, \mathrm{j}}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c}_{\mathrm{i}, \mathrm{j}}}} \quad \mathrm{~T}_{\mathrm{r}}=\left(\begin{array}{lll}
1.958 & 1.547 & 1.406 \\
1.547 & 1.222 & 1.111 \\
1.406 & 1.111 & 1.009
\end{array}\right) \\
& \mathrm{V}_{\mathrm{c}}=\left(\begin{array}{ccc}
98.6 & 120.533 & 143.378 \\
120.533 & 145.5 & 171.308 \\
143.378 & 171.308 & 200
\end{array}\right) \frac{\mathrm{cm}^{3}}{\mathrm{~mol}} \\
& \mathrm{P}_{\mathrm{c}}=\left(\begin{array}{lll}
45.964 & 47.005 & 43.259 \\
47.005 & 48.672 & 45.253 \\
43.259 & 45.253 & 42.428
\end{array}\right) \quad \omega=\left(\begin{array}{ccc}
0.012 & 0.056 & 0.082 \\
0.056 & 0.1 & 0.126 \mid \\
0.082 & 0.126 & 0.152
\end{array}\right) \\
& \mathrm{T}_{\mathrm{c}}=\left(\begin{array}{ccc}
190.6 & 241.226 & 265.488 \\
241.226 & 305.3 & 336.006 \\
& \mid \mathrm{K} \\
265.488 & 336.006 & 369.8
\end{array}\right) \quad \mathrm{Z}_{\mathrm{c}}=\left(\begin{array}{ccc}
0.286 & 0.282 & 0.281 \\
0.282 & 0.279 & 0.278 \\
0.281 & 0.278 & 0.276
\end{array}\right)
\end{aligned}
$$

By Eqs. (3.65) and (3.66):

$$
\mathrm{B} 0_{\mathrm{i}, \mathrm{j}}:=\mathrm{B}_{0}\left(\mathrm{~T}_{\mathrm{r}_{\mathrm{i}, \mathrm{j}}} \quad \mathrm{~B} 1_{\mathrm{i}, \mathrm{j}}:=\mathrm{B}_{1}\left(\Gamma_{\mathrm{r}_{\mathrm{i}, \mathrm{j}}}\right.\right.
$$

$B_{i, j}:=\frac{R \cdot T_{c_{i, j}}}{P_{c_{i, j}}} \cdot\left(\beta 0_{i, j}+\omega_{i, j} \cdot B 1_{i, j}\right.$

$$
\begin{aligned}
& \text { By Eq. (11.64): } \\
& \delta_{\mathrm{i}, \mathrm{j}}:=2 \cdot \mathrm{~B}_{\mathrm{i}, \mathrm{j}}-\mathrm{B}_{\mathrm{i}, \mathrm{i}}-\mathrm{B}_{\mathrm{j}, \mathrm{j}} \quad \delta=\left(\begin{array}{ccc}
0 & 30.442 & 107.809 \\
30.442 & 0 & 23.482 \\
107.809 & 23.482 & 0
\end{array}\right) \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

$\phi h a t_{k}:=\exp \left[\frac{P}{R \cdot T} \cdot\left[B_{k, k}+\frac{1}{2} \cdot \sum_{i} \sum_{j}\left[y_{i} \cdot y_{j} \cdot\left(k \cdot \boldsymbol{\delta}_{i, k}-i, j\right]\right]\right]\right.$
fhat $_{\mathrm{k}}:=$ bhat $_{\mathrm{k}} \cdot \mathrm{y}_{\mathrm{k}} \cdot \mathrm{P} \quad$.hat $=\left(\begin{array}{l}1.019 \\ 0.881 \\ 0.775\end{array}\right)$
fhat $=\left(\begin{array}{l}7.491 \\ 13.254 \\ 9.764\end{array}\right)$ bar

Ans.

For an ideal solution, $\phi i d=\phi$ pure species

$$
\begin{aligned}
& \operatorname{Pr}_{\mathrm{k}}:=\frac{\mathrm{P}}{\operatorname{Pc}_{\mathrm{k}}} \quad \operatorname{Pr}=\left(\begin{array}{l}
0.761 \\
0.718 \\
0.824
\end{array}\right) \quad \phi \mathrm{id}_{\mathrm{k}}:=\exp \left[\frac{\operatorname{Pr}_{\mathrm{k}}}{\mathrm{~T}_{\mathrm{r}_{\mathrm{k}, \mathrm{k}}}} \cdot\left(\mathrm{\beta 0}_{\mathrm{k}, \mathrm{k}}+\omega_{\mathrm{k}, \mathrm{k}} \cdot \mathrm{~B} 1_{\mathrm{k}, \mathrm{k}}\right]\right. \\
& \text { fhat }_{\mathrm{id}}^{\mathrm{k}} \\
& :=\operatorname{~id}_{\mathrm{k}} \cdot \mathrm{y}_{\mathrm{k}} \cdot \mathrm{P} \phi \mathrm{id}=\left(\begin{array}{c}
0.977 \\
0.88 \\
0.759
\end{array}\right) \quad \text { fhat } \mathrm{id}_{\mathrm{id}}=\left(\begin{array}{c}
7.182 \\
13.251 \mid \text { bar } \\
9.569
\end{array}\right) \quad \text { Ans. }
\end{aligned}
$$

11.28 Given: $\quad \frac{\mathrm{GE}}{\mathrm{RT}}=\left(-2.6 \cdot \mathrm{x}_{1}-1.8 \cdot \mathrm{x}_{2} \cdot \mathrm{x}_{1} \cdot \mathrm{x}_{2}\right.$
(a) Substitute $\mathrm{x}_{2}=\mathbf{1 - \mathbf { x } _ { 1 }}$:

$$
\frac{\mathrm{GE}}{\mathrm{RT}}=() \cdot 8 \cdot \mathrm{x}_{1}-1.8 \cdot \mathrm{x}_{1} \cdot() 1-\mathrm{x}_{1}=-1.8 \cdot \mathrm{x}_{1}+\mathrm{x}_{1}^{2}+0.8 \cdot \mathrm{x}_{1}^{3}
$$

Apply Eqs. (11.15) \& (11.16) for $M=G E / R T$:

$$
\begin{aligned}
& \ln \gamma_{1}=\frac{\mathrm{GE}}{\mathrm{RT}}+() \mathrm{l}-\mathrm{x}_{1} \cdot \frac{\mathrm{~d}\left(\frac{\mathrm{GE}}{\mathrm{RT}}\right)}{\mathrm{dx} 1} \\
& \mathrm{~d}\left(\frac{\mathrm{GE}}{\mathrm{RT}}\right) \\
& \mathrm{dx}_{1} \\
& \ln \gamma_{1}=-1.8+2 \cdot \mathrm{x}_{1}+1.4 \cdot \mathrm{x}_{1}^{2}-1.6 \cdot \mathrm{x}_{1}^{3} \\
& \ln \gamma_{2}=-\mathrm{x}_{1}^{2}-1.6 \cdot \mathrm{x}_{1}^{3} \quad \ln \gamma_{2}=\frac{\mathrm{GE}}{\mathrm{RT}}-\mathrm{x}_{1} \cdot \frac{\mathrm{~d}\left(\frac{\mathrm{GE}}{\mathrm{RT}}\right)}{\mathrm{dx}_{1}} \\
&
\end{aligned}
$$

(b) Apply Eq. (11.100):

$$
\begin{aligned}
\frac{\mathrm{GE}}{\mathrm{RT}}= & \mathrm{x}_{1} \cdot\left(-1.8+2 \cdot \mathrm{x}_{1}+1.4 \cdot \mathrm{x}_{1}^{2}-1.6 \cdot \mathrm{x}_{1}^{3} \ldots\right. \\
& +\left(1-\mathrm{x}_{1} \cdot\left(-\mathrm{x}_{1}^{2}-1.6 \cdot \mathrm{x}_{1}^{3}\right.\right.
\end{aligned}
$$

This reduces to the initial condition:
(c) Divide Gibbs/Duhem eqn. (11.100) by dx1:

$$
\mathrm{x}_{1} \cdot \frac{\mathrm{~d}() \mathrm{m} \gamma_{1}}{\mathrm{dx}_{1}}+\mathrm{x}_{2} \cdot \frac{\mathrm{~d}() \mathrm{n} \gamma_{2}}{\mathrm{dx}_{1}}=0
$$

Differentiate answers to Part (a):

$$
\begin{aligned}
& \frac{d() n \gamma_{1}}{d x_{1}}=2+2.8 \cdot x_{1}-4.8 \cdot x_{1}^{2} \quad \frac{d() n \gamma_{2}}{d x_{1}}=-2 \cdot x_{1}-4.8 \cdot x_{1}^{2} \\
& x_{1} \cdot \frac{d() m \gamma_{1}}{d x_{1}}=2 \cdot x_{1}+2.8 \cdot x_{1}^{2}-4.8 \cdot x_{1}^{3} \\
& x_{2} \cdot \frac{d() m \gamma_{1}}{d x_{1}}=\left(l-x_{1} \cdot\left(-2 \cdot x_{1}-4.8 \cdot x_{1}^{2}\right.\right.
\end{aligned}
$$

These two equations sum to zero in agreement with the Gibbs/Duhem equation.
(d) When $x 1=1$, we see from the 2nd eq. of Part (c) that

$$
\frac{d() n \gamma_{1}}{d x_{1}}=0
$$

Q.E.D.

When $x 1=0$, we see
from the 3 rd eq. of Part (c) that

$$
\frac{d() n \gamma_{2}}{d x_{1}}=0
$$

Q.E.D.
(e) DEFINE: $\mathrm{g}=\mathrm{GE} / \mathrm{RT}$
$\mathrm{g}\left(\mathrm{x}_{1}:=-1.8 \cdot \mathrm{x}_{1}+\mathrm{x}_{1}{ }^{2}+0.8 \cdot \mathrm{x}_{1}{ }^{3}\right.$
$\ln \gamma_{1}\left(\mathrm{x}_{1}:=-1.8+2 \cdot \mathrm{x}_{1}+1.4 \cdot \mathrm{x}_{1}{ }^{2}-1.6 \cdot \mathrm{x}_{1}{ }^{3}\right.$
$\ln \gamma_{2}\left(\mathrm{k}_{1}:=-\mathrm{x}_{1}{ }^{2}-1.6 \cdot \mathrm{x}_{1}{ }^{3}\right.$
$\ln \gamma_{1}(0)=-1.8$
$\ln \gamma_{2}(1)=-2.6$

$$
\mathrm{x}_{1}:=0,0.1 . .1 .0
$$

$\begin{array}{ll}\text {-. } & \begin{array}{l}\mathrm{H} \\ \text { H1bar } \\ \text { H2bar }\end{array}\end{array}$
11.32
$\mathrm{x}_{1}:=\left(\begin{array}{l}0.02715 \\ 0.09329 \\ 0.17490 \\ 0.32760 \\ 0.40244 \\ 0.56689 \\ 0.63128 \\ 0.66233 \\ 0.69984 \\ 0.72792 \\ 0.77514 \\ 0.79243 \\ 0.82954 \\ 0.86835 \\ 0.93287 \\ 0.98233\end{array}\right) \quad \mathrm{VE}:=\left(\begin{array}{c}87.5 \\ 265.6 \\ 417.4 \\ 534.5 \\ 531.7 \\ 321.7 \\ 276.4 \\ 252.9 \\ 347.1 \\ 190.7 \\ 178.1 \\ 138.4 \\ 98.4 \\ 37.6 \\ 10.0\end{array}\right)$
$\mathrm{n}:=\operatorname{rows}()_{1} \quad \mathrm{i}:=1 . . \mathrm{n}$
$\mathrm{x} 1:=0,0.01 . .1$

$$
\begin{aligned}
& \text { (a) Guess: } \quad \text { a }:=-3000 \quad \text { b }:=-3000 \quad \text { c }:=250 \\
& F\left(k_{1}:=\left[\begin{array}{l}
x_{1} \cdot\left(n-x_{1}\right. \\
x_{1}{ }^{2} \cdot() t-x_{1} \\
x_{1}{ }^{3} \cdot() t-x_{1}
\end{array}\right]\left(\begin{array}{l}
a \\
b \\
b \\
c
\end{array}\right):=\operatorname{linfit}\left(k_{1}, \text { VE, } F\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\left(\begin{array}{c}
3.448 \times 10^{3} \\
-3.202 \times 10^{3} \\
244.615
\end{array}\right)\right.\right. \\
& \text { Ans. }
\end{aligned}
$$

By definition of the excess properties

$$
\begin{aligned}
& V^{E}=x_{1} \cdot x_{2} \cdot\left[a+b \cdot x_{1}+c \cdot()_{1}^{2}\right] \\
& \frac{\mathrm{d}}{\mathrm{dx}_{1}} \mathrm{~V}^{\mathrm{E}}=-4 \cdot \mathrm{c} \cdot\left(\mathrm{k}_{1}^{3}+3 \cdot(\mathrm{c}-\mathrm{b}) \cdot\left(\mathrm{k}_{1}^{2}+2 \cdot(\mathrm{~b}-\mathrm{a}) \cdot \mathrm{x}_{1}+\mathrm{a}\right.\right. \\
& ()^{(b a r}{ }^{E}=\left(k_{2}{ }^{2} \cdot\left[a+2 \cdot b \cdot x_{1}+3 \cdot c \cdot()_{1}^{2}\right]\right. \\
& \left(\operatorname{Nbar}_{2}{ }^{\mathrm{E}}=()_{1}{ }^{2} \cdot\left[\mathrm{a}-\mathrm{b}+2 \cdot(\mathrm{~b}-\mathrm{c}) \cdot \mathrm{x}_{1}+3 \cdot \mathrm{c} \cdot\left(\mathrm{k}_{1}{ }^{2}\right]\right.\right.
\end{aligned}
$$

(b) To find the maximum, set $d V^{E} / d x_{1}=0$ and solve for x_{1}. Then use x_{1} to find $V^{\mathbf{E}}{ }_{\text {max }}$.

Guess: $\quad \mathrm{x} 1:=0.5$
Given
$-4 \cdot c \cdot(x 1)^{3}+3 \cdot(c-b) \cdot(x 1)^{2}+2 \cdot(b-a) \cdot x 1+a=0$
$\mathrm{x} 1:=\operatorname{Find}(\mathrm{x} 1) \quad \mathrm{x} 1=0.353$
Ans.

$$
\mathrm{VE}_{\max }:=\mathrm{x} 1 \cdot(1-\mathrm{x} 1) \cdot\left(\mathrm{a}+\mathrm{b} \cdot \mathrm{x} 1+\mathrm{c} \cdot \mathrm{x} 1^{2} \quad \mathrm{VE}_{\max }=536.294 \quad\right. \text { Ans. }
$$

(c) $\operatorname{VEbar}_{1}(\mathrm{x} 1):=(1-\mathrm{x} 1)^{2} \cdot\left[\mathrm{a}+2 \cdot \mathrm{~b} \cdot \mathrm{x} 1+3 \cdot \mathrm{c} \cdot(\mathrm{x} 1)^{2}\right]$

$$
\operatorname{VEbar}_{2}(\mathrm{x} 1):=(\mathrm{x} 1)^{2} \cdot\left[\mathrm{a}-\mathrm{b}+2 \cdot(\mathrm{~b}-\mathrm{c}) \cdot \mathrm{x} 1+3 \cdot \mathrm{c} \cdot(\mathrm{x} 1)^{2}\right]
$$

$x 1:=0,0.01 . .1$

Discussion:
a) Partial property for species i goes to zero WITH ZERO SLOPE as $x_{i}->1$.
b) Interior extrema come in pairs: VEbar min for species 1 occurs at the same x_{1} as V^{E} bar max for species 2 , and both occur at an inflection point on the V^{E} vs. x_{1} plot.
c) At the point where the $V^{E} b a r$ lines cross, the V^{E} plot shows a maximum.
11.33 Propane $=1 ;$ n-Pentane $=2$

$\mathrm{T}:=(75+273.15) \cdot \mathrm{K}$	$\mathrm{P}:=2 \cdot \mathrm{bar}$	$\mathrm{y}_{1}:=0.5$	$\mathrm{y}_{2}:=1-\mathrm{y}_{1}$
$\mathrm{~B}:=\left(\begin{array}{ll}-276 & -466 \\ -466 & -809\end{array}\right) \cdot \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}$	$\mathrm{n}:=2$	$\mathrm{i}:=1 . . \mathrm{n}$	$\mathrm{j}:=1 . . \mathrm{n}$

By Eq. (11.61):

$$
B:=\sum_{i} \sum_{j}\left(y_{i} \cdot y_{j} \cdot B_{i, j}\right.
$$

$B=-504.25 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$

Use a spline fit of B as a function of T to

 find derivatives:$$
\begin{aligned}
& \text { b11 }: \left.=\left(\begin{array}{l}
-331 \\
-276 \\
-235
\end{array}\right) \right\rvert\, \cdot \frac{\mathrm{cm}^{3}}{\mathrm{~mol}} \\
& \mathrm{~b} 22:=\left(\begin{array}{ll}
-980 & \\
-809 & \left\lvert\, \cdot \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}\right. \\
-684
\end{array}\right) \\
& \mathrm{b} 12:=\left(\begin{array}{l}
-558 \\
-466 \\
-399
\end{array}\right) \cdot \frac{\mathrm{cm}^{3}}{\mathrm{~mol}} \\
& \mathrm{t}:=\left[\left(\begin{array}{l}
50 \\
75 \mid \\
100)
\end{array}\right] 273.15\right] \cdot \mathrm{K} \quad \mathrm{t}=\left(\begin{array}{l}
323.15 \\
348.15 \mid \mathrm{K} \\
373.15)
\end{array}\right. \\
& \operatorname{vs} 11:=\operatorname{lspline}(\mathrm{t}, \mathrm{~b} 11) \mathrm{B} 11(\mathrm{~T}):=\operatorname{interp}(\mathrm{vs} 11, \mathrm{t}, \mathrm{~b} 11, \mathrm{~T}) \quad \mathrm{B} 11(\mathrm{~T})=-276 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \operatorname{vs} 22:=1 \operatorname{spline}(\mathrm{t}, \mathrm{~b} 22) \mathrm{B} 22(\mathrm{~T}):=\operatorname{interp}(\mathrm{vs} 22, \mathrm{t}, \mathrm{~b} 22, \mathrm{~T}) \quad \mathrm{B} 22(\mathrm{~T})=-809 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \operatorname{vs} 12:=1 \operatorname{spline}(\mathrm{t}, \mathrm{~b} 12) \mathrm{B} 12(\mathrm{~T}):=\operatorname{interp}(\mathrm{vs} 12, \mathrm{t}, \mathrm{~b} 12, \mathrm{~T}) \quad \mathrm{B} 12(\mathrm{~T})=-466 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \mathrm{dBdT}:=\left(\begin{array}{l}
\frac{\mathrm{d}}{\mathrm{dT}} \mathrm{~B} 11(\mathrm{~T}) \\
\frac{\mathrm{d}}{\mathrm{dT}} \mathrm{~B} 12(\mathrm{~T}) \\
\frac{\mathrm{d}}{\mathrm{dT}} \mathrm{~B} 12(\mathrm{~T}) \\
\frac{\mathrm{d}}{\mathrm{dT}} \mathrm{~B} 22(\mathrm{~T})
\end{array}\right) \quad \mathrm{dBdT}=\left(\begin{array}{ll}
1.92 & 3.18 \\
3.18 & 5.92
\end{array}\right) \frac{\mathrm{cm}^{3}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{aligned}
$$

Differentiate Eq. (11.61): $\quad \mathrm{dBdT}:=\sum_{i} \sum_{j}\left(y_{\mathrm{i}} \cdot \mathrm{y}_{\mathrm{j}} \cdot \mathrm{dBdT}_{\mathrm{i}} \mathrm{dBdT}=3.55 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol} \cdot \mathrm{~K}}\right.$
By Eq. (3.38): $Z:=1+\frac{B \cdot P}{R \cdot T}$
$\mathrm{Z}=0.965$
$\mathrm{V}:=\frac{\mathrm{Z} \cdot \mathrm{R} \cdot \mathrm{T}}{\mathrm{P}}$

By Eq. (6.55): HRRT $:=\frac{\mathrm{P}}{\mathrm{R}} \cdot\left(\frac{\mathrm{B}}{\mathrm{T}}-\mathrm{dBdT}\right)$ HRRT $=-0.12 \quad$ HR $:=$ HRRT $\cdot \mathrm{R} \cdot \mathrm{T}$
By Eq. (6.56): \quad SRR $:=-\frac{P}{R} \cdot d B d T \quad S R R=-0.085 \quad$ SR $:=S R R \cdot R$

Ans.
11.34 Propane $=1 ;$ n-Pentane $=2$

$$
\begin{aligned}
& \mathrm{T}:=(75+273.15) \cdot \mathrm{K} \quad \mathrm{P}:=2 \cdot \mathrm{bar} \quad \mathrm{y}_{1}:=0.5 \quad \mathrm{y}_{2}:=1-\mathrm{y}_{1} \\
& \mathrm{~B}:=\binom{-276-466}{-466-809} \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{aligned} \quad \mathrm{n}:=2 \quad \mathrm{i}:=1 . . \mathrm{n} .
$$

By Eqs. (11.63a) and (11.63b):

$$
\begin{aligned}
& \text { фhat }(\mathrm{y} 1):=\exp \left[\frac{\mathrm{P}}{\mathrm{R} \cdot \mathrm{~T}} \cdot\left[\mathrm{~B}_{1,1}+(1-\mathrm{y} 1)^{2} \cdot \delta_{1,2}\right]\right] \\
& \phi \text { hat } 2(\mathrm{y} 1):=\exp \left[\frac{\mathrm{P}}{\mathrm{R} \cdot \mathrm{~T}} \cdot\left(\mathrm{~B}_{2,2}+\mathrm{y} 1^{2} \cdot \delta_{1,2}\right]\right. \\
& \mathrm{y} 1:=0,0.1 . .1 .0
\end{aligned}
$$

11.36
$\mathrm{x}_{1}:=\left(\begin{array}{l}0.0426 \\ 0.0817 \\ 0.1177 \\ 0.1510 \\ 0.2107 \\ 0.2624 \\ 0.3472 \\ 0.4158 \\ 0.5163 \\ 0.6156 \\ 0.6810 \\ 0.7621 \\ 0.8181 \\ 0.8650 \\ 0.9276 \\ 0.9624\end{array}\right) \quad \mathrm{HE}:=\left(\left.\begin{array}{l}-23.3 \\ -45.7 \\ -66.5 \\ -86.6 \\ -118.2 \\ -144.6 \\ -176.6 \\ -195.7 \\ -204.2 \\ -191.7 \\ -174.1 \\ -141.0 \\ -116.8 \\ -85.6 \\ -43.5\end{array} \right\rvert\,\right.$

$$
\begin{aligned}
& \mathrm{n}:=\operatorname{rows}()_{1} \quad \mathrm{i}:=1 . . \mathrm{n} \\
& \mathrm{x} 1:=0,0.01 . .1
\end{aligned}
$$

(a) Guess: $\quad \mathrm{a}:=-500 \quad \mathrm{~b}:=-100 \quad \mathrm{c}:=0.01$

By definition of the excess properties

$$
\begin{aligned}
& H^{E}=x_{1} \cdot x_{2} \cdot\left[a+b \cdot x_{1}+c \cdot()_{1}^{2}\right] \\
& \frac{d}{d x_{1}} H^{E}=-4 \cdot c \cdot()_{1}^{3}+3 \cdot(c-b) \cdot()_{1}^{2}+2 \cdot(b-a) \cdot x_{1}+a \\
& \left(\text { Hbar }_{1}{ }^{E}=\left(k_{2}^{2} \cdot\left[a+2 \cdot b \cdot x_{1}+3 \cdot c \cdot()_{1}^{2}\right]\right.\right. \\
& \left(\operatorname{Hbar}_{2}{ }^{E}=()_{1}^{2} \cdot\left[a-b+2 \cdot(b-c) \cdot x_{1}+3 \cdot c \cdot()_{1}^{2}\right]\right.
\end{aligned}
$$

(b) To find the minimum, set $\mathrm{dH}^{\mathrm{E}} / \mathrm{dx}_{1}=0$ and solve for x_{1}. Then use x_{1} to find $\mathbf{H}^{\mathrm{E}}{ }_{\text {min }}$.
Guess: $\quad \mathrm{x} 1:=0.5 \quad \operatorname{HE}(\mathrm{x} 1):=\mathrm{x} 1 \cdot(1-\mathrm{x} 1) \cdot\left(\mathrm{a}+\mathrm{b} \cdot \mathrm{x} 1+\mathrm{c} \cdot \mathrm{x} 1^{2}\right.$
Given $\quad-4 \cdot c \cdot(x 1)^{3}+3 \cdot(c-b) \cdot(x 1)^{2}+2 \cdot(b-a) \cdot x 1+a=0$
$\mathrm{x} 1:=\operatorname{Find}(\mathrm{x} 1) \quad \mathrm{x} 1=0.512 \quad$ Ans.
$\mathrm{HE}_{\min }:=\mathrm{x} 1 \cdot(1-\mathrm{x} 1) \cdot()_{a}+\mathrm{b} \cdot \mathrm{x} 1+\mathrm{c} \cdot \mathrm{x} 1^{2} \quad \mathrm{HE}_{\min }=-204.401 \quad$ Ans.
(c) $\operatorname{HEbar}_{1}(\mathrm{x} 1):=\mathrm{HE}(\mathrm{x} 1)+(1-\mathrm{x} 1) \cdot \frac{\mathrm{d}}{\mathrm{dx} 1} \mathrm{HE}(\mathrm{x} 1)$

$$
\operatorname{HEbar}_{2}(x 1):=\operatorname{HE}(x 1)-x 1 \cdot\left(\frac{d}{d x 1} \operatorname{HE}(x 1)\right)
$$

$\mathrm{x} 1:=0,0.01 . .1$

Discussion:
a) Partial property for species i goes to zero WITH ZERO SLOPE as $x_{i}->\mathbf{1}$.
b) Interior extrema come in pairs: H^{E} bar min for species 1 occurs at the same \mathbf{x}_{1} as $H^{\text {E }}$ bar max for species 2, and both occur at an inflection point on the $\mathbf{H}^{\mathbf{E}}$ vs. x_{1} plot.
c) At the point where the H^{E} bar lines cross, the H^{E} plot shows a minimum.
11.37 (a)

$$
(1)=\text { Acetone }
$$

(2) = 1,3-butadiene
$y_{1}:=0.28$
$\mathrm{y}_{2}:=1-\mathrm{y}_{1}$
$\mathrm{T}:=(60+273.15) \cdot \mathrm{K}$
$\mathrm{P}:=170 \cdot \mathrm{kPa}$
$\mathrm{w}:=\binom{0.307}{0.190} \quad \mathrm{~T}_{\mathrm{c}}:=\binom{508.2}{425.2} \cdot \mathrm{~K} \quad \mathrm{Z}_{\mathrm{c}}:=\binom{0.233}{0.267} \quad \mathrm{~V}_{\mathrm{c}}:=\binom{209}{220.4} \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
$\mathrm{n}:=2$
$\mathrm{i}:=1 . . \mathrm{n} \quad \mathrm{j}:=1 . . \mathrm{n}$
$\mathrm{k}_{\mathrm{i}, \mathrm{j}}:=0$
Eq. (11.70) $\omega_{i, j}:=\frac{w_{i}+w_{j}}{2}$
$\omega=\left(\begin{array}{ccc}0.307 & 0.2485 & 0.082 \\ 0.2485 & 0.19 & 0.126 \\ 0.082 & 0.126 & 0.152\end{array}\right)$
Eq. (11.71) $\quad \mathrm{Tc}_{\mathrm{i}, \mathrm{j}}:=\sqrt{\mathrm{T}_{\mathrm{c}_{\mathrm{i}}} \cdot \mathrm{T}_{\mathrm{c}}} \cdot(\mathrm{l}) \mathrm{l}-\mathrm{k}_{\mathrm{i}, \mathrm{j}} \quad \mathrm{Tc}=\left(\begin{array}{cc}508.2 & 464.851 \\ 464.851 & 425.2 \\ 369.8 & 0\end{array}\right) \mathrm{K}$
Eq. (11.73) $\mathrm{Zc}_{\mathrm{i}, \mathrm{j}}:=\frac{\mathrm{Z}_{\mathrm{c}_{\mathrm{i}}}+\mathrm{Z}_{\mathrm{c}_{\mathrm{j}}}}{2} \quad \quad \mathrm{Zc}=\left(\begin{array}{cc}0.233 & 0.25 \\ 0.25 & 0.267 \\ 0.276 & 0\end{array}\right)$
Eq. (11.74) $\quad V c_{i}, \mathrm{j}:=\left[\frac{\left(\mathrm{V}_{\mathrm{c}_{\mathrm{i}}}{ }^{\frac{1}{3}}+\left(\nu_{c_{\mathrm{j}}}{ }^{\frac{1}{3}}\right.\right.}{2}\right]^{3} \quad \mathrm{Vc}=\left(\begin{array}{cc}209 & 214.65 \\ 214.65 & 220.4 \\ 200 & 0\end{array}\right) \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}$
Eq. (11.72) $\quad P c_{i, j}:=\frac{Z c_{i, j} \cdot R \cdot T c_{i, j}}{V c_{i, j}}$
$\operatorname{Pc}=\left(\begin{array}{cc}47.104 & 45.013 \\ 45.013 & 42.826 \\ 42.48 & 0\end{array}\right)$ bar
Note: the calculated pure species Pc values in the matrix above do not agree exactly with the values in Table B. 1 due to round-off error in the calculations.

$$
\begin{array}{ll}
\operatorname{Tr}_{\mathrm{i}, \mathrm{j}}:=\frac{\mathrm{T}}{\mathrm{Tc}_{\mathrm{i}, \mathrm{j}}} & \operatorname{Pr}_{\mathrm{i}, \mathrm{j}}:=\frac{\mathrm{P}}{\mathrm{Pc}_{\mathrm{i}, \mathrm{j}}} \\
\mathrm{Tr}=\left(\begin{array}{ll}
0.656 & 0.717 \\
0.717 & 0.784
\end{array}\right) & \operatorname{Pr}=\left(\begin{array}{cc}
0.036 & 0.038 \\
0.038 & 0.04 \\
0.824 & 0
\end{array}\right)
\end{array}
$$

Eq. (3.65) $\quad B 0_{i, j}:=B_{0}() \Gamma \mathrm{r}_{\mathrm{i}}, \mathrm{j}$

$$
\mathrm{B} 0=\left(\begin{array}{ccc}
-0.74636 & -0.6361 & -0.16178 \\
-0.6361 & -0.5405 & -0.27382 \\
-0.16178 & -0.27382 & -0.33295
\end{array}\right)
$$

Eq. (3.66) $\quad B 1_{i}, j:=B_{1}() \Gamma r_{i}, j$

$$
\text { B1 }=\left(\begin{array}{ccc}
-0.874 & -0.558 & 0.098 \\
-0.558 & -0.34 & 0.028 \\
0.098 & 0.028 & -0.027
\end{array}\right)
$$

Eq. $(11.69 \mathbf{a})+(11.69 b) \quad B_{i, j}:=\frac{R \cdot T c_{i, j}}{P c_{i}, j} \cdot\left(\beta 0_{i, j}+\omega_{i, j} \cdot B 1_{i, j}\right.$

$$
B=\left(\begin{array}{ll}
-910.278 & -665.188 \\
-665.188 & -499.527
\end{array}\right) \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}
$$

Eq. (11.61)

$$
B:=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(y_{i} \cdot y_{j} \cdot B_{i}, j \quad B=-598.524 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}\right.
$$

Eq. (3.38) $\quad Z:=1+\frac{B \cdot P}{R \cdot T}$
$\mathrm{Z}=0.963$

$$
\mathrm{V}:=\frac{\mathrm{R} \cdot \mathrm{~T} \cdot \mathrm{Z}}{\mathrm{P}}
$$

$$
\mathrm{V}=1.5694 \times 10^{4} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Ans.

Eq. (6.89) $\quad d B 0 d T r_{i, j}:=\frac{0.675}{\left(\int r_{i, j}{ }^{2.6}\right.} \quad$ Eq. (6.90) $\quad d B 1 d T r_{i, j}:=\frac{0.722}{()\left\lceil r_{i, j} 5.2\right.}$

Differentiating Eq. (11.61) and using Eq. (11.69a) + (11.69b)

$$
d B d T:=\sum_{i=1}^{n} \sum_{j=1}^{n}\left[y_{i} \cdot y_{j} \cdot\left[\frac{R}{P c_{i}, j} \cdot\left(\mathrm{~dB}_{\mathrm{j}} \mathrm{dTr}_{i, j}+\omega_{i, j} \cdot d B 1 d \mathrm{Tr}_{i}, \mathrm{j}\right]\right]\right.
$$

Eq. (6.55) \quad HR $:=\mathrm{P} \cdot \mathrm{T} \cdot\left(\frac{\mathrm{B}}{\mathrm{T}}-\mathrm{dBdT}\right)$

$$
\begin{aligned}
\mathrm{HR} & =-344.051 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathrm{SR} & =-0.727 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
\mathrm{GR} & =-101.7 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{aligned}
$$

Eq. (6.56) \quad SR $:=-P \cdot d B d T$

Eq. (6.54) GR := B•P
Ans.

$$
\mathrm{HR}=-450.322 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{SR}=-1.006 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

(c) $\quad \mathrm{V}=24255 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$

$$
\mathrm{HR}=-175.666 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{SR}=-0.41 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
\mathrm{GR}=-53.3 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

(d) $\mathrm{V}=80972 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$

$$
\mathrm{HR}=-36.48 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{SR}=-0.097 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

(e) $\quad \mathrm{V}=56991 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$

$$
\mathrm{SR}=-0.647 \cdot \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

$$
\mathrm{GR}=-125.1 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{GR}=-8.1 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{HR}=-277.96 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{GR}=-85.2 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Data for Problems 11.38-11.40

$\mathrm{T}:=\left(\begin{array}{c} 325 \\ 200 \\ 575 \\ 350 \\ 300 \\ 525 \\ 225 \\ 200 \end{array}\right)$	$P:=\left(\begin{array}{c}15 \\ 100 \\ 40 \\ 35 \\ 50 \\ 10 \\ 25\end{array}\right)$	$\mathrm{Tc}:=\left(\begin{array}{l}308.3 \\ 150.9 \\ 562.2 \\ 304.2 \\ 282.3 \\ 507.6 \\ 190.6\end{array}\right)$	$\operatorname{Pc}:=\left(\left.\begin{array}{l}61.39 \\ 48.98 \\ 48.98 \\ 73.83 \\ 50.40 \\ 30.25 \\ 45.99\end{array} \right\rvert\, \quad \omega:=\right.$	$\left(\begin{array}{l}.187 \\ .000 \\ .210 \\ .224 \\ .087 \\ .301 \\ .012\end{array}\right)$
$\operatorname{Tr}:=\frac{\overrightarrow{\mathrm{T}}}{\mathrm{Tc}}$	$\mathrm{Tr}=\left(\begin{array}{l}1.054 \\ 1.325 \\ 1.023 \\ 1.151 \\ 1.063 \\ 1.034 \\ 1.18\end{array}\right)$	$\operatorname{Pr}:=\frac{\overrightarrow{\mathrm{P}}}{\mathrm{Pc}}$	$\operatorname{Pr}=\left(\begin{array}{l}0.244 \\ 2.042 \\ 0.817 \\ 0.474 \\ 0.992 \\ 0.331 \\ 0.544 \\ 2.206\end{array}\right)$	

11.38 Redlich/Kwong Equation: $\quad \Omega:=0.08664 \quad \Psi:=0.42748$
$\beta \Omega=\left(\begin{array}{c}\left(\cdot \frac{\operatorname{Pr}}{\operatorname{Tr}}\right) \\ \text { Eq. (3.53) } \\ 0.02 \\ 0.133 \\ 0.069 \\ 0.036 \\ 0.081 \\ 0.028 \\ 0.04 \\ 0.121)\end{array} \quad \mathrm{q}:=\overrightarrow{\left(\frac{\Psi}{\left.\Omega \cdot \mathrm{Tr}^{1.5}\right)}\right.} \mathbf{~ E q . ~} \mathbf{(3 . 5 4)} \mathrm{q}=\left(\begin{array}{c}4.559 \\ 3.234 \\ 4.77 \\ 3.998 \\ 4.504 \\ 4.691 \\ 3.847 \\ 2.473)\end{array}\right.\right.$
Guess: $\quad \mathrm{z}:=1$

Given $\quad z=1+\beta-q \cdot \beta \cdot \frac{z-\beta}{z \cdot(z+\beta} \quad$ Eq. (3.52) $\quad z(\beta, q:=\operatorname{Find}(z)$
$i:=1 . .8 \quad I_{i}:=\ln \left(\frac{Z\left(\beta_{i}, q_{i}+\beta_{i}\right)}{Z\left(\beta_{i}, q_{i}\right.}\right) \quad$ Eq. (6.65)
$\phi_{\mathrm{i}}:=\exp (\not)\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}-1-\ln (\not)\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}-\beta_{\mathrm{i}}-\mathrm{q}_{\mathrm{i}} \cdot \mathrm{I}_{\mathrm{i}} \quad\right.\right.$ Eq. (11.37)
$\mathrm{f}_{\mathrm{i}}:=\phi_{\mathrm{i}} \cdot \mathrm{P}_{\mathrm{i}}$

$\mathrm{Z}\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}\right.$
0.925
0.722
0.668
0.887
0.639
0.891
0.881
0.859

$\phi_{\mathrm{i}}=$
0.93
0.744
0.749
0.896
0.73
0.9
0.89
0.85

$\mathrm{f}_{\mathrm{i}}=$
13.944
74.352
29.952
31.362
36.504
8.998
22.254
63.743

Guess: $\mathrm{z}:=1$

Given $\quad z=1+\beta-q \cdot \beta \cdot \frac{z-\beta}{z \cdot(z+\beta}$ Eq. (3.52) $\quad z(\beta, q:=\operatorname{Find}(z)$
$i:=1 . .8 \quad I_{i}:=\ln \left(\frac{Z\left(\beta_{i}, q_{i}+\beta_{i}\right)}{Z\left(\beta_{i}, q_{i}\right.}\right)$ Eq. (6.65)
$\phi_{i}:=\exp \left(\not \subset\left(\beta_{i}, q_{i}-1-\ln \left(\not \subset\left(\beta_{i}, q_{i}-\beta_{i}-q_{i} \cdot I_{i}\right.\right.\right.\right.$ Eq. (11.37)
$\mathrm{f}_{\mathrm{i}}:=\phi_{\mathrm{i}} \cdot \mathrm{P}_{\mathrm{i}}$

$\mathrm{f}_{\mathrm{i}}=$

| 13.965 |
| ---: | ---: |
| 74.753 |
| 30.05 |
| 31.618 |
| 36.66 |
| 9.018 |
| 22.274 |
| 65.155 |

11.40 Peng/Robinson Equation

Guess: $\quad \mathrm{z}:=1$
Given $\mathrm{z}=1+\beta-\mathrm{q} \cdot \beta \cdot \frac{\mathrm{z}-\beta}{(\mathrm{z}+\varepsilon \beta \cdot(\mathrm{z}+\sigma \beta} \quad$ Eq. (3.52) $\mathrm{Z}(\beta, \mathrm{q}:=\operatorname{Find}(\mathrm{z})$
$i:=1 . .8 \quad I_{i}:=\frac{1}{2 \cdot \sqrt{2}} \cdot \ln \left(\frac{Z\left(\beta_{i}, q_{i}+\sigma \beta_{i}\right)}{Z\left(\beta_{i}, q_{i}+\varepsilon \beta_{i}\right)}\right.$ Eq. (6.65)
$\phi_{i}:=\exp (\not)\left(\beta_{i}, q_{i}-1-\ln \left(\not \subset\left(\beta_{i}, q_{i}-\beta_{i}-q_{i} \cdot I_{i} \quad\right.\right.\right.$ Eq. (11.37)
$\mathrm{f}_{\mathrm{i}}:=\phi_{\mathrm{i}} \cdot \mathrm{P}_{\mathrm{i}}$

$\mathrm{Z}\left(\beta_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}=\right.$
0.918
0.69
0.647
0.882
0.617
0.881
0.865
0.845

$\phi_{\mathrm{i}}=$
0.923
0.711
0.73
0.89
0.709
0.891
0.876
0.832

$\mathrm{f}_{\mathrm{i}}=$
13.842
71.113
29.197
31.142
35.465
8.91
21.895
62.363

ϕ BY GENERALIZED CORRELATIONS

Parts (a), (d), (f), and (g) --- Virial equation:
$\left.\begin{array}{l}\mathrm{T}:=\left(\begin{array}{l}325 \\ 350 \\ 525\end{array}\right) \quad \mathrm{Tc}:=\left(\begin{array}{l}308.3 \\ 304.2 \\ 225\end{array}\right) \quad \mathrm{P}:=\left(\begin{array}{l}15 \\ 35 \\ 19\end{array}\right) \quad \mathrm{Pc}:=\left(\begin{array}{l}61.39 \\ 73.83 \\ 30.25\end{array}\right) \quad \omega:=\left(\begin{array}{l}.187 \\ .224 \\ .301 \\ 25\end{array}\right) \\ \mathrm{Tr.99})\end{array}\right)$

Evaluation of ϕ :

$$
\begin{equation*}
\mathrm{B} 0:=\overrightarrow{\mathrm{B}_{0}(\mathrm{Tr})} \quad \text { Eq. (3.65) } \quad \mathrm{B} 1:=\overrightarrow{\mathrm{B}_{1}(\mathrm{Tr})} \tag{3.66}
\end{equation*}
$$

$$
\begin{aligned}
& \text { DB0 }:=\frac{\overrightarrow{0.675}}{\mathrm{Tr}^{2.6}} \quad \text { Eq. (6.89) } \quad \text { DB1 }:=\frac{\overrightarrow{0.722}}{\mathrm{Tr}^{5.2}} \quad \text { Eq. (6.90) } \\
& \phi:=\overrightarrow{\exp \left[\frac{\operatorname{Pr}}{\operatorname{Tr}} \cdot(\mathrm{B} 0+\omega \cdot \mathrm{B} 1]\right.} \text { Eq. (11.60) } \quad \phi=\left(\begin{array}{l}
0.932 \\
0.904 \\
0.903 \\
0.895
\end{array}\right) \\
& \text { (a) } \\
& \text { (d) } \\
& \text { (f) } \\
& \text { (g) }
\end{aligned}
$$

Parts (b), (c), (e), and (h) --- Lee/Kesler correlation:
Interpolate in Tables E.13-E.16:
$\phi 0:=\left(\begin{array}{l}.7454 \\ .7517 \\ .7316 \\ .8554\end{array}\right)$

$\phi \phi=\overrightarrow{()_{0 \cdot \phi 1}{ }^{\omega}}$ Eq. (11.67):

(b)
(c)
(e)
(h)

$$
11.43 \begin{array}{ll}
\text { ndot }_{1}:=2 \frac{\mathrm{kmol}}{\mathrm{hr}} & \text { ndot }_{2}:=4 \frac{\mathrm{kmol}}{\mathrm{hr}} \quad \operatorname{ndot}_{3}:=\text { ndot }_{1}+\text { ndot }_{2} \\
\mathrm{x}_{1}:=\frac{\text { ndot }_{1}}{\text { ndot }_{3}} & \mathrm{x}_{1}=0.333 \quad \mathrm{x}_{2}:=1-\mathrm{x}_{1} \quad \mathrm{x}_{2}=0.667
\end{array}
$$

a) Assume an ideal solution since n-octane and iso-octane are non-polar and very similar in chemical structure. For an ideal solution, there is no heat of mixing therefore the heat transfer rate is zero.
b) $\Delta \mathrm{S}_{\mathrm{t}}:=-\mathrm{R} \cdot\left(\mathrm{x}_{1} \cdot \ln ()_{1}+\mathrm{x}_{2} \cdot \ln \left(\mathrm{k}_{2} \cdot \operatorname{ndot}_{3}\right.\right.$

$$
\Delta \mathrm{S}_{\mathrm{t}}=8.82 \frac{\mathrm{~W}}{\mathrm{~K}}
$$

Ans.
11.44 For air entering the process:

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{O} 21}:=0.21 \\
& \mathrm{x}_{\mathrm{O} 22}:=0.5 \\
& \text { ndot } 2:=50 \frac{\mathrm{~mol}}{\mathrm{sec}}
\end{aligned}
$$

$$
\mathrm{x}_{\mathrm{N} 21}:=0.79
$$

For the enhanced air leaving the process: $\mathrm{x}_{\mathrm{O} 22}:=0.5$
$\mathrm{x}_{\mathrm{N} 22}:=0.5$
a) Apply mole balances to find rate of air and $\mathrm{O}_{\mathbf{2}}$ fed to process

Guess: $\quad \operatorname{ndot}_{\text {air }}:=40 \frac{\mathrm{~mol}}{\mathrm{sec}} \quad \operatorname{ndot}_{\mathrm{O} 2}:=10 \frac{\mathrm{~mol}}{\mathrm{sec}}$
Given
$\mathrm{x}_{\mathrm{O} 21} \cdot$ ndot $_{\mathrm{air}}+$ ndot $_{\mathrm{O} 2}=\mathrm{x}_{\mathrm{O} 22} \cdot$ ndot $_{2}$ Mole balance on $\mathrm{O}_{\mathbf{2}}$
$\mathrm{x}_{\mathrm{N} 21} \cdot$ ndot $_{\text {air }}=\mathrm{x}_{\mathrm{N} 22} \cdot$ ndot $_{2}$ Mole balance on $\mathbf{N}_{\mathbf{2}}$
$\binom{$ ndot $\left._{\text {air }}\right)}{$ ndot $\left._{\mathrm{O}}\right)}:=\operatorname{Find}\left(\right.$ hdot $_{\text {air }}$, ndot $_{\mathrm{O} 2}$
ndot $_{\text {air }}=31.646 \frac{\mathrm{~mol}}{\mathrm{sec}}$

Ans.

$$
\text { ndot }_{\mathrm{O} 2}=18.354 \frac{\mathrm{~mol}}{\mathrm{sec}}
$$

Ans.
b) Assume ideal gas behavior. For an ideal gas there is no heat of mixing, therefore, the heat transfer rate is zero.
c) To calculate the entropy change, treat the process in two steps:

1. Demix the air to O 2 and N 2
2. Mix the $\mathbf{N} 2$ and combined $\mathbf{O} 2$ to produce the enhanced air

Entropy change of demixing $\Delta \mathrm{S}_{12}:=\mathrm{R} \cdot()_{\mathrm{K} 21} \cdot \ln ()_{\mathrm{K} 21}+\mathrm{x}_{\mathrm{N} 21} \cdot \ln ()_{\mathrm{N} 21}$
Entropy change of mixing $\quad \Delta \mathrm{S}_{23}:=-\mathrm{R} \cdot()_{\mathrm{O} 22} \cdot \ln ()_{\mathrm{O} 22}+\mathrm{x}_{\mathrm{N} 22} \cdot \ln ()_{\mathrm{N} 22}$
Total rate of entropy generation: $\operatorname{Sdot}_{G}:=\operatorname{ndot}_{\text {air }} \cdot \Delta \mathrm{S}_{12}+\operatorname{ndot}_{2} \cdot \Delta \mathrm{~S}_{23}$

$$
\operatorname{Sdot}_{\mathrm{G}}=152.919 \frac{\mathrm{~W}}{\mathrm{~K}}
$$

Ans.

$$
11.50 \mathrm{~T}:=\left(\begin{array}{l}
10 \\
30 \mid \mathrm{K}+273.15 \mathrm{~K} \\
50
\end{array}\right) \quad \mathrm{GE}:=\left(\begin{array}{l}
544.0 \\
513.0 \\
494.2
\end{array}\right) \frac{\mathrm{J}}{\mathrm{~mol}} \quad \mathrm{HE}:=\left(\begin{array}{l}
932.1 \\
893.4 \\
845.9
\end{array}\right) \frac{\mathrm{J}}{\mathrm{~mol}}
$$

Assume $\mathbf{C p}$ is constant. Then HE is of the form: $\mathrm{HE}=\mathrm{c}+\mathrm{a} \cdot \mathrm{T}$
Find a and c using the given HE and T values.
$\mathrm{a}:=\operatorname{slope}(\mathrm{T}, \mathrm{HE})$
$\mathrm{a}=-2.155 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
$\mathrm{c}:=\operatorname{intercept}(\mathrm{T}, \mathrm{HE})$

$$
\mathrm{c}=1.544 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

GE is of the form: $\quad G E=-a \cdot\left(T \cdot \ln \left(\frac{T}{K}\right)-T\right)+b \cdot T+c$
Rearrange to find b using estimated a and c values along with GE and T data.

$$
\begin{aligned}
& \mathrm{B}:=\frac{\mathrm{GE}+\mathrm{a} \cdot\left(\mathrm{~T} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~K}}\right)-\mathrm{T}\right)-\mathrm{c}}{\mathrm{~T}} \quad \mathrm{~B}=\left(\begin{array}{l}
-13.543 \\
-13.559 \\
-13.545
\end{array}\right) \frac{\mathrm{J}}{\mathrm{~mol} \cdot \mathrm{~K}} \\
& \text { Use averaged b value }
\end{aligned}
$$

$$
\mathrm{b}:=\frac{\sum_{\mathrm{i}=1}^{3} \mathrm{~B}_{\mathrm{i}}}{3} \quad \mathrm{~b}=-13.549 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

Now calculate HE, GE and T*SE at 25 C using a, b and c values.

$$
\begin{array}{ll}
\mathrm{HE}(\mathrm{~T}):=\mathrm{a} \cdot \mathrm{~T}+\mathrm{c} & \mathrm{HE}[(25+273.15) \mathrm{K}]=901.242 \frac{\mathrm{~J}}{\mathrm{~mol}} \text { Ans. } \\
\mathrm{GE}(\mathrm{~T}):=-\mathrm{a} \cdot\left(\mathrm{~T} \cdot \ln \left(\frac{\mathrm{~T}}{\mathrm{~K}}\right)-\mathrm{T}\right)+\mathrm{b} \cdot \mathrm{~T}+\mathrm{c} & \mathrm{GE}[(25+273.15) \mathrm{K}]=522.394 \frac{\mathrm{~J}}{\mathrm{~mol}} \text { Ans. } \\
\mathrm{TSE}(\mathrm{~T}):=\mathrm{HE}(\mathrm{~T})-\mathrm{GE}(\mathrm{~T}) & \mathrm{TSE}[(25+273.15) \mathrm{K}]=378.848 \frac{\mathrm{~J}}{\mathrm{~mol}} \text { Ans. }
\end{array}
$$

Chapter 12 - Section A - Mathcad Solutions

12.1 Methanol(1)/Water(2)-- VLE data:

$P:=\left(\begin{array}{l}39.223 \\ 42.984 \\ 48.852 \\ 52.784 \\ 56.652 \\ 60.614 \\ 63.998 \\ 67.924 \\ 70.229 \\ 72.832\end{array}\right) \cdot \mathrm{kPa}$
$\mathrm{x}_{1}:=\left(\begin{array}{l}0.1686 \\ 0.2167 \\ 0.3039 \\ 0.3681 \\ 0.4461 \\ 0.5282 \\ 0.6044 \\ 0.6804 \\ 0.7255 \\ 0.7776\end{array}\right)$
$\begin{array}{lll}\text { Number of data points: } & \mathrm{n}:=\mathrm{rows}(\mathrm{P}) & \mathrm{n}=10 \\ \text { Calculate } \mathbf{x 2} \text { and } \mathrm{y} 2: & \mathrm{x}_{2}:=\overrightarrow{\left(\mathrm{l}-\mathrm{x}_{1}\right.} & \mathrm{y}_{2}:=\overrightarrow{()-\mathrm{y}_{1}}\end{array}$
Vapor Pressures from equilibrium data:

$$
\text { Psat }_{1}:=84.562 \cdot \mathrm{kPa} \quad \text { Psat }_{2}:=19.953 \cdot \mathrm{kPa}
$$

Calculate EXPERIMENTAL values of activity coefficients and excess Gibbs energy.

$$
\gamma_{1}:=\overrightarrow{\mathrm{y}_{1} \cdot \mathrm{P}} \frac{\overrightarrow{\mathrm{x}_{1} \cdot \text { Psat }_{1}}}{} \quad \gamma_{2}:=\frac{\mathrm{y}_{2} \cdot \mathrm{P}}{\mathrm{x}_{2} \cdot \text { Psat }_{2}} \quad \text { GERT }:=\overrightarrow{()_{1} \cdot \ln \left(\gamma_{1}+\mathrm{x}_{2} \cdot \ln \left(\gamma_{2}\right.\right.}
$$

$\mathrm{i}=$	$\gamma_{1}=$	$\gamma_{2}{ }_{\text {i }}=$	$\ln \left(\gamma_{1}{ }_{1}\right)$	$\ln \left(\gamma_{2 i}\right)$	$\mathrm{GERT}_{\mathrm{i}}$
1	1.572	1.013	0.452	0.013	0.087
2	1.47	1.026	0.385	0.026	0.104
3	1.32	1.075	0.278	0.073	0.135
4	1.246	1.112	0.22	0.106	0.148
5	1.163	1.157	0.151	0.146	0.148
6	1.097	1.233	0.093	0.209	0.148
7	1.05	1.311	0.049	0.271	0.136
8	1.031	1.35	0.031	0.3	0.117
9	1.021	1.382	0.021	0.324	0.104
10	1.012	1.41	0.012	0.343	0.086

(a) Fit GE/RT data to Margules eqn. by linear least squares:
$\mathrm{VX}_{\mathrm{i}}:=\mathrm{x}_{\mathrm{I}_{\mathrm{i}}}$
$\mathrm{VY}:=\frac{\mathrm{GERT}_{\mathrm{i}}}{\mathrm{x}_{1} \cdot \mathrm{x}_{2}}$
Slope $:=$ slope(VX,VY) \quad Intercept $:=$ intercept(VX,VY)
Slope $=-0.208 \quad$ Intercept $=0.683$
$\mathrm{A}_{12}:=$ Intercept
$\mathrm{A}_{12}=0.683$
$\mathrm{A}_{21}:=$ Slope $+\mathrm{A}_{12}$
$\mathrm{A}_{21}=0.475$

Ans.

The following equations give CALCULATED values:
$\gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x} 2^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A} \mathrm{~A}_{21}-\mathrm{A}_{12} \cdot \mathrm{x} 1\right]\right]\right.$
$\gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x} 1^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A} \mathrm{~A}_{12}-\mathrm{A}_{21} \cdot \mathrm{x} 2\right]\right]\right.$
$\mathrm{j}:=1 . .101 \quad \mathrm{X}_{1}:=.01 \cdot \mathrm{j}-.01 \quad \mathrm{X}_{\mathrm{j}}:=1-\mathrm{X}_{\mathrm{j}}{ }_{\mathrm{j}}$
$\mathrm{p}_{\text {calc }_{\mathrm{j}}}:=\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot\right.$ Psat $_{1}+\mathrm{X}_{2} \cdot \gamma 2\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2_{\mathrm{j}}} \cdot\right.$ Psat $_{2}$
$\mathrm{Y}_{1 \text { calc }_{\mathrm{j}}}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{\mathrm{j}}\right.}{\mathrm{p}_{\text {calc }_{\mathrm{j}}}}$

P-x,y Diagram: Margules eqn. fit to GE/RT data.

$\mathrm{P}_{\text {calc }_{\mathrm{i}}}:=\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{2_{\mathrm{i}}} \cdot\right.$ Psat $_{1}+\mathrm{x}_{2} \cdot \gamma 2\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2} \cdot \mathrm{Psat}_{2}\right.$
$\mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma 1()_{1_{\mathrm{i}}}, \mathrm{x}_{2} \cdot \mathrm{Psat}_{1}}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}$
RMS deviation in P :
$R M S:=\sqrt{\sum_{i} \frac{\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}{ }^{2}\right.}{\mathrm{n}}} \quad \mathrm{RMS}=0.399 \mathrm{kPa}$
(b) Fit GE/RT data to van Laar eqn. by linear least squares:

$$
\begin{aligned}
& \mathrm{VX}_{\mathrm{i}}:=\mathrm{x}_{1_{\mathrm{i}}} \quad \quad \mathrm{VY} \mathrm{Y}_{\mathrm{i}}:=\frac{\mathrm{x}_{1} \cdot \mathrm{x}_{2}{ }_{\mathrm{i}}}{\mathrm{GERT}_{\mathrm{i}}} \\
& \text { Slope }:=\text { slope(VX, VY) } \quad \text { Intercept }:=\text { intercept(VX, VY) } \\
& \text { Slope }=0.641 \quad \text { Intercept }=1.418 \\
& \mathrm{a}_{12}:=\frac{1}{\text { Intercept }} \quad \mathrm{a}_{21}:=\frac{1}{\text { (Slope }+ \text { Intercept })} \\
& \mathrm{a}_{12}=0.705 \quad \mathrm{a}_{21}=0.485 \quad \text { Ans. } \\
& \gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{a}_{12} \cdot\left(1+\frac{\mathrm{a}_{12} \cdot \mathrm{x} 1}{\mathrm{a}_{21} \cdot \mathrm{x} 2}\right)^{-2}\right] \\
& \gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{a}_{21} \cdot\left(1+\frac{\mathrm{a}_{21} \cdot \mathrm{x} 2}{\mathrm{a}_{12} \cdot \mathrm{x} 1}\right)^{-2}\right] \\
& \mathrm{j}:=1 . .101 \quad \mathrm{X}_{1_{j}}:=.01 \cdot \mathrm{j}-.00999 \\
& \mathrm{X}_{2}:=1-\mathrm{X}_{\mathrm{l}_{\mathrm{j}}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{p}_{\text {calc }_{\mathrm{j}}}:=\mathrm{X}_{1} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{\mathrm{j}}+\mathrm{X}_{2} \cdot \gamma 2\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{2}\right.\right. \\
& \mathrm{P}_{\text {calc }_{\mathrm{i}}}:=\mathrm{x}_{1} \cdot \gamma 1()_{1_{\mathrm{i}}}, \mathrm{x}_{\mathrm{x}_{\mathrm{i}}} \cdot \text { Psat }_{1}+\mathrm{x}_{2} \cdot \gamma 2\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2} \cdot \text { Psat }_{2}\right. \\
& \mathrm{Y}_{1 \text { calc }_{\mathrm{j}}}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{1}\right.}{\mathrm{p}_{\text {calc }_{\mathrm{j}}}} \quad \mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma 1\left(\mathrm{~K}_{1_{\mathrm{i}}}, \mathrm{x}_{2} \cdot \text { Psat }_{1}\right.}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}
\end{aligned}
$$

P-x,y Diagram: van Laar eqn. fit to GE/RT data.

RMS deviation in P:
RMS $:=\sqrt{\sum_{i} \frac{\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}{ }^{2}\right.}{\mathrm{n}}} \quad \mathrm{RMS}=0.454 \mathrm{kPa}$
(c) Fit GE/RT data to Wilson eqn. by non-linear least squares.

Minimize the sum of the squared errors using the Mathcad Minimize function.
Guesses: $\quad \Lambda_{12}:=0.5 \quad \Lambda_{21}:=1.0$
$\operatorname{SSE}\left(\Lambda_{12}, \Lambda_{21}:=\sum_{\mathrm{i}}\left[\operatorname{GERT}_{\mathrm{i}}+\left(\begin{array}{lll}\mathrm{x}_{1} \cdot \ln \left(\mathrm{k}_{1}+\mathrm{x}_{2} \cdot \Lambda_{12}\right. & \ldots &) \\ +\mathrm{x}_{2} \cdot \ln \left(\mathrm{k}_{2_{i}}+\mathrm{x}_{1} \cdot \Lambda_{21}\right. & &)\end{array}\right]^{2}\right.\right.$
$\left(\begin{array}{l}\left.\Lambda_{12}\right) \\ \left.\Lambda_{21}\right)\end{array}:=\operatorname{Minimize}\left(\$ \operatorname{SE}, \mathbb{1}_{12}, \quad 21\right.\right.$

Ans.
$\gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\frac{\exp \left[\mathrm{x} 2 \cdot\left(\frac{\Lambda_{12}}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda_{12}}-\frac{\Lambda_{21}}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda_{21}}\right)\right]}{\left(\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda_{12}\right.}$
$\gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\frac{\exp \left[-\mathrm{x} 1 \cdot\left(\frac{\Lambda_{12}}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda_{12}}-\frac{\Lambda_{21}}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda_{21}}\right)\right]}{\left(\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda_{21}\right.}$
$\mathrm{j}:=1$.. 101

$$
\mathrm{X}_{1}:=.01 \cdot \mathrm{j}-.01
$$

$$
\mathrm{X}_{2}:=1-\mathrm{X}_{1_{\mathrm{j}}}
$$

$\mathrm{p}_{\text {calc }_{\mathrm{j}}}:=\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot\right.$ Psat $_{\mathrm{j}}+\mathrm{X}_{2} \cdot \gamma 2\left(\mathrm{X}_{\mathrm{l}_{\mathrm{j}}}, \mathrm{X}_{2_{\mathrm{j}}} \cdot\right.$ Psat $_{2}$
$P_{\text {calc }_{i}}:=x_{1} \cdot \gamma 1()_{1_{i}}, x_{2} \cdot$ Psat $_{1}+x_{2_{i}} \cdot \gamma 2()_{1_{i}}, x_{2} \cdot$ Psat $_{2}$
$Y_{1 \text { calc }_{j}}:=\frac{\mathrm{X}_{1} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{1}\right.}{\mathrm{p}_{\text {calc }_{\mathrm{j}}}} \quad \mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1_{i}} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2} \cdot \text { Psat }_{1}\right.}{\mathrm{P}_{\text {calc }_{\mathrm{i}}}}$

P-x,y diagram: Wilson eqn. fit to GE/RT data.

RMS deviation in P :

RMS $:=\sqrt{\sum_{i} \frac{\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}{ }^{2}\right.}{\mathrm{n}}} \quad \mathrm{RMS}=0.48 \mathrm{kPa}$
(d) BARKER'S METHOD by non-linear least squares.

Margules equation.
Guesses for parameters: answers to Part (a).
$\gamma_{1}\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}:=\exp \left[(\mathrm{x} 2)^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12} \cdot \mathrm{x} 1\right]\right]\right.\right.$
$\gamma_{2}\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}:=\exp \left[(\mathrm{x} 1)^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21} \cdot \mathrm{x} 2\right]\right]\right.\right.$

Minimize the sum of the squared errors using the Mathcad Minimize function.
Guesses:
$\mathrm{A}_{12}:=0.5$
$\mathrm{A}_{21}:=1.0$

$\binom{\mathrm{A}_{12}}{\mathrm{~A}_{21}}:=\operatorname{Minimize}\left(\mathrm{SSE}, \mathrm{A}_{12}, \mathrm{~A}_{21}\right.$

Ans.
$p_{\text {calc }_{j}}:=X_{1} \cdot \gamma_{1}\left(X_{1_{j}}, X_{2}, A_{12}, A_{21} \cdot\right.$ Psat $_{1} \ldots$
$+\mathrm{X}_{2} \cdot \gamma_{2}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21} \cdot \mathrm{Psat}_{2}\right.$
$Y_{\text {1calc }_{j}}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{\mathrm{j}_{\mathrm{j}}}, \mathrm{A}_{12}, \mathrm{~A}_{21} \cdot \mathrm{Psat}_{1}\right.}{\mathrm{p}_{\text {calc }_{\mathrm{j}}}}$
$P_{\text {calc }_{i}}:=x_{1} \cdot \gamma_{1}()_{1_{i}}, x_{2}, A_{12}, A_{21} \cdot$ Psat $_{1} \ldots$
$+\mathrm{x}_{2} \cdot \gamma_{2}\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21} \cdot \mathrm{Psat}_{2}\right.$
$\mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21} \cdot \mathrm{Psat}_{1}\right.}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}$

RMS deviation in \mathbf{P} :

$R M S:=\sqrt{\sum_{i} \frac{\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}{ }^{2}\right.}{\mathrm{n}}} \quad \mathrm{RMS}=0.167 \mathrm{kPa}$

P-x-y diagram, Margules eqn. by Barker's method

Residuals in P and y1

(e) BARKER'S METHOD by non-linear least squares. van Laar equation.

Guesses for parameters: answers to Part (b).

$$
\begin{aligned}
& \mathrm{j}:=1 . .101 \quad \mathrm{X}_{1}:=.01 \cdot \mathrm{j}-.00999 \quad \mathrm{X}_{2}:=1-\mathrm{X}_{1}{ }_{\mathrm{j}} \\
& \gamma_{1}\left(\mathrm{k} 1, \mathrm{x} 2, \mathrm{a}_{12}, \mathrm{a}_{21}:=\exp \left[\mathrm{a}_{12} \cdot\left(1+\frac{\mathrm{a}_{12} \cdot \mathrm{x} 1}{\mathrm{a}_{21} \cdot \mathrm{x} 2}\right)^{-2}\right]\right. \\
& \gamma_{2}\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{a}_{12}, \mathrm{a}_{21}:=\exp \left[\mathrm{a}_{21} \cdot\left(1+\frac{\mathrm{a}_{21} \cdot \mathrm{x} 2}{\mathrm{a}_{12} \cdot \mathrm{x} 1}\right)^{-2}\right]\right.
\end{aligned}
$$

Minimize the sum of the squared errors using the Mathcad Minimize function.

$\binom{\mathrm{a}_{12}}{\mathrm{a}_{21}}:=\operatorname{Minimize}\left(\right.$ SSE $, \mathrm{a}_{12}, \mathrm{a}_{21}$

Ans.
$\mathrm{p}_{\text {calc }_{\mathrm{j}}}:=\mathrm{X}_{1} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot \mathrm{Psat}_{1} \ldots\right.$ $+\mathrm{X}_{2} \cdot \gamma_{2}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot \mathrm{Psat}_{2}\right.$
$\mathrm{Y}_{\text {calc }_{\mathrm{j}}}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot \text { Psat }_{1}\right.}{\mathrm{p}_{\text {calc }_{\mathrm{j}}}}$
$\mathrm{P}_{\text {calc }_{\mathrm{i}}}:=\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma_{1}()_{1_{1}}, \mathrm{x}_{\mathrm{x}_{\mathrm{i}}}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot \mathrm{Psat}_{1} \ldots$ $+\mathrm{x}_{2} \cdot \gamma_{2}()_{1_{i}}, \mathrm{x}_{2}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot$ Psat $_{2}$
$\mathrm{y}_{1 \mathrm{calc}_{\mathrm{i}}}:=\frac{\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma_{1}()_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot \mathrm{Psat}_{1}}{\mathrm{P}_{\mathrm{calc}}^{\mathrm{i}}} \mathrm{C}$

RMS deviation in P:

$$
R M S:=\sqrt{\sum_{i} \frac{\left(f_{i}-P_{\mathrm{calc}_{\mathrm{i}}}{ }^{2}\right.}{n}} \quad \mathrm{RMS}=0.286 \mathrm{kPa}
$$

P-x,y diagram, van Laar Equation by Barker's Method

Residuals in P and y1.

(f) BARKER'S METHOD by non-linear least squares.

Wilson equation.
Guesses for parameters: answers to Part (c).

$$
\begin{aligned}
& \mathrm{j}:=1 . .101 \quad \mathrm{X}_{1}:=.01 \cdot \mathrm{j}-.01 \quad \mathrm{X}_{\mathrm{j}}:=1-\mathrm{X}_{1}{ }_{\mathrm{j}} \\
& \gamma_{1}\left(\mathrm{k} 1, \mathrm{~A} 2, \Lambda_{12}, \quad 21 \quad:=\exp \left[\begin{array}{l}
-\ln \left(\mathrm{k} 1+\mathrm{x} 2 \cdot \Lambda_{12}\right. \\
+\mathrm{x} 2 \cdot\left(\frac{\Lambda_{12}}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda_{12}}-\frac{\Lambda_{21}}{\left.\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda_{21}\right)}\right.
\end{array}\right]\right. \\
& \gamma_{2}\left(\mathrm{k} 1, \mathrm{~A} 2, \Lambda_{12}, \quad 21:=\exp \left[\begin{array}{l}
-\ln \left(\mathrm{k} 2+\mathrm{x} 1 \cdot \Lambda_{21}\right. \\
\cdots \\
+\mathrm{x} 1 \cdot\left(\frac{-\Lambda_{12}}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda_{12}}+\frac{\Lambda_{21}}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda_{21}}\right)
\end{array}\right]\right.
\end{aligned}
$$

Minimize the sum of the squared errors using the Mathcad Minimize function.
Guesses:

$$
\Lambda_{12}:=0.5 \quad \Lambda_{21}:=1.0
$$

$$
\begin{aligned}
& \operatorname{SSE}()_{12}, \Lambda_{21}:=\sum_{\mathrm{i}}\left[\begin{array}{lll}
\mathrm{P}_{\mathrm{i}}-\left(\begin{array}{ll}
\mathrm{x}_{1} \cdot \gamma_{1}()_{1_{i}}, \mathbf{A}_{2}, \Lambda_{12}, & \left.21 \cdot \text { Psat }_{1} \ldots\right) \\
+\mathrm{x}_{2} \cdot \gamma_{2}\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathbf{A}_{2}, \Lambda_{12},\right. & 21 \cdot \text { Psat }_{2}
\end{array}\right)
\end{array}\right]^{2} \\
& \binom{\Lambda_{12}}{\Lambda_{21}}:=\operatorname{Minimize}\left(\$ \operatorname{SE}, \mathbb{1}_{12}, \quad 21\right. \\
& \binom{\Lambda_{12}}{\Lambda_{21}}=\binom{0.348}{1.198} \\
& \mathrm{p}_{\text {calc }_{\mathrm{j}}}:=\mathrm{X}_{1} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \boldsymbol{X}_{2}, \Lambda_{12}, \quad 21 \cdot \text { Psat }_{1} \ldots\right. \\
& +\mathrm{X}_{2} \cdot \gamma_{2}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, \Lambda_{12}, \quad 21 \cdot \mathrm{Psat}_{2}\right. \\
& \mathrm{Y}_{\text {calc }_{\mathrm{j}}}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \boldsymbol{X}_{\mathrm{L}_{\mathrm{j}}}, \Lambda_{12}, \quad 21 \cdot \text { Psat }_{1}\right.}{\mathrm{p}_{\text {calc }_{\mathrm{j}}}} \\
& \mathrm{P}_{\text {calc }_{\mathrm{i}}}:=\mathrm{x}_{1} \cdot \gamma_{\mathrm{i}}()_{1_{i}}, \mathrm{~A}_{\mathrm{A}_{\mathrm{i}}}, \Lambda_{12}, \quad 21 \cdot \text { Psat }_{1} \ldots \\
& +\mathrm{x}_{2} \cdot \gamma_{2}()_{1_{i}}, \mathbf{A}_{2}, \Lambda{ }_{12}, \quad 21 \cdot \text { Psat }_{2} \\
& \mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma_{1}()_{1_{i}}, \mathbf{A}_{2}, \Lambda_{12}, \quad 21 \cdot \mathrm{Psat}_{1}}{\mathrm{P}_{\text {calc }_{\mathrm{i}}}}
\end{aligned}
$$

RMS deviation in P:

$$
R M S:=\sqrt{\sum_{i} \frac{\left(\mathrm{f}_{\mathrm{i}}-\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}^{2}\right.}{\mathrm{n}}} \quad \quad \mathrm{RMS}=0.305 \mathrm{kPa}
$$

P-x,y diagram, Wilson Equation by Barker's Method

Residuals in \mathbf{P} and y1.

12.3 Acetone(1)/Methanol(2)-- VLE data: $\mathrm{T}:=328.15 \cdot \mathrm{~K}$

$P:=\left(\begin{array}{c}72.278 \\ 75.279 \\ 77.524 \\ 78.951 \\ 82.528 \\ 86.762 \\ 90.088 \\ 93.206 \\ 95.017 \\ 96.365 \\ 97.646 \\ 98.462 \\ 99.811 \\ 99.950 \\ 100.278 \\ 100.467 \\ 100.999 \\ 101.059 \\ 99.877 \\ 99.799\end{array}\right) \cdot \mathrm{kPa}$
$\mathrm{x}_{1}:=\left(\begin{array}{l}0.0287 \\ 0.0570 \\ 0.0858 \\ 0.1046 \\ 0.1452 \\ 0.2173 \\ 0.2787 \\ 0.3579 \\ 0.4050 \\ 0.4480 \\ 0.5052 \\ 0.5432 \\ 0.6332 \\ 0.6605 \\ 0.6945 \\ 0.7327 \\ 0.7752 \\ 0.7922 \\ 0.9080 \\ 0.9448\end{array}\right)$
$y_{1}:=\left(\begin{array}{l}0.0647 \\ 0.1295 \\ 0.1848 \\ 0.2190 \\ 0.2694 \\ 0.3633 \\ 0.4184 \\ 0.4779 \\ 0.5135 \\ 0.5512 \\ 0.5844 \\ 0.6174 \\ 0.6772 \\ 0.6926 \\ 0.7124 \\ 0.7383 \\ 0.7729 \\ 0.7876 \\ 0.8959 \\ 0.9336\end{array}\right)$
$\begin{array}{lll}\text { Number of data points: } & \mathrm{n}:=\mathrm{rows}(\mathrm{P}) & \mathrm{n}=20 \\ \text { Calculate } \mathbf{x} 2 \text { and } \mathrm{y} 2: & \mathrm{x}_{2}:=\overrightarrow{\left(\mathrm{l}-\mathrm{x}_{1}\right.} & \mathrm{y}_{2}:=\overrightarrow{\left(\mathrm{l}-\mathrm{y}_{1}\right.}\end{array}$
Vapor Pressures from equilibrium data:

Psat $2:=68.728 \cdot \mathrm{kPa}$

Calculate EXPERIMENTAL values of activity coefficients and excess Gibbs energy.
$\gamma_{1}:=\frac{\xrightarrow[\mathrm{y}_{1} \cdot \mathrm{P}]{\mathrm{x}_{1} \cdot \mathrm{Psat}_{1}}}{\gamma_{2}:=\frac{\overrightarrow{\mathrm{y}_{2} \cdot \mathrm{P}}}{\mathrm{x}_{2} \cdot \mathrm{Psat}_{2}}}$
GERT $:=\overrightarrow{()_{1} \cdot \ln \left(\gamma_{1}+x_{2} \cdot \ln ()_{2}\right.}$

	$1_{i}=$	$2_{\mathrm{i}}=$	$\ln ()_{1_{i}}$	$n()_{2}=$	GERT_{i}
1	1.682	1.013	0.52	0.013	0.027
2	1.765	1.011	0.568	0.011	0.043
3	1.723	1.006	0.544	$5.815 \cdot 10^{-3}$	0.052
4	1.706	1.002	0.534	1.975.10-3	0.058
5	1.58	1.026	0.458	0.026	0.089
6	1.497	1.027	0.404	0.027	0.108
7	1.396	1.057	0.334	0.055	0.133
8	1.285	1.103	0.25	0.098	0.152
9	1.243	1.13	0.218	0.123	0.161
10	1.224	1.14	0.202	0.131	0.163
11	1.166	1.193	0.153	0.177	0.165
12	1.155	1.2	0.144	0.182	0.162
13	1.102	1.278	0.097	0.245	0.151
14	1.082	1.317	0.079	0.275	0.145
15	1.062	1.374	0.06	0.317	0.139
16	1.045	1.431	0.044	0.358	0.128
17	1.039	1.485	0.039	0.395	0.119
18	1.037	1.503	0.036	0.407	0.113
19	1.017	1.644	0.017	0.497	0.061
20	1.018	1.747	0.018	0.558	0.048

(a) Fit GE/RT data to Margules eqn. by linear least squares:

$$
\mathrm{VX}_{\mathrm{i}}:=\mathrm{x}_{1_{\mathrm{i}}} \quad \mathrm{VY} \mathrm{i}_{\mathrm{i}}:=\frac{\mathrm{GERT}_{\mathrm{i}}}{\mathrm{x}_{1_{\mathrm{i}}} \cdot \mathrm{x}_{2}}
$$

Slope $:=\operatorname{slope}(V X, V Y) \quad$ Intercept $:=$ intercept(VX, VY)
Slope $=-0.018 \quad$ Intercept $=0.708$
$\mathrm{A}_{12}:=$ Intercept $\quad \mathrm{A}_{21}:=$ Slope $+\mathrm{A}_{12}$
$\mathrm{A}_{12}=0.708$
$\mathrm{A}_{21}=0.69 \quad$ Ans.
The following equations give CALCULATED values:

$$
\begin{aligned}
& \gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x} 2^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12} \cdot \mathrm{x} 1\right]\right]\right. \\
& \gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x} 1^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A} \mathrm{~A}_{12}-\mathrm{A}_{21} \cdot \mathrm{x} 2\right]\right]\right. \\
& \mathrm{j}:=1 . .101 \quad \mathrm{X}_{1}:=.01 \cdot \mathrm{j}-.01 \quad \mathrm{X}_{\mathrm{j}}:=1-\mathrm{X}_{\mathrm{j}}{ }_{\mathrm{j}} \\
& \mathrm{p}_{\text {calc }_{\mathrm{j}}}:=\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{1}+\mathrm{X}_{2} \cdot \gamma 2\left(\mathrm{X}_{\mathrm{l}_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{2}\right.\right. \\
& Y_{\text {1calc }_{j}}:=\frac{\mathrm{X}_{1} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{\mathrm{j}}\right.}{\mathrm{p}_{\mathrm{calc}_{\mathrm{j}}}}
\end{aligned}
$$

P-x,y Diagram: Margules eqn. fit to GE/RT data.

$\mathrm{P}_{\text {calc }_{\mathrm{i}}}:=\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2_{\mathrm{i}}} \cdot\right.$ Psat $_{1}+\mathrm{x}_{2} \cdot \gamma 2\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2} \cdot\right.$ Psat $_{2}$
$\mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma 1()_{1_{\mathrm{i}}}, \mathrm{x}_{2} \cdot \mathrm{Psat}_{1}}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}$
RMS deviation in P:
$R M S:=\sqrt{\sum_{i} \frac{\left(\mathrm{f}_{\mathrm{i}}-\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}{ }^{2}}\right.}{\mathrm{n}}} \quad \mathrm{RMS}=0.851 \mathrm{kPa}$

(b) Fit GE/RT data to van Laar eqn. by linear least squares:

$$
\begin{aligned}
& \mathrm{VX}_{\mathrm{i}}:=\mathrm{x}_{1}{ }_{\mathrm{i}} \quad \quad \mathrm{VY} \mathrm{i}_{\mathrm{i}}:=\frac{\mathrm{x}_{1} \cdot \mathrm{x}_{\mathrm{I}_{\mathrm{i}}}}{\mathrm{GERT}_{\mathrm{i}}} \\
& \text { Slope }:=\operatorname{slope}(V X, V Y) \quad \text { Intercept }:=\operatorname{intercept}(V X, V Y) \\
& \text { Slope }=0.015 \quad \text { Intercept }=1.442 \\
& \mathrm{a}_{12}:=\frac{1}{\text { Intercept }} \quad \mathrm{a}_{21}:=\frac{1}{\text { (Slope }+ \text { Intercept })} \\
& \mathrm{a}_{12}=0.693 \\
& \mathrm{a}_{21}=0.686 \quad \text { Ans. } \\
& \gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{a}_{12} \cdot\left(1+\frac{\mathrm{a}_{12} \cdot \mathrm{x} 1}{\mathrm{a}_{21} \cdot \mathrm{x} 2}\right)^{-2}\right] \\
& \gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{a}_{21} \cdot\left(1+\frac{\mathrm{a}_{21} \cdot \mathrm{x} 2}{\mathrm{a}_{12} \cdot \mathrm{x} 1}\right)^{-2}\right] \\
& \mathrm{j}:=1 . .101 \quad \mathrm{X}_{1_{\mathrm{j}}}:=.01 \cdot \mathrm{j}-.00999 \\
& \mathrm{X}_{2}{ }_{\mathrm{j}}:=1-\mathrm{X}_{1}{ }_{\mathrm{j}} \\
& \text { (To avoid singularities) } \\
& \mathrm{p}_{\text {calc }_{\mathrm{j}}}:=\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{1}+\mathrm{X}_{2} \cdot \gamma 2\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{2}\right.\right. \\
& \mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}:=\mathrm{x}_{1} \cdot \gamma 1()_{1_{\mathrm{i}}}, \mathrm{x}_{2_{\mathrm{i}}} \cdot \text { Psat }_{1}+\mathrm{x}_{2_{\mathrm{i}}} \cdot \gamma 2\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{\mathrm{L}_{\mathrm{i}}} \cdot \text { Psat }_{2}\right. \\
& \mathrm{Y}_{\text {calc }_{\mathrm{j}}}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2_{\mathrm{j}}} \cdot \text { Psat }_{1}\right.}{\mathrm{p}_{\text {calc }_{\mathrm{j}}}} \\
& \mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2} \cdot \text { Psat }_{1}\right.}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}
\end{aligned}
$$

P-x,y Diagram: van Laar eqn. fit to GE/RT data.

RMS deviation in P :
RMS $:=\sqrt{\sum_{i} \frac{\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\text {calc }_{\mathrm{i}}{ }^{2}}{ }^{2}\right.}{\mathrm{n}}} \quad \mathrm{RMS}=0.701 \mathrm{kPa}$
(c) Fit GE/RT data to Wilson eqn. by non-linear least squares.

Minimize the sum of the squared errors using the Mathcad Minimize function.
Guesses:

$$
\Lambda_{12}:=0.5 \quad \Lambda_{21}:=1.0
$$

$$
\operatorname{SSE}\left(\Lambda_{12}, \Lambda_{21}:=\sum_{\mathrm{i}}\left[\begin{array}{lll}
\operatorname{GERT}_{\mathrm{i}}+\left(\begin{array}{l}
\mathrm{x}_{1} \cdot \ln \left(\mathrm{k}_{1_{\mathrm{i}}}+\mathrm{x}_{2} \cdot \Lambda_{12}\right. \\
\ldots \\
+\mathrm{x}_{2} \cdot \ln \left(\mathrm{k}_{\mathrm{i}}+\mathrm{x}_{1} \cdot \Lambda_{21}\right.
\end{array}\right. &)
\end{array}\right]^{2}\right.
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\Lambda_{12} \\
\left.\Lambda_{21}\right)
\end{array}:=\operatorname{Minimize}\left(\$ \operatorname{SE}, \mathbb{1}_{12}, \quad 21\right.\right. \\
& \binom{\Lambda_{12}}{\Lambda_{21}}=\binom{0.71}{0.681} \\
& \text { Ans. } \\
& \gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\frac{\exp \left[\mathrm{x} 2 \cdot\left(\frac{\Lambda_{12}}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda_{12}}-\frac{\Lambda_{21}}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda_{21}}\right)\right]}{\left(\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda_{12}\right.} \\
& \gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\frac{\exp \left[-\mathrm{x} 1 \cdot\left(\frac{\Lambda_{12}}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda_{12}}-\frac{\Lambda_{21}}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda_{21}}\right)\right]}{\left(\mathrm{k} 2+\mathrm{x} 1 \cdot \Lambda_{21}\right.} \\
& \mathrm{j}:=1 . .101 \quad \mathrm{X}_{1}:=.01 \cdot \mathrm{j}-.01 \quad \mathrm{X}_{\mathrm{j}}:=1-\mathrm{X}_{{ }_{\mathrm{j}}} \\
& \mathrm{p}_{\text {calc }_{\mathrm{j}}}:=\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2_{\mathrm{j}}} \cdot \text { Psat }_{1}+\mathrm{X}_{2} \cdot \gamma 2\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{2}\right.\right. \\
& \mathrm{P}_{\text {calc }_{\mathrm{i}}}:=\mathrm{x}_{1} \cdot \gamma 1()_{1_{\mathrm{i}}}, \mathrm{x}_{2_{\mathrm{i}}} \cdot \text { Psat }_{1}+\mathrm{x}_{2_{\mathrm{i}}} \cdot \gamma 2\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2_{\mathrm{i}}} \cdot \text { Psat }_{2}\right. \\
& \mathrm{Y}_{1 \text { calc }} \mathrm{j}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{1}\right.}{\mathrm{p}_{\text {calc }_{\mathrm{j}}}} \quad \mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2} \cdot \text { Psat }_{1}\right.}{\mathrm{P}_{\text {calc }_{\mathrm{i}}}}
\end{aligned}
$$

P-x,y diagram: Wilson eqn. fit to GE/RT data.

RMS deviation in P:

RMS $:=\sqrt{\sum_{i} \frac{\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}{ }^{2}\right.}{\mathrm{n}}} \quad \mathrm{RMS}=0.361 \mathrm{kPa}$
(d) BARKER'S METHOD by non-linear least squares. Margules equation.

Guesses for parameters: answers to Part (a).

$$
\begin{aligned}
& \gamma_{1}\left(\mathrm{k} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}:=\exp \left[(\mathrm{x} 2)^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12} \cdot \mathrm{x} 1\right]\right]\right.\right. \\
& \gamma_{2}\left(\mathrm{k} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}:=\exp \left[(\mathrm{x} 1)^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A} \mathrm{~A}_{12}-\mathrm{A}_{21} \cdot \mathrm{x} 2\right]\right]\right.\right.
\end{aligned}
$$

Minimize the sum of the squared errors using the Mathcad Minimize function.
$\begin{array}{ll}\text { Guesses: } & \mathrm{A}_{12}:=0.5 \quad \mathrm{~A}_{21}:=1.0 \\ \operatorname{SSE}() \mathrm{A}_{12}, \mathrm{~A}_{21}:=\sum_{\mathrm{i}}\left[\mathrm{P}_{\mathrm{i}}-\binom{\mathrm{x}_{1} \cdot \gamma_{1}() \mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21} \cdot \mathrm{Psat}_{1} \ldots}{+\mathrm{x}_{2} \cdot \gamma_{2}\left(\mathrm{k}_{1}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21} \cdot \mathrm{Psat}_{2}\right.}\right]^{2}\end{array}$
$\binom{\mathrm{A}_{12}}{\mathrm{~A}_{21}}:=\operatorname{Minimize}\left(\mathrm{SSE}, \mathrm{A}_{12}, \mathrm{~A}_{21} \quad\left(\begin{array}{l}\mathrm{A}_{12} \\ \left.\mathrm{~A}_{21}\right)\end{array}=\binom{0.644}{0.672}\right.\right.$
Ans.
$\mathrm{p}_{\text {calc }_{\mathrm{j}}}:=\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2_{\mathrm{j}}}, \mathrm{A}_{12}, \mathrm{~A}_{21} \cdot \mathrm{Psat}_{1} \ldots\right.$
$+\mathrm{X}_{2} \cdot \gamma_{2}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21} \cdot \mathrm{Psat}_{2}\right.$
$Y_{\text {ccalc }_{j}}:=\frac{\mathrm{X}_{1_{j}} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, A_{12}, \mathrm{~A}_{21} \cdot \text { Psat }_{1}\right.}{\mathrm{p}_{\text {calc }}}$
$P_{\text {calc }_{i}}:=x_{1} \cdot \gamma_{1}()_{1_{i}}, x_{2}, A_{12}, A_{21} \cdot$ Psat $_{1} \ldots$
$+\mathrm{x}_{2} \cdot \gamma_{2}\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21} \cdot \mathrm{Psat}_{2}\right.$
$\mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma_{1}()_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21} \cdot \mathrm{Psat}_{1}}{\mathrm{P}_{\text {calc }_{\mathrm{i}}}}$

RMS deviation in \mathbf{P} :

$R M S:=\sqrt{\sum_{i} \frac{\left(\mathrm{f}_{\mathrm{i}}-\mathrm{P}_{\mathrm{calc}_{i}}{ }^{2}\right.}{\mathrm{n}}} \quad \mathrm{RMS}=0.365 \mathrm{kPa}$

P-x-y diagram, Margules eqn. by Barker's method

Residuals in \mathbf{P} and y1

(e) BARKER'S METHOD by non-linear least squares. van Laar equation.

Guesses for parameters: answers to Part (b).

$$
\begin{aligned}
& \mathrm{j}:=1 . .101 \quad \mathrm{X}_{1}:=.01 \cdot \mathrm{j}-.00999 \quad \mathrm{X}_{2}:=1-\mathrm{X}_{1_{\mathrm{j}}} \\
& \gamma_{1}\left(\mathrm{k} 1, \mathrm{x} 2, \mathrm{a}_{12}, \mathrm{a}_{21}:=\exp \left[\mathrm{a}_{12} \cdot\left(1+\frac{\mathrm{a}_{12} \cdot \mathrm{x} 1}{\mathrm{a}_{21} \cdot \mathrm{x} 2}\right)^{-2}\right]\right. \\
& \gamma_{2}\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{a}_{12}, \mathrm{a}_{21}:=\exp \left[\mathrm{a}_{21} \cdot\left(1+\frac{\mathrm{a}_{21} \cdot \mathrm{x} 2}{\mathrm{a}_{12} \cdot \mathrm{x} 1}\right)^{-2}\right]\right.
\end{aligned}
$$

Minimize the sum of the squared errors using the Mathcad Minimize function.

$$
\begin{aligned}
& \text { Guesses: } \quad \mathrm{a}_{12}:=0.5 \quad \mathrm{a}_{21}:=1.0 \\
& \operatorname{SSE}\left(\mathrm{~A}_{12}, \mathrm{a}_{21}:=\sum_{\mathrm{i}}\left[\begin{array}{l}
\mathrm{P}_{\mathrm{i}}-\binom{\mathrm{x}_{1} \cdot \gamma_{1}()_{1_{i}}, \mathrm{x}_{2}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot \text { Psat }_{1} \ldots}{+\mathrm{x}_{2} \cdot \gamma_{2}\left(\mathrm{k}_{1_{i}}, \mathrm{x}_{2}, a_{12}, a_{21} \cdot \text { Psat }_{2}\right.}
\end{array}\right]^{2}\right. \\
& \binom{a_{12}}{a_{21}}:=\operatorname{Minimize}\left(\text { SSE }, a_{12}, a_{21}\right. \\
& \binom{\mathrm{a}_{12}}{\mathrm{a}_{21}}=\binom{0.644}{0.672} \\
& \mathrm{p}_{\text {calc }}{ }_{\mathrm{j}}:=\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot \text { Psat }_{1} \ldots\right. \\
& +\mathrm{X}_{2} \cdot \gamma_{2}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot \text { Psat }_{2}\right. \\
& \mathrm{Y}_{1 \text { calc }_{\mathrm{j}}}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot \text { Psat }_{1}\right.}{\mathrm{p}_{\text {calc }_{\mathrm{j}}}} \\
& \mathrm{P}_{\text {calc }_{\mathrm{i}}}:=\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma_{1}()_{1_{1}}, \mathrm{x}_{\mathrm{m}_{\mathrm{i}}}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot \mathrm{Psat}_{1} \ldots \\
& +\mathrm{x}_{2} \cdot \gamma_{2}()_{1_{i}}, \mathrm{x}_{2}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot \mathrm{Psat}_{2} \\
& \mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma_{1}\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{a}_{12}, \mathrm{a}_{21} \cdot \mathrm{Psat}_{1}\right.}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}
\end{aligned}
$$

Ans.

RMS deviation in P:

$$
\mathrm{RMS}:=\sqrt{\sum_{\mathrm{i}} \frac{\left(\mathrm{f}_{\mathrm{i}}-\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}{ }^{2}\right.}{\mathrm{n}}} \quad \mathrm{RMS}=0.364 \mathrm{kPa}
$$

P-x,y diagram, van Laar Equation by Barker's Method

Residuals in P and y1.

(f) BARKER'S METHOD by non-linear least squares.

Wilson equation.
Guesses for parameters: answers to Part (c).

$$
\begin{aligned}
& \mathrm{j}:=1 . .101 \quad \mathrm{X}_{1_{\mathrm{j}}}:=.01 \cdot \mathrm{j}-.01 \quad \mathrm{X}_{2}:=1-\mathrm{X}_{1_{\mathrm{j}}} \\
& \gamma_{1}\left(\mathrm{k} 1,{\mathbf{A} 2, \Lambda_{12},} 21:=\exp \left[\begin{array}{l}
-\ln \left(\mathrm{k} 1+\mathrm{x} 2 \cdot \Lambda_{12}\right. \\
+\mathrm{x} 2 \cdot\left(\frac{\Lambda_{12}}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda_{12}}-\frac{\Lambda_{21}}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda_{21}}\right)
\end{array}\right]\right. \\
& \gamma_{2}\left(\mathrm{k} 1, \mathbf{A} 2, \Lambda_{12}, \quad 21:=\exp \left[\begin{array}{l}
-\ln \left(\mathrm{k} 2+\mathrm{x} 1 \cdot \Lambda_{21}\right. \\
\cdots \\
+\mathrm{x} 1 \cdot\left(\frac{-\Lambda_{12}}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda_{12}}+\frac{\Lambda_{21}}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda_{21}}\right)
\end{array}\right]\right.
\end{aligned}
$$

Minimize the sum of the squared errors using the Mathcad Minimize function.

$$
\text { Guesses: } \quad \Lambda_{12}:=0.5 \quad \Lambda_{21}:=1.0
$$

$$
\begin{aligned}
& \operatorname{SSE}\left(\Lambda_{12}, \Lambda_{21}:=\sum_{\mathrm{i}}\left[\begin{array}{l}
\mathrm{P}_{\mathrm{i}}-\left(\begin{array}{ll}
\mathrm{x}_{1} \cdot \gamma_{1}()_{1_{i}}, A_{2}, \Lambda_{12}, & \left.21 \cdot \text { Psat }_{1} \ldots\right) \\
+\mathrm{x}_{2} \cdot \gamma_{2}()_{1_{\mathrm{i}}}, \mathbf{A}_{2}, \Lambda_{12}, & 21 \cdot \text { Psat }_{2}
\end{array}\right)
\end{array}\right]^{2}\right. \\
& \left(\begin{array}{l}
\Lambda_{12} \\
\left.\Lambda_{21}\right)
\end{array}:=\operatorname{Minimize}\left(\$ \operatorname{SE}, \mathbb{1}_{12}, \quad 21\right.\right. \\
& \binom{\Lambda_{12}}{\Lambda_{21}}=\binom{0.732}{0.663} \\
& \mathrm{p}_{\text {calc }}:=\mathrm{X}_{1} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, \Lambda_{12}, \quad 21 \cdot \text { Psat }_{1} \ldots\right. \\
& +\mathrm{X}_{2} \cdot \gamma_{2}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, \Lambda_{12}, \quad 21 \cdot \text { Psat }_{2}\right. \\
& \mathrm{Y}_{\text {calc }_{\mathrm{j}}}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \boldsymbol{X}_{\mathrm{I}_{\mathrm{j}}}, \Lambda_{12}, \quad 21 \cdot \text { Psat }_{1}\right.}{\mathrm{p}_{\text {calc }_{\mathrm{j}}}} \\
& \mathrm{P}_{\text {calc }_{\mathrm{i}}}:=\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma_{1}()_{1_{\mathrm{i}}}, \mathrm{~A}_{2}, \Lambda_{12}, \quad 21 \cdot \text { Psat }_{1} \ldots \\
& +\mathrm{x}_{2} \cdot \gamma_{2}()_{1_{i}}, \mathrm{~A}_{2}, \Lambda{ }_{12}, \quad 21 \cdot \text { Psat }_{2} \\
& \mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma_{1}()_{1_{i}}, \mathbf{A}_{\mathrm{i}}, \Lambda_{12}, \quad 21 \cdot \mathrm{Psat}_{1}}{\mathrm{P}_{\text {calc }_{\mathrm{i}}}}
\end{aligned}
$$

RMS deviation in \mathbf{P} :

$$
\text { RMS }:=\sqrt{\sum_{i} \frac{\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}^{2}\right.}{\mathrm{n}}} \quad \quad \mathrm{RMS}=0.35 \mathrm{kPa}
$$

P-x,y diagram, Wilson Equation by Barker's Method

Residuals in P and y 1 .

12.6 Methyl t-butyl ether(1)/Dichloromethane--VLE data: $\mathrm{T}:=308.15 \cdot \mathrm{~K}$

$\mathrm{x}_{2}:=\overrightarrow{\left(\mathrm{n}-\mathrm{x}_{1}\right.}$
Psat $_{1}:=49.624 \cdot \mathrm{kPa}$
$\mathrm{x}_{1}:=\left(\begin{array}{l}0.0330 \\ 0.0579 \\ 0.0924 \\ 0.1665 \\ 0.2482 \\ 0.3322 \\ 0.3880 \\ 0.5036 \\ 0.5749 \\ 0.6736 \\ 0.7676 \\ 0.8476 \\ 0.9093 \\ 0.9529\end{array}\right)$
$\mathrm{y}_{2}:=\overrightarrow{\left(\mathrm{l}-\mathrm{y}_{1}\right.}$
Psat $2:=85.265 \cdot \mathrm{kPa}$

Calculate EXPERIMENTAL values of activity coefficients and excess Gibbs energy.

(a) Fit GE/RT data to Margules eqn. by nonlinear least squares.

Minimize sum of the squared errors using the Mathcad Minimize function.
Guesses: $\quad \mathrm{A}_{12}:=-0.3 \quad \mathrm{~A}_{21}:=-0.5 \quad \mathrm{C}:=0.2$
$\operatorname{SSE}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{C}:=\sum_{\mathrm{i}}\left[\operatorname{GERT}_{\mathrm{i}}-\left(\mathrm{A}_{21} \cdot \mathrm{x}_{1_{\mathrm{i}}}+\mathrm{A}_{12} \cdot \mathrm{x}_{2}-\mathrm{C} \cdot \mathrm{x}_{1_{\mathrm{i}}} \cdot \mathrm{x}_{2_{\mathrm{i}}} \cdot \mathrm{x}_{1_{\mathrm{i}}} \cdot \mathrm{x}_{\mathrm{L}_{\mathrm{i}}}\right]^{2}\right.\right.$
$\left(\begin{array}{l}\mathrm{A}_{12} \\ \mathrm{~A}_{21} \\ \mathrm{C}):=\operatorname{Minimize}\left(\mathrm{SSE}, \mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{C}\right.\end{array}\right.$
$\left(\begin{array}{c}\mathrm{A}_{12} \\ \mathrm{~A}_{21} \\ \mathrm{C}\end{array}\right)=\left(\begin{array}{c}-0.336 \\ -0.535 \\ 0.195\end{array}\right)$

Ans.
(b) Plot data and fit

$$
\begin{aligned}
& \operatorname{GeRTx} 1 \mathrm{x} 2(\mathrm{x} 1, \mathrm{x} 2):=\left(\mathrm{A}_{21} \cdot \mathrm{x} 1+\mathrm{A}_{12} \cdot \mathrm{x} 2-\mathrm{C} \cdot \mathrm{x} 1 \cdot \mathrm{x} 2\right. \\
& \operatorname{GeRT}(\mathrm{x} 1, \mathrm{x} 2):=\operatorname{GeRTx} 1 \mathrm{x} 2(\mathrm{x} 1, \mathrm{x} 2) \cdot \mathrm{x} 1 \cdot \mathrm{x} 2 \\
& \ln \gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\mathrm{x} 2^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A} \mathrm{~A}_{21}-\mathrm{A}_{12}-\mathrm{C} \cdot \mathrm{x} 1+3 \cdot \mathrm{C} \cdot \mathrm{x} 1^{2}\right]\right. \\
& \ln \gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\mathrm{x} 1^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A} \mathrm{~A}_{12}-\mathrm{A}_{21}-\mathrm{C} \cdot \mathrm{x} 2+3 \cdot \mathrm{C} \cdot \mathrm{x} 2^{2}\right]\right. \\
& \mathrm{j}:=1 . .101 \quad \mathrm{X}_{1}:=.01 \cdot \mathrm{j}-.01 \quad \mathrm{X}_{2}:=1-\mathrm{X}_{1} \mathrm{j}
\end{aligned}
$$

(c) Plot Pxy diagram with fit and data

$$
\begin{aligned}
& \gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp ()_{\mathrm{m} \gamma 1} 1(\mathrm{x} 1, \mathrm{x} 2) \\
& \gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\exp ()_{\mathrm{m}} 2(\mathrm{x} 1, \mathrm{x} 2) \\
& \mathrm{P}_{\mathrm{calc}_{\mathrm{j}}}:=\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2_{\mathrm{j}}} \cdot \mathrm{Psat}_{1}+\mathrm{X}_{2} \cdot \gamma 2\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{2}\right.\right. \\
& \mathrm{y}_{1 \mathrm{calc}_{\mathrm{j}}}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2_{\mathrm{j}}} \cdot \mathrm{Psat}_{1}\right.}{\mathrm{P}_{\mathrm{calc}_{\mathrm{j}}}}
\end{aligned}
$$

P-x,y Diagram from Margules Equation fit to GE/RT data.

(d) Consistency Test: $\quad \delta$ GERT $_{i}:=\operatorname{GeRT}()_{1_{1}}, \mathrm{x}_{2}{ }_{\mathrm{i}}-$ GERT $_{\mathrm{i}}$
$\delta \ln \gamma 1 \gamma 2_{\mathrm{i}}:=\ln \left(\frac{\gamma 1\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{\mathrm{i}_{\mathrm{i}}}\right.}{\gamma 2\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right.}\right)-\ln \left(\frac{\left.\gamma_{1_{i}}\right)}{\left.\gamma_{2_{\mathrm{i}}}\right)}\right.$

Calculate mean absolute deviation of residuals

$$
\text { mean }\left(|\mid \text { סGERT }|=9.391 \times 10^{-4}\right.
$$

$$
\text { mean }(\overrightarrow{|\delta \ln \gamma 1 \gamma 2|}=0.021
$$

(e) Barker's Method by non-linear least squares: Margules Equation

$$
\begin{aligned}
& \gamma_{1}\left(\mathrm{k} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C}:=\exp \left[(\mathrm{x} 2)^{2} \cdot\left[\begin{array}{l}
\mathrm{A}_{12}+2 \cdot() \mathrm{A}_{21}-\mathrm{A}_{12}-\mathrm{C} \cdot \mathrm{x} 1 \ldots \\
+3 \cdot \mathrm{C} \cdot \mathrm{x} 1^{2}
\end{array}\right]\right]\right. \\
& \gamma_{2}\left(\mathrm{k} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C}:=\exp \left[(\mathrm{x} 1)^{2} \cdot\left[\begin{array}{l}
\mathrm{A}_{21}+2 \cdot() \mathrm{A}_{12}-\mathrm{A}_{21}-\mathrm{C} \cdot \mathrm{x} 2 \ldots \\
+3 \cdot \mathrm{C} \cdot \mathrm{x} 2^{2}
\end{array}\right]\right]\right.
\end{aligned}
$$

Minimize sum of the squared errors using the Mathcad Minimize function.
Guesses:

$$
\mathrm{A}_{12}:=-0.3 \quad \mathrm{~A}_{21}:=-0.5 \quad \mathrm{C}:=0.2
$$

$$
\operatorname{SSE}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{C}:=\sum_{\mathrm{i}}\left[\begin{array}{l}
\mathrm{P}_{\mathrm{i}}-\binom{\left.\mathrm{x}_{1} \cdot \gamma_{1}()_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{1} \ldots\right)}{+\mathrm{x}_{2} \cdot \gamma_{2}\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{2}\right.}
\end{array}\right]^{2}\right.
$$

$$
\left(\begin{array}{l}
\left.\mathrm{A}_{12}\right) \\
\mathrm{A}_{21} \mid:=\operatorname{Minimize}\left(\mathrm{SSE}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C}\right. \\
\mathrm{C})
\end{array}\right.
$$

$\left(\begin{array}{c}\mathrm{A}_{12} \\ \mathrm{~A}_{21} \\ \mathrm{C}\end{array}\right)=\left(\begin{array}{c}-0.364 \\ -0.521 \\ 0.23\end{array}\right)$

Ans.

Plot P-x,y diagram for Margules Equation with parameters from Barker's Method.

$$
\begin{aligned}
& \mathrm{P}_{\text {calc }_{\mathrm{j}}:=} \mathrm{X}_{1_{\mathrm{j}} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2_{\mathrm{j}}}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{1} \ldots\right.} \\
&+\mathrm{X}_{2_{\mathrm{j}}} \cdot \gamma_{2}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2 \mathrm{j}}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{2}\right. \\
& \mathrm{y}_{1 \text { calc }}^{\mathrm{j}}
\end{aligned}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2_{\mathrm{j}}}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{1}\right.}{\mathrm{P}_{\mathrm{calc}_{\mathrm{j}}}} .
$$

미 P-x data
$\diamond \quad$ P-y data
- P-x calculated
- P-y calculated

$$
\begin{aligned}
\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}:= & \mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma_{1}\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{1} \ldots\right. \\
& +\mathrm{x}_{2} \cdot \gamma_{2}\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{2}\right.
\end{aligned}
$$

$\mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma_{1}()_{1_{1}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{1}}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}$

Plot of P and y 1 residuals.

RMS deviations in P :

$$
\mathrm{RMS}:=\sqrt{\sum_{\mathrm{i}} \frac{\left(\mathrm{f}_{\mathrm{i}}-\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}{ }^{2}\right.}{\mathrm{n}}} \quad \mathrm{RMS}=0.068 \mathrm{kPa}
$$

12.8 (a) Data:

$\mathrm{x}_{1}:=\left(\begin{array}{l}0.0523 \\ 0.1299 \\ 0.2233 \\ 0.2764 \\ 0.3482 \\ 0.4187 \\ 0.5001 \\ 0.5637 \\ 0.6469 \\ 0.7832 \\ 0.8576 \\ 0.9388 \\ 0.9813\end{array}\right)$
$\gamma_{1}:=\left(\begin{array}{l}1.202 \\ 1.307 \\ 1.295 \\ 1.228 \\ 1.234 \\ 1.180 \\ 1.129 \\ 1.120 \\ 1.076 \\ 1.032 \\ 1.016 \\ 1.001 \\ 1.003\end{array}\right)$

$\mathrm{n}:=\operatorname{rows}()_{1}$
$\mathrm{i}:=1 . . \mathrm{n}$
$\mathrm{n}=13$
$\mathrm{x}_{\mathrm{h}_{\mathrm{i}}}:=1-\mathrm{x}_{1_{\mathrm{i}}}$
$\operatorname{GERT}_{\mathrm{i}}:=\mathrm{x}_{1} \cdot \ln ()_{1_{\mathrm{i}}}+\mathrm{x}_{2} \cdot \ln ()_{2}{ }_{\mathrm{i}}$
(b) Fit GE/RT data to Margules eqn. by linear least-squares procedure:

$$
\begin{array}{ll}
\mathrm{X}_{\mathrm{i}}:=\mathrm{x}_{1}{ }_{\mathrm{i}} & \mathrm{Y}_{\mathrm{i}}:=\frac{\mathrm{GERT}_{\mathrm{i}}}{\mathrm{x}_{1} \cdot \mathrm{x}_{2}}{ }_{\mathrm{i}} \\
\text { Slope }:=\operatorname{slope}(\mathrm{X}, \mathrm{Y}) & \text { Intercept }:=\text { intercept }(\mathrm{X}, \mathrm{Y}) \\
\text { Slope }=0.247 & \text { Intercept }=0.286 \\
\mathrm{~A}_{12}:=\text { Intercept } & \mathrm{A}_{21}:=\text { Slope }+\mathrm{A}_{12} \\
\mathrm{~A}_{12}=0.286 & \mathrm{~A}_{21}=0.534 \quad \text { Ans. } \\
\gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x}^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12} \cdot \mathrm{x} 1\right]\right]\right. \\
\gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x}^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21} \cdot \mathrm{x} 2\right]\right]\right. \\
\mathrm{GeRT}(\mathrm{x} 1, \mathrm{x} 2):=\mathrm{x} 1 \cdot \ln ()_{1} 1(\mathrm{x} 1, \mathrm{x} 2)+\mathrm{x} 2 \cdot \ln ()_{2} 2(\mathrm{x} 1, \mathrm{x} 2) \\
& 409
\end{array}
$$

Plot of data and correlation:

(c) Calculate and plot residuals for consistency test:
$\delta \operatorname{GERT}_{\mathrm{i}}:=\operatorname{GeRT}()_{1_{\mathrm{i}}}, \mathrm{x}_{2}{ }_{\mathrm{i}}-$ GERT $_{\mathrm{i}}$
$\delta \ln \gamma 1 \gamma 2_{\mathrm{i}}:=\ln \left(\frac{\gamma 1\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2_{\mathrm{i}}}\right.}{\gamma_{2}\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2_{i}}\right.}\right)-\ln \left(\frac{\gamma_{1_{\mathrm{i}}}}{\left.\gamma_{2_{i}}\right)}\right.$
GERT $_{i}=$

$3.314 \cdot 10^{-3}$
$-2.264 \cdot 10^{-3}$
$-3.14 \cdot 10^{-3}$
$-2.998 \cdot 10^{-3}$
$-2.874 \cdot 10^{-3}$
$-2.22 \cdot 10^{-3}$
$-2.174 \cdot 10^{-3}$
$-1.553 \cdot 10^{-3}$
$-8.742 \cdot 10^{-4}$
$2.944 \cdot 10^{-4}$
$5.962 \cdot 10^{-5}$
$9.025 \cdot 10^{-5}$
$4.236 \cdot 10^{-4}$

$\delta \ln \gamma 1 \gamma 2 \mathrm{i}=$

0.098
$-9.153 \cdot 10^{-5}$
-0.021
0.026
-0.019
$5.934 \cdot 10^{-3}$
0.028
$-9.59 \cdot 10^{-3}$
$9.139 \cdot 10^{-3}$
$-5.617 \cdot 10^{-4}$
-0.011
0.028
-0.168

Calculate mean absolute deviation of residuals:

$$
\operatorname{mean}\left(\overrightarrow{|\delta G E R T|}=1.615 \times 10^{-3} \quad \operatorname{mean}(\widehat{|\delta \ln \gamma 1 \gamma 2|}=0.03\right.
$$

Based on the graph and mean absolute deviations, the data show a high degree of consistency
12.9 Acetonitrile(1)/Benzene(2)-- VLE data
$P:=\left(\begin{array}{l}31.957 \\ 33.553 \\ 35.285 \\ 36.457 \\ 36.996 \\ 37.068 \\ 36.978 \\ 36.778 \\ 35.792 \\ 34.372 \\ 32.331 \\ 30.038\end{array}\right) \cdot \mathrm{kPa}$
$\mathrm{x}_{1}:=\left(\begin{array}{l}0.0455 \\ 0.0940 \\ 0.1829 \\ 0.2909 \\ 0.3980 \\ 0.5069 \\ 0.5458 \\ 0.5946 \\ 0.7206 \\ 0.8145 \\ 0.8972 \\ 0.9573\end{array}\right)$
$\mathrm{T}:=318.15 \cdot \mathrm{~K}$
$\mathrm{y}_{1}:=\left(\begin{array}{l}0.1056 \\ 0.1818 \\ 0.2783 \\ 0.3607 \\ 0.4274 \\ 0.4885 \\ 0.5098 \\ 0.5375 \\ 0.6157 \\ 0.6913 \\ 0.7869 \\ 0.8916\end{array}\right)$
$\mathrm{x}_{2}:=\overrightarrow{\left(\boldsymbol{u}-\mathrm{x}_{1}\right.} \quad \mathrm{y}_{2}:=\overrightarrow{()-\mathrm{y}_{1}}$
Psat $_{1}:=27.778 \cdot \mathrm{kPa} \quad$ Psat $2:=29.819 \cdot \mathrm{kPa}$
Calculate EXPERIMENTAL values of activity coefficients and excess Gibbs energy.
$\gamma_{1}:=\overrightarrow{\mathrm{y}_{1} \cdot \mathrm{P}} \underset{\mathrm{x}_{1} \cdot \text { Psat }_{1}}{ } \quad \gamma_{2}:=\frac{\mathrm{y}_{2} \cdot \mathrm{P}}{\mathrm{x}_{2} \cdot \text { Psat }_{2}} \quad$ GERT $:=\overrightarrow{()_{1} \cdot \ln \left(\gamma_{1}+\mathrm{x}_{2} \cdot \ln ()_{2}\right.}$
$\operatorname{GERTx} 1 \mathrm{x} 2:=\frac{\overrightarrow{\text { GERT }}}{\mathrm{x}_{1} \cdot \mathrm{x}_{2}} \quad \mathrm{n}:=\operatorname{rows}(\mathrm{P}) \quad \mathrm{n}=12 \quad \mathrm{i}:=1 . . \mathrm{n}$
(a) Fit GE/RT data to Margules eqn. by nonlinear least squares.

Minimize sum of the squared errors using the Mathcad Minimize function.
Guesses: $\quad \mathrm{A}_{12}:=-0.3 \quad \mathrm{~A}_{21}:=-0.5 \quad \mathrm{C}:=0.2$
$\operatorname{SSE}()_{12}, \mathrm{~A}_{21}, \mathrm{C}:=\sum_{\mathrm{i}}\left[\operatorname{GERT}_{\mathrm{i}}-\left(\mathrm{A}_{21} \cdot \mathrm{x}_{1_{\mathrm{i}}}+\mathrm{A}_{12} \cdot \mathrm{x}_{2}-\mathrm{C} \cdot \mathrm{x}_{1_{\mathrm{i}}} \cdot \mathrm{x}_{2_{i}} \cdot \mathrm{x}_{1_{\mathrm{i}}} \cdot \mathrm{x}_{\mathrm{L}_{\mathrm{i}}}\right]^{2}\right.$
$\left(\begin{array}{l}\mathrm{A}_{12} \\ \mathrm{~A}_{21} \\ \mathrm{C}):=\operatorname{Minimize}\left(\mathrm{SSE}, \mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{C}\right.\end{array}\right.$

Ans.
(b) Plot data and fit

$$
\begin{aligned}
& \operatorname{GeRTx} 1 \mathrm{x} 2(\mathrm{x} 1, \mathrm{x} 2):=\left(\mathrm{A}_{21} \cdot \mathrm{x} 1+\mathrm{A}_{12} \cdot \mathrm{x} 2-\mathrm{C} \cdot \mathrm{x} 1 \cdot \mathrm{x} 2\right. \\
& \operatorname{GeRT}(\mathrm{x} 1, \mathrm{x} 2):=\operatorname{GeRTx} 1 \mathrm{x} 2(\mathrm{x} 1, \mathrm{x} 2) \cdot \mathrm{x} 1 \cdot \mathrm{x} 2 \\
& \ln \gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\mathrm{x} 2^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A} \mathrm{~A}_{21}-\mathrm{A}_{12}-\mathrm{C} \cdot \mathrm{x} 1+3 \cdot \mathrm{C} \cdot \mathrm{x} 1^{2}\right]\right. \\
& \ln \gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\mathrm{x} 1^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A} \mathrm{~A}_{12}-\mathrm{A}_{21}-\mathrm{C} \cdot \mathrm{x} 2+3 \cdot \mathrm{C} \cdot \mathrm{x} 2^{2}\right]\right. \\
& \mathrm{j}:=1 . .101 \quad \mathrm{X}_{1}:=.01 \cdot \mathrm{j}-.01 \quad \mathrm{X}_{2}:=1-\mathrm{X}_{1} \mathrm{j}
\end{aligned}
$$

(c) Plot Pxy diagram with fit and data

$$
\begin{aligned}
& \gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp (\mathrm{n} \gamma 1(\mathrm{x} 1, \mathrm{x} 2) \\
& \gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\exp () \ln 2(\mathrm{x} 1, \mathrm{x} 2) \\
& \mathrm{P}_{\text {calc }_{\mathrm{j}}}:=\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2_{\mathrm{j}}} \cdot \text { Psat }_{1}+\mathrm{X}_{2} \cdot \gamma 2\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \text { Psat }_{2}\right.\right. \\
& \mathrm{y}_{1 \text { calc }_{\mathrm{j}}}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma 1\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2} \cdot \mathrm{Psat}_{\mathrm{j}}\right.}{\mathrm{P}_{\mathrm{calc}_{\mathrm{j}}}}
\end{aligned}
$$

P-x,y Diagram from Margules Equation fit to GE/RT data.

믐 P-x data
$\diamond \quad$ P-y data

- P-x calculated
- P-y calculated
(d) Consistency Test: $\quad \delta$ GERT $_{i}:=\operatorname{GeRT}()_{1}{ }_{\mathrm{i}}, \mathrm{x}_{2}{ }_{\mathrm{i}}-$ GERT $_{\mathrm{i}}$
$\delta \ln \gamma 1 \gamma 2_{\mathrm{i}}:=\ln \left(\frac{\gamma 1\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{\mathrm{i}_{\mathrm{i}}}\right.}{\left.\gamma 2()_{1_{\mathrm{i}}}, \mathrm{x}_{\mathrm{i}_{\mathrm{i}}}\right)}-\ln \left(\frac{\left.\gamma_{1_{\mathrm{i}}}\right)}{\left.\gamma_{2_{\mathrm{i}}}\right)}\right.\right.$

Calculate mean absolute deviation of residuals

$$
\text { mean }(\rangle \mid \text { סGERT } \mid=6.237 \times 10^{-4}
$$

mean $(\overrightarrow{|\delta \ln \gamma 1 \gamma 2|}=0.025$
(e) Barker's Method by non-linear least squares: Margules Equation

$$
\begin{aligned}
& \gamma_{1}\left(\mathrm{k} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C}:=\exp \left[(\mathrm{x} 2)^{2} \cdot\left[\begin{array}{l}
\mathrm{A}_{12}+2 \cdot() \mathrm{A}_{21}-\mathrm{A}_{12}-\mathrm{C} \cdot \mathrm{x} 1 \ldots \\
+3 \cdot \mathrm{C} \cdot \mathrm{x} 1^{2}
\end{array}\right]\right]\right. \\
& \gamma_{2}\left(\mathrm{k} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C}:=\exp \left[(\mathrm{x} 1)^{2} \cdot\left[\begin{array}{l}
\mathrm{A}_{21}+2 \cdot() \mathrm{A}_{12}-\mathrm{A}_{21}-\mathrm{C} \cdot \mathrm{x} 2 \ldots \\
+3 \cdot \mathrm{C} \cdot \mathrm{x} 2^{2}
\end{array}\right]\right]\right.
\end{aligned}
$$

Minimize sum of the squared errors using the Mathcad Minimize function.
Guesses:

$$
\mathrm{A}_{12}:=-0.3 \quad \mathrm{~A}_{21}:=-0.5 \quad \mathrm{C}:=0.2
$$

$$
\operatorname{SSE}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{C}:=\sum_{\mathrm{i}}\left[\begin{array}{l}
\mathrm{P}_{\mathrm{i}}-\binom{\left.\mathrm{x}_{1} \cdot \gamma_{1}()_{1_{i}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{1} \ldots\right)}{+\mathrm{x}_{2} \cdot \gamma_{2}\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{2}\right.}
\end{array}\right]^{2}\right.
$$

$\left(\begin{array}{l}\left.\mathrm{A}_{12}\right) \\ \mathrm{A}_{21} \mid:=\operatorname{Minimize}\left(\mathrm{SSE}, \mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{C}\right. \\ \mathrm{C})\end{array}\right.$
$\left(\begin{array}{c}\mathrm{A}_{12} \\ \mathrm{~A}_{21} \\ \mathrm{C}\end{array}\right)=\left(\begin{array}{l}1.114 \\ 1.098 \\ 0.387\end{array}\right)$

Ans.

Plot P-x,y diagram for Margules Equation with parameters from Barker's Method.
$\mathrm{P}_{\text {calc }_{j}}:=\mathrm{X}_{1} \cdot \gamma_{1}\left(\mathrm{X}_{1_{j}}, \mathrm{X}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot\right.$ Psat $_{1} \ldots$
$+\mathrm{X}_{2} \cdot \gamma_{2}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{2}\right.$
$\mathrm{y}_{\text {calc }_{\mathrm{j}}}:=\frac{\mathrm{X}_{1_{\mathrm{j}}} \cdot \gamma_{1}\left(\mathrm{X}_{1_{\mathrm{j}}}, \mathrm{X}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{1}\right.}{\mathrm{P}_{\text {calc }_{\mathrm{j}}}}$

$$
\begin{aligned}
\mathrm{P}_{\text {calc }_{\mathrm{i}}:=} & \mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma_{1}\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{1} \ldots\right. \\
& +\mathrm{x}_{2} \cdot \gamma_{2}\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \text { Psat }_{2}\right. \\
\mathrm{y}_{1 \text { calc }_{\mathrm{i}}:}: & \frac{\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma_{1}\left(\mathrm{k}_{1_{\mathrm{i}}}, \mathrm{x}_{2_{\mathrm{i}}}, \mathrm{~A}_{12}, \mathrm{~A}_{21}, \mathrm{C} \cdot \mathrm{Psat}_{1}\right.}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}
\end{aligned}
$$

Plot of \mathbf{P} and $\mathbf{y} 1$ residuals.

RMS deviations in P :

RMS $:=\sqrt{\sum_{\mathrm{i}} \frac{\left(\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}{ }^{2}\right.}{\mathrm{n}}} \quad \mathrm{RMS}=0.04 \mathrm{kPa}$
12.12 It is impractical to provide solutions for all of the systems listed in the table on Page 474 we present as an example only the solution for the system 1-propanol(1)/water(2). Solutions for the other systems can be obtained by rerunning the following Mathcad program with the appropriate parameter values substituted for those given. The file WILSON.med reproduces the table of Wilson parameters on Page 474 and includes the necessary Antoine coefficients.

Antoine coefficients:

| 1-Propanol: | A1 $:=16.1154$ | $\mathrm{~B} 1:=3483.67 \cdot \mathrm{~K}$ | $\mathrm{C} 1:=205.807 \cdot \mathrm{~K}$ |
| :--- | :--- | :--- | :--- | :--- |
| Water: | A2 $:=16.3872$ | $\mathrm{~B} 2:=3885.70 \cdot \mathrm{~K}$ | $\mathrm{C} 2:=230.170 \cdot \mathrm{~K}$ |

$\operatorname{Psat}_{1}(\mathrm{~T}):=\exp \left[\mathrm{A} 1-\frac{\mathrm{B} 1}{(\mathrm{~T}-273.15 \cdot \mathrm{~K})+\mathrm{C} 1}\right] \cdot \mathrm{kPa}$
$\operatorname{Psat}_{2}(\mathrm{~T}):=\exp \left[\mathrm{A} 2-\frac{\mathrm{B} 2}{(\mathrm{~T}-273.15 \cdot \mathrm{~K})+\mathrm{C} 2}\right] \cdot \mathrm{kPa}$
Parameters for the Wilson equation:

$$
\begin{aligned}
& \mathrm{V} 1:=75.14 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \mathrm{a} 12:=775.48 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}}
\end{aligned}
$$

$$
\mathrm{V} 2:=18.07 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

$$
\mathrm{a} 21:=1351.90 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}}
$$

$$
\Lambda 12(\mathrm{~T}):=\frac{\mathrm{V} 2}{\mathrm{~V} 1} \cdot \exp \left(\frac{-\mathrm{a} 12}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \Lambda 21(\mathrm{~T}):=\frac{\mathrm{V} 1}{\mathrm{~V} 2} \cdot \exp \left(\frac{-\mathrm{a} 21}{\mathrm{R} \cdot \mathrm{~T}}\right)
$$

$$
\gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\frac{\exp \left[\mathrm{x} 2 \cdot\left(\frac{\Lambda 12(\mathrm{~T})}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda 12(\mathrm{~T})}-\frac{\Lambda 21(\mathrm{~T})}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda 21(\mathrm{~T})}\right)\right]}{(\mathrm{k} 1+\mathrm{x} 2 \cdot \Lambda 12(\mathrm{~T})}
$$

$$
\gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\frac{\exp \left[-\mathrm{x} 1 \cdot\left(\frac{\Lambda 12(\mathrm{~T})}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda 12(\mathrm{~T})}-\frac{\Lambda 21(\mathrm{~T})}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda 21(\mathrm{~T})}\right)\right]}{(\mathrm{k} 2+\mathrm{x} 1 \cdot \Lambda 21(\mathrm{~T})}
$$

$\mathbf{P}-\mathbf{x , y}$ diagram at $\quad \mathrm{T}:=(60+273.15) \cdot \mathrm{K}$

Guess: $\quad \mathrm{P}:=70 \cdot \mathrm{kPa}$

$$
\text { Given } \quad \begin{aligned}
\mathrm{P}= & \mathrm{x} 1 \cdot \gamma 1(\mathrm{x} 1,1-\mathrm{x} 1, \mathrm{~T}) \cdot \mathrm{Psat}_{1}(\mathrm{~T}) \ldots \\
& +(1-\mathrm{x} 1) \cdot \gamma 2(\mathrm{x} 1,1-\mathrm{x} 1, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T})
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Peq}(x 1):=\operatorname{Find}(P) \\
& \operatorname{yeq}(x 1):=\frac{x 1 \cdot \gamma 1(x 1,1-x 1, T) \cdot \operatorname{Psat}_{1}(T)}{\operatorname{Peq}(x 1)} \quad x:=0,0.05 \ldots 1.0
\end{aligned}
$$

		Peq(x)
$\mathrm{x}=$	$y e q(x)=$	kPa
0	0	20.007
0.05	0.315	28.324
0.1	0.363	30.009
0.15	0.383	30.639
0.2	0.395	30.97
0.25	0.404	31.182
0.3	0.413	31.331
0.35	0.421	31.435
0.4	0.431	31.496
0.45	0.441	31.51
0.5	0.453	31.467
0.55	0.466	31.353
0.6	0.483	31.148
0.65	0.502	30.827
0.7	0.526	30.355
0.75	0.556	29.686
0.8	0.594	28.759
0.85	0.646	27.491
0.9	0.718	25.769
0.95	0.825	23.437
1	1	20.275

P,x,y Diagram at $\mathrm{T}=333.15 \mathrm{~K}$

12.13 It is impractical to provide solutions for all of the systems listed in the table on Page 474; we present as an example only the solution for the system 1-propanol(1)/water(2). Solutions for the other systems can be obtained by rerunning the following Mathcad program with the appropriate parameter values substituted for those given. The file WILSON.med reproduces the table of Wilson parameters on Page 474 and includes the necessary Antoine coefficients.

Antoine coefficients:
1-Propanol: A1 := 16.1154
B1 $:=3483.67 \cdot \mathrm{~K}$
C1 : $=205.807 \cdot \mathrm{~K}$
Water: \quad A2 $:=16.3872$
B2 : $=3885.70 \cdot \mathrm{~K}$
$\mathrm{C} 2:=230.170 \cdot \mathrm{~K}$

$$
\begin{aligned}
& \operatorname{Psat}_{1}(\mathrm{~T}):=\exp \left[\mathrm{A} 1-\frac{\mathrm{B} 1}{(\mathrm{~T}-273.15 \cdot \mathrm{~K})+\mathrm{C} 1}\right] \cdot \mathrm{kPa} \\
& \operatorname{Psat}_{2}(\mathrm{~T}):=\exp \left[\mathrm{A} 2-\frac{\mathrm{B} 2}{(\mathrm{~T}-273.15 \cdot \mathrm{~K})+\mathrm{C} 2}\right] \cdot \mathrm{kPa}
\end{aligned}
$$

Parameters for the Wilson equation:
$\mathrm{V} 1:=75.14 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
$\mathrm{a} 12:=775.48 \cdot \frac{\mathrm{cal}}{\mathrm{mol}}$
$\Lambda 12(\mathrm{~T}):=\frac{\mathrm{V} 2}{\mathrm{~V} 1} \cdot \exp \left(\frac{-\mathrm{a} 12}{\mathrm{R} \cdot \mathrm{T}}\right) \quad \quad \Lambda 21(\mathrm{~T}):=\frac{\mathrm{V} 1}{\mathrm{~V} 2} \cdot \exp \left(\frac{-\mathrm{a} 21}{\mathrm{R} \cdot \mathrm{T}}\right)$
$\gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\frac{\exp \left[\mathrm{x} 2 \cdot\left(\frac{\Lambda 12(\mathrm{~T})}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda 12(\mathrm{~T})}-\frac{\Lambda 21(\mathrm{~T})}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda 21(\mathrm{~T})}\right)\right]}{(\mathrm{k} 1+\mathrm{x} 2 \cdot \Lambda 12(\mathrm{~T})}$
$\gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\frac{\exp \left[-\mathrm{x} 1 \cdot\left(\frac{\Lambda 12(\mathrm{~T})}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda 12(\mathrm{~T})}-\frac{\Lambda 21(\mathrm{~T})}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda 21(\mathrm{~T})}\right)\right]}{(\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda 21(\mathrm{~T})}$
T-x,y diagram at $P:=101.33 \cdot \mathrm{kPa}$
Guess: $\quad \mathrm{T}:=(90+273.15) \cdot \mathrm{K}$
Given

$$
\begin{aligned}
\mathrm{P}= & \mathrm{x} 1 \cdot \gamma 1(\mathrm{x} 1,1-\mathrm{x} 1, \mathrm{~T}) \cdot \mathrm{Psat}_{1}(\mathrm{~T}) \ldots \\
& +(1-\mathrm{x} 1) \cdot \gamma 2(\mathrm{x} 1,1-\mathrm{x} 1, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T})
\end{aligned}
$$

Teq(x1) $:=\operatorname{Find}(T)$
$y e q(x 1):=\frac{x 1 \cdot \gamma 1(x 1,1-x 1, T e q(x 1)) \cdot \text { Psat }_{1}(\operatorname{Teq}(x 1))}{P}$
$\mathrm{x}:=0,0.05 . .1 .0$

		Teq(x)
$\mathrm{X}=$	$y \mathrm{yeq}(\mathrm{x})=$	K
0	0	373.149
0.05	0.304	364.159
0.1	0.358	362.476
0.15	0.381	361.836
0.2	0.395	361.49
0.25	0.407	361.264
0.3	0.418	361.101
0.35	0.429	360.985
0.4	0.44	360.911
0.45	0.453	360.881
0.5	0.468	360.904
0.55	0.484	360.99
0.6	0.504	361.154
0.65	0.527	361.418
0.7	0.555	361.809
0.75	0.589	362.364
0.8	0.631	363.136
0.85	0.686	364.195
0.9	0.759	365.644
0.95	0.858	367.626
1	1	370.349

T, x,y Diagram at $\mathrm{P}:=101.33 \cdot \mathrm{kPa}$

12.14 It is impractical to provide solutions for all of the systems listed in the table on Page 474; we present as an example only the solution for the system 1-propanol(1)/water(2). Solutions for the other systems can be obtained by rerunning the following Mathcad program with the appropriate parameter values substituted for those given. The file NRTL.med reproduces the table of NRTL parameters on Page 474 and includes the necessary Antoine coefficients.

Antoine coefficients:

1-Propanol:	A1 $:=16.1154$	$\mathrm{~B} 1:=3483.67 \cdot \mathrm{~K}$	$\mathrm{C} 1:=205.807 \cdot \mathrm{~K}$
Water:	A2 $:=16.3872$	$\mathrm{~B} 2:=3885.70 \cdot \mathrm{~K}$	$\mathrm{C} 2:=230.170 \cdot \mathrm{~K}$

$$
\begin{aligned}
& \operatorname{Psat}_{1}(\mathrm{~T}):=\exp \left[\mathrm{A} 1-\frac{\mathrm{B} 1}{(\mathrm{~T}-273.15 \cdot \mathrm{~K})+\mathrm{C} 1}\right] \cdot \mathrm{kPa} \\
& \operatorname{Psat}_{2}(\mathrm{~T}):=\exp \left[\mathrm{A} 2-\frac{\mathrm{B} 2}{(\mathrm{~T}-273.15 \cdot \mathrm{~K})+\mathrm{C} 2}\right] \cdot \mathrm{kPa}
\end{aligned}
$$

Parameters for the NRTL equation:

$$
\begin{array}{ll}
\mathrm{b} 12:=500.40 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}} & \mathrm{~b} 21:=1636.57 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}} \quad \alpha:=0.5081 \\
\tau 12(\mathrm{~T}):=\frac{\mathrm{b} 12}{\mathrm{R} \cdot \mathrm{~T}} & \tau 21(\mathrm{~T}):=\frac{\mathrm{b} 21}{\mathrm{R} \cdot \mathrm{~T}} \\
\text { G12 (T) }:=\exp (-\alpha \cdot 12(\mathrm{~T}) & \text { G21(T) }:=\exp (-\alpha \cdot 21(\mathrm{~T})
\end{array}
$$

$$
\gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\exp \left[\mathrm{x} 2^{2} \cdot\left[\begin{array}{l}
\tau 21(\mathrm{~T}) \cdot\left(\frac{\mathrm{G} 21(\mathrm{~T})}{\mathrm{x} 1+\mathrm{x} 2 \cdot \mathrm{G} 21(\mathrm{~T})}\right)^{2} \\
+\frac{\mathrm{G} 12(\mathrm{~T}) \cdot \tau 12(\mathrm{~T})}{(\mathrm{x} 2+\mathrm{x} 1 \cdot \mathrm{G} 12(\mathrm{~T}))^{2}}
\end{array}\right]\right]
$$

$$
\gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\exp \left[\mathrm{x} 1^{2} \cdot\left[\begin{array}{l}
\tau 12(\mathrm{~T}) \cdot\left(\frac{\mathrm{G} 12(\mathrm{~T})}{\mathrm{x} 2+\mathrm{x} 1 \cdot \mathrm{G} 12(\mathrm{~T})}\right)^{2} \\
+\frac{\mathrm{G} 21(\mathrm{~T}) \cdot \tau 21(\mathrm{~T})}{(\mathrm{x} 1+\mathrm{x} 2 \cdot \mathrm{G} 21(\mathrm{~T}))^{2}}
\end{array}\right]\right]
$$

$\mathbf{P}-\mathbf{x}, \mathbf{y}$ diagram at $\quad \mathrm{T}:=(60+273.15) \cdot \mathrm{K}$
Guess: $\quad \mathrm{P}:=70 \cdot \mathrm{kPa}$

$$
\text { Given } \quad \begin{aligned}
\mathrm{P}= & \mathrm{x} 1 \cdot \gamma 1(\mathrm{x} 1,1-\mathrm{x} 1, \mathrm{~T}) \cdot \mathrm{Psat}_{1}(\mathrm{~T}) \ldots \\
& +(1-\mathrm{x} 1) \cdot \gamma 2(\mathrm{x} 1,1-\mathrm{x} 1, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T})
\end{aligned}
$$

$\operatorname{Peq}(\mathrm{x} 1):=\operatorname{Find}(\mathrm{P})$
$\operatorname{yeq}(\mathrm{x} 1):=\frac{\mathrm{x} 1 \cdot \gamma 1(\mathrm{x} 1,1-\mathrm{x} 1, \mathrm{~T}) \cdot \operatorname{Psat}_{1}(\mathrm{~T})}{\operatorname{Peq}(\mathrm{x} 1)} \quad \mathrm{x}:=0,0.05 . .1 .0$

		Peq(x)
$\mathrm{x}=$	yeq $(\mathrm{x})=$	kPa
0	0	20.007
0.05	0.33	28.892
0.1	0.373	30.48
0.15	0.382	30.783
0.2	0.386	30.876
0.25	0.39	30.959
0.3	0.395	31.048
0.35	0.404	31.127
0.4	0.414	31.172
0.45	0.427	31.163
0.5	0.442	31.085
0.55	0.459	30.922
0.6	0.479	30.657
0.65	0.503	30.271
0.7	0.531	29.74
0.75	0.564	29.03
0.8	0.606	28.095
0.85	0.659	26.868
0.9	0.732	25.256
0.95	0.836	23.124
1	1	20.275

P,x,y Diagram at $\mathrm{T}=333.15 \mathrm{~K}$

12.15 It is impractical to provide solutions for all of the systems listed in the table on Page 474; we present as an example only the solution for the system 1-propanol(1)/water(2). Solutions for the other systems can be obtained by rerunning the following Mathcad program with the appropriate parameter values substituted for those given. The file NRTL.med reproduces the table of NRTL parameters on Page 474 and includes the necessary Antoine coefficients.

Antoine coefficients:
1-Propanol: A1 := 16.1154

$$
\begin{array}{ll}
\mathrm{B} 1:=3483.67 \cdot \mathrm{~K} & \mathrm{C} 1:=205.807 \cdot \mathrm{~K} \\
\mathrm{~B} 2:=3885.70 \cdot \mathrm{~K} & \mathrm{C} 2:=230.170 \cdot \mathrm{~K}
\end{array}
$$

Water: \quad A2 : $=16.3872$
$\operatorname{Psat}_{1}(\mathrm{~T}):=\exp \left[\mathrm{A} 1-\frac{\mathrm{B} 1}{(\mathrm{~T}-273.15 \cdot \mathrm{~K})+\mathrm{C} 1}\right] \cdot \mathrm{kPa}$
$\operatorname{Psat}_{2}(\mathrm{~T}):=\exp \left[\mathrm{A} 2-\frac{\mathrm{B} 2}{(\mathrm{~T}-273.15 \cdot \mathrm{~K})+\mathrm{C} 2}\right] \cdot \mathrm{kPa}$
Parameters for the NRTL equation:

$$
\mathrm{b} 12:=500.40 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}}
$$

$$
\mathrm{b} 21:=1636.57 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}}
$$

$$
\alpha:=0.5081
$$

$$
\begin{aligned}
& \tau 12(\mathrm{~T}):=\frac{\mathrm{b} 12}{\mathrm{R} \cdot \mathrm{~T}} \\
& \text { G12(T) }:=\exp (-\alpha \cdot 12(\mathrm{~T}) \\
& \tau 21(\mathrm{~T}):=\frac{\mathrm{b} 21}{\mathrm{R} \cdot \mathrm{~T}} \\
& \mathrm{G} 21(\mathrm{~T}):=\exp (-\alpha \cdot 21(\mathrm{~T}) \\
& \gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\exp \left[\mathrm{x} 2^{2} \cdot\left[\begin{array}{l}
\tau 21(\mathrm{~T}) \cdot\left(\frac{\mathrm{G} 21(\mathrm{~T})}{\mathrm{x} 1+\mathrm{x} 2 \cdot \mathrm{G} 21(\mathrm{~T})}\right)^{2} \\
+\frac{\mathrm{G} 12(\mathrm{~T}) \cdot \tau 12(\mathrm{~T})}{(\mathrm{x} 2+\mathrm{x} 1 \cdot \mathrm{G} 12(\mathrm{~T}))^{2}}
\end{array}\right]\right] \\
& \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\exp \left[\mathrm{x} 1^{2} \cdot\left[\begin{array}{l}
\tau 12(\mathrm{~T}) \cdot\left(\frac{\mathrm{G} 12(\mathrm{~T})}{\mathrm{x} 2+\mathrm{x} 1 \cdot \mathrm{G} 12(\mathrm{~T})}\right)^{2} \\
+\frac{\mathrm{G} 21(\mathrm{~T}) \cdot \tau 21(\mathrm{~T})}{(\mathrm{x} 1+\mathrm{x} 2 \cdot \mathrm{G} 21(\mathrm{~T}))^{2}}
\end{array}\right]\right]
\end{aligned}
$$

T-x,y diagram at $\quad \mathrm{P}:=101.33 \cdot \mathrm{kPa}$
Guess: $\quad \mathrm{T}:=(90+273.15) \cdot \mathrm{K}$

$$
\text { Given } \quad \begin{aligned}
\mathrm{P}= & \mathrm{x} 1 \cdot \gamma 1(\mathrm{x} 1,1-\mathrm{x} 1, \mathrm{~T}) \cdot \mathrm{Psat}_{1}(\mathrm{~T}) \ldots \\
& +(1-\mathrm{x} 1) \cdot \gamma 2(\mathrm{x} 1,1-\mathrm{x} 1, \mathrm{~T}) \cdot \operatorname{Psat}_{2}(\mathrm{~T})
\end{aligned}
$$

Teq(x1) $:=\operatorname{Find}(T)$
$\operatorname{yeq}(x 1):=\frac{x 1 \cdot \gamma 1(x 1,1-x 1, T e q(x 1)) \cdot P_{s a t}(T e q(x 1))}{P}$
$\mathrm{x}:=0,0.05 . .1 .0$

$\mathrm{x}=$	yeq(x) $=$	Teq(x)
		K
0	0	373.149
0.05	0.32	363.606
0.1	0.377	361.745
0.15	0.394	361.253
0.2	0.402	361.066
0.25	0.408	360.946
0.3	0.415	360.843
0.35	0.424	360.757
0.4	0.434	360.697
0.45	0.447	360.676
0.5	0.462	360.709
0.55	0.48	360.807
0.6	0.5	360.985
0.65	0.524	361.262
0.7	0.552	361.66
0.75	0.586	362.215
0.8	0.629	362.974
0.85	0.682	364.012
0.9	0.754	365.442
0.95	0.853	367.449
1	1	370.349

T,x,y Diagram at $\quad \mathrm{P}:=101.33 \cdot \mathrm{kPa}$

12.16 It is impractical to provide solutions for all of the systems listed in the table on Page 474; we present as an example only the solution for the system 1-propanol(1)/water(2). Solutions for the other systems can be obtained by rerunning the following Mathcad program with the appropriate parameter values substituted for those given. The file WILSON.med reproduces the table of Wilson parameters on Page 474 and includes the necessary Antoine coefficients.

Antoine coefficients:

1-Propanol:	A1 $:=16.1154$	B1 $:=3483.67 \cdot \mathrm{~K}$	$\mathrm{C} 1:=205.807 \cdot \mathrm{~K}$
Water:	A2 $:=16.3872$	B2 $:=3885.70 \cdot \mathrm{~K}$	C2 $:=230.170 \cdot \mathrm{~K}$

$$
\begin{aligned}
& \operatorname{Psat}_{1}(\mathrm{~T}):=\exp \left[\mathrm{A} 1-\frac{\mathrm{B} 1}{(\mathrm{~T}-273.15 \cdot \mathrm{~K})+\mathrm{C} 1}\right] \cdot \mathrm{kPa} \\
& \operatorname{Psat}_{2}(\mathrm{~T}):=\exp \left[\mathrm{A} 2-\frac{\mathrm{B} 2}{(\mathrm{~T}-273.15 \cdot \mathrm{~K})+\mathrm{C} 2}\right] \cdot \mathrm{kPa}
\end{aligned}
$$

Parameters for the Wilson equation:

$$
\begin{aligned}
& \mathrm{V} 1:=75.14 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \mathrm{a} 12:=775.48 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}}
\end{aligned}
$$

$$
\mathrm{V} 2:=18.07 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

$$
\mathrm{a} 21:=1351.90 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}}
$$

$$
\Lambda 12(\mathrm{~T}):=\frac{\mathrm{V} 2}{\mathrm{~V} 1} \cdot \exp \left(\frac{-\mathrm{a} 12}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \Lambda 21(\mathrm{~T}):=\frac{\mathrm{V} 1}{\mathrm{~V} 2} \cdot \exp \left(\frac{-\mathrm{a} 21}{\mathrm{R} \cdot \mathrm{~T}}\right)
$$

$$
\gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\frac{\exp \left[\mathrm{x} 2 \cdot\left(\frac{\Lambda 12(\mathrm{~T})}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda 12(\mathrm{~T})}-\frac{\Lambda 21(\mathrm{~T})}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda 21(\mathrm{~T})}\right)\right]}{(\mathrm{k} 1+\mathrm{x} 2 \cdot \Lambda 12(\mathrm{~T})}
$$

$$
\gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\frac{\exp \left[-\mathrm{x} 1 \cdot\left(\frac{\Lambda 12(\mathrm{~T})}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda 12(\mathrm{~T})}-\frac{\Lambda 21(\mathrm{~T})}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda 21(\mathrm{~T})}\right)\right]}{(\mathrm{k} 2+\mathrm{x} 1 \cdot \Lambda 21(\mathrm{~T})}
$$

(a) BUBL P: $\quad \mathrm{T}:=(60+273.15) \cdot \mathrm{K}$ $\mathrm{x} 1:=0.3 \quad \mathrm{x} 2:=1-\mathrm{x} 1$
Guess: $\quad \mathrm{P}:=101.33 \cdot \mathrm{kPa} \quad \mathrm{y} 1:=0.4 \quad \mathrm{y} 2:=1-\mathrm{y} 1$
Given $\quad y 1 \cdot P=x 1 \cdot \gamma 1(x 1, x 2, T) \cdot \operatorname{Psat}_{1}(T)$

$$
y 1+y 2=1
$$

$y 2 \cdot P=x 2 \cdot \gamma 2(x 1, x 2, T) \cdot \operatorname{Psat}_{2}(T)$
$\left(\begin{array}{c}\mathrm{P}_{\text {bubl }} \\ \mathrm{y} 1 \\ \mathrm{y} 2\end{array}\right):=\operatorname{Find}(\mathrm{P}, \mathrm{y} 1, \mathrm{y} 2)$
$\mathrm{P}_{\text {bubl }}=31.33 \mathrm{kPa} \quad \mathrm{y} 1=0.413 \quad \mathrm{y} 2=0.587 \quad$ Ans.
(b) DEW P: $\quad \mathrm{T}:=(60+273.15) \cdot \mathrm{K} \quad \mathrm{y} 1:=0.3 \quad \mathrm{y} 2:=1-\mathrm{y} 1$

Guess: $\quad \mathrm{P}:=101.33 \cdot \mathrm{kPa} \quad \mathrm{x} 1:=0.1 \quad \mathrm{x} 2:=1-\mathrm{x} 1$
Given $\quad y 1 \cdot P=x 1 \cdot \gamma 1(x 1, x 2, T) \cdot \operatorname{Psat}_{1}(T)$

$$
\mathrm{x} 1+\mathrm{x} 2=1
$$

$$
\mathrm{y} 2 \cdot \mathrm{P}=\mathrm{x} 2 \cdot \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T})
$$

$\left(\begin{array}{c}\left.\mathrm{P}_{\text {dew }}\right) \\ \mathrm{x} 1 \\ \mathrm{x} 2\end{array}\right):=\operatorname{Find}(\mathrm{P}, \mathrm{x} 1, \mathrm{x} 2)$
$\mathrm{P}_{\text {dew }}=27.79 \mathrm{kPa} \quad \mathrm{x} 1=0.042 \quad \mathrm{x} 2=0.958 \quad$ Ans.
(c) P,T-flash Calculation
$\mathrm{P}:=\frac{\mathrm{P}_{\text {dew }}+\mathrm{P}_{\text {bubl }}}{2}$
Guess: V := 0.5

$$
\begin{array}{ll}
\mathrm{x} 1:=0.1 & \mathrm{x} 2:=1-\mathrm{y} 1 \\
\mathrm{y} 1:=0.1 & \mathrm{y} 2:=1-\mathrm{x} 1
\end{array}
$$

Given

$$
\begin{array}{ll}
y 1=\frac{x 1 \cdot \gamma 1(x 1, x 2, T) \cdot \operatorname{Psat}_{1}(T)}{P} & x 1+x 2=1 \\
y 2=\frac{x 2 \cdot \gamma 2(x 1, x 2, T) \cdot \operatorname{Psat}_{2}(T)}{P} & y 1+y 2=1
\end{array}
$$

$$
\begin{equation*}
\mathrm{x} 1 \cdot(1-\mathrm{V})+\mathrm{y} 1 \cdot \mathrm{~V}=\mathrm{z} 1 \tag{10.15}
\end{equation*}
$$

$$
\begin{aligned}
& \left(\left.\begin{array}{l}
\mathrm{x} 1 \\
\mathrm{x} 2 \\
\mathrm{y} 1 \\
\mathrm{y} 2
\end{array} \right\rvert\,:=\operatorname{Find}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2, \mathrm{~V})\right. \\
& \mathrm{V}) \\
& \mathrm{x} 1=0.08 \quad \mathrm{x} 2=0.92 \quad \mathrm{y} 1=0.351 \quad \mathrm{y} 2=0.649 \quad \mathrm{~V}=0.813 \\
& \text { (d) Azeotrope Calculation }
\end{aligned}
$$

Test for azeotrope at:
$\gamma 1(0,1, T)=21.296$
$\alpha 12_{0}:=\frac{\gamma 1(0,1, T) \cdot \operatorname{Psat}_{1}(\mathrm{~T})}{\operatorname{Psat}_{2}(\mathrm{~T})}$
$\alpha 12_{1}:=\frac{\operatorname{Psat}_{1}(\mathrm{~T})}{\gamma 2(1,0, \mathrm{~T}) \cdot \operatorname{Psat}_{2}(\mathrm{~T})}$

$$
\alpha 12_{1}=0.216
$$

Since one of these values is >1 and the other is <1, an azeotrope exists. See Ex. 10.3(e)
$\begin{array}{lll}\text { Guess: } & \mathrm{P}:=101.33 \cdot \mathrm{kPa} & \mathrm{x} 1:=0.3 \\ & \mathrm{y} 1:=0.3 & \mathrm{x} 2:=1-\mathrm{y} 1 \\ & & \mathrm{y} 2:=1-\mathrm{x} 1\end{array}$
Given $\quad y 1 \cdot P=x 1 \cdot \gamma 1(x 1, x 2, T) \cdot \operatorname{Psat}_{1}(T)$
$y 2 \cdot P=x 2 \cdot \gamma 2(x 1, x 2, T) \cdot \operatorname{Psat}_{2}(T)$
$\mathrm{x} 1+\mathrm{x} 2=1 \quad \mathrm{y} 1+\mathrm{y} 2=1 \quad \mathrm{x} 1=\mathrm{y} 1$
$\left(\begin{array}{l}\mathrm{x} 1 \\ \mathrm{x} 2 \\ \mathrm{y} 1 \\ \mathrm{y} 2 \\ \mathrm{P}_{\mathrm{az}}\end{array}\right):=\operatorname{Find}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2, \mathrm{P})$
$\mathrm{P}_{\mathrm{az}}=31.511 \mathrm{kPa}$
$\mathrm{x} 1=0.4386$
$y 1=0.4386$
Ans.
12.17 It is impractical to provide solutions for all of the systems listed in the table on Page 474; we present as an example only the solution for the system 1-propanol(1)/water(2). Solutions for the other systems can be obtained by rerunning the following Mathcad program with the appropriate parameter values substituted for those given. The file NRTL.med reproduces the table of NRTL parameters on Page 474 and includes the necessary Antoine coefficients.

Antoine coefficients:

1-Propanol:	A1 $:=16.1154$	$\mathrm{~B} 1:=3483.67 \cdot \mathrm{~K}$	$\mathrm{C} 1:=205.807 \cdot \mathrm{~K}$
Water:	A2 $:=16.3872$	$\mathrm{~B} 2:=3885.70 \cdot \mathrm{~K}$	$\mathrm{C} 2:=230.170 \cdot \mathrm{~K}$

$\operatorname{Psat}_{1}(\mathrm{~T}):=\exp \left[\mathrm{A} 1-\frac{\mathrm{B} 1}{(\mathrm{~T}-273.15 \cdot \mathrm{~K})+\mathrm{C} 1}\right] \cdot \mathrm{kPa}$
$\operatorname{Psat}_{2}(\mathrm{~T}):=\exp \left[\mathrm{A} 2-\frac{\mathrm{B} 2}{(\mathrm{~T}-273.15 \cdot \mathrm{~K})+\mathrm{C} 2}\right] \cdot \mathrm{kPa}$
Parameters for the NRTL equation:

$$
\begin{aligned}
& \mathrm{b} 12:=500.40 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}} \quad \mathrm{~b} 21:=1636.57 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}} \quad \alpha:=0.5081 \\
& \tau 12(\mathrm{~T}):=\frac{\mathrm{b} 12}{\mathrm{R} \cdot \mathrm{~T}} \\
& \tau 21(\mathrm{~T}):=\frac{\mathrm{b} 21}{\mathrm{R} \cdot \mathrm{~T}} \\
& \text { G12(T) }:=\exp (-\alpha \cdot 12(\mathrm{~T}) \\
& \text { G21(T) }:=\exp (-\alpha \cdot 21(\mathrm{~T})
\end{aligned}
$$

$$
\gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\exp \left[\mathrm{x} 2^{2} \cdot\left[\begin{array}{l}
\tau 21(\mathrm{~T}) \cdot\left(\frac{\mathrm{G} 21(\mathrm{~T})}{\mathrm{x} 1+\mathrm{x} 2 \cdot \mathrm{G} 21(\mathrm{~T})}\right)^{2} \\
+\frac{\mathrm{G} 12(\mathrm{~T}) \cdot \tau 12(\mathrm{~T})}{(\mathrm{x} 2+\mathrm{x} 1 \cdot \mathrm{G} 12(\mathrm{~T}))^{2}}
\end{array}\right]\right]
$$

$$
\gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\exp \left[\mathrm{x} 1^{2} \cdot\left[\begin{array}{l}
\tau 12(\mathrm{~T}) \cdot\left(\frac{\mathrm{G} 12(\mathrm{~T})}{\mathrm{x} 2+\mathrm{x} 1 \cdot \mathrm{G} 12(\mathrm{~T})}\right)^{2} \\
+\frac{\mathrm{G} 21(\mathrm{~T}) \cdot \tau 21(\mathrm{~T})}{(\mathrm{x} 1+\mathrm{x} 2 \cdot \mathrm{G} 21(\mathrm{~T}))^{2}}
\end{array}\right]\right]
$$

(a) BUBL P: $\quad \mathrm{T}:=(60+273.15) \cdot \mathrm{K}$

$$
\mathrm{x} 1:=0.3 \quad \mathrm{x} 2:=1-\mathrm{x} 1
$$

Guess: $\quad \mathrm{P}:=101.33 \cdot \mathrm{kPa} \quad \mathrm{y} 1:=0.4 \quad \mathrm{y} 2:=1-\mathrm{y} 1$
Given $\quad y 1 \cdot P=x 1 \cdot \gamma 1(x 1, x 2, T) \cdot \operatorname{Psat}_{1}(T)$

$$
\mathrm{y} 2 \cdot \mathrm{P}=\mathrm{x} 2 \cdot \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T})
$$

$$
\mathrm{y} 1+\mathrm{y} 2=1
$$

$\left(\begin{array}{c}\mathrm{P}_{\text {bubl }} \\ \mathrm{y} 1 \\ \mathrm{y} 2\end{array}\right):=\operatorname{Find}(\mathrm{P}, \mathrm{y} 1, \mathrm{y} 2)$
$\mathrm{P}_{\text {bubl }}=31.05 \mathrm{kPa} \quad \mathrm{y} 1=0.395 \quad \mathrm{y} 2=0.605 \quad$ Ans.
(b) DEW P: $\quad \mathrm{T}:=(60+273.15) \cdot \mathrm{K} \quad \mathrm{y} 1:=0.3 \quad \mathrm{y} 2:=1-\mathrm{y} 1$

Guess: $\quad \mathrm{P}:=101.33 \cdot \mathrm{kPa} \quad \mathrm{x} 1:=0.1 \quad \mathrm{x} 2:=1-\mathrm{x} 1$
Given

$$
\begin{aligned}
& \mathrm{y} 1 \cdot \mathrm{P}=\mathrm{x} 1 \cdot \gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \operatorname{Psat}_{1}(\mathrm{~T}) \\
& \mathrm{y} 2 \cdot \mathrm{P}=\mathrm{x} 2 \cdot \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \operatorname{Psat}_{2}(\mathrm{~T})
\end{aligned} \quad \mathrm{x} 1+\mathrm{x} 2=1
$$

$$
\left(\begin{array}{c}
\left.\mathrm{P}_{\mathrm{dew}}\right) \\
\mathrm{x} 1 \\
\mathrm{x} 2
\end{array}\right):=\operatorname{Find}(\mathrm{P}, \mathrm{x} 1, \mathrm{x} 2)
$$

$\mathrm{P}_{\text {dew }}=27.81 \mathrm{kPa}$

$$
\mathrm{x} 1=0.037
$$

$$
\mathrm{x} 2=0.963
$$

Ans.
(c) P,T-flash Calculation

$$
\mathrm{P}:=\frac{\mathrm{P}_{\text {dew }}+\mathrm{P}_{\text {bubl }}}{2} \quad \mathrm{~T}:=(60+273.15) \cdot \mathrm{K} \quad \mathrm{zl}:=0.3
$$

Guess:

$$
\begin{array}{ll}
\mathrm{V}:=0.5 & \mathrm{x} 1:=0.1 \\
& \mathrm{y} 1:=0.1
\end{array}
$$

$$
x 2:=1-y 1
$$

$$
\mathrm{y} 2:=1-\mathrm{x} 1
$$

Given $\quad y 1=\frac{x 1 \cdot \gamma 1(x 1, x 2, T) \cdot \operatorname{Psat}_{1}(T)}{P}$

$$
\mathrm{x} 1+\mathrm{x} 2=1
$$

$$
\mathrm{y} 2=\frac{\mathrm{x} 2 \cdot \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T})}{\mathrm{P}} \quad \mathrm{y} 1+\mathrm{y} 2=1
$$

$$
x 1 \cdot(1-V)+y l \cdot V=z 1 \quad \text { Eq. }(\mathbf{1 0 . 1 5})
$$

Test for azeotrope at: $\mathrm{T}:=(60+273.15) \cdot \mathrm{K}$
$\gamma 1(0,1, T)=19.863$
$\gamma 2(1,0, T)=4.307$
$\alpha 12_{0}:=\frac{\gamma 1(0,1, T) \cdot \operatorname{Psat}_{1}(\mathrm{~T})}{\operatorname{Psat}_{2}(\mathrm{~T})}$
$\alpha 12_{0}=20.129$
$\alpha 12_{1}:=\frac{\operatorname{Psat}_{1}(\mathrm{~T})}{\gamma 2(1,0, T) \cdot \operatorname{Psat}_{2}(\mathrm{~T})}$
$\alpha 12_{1}=0.235$

Since one of these values is >1 and the other is <1, an azeotrope exists. See Ex. 10.3(e).

Guess: $\mathrm{P}:=101.33 \cdot \mathrm{kPa} \quad \mathrm{x} 1:=0.3 \quad \mathrm{x} 2:=1-\mathrm{x} 1$

$$
\mathrm{y} 1:=0.3 \quad \mathrm{y} 2:=1-\mathrm{x} 1
$$

Given $\quad y 1 \cdot P=x 1 \cdot \gamma 1(x 1, x 2, T) \cdot \operatorname{Psat}_{1}(T)$
$\mathrm{y} 2 \cdot \mathrm{P}=\mathrm{x} 2 \cdot \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T})$
$\mathrm{x} 1+\mathrm{x} 2=1 \quad \mathrm{y} 1+\mathrm{y} 2=1 \quad \mathrm{x} 1=\mathrm{y} 1$
$\left(\left.\begin{array}{l}\mathrm{x} 1 \\ \mathrm{x} 2 \\ \mathrm{y} 1 \\ \mathrm{y} 2\end{array} \right\rvert\,:=\operatorname{Find}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2, \mathrm{P})\right.$
$\mathrm{P}_{\mathrm{az}}=31.18 \mathrm{kPa}$
$\mathrm{x} 1=0.4187$
$y 1=0.4187$
Ans.
12.18 It is impractical to provide solutions for all of the systems listed in the table on Page 474; we present as an example only the solution for the system 1-propanol(1)/water(2). Solutions for the other systems can be obtained by rerunning the following Mathcad program with the appropriate parameter values substituted for those given. The file WILSON.med reproduces the table of Wilson parameters on Page 474 and includes the necessary Antoine coefficients.
Antoine coefficients:

$$
\begin{aligned}
& \text { 1-Propanol: } \\
& \text { A1 }:=16.1154 \\
& \text { Water: } \\
& \text { A } 2:=16.3872
\end{aligned} \quad \mathrm{~B} 2:=3483.67 \cdot \mathrm{~K} \quad \mathrm{C} 1:=205.807 \cdot \mathrm{~K} .
$$

Parameters for the Wilson equation:

$$
\begin{array}{ll}
\mathrm{V} 1:=75.14 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} & \mathrm{~V} 2:=18.07 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
\mathrm{a} 12:=775.48 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}} & \mathrm{a} 21:=1351.90 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}} \\
\Lambda 12(\mathrm{~T}):=\frac{\mathrm{V} 2}{\mathrm{~V} 1} \cdot \exp \left(\frac{-\mathrm{a} 12}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \Lambda 21(\mathrm{~T}):=\frac{\mathrm{V} 1}{\mathrm{~V} 2} \cdot \exp \left(\frac{-\mathrm{a} 21}{\mathrm{R} \cdot \mathrm{~T}}\right) \\
\gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\frac{\exp \left[\mathrm{x} 2 \cdot\left(\frac{\Lambda 12(\mathrm{~T})}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda 12(\mathrm{~T})}-\frac{\Lambda 21(\mathrm{~T})}{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda 21(\mathrm{~T})}\right)\right]}{(\mathrm{k} 1+\mathrm{x} 2 \cdot \Lambda 12(\mathrm{~T})} \\
\gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\frac{\exp \left[-\mathrm{x} 1 \cdot\left(\frac{\Lambda 12(\mathrm{~T})}{\mathrm{x} 1+\mathrm{x} 2 \cdot \Lambda 12(\mathrm{~T})}-\frac{\mathrm{x} 2+\mathrm{x} 1 \cdot \Lambda 21(\mathrm{~T})}{}\right)\right]}{(\mathrm{k} 2+\mathrm{x} 1 \cdot \Lambda 21(\mathrm{~T})}
\end{array}
$$

(a) BUBL T:
$\mathrm{P}:=101.33 \cdot \mathrm{kPa}$
$\mathrm{x} 1:=0.3$
$\mathrm{x} 2:=1-\mathrm{x} 1$
Guess: $\quad \mathrm{T}:=(60+273.15) \cdot \mathrm{K}$
$\mathrm{y} 1:=0.3$
$\mathrm{y} 2:=1-\mathrm{y} 1$
Given $\quad \mathrm{y} 1 \cdot \mathrm{P}=\mathrm{x} 1 \cdot \gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{1}(\mathrm{~T})$

$$
\mathrm{y} 1+\mathrm{y} 2=1
$$

$$
\mathrm{y} 2 \cdot \mathrm{P}=\mathrm{x} 2 \cdot \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T})
$$

$\left(\begin{array}{c}\left.\mathrm{T}_{\text {bubl }}\right) \\ \mathrm{y} 1 \\ \mathrm{y} 2\end{array}\right):=\operatorname{Find}(\mathrm{T}, \mathrm{y} 1, \mathrm{y} 2)$
$\mathrm{T}_{\text {bubl }}=361.1 \mathrm{~K} \quad \mathrm{y} 1=0.418 \quad \mathrm{y} 2=0.582 \quad$ Ans.
(b) DEW T: P $:=101.33 \cdot \mathrm{kPa} \quad \mathrm{y} 1:=0.3 \quad \mathrm{y} 2:=1-\mathrm{x} 1$

Guess: $\quad \mathrm{T}:=(60+273.15) \cdot \mathrm{K} \quad \mathrm{x} 1:=0.1 \quad \mathrm{x} 2:=1-\mathrm{y} 1$
Given $\quad y 1 \cdot P=x 1 \cdot \gamma 1(x 1, x 2, T) \cdot \operatorname{Psat}_{1}(T)$ $\mathrm{x} 1+\mathrm{x} 2=1$

$$
\mathrm{y} 2 \cdot \mathrm{P}=\mathrm{x} 2 \cdot \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T})
$$

$\left(\begin{array}{c}\left.\mathrm{T}_{\text {dew }}\right) \\ \mathrm{x} 1 \\ \mathrm{x} 2\end{array}\right):=\operatorname{Find}(\mathrm{T}, \mathrm{x} 1, \mathrm{x} 2)$
$\mathrm{T}_{\text {dew }}=364.28 \mathrm{~K} \quad \mathrm{x} 1=0.048 \quad \mathrm{x} 2=0.952 \quad$ Ans.
(c) P,T-flash Calculation

$$
\mathrm{T}:=\frac{\mathrm{T}_{\text {dew }}+\mathrm{T}_{\text {bubl }}}{2}
$$

$$
\mathrm{P}:=101.33 \cdot \mathrm{kPa}
$$

$$
\text { z1 := } 0.3
$$

Guess:

$$
\mathrm{V}:=0.5
$$

$$
\mathrm{x} 1:=0.1
$$

$$
\mathrm{x} 2:=1-\mathrm{y} 1
$$

$$
\mathrm{yl}:=0.1
$$

$$
\mathrm{y} 2:=1-\mathrm{x} 1
$$

Given

$$
\begin{array}{ll}
y 1=\frac{x 1 \cdot \gamma 1(x 1, x 2, T) \cdot \operatorname{Psat}_{1}(T)}{P} & x 1+x 2=1 \\
y 2=\frac{x 2 \cdot \gamma 2(x 1, x 2, T) \cdot \operatorname{Psat}_{2}(T)}{P} & y 1+y 2=1
\end{array}
$$

$$
\begin{equation*}
\mathrm{x} 1 \cdot(1-\mathrm{V})+\mathrm{y} 1 \cdot \mathrm{~V}=\mathrm{z} 1 \tag{10.15}
\end{equation*}
$$

$$
\begin{aligned}
& \left(\left.\begin{array}{l}
\mathrm{x} 1 \\
\mathrm{x} 2 \\
\mathrm{y} 1 \\
\mathrm{y} 2
\end{array} \right\rvert\,:=\operatorname{Find}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2, \mathrm{~V})\right. \\
& \mathrm{V}) \\
& \mathrm{x} 1=0.09 \quad \mathrm{x} 2=0.91 \quad \mathrm{y} 1=0.35 \quad \mathrm{y} 2=0.65 \quad \mathrm{~V}=0.807 \\
& \text { (d) Azeotrope Calculation }
\end{aligned}
$$

Test for azeotrope at: $\mathrm{P}:=101.33 \cdot \mathrm{kPa}$
$\mathrm{Tb} 1:=\left[\left(\frac{\mathrm{B} 1}{\mathrm{~A} 1-\ln \left(\frac{\mathrm{P}}{\mathrm{kPa}}\right)}-\mathrm{C} 1\right)+273.15 \cdot \mathrm{~K}\right] \quad \mathrm{Tb} 1=370.349 \mathrm{~K}$
$\mathrm{Tb} 2:=\left[\left(\frac{\mathrm{B} 2}{\mathrm{~A} 2-\ln \left(\frac{\mathrm{P}}{\mathrm{kPa}}\right)}-\mathrm{C} 2\right)+273.15 \cdot \mathrm{~K}\right] \quad \mathrm{Tb} 2=373.149 \mathrm{~K}$
$\gamma 1(0,1, \mathrm{~Tb} 2)=16.459$
$\gamma 2(1,0, \mathrm{~Tb} 1)=3.779$
$\alpha 12_{0}:=\frac{\gamma 1(0,1, \mathrm{~T}) \cdot \mathrm{Psat}_{1}(\mathrm{~Tb} 2)}{\mathrm{P}}$
$\alpha 12_{0}=19.506$
$\alpha 12_{1}:=\frac{\mathrm{P}}{\gamma 2(1,0, \mathrm{~T}) \cdot \text { Psat }_{2}(\mathrm{~Tb} 1)}$
$\alpha 12_{1}=0.281$

Since one of these values is >1 and the other is <1, an azeotrope exists. See Ex. 10.3(e). Guesses:
$\mathrm{T}:=(60+273.15) \cdot \mathrm{K} \quad \mathrm{x} 1:=0.4 \quad \mathrm{x} 2:=1-\mathrm{y} 1 \quad \mathrm{y} 1:=0.4 \quad \mathrm{y} 2:=1-\mathrm{x} 1$
Given $\mathrm{y} 1 \cdot \mathrm{P}=\mathrm{x} 1 \cdot \gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{1}(\mathrm{~T}) \mathrm{x} 1+\mathrm{x} 2=1$

$$
\mathrm{y} 2 \cdot \mathrm{P}=\mathrm{x} 2 \cdot \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T}) \quad \mathrm{y} 1+\mathrm{y} 2=1 \quad \mathrm{x} 1=\mathrm{y} 1
$$

$\left(\begin{array}{l}\mathrm{x} 1 \\ \mathrm{x} 2 \\ \mathrm{y} 1 \\ \mathrm{y} 2 \\ \mathrm{~T}_{\mathrm{az}}\end{array}\right):=\operatorname{Find}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2, \mathrm{~T})$
$\mathrm{T}_{\mathrm{az}}=360.881 \mathrm{~K} \quad \mathrm{x} 1=0.4546 \quad \mathrm{y} 1=0.4546 \quad$ Ans.
12.19 It is impractical to provide solutions for all of the systems listed in the table on page 474; we present as an example only the solution for the system 1-propanol(1)/water(2). Solutions for the other systems can be obtained by rerunning the following Mathcad program with the appropriate parameter values substituted for those given. The file NRTL.med reproduces the table of NRTL parameters on Page 474 and includes the necessary Antoine coefficients.

Antoine coefficients:

$$
\begin{aligned}
& \text { 1-Propanol: } \mathrm{A} 1:=16.1154 \\
& \text { Water: }
\end{aligned} \mathrm{B} 1:=3483.67 \cdot \mathrm{~K} \quad \mathrm{C} 1:=205.807 \cdot \mathrm{~K}, 16.3872 \quad \mathrm{~B} 2:=3885.70 \cdot \mathrm{~K} \quad \mathrm{C} 2:=230.170 \cdot \mathrm{~K} .
$$

Parameters for the NRTL equation:

$$
\begin{aligned}
& \mathrm{b} 12:=500.40 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}} \\
& \tau 12(\mathrm{~T}):=\frac{\mathrm{b} 12}{\mathrm{R} \cdot \mathrm{~T}} \\
& \mathrm{G} 12(\mathrm{~T}):=\exp (-\alpha \cdot 12(\mathrm{~T})
\end{aligned}
$$

$$
\mathrm{b} 21:=1636.57 \cdot \frac{\mathrm{cal}}{\mathrm{~mol}}
$$

$$
\alpha:=0.5081
$$

$$
\begin{aligned}
\tau 21(\mathrm{~T}) & :=\frac{\mathrm{b} 21}{\mathrm{R} \cdot \mathrm{~T}} \\
\mathrm{G} 21(\mathrm{~T}) & :=\exp (-\alpha \cdot 21(\mathrm{~T})
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
\gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}):=\exp \left[\mathrm{x} 2^{2} \cdot\left[\begin{array}{l}
\tau 21(\mathrm{~T}) \cdot\left(\frac{\mathrm{G} 21(\mathrm{~T})}{\mathrm{x} 1+\mathrm{x} 2 \cdot \mathrm{G} 21(\mathrm{~T})}\right)^{2} \\
+\frac{\mathrm{G} 12(\mathrm{~T}) \cdot \tau 12(\mathrm{~T})}{(\mathrm{x} 2+\mathrm{x} 1 \cdot \mathrm{G} 12(\mathrm{~T}))^{2}}
\end{array}\right]\right.
\end{array}\right]\right]
$$

(a) BUBL T:

Guess:

$$
\mathrm{x} 1:=0.3
$$

$$
\mathrm{x} 2:=1-\mathrm{x} 1
$$

$$
\mathrm{y} 1:=0.3 \quad \mathrm{y} 2:=1-\mathrm{y} 1
$$

$\mathrm{y} 2 \cdot \mathrm{P}=\mathrm{x} 2 \cdot \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T})$

$$
\mathrm{y} 1+\mathrm{y} 2=1
$$

$\left(\begin{array}{c}\mathrm{T}_{\text {bubl }} \\ \mathrm{y} 1 \\ \mathrm{y} 2\end{array}\right):=\operatorname{Find}(\mathrm{T}, \mathrm{y} 1, \mathrm{y} 2)$
$\mathrm{T}_{\text {bubl }}=360.84 \mathrm{~K} \quad \mathrm{y} 1=0.415 \quad \mathrm{y} 2=0.585 \quad$ Ans.
(b) DEW T: $\mathrm{P}:=101.33 \cdot \mathrm{kPa} \quad \mathrm{y} 1:=0.3 \quad \mathrm{y} 2:=1-\mathrm{x} 1$

Guess: $\quad \mathrm{T}:=(90+273.15) \cdot \mathrm{K} \quad \mathrm{x} 1:=0.05 \quad \mathrm{x} 2:=1-\mathrm{y} 1$
Given $\quad y 1 \cdot P=x 1 \cdot \gamma 1(x 1, x 2, T) \cdot \operatorname{Psat}_{1}(T)$

$$
\mathrm{y} 2 \cdot \mathrm{P}=\mathrm{x} 2 \cdot \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T}) \quad \mathrm{x} 1+\mathrm{x} 2=1
$$

$\left(\begin{array}{c}\left.\mathrm{T}_{\text {dew }}\right) \\ \mathrm{x} 1 \\ \mathrm{x} 2\end{array}\right):=\operatorname{Find}(\mathrm{T}, \mathrm{x} 1, \mathrm{x} 2)$
$\mathrm{T}_{\text {dew }}=364.27 \mathrm{~K}$
$\mathrm{x} 1=0.042$

$$
\mathrm{x} 2=0.958
$$

Ans.

(c) P,T-flash Calculation

$$
\mathrm{P}:=101.33 \cdot \mathrm{kPa}
$$

$$
\text { z1 }:=0.3
$$

Guess:	$\mathrm{V}:=0.5$	$\mathrm{x} 1:=0.1$
$\mathrm{y} 1:=0.1$	$\mathrm{x} 2:=1-\mathrm{y} 1$	
		$\mathrm{y} 2:=1-\mathrm{x} 1$

Given	$\mathrm{y} 1=\frac{\mathrm{x} 1 \cdot \gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \operatorname{Psat}_{1}(\mathrm{~T})}{\mathrm{P}}$	$\mathrm{x} 1+\mathrm{x} 2=1$
$\mathrm{y} 2=\frac{\mathrm{x} 2 \cdot \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \operatorname{Psat}_{2}(\mathrm{~T})}{\mathrm{P}}$	$\mathrm{y} 1+\mathrm{y} 2=1$	

$$
x 1 \cdot(1-V)+y l \cdot V=z 1 \quad \text { Eq. }(\mathbf{1 0 . 1 5})
$$

$$
\begin{aligned}
& \left(\left.\begin{array}{l}
\mathrm{x} 1 \\
\mathrm{x} 2 \\
\mathrm{y} 1 \\
\mathrm{y} 2
\end{array} \right\rvert\,:=\operatorname{Find}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2, \mathrm{~V})\right. \\
& \mathrm{V}) \\
& \mathrm{x} 1=0.069 \quad \mathrm{x} 2=0.931 \quad \mathrm{y} 1=0.352 \quad \mathrm{y} 2=0.648 \quad \mathrm{~V}=0.816
\end{aligned}
$$

(d) Azeotrope Calculation

Test for azeotrope at: $P:=101.33 \cdot \mathrm{kPa}$

$$
\begin{aligned}
& \mathrm{Tb} 1:=\left[\left(\frac{\mathrm{B} 1}{\mathrm{~A} 1-\ln \left(\frac{\mathrm{P}}{\mathrm{kPa}}\right)}-\mathrm{C} 1\right)+273.15 \cdot \mathrm{~K}\right] \quad \mathrm{Tb} 1=370.349 \mathrm{~K} \\
& \mathrm{~Tb} 2:=\left[\left(\frac{\mathrm{B} 2}{\mathrm{~A} 2-\ln \left(\frac{\mathrm{P}}{\mathrm{kPa}}\right)}-\mathrm{C} 2\right)+273.15 \cdot \mathrm{~K}\right] \quad \mathrm{Tb} 2=373.149 \mathrm{~K} \\
& \gamma 1(0,1, \mathrm{~Tb} 2)=14.699
\end{aligned} \quad \gamma 2(1,0, \mathrm{~Tb} 1)=4.05
$$

$$
\begin{array}{ll}
\alpha 12_{0}:=\frac{\gamma 1(0,1, \mathrm{~T}) \cdot \mathrm{Psat}_{1}(\mathrm{~Tb} 2)}{\mathrm{P}} & \alpha 12_{0}=17.578 \\
\alpha 12_{1}:=\frac{\mathrm{P}}{\gamma 2(1,0, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~Tb} 1)} & \alpha 12_{1}=0.27
\end{array}
$$

Since one of these values is >1 and the other is <1, an azeotrope exists.
See Ex. 10.3(e). Guesses:
$\mathrm{T}:=(90+273.15) \cdot \mathrm{K} \quad \mathrm{x} 1:=0.4 \quad \mathrm{x} 2:=1-\mathrm{y} 1 \quad \mathrm{y} 1:=0.4 \quad \mathrm{y} 2:=1-\mathrm{x} 1$
Given $\quad \mathrm{y} 1 \cdot \mathrm{P}=\mathrm{x} 1 \cdot \gamma 1(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{1}(\mathrm{~T}) \quad \mathrm{x} 1+\mathrm{x} 2=1$

$$
\mathrm{y} 2 \cdot \mathrm{P}=\mathrm{x} 2 \cdot \gamma 2(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~T}) \cdot \mathrm{Psat}_{2}(\mathrm{~T}) \quad \mathrm{y} 1+\mathrm{y} 2=1 \quad \mathrm{x} 1=\mathrm{y} 1
$$

$\left(\left.\begin{array}{c}\mathrm{x} 1 \\ \mathrm{x} 2 \\ \mathrm{y} 1 \\ \mathrm{y} 2\end{array} \right\rvert\,:=\operatorname{Find}(\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1, \mathrm{y} 2, \mathrm{~T})\right.$
$\mathrm{T}_{\mathrm{az}}=360.676 \mathrm{~K} \quad \mathrm{x} 1=0.4461 \quad \mathrm{y} 1=0.4461 \quad$ Ans.

12.20 Molar volumes \& Antoine coefficients:

$V:=\left(\begin{array}{l}74.05 \\ 40.73 \\ 18.07\end{array}\right)$
$A:=\left(\begin{array}{l}14.3145 \\ 16.5785 \\ 16.3872\end{array}\right)$
$B:=\left(\begin{array}{l}2756.22 \\ 3638.27 \\ 3885.70\end{array}\right)$
$C:=\left(\begin{array}{l}228.060 \\ 239.500 \\ 230.170\end{array}\right)$
$\operatorname{Psat}(\mathrm{i}, \mathrm{T}):=\exp \left[\mathrm{A}_{\mathrm{i}}-\frac{\mathrm{B}_{\mathrm{i}}}{\left(\frac{\mathrm{T}}{\mathrm{K}}-273.15\right)+\mathrm{C}_{\mathrm{i}}}\right] \cdot \mathrm{kPa} \quad \mathrm{T}:=(65+273.15) \mathrm{K}$

Wilson parameters:
$\mathrm{a}:=\left(\begin{array}{ccc}0 & -161.88 & 291.27 \\ 583.11 & 0 & 107.38 \\ 1448.01 & 469.55 & 0\end{array}\right) \cdot \frac{\mathrm{cal}}{\mathrm{mol}}$

$$
\Lambda(\mathrm{i}, \mathrm{j}, \mathrm{~T}):=\frac{\mathrm{V}_{\mathrm{j}}}{\mathrm{~V}_{\mathrm{i}}} \cdot \exp \left(\frac{-\mathrm{a}_{\mathrm{i}, \mathrm{j}}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{i}:=1 . .3 \quad \mathrm{j}:=1 . .3 \quad \mathrm{p}:=1 . .3
$$

(a) BUBL P calculation: No iteration required.

$$
\begin{aligned}
& x_{1}:=0.3 \quad x_{2}:=0.4 \quad x_{3}:=1-x_{1}-x_{2} \\
& \gamma(\mathrm{i}, \mathrm{x}, \mathrm{~T}):=\exp \left[1-\left[\begin{array}{c}
\ln \left[\sum_{\mathrm{j}}\left(\mathrm{k}_{\mathrm{j}} \cdot \Lambda(\mathrm{i}, \mathrm{j}, \mathrm{~T})\right] \ldots\right. \\
\left.+\sum_{\mathrm{p}} \frac{\mathrm{x}_{\mathrm{p}} \cdot \Lambda(\mathrm{p}, \mathrm{i}, \mathrm{~T})}{\sum_{\mathrm{j}}\left(\mathrm{k}_{\mathrm{j}} \cdot \Lambda(\mathrm{p}, \mathrm{j}, \mathrm{~T})\right.}\right]
\end{array}\right]\right] \\
& \mathrm{P}_{\text {bubl }}:=\sum_{\mathrm{i}}\left(\mathrm{k}_{\mathrm{i} \cdot} \cdot \gamma(\mathrm{i}, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(\mathrm{i}, \mathrm{~T}) \quad \mathrm{y}_{\mathrm{i}}:=\frac{\mathrm{x}_{\mathrm{i}} \cdot \gamma(\mathrm{i}, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(\mathrm{i}, \mathrm{~T})}{\mathrm{P}_{\text {bubl }}}\right. \\
& \mathrm{y}=\left(\begin{array}{l}
0.527) \\
0.367 \\
0.106
\end{array}\right) \quad \text { Prbul}=117.1 \mathrm{kPa} \quad \text { Ans. }
\end{aligned}
$$

(b) DEW P calculation:

$$
y_{1}:=0.3 \quad y_{2}:=0.4 \quad y_{3}:=1-y_{1}-y_{2}
$$

Guess: $\quad \mathrm{x}_{1}:=0.05 \quad \mathrm{x}_{2}:=0.2 \quad \mathrm{x}_{3}:=1-\mathrm{x}_{1}-\mathrm{x}_{2} \quad \mathrm{P}:=\mathrm{P}_{\text {bubl }}$
Given

	$\mathrm{P} \cdot \mathrm{y}_{1}=\mathrm{x}_{1} \cdot \gamma(1, \mathrm{x}, \mathrm{T}) \cdot \mathrm{Psat}(1, \mathrm{~T})$	$\mathrm{P} \cdot \mathrm{y}_{2}=\mathrm{x}_{2} \cdot \gamma(2, \mathrm{x}, \mathrm{T}) \cdot \operatorname{Psat}(2, \mathrm{~T})$
	$\mathrm{P} \cdot \mathrm{y}_{3}=\mathrm{x}_{3} \cdot \gamma(3, \mathrm{x}, \mathrm{T}) \cdot \mathrm{Psat}(3, \mathrm{~T})$	$\sum \mathrm{x}_{\mathrm{i}}=1$
$\left(\mathrm{x}_{1}\right)$		${ }_{i}$
$\begin{aligned} & x_{2} \\ & x_{3} \end{aligned}$	$\mathrm{:}=\operatorname{Find}\left(\mathrm{k}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{P}\right.$	
($\mathrm{P}_{\text {dew }}$)		

$$
P_{\text {dew }}=69.14 \mathrm{kPa}
$$

Ans.
(c) P,T-flash calculation: $\quad \mathrm{P}:=\frac{\mathrm{P}_{\text {dew }}+\mathrm{P}_{\text {bubl }}}{2} \quad \mathrm{~T}=338.15 \mathrm{~K}$

$$
\mathrm{z}_{1}:=0.3 \quad \mathrm{z}_{2}:=0.4 \quad \mathrm{z}_{3}:=1-\mathrm{z}_{1}-\mathrm{z}_{2}
$$

Guess: $\quad \mathrm{V}:=0.5 \quad$ Use \mathbf{x} from DEW P and y from BUBL P as initial guess.

Given

$$
\begin{aligned}
& \mathrm{P} \cdot \mathrm{y}_{1}=\mathrm{x}_{1} \cdot \gamma(1, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(1, \mathrm{~T}) \quad \mathrm{x}_{1} \cdot(1-\mathrm{V})+\mathrm{y}_{1} \cdot \mathrm{~V}=\mathrm{z}_{1} \\
& \mathrm{P} \cdot \mathrm{y}_{2}=\mathrm{x}_{2} \cdot \gamma(2, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(2, \mathrm{~T}) \\
& x_{2} \cdot(1-V)+y_{2} \cdot V=z_{2} \\
& P \cdot y_{3}=x_{3} \cdot \gamma(3, x, T) \cdot \operatorname{Psat}(3, T) \\
& x_{3} \cdot(1-V)+y_{3} \cdot V=z_{3} \\
& \sum_{i} x_{i}=1 \quad \sum_{i} y_{i}=1 \\
& \left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
y_{1} \\
y_{2} \\
y_{3} \\
V
\end{array}\right):=\operatorname{Find}\left(x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}, V\right. \\
& \text { Ans. }
\end{aligned}
$$

12.21 Molar volumes \& Antoine coefficients:

Antoine coefficients:
$\mathrm{V}:=\left(\begin{array}{l}74.05 \\ 40.73 \\ 18.07\end{array}\right) \quad \mathrm{A}:=\left(\begin{array}{l}14.3145 \\ 16.5785 \\ 16.3872\end{array}\right) \quad \mathrm{B}:=\left(\begin{array}{l}2756.22 \\ 3638.27 \\ 3885.70\end{array}\right) \quad \mathrm{C}:=\left(\begin{array}{l}228.060 \\ 239.500 \\ 230.170\end{array}\right)$
$\mathrm{T}:=(65+273.15) \mathrm{K}$

$$
\operatorname{Psat}(\mathrm{i}, \mathrm{~T}):=\exp \left[\mathrm{A}_{\mathrm{i}}-\frac{\mathrm{B}_{\mathrm{i}}}{\left(\frac{\mathrm{~T}}{\mathrm{~K}}-273.15\right)+\mathrm{C}_{\mathrm{i}}}\right] \cdot \mathrm{kPa}
$$

$\alpha:=\left(\begin{array}{ccc}0 & 0.3084 & 0.5343 \\ 0.3084 & 0 & 0.2994 \\ 0.5343 & 0.2994 & 0\end{array}\right)$
$\mathrm{b}:=\left(\begin{array}{ccc}0 & 184.70 & 631.05 \\ 222.64 & 0 & -253.88 \\ 1197.41 & 845.21 & 0\end{array}\right) \cdot \frac{\mathrm{cal}}{\mathrm{mol}}$
$i:=1 . .3 \quad j:=1 . .3$
$1:=1 . .3 \quad \mathrm{k}:=1 . .3$

$$
\tau_{i, j}:=\frac{b_{i, j}}{R \cdot T} \quad G_{i, j}:=\exp \left(-\alpha_{i, j} \cdot i, j\right.
$$

(a) BUBL P calculation: No iteration required.
$\mathrm{x}_{1}:=0.3$
$\mathrm{x}_{2}:=0.4$
$\mathrm{x}_{3}:=1-\mathrm{x}_{1}-\mathrm{x}_{2}$

$\mathrm{P}_{\text {bubl }}:=\sum_{\mathrm{i}}\left(\mathrm{k}_{\mathrm{i}} \cdot \gamma(\mathrm{i}, \mathrm{x}, \mathrm{T}) \cdot \operatorname{Psat}(\mathrm{i}, \mathrm{T}) \quad \mathrm{y}_{\mathrm{i}}:=\frac{\mathrm{x}_{\mathrm{i}} \cdot \gamma(\mathrm{i}, \mathrm{x}, \mathrm{T}) \cdot \operatorname{Psat}(\mathrm{i}, \mathrm{T})}{\mathrm{P}_{\text {bubl }}}\right.$
$y=\left(\begin{array}{c}0.525 \\ 0.37 \\ 0.105\end{array}\right)$
$\mathrm{P}_{\text {bubl }}=115.3 \mathrm{kPa}$
Ans.
(b) DEW P calculation:

$$
\begin{array}{llll}
& \mathrm{y}_{1}:=0.3 & \mathrm{y}_{2}:=0.4 & \mathrm{y}_{3}:=1-\mathrm{y}_{1}-\mathrm{y}_{2} \\
\text { Guess: } & \mathrm{x}_{1}:=0.05 & \mathrm{x}_{2}:=0.2 & \mathrm{x}_{3}:=1-\mathrm{x}_{1}-\mathrm{x}_{2}
\end{array} \quad \mathrm{P}:=\mathrm{P}_{\text {bubl }}
$$

Given
$\mathrm{P} \cdot \mathrm{y}_{1}=\mathrm{x}_{1} \cdot \gamma(1, \mathrm{x}, \mathrm{T}) \cdot \operatorname{Psat}(1, \mathrm{~T}) \quad \mathrm{P} \cdot \mathrm{y}_{2}=\mathrm{x}_{2} \cdot \gamma(2, \mathrm{x}, \mathrm{T}) \cdot \operatorname{Psat}(2, \mathrm{~T})$
$P \cdot y_{3}=x_{3} \cdot \gamma(3, x, T) \cdot P \operatorname{sat}(3, T) \quad \sum_{i} x_{i}=1$
$\left(\left.\begin{array}{c}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3}\end{array} \right\rvert\,:=\operatorname{Find}\left(\mathrm{k}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{P}\right.\right.$
$x=\left(\begin{array}{c}0.038 \\ 0.192 \\ 0.77\end{array}\right)$

$$
\mathrm{P}_{\text {dew }}=68.9 \mathrm{kPa}
$$

Ans.
(c) P,T-flash calculation: $\quad \mathrm{P}:=\frac{\mathrm{P}_{\text {dew }}+\mathrm{P}_{\text {bubl }}}{2} \quad \mathrm{~T}=338.15 \mathrm{~K}$

$$
z_{1}:=0.3 \quad z_{2}:=0.4 \quad z_{3}:=1-z_{1}-z_{2}
$$

Guess: $\quad \mathrm{V}:=0.5 \quad$ Use \mathbf{x} from DEW P and y from BUBL P as initial guess.

$$
\begin{array}{rlr}
\text { Given } \mathrm{P} \cdot \mathrm{y}_{1}=\mathrm{x}_{1} \cdot \gamma(1, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(1, \mathrm{~T}) & \mathrm{x}_{1} \cdot(1-\mathrm{V})+\mathrm{y}_{1} \cdot \mathrm{~V}=\mathrm{z}_{1} \\
\mathrm{P} \cdot \mathrm{y}_{2}=\mathrm{x}_{2} \cdot \gamma(2, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(2, \mathrm{~T}) & \mathrm{x}_{2} \cdot(1-\mathrm{V})+\mathrm{y}_{2} \cdot \mathrm{~V}=\mathrm{z}_{2} \\
\mathrm{P} \cdot \mathrm{y}_{3}=\mathrm{x}_{3} \cdot \gamma(3, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(3, \mathrm{~T}) & \mathrm{x}_{3} \cdot(1-\mathrm{V})+\mathrm{y}_{3} \cdot \mathrm{~V}=\mathrm{z}_{3} \\
\sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=1 \quad \sum_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}=1 &
\end{array}
$$

12.22 Molar volumes \& Antoine coefficients:

$\mathrm{V}:=\left(\begin{array}{l}74.05 \\ 40.73 \\ 18.07\end{array}\right) \quad \mathrm{A}:=\left(\begin{array}{l}14.3145 \\ 16.5785 \\ 16.3872\end{array}\right) \quad \mathrm{B}:=\left(\begin{array}{l}2756.22 \\ 3638.27 \\ 3885.70\end{array}\right) \quad \mathrm{C}:=\left(\begin{array}{l}228.060 \\ 239.500 \\ 230.170\end{array}\right)$
$\operatorname{Psat}(\mathrm{i}, \mathrm{T}):=\exp \left[\mathrm{A}_{\mathrm{i}}-\frac{\mathrm{B}_{\mathrm{i}}}{\left(\frac{\mathrm{T}}{\mathrm{K}}-273.15\right)+\mathrm{C}_{\mathrm{i}}}\right] \cdot \mathrm{kPa} \quad \mathrm{P}:=101.33 \mathrm{kPa}$

Wilson parameters:
$a:=\left(\begin{array}{ccc}0 & -161.88 & 291.27 \\ 583.11 & 0 & 107.38 \\ 1448.01 & 469.55 & 0\end{array}\right) \cdot \frac{\mathrm{cal}}{\mathrm{mol}}$

$$
\Lambda(\mathrm{i}, \mathrm{j}, \mathrm{~T}):=\frac{\mathrm{V}_{\mathrm{j}}}{\mathrm{~V}_{\mathrm{i}}} \cdot \exp \left(\frac{-\mathrm{a}_{\mathrm{i}}, \mathrm{j}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{i}:=1 . .3 \quad \mathrm{j}:=1 . .3 \quad \mathrm{p}:=1 . .3
$$

(a) BUBL T calculation:
$\mathrm{x}_{1}:=0.3$
$\mathrm{x}_{2}:=0.4$
$\mathrm{x}_{3}:=1-\mathrm{x}_{1}-\mathrm{x}_{2}$

$$
\gamma(\mathrm{i}, \mathrm{x}, \mathrm{~T}):=\exp \left[1-\left[\begin{array}{c}
\ln \left[\sum_{\mathrm{j}}\left(\mathrm{k}_{\mathrm{j}} \cdot \Lambda(\mathrm{i}, \mathrm{j}, \mathrm{~T})\right]\right. \\
+\sum_{\mathrm{p}} \frac{\mathrm{x}_{\mathrm{p}} \cdot \Lambda(\mathrm{p}, \mathrm{i}, \mathrm{~T})}{\sum_{\mathrm{j}}\left(\mathrm{k}_{\mathrm{j}} \cdot \Lambda(\mathrm{p}, \mathrm{j}, \mathrm{~T})\right.}
\end{array}\right]\right]
$$

Guess: $\quad \mathrm{T}:=300 \mathrm{~K} \quad \mathrm{y}_{1}:=0.3 \quad \mathrm{y}_{2}:=0.3 \quad \mathrm{y}_{3}:=1-\mathrm{y}_{1}-\mathrm{y}_{2}$
Given

$$
\left.\begin{array}{rl}
& \mathrm{P} \cdot \mathrm{y}_{1}=\mathrm{x}_{1} \cdot \gamma(1, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(1, \mathrm{~T}) \quad \mathrm{P} \cdot \mathrm{y}_{2}=\mathrm{x}_{2} \cdot \gamma(2, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(2, \mathrm{~T}) \\
& \mathrm{P} \cdot \mathrm{y}_{3}=\mathrm{x}_{3} \cdot \gamma(3, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(3, \mathrm{~T}) \quad \mathrm{P}=\sum_{\mathrm{i}}\left(\mathrm{k}_{\mathrm{i}} \cdot \gamma(\mathrm{i}, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(\mathrm{i}, \mathrm{~T})\right. \\
\left(\left.\begin{array}{c}
\mathrm{y}_{1} \\
\mathrm{y}_{2} \\
\mathrm{y}_{3}
\end{array} \right\rvert\,\right. & :=\operatorname{Find}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{~T}\right. \\
\mathrm{T}_{\text {bubl }}
\end{array}\right) \quad \begin{aligned}
&
\end{aligned}
$$

$y=\left(\begin{array}{l}0.536 \\ 0.361 \\ 0.102\end{array}\right)$ $\mathrm{T}_{\text {bubl }}=334.08 \mathrm{~K} \quad$ Ans.

(b) DEW T calculation:

$$
y_{1}:=0.3 \quad y_{2}:=0.4 \quad y_{3}:=1-y_{1}-y_{2}
$$

Guess: $\quad \mathrm{x}_{1}:=0.05 \quad \mathrm{x}_{2}:=0.2 \quad \mathrm{x}_{3}:=1-\mathrm{x}_{1}-\mathrm{x}_{2} \quad \mathrm{~T}:=\mathrm{T}_{\text {bubl }}$
Given

$$
\begin{aligned}
& \mathrm{P} \cdot \mathrm{y}_{1}=\mathrm{x}_{1} \cdot \gamma(1, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(1, \mathrm{~T}) \quad \mathrm{P} \cdot \mathrm{y}_{2}=\mathrm{x}_{2} \cdot \gamma(2, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(2, \mathrm{~T}) \\
& \mathrm{P} \cdot \mathrm{y}_{3}=\mathrm{x}_{3} \cdot \gamma(3, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(3, \mathrm{~T}) \quad \sum_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=1
\end{aligned}
$$

$\left(\left.\begin{array}{c}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3}\end{array} \right\rvert\,:=\operatorname{Find}()_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{~T}\right.$
$\mathrm{x}=\left(\begin{array}{l}0.043 \\ 0.204 \\ 0.753\end{array}\right)$

Ans.
(c) P,T-flash calculation:

$$
\mathrm{T}=340.75 \mathrm{~K}
$$

$$
z_{1}:=0.3 \quad z_{2}:=0.2 \quad z_{3}:=1-z_{1}-z_{2}
$$

Guess: $\quad \mathrm{V}:=0.5 \quad$ Use \mathbf{x} from DEW P and \mathbf{y} from BUBL P as initial guess.

Given $P \cdot y_{1}=x_{1} \cdot \gamma(1, x, T) \cdot \operatorname{Psat}(1, T)$ $\mathrm{x}_{1} \cdot(1-\mathrm{V})+\mathrm{y}_{1} \cdot \mathrm{~V}=\mathrm{z}_{1}$
$\mathrm{P} \cdot \mathrm{y}_{2}=\mathrm{x}_{2} \cdot \gamma(2, \mathrm{x}, \mathrm{T}) \cdot \operatorname{Psat}(2, \mathrm{~T})$
$\mathrm{x}_{2} \cdot(1-\mathrm{V})+\mathrm{y}_{2} \cdot \mathrm{~V}=\mathrm{z}_{2}$
$\mathrm{P} \cdot \mathrm{y}_{3}=\mathrm{x}_{3} \cdot \gamma(3, \mathrm{x}, \mathrm{T}) \cdot \operatorname{Psat}(3, \mathrm{~T})$
$\mathrm{x}_{3} \cdot(1-\mathrm{V})+\mathrm{y}_{3} \cdot \mathrm{~V}=\mathrm{z}_{3}$

$$
\sum_{i} x_{i}=1 \quad \sum_{i} y_{i}=1
$$

Ans.

12.23 Molar volumes \& Antoine coefficients:

Antoine coefficients:
$\mathrm{V}:=\left(\begin{array}{l}74.05 \\ 40.73 \\ 18.07\end{array}\right) \quad \mathrm{A}:=\left(\begin{array}{l}14.3145 \\ 16.5785 \\ 16.3872\end{array}\right) \quad \mathrm{B}:=\left(\begin{array}{l}2756.22 \\ 3638.27 \\ 3885.70\end{array}\right) \quad \mathrm{C}:=\left(\begin{array}{l}228.060 \\ 239.500 \\ 230.170\end{array}\right)$
$\mathrm{P}:=101.33 \mathrm{kPa} \quad \operatorname{Psat}(\mathrm{i}, \mathrm{T}):=\exp \left[\mathrm{A}_{\mathrm{i}}-\frac{\mathrm{B}_{\mathrm{i}}}{\left(\frac{\mathrm{T}}{\mathrm{K}}-273.15\right)+\mathrm{C}_{\mathrm{i}}}\right] \cdot \mathrm{kPa}$
NRTL parameters:
$\alpha:=\left(\begin{array}{ccc}0 & 0.3084 & 0.5343 \\ 0.3084 & 0 & 0.2994 \\ 0.5343 & 0.2994 & 0\end{array}\right)$
$\mathrm{b}:=\left(\begin{array}{ccc}0 & 184.70 & 631.05 \\ 222.64 & 0 & -253.88 \\ 1197.41 & 845.21 & 0\end{array}\right) \cdot \frac{\mathrm{cal}}{\mathrm{mol}}$

$$
\begin{array}{lll}
\mathrm{i}:=1 . .3 & \mathrm{j}:=1 . .3 \quad 1:=1 . .3 & \\
\mathrm{k}:=1 . .3 & G(i, j, T):=\exp \left(f-\boldsymbol{\alpha}_{\mathrm{i}, \mathrm{j}} .(\mathrm{i}, \mathrm{j}, \mathrm{~T})\right.
\end{array} \quad \tau(\mathrm{i}, \mathrm{j}, \mathrm{~T}):=\frac{\mathrm{b}_{\mathrm{i}, \mathrm{j}}}{\mathrm{R} \cdot \mathrm{~T}}
$$

(a) BUBL T calculation:

$$
\begin{aligned}
& \mathrm{x}_{1}:=0.3 \quad \mathrm{x}_{2}:=0.4 \quad \mathrm{x}_{3}:=1-\mathrm{x}_{1}-\mathrm{x}_{2} \\
& \left.\gamma(\mathrm{i}, \mathrm{x}, \mathrm{~T}):=\exp \left[\begin{array}{l}
\frac{\sum_{\mathrm{j}}\left(t(\mathrm{j}, \mathrm{i}, \mathrm{~T}) \cdot \mathrm{G}(\mathrm{j}, \mathrm{i}, \mathrm{~T}) \cdot \mathrm{x}_{\mathrm{j}}\right.}{\sum_{1}\left(\mathrm{G}(1, \mathrm{i}, \mathrm{~T}) \cdot \mathrm{x}_{1}\right.} \\
\\
+\sum_{\mathrm{j}}\left[\frac{\mathrm{x}_{\mathrm{j}} \cdot \mathrm{G}(\mathrm{i}, \mathrm{j}, \mathrm{~T})}{\sum_{1}\left(\mathrm{G}(\mathrm{l}, \mathrm{j}, \mathrm{~T}) \cdot \mathrm{x}_{1}\right.} \cdot\left[\tau(\mathrm{i}, \mathrm{j}, \mathrm{~T})-\frac{\sum_{\mathrm{k}}\left(\mathrm{k}_{\mathrm{k}} \cdot \tau(\mathrm{k}, \mathrm{j}, \mathrm{~T}) \cdot \mathrm{G}(\mathrm{k}, \mathrm{j}, \mathrm{~T})\right.}{\sum_{1}\left(\mathrm{G}(1, \mathrm{j}, \mathrm{~T}) \cdot \mathrm{x}_{1}\right.}\right]\right]
\end{array}\right]\right]
\end{aligned}
$$

Guess: $\quad \mathrm{T}:=300 \mathrm{~K} \quad \mathrm{y}_{1}:=0.3 \quad \mathrm{y}_{2}:=0.3 \quad \mathrm{y}_{3}:=1-\mathrm{y}_{1}-\mathrm{y}_{2}$
Given

(b) DEW T calculation:

	$\mathrm{y}_{1}:=0.3$	$\mathrm{y}_{2}:=0.4$	$\mathrm{y}_{3}:=1-\mathrm{y}_{1}-\mathrm{y}_{2}$	
Guess:	$\mathrm{x}_{1}:=0.05$	$\mathrm{x}_{2}:=0.2$	$\mathrm{x}_{3}:=1-\mathrm{x}_{1}-\mathrm{x}_{2}$	$\mathrm{~T}:=\mathrm{T}_{\text {bubl }}$

Given

(c) P,T-flash calculation: $\mathrm{T}:=\frac{\mathrm{T}_{\text {dew }}+\mathrm{T}_{\text {bubl }}}{2} \quad \mathrm{~T}=341.011 \mathrm{~K}$

$$
z_{1}:=0.3 \quad z_{2}:=0.2 \quad z_{3}:=1-z_{1}-z_{2}
$$

Guess: $\quad \mathrm{V}:=0.5 \quad$ Use \mathbf{x} from DEW P and y from BUBL P as initial guess.

Given $\mathrm{P} \cdot \mathrm{y}_{1}=\mathrm{x}_{1} \cdot \gamma(1, \mathrm{x}, \mathrm{T}) \cdot \operatorname{Psat}(1, \mathrm{~T})$

$$
\mathrm{x}_{1} \cdot(1-\mathrm{V})+\mathrm{y}_{1} \cdot \mathrm{~V}=\mathrm{z}_{1}
$$

$$
\mathrm{P} \cdot \mathrm{y}_{2}=\mathrm{x}_{2} \cdot \gamma(2, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(2, \mathrm{~T})
$$

$$
x_{2} \cdot(1-V)+y_{2} \cdot V=z_{2}
$$

$$
\mathrm{P} \cdot \mathrm{y}_{3}=\mathrm{x}_{3} \cdot \gamma(3, \mathrm{x}, \mathrm{~T}) \cdot \operatorname{Psat}(3, \mathrm{~T})
$$

$$
x_{3} \cdot(1-V)+y_{3} \cdot V=z_{3}
$$

$$
\sum_{i} x_{i}=1 \quad \sum_{i} y_{i}=1
$$

$\mathrm{V}=0.414$
Ans.

$$
\mathrm{x}_{1}:=0.4 \quad \mathrm{x}_{2}:=1-\mathrm{x}_{1}
$$

$$
\mathrm{V}_{1}:=110 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{~V}_{2}:=90 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

$$
\operatorname{VE}\left(\mathrm{x}_{1}, \mathrm{x}_{2}:=\mathrm{x}_{1} \cdot \mathrm{x}_{2} \cdot\left(445 \cdot \mathrm{x}_{1}+25 \cdot \mathrm{x}_{2} \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \operatorname{VE}\left(\mathrm{x}_{1}, \mathrm{x}_{2}=7.92 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}\right.\right.\right.
$$

By Eq. (12.27): $V()_{1}, x_{2}:=V E()_{1}, x_{2}+x_{1} \cdot V_{1}+x_{2} \cdot V_{2}$

$$
\mathrm{V}\left(\mathrm{k}_{1}, \mathrm{x}_{2}=105.92 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}\right.
$$

By Eqs. (11.15) \& (11.16):

$\operatorname{Vbar}_{1}:=\mathrm{V}\left(\mathrm{x}_{1}, \mathrm{x}_{2}+\mathrm{x}_{2} \cdot \frac{\mathrm{~d}}{\mathrm{dx}_{1}} \mathrm{~V}\left(\mathrm{k}_{1}, \mathrm{x}_{2}\right.\right.$
$\operatorname{Vbar}_{1}=190.28 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
$\operatorname{Vbar}_{2}:=\mathrm{V}\left(\mathrm{k}_{1}, \mathrm{x}_{2}-\mathrm{x}_{1} \cdot\left(\frac{\mathrm{~d}}{\mathrm{dx}_{1}} \mathrm{~V}\left(\mathrm{k}_{1}, \mathrm{x}_{2}\right)\right.\right.$
Ans.

Check by Eq. (11.11):

$\mathrm{V}:=\mathrm{x}_{1} \cdot \operatorname{Vbar}_{1}+\mathrm{x}_{2} \cdot \operatorname{Vbar}_{2}$

$$
\mathrm{V}=105.92 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{OK}
$$

$12.27 \mathrm{~V}_{1}:=58.63 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
$\mathrm{V}_{2}:=118.46 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
moles $_{1}:=\frac{750 \cdot \mathrm{~cm}^{3}}{\mathrm{~V}_{1}}$

$$
\text { moles }_{2}:=\frac{1500 \cdot \mathrm{~cm}^{3}}{\mathrm{~V}_{2}}
$$

moles $:=$ moles $_{1}+$ moles $_{2} \quad$ moles $=25.455 \mathrm{~mol}$
$\mathrm{x}_{1}:=\frac{\text { moles }_{1}}{\text { moles }} \quad \mathrm{x}_{1}=0.503$

$$
\mathrm{x}_{2}:=1-\mathrm{x}_{1}
$$

$\mathrm{VE}:=\mathrm{x}_{1} \cdot \mathrm{x}_{2} \cdot\left[-1.026+0.220 \cdot\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right] \cdot \frac{\mathrm{cm}^{3}}{\mathrm{~mol}}\right.$
$\mathrm{VE}=-0.256 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$

By Eq. (12.27),

$$
\mathrm{V}:=\mathrm{VE}+\mathrm{x}_{1} \cdot \mathrm{~V}_{1}+\mathrm{x}_{2} \cdot \mathrm{~V}_{2} \quad \mathrm{~V}=88.136 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

$$
\mathrm{V}_{\text {total }}:=\mathrm{V} \cdot \text { moles } \quad \mathrm{V}_{\text {total }}=2243 \mathrm{~cm}^{3} \quad \text { Ans }
$$

For an ideal solution, Eq. (11.81) applies:

$$
\mathrm{V}_{\text {total }}:=\left(\mathrm{x}_{1} \cdot \mathrm{~V}_{1}+\mathrm{x}_{2} \cdot \mathrm{~V}_{2} \cdot \text { moles } \quad \mathrm{V}_{\text {total }}=2250 \mathrm{~cm}^{3} \quad\right. \text { Ans. }
$$

Since there are 11 moles of solution per mole of solute, the result on the basis of $\mathbf{1 ~ m o l ~ o f ~ s o l u t i o n ~ i s ~}$

Ans.

12.29

$$
\begin{gathered}
2(\mathrm{HCl}+2.25 \mathrm{H} 2 \mathrm{O}-\cdots \mathrm{HCl}(2.25 \mathrm{H} 2 \mathrm{O}))(1) \\
\mathrm{HCl}(4.5 \mathrm{H} 2 \mathrm{O})--->\mathrm{HCl}+4.5 \mathrm{H} 2 \mathrm{O}
\end{gathered}
$$

$$
\mathrm{HCl}(4.5 \mathrm{H} 2 \mathrm{O})+\mathrm{HCl}----->2 \mathrm{HCl}(2.25 \mathrm{H} 2 \mathrm{O})
$$

$$
\Delta \mathrm{H} 1:=2 \cdot(-50.6 \cdot \mathrm{~kJ}) \quad \text { (Fig. 12.14@ } \mathbf{n}=\mathbf{2 . 2 5})
$$

$$
\Delta \mathrm{H} 2:=62 \cdot \mathrm{~kJ}
$$

(Fig. 12.14 @ n=4.5 with sign change)
$\Delta \mathrm{H}:=\Delta \mathrm{H} 1+\Delta \mathrm{H} 2$
$\Delta \mathrm{H}=-39.2 \mathrm{~kJ} \quad$ Ans.

$$
\begin{align*}
& 12.28 \mathrm{LiCl} .2 \mathrm{H} 2 \mathrm{O}--->\mathrm{Li}+1 / 2 \mathrm{Cl} 2+2 \mathrm{H} 2+\mathrm{O} 2 \\
& \mathrm{Li}+1 / 2 \mathrm{Cl} 2+10 \mathrm{H} 2 \mathrm{O}--->\operatorname{LiCl}(10 \mathrm{H} 2 \mathrm{O}) \tag{2}\\
& \text { 2(H2 + 1/2 O2 ---> H2O) } \tag{3}\\
& \mathbf{L i C l} .2 \mathrm{H} 2 \mathrm{O}+8 \mathrm{H} 2 \mathrm{O}(\mathrm{l})--->\mathrm{LiCl}(10 \mathrm{H} 2 \mathrm{O}) \\
& \Delta \mathrm{H} 1:=-(-1012650) \cdot \mathrm{J} \quad \text { (Table C.4) } \\
& \Delta \mathrm{H} 2:=-441579 \cdot \mathrm{~J} \\
& \text { (Pg. 457) } \\
& \Delta \mathrm{H} 3:=2 \cdot(-285830 \cdot \mathrm{~J}) \\
& \text { (Table C.4) } \\
& \Delta \mathrm{H}:=\Delta \mathrm{H} 1+\Delta \mathrm{H} 2+\mathrm{H} 3 \\
& \Delta \mathrm{H}=-589 \mathrm{~J} \quad \text { (On the basis of } 1 \mathrm{~mol} \text { of solute) }
\end{align*}
$$

12.30 Calculate moles of LiCl and H 2 O in original solution:
$\mathrm{n}_{\mathrm{LiCl}}:=\frac{0.1 \cdot 125}{42.39} \cdot \mathrm{kmol}$
$\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}:=\frac{0.9 \cdot 125}{18.015} \cdot \mathrm{kmol}$
$\mathrm{n}_{\mathrm{LiCl}}=0.295 \mathrm{kmol}$
Moles of LiCl added:

$$
\mathrm{n}_{\mathrm{LiCl}}^{\prime}:=\frac{20}{42.39} \cdot \mathrm{kmol} \quad \mathrm{n}_{\mathrm{LiCl}}^{\prime}=0.472 \mathrm{kmol}
$$

Mole ratio, original solution: $\frac{\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}}{\mathrm{n}_{\mathrm{LiCl}}}=21.18$
Mole ratio, final solution: $\quad \frac{\mathrm{n}_{\mathrm{H} 2 \mathrm{O}}}{\mathrm{n}_{\mathrm{LiCl}}+\mathrm{n}^{\prime} \mathrm{LiCl}}=8.15$
$\mathrm{n}_{\mathrm{LiCl}}+\mathrm{n}_{\mathrm{LiCl}}=0.7667 \mathrm{kmol}$
$0.2949(\mathrm{LiCl}(21.18 \mathrm{H} 2 \mathrm{O})--->\mathrm{LiCl}+21.18 \mathrm{H} 2 \mathrm{O})(1)$
$0.7667(\mathrm{LiCl}+8.15 \mathrm{H} 2 \mathrm{O}--->\operatorname{LiCl}(8.15 \mathrm{H} 2 \mathrm{O})) \quad$ (2)
$0.2949 \mathrm{LiCL}(21.18 \mathrm{H} 2 \mathrm{O})+0.4718 \mathrm{LiCl}--->0.7667 \mathrm{LiCl}(8.145 \mathrm{H} 2 \mathrm{O})$
$\Delta \mathrm{H1}:=\mathrm{n}_{\mathrm{LiCl}} \cdot\left(35 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right)$
(Fig. 12.14, $\mathbf{n}=21.18$)
$\Delta \mathrm{H} 2:=\left(\mathrm{h}_{\mathrm{LiCl}}+\mathrm{n}^{\prime} \mathrm{LiCl} \cdot\left(-32 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right) \quad(\right.$ Fig. 12.14, $\mathbf{n}=\mathbf{8 . 1 5})$
$\mathrm{Q}:=\Delta \mathrm{H} 1+\Delta \mathrm{H} 2 \quad \mathrm{Q}=-14213 \mathrm{~kJ} \quad$ Ans.
12.31 Basis: 1 mole of $\mathbf{2 0 \%} \mathbf{~ L i C l}$ solution entering the process.

Assume 3 steps in the process:

1. Heat M1 moles of water from 10 C to 25 C
2. Unmix 1 mole ($\mathbf{0 . 8}$ moles water +0.2 moles LiCl) of $\mathbf{2 0} \% \mathrm{LiCl}$ solution
3. Mix (M1 + 0.8) moles of water and 0.2 moles of LiCl

Step 1: From Steam Tables $\quad \Delta \mathrm{H}_{1}:=\left(104.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}-41.99 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right) \cdot 18.015 \cdot \frac{\mathrm{~kg}}{\mathrm{kmol}}$

$$
\Delta \mathrm{H}_{1}=1.132 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

Step 2: From Fig. 12.14 with $\mathbf{n}=\mathbf{4}$ moles $\mathbf{H} 2 \mathrm{O} /$ mole solute:
$\Delta \mathrm{H}_{2}:=-25.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Step 3: Guess M1 and find $\Delta H 3$ solution from Figure 12.14. Calculate ΔH for process. Continue to guess $\mathbf{M 1}$ until $\Delta \mathbf{H}=0$ for adiabatic process.
$\mathrm{M}_{1}:=1.3 \cdot \mathrm{~mol}$

$$
\begin{aligned}
\mathrm{n}_{3} & :=\frac{\left(\rho .8 \cdot \mathrm{~mol}+\mathrm{M}_{1}\right.}{0.2 \cdot \mathrm{~mol}} \quad \Delta \mathrm{H}_{3}:=-33.16 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\mathrm{n}_{3} & =10.5
\end{aligned}
$$

$\Delta \mathrm{H}:=\mathrm{M}_{1} \cdot \Delta \mathrm{H}_{1}-0.2 \cdot \mathrm{~mol} \cdot \mathrm{H}_{2}+0.2 \cdot \mathrm{hol} \cdot \mathrm{H}_{3}$
$\Delta \mathrm{H}=-0.061 \mathrm{~kJ} \quad$ Close enough
$\mathrm{x}:=\frac{0.2 \cdot \mathrm{~mol}}{\mathrm{M}_{1}+1 \cdot \mathrm{~mol}} \quad \mathrm{x}=0.087 \quad$ Ans.

$$
\begin{align*}
& 12.32 \mathrm{H} 2 \mathrm{O} @ 5 \mathrm{C} \quad---->\quad \mathrm{H} 2 \mathrm{O} \text { @ } 25 \mathrm{C} \text { (1) } \\
& \mathrm{LiCl}(3 \mathrm{H} 2 \mathrm{O}) \quad---->\quad \mathrm{LiCl}+3 \mathbf{H 2 O} \tag{2}\\
& \text { H2O@5C+LiCl(3 H2O) }---->\operatorname{LiCl}(4 \mathrm{H} 2 \mathrm{O}) \\
& \Delta \mathrm{H}_{1}:=\left(104.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}-21.01 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right) \cdot 18.015 \cdot \frac{\mathrm{gm}}{\mathrm{~mol}} \quad \Delta \mathrm{H}_{1}=1.509 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
& \Delta \mathrm{H}_{2}:=20.756 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \text { From p. } 457(\Delta \mathrm{H} \mathrm{LiCl}(\mathrm{~s})-\Delta \mathbf{H ~ L i C l} \text { in } 3 \mathbf{~ m o l ~ H} \mathbf{2} \mathbf{O}) \\
& \Delta H_{3}:=-25.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \text { From Figure } 12.14
\end{align*}
$$

$\Delta \mathrm{H}:=\left(\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\mathrm{H}_{3} \cdot 0.2 \cdot \mathrm{~mol}\right.$
$\Delta H=-646.905 \mathrm{~J}$
Ans.
12.33 (a) $\mathrm{LiCl}+4 \mathbf{H 2 O}---->\mathbf{L i C l}\left(4 \mathrm{H} 2 \mathrm{O} \Delta \mathrm{H}:=-25.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}}\right.$ From Figure 12.14 $0.2 \cdot \mathrm{~mol} \cdot \mathrm{H}=-5.1 \mathrm{~kJ}$ Ans.
(b) $\mathrm{LiCl}(3 \mathrm{H} 2 \mathrm{O}) \quad---->\mathrm{LiCl}+3 \mathrm{H} 2 \mathrm{O}$ (1)
$\mathrm{LiCl}+4 \mathrm{H} 2 \mathrm{O} \quad---->\mathrm{LiCl}(4 \mathrm{H} 2 \mathrm{O})$
$\mathbf{L i C l}(3 \mathrm{H} 2 \mathrm{O})+\mathbf{H} 2 \mathrm{O}---->\mathbf{L i C l}(4 \mathrm{H} 2 \mathrm{O})$
$\Delta \mathrm{H}_{1}:=20.756 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}}$ From p. $457\left(\Delta \mathrm{H} \mathrm{LiCl}(\mathrm{s})-\Delta \mathbf{H ~ L i C l}\right.$ in $\left.3 \mathbf{~ m o l ~} \mathrm{H}_{2} \mathrm{O}\right)$
$\Delta \mathrm{H}_{2}:=-25.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}}$ From Figure 12.14
$\Delta \mathrm{H}:=0.2 \cdot \operatorname{dol} \cdot() \mathrm{H}_{1}+\Delta \mathrm{H}_{2} \quad \Delta \mathrm{H}=-0.949 \mathrm{~kJ} \quad$ Ans.
(c) $\mathrm{LiCl} * \mathrm{H} 2 \mathrm{O} \quad---->\quad \mathrm{Li}+1 / 2 \mathrm{Cl} 2+\mathrm{H} 2+1 / 2 \mathrm{O} 2$
$\mathrm{H} 2+1 / 2 \mathrm{O} 2 \quad--->\quad \mathrm{H} 2 \mathrm{O}$
$\mathrm{Li}+\mathbf{1 / 2 ~ C l 2} \quad---->\quad \mathrm{LiCl}$
$\mathrm{LiCl}+4 \mathrm{H} 2 \mathrm{O} \quad---->\quad \mathrm{LiCl}(4 \mathrm{H} 2 \mathrm{O})$
$\left.\mathbf{L i C l} * \mathbf{H 2 O}+3 \mathbf{H 2 O} \ldots-\mathbf{L i C l}^{(4} \mathbf{H 2 O}\right)$
$\Delta \mathrm{H}_{1}:=712.58 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad$ From p. 457 for $\mathrm{LiCl} \cdot \mathrm{H}_{2} \mathrm{O}$
$\Delta \mathrm{H}_{2}:=-285.83 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad$ From Table C. $4 \Delta \mathbf{H}_{\mathbf{f}} \mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathbf{l})$
$\Delta H_{3}:=-408.61 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad$ From p. 457 for $\mathbf{~ L i C l}$
$\Delta \mathrm{H}_{4}:=-25.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad$ From Figure 12.14
$\Delta \mathrm{H}:=0.2 \cdot \operatorname{mol} \cdot() \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+\mathrm{H}_{4} \quad \Delta \mathrm{H}=-1.472 \mathrm{~kJ} \quad$ Ans.
(d) $\quad \mathrm{LiCl}+4 \mathrm{H} 2 \mathrm{O} \quad---->\quad \mathrm{LiCl}(4 \mathrm{H} 2 \mathrm{O}) \quad$ (1)
$4 / 9(\mathrm{LiCl}(9 \mathrm{H2O}) \quad---->\quad \mathrm{LiCl}+9 \mathrm{H} 2 \mathrm{O})(2)$
$5 / 9 \mathrm{LiCl}+4 / 9 \mathrm{LiCl}(9 \mathrm{H} 2 \mathrm{O})-\mathrm{H}^{--->} \mathbf{~ L i C l}(4 \mathrm{H} 2 \mathrm{O})$

$$
\begin{array}{ll}
\Delta \mathrm{H}_{1}:=\frac{5}{8} \cdot(712.58) \cdot \frac{\mathrm{kJ}}{\mathrm{~mol}} & \text { From p. } 457 \text { for } \mathrm{LiCl} \cdot \mathbf{H}_{2} \mathbf{O} \\
\Delta \mathrm{H}_{2}:=\frac{5}{8} \cdot(-285.83) \cdot \frac{\mathrm{kJ}}{\mathrm{~mol}} & \text { From Table C. } 4 \Delta \mathbf{H}_{\mathrm{f}} \mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathrm{l})
\end{array}
$$

$$
\Delta \mathrm{H}_{3}:=\frac{3}{8} \cdot(32.4) \cdot \frac{\mathrm{kJ}}{\mathrm{~mol}}
$$

From Figure 12.14

$$
\Delta \mathrm{H}_{4}:=\frac{5}{8} \cdot(-408.61) \cdot \frac{\mathrm{kJ}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{H}_{5}:=-25.5 \cdot \frac{\mathrm{~kJ}}{\mathrm{~mol}}
$$

From Figure 12.14

$$
\Delta \mathrm{H}:=0.2 \cdot \operatorname{mol} \cdot() \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+\Delta \mathrm{H}_{4}+\mathrm{H}_{5} \quad \Delta \mathrm{H}=-0.403 \mathrm{~kJ} \quad \text { Ans. }
$$

12.34 BASIS: 1 second, during which the following are mixed:
(1) 12 kg hydrated $(6 \mathrm{H} 2 \mathrm{O})$ copper nitrate
(2) $\mathbf{1 5} \mathrm{kg} \mathrm{H} 2 \mathrm{O}$
$\mathrm{n}_{1}:=\frac{12}{295.61} \cdot \frac{\mathrm{kmol}}{\mathrm{sec}}$
$\mathrm{n}_{1}=0.041 \frac{\mathrm{kmol}}{\mathrm{sec}}$
Mole ratio, final solution:

$$
\mathrm{n}_{2}:=\frac{15}{18.015} \cdot \frac{\mathrm{kmol}}{\mathrm{sec}}
$$

$$
\mathrm{n}_{2}=0.833 \frac{\mathrm{kmol}}{\mathrm{sec}}
$$

$$
\frac{6 \cdot \mathrm{n}_{1}+\mathrm{n}_{2}}{\mathrm{n}_{1}}=26.51
$$

(1)
$\mathrm{Cu}(\mathrm{NO} 3) 2.6 \mathrm{H} 2 \mathrm{O}-->\mathrm{Cu}+\mathrm{N} 2+6 \mathrm{O} 2+6 \mathrm{H} 2$
$\mathrm{Cu}(\mathrm{NO} 3) 2+20.51 \mathrm{H} 2 \mathrm{O}-->\mathrm{Cu}(\mathrm{NO} 3) 2(20.51 \mathrm{H} 2 \mathrm{O})$ (4)
$\mathrm{Cu}(\mathrm{NO} 3) 2.6 \mathrm{H} 2 \mathrm{O}+14.51 \mathrm{H} 2 \mathrm{O}(\mathrm{l})--->\mathrm{Cu}(\mathrm{NO} 3) 2(20.51 \mathrm{H} 2 \mathrm{O})$
$\Delta \mathrm{H} 1:=6 \cdot(-285.83 \cdot \mathrm{~kJ})$
(Table C.4)
$\Delta \mathrm{H} 2:=-302.9 \cdot \mathrm{~kJ} \quad \Delta \mathrm{H} 3:=-(-2110.8 \cdot \mathrm{~kJ}) \quad \Delta \mathrm{H} 4:=-47.84 \cdot \mathrm{~kJ}$
$\Delta \mathrm{H}:=\Delta \mathrm{H} 1+\Delta \mathrm{H} 2+\Delta \mathrm{H} 3+\mathrm{H} 4$
$\Delta \mathrm{H}=45.08 \mathrm{~kJ}$

This value is for $\mathbf{1 ~ m o l}$ of the hydrated copper nitrate. On the basis of 1 second,
$\mathrm{Q}:=\mathrm{n}_{1} \cdot \frac{\Delta \mathrm{H}}{\mathrm{mol}} \quad \mathrm{Q}=1830 \frac{\mathrm{~kJ}}{\mathrm{sec}} \quad$ Ans.

$$
\begin{align*}
& 12.35 \mathrm{LiCl} .3 \mathrm{H} 2 \mathrm{O}--->\mathrm{Li}+1 / 2 \mathrm{Cl} 2+3 \mathrm{H} 2+3 / 2 \mathrm{O} 2 \\
& \text { 3(H2 + 1/2 O2 ---> H2O(1)) } \tag{2}\\
& 2(\mathrm{Li}+1 / 2 \mathrm{Cl2}+5 \mathrm{H} 2 \mathrm{O}--->\mathrm{LiCl}(5 \mathrm{H} 2 \mathrm{O})) \tag{3}\\
& \mathbf{L i C l}(7 \mathrm{H} 2 \mathrm{O})--->\mathbf{L i}+\mathbf{1 / 2} \mathbf{C l} 2+7 \mathbf{H 2 O} \tag{4}\\
& \mathrm{LiCl}(7 \mathrm{H} 2 \mathrm{O})+\mathrm{LiCl} .3 \mathrm{H} 2 \mathrm{O}--->2 \mathrm{LiCl}(5 \mathrm{H} 2 \mathrm{O}) \\
& \Delta \mathrm{H} 1:=1311.3 \cdot \mathrm{~kJ} \\
& \Delta \mathrm{H} 3:=2 \cdot(-436.805 \cdot \mathrm{~kJ}) \\
& \Delta \mathrm{H}:=\Delta \mathrm{H} 1+\Delta \mathrm{H} 2+\Delta \mathrm{H} 3+\mathrm{H} 4 \\
& \Delta \mathrm{H}=19.488 \mathrm{~kJ} \\
& \mathrm{Q}:=\Delta \mathrm{H} \quad \mathrm{Q}=19.488 \mathrm{~kJ} \quad \text { Ans. }
\end{align*}
$$

$$
\begin{array}{llc}
12.36 & \mathrm{Li}+1 / 2 \mathrm{Cl} 2+(\mathrm{n}+2) \mathrm{H} 2 \mathrm{O} & --> \\
& 2(\mathrm{H} 2+1 / 2 \mathrm{O} 2 \mathrm{OL}(\mathrm{n}+2 \mathrm{H} 2 \mathrm{O}) \tag{2}\\
\hline->\mathrm{H} 2 \mathrm{O}) & \text { (2) }
\end{array}
$$

$\mathrm{LiCl} .2 \mathrm{H} 2 \mathrm{O}-->\mathrm{Li}+1 / 2 \mathrm{Cl} 2+2 \mathrm{H} 2+\mathrm{O} 2$
$\mathbf{L i C l}$ 2H2O + n H2O ---> LiCl(n+2 H2O)
$\Delta \mathrm{H} 2:=2 \cdot(-285.83 \cdot \mathrm{~kJ})$

$$
\Delta \mathrm{H} 3:=1012.65 \cdot \mathrm{~kJ}
$$

(Table C.4)
Since the process is isothermal, $\Delta \mathrm{H}=\Delta \mathrm{H} 1+\Delta \mathrm{H} 2+\mathrm{H} 3$
Since it is also adiabatic, $\Delta \mathrm{H}=0$
Therefore, $\Delta \mathrm{H} 1:=-\Delta \mathrm{H} 2-\mathrm{H} 3 \quad \Delta \mathrm{H} 1=-440.99 \mathrm{~kJ}$
Interpolation in the table on pg. 457 shows that the $\mathbf{~} \mathbf{~ i C l}$ is dissolved in 8.878 mol H2O.
$\mathrm{x}_{\mathrm{LiCl}}:=\frac{1}{9.878} \quad \mathrm{x}_{\mathrm{LiCl}}=0.1012$
Ans.
12.37 Data:
$\mathrm{n}:=\left(\begin{array}{c}10 \\ 15 \\ 20 \\ 25 \\ 50 \\ 100 \\ 300 \\ 500 \\ 1000\end{array}\right)$
$\Delta \mathrm{H}_{\mathrm{f}}:=\left(\left.\begin{array}{c}-862.74 \\ -867.85 \\ -870.06 \\ -871.07 \\ -872.91 \\ -873.82 \\ -874.79 \\ -875.13\end{array} \right\rvert\, \cdot \mathrm{kJ}\right.$

$$
\begin{array}{ll}
\mathbf{C a}+\mathbf{C l 2}+\mathbf{n} \mathbf{H 2 O}---\mathbf{C a C l} 2(\mathrm{n} \mathrm{H2O}) & \Delta \mathrm{H}_{\mathrm{f}} \\
\mathbf{C a C l} 2(\mathrm{~s})--->\mathbf{C a}+\mathbf{C l} 2 & -\Delta \mathrm{H}_{\mathrm{fCaCl} 2}
\end{array}
$$

$\mathbf{C a C l} 2(s)+\mathbf{n H 2 O}-->\mathbf{C a C l} 2(n \mathrm{H} 2 \mathrm{O}) \quad \Delta$ Htilde

From Table C.4:
 $\Delta \mathrm{H}_{\mathrm{fCaCl} 2}:=-795.8 \cdot \mathrm{~kJ}$

i := 1 .. rows(n)

$\mathrm{CaCl} 2-->\mathrm{Ca}+\mathrm{Cl} 2$
$2(\mathrm{Ca}+\mathrm{Cl} 2+12.5 \mathrm{H} 2 \mathrm{O}---\mathrm{CaCl} 2(12.5 \mathrm{H} 2 \mathrm{O})(2)$
CaCl2(25 H2O) ---> Ca + Cl2 + 25 H2O
$\mathrm{CaCl} 2(25 \mathrm{H} 2 \mathrm{O})+\mathrm{CaCl} 2 \ldots-->2 \mathrm{CaCl} 2(12.5 \mathrm{H} 2 \mathrm{O})$

$$
\Delta \mathrm{H} 1:=795.8 \cdot \mathrm{~kJ} \quad \text { (Table C.4) }
$$

$$
\Delta \mathrm{H} 2:=2 \cdot(-865.295 \cdot \mathrm{~kJ}) \quad \Delta \mathrm{H} 3:=871.07 \cdot \mathrm{~kJ}
$$

$$
\Delta \mathrm{H}:=\Delta \mathrm{H} 1+\Delta \Delta \mathrm{H} 2+\mathrm{H} 3 \quad \mathrm{Q}:=\Delta \mathrm{H} \quad \mathrm{Q}=-63.72 \mathrm{~kJ} \quad \text { Ans. }
$$

12.39 The process may be considered in two steps:

Mix at 25 degC, then heat/cool solution to the final temperature. The two steps together are adiabatic and the overall enthalpy change is 0 .
Calculate moles H2O needed to form solution:
$\mathrm{n}:=\frac{\frac{85}{18.015}}{\frac{15}{110.986}} \quad \mathrm{n}=34.911$ Moles of $\mathbf{H 2 O}$ per mol CaCl2 in final solution.
Moles of water added per mole of $\mathbf{C a C l} 2.6 \mathrm{H} 2 \mathrm{O}$:
$\mathrm{n}-6=28.911$
Basis: 1 mol of Cacl2.6H2O dissolved

$$
\begin{gather*}
\mathrm{CaCl} 2.6 \mathrm{H} 2 \mathrm{O}(\mathrm{~s})---\mathrm{Ca}+\mathrm{Cl} 2+6 \mathrm{H} 2+3 \mathrm{O} 2 \quad \text { (1) } \tag{1}\\
\mathrm{Ca}+\mathrm{Cl} 2+34.991 \mathrm{H} 2 \mathrm{O}---\mathrm{CaCl} 2(34.911 \mathrm{H} 2 \mathrm{O})(2) \\
6(\mathrm{H} 2+1 / 2 \mathrm{O} 2-->\mathrm{H} 2 \mathrm{O})(3)
\end{gather*}
$$

CaCl2.6H2O + $28.911 \mathrm{H} 2 \mathrm{O}-\mathrm{-}^{-} \mathbf{-} \mathbf{C a C l} 2(34.911 \mathrm{H} 2 \mathrm{O})$
$\Delta \mathrm{H} 1:=2607.9 \cdot \mathrm{~kJ}$
$\Delta \mathrm{H} 2:=-871.8 \cdot \mathrm{~kJ}$
(Pb. 12.37)
$\Delta \mathrm{H}_{298}:=\Delta \mathrm{H} 1+\Delta \mathrm{H} 2+\mathrm{H} 3 \quad$ for reaction at 25 degC
$\Delta \mathrm{H}_{298}=21.12 \mathrm{~kJ}$

$$
\mathrm{m}_{\text {soln }}:=(110.986+34.911 \cdot 18.015) \cdot \mathrm{gm}
$$

$$
\mathrm{m}_{\text {soln }}=739.908 \mathrm{gm}
$$

$$
\begin{array}{lll}
\mathrm{C}_{\mathrm{P}}:=3.28 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \operatorname{degC}} & \Delta \mathrm{H}_{298}+\mathrm{C} \cdot \Delta \mathrm{~T}=0 & \Delta \mathrm{~T}:=\frac{-\Delta \mathrm{H}_{298}}{\mathrm{~m}_{\mathrm{soln} \cdot} \cdot \mathrm{C}_{\mathrm{P}}} \\
\Delta \mathrm{~T}=-8.702 \mathrm{degC} & \mathrm{~T}:=25 \cdot \Delta \mathrm{egC}+\mathrm{T} & \mathrm{~T}=16.298 \operatorname{degC} \quad \text { Ans. }
\end{array}
$$

$12.43 \mathrm{~m}_{1}:=150 \cdot \mathrm{lb}$ (H2SO4)
$\mathrm{H}_{1}:=8 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$

(Final soln.)
$\mathrm{H}_{3}:=-90 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{Q}=-38150 \mathrm{BTU}$
(25\% soln.)
(Fig. 12.17)
(Fig. 12.17)

Ans.

12.44 Enthalpies from Fig. 12.17.

$x_{1}:=0.5$
$\mathrm{x}_{2}:=1-\mathrm{x}_{1}$
$\mathrm{H}_{1}:=20 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad$ (pure H2SO4)
$\mathrm{HE}:=\mathrm{H}-\left(\mathrm{x}_{1} \cdot \mathrm{H}_{1}+\mathrm{x}_{2} \cdot \mathrm{H}_{2}\right.$
$H:=-69 \cdot \frac{B T U}{l_{m}}$
(50 \% soln)

$$
\begin{align*}
\mathrm{H}_{2} & :=108 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \tag{pureH2O}\\
\mathrm{HE} & =-133 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
\end{align*}
$$

Ans.
12.45 (a)

$$
\begin{array}{ll}
\mathrm{m}_{1}:=400 \cdot \mathrm{lb}_{\mathrm{m}} & \text { (35\% soln. at } \mathbf{1 3 0} \text { degF) } \\
\mathrm{m}_{2}:=175 \cdot \mathrm{lb}_{\mathrm{m}} & (\mathbf{1 0 \%} \text { soln. at } 200 \text { degF) } \\
\mathrm{H}_{1}:=100 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{H}_{2}:=152 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \text { (Fig. } 1 \\
\frac{35 \cdot \% \cdot \mathrm{~m}_{1}+10 \cdot \% \cdot \mathrm{~m}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}=27.39 \% \\
\mathrm{~m}_{3}:=\mathrm{m}_{1}+\mathrm{m}_{2} & \mathrm{H}_{3}:=41 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \text { (Fig. }
\end{array}
$$

$$
\mathrm{Q}:=\mathrm{m}_{3} \cdot \mathrm{H}_{3}-\left(\mathrm{m}_{1} \cdot \mathrm{H}_{1}+\mathrm{m}_{2} \cdot \mathrm{H}_{2} \quad \mathrm{Q}=-43025 \mathrm{BTU}\right. \text { Ans. }
$$

(b) Adiabatic process, $\mathbf{Q}=\mathbf{0}$.

$$
\mathrm{H}_{3}:=\frac{\mathrm{m}_{1} \cdot \mathrm{H}_{1}+\mathrm{m}_{2} \cdot \mathrm{H}_{2}}{\mathrm{~m}_{3}} \quad \mathrm{H}_{3}=115.826 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

From Fig. 12.19 the final soln. with this enthalpy has a temperature of about 165 degF.
12.46
$\mathrm{m}_{1}:=25 \cdot \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}}$
$\mathrm{H}_{1}:=-24 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{H}_{2}:=-55 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$

$$
\mathrm{x}_{1}:=0.2
$$

(Fig. 12.17 at 20\% \& 80 degF)
(Fig. 12.17 at 70\% and 217 degF)
[Slight extrapolation]
$\mathrm{x}_{2}:=0.7$
$\mathrm{H}_{3}:=1157.7 \cdot \frac{\mathrm{BTU}}{\mathrm{lb} \mathrm{b}_{\mathrm{m}}} \quad$ (Table F.4, $\mathbf{1 . 5}$ (psia) \& 217 degF]
$\mathrm{m}_{2}:=\frac{\mathrm{x}_{1} \cdot \mathrm{~m}_{1}}{\mathrm{x}_{2}} \quad \mathrm{~m}_{2}=7.143 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}} \quad \mathrm{m}_{3}:=\mathrm{m}_{1}-\mathrm{m}_{2} \quad \mathrm{~m}_{3}=17.857 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}}$
$\mathrm{Q}:=\mathrm{m}_{2} \cdot \mathrm{H}_{2}+\mathrm{m}_{3} \cdot \mathrm{H}_{3}-\mathrm{m}_{1} \cdot \mathrm{H}_{1}$

Ans.
12.47 Mix m1 lbm NaOH with m2 lbm 10\% soln. @ 68 degF.
BASIS:

$$
\begin{aligned}
& \mathrm{m}_{2}:=1 \cdot \mathrm{lb}_{\mathrm{m}} \\
& \mathrm{~m}_{1}:=1 \cdot \mathrm{lb}_{\mathrm{m}}
\end{aligned}
$$

$$
x_{3}:=0.35
$$

$$
\mathrm{x}_{2}:=0.1
$$

(guess)

$$
\mathrm{m}_{3}:=\mathrm{m}_{1}+\mathrm{m}_{2}
$$

Given $\quad \mathrm{m}_{1}+\mathrm{m}_{2}=\mathrm{m}_{3} \quad \mathrm{~m}_{1}+\mathrm{x}_{2} \cdot \mathrm{~m}_{2}=\mathrm{x}_{3} \cdot \mathrm{~m}_{3}$

$$
\binom{\mathrm{m}_{1}}{\mathrm{~m}_{3}}:=\operatorname{Find}\left(\mathrm{m}_{1}, \mathrm{~m}_{3} \quad \quad \mathrm{~m}_{1}=0.385 \mathrm{lb}_{\mathrm{m}} \quad \mathrm{~m}_{3}=1.385 \mathrm{lb}_{\mathrm{m}}\right.
$$

From Example 12.8 and Fig. 12.19
$\mathrm{H}_{1}:=478.7 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{H}_{3}:=\frac{\mathrm{m}_{1} \cdot \mathrm{H}_{1}+\mathrm{m}_{2} \cdot \mathrm{H}_{2}}{\mathrm{~m}_{3}}$
$\mathrm{H}_{2}:=43 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{H}_{3}=164 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$

From Fig. 12.19 at 35% and this enthalpy, we find the temperature to be about 205 degF.
12.48 First react $1 \mathrm{~mol} \mathrm{SO3}(\mathrm{l})$ with $1 \mathrm{~mol} \mathrm{H2O}(\mathrm{l})$ to form $1 \mathrm{~mol} \mathrm{H} 2 \mathrm{SO}(\mathrm{l}):$

SO3(l) + H2O(l) ---> H2SO4(l)
With data from Table C.4:
$\Delta \mathrm{H}_{298}:=[-813989-(-441040-285830)] \cdot \mathrm{J} \quad \Delta \mathrm{H}_{298}=-8.712 \times 10^{4} \mathrm{~J}$
Mix $1 \mathbf{m o l}$ or $98.08 \mathrm{gm} \mathrm{H} 2 S O 4(\mathrm{l})$ with $\mathbf{m} \mathbf{g m ~ H 2 O}$ to form a $\mathbf{5 0 \%}$ solution.

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{H} 2 \mathrm{SO} 4}:=98.08 \cdot \mathrm{gm} \\
& \mathrm{~m}_{\mathrm{H} 2 \mathrm{O}}:=\mathrm{m}_{\mathrm{soln}}-\mathrm{m}_{\mathrm{H} 2 \mathrm{SO} 4}
\end{aligned}
$$

$$
\mathrm{m}_{\mathrm{soln}}:=\frac{\mathrm{m}_{\mathrm{H} 2 \mathrm{SO} 4}}{0.5}
$$

Data from Fig. 12.17:

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{H}_{\mathrm{H} 2 \mathrm{SO} 4}:=0 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \text { [pure acid @ } 77 \text { degF }(25 \mathrm{degC})] \\
\mathrm{H}_{\mathrm{H} 2 \mathrm{O}}:=45 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \text { [pure water @ } 77 \text { degF }(25 \mathrm{degC})] \\
\mathrm{H}_{\mathrm{soln}}:=-70 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \text { [50\% soln. @ } 140 \text { degF }(40 \mathrm{deg} \mathrm{C})] \\
\Delta \mathrm{H}_{\mathrm{mix}}:=\mathrm{m}_{\mathrm{soln}} \cdot \mathrm{H}_{\mathrm{soln}}-\mathrm{m}_{\mathrm{H} 2 \mathrm{SO} 4} \cdot \mathrm{H}_{\mathrm{H} 2 \mathrm{SO} 4}-\mathrm{m}_{\mathrm{H} 2 \mathrm{O}} \cdot \mathrm{H}_{\mathrm{H} 2 \mathrm{O}} \\
\Delta \mathrm{H}_{\mathrm{mix}}=-18.145 \mathrm{~kg} \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \\
\mathrm{Q}:=\frac{\Delta \mathrm{H}_{298}+\Delta \mathrm{H}_{\mathrm{mix}}}{\mathrm{~m}_{\mathrm{soln}}} & \mathrm{Q}=-283 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \text { Ans. }
\end{array}
\end{array}
$$

12.49

$$
\begin{array}{ll}
\mathrm{m}_{1}:=140 \cdot \mathrm{lb}_{\mathrm{m}} & \mathrm{x}_{1}:=0.15 \quad \mathrm{~m}_{2}:=230 \cdot \mathrm{lb}_{\mathrm{m}} \\
\mathrm{H}_{1}:=65 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}} & \text { (Fig. 12.17 at 160 degF) } \\
\mathrm{H}_{2}:=-102 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}} & \text { (Fig. 12.17 at 100 degF) } \\
\mathrm{m}_{3}:=\mathrm{m}_{1}+\mathrm{m}_{2} & \mathrm{x}_{3}:=\frac{\mathrm{m}_{1} \cdot \mathrm{x}_{1}+\mathrm{m}_{2} \cdot \mathrm{x}_{2}}{\mathrm{~m}_{3}} \quad \mathrm{x}_{3}=55.4 \% \\
\mathrm{Q}:=-20000 \cdot \mathrm{BTU} & \mathrm{H}_{3}:=\frac{\mathrm{Q}+\left(\mathrm{m}_{1} \cdot \mathrm{H}_{1}+\mathrm{m}_{2} \cdot \mathrm{H}_{2}\right.}{\mathrm{m}_{3}}
\end{array}
$$

$$
x_{2}:=0.8
$$

From Fig. 12.17 find temperature about 118 degF
12.50 Initial solution (1) at 60 degF; Fig. 12.17:

$$
\mathrm{m}_{1}:=1500 \cdot \mathrm{lb}_{\mathrm{m}} \quad \mathrm{x}_{1}:=0.40
$$

$$
\mathrm{H}_{1}:=-98 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

Saturated steam at 1(atm); Table F.4:
$\mathrm{m}_{3}\left(\mathrm{~m}_{2}:=\mathrm{m}_{1}+\mathrm{m}_{2}\right.$

$$
\mathrm{H}_{2}:=1150.5 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$\mathrm{x}_{3}\left(\mathrm{~m}_{2}:=\frac{\mathrm{x}_{1} \cdot \mathrm{~m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \quad \mathrm{H}_{3}\left(\mathrm{~m}_{2}:=\frac{\mathrm{m}_{1} \cdot \mathrm{H}_{1}+\mathrm{m}_{2} \cdot \mathrm{H}_{2}}{\mathrm{~m}_{3}\left(\mathrm{~m}_{2}\right.}\right.\right.$
$\mathrm{m}_{2}:=125 \cdot \mathrm{lb}_{\mathrm{m}}$
$\mathrm{x}_{3}\left(\mathrm{~m}_{2}=36.9 \%\right.$
$\mathrm{H}_{3}\left(\mathrm{~m}_{2}=-2 \frac{\mathrm{BTU}}{\mathrm{lb} \mathrm{m}}\right.$
The question now is whether this result is in agreement with the value read from Fig. $\mathbf{1 2 . 1 7}$ at $\mathbf{3 6 . 9 \%}$ and 180 degF. It is close, but we make a second calculation:
$\mathrm{m}_{2}:=120 \cdot 1 \mathrm{~b}_{\mathrm{m}}$

$$
\mathrm{x}_{3}\left(\mathrm{~m}_{2}=37 \%\right.
$$

$$
\mathrm{H}_{3}\left(\mathrm{~m}_{2}=-5.5 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}\right.
$$

This is about as good a result as we can get.
12.51 Initial solution (1) at $\mathbf{8 0}$ degF; Fig. 12.17:
$\mathrm{m}_{1}:=1 \cdot 1 \mathrm{~b}_{\mathrm{m}}$
$\mathrm{x}_{1}:=0.45$

$$
\mathrm{H}_{1}:=-95 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

Saturated steam at $\mathbf{4 0 (p s i a) ; ~ T a b l e ~ F . 4 : ~}$

$$
\begin{array}{ll}
\mathrm{m}_{3}\left(\mathrm{~m}_{2}:=\mathrm{m}_{1}+\mathrm{m}_{2}\right. & \mathrm{H}_{2}:=1169.8 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \\
\mathrm{x}_{3}\left(\mathrm{~m}_{2}:=\frac{\mathrm{x}_{1} \cdot \mathrm{~m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right. & \mathrm{H}_{3}\left(\mathrm{~m}_{2}:=\frac{\mathrm{m}_{1} \cdot \mathrm{H}_{1}+\mathrm{m}_{2} \cdot \mathrm{H}_{2}}{\mathrm{~m}_{3}\left(\mathrm{~m}_{2}\right.}\right. \\
\mathrm{m}_{2}:=0.05 \cdot 1 \mathrm{~b}_{\mathrm{m}} & \mathrm{x}_{3}\left(\mathrm{~m}_{2}=42.9 \% \quad \mathrm{H}_{3}\left(\mathrm{~m}_{2}=-34.8 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}\right.\right.
\end{array}
$$

The question now is whether this result is in agreement with the value read from Fig. $\mathbf{1 2 . 1 7}$ at $\mathbf{3 6 . 9 \%}$ and 180 degF. It is close, but we make a second calculation:
$\mathrm{m}_{2}:=0.048 \cdot \mathrm{lb}_{\mathrm{m}} \quad \mathrm{x}_{3}\left(\mathrm{~m}_{2}=42.9 \%\right.$

This is about as good a result as we can get.
12.52 Initial solution (1) at 80 degF; Fig. 12.19:
$\mathrm{m}_{1}:=1 \cdot \mathrm{lb}_{\mathrm{m}}$
$\mathrm{x}_{1}:=0.40$

$$
\mathrm{H}_{1}:=77 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

Saturated steam at 35(psia); Table F.4:

$$
\begin{array}{lll}
\mathrm{H}_{2}:=1161.1 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{x}_{3}:=0.38 & \mathrm{~m}_{2}:=\frac{\mathrm{x}_{1} \cdot \mathrm{~m}_{1}}{\mathrm{x}_{3}}-\mathrm{m}_{1} \\
\mathrm{~m}_{3}:=\mathrm{m}_{1}+\mathrm{m}_{2} & \mathrm{~m}_{3}=1.053 \mathrm{lb}_{\mathrm{m}} & \mathrm{~m}_{2}=0.053 \mathrm{lb}_{\mathrm{m}} \\
\mathrm{H}_{3}:=\frac{\mathrm{m}_{1} \cdot \mathrm{H}_{1}+\mathrm{m}_{2} \cdot \mathrm{H}_{2}}{\mathrm{~m}_{3}} & &
\end{array}
$$

$$
\mathrm{H}_{3}=131.2 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

We see from Fig. 12.19 that for this enthalpy at $\mathbf{3 8 \%}$ the temperature is about 155 degF .
12.53 Read values for $\mathrm{H}, \mathrm{H} 1, \& \mathrm{H} 2$ from Fig. 12.17 at 100 degF :
$H:=-56 \cdot \frac{B T U}{l b_{m}}$
$\mathrm{x}_{1}:=0.35$
$\mathrm{H}_{1}:=8 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$x_{2}:=1-x_{1}$

$$
\mathrm{H}_{2}:=68 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\Delta \mathrm{H}:=\mathrm{H}-\mathrm{x}_{1} \cdot \mathrm{H}_{1}-\mathrm{x}_{2} \cdot \mathrm{H}_{2}
$$

Ans.
12.54 BASIS: $1(\mathrm{lbm})$ of soln.

Read values for $\mathbf{H} 1 \& \mathrm{H} 2$ from Fig. 12.17 at 80 degF:

$$
\begin{aligned}
& \mathrm{H}_{1}:=4 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{H}_{2}:=48 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{x}_{1}:=0.4 \quad \mathrm{x}_{2}:=1-\mathrm{x}_{1} \\
& \mathrm{Q}=\Delta \mathrm{H}=\mathrm{H}-\mathrm{x}_{1} \cdot \mathrm{H}_{1}-\mathrm{x}_{2} \cdot \mathrm{H}_{2}=0 \\
& \mathrm{H}:=\mathrm{x}_{1} \cdot \mathrm{H}_{1}+\mathrm{x}_{2} \cdot \mathrm{H}_{2} \quad \mathrm{H}=30.4 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
\end{aligned}
$$

From Fig. 12.17, for a $\mathbf{4 0 \%}$ soln. to have this enthalpy the temperature is well above 200 degF , probably about 250 degF .
12.55 Initial solution: $\quad x_{1}:=\frac{2 \cdot 98.08}{2 \cdot 98.08+15 \cdot 18.015} \quad x_{1}=0.421$

Final solution:

$$
x_{2}:=\frac{3 \cdot 98.08}{3 \cdot 98.08+14 \cdot 18.015}
$$

$$
x_{2}=0.538
$$

Data from Fig. 12.17 at 100 degF:
$\mathrm{H}_{\mathrm{H} 2 \mathrm{O}}:=68 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{H}_{\mathrm{H} 2 \mathrm{SO} 4}:=9 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{H}_{1}:=-75 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$

$$
\mathrm{H}_{2}:=-101 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

Unmix the initial solution:

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{unmix}}:=\left[\mathrm{x}_{1} \cdot \mathrm{H}_{\mathrm{H} 2 \mathrm{SO} 4}+() \mathrm{l}-\mathrm{x}_{1} \cdot \mathrm{H}_{\mathrm{H} 2 \mathrm{O}}\right]-\mathrm{H}_{1} \\
& \Delta \mathrm{H}_{\mathrm{unmix}}
\end{aligned}=118.185 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} .
$$

React $1 \mathrm{~mol} \mathrm{SO3(g)}$ with $1 \mathrm{~mol} \mathrm{H2O}(\mathrm{l})$ to form $1 \mathrm{~mol} \mathrm{H2SO4(l)}$. neglect the effect of Ton the heat of reaction, taking the value at 100 degF equal to the value at 77 degF (25 deg C)

$$
\Delta \mathrm{H}_{\mathrm{fSO} 3}:=-395720 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{H}_{\mathrm{fH} 2 \mathrm{O}}:=-285830 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{H}_{\mathrm{fH} 2 \mathrm{SO} 4}:=-813989 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{H}_{\mathrm{rx}}:=\Delta \mathrm{H}_{\mathrm{fH} 2 \mathrm{SO} 4}-\Delta \mathrm{H}_{\mathrm{fH} 2 \mathrm{O}}-\mathrm{H}_{\mathrm{fSO} 3} \quad \Delta \mathrm{H}_{\mathrm{rx}}=-1.324 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Finally, mix the constituents to form the final solution:

$$
\begin{aligned}
& \Delta \mathrm{H}_{\text {mix }}:=\mathrm{H}_{2}-\left[\mathrm{x}_{2} \cdot \mathrm{H}_{\mathrm{H} 2 \mathrm{SO} 4}+\left(\mathrm{l}-\mathrm{x}_{2} \cdot \mathrm{H}_{\mathrm{H} 2 \mathrm{O}}\right] \quad \Delta \mathrm{H}_{\text {mix }}=-137.231 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}\right. \\
& \mathrm{Q}:= \Delta \mathrm{H}_{\mathrm{unmix}} \cdot(2 \cdot 98.08+15 \cdot 18.015) \cdot \mathrm{lb} \ldots \\
&+1 \cdot \mathrm{Bbmol} \cdot \mathrm{H}_{\mathrm{rx}} \ldots \\
&+\Delta \mathrm{H}_{\text {mix }} \cdot(3 \cdot 98.08+14 \cdot 18.015) \cdot \mathrm{lb} \quad \mathrm{Q}=-76809 \mathrm{BTU} \quad \text { Ans. }
\end{aligned}
$$

12.56 Read values for $\mathbf{H}(\mathbf{x} 1=\mathbf{0 . 6 5}), \mathbf{H} 1, \& \mathbf{H} \mathbf{2}$ from Fig. 12.17 at 77 degF:
$\mathrm{H}:=-125 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{H}_{1}:=0 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{x}_{1}:=0.65$

$$
\mathrm{x}_{2}:=1-\mathrm{x}_{1}
$$

$\mathrm{H}_{2}:=45 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\Delta \mathrm{H}:=\mathrm{H}-\mathrm{x}_{1} \cdot \mathrm{H}_{1}-\mathrm{x}_{2} \cdot \mathrm{H}_{2}$

$$
\Delta \mathrm{H}=-140.8 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

Ans.

From the intercepts of a tangent line drawn to the $\mathbf{7 7}$ degF curve of Fig. $\mathbf{1 2 . 1 7}$ at $\mathbf{6 5 \%}$, find the approximate values:
$\operatorname{Hbar}_{1}:=-136 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{Hbar}_{2}:=-103 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$

Ans.
12.57 Graphical solution: If the mixing is adiabatic and water is added to bring the temperature to 140 degF , then the point on the \mathbf{H}-x diagram of Fig. 12.17 representing the final solution is the intersection of the $140-\operatorname{deg} F$ isotherm with a straight line between points representing the $75 \mathbf{w t} \%$ solution at 140 degF and pure water at 40 degF . This intersection gives $x 3$, the wt \% of the final solution at 140 degF:
$x_{3}:=42 . \%$
$\mathrm{m}_{1}:=1 \cdot \mathrm{lb}$

By a mass balance:
$\mathrm{x}_{3}=\frac{0.75 \cdot \mathrm{~m}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}} \quad \mathrm{~m}_{2}:=\frac{0.75 \cdot \mathrm{~m}_{1}}{\mathrm{x}_{3}}-\mathrm{m}_{1} \quad \mathrm{~m}_{2}=0.786 \mathrm{lb}_{\mathrm{m}}$
Ans.
12.5
(a) $\mathrm{m}_{1}:=25 \cdot 1 \mathrm{~b}_{\mathrm{m}}$

$$
\mathrm{m}_{2}:=40 \cdot 1 \mathrm{~b}_{\mathrm{m}}
$$

$\mathrm{m}_{3}:=75 \cdot 1 \mathrm{~b}_{\mathrm{m}}$
$\mathrm{x}_{1}:=0$
$\mathrm{x}_{2}:=1$

$$
x_{3}:=0.25
$$

Enthalpy data from Fig. 12.17 at 120 degF:
$\mathrm{H}_{1}:=88 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{m}_{4}:=\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}$
$\mathrm{H}_{2}:=14 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{m}_{4}=140 \mathrm{lb}_{\mathrm{m}}$
$\mathrm{x}_{4}:=\frac{\mathrm{x}_{1} \cdot \mathrm{~m}_{1}+\mathrm{x}_{2} \cdot \mathrm{~m}_{2}+\mathrm{x}_{3} \cdot \mathrm{~m}_{3}}{\mathrm{~m}_{4}}$
(Fig. 12.17)
$\mathrm{H}_{4}:=-63 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{Q}:=\mathrm{m}_{4} \cdot \mathrm{H}_{4}-\left(\mathrm{m}_{1} \cdot \mathrm{H}_{1}+\mathrm{m}_{2} \cdot \mathrm{H}_{2}+\mathrm{m}_{3} \cdot \mathrm{H}_{3}\right.$
$\mathrm{Q}=-11055 \mathrm{BTU}$ Ans.
(b) First step:

$$
\mathrm{m}_{1}:=40 \cdot \mathrm{lb}
$$

$$
x_{1}:=1
$$

$$
\mathrm{H}_{1}:=14 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{m}_{2}:=75 \cdot \mathrm{lb}
$$

$$
x_{2}:=0.25
$$

$$
\mathrm{H}_{2}:=-7 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$\mathrm{m}_{3}:=\mathrm{m}_{1}+\mathrm{m}_{2}$
$\mathrm{x}_{3}:=\frac{\mathrm{x}_{1} \cdot \mathrm{~m}_{1}+\mathrm{x}_{2} \cdot \mathrm{~m}_{2}}{\mathrm{~m}_{3}}$
$\mathrm{H}_{3}:=\frac{\mathrm{Q}+\mathrm{m}_{1} \cdot \mathrm{H}_{1}+\mathrm{m}_{2} \cdot \mathrm{H}_{2}}{\mathrm{~m}_{3}}$
$\mathrm{x}_{3}=0.511$

$$
\mathrm{H}_{3}=-95.8 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

From Fig. 12.17 at this enthalpy and wt \% the temperature is about 100 degF.

12.59 BASIS: 1 mol NaOH neutralized.

For following reaction; data from Table C.4:
$\mathrm{NaOH}(\mathrm{s})+\mathrm{HCl}(\mathrm{g})--->\mathrm{NaCl}(\mathrm{s})+\mathrm{H} 2 \mathrm{O}(\mathrm{l})$
$\Delta \mathrm{H}_{298}:=[-411153-285830-(-425609-92307)] \cdot \mathrm{J}$
$\Delta \mathrm{H}_{298}=-1.791 \times 10^{5} \mathrm{~J}$
$\mathrm{NaOH}(\mathrm{s})+\mathrm{HCl}(\mathrm{g})--->\mathrm{NaCl}(\mathrm{s})+\mathrm{H} 2 \mathrm{O}(\mathrm{l})$
$\mathrm{NaOH}($ inf H 2 O$)--->\mathbf{N a O H}(\mathrm{s})+\inf \mathbf{H 2 O}$
$\mathrm{HCl}(9 \mathrm{H} 2 \mathrm{O})--->\mathrm{HCl}(\mathrm{g})+9 \mathrm{H} 2 \mathrm{O}(\mathrm{l})$
$\mathrm{NaCl}(\mathrm{s})+\inf \mathbf{H 2 O}--->\mathbf{N a C l}(i n f \mathrm{H} 2 \mathrm{O})$
$\mathrm{NaOH}($ inf H 2 O$)+\mathrm{HCl}(9 \mathrm{H} 2 \mathrm{O})--->\mathbf{N a C l}($ inf H 2 O$)$
$\Delta \mathrm{H}_{1}:=\Delta \mathrm{H}_{298}$
$\Delta \mathrm{H}_{4}:=3.88 \cdot \mathrm{~kJ}$
$\mathrm{Q}:=\Delta \mathrm{H}$
$Q=-62187 J$

$$
\Delta \mathrm{H}_{2}:=44.50 \cdot \mathrm{~kJ}
$$

$$
Q=-62187 J
$$

$\Delta \mathrm{H}_{3}:=68.50 \cdot \mathrm{~kJ}$

$$
\Delta \mathrm{H}:=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+\mathrm{H}_{4}
$$

12.60 First, find heat of solution of 1 mole of $\mathbf{N a O H}$ in 9 moles of $\mathbf{H} 2 \mathrm{O}$ at $25 \mathrm{deg} \mathrm{C}(77 \mathrm{degF})$.

Weight \% of 10 mol \% NaOH soln:
$\mathrm{x}_{1}:=\frac{1 \cdot 40.00}{1 \cdot 40.00+9 \cdot 18.015} \quad \mathrm{x}_{1}=19.789 \%$
$\mathrm{H}_{\mathrm{H} 2 \mathrm{O}}:=45 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{H}_{\text {soln }}:=35 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
(Table F.3, sat. liq. at 77 degF)
(Fig. 12.19 at $\times 1$ and $77 \operatorname{deg} F$)
$\mathrm{H}_{\mathrm{NaOH}}:=478.7 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
[Ex. 12.8 (p. 468 at 68 degF]

Correct NaOH enthalpy to 77 degF with heat capacity at 72.5 degF (295.65 K); Table C.2:

$$
\mathrm{T}:=295.65 \cdot \mathrm{~K} \quad \text { molwt }:=40.00 \cdot \frac{\mathrm{gm}}{\mathrm{~mol}}
$$

$$
\begin{array}{ll}
\mathrm{Cp}:=\frac{\mathrm{R}}{\mathrm{molwt}} \cdot\left(0.121+\frac{16.316 \cdot 10^{-3}}{\mathrm{~K}} \cdot \mathrm{~T}\right) & \mathrm{Cp}=0.245 \frac{\mathrm{BTU}}{\mathrm{lb} \cdot \text { rankine }} \\
\mathrm{H}_{\mathrm{NaOH}}:=\mathrm{H}_{\mathrm{NaOH}}+\mathrm{Cp} \cdot(77-68) \cdot \text { rankine } & \mathrm{H}_{\mathrm{NaOH}}:=480.91 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
\end{array}
$$

$$
\Delta \mathrm{H}:=\mathrm{H}_{\mathrm{soln}}-\left[\mathrm{x}_{1} \cdot \mathrm{H}_{\mathrm{NaOH}}+()-\mathrm{x}_{1} \cdot \mathrm{H}_{\mathrm{H} 2 \mathrm{O}}\right]
$$

$$
\Delta \mathrm{H}=-0.224 \frac{\mathrm{~kJ}}{\mathrm{gm}} \quad \text { This is for } \mathbf{1} \mathbf{g m} \text { of SOLUTION. }
$$

However, for $1 \mathbf{~ m o l}$ of $\mathbf{N a O H}$, it becomes:
$\Delta \mathrm{H}:=\frac{\Delta \mathrm{H}}{\mathrm{x}_{1}}$ molwt $\quad \Delta \mathrm{H}=-45.259 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

Now, on the BASIS of $1 \mathbf{~ m o l}$ of $\mathbf{~ H C l ~ n e u t r a l i z e d : ~}$
$\mathrm{NaOH}(\mathrm{s})+\mathrm{HCl}(\mathrm{g})--->\mathrm{NaCl}(\mathrm{s})+\mathrm{H} 2 \mathrm{O}(\mathrm{l})$
HCl(inf H2O) $-\ldots>\mathbf{H C l}(\mathrm{g})+\inf \mathbf{H 2 O}$
$\mathrm{NaOH}(9 \mathrm{H} 2 \mathrm{O})--->\mathrm{NaOH}(\mathrm{s})+9 \mathrm{H} 2 \mathrm{O}$
$\mathrm{NaCl}+\inf \mathbf{H 2 O}--->\mathbf{N a C l}(i n f \mathrm{H} 2 \mathrm{O})$
$\mathrm{HCl}(\mathrm{inf} \mathrm{H} 2 \mathrm{O})+\mathrm{NaOH}(9 \mathrm{H} 2 \mathrm{O})--->\mathrm{NaCl}(\mathrm{inf} \mathrm{H} 2 \mathrm{O})$

$$
\Delta \mathrm{H}_{1}:=-179067 \cdot \mathrm{~J} \quad \text { (Pb. 12.59) }
$$

$\Delta \mathrm{H}_{2}:=74.5 \cdot \mathrm{~kJ}$

$$
\Delta \mathrm{H}_{3}:=45.259 \cdot \mathrm{~kJ}
$$

$$
\Delta \mathrm{H}_{4}:=3.88 \cdot \mathrm{~kJ}
$$

(Fig. 12.14 with sign change)
(See above; note sign change)
(given)
$\Delta \mathrm{H}:=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}+\mathrm{H}_{3}$
$\mathrm{Q}:=\Delta \mathrm{H}$
$Q=-14049 \mathrm{~J}$ Ans.
12.61 Note: The derivation of the equations in part a) can be found in Section B of this manual.
$\mathrm{x}_{1}:=\left(\begin{array}{c}0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.85 \\ 0.9 \\ 0.95\end{array}\right)$
$\mathrm{HE}:=-\left(\begin{array}{c}73.27 \\ 144.21 \\ 208.64 \\ 262.83 \\ 302.84 \\ 323.31 \\ 320.98 \\ 279.58 \\ 237.25 \\ 178.87 \\ 100.71\end{array}\right) \frac{\mathrm{kJ}}{\mathrm{kg}}$

$$
\mathrm{x}_{2}:=\overrightarrow{\left(\eta-\mathrm{x}_{1}\right.} \quad \mathrm{H}:=\frac{\overrightarrow{\mathrm{HE}}}{\mathrm{x}_{1} \cdot \mathrm{x}_{2}}
$$

In order to take the necessary derivatives of H , we will fit the data to a
third order polynomial of the form $\left(H=\frac{H E}{x_{1} \cdot x_{2}}=a+b_{x .1}+c \cdot x_{1}^{2}+d \cdot x_{1}\right)^{3)}$.
Use the Mathcad regress function to find the parameters a, b, c and d.
$\left(\begin{array}{l}\mathrm{w} \\ \mathrm{w} \\ \mathrm{n} \\ \mathrm{a} \\ \mathrm{b} \\ \mathrm{c}\end{array} \mathrm{l}^{\mathrm{m}}=\operatorname{regress}\left[\mathrm{x}_{1}, \frac{\mathrm{H}}{\left(\frac{\mathrm{kJ})}{\mathrm{kg})}, 3\right]} \mathrm{d}\right)\right.$
$\left(\begin{array}{l}\mathrm{w} \\ \mathrm{w} \\ \mathrm{n} \\ \mathrm{a} \\ \mathrm{b} \\ \mathrm{c} \\ \mathrm{d}\end{array}\right)=\left(\begin{array}{c}3 \\ 3 \\ 3 \\ -735.28 \\ -824.518 \\ 195.199 \\ -914.579\end{array}\right)$
$H()_{1}:=\left(\nmid a+b \cdot x_{1}+c \cdot x_{1}^{2}+d \cdot x_{1}^{3} \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.$
Using the equations given in the problem statement and taking the derivatives of the polynomial analytically:
$\left.\operatorname{HEbar}_{1}()_{1}:=\overline{\left(()-x_{1}{ }^{2} \cdot\left[H()_{1}+x_{1} \cdot\left[\left(b+2 \cdot c \cdot x_{1}+3 \cdot d \cdot x_{1}{ }^{2} \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right]\right]\right.\right.}\right]$
$\operatorname{HEbar}_{2}()_{1}:=\overline{\left[x_{1}{ }^{2} \cdot\left[H()_{1}-()-x_{1} \cdot\left[\left(b+2 \cdot c \cdot x_{1}+3 \cdot d \cdot x_{1}{ }^{2} \cdot \frac{k J}{k g}\right]\right]\right.\right.}$

12.62 Note: This problem uses data from problem 12.61
$\mathrm{x}_{1}:=\left(\begin{array}{c}0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.85 \\ 0.9 \\ 0.95\end{array}\right)$
$\mathrm{HE}:=-\left(\begin{array}{c}73.27 \\ 144.21 \\ 208.64 \\ 262.83 \\ 302.84 \\ 323.31 \\ 320.98 \\ 279.58 \\ 237.25 \\ 178.87 \\ 100.71\end{array}\right) \frac{\mathrm{kJ}}{\mathrm{kg}}$
$\mathrm{x}_{2}:=\overrightarrow{\left(1-\mathrm{x}_{1}\right.} \quad \mathrm{H}:=\frac{\overrightarrow{\mathrm{HE}}}{\mathrm{x}_{1} \cdot \mathrm{x}_{2}}$

Fit a third order polynomial of the form $\left(\frac{H E}{x_{1} \cdot x_{2}}=a+b_{x .1}+c \cdot x_{1}{ }^{2}+d \cdot x_{1}{ }^{3}\right)$.
Use the Mathcad regress function to find the parameters a, b, c and d.
$\left(\begin{array}{l}\mathrm{w} \\ \mathrm{w} \\ \mathrm{n} \\ \mathrm{a} \\ \mathrm{b} \\ \mathrm{c}\end{array} \mathrm{I}^{\mathrm{m}}:=\operatorname{regress}\left[\mathrm{x}_{1}, \frac{\mathrm{H}}{\left(\frac{\mathrm{kJ})}{\mathrm{kg}}\right)}, 3\right]\right.$
$\left(\begin{array}{l}\mathrm{w} \\ \mathrm{w} \\ \mathrm{n} \\ \mathrm{a} \\ \mathrm{b} \\ \mathrm{c} \\ \mathrm{d}\end{array}\right)=\left(\begin{array}{c}3 \\ 3 \\ 3 \\ -735.28 \\ -824.518 \\ 195.199 \\ -914.579\end{array}\right)$

By the equations given in problem 12.61
H()$_{1}:=\left(\nmid \mathrm{A}+\mathrm{b} \cdot \mathrm{x}_{1}+\mathrm{c} \cdot \mathrm{x}_{1}^{2}+\mathrm{d} \cdot \mathrm{x}_{1}{ }^{3} \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.$
$H()_{1}:=H()_{1} \cdot x_{1} \cdot() 1-x_{1}$
$\operatorname{Hbar}_{1}()_{1}:=()-x_{1}{ }^{2} \cdot\left[\mathrm{H}()_{1}+\mathrm{x}_{1} \cdot\left[\left(\mathrm{~b}+2 \cdot \mathrm{c} \cdot \mathrm{x}_{1}+3 \cdot \mathrm{~d} \cdot \mathrm{x}_{1}{ }^{2} \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right]\right]\right.$
$\operatorname{Hbar}_{2}()_{1}:=x_{1}{ }^{2} \cdot\left[H()_{1}-() d-x_{1} \cdot\left[\left(b+2 \cdot c \cdot x_{1}+3 \cdot d \cdot x_{1}{ }^{2} \cdot \frac{k J}{k g}\right]\right]\right.$
At time θ, let:
$\mathbf{x 1}=$ mass fraftion of H2SO4 in tank
$\mathbf{m}=$ total mass of $\mathbf{9 0 \%} \mathbf{H 2 S O} 4$ added up to time θ
$\mathrm{H}=$ enthalpy of H2SO4 solution in tank at 25 C
H 2 = enthalpy of pure H2O at 25 C
H 1 = enthalpy of pure H 2 SO 4 at 25 C
$\mathbf{H 3}=$ enthalpy of $90 \% \mathrm{H} 2 \mathrm{SO} 4$ at 25 C
Material and energy balances are then written as:
$\mathrm{x}_{1} \cdot(4000+\mathrm{m})=0.9 \mathrm{~m} \quad$ Solving for $\mathrm{m}: \quad \mathrm{m}\left(\mathrm{k}_{1}:=\frac{(4000 \mathrm{~kg}) \mathrm{x}_{1}}{0.9-\mathrm{x}_{1}}\right.$
Eq. (A)
$\mathrm{Q}=\Delta \mathrm{Ht}=(4000+\mathrm{m}) \cdot \mathrm{H}-4000 \mathrm{H}_{2}-\mathrm{m} \cdot \mathrm{H}_{3}$

Since $\Delta H=H-x_{1} \cdot H_{1}-x_{2} \cdot H_{2}$ and since T is constant at $25 C$, we set $H 1=H 2=0$ at this T, making $H=\Delta H$. The energy balance then becomes:
$\mathrm{Q}=(4000+\mathrm{m}) \cdot \Delta \mathrm{H}-\mathrm{m} \cdot \mathrm{H}_{3}$
Eq. (B)
Applying these equations to the overall process, for which:

$$
\begin{array}{rll}
\theta:=6 \mathrm{hr} & \mathrm{x}_{1}:=0.5 & \mathrm{H}_{3}:=\mathrm{H}(0.9)
\end{array} \mathrm{H}_{3}=-178.737 \frac{\mathrm{~kJ}}{\mathrm{~kg}}, ~\left(\mathrm{H}:=\mathrm{H}(0.5) \quad \Delta \mathrm{H}=-303.265 \frac{\mathrm{~kJ}}{\mathrm{~kg}}\right.
$$

Define quantities as a function of $\mathbf{x}_{\mathbf{1}}$
Q()$_{1}:=\left[\left(4000 \mathrm{~kg}+\mathrm{m}()_{1} \cdot \mathrm{H}()_{1}-\mathrm{m}()_{1} \cdot \mathrm{H}_{3}\right]\right.$
$\mathrm{m}\left(\mathrm{k}_{1}:=\frac{(4000 \mathrm{~kg}) \mathrm{x}_{1}}{0.9-\mathrm{x}_{1}}\right.$
$\mathrm{m}(0.5)=5000 \mathrm{~kg}$

Qt()$_{1}:=\left(4000 \mathrm{~kg}+\mathrm{m}\left(\mathrm{k}_{1} \quad \cdot \Delta \mathrm{H}-\mathrm{m}\left(\mathrm{k}_{1} \cdot \mathrm{H}_{3} \quad \mathrm{Qt}(0.5)=-1.836 \times 10^{6} \mathrm{~kJ}\right.\right.\right.$
Since the heat transfer rate q is constant:
$\mathrm{q}:=\frac{\mathrm{Qt}\left(\mathrm{k}_{1}\right.}{\theta}$
and
$\Theta\left(\mathrm{k}_{1}:=\frac{\mathrm{Q}\left(\mathrm{k}_{1}\right.}{\mathrm{q}}\right.$
Eq. (C)
The following is probably the most elegant solution to this problem, and it leads to the direct calculation of the required rates,
$\mathrm{r}=\frac{\mathrm{dm}}{\mathrm{d} \theta}$
When $\mathbf{9 0 \%}$ acid is added to the tank it undergoes an enthalpy change equal to: $0.9 \mathrm{Hbar} 1+0.1 \mathrm{Hbar} 2-\mathrm{H} 3$, where Hbar1 and Hbar2 are the partial enthalpies of H 2 SO 4 and H 2 O in the solution of mass fraction $\mathbf{x} 1$ existing in the tank at the instant of addition. This enthalpy change equals the heat required per kg of $\mathbf{9 0 \%}$ acid to keep the temperature at 25 C . Thus,

$$
\mathrm{r}\left(\mathrm{k}_{1}:=\frac{\mathrm{q}}{0.9 \operatorname{Hbar}_{1}\left(\mathrm{k}_{1}+0.1 \operatorname{Hbar}_{2}\left(\mathrm{k}_{1}-\mathrm{H}_{3}\right.\right.}\right.
$$

Plot the rate as a function of time $\quad x_{1}:=0,0.01 . .0 .5$

12.64 mat $_{1}:=20000 \frac{\mathrm{lb}}{\mathrm{hr}}$

$$
\mathrm{x}_{1}:=0.8 \quad \mathrm{~T}_{1}:=120 \operatorname{deg} \mathrm{~F} \quad \mathrm{H}_{1}:=-92 \frac{\mathrm{BTU}}{\mathrm{lb}}
$$

Enthalpies from Fig. 12.17

$$
\begin{array}{lll}
\mathrm{x}_{2}:=0.0 & \mathrm{~T}_{2}:=40 \mathrm{degF} & \mathrm{H}_{2}:=7 \frac{\mathrm{BTU}}{\mathrm{lb}} \\
\mathrm{x}_{3}:=0.5 & \mathrm{~T}_{3}:=140 \operatorname{deg} \mathrm{~F} & \mathrm{H}_{3}:=-70 \frac{\mathrm{BTU}}{\mathrm{lb}}
\end{array}
$$

a) Use mass balances to find feed rate of cold water and product rate.

Guess: $\quad \operatorname{mdot}_{2}:=\operatorname{mdot}_{1} \quad \operatorname{mdot}_{3}:=2 \operatorname{mdot}_{1}$
Given

$$
\begin{array}{ll}
\operatorname{mdot}_{1}+\operatorname{mdot}_{2}=\text { mot }_{3} & \text { Total balance } \\
\operatorname{mdot}_{1} \cdot x_{1}+\operatorname{mdot}_{2} \cdot x_{2}=\operatorname{mdot}_{3} \cdot x_{3} & \mathbf{H}_{2} \mathbf{S O}_{4} \text { balance }
\end{array}
$$

$$
\left(\begin{array}{l}
\operatorname{mdot}_{2} \\
\left.\operatorname{mdot}_{3}\right)
\end{array}:=\operatorname{Find}() \operatorname{mdot}_{2}, \operatorname{mdot}_{3} \quad \operatorname{mdot}_{2}=12000 \frac{\mathrm{lb}}{\mathrm{hr}} \operatorname{mdot}_{3}=32000 \frac{\mathrm{lb}}{\mathrm{hr}}\right. \text { Ans. }
$$

b) Apply an energy balance on the mixer

$$
\text { Qdot }:=\operatorname{mdot}_{3} \cdot \mathrm{H}_{3}-\left(\operatorname{mdot}_{1} \cdot \mathrm{H}_{1}+\operatorname{mdot}_{2} \cdot \mathrm{H}_{2} \quad \text { Qdot }=-484000 \frac{\mathrm{BTU}}{\mathrm{hr}}\right.
$$

Since Qdot is negative, heat is removed from the mixer.
c) For an adiabatic process, Qdot is zero. Solve the energy balance to find \mathbf{H}_{3}

$$
\mathrm{H}_{3}:=\frac{\operatorname{mdot}_{1} \cdot \mathrm{H}_{1}+\operatorname{mdot}_{2} \cdot \mathrm{H}_{2}}{\mathrm{mdot}_{3}} \quad \mathrm{H}_{3}=-54.875 \frac{\mathrm{BTU}}{\mathrm{lb}}
$$

From Fig. 12.17, this corresponds to a temperature of about 165 F
12.65 Let L = total moles of liquid at any point in time and Vdot = rate at which liquid boils and leaves the system as vapor.
An unsteady state mole balance yields: $\quad \frac{\mathrm{dL}}{\mathrm{dt}}=-\mathrm{Vdot}$
An unsteady state species balance on water yields: $\frac{d() \cdot x_{1}}{d t}=-y_{1} \cdot V d o t$
Expanding the derivative gives: $\quad \mathrm{L} \cdot \frac{\mathrm{dx}_{1}}{\mathrm{dt}}+\mathrm{x}_{1} \cdot \frac{\mathrm{dL}}{\mathrm{dt}}=-\mathrm{Vdot} \cdot \mathrm{y}_{1}$

Substituting -Vdot for $\mathbf{d L} / \mathbf{d t}$:

$$
\mathrm{L} \cdot \frac{\mathrm{dx}_{1}}{\mathrm{dt}}+\mathrm{x}_{1} \cdot(-\mathrm{Vdot})=-\mathrm{y}_{1} \cdot \mathrm{Vdot}
$$

Rearranging this equation gives: $\quad L \cdot \frac{d x_{1}}{d t}=\left(x_{1}-y_{1} \cdot V \operatorname{dot}\right.$
Substituting -dL/dt for Vdot: $\quad \mathrm{L} \cdot \frac{\mathrm{dx}_{1}}{\mathrm{dt}}=()_{1}-\mathrm{x}_{1} \cdot \frac{\mathrm{dL}}{\mathrm{dt}}$
Eliminating dt and rearranging: $\quad \frac{\mathrm{dx}_{1}}{\mathrm{y}_{1}-\mathrm{x}_{1}}=\frac{\mathrm{dL}}{\mathrm{L}}$

At low concentrations y_{1} and x_{1} can be related by:
$\mathrm{y}_{1}=\left(\gamma_{\mathrm{inf1}} \cdot \frac{\text { Psat }_{1}}{\mathrm{P}} \cdot \mathrm{x}_{1}\right)=\mathrm{K}_{1} \cdot \mathrm{x}_{1} \quad$ where: $\quad \mathrm{K}_{1}=\gamma_{\mathrm{inf1}} \cdot \frac{\text { Psat }_{1}}{\mathrm{P}}$
Substituting gives: $\quad \frac{d x_{1}}{\left(\mathrm{~K}_{1}-1 \mathrm{x}_{1}\right.}=\frac{\mathrm{dL}}{\mathrm{L}}$
Integrating this equation yields: $\quad \ln \left(\frac{L_{f}}{L_{0}}\right)=\frac{1}{\left(\mathrm{~K}_{1}-1\right.} \cdot \ln \left(\frac{\mathrm{x}_{1 \mathrm{f}}}{\mathrm{x}_{10}}\right)$
where L_{0} and x_{10} are the initial conditions of the system
For this problem the following values apply:
$\mathrm{L}_{0}:=1 \mathrm{~mol}$

$$
x_{10}:=\frac{600}{10^{6}}
$$

$$
\mathrm{x}_{1 \mathrm{f}}:=\frac{50}{10^{6}}
$$

$\mathrm{T}:=130 \operatorname{deg} \mathrm{C} \quad \mathrm{P}:=1 \mathrm{~atm} \quad \gamma_{\text {inf1 }}:=5.8$
Psat $_{1}:=\exp \left(16.3872-\frac{3885.70}{\frac{\mathrm{~T}}{\operatorname{deg} \mathrm{C}}+230.170}\right) \cdot \mathrm{kPa} \quad \quad$ Psat $_{1}=270.071 \mathrm{kPa}$
$\mathrm{K}_{1}:=\gamma_{\text {inf1 }} \cdot \frac{\text { Psat }_{1}}{\mathrm{P}} \quad \mathrm{K}_{1}=15.459$
$\mathrm{L}_{\mathrm{f}}:=\mathrm{L}_{0} \cdot \exp \left[\frac{1}{\left(\mathrm{~K}_{1}-1\right.} \cdot \ln \left(\frac{\mathrm{x}_{1 \mathrm{f}}}{\mathrm{x}_{10}}\right)\right] \quad \quad \mathrm{L}_{\mathrm{f}}=0.842$ mole
$\mathrm{n}_{\text {org } 0}:=\mathrm{L}_{0} \cdot() 1-\mathrm{x}_{10} \quad \mathrm{n}_{\text {orgf }}:=\mathrm{L}_{\mathrm{f}} \cdot(1)-\mathrm{x}_{1 \mathrm{f}}$
$\mathrm{n}_{\text {org } 0}=0.999$ mole $\quad \mathrm{n}_{\text {orgf }}=0.842$ mole
$\% \operatorname{loss}_{\text {org }}:=\frac{\mathrm{n}_{\text {org } 0}-\mathrm{n}_{\text {orgf }}}{\mathrm{n}_{\text {org } 0}} \quad \% \quad \operatorname{loss}_{\text {org }}=15.744 \% \quad$ Ans.
The water can be removed but almost $\mathbf{1 6 \%}$ of the organic liquid will be removed with the water.

12.691-Acetone 2-Methanol $\quad \mathrm{T}:=(50+273.15) \mathrm{K}$

For Wilson equation
$\mathrm{a}_{12}:=-161.88 \frac{\mathrm{cal}}{\mathrm{mol}} \quad \mathrm{a}_{21}:=583.11 \frac{\mathrm{cal}}{\mathrm{mol}} \quad \mathrm{V}_{1}:=74.05 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{~V}_{2}:=40.73 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$

$$
\begin{array}{r}
\Lambda_{12}:=\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}} \cdot \exp \left(\frac{-\mathrm{a}_{12}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \Lambda_{12}=0.708 \quad \Lambda_{21}:=\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}} \cdot \exp \left(\frac{\left.-\mathrm{a}_{21}\right)}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \Lambda_{21}=0.733 \\
\text { From p. } 445 \begin{array}{l}
\ln \gamma \inf _{1}:=\left(-\ln \left(\Lambda_{12}+\Lambda-21 \quad \ln \gamma \inf _{1}=0.613\right.\right. \\
\ln \gamma \inf _{2}:=\left(-\ln \left(\Lambda_{21}+\Lambda-12 \quad\right. \text { Ans. }\right. \\
\ln \gamma \inf _{2}=0.603
\end{array} \text { Ans. }
\end{array}
$$

From Fig. 12.9(b) $\quad \ln \gamma \inf _{1}=0.62 \quad \ln \gamma \inf _{2}=0.61$

For NRTL equation

$$
\begin{aligned}
& \mathrm{b}_{12}:=184.70 \frac{\mathrm{cal}}{\mathrm{~mol}} \\
& \mathrm{~b}_{21}:=222.64 \frac{\mathrm{cal}}{\mathrm{~mol}} \\
& \alpha:=0.3048 \\
& \tau_{12}:=\frac{\mathrm{b}_{12}}{\mathrm{R} \cdot \mathrm{~T}} \\
& \tau_{12}=0.288 \\
& \tau_{21}:=\frac{\mathrm{b}_{21}}{\mathrm{R} \cdot \mathrm{~T}} \\
& \tau_{21}=0.347 \\
& \mathrm{G}_{12}:=\exp (\not) \boldsymbol{\alpha} \cdot{ }_{12} \quad \mathrm{G}_{12}=0.916 \quad \mathrm{G}_{21}:=\exp (\not) \boldsymbol{\alpha} \cdot{ }_{21} \quad \mathrm{G}_{21}=0.9 \\
& \text { From p. } 446 \begin{array}{lll}
\ln \gamma \inf _{1}:=\tau_{21}+\tau_{12} \cdot \exp (f-\alpha \cdot & 12 & \ln \gamma \inf _{1}=0.611 \\
\ln \gamma \inf _{2}:=\tau_{12}+\tau_{21} \cdot \exp (-\alpha \cdot & 21 & \ln \gamma \inf _{2}=0.600
\end{array}
\end{aligned}
$$

Both estimates are in close agreement with the values from Fig. 12.9 (b)
12.71 Psat $_{1}:=183.4 \mathrm{kPa}$
$\mathrm{x}_{1}:=0.253$

Psat $_{2}:=96.7 \mathrm{kPa}$
$\mathrm{y}_{1}:=0.456 \quad \mathrm{P}:=139.1 \mathrm{kPa}$

Check whether or not the system is ideal using Raoult's Law (RL)

$$
\mathrm{P}_{\mathrm{RL}}:=\mathrm{x}_{1} \cdot \mathrm{Psat}_{1}+() \mathrm{l}-\mathrm{x}_{1} \cdot \mathrm{Psat}_{2} \quad \mathrm{P}_{\mathrm{RL}}=118.635 \mathrm{kPa}
$$

Since $\mathbf{P}_{\mathbf{R L}}<\mathbf{P}, \gamma_{1}$ and γ_{2} are not equal to 1 . Therefore, we need a model for $G^{E} / R T$. A two parameter model will work.
From Margules Equation: $\frac{\mathrm{GE}}{\mathrm{RT}}=\mathrm{x}_{1} \cdot \mathrm{x}_{2} \cdot() \mathrm{A}_{21} \cdot \mathrm{x}_{1}+\mathrm{A}_{12} \cdot \mathrm{x}_{2}$

$$
\begin{align*}
& \ln ()_{1}=\mathrm{x}_{2}{ }^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12} \cdot \mathrm{x}_{1}\right]\right. \tag{12.10a}\\
& \ln ()_{2}=\mathrm{x}_{1}{ }^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21} \cdot \mathrm{x}_{2}\right]\right.
\end{align*}
$$

Eq. (12.10b)
Find γ_{1} and γ_{2} at $\mathbf{x}_{1}=\mathbf{0 . 2 5 3}$ from the given data.
$\gamma_{1}:=\frac{\mathrm{y}_{1} \cdot \mathrm{P}}{\mathrm{x}_{1} \cdot \mathrm{Psat}_{1}} \quad \gamma_{1}=1.367 \quad \gamma_{2}:=\frac{(1)-\mathrm{y}_{1} \cdot \mathrm{P}}{\left(1-\mathrm{x}_{1} \cdot \mathrm{Psat}_{2}\right.} \quad \gamma_{2}=1.048$
Use the values of γ_{1} and γ_{2} at $\mathbf{x}_{1}=0.253$ and Eqs. (12.10a) and (12.10b) to find A_{12} and A_{21}.
Guess: $\quad \mathrm{A}_{12}:=0.5 \quad \mathrm{~A}_{21}:=0.5$
Given $\quad \ln \left(\gamma_{1}=() 1-\mathrm{x}_{1}{ }^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot() \mathrm{A}_{21}-\mathrm{A}_{12} \cdot \mathrm{x}_{1}\right]\right.$
Eq. (12.10a)

$$
\begin{equation*}
\ln \left(y_{2}=x_{1}^{2} \cdot\left[A_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21} \cdot() \mathrm{l}-\mathrm{x}_{1}\right]\right.\right. \tag{12.10b}
\end{equation*}
$$

$\binom{\mathrm{A}_{12}}{\mathrm{~A}_{21}}:=\operatorname{Find}\left(\mathrm{A}_{12}, \mathrm{~A}_{21} \quad \mathrm{~A}_{12}=0.644 \quad \mathrm{~A}_{21}=0.478\right.$
$\gamma_{1}\left(\mathrm{k}_{1}:=\exp \left[\left(\mathrm{l}-\mathrm{x}_{1}{ }^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot() \mathrm{A}_{21}-\mathrm{A}_{12} \cdot \mathrm{x}_{1}\right]\right]\right.\right.$
$\gamma_{2}\left(\mathrm{x}_{1}:=\exp \left[\mathrm{x}_{1}{ }^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot() \mathrm{A}_{12}-\mathrm{A}_{21} \cdot\left(\mathrm{t}-\mathrm{x}_{1}\right]\right]\right.\right.$

Since α_{12} remains above a value of 1 , an azeotrope is unlikely based on the assumption that the model of $G^{E} / R T$ is reliable.
$12.72 \mathrm{P}:=108.6 \mathrm{kPa} \quad \mathrm{x}_{1}:=0.389$
$\mathrm{T}:=(35+273.15) \mathrm{K} \quad$ Psat $_{1}:=120.2 \mathrm{kPa} \quad$ Psat $_{2}:=73.9 \mathrm{kPa}$
Check whether or not the system is ideal using Raoult's Law (RL)
$\mathrm{P}_{\mathrm{RL}}:=\mathrm{x}_{1} \cdot$ Psat $_{1}+() \mathrm{l}-\mathrm{x}_{1} \cdot$ Psat $_{2} \quad \mathrm{P}_{\mathrm{RL}}=91.911 \mathrm{kPa}$
Since $\mathbf{P}_{\mathbf{R L}}<\mathbf{P}, \gamma_{1}$ and γ_{2} are not equal to 1. Therefore, we need a model for GE/RT. A one parameter model will work.
Assume a model of the form: $\quad \frac{\mathrm{GE}}{\mathrm{RT}}=\mathrm{A} \cdot \mathrm{x}_{1} \cdot \mathrm{x}_{2}$

$$
\begin{aligned}
& \gamma_{1}=\exp () \mathrm{A} \cdot \mathrm{x}_{2}^{2} \\
& \gamma_{2}=\exp \left(\mathrm{A}_{\mathrm{x} .1}{ }^{2}\right.
\end{aligned}
$$

Since we have no y1 value, we must use the following equation to find A : $P=x_{1} \cdot \gamma_{1} \cdot$ Psat $_{1}+x_{2} \cdot \gamma_{2} \cdot$ Psat $_{2}$

Use the data to find the value of A
Guess: $\mathrm{A}:=1$
Given $\quad P=x_{1} \cdot \exp \left[A \cdot\left(1-x_{1}^{2}\right] \cdot \operatorname{Psat}_{1}+() I-x_{1} \cdot \exp \left[\left(A \cdot x_{1}^{2}\right] \cdot\right.\right.$ Psat $_{2}$
$\mathrm{A}:=\operatorname{Find}(\mathrm{A}) \quad \mathrm{A}=0.677$
$\gamma_{1}()_{1}:=\exp \left[A \cdot()-x_{1}^{2}\right] \quad \gamma_{2}\left(k_{1}:=\exp \left(A \cdot x_{1}{ }^{2}\right.\right.$
a) $\mathrm{y}_{1}:=\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1} \cdot \frac{\mathrm{Psat}_{1}}{\mathrm{P}}\right.$ Ans.
b) $\mathrm{P}:=\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{k}_{1} \cdot\right.$ Psat $_{1}+() 1-\mathrm{x}_{1} \cdot \gamma_{2}\left(\mathrm{k}_{1} \cdot\right.$ Psat $_{2} \quad \mathrm{P}=110.228 \mathrm{kPa} \quad$ Ans.
c) $\gamma_{1 \mathrm{inf}}:=\exp (\mathrm{A}) \quad \gamma_{1 \mathrm{inf}}=1.968 \quad \gamma_{2 \mathrm{inf}}:=\exp (\mathrm{A}) \quad \gamma_{2 \mathrm{inf}}=1.968$

Since $\alpha 12$ ranges from less than 1 to greater than 1 an azeotrope is likely based on the assumption that our model is reliable.

Chapter 13 - Section A-Mathcad Solutions

Note: For the following problems the variable kelvin is used for the SI unit of absolute temperature so as not to conflict with the variable K used for the equilibrium constant
$13.4 \mathrm{H} 2(\mathrm{~g})+\mathrm{CO} 2(\mathrm{~g})=\mathrm{H} 2 \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$

$$
v=\sum_{\mathrm{i}} v_{\mathrm{i}}=-1-1+1+1=0 \quad \mathrm{n}_{0}=1+1=2
$$

By Eq. (13.5). $\quad \mathrm{yH}_{2}=\mathrm{yCO}_{2}=\frac{1-\varepsilon}{2} \quad \mathrm{yH}_{2} \mathrm{O}=\mathrm{y}_{\mathrm{CO}}=\frac{\varepsilon}{2}$
By Eq. (A) and with data from Example 13.13 at 1000 K:
$\mathrm{T}:=1000 \cdot \mathrm{kelvin}$

$$
\begin{aligned}
\mathrm{G}(\mathrm{E}:= & \left(\frac{1-\varepsilon}{2}\right) \cdot(-395790) \cdot \frac{\mathrm{J}}{\mathrm{~mol}}+\frac{\varepsilon}{2} \cdot(-192420-200240) \cdot \frac{\mathrm{J}}{\mathrm{~mol}} \ldots \\
& +\mathrm{R} \cdot \mathrm{~T} \cdot\left(2 \cdot \frac{1-\varepsilon}{2} \cdot \ln \left(\frac{1-\varepsilon}{2}\right)+2 \cdot \frac{\varepsilon}{2} \cdot \ln \left(\frac{\varepsilon}{2}\right)\right)
\end{aligned}
$$

Guess: $\quad \varepsilon_{\mathrm{e}}:=0.5$
Given $\quad \frac{\mathrm{d}}{\mathrm{d} \varepsilon_{\mathrm{e}}} \mathrm{G}\left(\xi_{\mathrm{e}}=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \varepsilon_{\mathrm{e}}:=\operatorname{Find}\left(\xi \mathrm{e} \quad \varepsilon_{\mathrm{e}}=0.45308\right.\right.$
$\varepsilon:=0.3,0.31$.. 0.6

13.5 (a) $\mathrm{H} 2(\mathrm{~g})+\mathrm{CO} 2(\mathrm{~g})=\mathrm{H} 2 \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$

$$
v=\sum_{\mathrm{i}} v_{\mathrm{i}}=-1-1+1+1=0 \quad \mathrm{n}_{0}=1+1=2
$$

By Eq. (13.5).

$$
\mathrm{yH}_{2}=\mathrm{yCO}_{2}=\frac{1-\varepsilon}{2} \quad \mathrm{yH}_{2} \mathrm{O}=\mathrm{yCO}=\frac{\varepsilon}{2}
$$

By Eq. (A) and with data from Example 13.13 at 1100 K:

$\mathrm{T}:=1100 \cdot \mathrm{kelvin}$

$$
\begin{aligned}
\mathrm{G}(\xi:= & \left(\frac{1-\varepsilon}{2}\right) \cdot(-395960) \cdot \frac{\mathrm{J}}{\mathrm{~mol}}+\frac{\varepsilon}{2} \cdot(-187000-209110) \cdot \frac{\mathrm{J}}{\mathrm{~mol}} \ldots \\
& +\mathrm{R} \cdot \mathrm{~T} \cdot\left(2 \cdot \frac{1-\varepsilon}{2} \cdot \ln \left(\frac{1-\varepsilon}{2}\right)+2 \cdot \frac{\varepsilon}{2} \cdot \ln \left(\frac{\varepsilon}{2}\right)\right)
\end{aligned}
$$

Guess: $\quad \varepsilon_{\mathrm{e}}:=0.5$

Given

$$
\frac{\mathrm{d}}{\mathrm{~d} \varepsilon_{\mathrm{e}}} \mathrm{G}\left(\xi_{\mathrm{e}}=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \varepsilon_{\mathrm{e}}:=\operatorname{Find}\left(\xi_{\mathrm{e}} \quad \varepsilon_{\mathrm{e}}=0.502 \quad\right. \text { Ans. }\right.
$$

$\varepsilon:=0.35,0.36 . .0 .65$

(b) $\mathrm{H} 2(\mathrm{~g})+\mathrm{CO} 2(\mathrm{~g})=\mathrm{H} 2 \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$
$v=\sum_{\mathrm{i}} \mathrm{v}_{\mathrm{i}}=-1-1+1+1=0 \quad \mathrm{n}_{0}=1+1=2$

$$
\text { By Eq. (13.5), } \quad \mathrm{yH}_{2}=\mathrm{yCO}_{2}=\frac{1-\varepsilon}{2} \quad \mathrm{yH}_{2} \mathrm{O}=\mathrm{yCO}_{\mathrm{CO}}=\frac{\varepsilon}{2}
$$

By Eq. (A) and with data from Example 13.13 at 1200 K:

$\mathrm{T}:=1200 \cdot \mathrm{kelvin}$

$$
\begin{aligned}
\mathrm{G}(\mathrm{E}:= & \left(\frac{1-\varepsilon}{2}\right) \cdot(-396020) \cdot \frac{\mathrm{J}}{\mathrm{~mol}}+\frac{\varepsilon}{2} \cdot(-181380-217830) \cdot \frac{\mathrm{J}}{\mathrm{~mol}} \ldots \\
& +\mathrm{R} \cdot \mathrm{~T} \cdot\left(2 \cdot \frac{1-\varepsilon}{2} \cdot \ln \left(\frac{1-\varepsilon}{2}\right)+2 \cdot \frac{\varepsilon}{2} \cdot \ln \left(\frac{\varepsilon}{2}\right)\right)
\end{aligned}
$$

Guess: $\quad \varepsilon_{\mathrm{e}}:=0.1$
Given $\quad \frac{\mathrm{d}}{\mathrm{d} \varepsilon_{\mathrm{e}}} \mathrm{G}\left(\xi_{\mathrm{e}}=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \varepsilon_{\mathrm{e}}:=\operatorname{Find}\left(\xi_{\mathrm{e}} \quad \varepsilon_{\mathrm{e}}=0.53988\right.\right.$
Ans.
$\varepsilon:=0.4,0.41 . .0 .7$

(c) $\mathrm{H} 2(\mathrm{~g})+\mathrm{CO} 2(\mathrm{~g})=\mathrm{H} 2 \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$
$v=\sum_{\mathrm{i}} v_{\mathrm{i}}=-1-1+1+1=0 \quad \mathrm{n}_{0}=1+1=2$
By Eq, (13.5), $\quad \mathrm{y}_{2}=\mathrm{yCO}_{2}=\frac{1-\varepsilon}{2} \quad \mathrm{yH}_{2} \mathrm{O}=\mathrm{yCO}_{\mathrm{CO}}=\frac{\varepsilon}{2}$
By Eq. (A) and with data from Example 13.13 at 1300 K:
$\mathrm{T}:=1300 \cdot \mathrm{kel} \mathrm{vin}$

$$
\begin{aligned}
\mathrm{G}(\mathrm{E}:= & \left(\frac{1-\varepsilon}{2}\right) \cdot(-396080) \cdot \frac{\mathrm{J}}{\mathrm{~mol}}+\frac{\varepsilon}{2} \cdot(-175720-226530) \cdot \frac{\mathrm{J}}{\mathrm{~mol}} \ldots \\
& +\mathrm{R} \cdot \mathrm{~T} \cdot\left(2 \cdot \frac{1-\varepsilon}{2} \cdot \ln \left(\frac{1-\varepsilon}{2}\right)+2 \cdot \frac{\varepsilon}{2} \cdot \ln \left(\frac{\varepsilon}{2}\right)\right)
\end{aligned}
$$

Guess: $\quad \varepsilon_{\mathrm{e}}:=0.6$

Given

$$
\frac{\mathrm{d}}{\mathrm{~d} \varepsilon_{\mathrm{e}}} \mathrm{G}\left(\xi_{\mathrm{e}}=0 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \varepsilon_{\mathrm{e}}:=\operatorname{Find}\left(\xi_{\mathrm{e}} \quad \varepsilon_{\mathrm{e}}=0.57088 \quad\right. \text { Ans. }\right.
$$

$\varepsilon:=0.4,0.41 . .0 .7$

13.6 $\mathrm{H} 2(\mathrm{~g})+\mathrm{CO} 2(\mathrm{~g})=\mathrm{H} 2 \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})$

$$
v=\sum_{\mathrm{i}} v_{\mathrm{i}}=-1-1+1+1=0 \quad \mathrm{n}_{0}=1+1=2
$$

By Eq, (13.5), $\quad \mathrm{y}_{2}=\mathrm{yCO}_{2}=\frac{1-\varepsilon}{2} \quad \mathrm{yH}_{2} \mathrm{O}=\mathrm{yCO}_{\mathrm{CO}}=\frac{\varepsilon}{2}$
With data from Example 13.13, the following vectors represent values for Parts (a) through (d):
$T:=\left(\begin{array}{l}1000 \\ 1100 \\ 1200 \\ 1300\end{array}\right) \cdot$ kelvin
$\Delta \mathrm{G}:=\left(\begin{array}{c}3130 \\ -150 \\ -3190 \\ -6170\end{array}\right) \cdot \frac{\mathrm{J}}{\mathrm{mol}}$

Combining Eqs. (13.5), (13.11a), and (13.28) gives

$$
\frac{\left(\frac{\varepsilon}{2}\right) \cdot\left(\frac{\varepsilon}{2}\right)}{\left(\frac{1-\varepsilon}{2}\right) \cdot\left(\frac{1-\varepsilon}{2}\right)}=\frac{\varepsilon^{2}}{\left(1-\varepsilon^{2}\right.}=\mathrm{K}=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right)
$$

$$
\xi:=\sqrt{\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right)} \quad \varepsilon:=\frac{\vec{\xi}}{1+\xi}
$$

Ans.
$13.114 \mathrm{HCl}(\mathrm{g})+\mathrm{O} 2(\mathrm{~g})=2 \mathrm{H} 2 \mathrm{O}(\mathrm{g})+2 \mathrm{Cl}(\mathrm{g})$

$$
\begin{array}{ll}
v=-1 \quad \mathrm{n}_{0}=6 & \mathrm{~T}:=773.15 \cdot \text { kelvin } \\
\Delta \mathrm{H}_{298}:=-114408 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} & \Delta \mathrm{G}_{298}:=-75948 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{array}
$$

$$
\mathrm{T}_{0}:=298.15 \cdot \text { kelvin }
$$

The following vectors represent the species of the reaction in the order in which they appear:
$v:=\left(\begin{array}{c}-4 \\ -1 \\ 2 \\ 2\end{array}\right)$
$\mathrm{A}:=\left(\begin{array}{l}3.156 \\ 3.639 \\ 3.470 \\ 4.442\end{array}\right)$
$\mathrm{B}:=\left(\begin{array}{l}0.623 \\ 0.506 \\ 1.450 \\ 0.089\end{array}\right) \cdot 10^{-3}$
$\mathrm{D}:=\left(\begin{array}{l}0.151 \\ -0.227 \\ 0.121 \\ -0.344\end{array}\right) \cdot 10^{5}$
end $:=\operatorname{rows}(\mathrm{A})$
$\mathrm{i}:=1$.. end
$\Delta \mathrm{A}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{i}} \quad \Delta \mathrm{B}:=\sum_{\mathrm{i}}\left(\gamma_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}} \quad \Delta \mathrm{D}:=\sum_{\mathrm{i}}\left(\gamma_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.\right.$
$\Delta \mathrm{A}=-0.439$
$\Delta \mathrm{B}=8 \times 10^{-5}$
$\Delta \mathrm{C}:=0$
$\Delta \mathrm{D}=-8.23 \times 10^{4}$
$\Delta \mathrm{G}:=\Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{T}_{0}} \cdot\left(\lambda \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots\right.$
$+\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D}$
$+-\mathrm{R} \cdot \mathrm{T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D}$
$\Delta \mathrm{G}=-1.267 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathrm{K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{T}}\right)$
$K=7.18041$

By Eq. (13.5)

$$
\mathrm{y}_{\mathrm{HCl}}=\frac{5-4 \cdot \varepsilon}{6-\varepsilon}
$$

$\mathrm{y}_{\mathrm{O} 2}=\frac{1-\varepsilon}{6-\varepsilon}$
$\mathrm{yH}_{2} \mathrm{O}=\frac{2 \cdot \varepsilon}{6-\varepsilon} \quad \mathrm{yCl}_{2}=\frac{2 \cdot \varepsilon}{6-\varepsilon}$
Apply Eq. (13.28); $\quad \varepsilon:=0.5 \quad$ (guess)
Given $\left(\frac{2 \cdot \varepsilon}{5-4 \cdot \varepsilon}\right)^{4} \cdot\left(\frac{6-\varepsilon}{1-\varepsilon}\right)=2 \cdot \mathrm{~K} \quad \varepsilon:=\operatorname{Find}(\varepsilon \quad \varepsilon=0.793$
YHCl $:=\frac{5-4 \cdot \varepsilon}{6-\varepsilon} \quad$ yO2 $^{6-\varepsilon}:=\frac{1-\varepsilon}{6-\varepsilon} \quad$ yH2O $:=\frac{2 \cdot \varepsilon}{6-\varepsilon} \quad$ yCl2 $^{6-=} \quad \frac{2 \cdot \varepsilon}{6-\varepsilon}$
$\mathrm{y}_{\mathrm{HCl}}=0.3508$
$13.12 \mathrm{~N} 2(\mathrm{~g})+\mathrm{C} 2 \mathrm{H} 2(\mathrm{~g})=2 \mathrm{HCN}(\mathrm{g})$

$$
v=0 \quad \mathrm{n}_{0}=2
$$

This is the reaction of $\mathbf{P b}$. 4.21(x). From the answers for Pbs. 4.21(x), $4.22(x)$, and $13.7(x)$, find the following values:

$$
\Delta \mathrm{H}_{298}:=42720 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{298}:=39430 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\Delta \mathrm{A}:=0.060$

$$
\Delta \mathrm{B}:=0.173 \cdot 10^{-3} \quad \Delta \mathrm{C}:=0
$$

$$
\Delta \mathrm{D}:=-0.191 \cdot 10^{5}
$$

$\mathrm{T}:=923.15 \cdot \mathrm{kelvin}$
$\mathrm{T}_{0}:=298.15 \cdot \mathrm{kelvin}$

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots \\
& +\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \bar{\Delta}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \bar{\Delta}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
\end{aligned}
$$

$$
\Delta \mathrm{G}=3.242 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}=0.01464
$$

By Eq. (13.5),

$$
\mathrm{yN}_{\mathrm{N} 2}=\frac{1-\varepsilon}{2} \quad \mathrm{y}_{\mathrm{C} 2 \mathrm{H} 4}=\frac{1-\varepsilon}{2} \quad \mathrm{yHCN}^{2}=\frac{2 \mathrm{e}}{2}=\varepsilon
$$

By Eq. (13.28), $\quad \varepsilon:=0.5 \quad$ (guess)
Given $\quad\left(\frac{2 \cdot \varepsilon}{1-\varepsilon}\right)^{2}=\mathrm{K} \quad \varepsilon:=\operatorname{Find}(\varepsilon \quad \varepsilon=0.057$

$$
\begin{array}{lll}
\mathrm{yN}_{\mathrm{N} 2}:=\frac{1-\varepsilon}{2} & & \text { yC2H4 }:=\frac{1-\varepsilon}{2}
\end{array} \quad \begin{array}{|l}
\text { yHCN } \\
\mathrm{yN} 2^{2}=0.4715
\end{array}
$$

Given the assumption of ideal gases, P has no effect on the equilibrium composition.

$$
13.13 \quad \mathbf{C H} 3 \mathrm{CHO}(\mathrm{~g})+\mathbf{H} 2(\mathrm{~g})=\mathbf{C} 2 \mathrm{H} 5 \mathrm{OH}(\mathrm{~g}) \quad v=-1 \quad \mathrm{n}_{0}=2.5
$$

This is the reaction of $\mathbf{P b} .4 .21(r)$. From the answers for Pbs. 4.21(r), 4.22(r), and 13.7(r), find the following values:

$$
\begin{aligned}
& \Delta \mathrm{H}_{298}:=-68910 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{298}:=-39630 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \\
& \Delta \mathrm{~A}:=-1.424 \quad \Delta \mathrm{~B}:=1.601 \cdot 10^{-3} \quad \Delta \mathrm{C}:=0.156 \cdot 10^{-6} \quad \Delta \mathrm{D}:=-0.083 \cdot 10^{5} \\
& \mathrm{~T}:= 623.15 \cdot \mathrm{kelvin} \quad \mathrm{~T}_{0}:=298.15 \cdot \mathrm{kelvin} \\
& \begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot\left(\left\langle\mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots\right.\right. \\
& +\mathrm{R} \cdot \mathrm{IDCPH}() \Gamma_{0}, \mathbb{T}^{2}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \mathrm{IDCPS}() \Gamma_{0}, \pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \\
& \\
\Delta \mathrm{G}= & -6.787 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right)
\end{aligned} \quad \mathrm{K}=3.7064
\end{aligned}
$$

Ву Eq. (13.5), \quad УСН3СНO $=\frac{1-\varepsilon}{2.5-\varepsilon} \quad \mathrm{yH}_{2}=\frac{1.5-\varepsilon}{2.5-\varepsilon} \quad \mathrm{y}_{\mathrm{C} 2 \mathrm{H} 5 \mathrm{OH}}=\frac{\varepsilon}{2.5-\varepsilon}$
By Eq. (13.28), $\quad \varepsilon:=0.5$ (guess)
Given $\quad \frac{\varepsilon \cdot(2.5-\varepsilon}{(1-\varepsilon \cdot() 1.5-\varepsilon}=3 \cdot \mathrm{~K} \quad \varepsilon:=\operatorname{Find}() \quad \varepsilon=0.818$
УСН 3 СНО $:=\frac{1-\varepsilon}{2.5-\varepsilon} \quad$ уН2 $:=\frac{1.5-\varepsilon}{2.5-\varepsilon} \quad$ уС2H5OH $:=\frac{\varepsilon}{2.5-\varepsilon}$
$\mathrm{y}_{\text {CH3CHO }}=0.108 \quad \mathrm{yH}_{2}=0.4053 \quad \mathrm{YC2H5OH}=0.4867$ Ans.
If the pressure is reduced to 1 bar,
Given $\quad \frac{\varepsilon \cdot(2.5-\varepsilon}{(1)-\varepsilon \cdot() 1.5-\varepsilon}=1 \cdot \mathrm{~K} \quad \varepsilon:=\operatorname{Find}() \quad \varepsilon=0.633$
УСН3СНО $:=\frac{1-\varepsilon}{2.5-\varepsilon} \quad$ уН2 $:=\frac{1.5-\varepsilon}{2.5-\varepsilon} \quad$ УС2H5OH $:=\frac{\varepsilon}{2.5-\varepsilon}$
$\mathrm{yCH}^{2 C H O}=0.1968 \quad \mathrm{yH}_{2}=0.4645 \quad \mathrm{yC} 2 \mathrm{H} 5 \mathrm{OH}=0.3387$
Ans.
13.14 C6H5CH:CH2(g)+ H2(g) $=\mathbf{C} 6 H 5 . C 2 H 5(g) \quad v=-1 \quad n_{0}=2.5$

This is the REVERSE reaction of Pb . 4.21(y). From the answers for Pbs. 4.21(y), 4.22(y), and 13.7(y) WITH OPPOSITE SIGNS, find the following values:
$\Delta \mathrm{H}_{298}:=-117440 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\Delta \mathrm{G}_{298}:=-83010 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\Delta \mathrm{A}:=-4.175 \quad \Delta \mathrm{~B}:=4.766 \cdot 10^{-3} \quad \Delta \mathrm{C}:=-1.814 \cdot 10^{-6} \quad \Delta \mathrm{D}:=-0.083 \cdot 10^{5}$
$\mathrm{T}:=923.15 \cdot$ kelvin $\quad \mathrm{T}_{0}:=298.15 \cdot$ kelvin

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot\left(\Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots\right. \\
& +\mathrm{R} \cdot \operatorname{IDCPH}()_{0}, \pi_{, ~, ~} \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D} \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \Delta, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
\end{aligned}
$$

$$
\Delta \mathrm{G}=-2.398 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}=1.36672
$$

By Eq. (13.5),

$$
\mathrm{yC}_{\mathrm{CH} 5 \mathrm{CHCH} 2}=\frac{1-\varepsilon}{2.5-\varepsilon}
$$

$\mathrm{y}_{\mathrm{H} 2}=\frac{1.5-\varepsilon}{2.5-\varepsilon}$
$\mathrm{yC}_{\mathrm{CH} 5 \mathrm{C} 2 \mathrm{H} 5}=\frac{\varepsilon}{2.5-\varepsilon}$
By Eq. (13.28), $\varepsilon:=0.5 \quad$ (guess)
Given $\quad \frac{\varepsilon \cdot(2.5-\varepsilon}{(1-\varepsilon \cdot() 1.5-\varepsilon}=1.0133 \cdot \mathrm{~K} \quad \varepsilon:=\operatorname{Find}(\varepsilon \quad \varepsilon=0.418$
$\mathrm{yC}_{\mathrm{CH} 5 \mathrm{CHCH} 2}:=\frac{1-\varepsilon}{2.5-\varepsilon} \quad$ УH2 $:=\frac{1.5-\varepsilon}{2.5-\varepsilon} \quad$ УC6H5C2H5 $:=\frac{\varepsilon}{2.5-\varepsilon}$

13.15 Basis: 1 mole of gas entering, containing $0.15 \mathrm{~mol} \mathrm{SO2}, 0.20 \mathrm{~mol} \mathrm{O}$, and 0.65 mol N 2 .
$\mathrm{SO2}+\mathbf{0 . 5 O 2}=\mathbf{S O} 3$
$v=-0.5$
$\mathrm{n}_{0}=1$

By Eq. (13.5),
$\mathrm{ySO} 2=\frac{0.15-\varepsilon}{1-0.5 \cdot \varepsilon}$
$\mathrm{y}_{\mathrm{O} 2}=\frac{0.20-0.5 \cdot \varepsilon}{1-0.5 \cdot \varepsilon}$
$\mathrm{ySO}_{3}=\frac{\varepsilon}{1-0.5 \cdot \varepsilon}$

From data in Table C.4,

$$
\Delta \mathrm{H}_{298}:=-98890 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{298}:=-70866 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The following vectors represent the species of the reaction in the order in which they appear:
$v:=\left(\begin{array}{c}-1 \\ -0.5 \\ 1\end{array}\right) \quad \mathrm{A}:=\left(\begin{array}{l}5.699 \\ 3.639 \\ 8.060\end{array}\right)$
$\mathrm{B}:=\left(\begin{array}{l}0.801 \\ 0.506 \mid \cdot 10^{-3} \\ 1.056\end{array}\right)$
$\mathrm{D}:=\left(\begin{array}{l}-1.015) \\ -0.227 \mid \cdot 10^{5} \\ -2.028)\end{array}\right.$
end $:=\operatorname{rows}(\mathrm{A}) \quad \mathrm{i}:=1$.. end
$\Delta \mathrm{A}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{i}} \quad \Delta \mathrm{B}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}} \quad \Delta \mathrm{D}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}$
$\Delta \mathrm{A}=0.5415$
$\Delta \mathrm{B}=2 \times 10^{-6}$
$\Delta \mathrm{C}:=0$
$\Delta \mathrm{D}=-8.995 \times 10^{4}$
$\mathrm{T}:=753.15 \cdot$ kelvin $\quad \mathrm{T}_{0}:=298.15 \cdot$ kelvin

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot\left(\Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots\right. \\
& +\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \bar{\Delta}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D} \quad \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \Delta \bar{\Delta}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
\end{aligned}
$$

$\Delta \mathrm{G}=-2.804 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{T}}\right) \quad \mathrm{K}=88.03675$
By Eq. (13.28),

$$
\varepsilon:=0.1 \quad \text { (guess) }
$$

Given $\quad \frac{\varepsilon \cdot() \mathbf{1}-0.5 \cdot \varepsilon^{0.5}}{(0.15-\varepsilon \cdot(0.2-0.5 \cdot \varepsilon}=\mathrm{K} \quad \varepsilon:=\operatorname{Find}(\xi \quad \varepsilon=0.1455$

By Eq. (13.4), $\quad n_{S O 3}=\varepsilon=0.1455$
By Eq. (4.18), $\quad \Delta \mathrm{H}_{753}:=\Delta \mathrm{H}_{298}+\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \Delta, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}$
$\Delta \mathrm{H}_{753}=-98353 \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathrm{Q}:=\varepsilon \Delta \mathrm{H}_{753}$
$Q=-14314 \frac{\mathrm{~J}}{\mathrm{~mol}} \quad$ Ans.
13.16 $\mathbf{C 3 H 8}(\mathrm{g})=\mathbf{C} 2 \mathrm{H} 4(\mathrm{~g})+\mathrm{CH} 4(\mathrm{~g}) \quad v=1$

Basis: 1 mole C3H8 feed. By Eq. (13.4) $\quad n_{C 3 H 8}=1-\varepsilon$
Fractional conversion of $\mathbf{C} 3 \mathbf{H 8}=\frac{\mathrm{n}_{0}-\mathrm{n}_{\mathrm{C} 3 \mathrm{H} 8}}{\mathrm{n}_{0}}=\frac{1-(\mathrm{n}-\varepsilon}{1}=\varepsilon$
Ву Eq. (13.5), \quad УС3Н $8=\frac{1-\varepsilon}{1+\varepsilon} \quad$ УС $2 \mathrm{H} 4^{1+\varepsilon} \frac{\varepsilon}{1+\varepsilon} \quad$ УСН $4=\frac{\varepsilon}{1+\varepsilon}$
From data in Table C.4,

$$
\Delta \mathrm{H}_{298}:=82670 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{298}:=42290 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The following vectors represent the species of the reaction in the order in which they appear:

$$
v:=\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right) \quad \mathrm{A}:=\left(\begin{array}{l}
1.213 \\
1.424 \\
1.702
\end{array}\right) \quad \mathrm{B}:=\left(\begin{array}{l}
28.785 \\
14.394 \mid \cdot 10^{-3} \\
9.081
\end{array}\right) \quad \mathrm{C}:=\left(\begin{array}{l}
-8.824 \\
-4.392 \mid \cdot 10^{-6} \\
-2.164
\end{array}\right)
$$

$$
\text { end }:=\operatorname{rows}(\mathrm{A}) \quad \mathrm{i}:=1 . . \text { end }
$$

$$
\Delta \mathrm{A}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}} \quad \Delta \mathrm{~B}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}} \quad \Delta \mathrm{C}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{i}}
$$

$\Delta \mathrm{A}=1.913$
$\Delta B=-5.31 \times 10^{-3}$
$\Delta \mathrm{C}=2.268 \times 10^{-6}$
$\Delta \mathrm{D}:=0$
(a) $\mathrm{T}:=625 \cdot \mathrm{kelvin}$
$\mathrm{T}_{0}:=298.15 \cdot \mathrm{kelvin}$

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \quad \ldots \\
& +\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \pi^{2}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \quad \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}\left(\Gamma_{0}, \bar{\Delta}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D}\right. \\
\Delta \mathrm{G}= & -2187.9 \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}=1.52356
\end{aligned}
$$

By Eq. (13.28), $\quad \varepsilon:=0.5 \quad$ (guess)
Given $\frac{\varepsilon^{2}}{(1+\varepsilon \cdot()-\varepsilon}=K \quad \varepsilon:=\operatorname{Find}(\xi$
$\varepsilon=0.777 \quad$ This value of epsilon IS the fractional conversion. Ans.
(b) $\varepsilon:=0.85$

$$
\mathrm{K}:=\frac{\varepsilon^{2}}{() \mathrm{l}+\varepsilon \cdot()-\varepsilon} \quad \mathrm{K}=2.604
$$

$$
\Delta \mathrm{G}:=\mathrm{R} \cdot \mathrm{~T} \cdot \ln (\mathrm{~K}) \quad \Delta \mathrm{G}=4972.3 \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \text { Ans. }
$$

The problem now is to find the T which generates this value.
It is not difficult to find \mathbf{T} by trial. This leads to the value:
$T=646.8 \mathrm{~K}$ Ans.
13.17 $\mathbf{C 2 H 6}(\mathrm{g})=\mathbf{H} \mathbf{2}(\mathrm{g})+\mathbf{C} 2 \mathbf{H} 4(\mathrm{~g}) \quad v=1$

Basis: 1 mole entering C2H6 $+\mathbf{0 . 5} \mathbf{~ m o l ~ H 2 O . ~}$
$\mathrm{n}_{0}=1.5 \quad$ By Eq. (13.5),
$\mathrm{yC} 2 \mathrm{H} 6=\frac{1-\varepsilon}{1.5+\varepsilon} \quad \mathrm{y}_{\mathrm{H}}=\frac{\varepsilon}{1.5+\varepsilon} \quad \mathrm{yC} 2 \mathrm{H} 4=\frac{\varepsilon}{1.5+\varepsilon}$
From data in Table C.4,

$$
\Delta \mathrm{H}_{298}:=136330 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{G}_{298}:=100315 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The following vectors represent the species of the reaction in the order in which they appear:

$B:=\left(\begin{array}{l}19.225 \\ 0.422 \mid \cdot 10^{-3} \\ 14.394\end{array}\right)$

$$
C:=\left(\begin{array}{c}
-5.561 \\
0.0 \quad \mid \cdot 10^{-6} \\
-4.392
\end{array}\right)
$$

$$
\mathrm{D}:=\left(\begin{array}{c}
0.0 \\
0.083 \mid \cdot 10^{5} \\
0.0
\end{array}\right)
$$

$$
\text { end }:=\operatorname{rows}(\mathrm{A}) \quad \mathrm{i}:=1 . . \text { end }
$$

$\Delta \mathrm{A}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{i}} \Delta \mathrm{B}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}} \quad \Delta \mathrm{C}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{i}} \quad \Delta \mathrm{D}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}$
$\Delta \mathrm{A}=3.542 \quad \Delta \mathrm{~B}=-4.409 \times 10^{-3} \quad \Delta \mathrm{C}=1.169 \times 10^{-6} \quad \Delta \mathrm{D}=8.3 \times 10^{3}$
$\mathrm{T}:=1100 \cdot$ kelvin $\quad \mathrm{T}_{0}:=298.15 \cdot$ kelvin

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots \\
& +\mathrm{R} \cdot \operatorname{IDCPH}\left(\Gamma_{0}, \boldsymbol{\pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \ldots\right. \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \pi^{2}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
\end{aligned}
$$

$$
\Delta \mathrm{G}=-5.429 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}=1.81048
$$

By Eq. (13.28), $\quad \varepsilon:=0.5 \quad$ (guess)

Given

$$
\frac{\varepsilon^{2}}{() .5+\varepsilon \cdot()-\varepsilon}=K \quad \varepsilon:=\operatorname{Find}(\xi \quad \quad \varepsilon=0.83505
$$

By Eq. (13.4), $n_{C 2 H 6}=1-\varepsilon \quad n_{H 2}=n_{\mathrm{C} 2 \mathrm{H} 4}=\varepsilon \quad \mathrm{n}=1+\varepsilon$
УC2H6 $:=\frac{1-\varepsilon}{1+\varepsilon}$
$\mathrm{y}_{\mathrm{H} 2}:=\frac{\varepsilon}{1+\varepsilon}$
$\mathrm{yC}_{\mathrm{C} 2 \mathrm{H} 4}:=\frac{\varepsilon}{1+\varepsilon}$
$\mathrm{yC}_{\mathrm{C} 2 \mathrm{H} 6}=0.0899$
$\mathrm{yC} 2 \mathrm{H} 4=0.4551$
$y_{H 2}=0.4551$
Ans.

13.18 C2H5CH:CH2 $(\mathrm{g})=\mathbf{C H} 2:$ CHCH:CH2 $(\mathrm{g})+\mathbf{H} 2(\mathrm{~g}) \quad v=1$

(1)
(2)
(3)

Number the species as shown. Basis is 1 mol species $1+\mathbf{x}$ mol steam.

$$
\mathrm{n}_{0}=1+\mathrm{x}
$$

By Eq. (13.5), $\quad y_{1}=\frac{1-\varepsilon}{1+\mathrm{x}+} \quad \mathrm{y}_{2}=\mathrm{y}_{3}=\frac{\varepsilon}{1+\mathrm{x}+}=0.10$

From data in Table C.4,

$$
\Delta \mathrm{H}_{298}:=109780 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{298}:=79455 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The following vectors represent the species of the reaction in the order in which they appear:

$\mathrm{A}:=\left(\begin{array}{l}1.967 \\ 2.734 \\ 3.249\end{array}\right)$

$$
C:=\left(\begin{array}{c}
-9.873 \\
-8.882 \mid \cdot 10^{-6} \\
0.0
\end{array}\right)
$$

$$
\mathrm{D}:=\left(\begin{array}{c}
0.0 \\
0.0 \quad \mid \cdot 10^{5} \\
0.083
\end{array}\right)
$$

$$
\text { end }:=\operatorname{rows}(A) \quad i:=1 . . \text { end }
$$

$$
\Delta \mathrm{A}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}} \Delta \mathrm{~B}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}} \quad \Delta \mathrm{C}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{i}} \quad \Delta \mathrm{D}:=\sum_{\mathrm{i}}\left(\gamma_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.
$$

$$
\Delta \mathrm{A}=4.016 \quad \Delta \mathrm{~B}=-4.422 \times 10^{-3} \quad \Delta \mathrm{C}=9.91 \times 10^{-7} \quad \Delta \mathrm{D}=8.3 \times 10^{3}
$$

$$
\mathrm{T}:=950 \cdot \mathrm{kelvin}
$$

$$
\mathrm{T}_{0}:=298.15 \cdot \text { kelvin }
$$

$$
\Delta \mathrm{G}:=\Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots
$$

$$
+\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \pi^{\pi}, \Delta \mathrm{A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \ldots
$$

$$
+-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}\left(\Gamma_{0}, \pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D}\right.
$$

$$
\Delta \mathrm{G}=4.896 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}=0.53802
$$

By Eq. (13.28),

$$
\frac{(0.1) \cdot(0.1) \cdot(1)+\varepsilon x+}{1-\varepsilon}=K
$$

Since $\quad 0.10 \cdot(\mathrm{E})+\mathrm{cx}+=\quad \varepsilon:=\frac{\mathrm{K}}{\mathrm{K}+0.10} \quad \varepsilon=0.843$

$$
\mathrm{x}:=\frac{\varepsilon}{0.10}-\varepsilon \mathrm{l}-\quad \mathrm{x}=6.5894
$$

(a)

$$
\mathrm{y}_{1}:=\frac{1-\varepsilon}{1+\mathrm{xx}+} \quad \mathrm{y}_{\mathrm{H} 2 \mathrm{O}}:=1-0.2-\mathrm{y}_{1}
$$

$y_{1}=0.0186$

$$
\mathrm{y}_{\mathrm{H} 2 \mathrm{O}}=0.7814
$$

$y_{H 2 O}=0.7814$
$y_{\text {steam }}=0.8682$
Ans.

$$
y_{\text {steam }}:=\frac{6.5894}{7.5894}
$$

Ans.
(b)
13.19

$$
\underset{(1)}{\mathrm{C} 4 \mathrm{H} 10(\mathrm{~g})}=\mathrm{CH} 2: \mathrm{CHCH}: \mathrm{CH} 2(\mathrm{~g})+\underset{\text { (2) }}{2 \mathrm{H} 2(\mathrm{~g})}
$$

Number the species as shown. Basis is $1 \mathbf{m o l}$ species $1+\mathbf{x}$ mol steam entering.

$$
\mathrm{n}_{0}=1+\mathrm{x}
$$

By Eq. (13.5), $y_{1}=\frac{1-\varepsilon}{1+x+2 \cdot \varepsilon} \quad y_{2}=\frac{\varepsilon}{1+x+2 \cdot \varepsilon}=0.12$

From data in Table C.4,

$$
y_{3}=2 \cdot y_{2}=0.24
$$

$$
\Delta \mathrm{H}_{298}:=235030 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{G}_{298}:=166365 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The following vectors represent the species of the reaction in the order in which they appear:

$\mathrm{A}:=\left(\begin{array}{l}1.935 \\ 2.734 \\ 3.249\end{array}\right)$
$B:=\left(\begin{array}{l}36.915 \\ 26.786 \mid \cdot 10^{-3} \\ 0.422\end{array}\right)$

$$
C:=\left(\begin{array}{cl}
-11.402 & \\
-8.882 & \mid \cdot 10^{-6} \\
0.0
\end{array}\right)
$$

$$
\mathrm{D}:=\left(\begin{array}{c}
0.0 \\
0.0 \\
0.10^{5} \\
0.083
\end{array}\right)
$$

$$
\text { end }:=\operatorname{rows}(\mathrm{A}) \quad \mathrm{i}:=1 . . \text { end }
$$

$$
\begin{aligned}
& \Delta \mathrm{A}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}} \quad \Delta \mathrm{~B}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}} \quad \Delta \mathrm{C}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{i}} \quad \Delta \mathrm{D}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}} \\
& \Delta \mathrm{~A}=7.297 \quad \Delta \mathrm{~B}=-9.285 \times 10^{-3} \quad \Delta \mathrm{C}=2.52 \times 10^{-6} \quad \Delta \mathrm{D}=1.66 \times 10^{4}
\end{aligned}
$$

$\mathrm{T}:=925 \cdot$ kelvin $\quad \mathrm{T}_{0}:=298.15 \cdot$ kelvin

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot\left(\Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots\right. \\
& +\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \bar{\Pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D} \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \bar{\Pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
\end{aligned}
$$

$$
\Delta \mathrm{G}=9.242 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}=0.30066
$$

By Eq. (13.28),

$$
\frac{(0.12) \cdot(0.24)^{2} \cdot() 1+x+2 \cdot \varepsilon}{1-\varepsilon}=\mathrm{K}
$$

$$
\begin{array}{ll}
\text { Because } 0.12 \cdot \varepsilon+\mathrm{x}+2 \cdot \varepsilon= & \varepsilon:=\frac{\mathrm{K}}{\mathrm{~K}+(0.24)^{2}} \\
\mathrm{x}:=\frac{\varepsilon}{0.12}-1-2 \cdot \varepsilon & \mathrm{x}=4.3151
\end{array}
$$

(a) $\mathrm{y}_{1}:=\frac{1-\varepsilon}{1+\mathrm{x}+2 \cdot \varepsilon} \quad \mathrm{y}_{2} \mathrm{O}:=1-0.36-\mathrm{y}_{1}$

$$
\mathrm{y}_{1}=0.023 \quad \mathrm{yH}_{2} \mathrm{O}=0.617 \quad \text { Ans. }
$$

(b) $y_{\text {steam }}:=\frac{4.3151}{5.3151}$
$y_{\text {steam }}=0.812$
Ans.
$\mathbf{1 / 2 N} 2(\mathrm{~g})+\mathbf{3} / \mathbf{2 H} \mathbf{2}(\mathrm{g})=\mathbf{N H} 3(\mathrm{~g})$
Basis: $\mathbf{1 / 2} \mathbf{~ m o l ~ N 2 , ~} \mathbf{3 / 2} \mathbf{~ m o l ~ H 2 ~ f e e d ~}$

$$
\begin{aligned}
& v=-1 \\
& \mathrm{n}_{0}=2
\end{aligned}
$$

This is the reaction of Pb .4 .21 (a) with all stoichiometric coefficients divided by two. From the answers to Pbs. 4.21(a), 4.22(a), and 13.7(a) ALL
DIVIDED BY 2, find the following values:

$$
\begin{aligned}
& \Delta \mathrm{H}_{298}:=-46110 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{298}:=-16450 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \\
& \Delta \mathrm{~A}:=-2.9355 \\
& \Delta \mathrm{~B}:=2.0905 \cdot 10^{-3} \\
& \Delta \mathrm{C}:=0 \\
& \Delta \mathrm{D}:=-0.3305 \cdot 10^{5} \\
& \text { (a) } \quad \mathrm{T}:=300 \cdot \mathrm{kelvin} \quad \mathrm{~T}_{0}:=298.15 \cdot \mathrm{kelvin} \\
& \Delta \mathrm{G}:=\Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot\left(\lambda \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots\right. \\
& +\mathrm{R} \cdot \operatorname{IDCPH}()_{0}, \pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \\
& \Delta \mathrm{G}=-1.627 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}=679.57 \\
& \mathrm{P}:=1 \quad \mathrm{P} 0:=1
\end{aligned}
$$

From Pb. 13.9 for ideal gases:

$$
\begin{aligned}
& \varepsilon:=1-\left(1+1.299 \cdot \mathrm{~K} \cdot \frac{\mathrm{P}}{\mathrm{P} 0}\right)^{-0.5} \quad \varepsilon=0.9664 \\
& \text { yNH3 }:=\frac{\varepsilon}{2-\varepsilon} \quad \\
& \text { yNH3 }=0.9349 \quad \text { Ans. }
\end{aligned}
$$

(b) For $y_{N H 3}=0.5$ by the preceding equation
$\varepsilon:=\frac{2}{3} \quad$ Solving the next-to-last equation for K with $P=P 0$ gives:

$$
\mathrm{K}:=\frac{\left(\frac{1}{1-\varepsilon}\right)^{2}-1}{1.299} \quad \mathrm{~K}=6.1586
$$

Find by trial the value of T for which this is correct. It turns out to be $\mathrm{T}=399.5 \cdot \mathrm{kelvin}$ Ans.
(c) For $\mathbf{P}=100$, the preceding equation becomes

$$
\mathrm{K}:=\frac{\left(\frac{1}{1-\varepsilon}\right)^{2}-1}{129.9} \quad \mathrm{~K}=0.06159
$$

Another solution by trial for \mathbf{T} yields $\mathrm{T}=577.6 \cdot \mathrm{kelvin}$ Ans.
(d) Eq. (13.27) applies, and requires fugacity coefficients, which can be evaluated by the generalized second-virial correlation. Since iteration will be necessary, we assume a starting T of 583 K for which:
$\mathrm{T}:=583 \mathrm{kelvin} \quad \mathrm{P}:=100 \mathrm{bar}$
For NH3(1): $\quad \mathrm{T}_{\mathrm{c} 1}:=405.7$ kelvin

$$
\mathrm{P}_{\mathrm{c} 1}:=112.8 \mathrm{bar} \quad \omega_{1}:=0.253
$$

$$
\mathrm{T}_{\mathrm{r} 1}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c} 1}} \quad \mathrm{~T}_{\mathrm{r} 1}=1.437 \quad \mathrm{P}_{\mathrm{r} 1}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c} 1}} \quad \mathrm{P}_{\mathrm{r} 1}=0.887
$$

For \mathbf{N} 2(2): $\quad \mathrm{T}_{\mathrm{c} 2}:=126.2$ kelvin

$$
\mathrm{P}_{\mathrm{c} 2}:=34.0 \mathrm{bar} \quad \omega_{2}:=0.038
$$

$$
\mathrm{T}_{\mathrm{r} 2}:=\frac{583}{126.2} \quad \mathrm{~T}_{\mathrm{r} 2}=4.62 \quad \mathrm{P}_{\mathrm{r} 2}:=\frac{100}{34.0} \quad \mathrm{P}_{\mathrm{r} 2}=2.941
$$

For H2(3), estimate critical constants using Eqns. (3.58) and (3.59)

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{c} 3}:=\left(\begin{array}{ll}
\left.\frac{43.6}{\left.1+\frac{21.8}{2.016 \frac{\mathrm{~T}}{\text { kelvin }}} \right\rvert\,}\right) & \mathrm{T}_{\mathrm{c} 3}=42.806 \mathrm{~K} \\
& \mathrm{~T}_{\mathrm{r} 3}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c} 3}}
\end{array} \quad \mathrm{~T}_{\mathrm{r} 3}=13.62\right. \\
& \mathrm{P}_{\mathrm{c} 3}:=\frac{20.5}{1+\frac{44.2}{2.016 \frac{\mathrm{~T}}{\text { kelvin }}}} . \text { bar } \\
& \mathrm{P}_{\mathrm{c} 3}=19.757 \mathrm{bar} \\
& \mathrm{P}_{\mathrm{r} 3}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c} 3}} \quad \mathrm{P}_{\mathrm{r} 3}=5.061 \\
& \omega_{3}:=0
\end{aligned}
$$

Therefore, $\quad i:=1 . .3$

$$
\left.\begin{array}{l}
\phi:=\left(\begin{array}{l}
\operatorname{PHIB}\left(\Gamma_{\mathrm{r} 1}, 8_{\mathrm{r} 1},\right. \\
\operatorname{PHIB}()_{\mathrm{r} 2}, 8_{\mathrm{r} 2}, \\
2 \\
\operatorname{PHIB}() \Gamma_{\mathrm{r} 3}, 8_{\mathrm{r} 3},
\end{array}\right)
\end{array}\right) \quad \phi=\left(\begin{array}{l}
0.924) \\
1.034 \\
1.029
\end{array}\right)
$$

The expression used for K in Part (c) now becomes:
$\mathrm{K}:=\frac{\left(\frac{1}{1-\varepsilon}\right)^{2}-1}{\left(\frac{129.9}{1.184}\right)}$

$$
K=0.07292
$$

Another solution by trial for T yields $\mathrm{T}=568.6 \cdot \mathrm{~K} \quad$ Ans.

Of course, the INITIAL assumption made for T was not so close to the final T as is shown here, and several trials were in fact made, but not shown here. The trials are made by simply changing numbers in the given expressions, without reproducing them.
$13.21 \mathrm{CO}(\mathrm{g})+2 \mathrm{H} 2(\mathrm{~g})=\mathrm{CH} 3 \mathrm{OH}(\mathrm{g})$
Basis: $1 \mathrm{~mol} \mathrm{CO}, 2 \mathrm{~mol} \mathrm{H} 2$ feed
From the data of Table C.4,

$$
\Delta \mathrm{H}_{298}:=-90135 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{G}_{298}:=-24791 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

This is the reaction of Ex. 4.6, Pg. 142 from which:

$$
\Delta \mathrm{A}:=-7.663 \quad \Delta \mathrm{~B}:=10.815 \cdot 10^{-3} \Delta \mathrm{C}:=-3.45 \cdot 10^{-6} \Delta \mathrm{D}:=-0.135 \cdot 10^{5}
$$

(a) $\mathrm{T}:=300 \cdot \mathrm{kelvin}$
$\mathrm{T}_{0}:=298.15 \cdot \mathrm{kelvin}$

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot\left(\Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots\right. \\
& +\mathrm{R} \cdot \operatorname{IDCPH}\left(\Gamma_{0}, \boldsymbol{\pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \ldots\right. \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \pi^{2}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \mathrm{G}=-2.439 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}=1.762 \times 10^{4} \\
& \mathrm{P}:=1 \quad \mathrm{P} 0:=1
\end{aligned}
$$

By Eq. (13.5), with the species numbered in the order in which they appear in the reaction,

$$
\mathrm{y}_{1}=\frac{1-\varepsilon}{3-2 \cdot \varepsilon} \quad \mathrm{y}_{2}=\frac{2-2 \cdot \varepsilon}{3-2 \cdot \varepsilon} \quad \mathrm{y}_{3}=\frac{\varepsilon}{3-2 \cdot \varepsilon}
$$

By Eq. (13.28), $\quad \varepsilon:=0.8 \quad$ (guess)

$$
\begin{aligned}
& \text { Given } \quad \frac{\varepsilon \cdot\left(\beta-2 \cdot \varepsilon^{2}\right.}{4 \cdot() \mathrm{l}-\varepsilon^{3}}=\left(\frac{\mathrm{P}}{\mathrm{P} 0}\right)^{2} \cdot \mathrm{~K} \quad \varepsilon:=\operatorname{Find}(\mathrm{k} \quad \varepsilon=0.9752 \\
& \mathrm{y}_{3}:=\frac{\varepsilon}{3-2 \cdot \varepsilon} \quad \mathrm{Y}_{3}=0.9291 \text { Ans. }
\end{aligned}
$$

(b) $\mathrm{y}_{3}:=0.5 \quad$ By the preceding equation

$$
\varepsilon:=\frac{3 \cdot \mathrm{y}_{3}}{2 \cdot \mathrm{y}_{3}+1} \quad \varepsilon=0.75
$$

Solution of the equilibrium equation for K gives

$$
\mathrm{K}:=\frac{\varepsilon \cdot\left(\beta-2 \cdot \varepsilon^{2}\right.}{4 \cdot() 1-\varepsilon^{3}} \quad \mathrm{~K}=27
$$

Find by trial the value of T for which this is correct. It turns out to be:

$$
\mathrm{T}=364.47 \cdot \text { kelvin } \quad \text { Ans. }
$$

(c) For $\mathbf{P}=100$ bar, the preceding equation becomes

$$
K:=\frac{\varepsilon \cdot\left(\beta-2 \cdot \varepsilon^{2}\right.}{4 \cdot()-\varepsilon^{3}} \cdot 100^{-2} \quad \mathrm{~K}=2.7 \times 10^{-3}
$$

$$
\text { Another solution by trial for } \mathrm{T} \text { yields } \mathrm{T}=516.48 \text { • kelvin Ans. }
$$

(d) Eq. (13.27) applies, and requires fugacity coefficients. Since iteration will be necessary, assume a starting T of 528 K , for which:
$\mathrm{T}:=528 \mathrm{kelvin} \quad \mathrm{P}:=100 \mathrm{bar}$
For CO(1): $\mathrm{T}_{\mathrm{c} 1}:=132.9$ kelvin $\quad \mathrm{P}_{\mathrm{c} 1}:=34.99 \mathrm{bar} \quad \omega_{1}:=0.048$

$$
\mathrm{T}_{\mathrm{r} 1}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c} 1}} \quad \mathrm{~T}_{\mathrm{r} 1}=3.973 \quad \mathrm{P}_{\mathrm{r} 1}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c} 1}} \quad \mathrm{P}_{\mathrm{r} 1}=2.858
$$

For CH3OH(3): $\quad T_{c 3}:=512.6$ kelvin $\quad P_{c 3}:=80.97 \mathrm{bar} \quad \omega_{3}:=0.564$

$$
\mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{c} 3}} \quad \mathrm{~T}_{\mathrm{r}}=1.03 \quad \mathrm{P}_{\mathrm{r}}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c} 3}} \quad \mathrm{P}_{\mathrm{r}}=1.235
$$

By Eq. (11.67) and data from Tables E. 15 \& E.16.

$$
\phi_{3}:=0.6206 \cdot 0.9763^{\omega_{3}}
$$

$$
\phi_{3}=0.612
$$

For H2(2), the reduced temperature is so large that it may be assumed ideal: $\phi=1$.

Therefore: $\mathrm{i}:=1$.. 3
$\phi:=\left(\begin{array}{cc}\operatorname{PHIB}() \Gamma_{\mathrm{r} 1}, \mathrm{~B}_{\mathrm{r} 1}, & 1 \\ 1.0 & \\ 0.612\end{array}\right) \quad \phi=\left(\begin{array}{c}1.032 \\ 1 \\ 0.612\end{array}\right)$

$$
\prod_{i}\left(\phi_{i}{ }^{v_{i}}=0.5933\right.
$$

The expression used for K in Part (c) now becomes:
$K:=\frac{\varepsilon \cdot\left(\beta-2 \cdot \varepsilon^{2}\right.}{4 \cdot() 1-\varepsilon^{3}} \cdot 100^{-2} \cdot 0.593 \quad K=1.6011 \times 10^{-3}$
Another solution by trial for \mathbf{T} yields: $\mathrm{T}=528.7 \cdot \mathrm{kelvin}$ Ans.

$13.22 \mathrm{CaCO3}(\mathrm{~s})=\mathrm{CaO}(\mathrm{s})+\mathrm{CO}(\mathrm{g})$

Each species exists PURE as an individual phase, for which the activity is $f / f 0$. For the two species existing as solid phases, f and $f 0$ are for practical purposes the same, and the activity is unity. If the pure CO 2 is assumed an ideal gas at $\mathbf{1}(\mathbf{a t m})$, then for $\mathbf{C O 2}$ the activity is $\mathbf{f} / \mathbf{f} 0=\mathbf{P} / \mathbf{P} 0=P$ (in bar). As a result, Eq. (13.10) becomes $K=P=1.0133$, and we must find the T for which K has this value.

From the data of Table C.4,

$$
\Delta \mathrm{H}_{298}:=178321 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{298}:=130401 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The following vectors represent the species of the reaction in the order in which they appear:

$\mathrm{D}:=\left(\begin{array}{l}-3.120 \\ -1.047 \mid \cdot 10^{5} \\ -1.157)\end{array}\right.$
$\mathrm{i}:=1 . .3$

$\Delta \mathrm{B}:=\sum_{\mathrm{i}}\left(y_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}}\right.$
$\Delta \mathrm{D}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}$
$\Delta \mathrm{A}=-1.011$

$$
\Delta \mathrm{B}=-1.149 \times 10^{-3} \quad \Delta \mathrm{C}:=0
$$

$$
\Delta \mathrm{D}=9.16 \times 10^{4}
$$

$\mathrm{T}:=1151.83 \cdot$ kelvin

$$
\mathrm{T}_{0}:=298.15 \cdot \text { kelvin }
$$

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots \\
& +\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \Delta, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D} \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \bar{\pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
\end{aligned}
$$

$\Delta \mathrm{G}=-126.324 \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{T}}\right) \quad \mathrm{K}=1.0133$
Thus $\quad \mathrm{T}=1151.83 \cdot \mathrm{kelvin}$ Ans.

Although a number of trials were required to reach this result, only the final trial is shown. A handbook value for this temperature is $\mathbf{1 1 7 1} \mathbf{~ K}$.

13.23 $\mathrm{NH} 4 \mathrm{Cl}(\mathrm{s})=\mathrm{NH} 3(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$

The NH4Cl exists PURE as a solid phase, for which the activity is $\mathbf{f} / \mathbf{f 0}$. Since f and $f 0$ are for practical purposes the same, the activity is unity. If the equimolar mixture of NH 3 and HCl is assumed an ideal gas mixture at 1.5 bar, then with $\mathrm{f} 0=1$ bar the activity of each gas species is its partial pressure, (0.5)(1.5) $=0.75$. As a result, Eq. (13.10) becomes $K=$ $(0.75)(0.75)=0.5625$, and we must find the T for which K has this value.
From the given data and the data of Table C.4,
$\Delta \mathrm{H}_{298}:=176013 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\Delta \mathrm{G}_{298}:=91121 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$
The following vectors represent the species of the reaction in the order in which they appear:

$\mathrm{i}:=1 . .3$
$\Delta \mathrm{A}=0.795$

$$
B:=\left(\begin{array}{l}
16.105 \\
3.020 \mid \cdot 10^{-3} \\
0.623
\end{array}\right)
$$

$$
\Delta \mathrm{A}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}}
$$

$$
\Delta \mathrm{B}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}}
$$

$$
\Delta B=-0.012462
$$

$$
\mathrm{T}_{0}:=298.15 \cdot \text { kelvin }
$$

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots \\
& +\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \overline{,}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \pi^{2}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
\end{aligned}
$$

$\Delta \mathrm{G}=2.986 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{T}}\right) \quad \mathrm{K}=0.5624$
Thus $\quad \mathrm{T}=623.97 \cdot \mathrm{~K} \quad$ Ans.
Although a number of trials were required to reach this result, only the final trial is shown.
$13.25 \mathrm{NO}(\mathrm{g})+(1 / 2) \mathrm{O} 2(\mathrm{~g})=\mathrm{NO} 2(\mathrm{~g})$

$$
v=-0.5
$$

$\frac{\mathrm{yNO}_{\mathrm{NO}}}{\mathrm{yNO}_{\mathrm{NO}}\left(\mathrm{yOO}_{\mathrm{O}} 0.5\right.}=\frac{\mathrm{yNO}_{\mathrm{NO}}}{\mathrm{y}_{\mathrm{NO}} \cdot(0.21)^{0.5}}=\mathrm{K} \quad \mathrm{T}:=298.15 \cdot \mathrm{kelvin}$

From the data of Table C.4,

$$
\Delta \mathrm{G}_{298}:=-35240 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\mathrm{K}:=\exp \left(\frac{-\Delta \mathrm{G}_{298}}{\mathrm{R} \cdot \mathrm{T}}\right)$ $K=1.493 \times 10^{6}$
$\mathrm{yNO}:=10^{-12} \quad \mathrm{yNO}^{2}:=10^{-6} \quad$ (guesses)
Given $\quad \mathrm{yNO} 2=(0.21)^{0.5} \cdot \mathrm{~K} \cdot \mathrm{yNO} \quad \mathrm{yNO} 2+\mathrm{yNO}=5 \cdot 10^{-6}$
$\binom{y_{N O}}{y_{N O 2}}:=\operatorname{Find}() \mathrm{NO}, \mathrm{yNO}_{\mathrm{NO}} \quad \mathrm{yNO}_{\mathrm{NO}}=7.307 \times 10^{-12}$
This is about $7 \cdot 10^{-6} \mathrm{ppm} \quad$ (a negligible concentration) Ans.

$$
13.26 \mathbf{C} 2 \mathrm{H} 4(\mathrm{~g})+(\mathbf{1} / \mathbf{2}) \mathrm{O} 2(\mathrm{~g})=<(\mathbf{C H} 2) 2>\mathbf{O}(\mathrm{g}) \quad v=-0.5
$$

See Example 13.9, Pg. 508-510 From Table C.4,
$\Delta \mathrm{H}_{298}:=-105140 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\Delta \mathrm{G}_{298}:=-81470 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$

Basis: $1 \mathrm{~mol} \mathrm{C2H} 4$ entering reactor.
Moles $\mathbf{O 2}$ entering:

$$
\mathrm{n}_{\mathrm{O} 2}:=1.25 \cdot 0.5
$$

Moles $\mathbf{N} 2$ entering:

$$
\mathrm{n}_{\mathrm{N} 2}:=\mathrm{n}_{\mathrm{O} 2} \cdot \frac{79}{21}
$$

$\mathrm{n}_{0}:=1+\mathrm{n}_{\mathrm{O} 2}+\mathrm{n}_{\mathrm{N} 2}$

$$
\mathrm{n}_{0}=3.976
$$

Index the product species with the numbers:
1 = ethylene
2 = oxygen
3 = ethylene oxide
4 = nitrogen
The numbers of moles in the product stream are given by Eq. (13.5).

For the product stream, data from Table C.1:
Guess: $\quad \varepsilon:=0.8$

$B:=\left(\left.\begin{array}{c}14.394 \\ 0.506 \\ 23.463\end{array} \right\rvert\, \cdot \frac{10^{-3}}{\text { kelvin }}\right.$

$\mathrm{i}:=1 . .4$
$\mathrm{A}\left(\mathrm{E}:=\sum_{\mathrm{i}}\left(\mathrm{f}\left(\mathrm{E} \mathrm{i} \cdot \mathrm{A}_{\mathrm{i}}\right.\right.\right.$
$B\left(\xi:=\sum_{i}\left(\mathrm{f}()_{\mathrm{i}}^{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}}\right.\right.$
$C\left(\xi:=\sum_{i}(\not)\left(\xi_{i} \cdot C_{i}\right.\right.$
$\mathrm{D}\left(\mathrm{k}:=\sum_{\mathrm{i}}\left(\mathrm{h}\left(\xi_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.\right.\right.$
$y\left(\xi:=\frac{\mathrm{n}()}{\mathrm{n}_{0}-0.5 \cdot \varepsilon} \quad \mathrm{~K}\left(\xi:=\prod_{\mathrm{i}}()_{\left(\xi \mathrm{i}^{v_{i}}\right.}^{\mathrm{K}(\xi=15.947}\right.\right.$
The energy balance for the adiabatic reactor is:
$\Delta \mathrm{H}_{298}+\Delta \mathrm{H}_{\mathrm{P}}=0 \quad$ For the second term, we combine Eqs. (4.3) \& (4.7).
The three equations together provide the energy balance.

For the equilibrium state, apply a combination of Eqs. (13.11a) \&
(13.18).The reaction considered here is that of $\mathrm{Pb} .4 .21(\mathrm{~g})$, for which the following values are given in $\mathrm{Pb} .4 .23(\mathrm{~g})$:
$\Delta \mathrm{A}:=-3.629$

$$
\Delta \mathrm{B}:=8.816 \cdot \frac{10^{-3}}{\mathrm{kelvin}}
$$

$\Delta C:=-4.904 \cdot \frac{10^{-6}}{\text { kelvin }^{2}}$

$$
\Delta \mathrm{D}:=0.114 \cdot 10^{5} \cdot \text { kelvin }^{2} \quad \mathrm{~T}_{0}:=298.15 \cdot \mathrm{kelvin}
$$

Guess: $\quad \tau:=3$

$$
\left.\begin{array}{l}
\text { idcph }:=\left[\begin{array}{l}
\Delta \mathrm{A} \cdot \mathrm{~T}_{0} \cdot()-1+\frac{\Delta \mathrm{B}}{2} \cdot \mathrm{~T}_{0}^{2} \cdot()^{2}-1 \ldots \\
+\frac{\Delta \mathrm{C}}{3} \cdot \mathrm{~T}_{0}^{3} \cdot()^{3}-1+\frac{\Delta \mathrm{D}}{\mathrm{~T}_{0}} \cdot\left(\frac{\tau-1}{\tau}\right)
\end{array}\right] \\
\text { idcps }:=\Delta \mathrm{A} \cdot \mathrm{\Delta n}\left(\mathrm{t}+\left[\mathrm{B} \cdot \bar{T}_{0}+\left[\begin{array}{c}
\mathrm{C} \cdot \mathrm{~T}_{0}^{2} \ldots \\
\left.+\frac{\Delta \mathrm{D}}{\left(\mathrm{t} \cdot \mathrm{~T}_{0}^{2}\right.}\right]
\end{array}\right] \cdot\left(\frac{\tau+1}{2}\right)\right] \cdot(t-1\right.
\end{array}\right] .
$$

idcph $=-130.182$ kelvin \quad idcps $=-0.417$
Given
$-\Delta H_{298}=R \cdot\left[\begin{array}{l}A\left(\xi \cdot T_{0} \cdot()-1+\frac{B(\xi}{2} \cdot T_{0}{ }^{2} \cdot()^{2}-1 \quad \ldots\right. \\ +\frac{C(\xi}{3} \cdot T_{0}{ }^{3} \cdot()^{3}-1+\frac{D(\xi}{T_{0}} \cdot\left(\frac{\tau-1}{\tau}\right)\end{array}\right]$
$K\left(E=\exp \left[\left(\frac{\Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298}}{\mathrm{R} \cdot \mathrm{T}_{0}}-\frac{\Delta \mathrm{H}_{298}}{\mathrm{R} \cdot \mathrm{T}_{0} \cdot}\right)+\mathrm{idcps}-\frac{1}{\mathrm{~T}_{0} \cdot \tau} \cdot \mathrm{idcph}\right]\right.$
$\binom{\varepsilon}{\tau}:=\operatorname{Find}\left(\xi \tau \quad\binom{\varepsilon}{\tau}=\binom{0.88244}{3.18374}\right.$
$y(0.88244)=\left(\begin{array}{c}0.0333 \\ 0.052 \\ 0.2496 \\ 0.6651\end{array}\right)$

Ans.
$\mathrm{T}:=\tau \cdot \mathrm{T}_{0} \quad \mathrm{~T}=949.23$ kelvin Ans.
13.27 $\mathbf{C H} 4(\mathrm{~g})=\mathbf{C}(\mathrm{s})+\mathbf{2 H} \mathbf{(g}) \quad v=1 \quad$ (gases only)

The carbon exists PURE as an individual phase, for which the activity is unity. Thus we leave it out of consideration.

From the data of Table C.4,
$\Delta \mathrm{H}_{298}:=74520 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$

$$
\Delta \mathrm{G}_{298}:=50460 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The following vectors represent the species of the reaction in the order in which they appear:
$v:=\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)$
$\mathrm{A}:=\left(\begin{array}{l}1.702 \\ 1.771 \\ 3.249\end{array}\right)$
$B:=\left(\begin{array}{l}9.081 \\ 0.771 \mid \cdot 10^{-3} \\ 0.422)\end{array}\right.$
$i:=1 . .3$

$$
C:=\left(\begin{array}{c}
-2.164 \\
0.0 \\
-0.0
\end{array}\right)
$$

$$
\mathrm{D}:=\left(\begin{array}{c}
0.0 \\
-0.867 \mid \cdot 10^{5} \\
0.083
\end{array}\right)
$$

$\Delta \mathrm{A}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{i}} \quad \Delta \mathrm{B}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}} \quad \Delta \mathrm{C}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{i}} \quad \Delta \mathrm{D}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}$
$\Delta \mathrm{A}=6.567 \quad \Delta \mathrm{~B}=-7.466 \times 10^{-3} \quad \Delta \mathrm{C}=2.164 \times 10^{-6} \quad \Delta \mathrm{D}=-7.01 \times 10^{4}$
$\mathrm{T}:=923.15 \cdot$ kelvin $\quad \mathrm{T}_{0}:=298.15 \cdot$ kelvin

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \mathrm{uH}_{298}-\Delta \mathrm{G}_{298} \ldots \\
& +\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \boxed{\pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D} \quad \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}\left(\Gamma_{0}, \boxed{\pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}\right.
\end{aligned}
$$

$\Delta \mathrm{G}=-1.109 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{T}}\right) \quad \mathrm{K}=4.2392$
By Eq. (13.5), $\quad n_{0}=1 \quad \mathrm{y}_{\mathrm{CH} 4}=\frac{1-\varepsilon}{1+\varepsilon} \quad \mathrm{yH}_{2}=\frac{2 \cdot \varepsilon}{1+\varepsilon}$
(a) By Eq. (13.28), $\quad \frac{\left(2 \cdot \varepsilon^{2}\right.}{(1+\varepsilon \cdot(1-\varepsilon}=\frac{4 \cdot \varepsilon^{2}}{1-\varepsilon^{2}}=K$
$\varepsilon:=\sqrt{\frac{K}{4+K}}$
$\varepsilon=0.7173 \quad$ (fraction decomposed)

УСH $4^{:=} \frac{1-\varepsilon}{1+\varepsilon} \quad$ УH2 $2:=\frac{2 \cdot \varepsilon}{1+\varepsilon}$

$$
y_{C H 4}=0.1646
$$

$$
\mathrm{yH} 2=0.8354
$$

(b) For a feed of $1 \mathrm{~mol} \mathbf{C H} 4$ and 1 mol N 2 ,

$$
\mathrm{n}_{0}=2
$$

By Eq. (13.28),
$\varepsilon:=.8 \quad$ (guess)

Given $\quad \frac{(2 \cdot \varepsilon)^{2}}{(2+\varepsilon \cdot()-\varepsilon}=K \quad \varepsilon:=\operatorname{Find}($)
$\varepsilon=0.7893 \quad$ (fraction decomposed)
уCH $4:=\frac{1-\varepsilon}{2+\varepsilon} \quad \mathrm{yH}_{2}:=\frac{2 \cdot \varepsilon}{2+\varepsilon} \quad \mathrm{yN}_{2}:=1-\mathrm{yCH}^{2}-\mathrm{yH}_{2}$
$y_{H 2}=0.5659$
$\mathrm{yCH}^{2}=0.0756$
$\mathrm{y}_{\mathrm{N} 2}=0.3585$ Ans.

$$
\begin{equation*}
13.281 / 2 \mathrm{~N} 2(\mathrm{~g})+\mathbf{1} / \mathbf{2 O}(\mathrm{g})=\mathrm{NO}(\mathrm{~g}) \quad v=0 \tag{1}
\end{equation*}
$$

This is the reaction of $\mathrm{Pb} .4 .21(\mathrm{n})$ with all stoichiometric coefficients divided by two. From the answers to Pbs. 4.21(n), 4.22(n), and 13.7(n) ALL DIVIDED BY 2, find the following values:
$\Delta \mathrm{H}_{298}:=90250 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{298}:=86550 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\Delta \mathrm{A}:=-0.0725$
$\Delta \mathrm{B}:=0.0795 \cdot 10^{-3} \quad \Delta \mathrm{C}:=0$
$\Delta \mathrm{D}:=0.1075 \cdot 10^{5}$
$\mathrm{T}:=2000 \cdot$ kelvin $\quad \mathrm{T}_{0}:=298.15 \cdot$ kelvin

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots \\
& +\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \bar{\pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D} \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \bar{\Pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
\end{aligned}
$$

$$
\Delta \mathrm{G}=6.501 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}_{1}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}_{1}=0.02004
$$

$$
\begin{equation*}
\mathbf{1 / 2 N} 2(\mathrm{~g})+\mathrm{O} 2(\mathrm{~g})=\mathrm{NO} 2(\mathrm{~g}) \tag{2}
\end{equation*}
$$

$$
v=-0.5
$$

From the data of Table C.4,

$$
\Delta \mathrm{H}_{298}:=33180 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{G}_{298}:=51310 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The following vectors represent the species of the reaction in the order in which they appear:

$$
\begin{aligned}
& v:=\left(\begin{array}{c}
-0.5 \\
-1 \\
1
\end{array}\right) \quad \mathrm{A}:=\left(\begin{array}{l}
3.280 \\
3.639 \\
4.982
\end{array}\right) \quad \mathrm{B}:=\left(\begin{array}{l}
0.593 \\
0.506 \mid \cdot 10^{-3} \\
1.195
\end{array}\right) \quad \mathrm{D}:=\left(\begin{array}{c}
0.040 \\
-0.227 \mid \cdot 10^{5} \\
-0.792)
\end{array}\right. \\
& \mathrm{i}:=1 . .3 \quad \Delta \mathrm{~A}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}} \quad \Delta \mathrm{~B}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}} \quad \Delta \mathrm{D}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}} \\
& \Delta \mathrm{~A}=-0.297 \quad \Delta \mathrm{~B}=3.925 \times 10^{-4} \quad \Delta \mathrm{C}:=0 \quad \Delta \mathrm{D}=-5.85 \times 10^{4} \\
& \mathrm{~T}:=2000 \cdot \text { kelvin } \\
& \mathrm{T}_{0}:=298.15 \cdot \text { kelvin }
\end{aligned}
$$

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots \\
& +\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \Delta, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D} \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \Delta, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
\end{aligned}
$$

$$
\Delta \mathrm{G}=1.592 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}_{2}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}_{2}=6.9373 \times 10^{-5}
$$

With the assumption of ideal gases, we apply Eq. (13.28):
(1)

$$
\frac{y \mathrm{NO}}{\left(y _ { \mathrm { N } 2 } { } ^ { 0 . 5 } \cdot \left(y_{\mathrm{O} 2} 0.5\right.\right.}=\frac{\mathrm{yNO}}{(0.7)^{0.5} \cdot(0.05)^{0.5}}=\mathrm{K}_{1}
$$

$$
\mathrm{y}_{\mathrm{NO}}:=\mathrm{K}_{1} \cdot(0.7)^{0.5} \cdot(0.05)^{0.5} \quad \mathrm{y}_{\mathrm{NO}}=3.74962 \times 10^{-3} \quad \text { Ans. }
$$

(2) $\mathrm{P} 0:=1 \quad \mathrm{P}:=200$

$$
\frac{\mathrm{yNO}^{\mathrm{NO}}}{\left(\mathrm{y}_{\mathrm{N} 2}^{0.5} \cdot \mathrm{yO}_{\mathrm{O} 2}\right.}=\frac{\mathrm{yNO}^{\mathrm{NO}}}{(0.7)^{0.5} \cdot(0.05)}=\left(\frac{\mathrm{P}}{\mathrm{P} 0}\right)^{0.5} \cdot \mathrm{~K}_{2}
$$

$$
\mathrm{yNO} 2:=\left(\frac{\mathrm{P}}{\mathrm{P} 0}\right)^{0.5} \cdot \mathrm{~K}_{2} \cdot(0.7)^{0.5} \cdot(0.05) \quad \mathrm{yNO}_{2}=4.104 \times 10^{-5}
$$

Ans.
$13.29 \quad 2 \mathrm{H} 2 \mathrm{~S}(\mathrm{~g})+\mathrm{SO} 2(\mathrm{~g})=3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{g})$
The sulfur exists PURE as a solid phase, for which the activity is $\mathbf{f} / \mathbf{f 0}$. Since f and $f 0$ are for practical purposes the same, the activity is unity, and it is omitted from the equilibrium equation. Thus for the gases only,

$$
v=-1
$$

From the given data and the data of Table C.4,

$$
\Delta \mathrm{H}_{298}:=-145546 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\Delta \mathrm{G}_{298}:=-89830 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The following vectors represent the species of the reaction in the order in which they appear:
$v:=\left(\begin{array}{c}-2 \\ -1 \\ 3 \\ 2\end{array}\right) \quad \mathrm{A}:=\left(\begin{array}{l}3.931 \\ 5.699 \\ 4.114 \\ 3.470\end{array}\right) \quad \mathrm{B}:=\left(\begin{array}{c}1.490 \\ 0.801 \\ -1.728 \\ 1.450\end{array}\right) \cdot 10^{-3} \quad \mathrm{D}:=\left(\begin{array}{l}-0.232 \\ -1.015 \\ -0.783 \\ 0.121\end{array}\right) \cdot 10^{5}$
$\mathrm{i}:=1 . .4 \quad \Delta \mathrm{~A}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{i}} \quad \Delta \mathrm{B}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}} \quad \Delta \mathrm{D}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}$
$\Delta \mathrm{A}=5.721$

$$
\Delta \mathrm{B}=-6.065 \times 10^{-3} \quad \Delta \mathrm{C}:=0 \quad \Delta \mathrm{D}=-6.28 \times 10^{4}
$$

$\mathrm{T}:=723.15 \cdot$ kelvin $\quad \mathrm{T}_{0}:=298.15 \cdot \mathrm{kelvin}$
$\Delta \mathrm{G}:=\Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{T}_{0}} \cdot\left(\lambda \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \quad \ldots\right.$

$$
+\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \ldots
$$

$$
+-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \widetilde{\pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
$$

$\Delta \mathrm{G}=-1.538 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{T}}\right) \quad \mathrm{K}=12.9169$
By Eq. (13.5), gases only: $\quad n_{0}=3 \quad$ (basis)
$\mathrm{yH}_{2} \mathrm{~S}=\frac{2-2 \cdot \varepsilon}{3-\varepsilon} \quad \mathrm{ySO}_{2}=\frac{1-\varepsilon}{3-\varepsilon} \quad \mathrm{yH}_{2} \mathrm{O}=\frac{2 \cdot \varepsilon}{3-\varepsilon}$
By Eq. (13.28),
$\varepsilon:=0.5 \quad$ (guess)
Given $\quad \frac{\left(k \cdot \varepsilon^{2} \cdot(\beta-\varepsilon\right.}{\left(k-2 \cdot \varepsilon^{2} \cdot()-\varepsilon\right.}=8 \cdot K \quad \varepsilon:=\operatorname{Find}(\varepsilon \quad \varepsilon=0.767$

Percent conversion of reactants $=\mathbf{P C}$

$$
\operatorname{PC}=\frac{\mathrm{n}_{\mathrm{i} 0}-\mathrm{n}_{\mathrm{i}}}{\mathrm{n}_{\mathrm{i} 0}} \cdot 100=\frac{-\varepsilon_{\mathrm{i}}^{\prime}}{\mathrm{n}_{\mathrm{i} 0}} \cdot 100 \quad[\text { By Eq. (13.4)] }
$$

Since the reactants are present in the stoichiometric proportions, for each reactant,

$$
\mathrm{n}_{\mathrm{i} 0}=-v_{\mathrm{i}} \quad \text { Whence } \quad \mathrm{PC}:=\varepsilon \cdot 100 \quad \mathrm{PC}=76.667 \quad \text { Ans. }
$$

$13.30 \quad \mathrm{~N} 2 \mathrm{O} 4(\mathrm{~g})=2 \mathrm{NO} 2(\mathrm{~g})$
(a)
(b)

$$
v=1
$$

Data from Tables C. 4 and C. 1 provide the following values:

$$
\Delta \mathrm{H}_{298}:=57200 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\mathrm{T}_{0}:=298.15 \cdot$ kelvin

$$
\Delta \mathrm{G}_{298}:=5080 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{T}:=350 \cdot \text { kelvin }
$$

$$
\Delta \mathrm{A}:=-1.696 \quad \Delta \mathrm{~B}:=0.133 \cdot 10^{-3} \quad \Delta \mathrm{C}:=0 \quad \Delta \mathrm{D}:=1.203 \cdot 10^{5}
$$

$$
\Delta \mathrm{G}:=\Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots
$$

$$
+\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \nabla^{2}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D} \ldots
$$

$$
+-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}\left(\Gamma_{0}, \bar{\pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}\right.
$$

$$
\Delta \mathrm{G}=-3.968 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}=3.911
$$

Basis: 1 mol species (a) initially. Then

$$
\mathrm{y}_{\mathrm{a}}=\frac{1-\varepsilon}{1+\varepsilon} \quad \mathrm{y}_{\mathrm{b}}=\frac{2 \cdot \varepsilon}{1+\varepsilon} \quad \frac{\left(k \cdot \varepsilon^{2}\right.}{(1-\varepsilon \cdot() 1+\varepsilon}=\left(\frac{\mathrm{P}}{\mathrm{P} 0}\right)^{-1} \cdot \mathrm{~K}
$$

(a) $\begin{aligned} \mathrm{P} & :=5 \\ \mathrm{y}_{\mathrm{a}} & :=\frac{1-\varepsilon}{1+\varepsilon}\end{aligned}$

$$
\mathrm{P} 0:=1
$$

$$
\varepsilon:=\sqrt{\frac{\mathrm{K}}{4 \cdot \mathrm{P}+\mathrm{K}}}
$$

$$
\varepsilon=0.4044
$$

(b) $\mathrm{P}:=1$

P0 := 1
$\varepsilon:=\sqrt{\frac{\mathrm{K}}{4 \cdot \mathrm{P}+\mathrm{K}}}$
$\varepsilon=0.7031$

By Eq. (4.18), at 350 K:
$\Delta \mathrm{H}:=\Delta \mathrm{H}_{298}+\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \Delta, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \quad \Delta \mathrm{H}=56984 \frac{\mathrm{~J}}{\mathrm{~mol}}$
This is \mathbf{Q} per mol of reaction, which is
$\Delta \varepsilon:=0.7031-0.4044$
Whence $\quad \mathrm{Q}:=\Delta \mathrm{H} \cdot \Delta \varepsilon$

$$
\Delta \varepsilon=0.299
$$

$$
\mathrm{Q}=17021 \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

Ans.
13.31 By Eq. (13.32), $\quad K=\frac{x_{B} \cdot \gamma_{B}}{x_{A} \cdot \gamma_{A}}=\frac{\left(1-x_{A} \cdot \gamma_{B}\right.}{x_{A} \cdot \gamma_{A}}$
$\ln \left(\gamma_{\mathrm{a}}=0.1 \cdot \mathrm{x}_{\mathrm{B}}^{2} \quad \ln \left(\gamma_{\mathrm{b}}=0.1 \cdot \mathrm{x}_{\mathrm{A}}^{2} \quad\right.\right.$ Whence
$\mathrm{K}=\left(\frac{1-\mathrm{x}_{\mathrm{A}}}{\mathrm{x}_{\mathrm{A}}}\right) \cdot \frac{\exp \left(\phi \cdot 1 \cdot \mathrm{x}_{\mathrm{A}}{ }^{2}\right.}{\exp \left(\phi \cdot 1 \cdot \mathrm{x}_{\mathrm{B}}{ }^{2}\right.}=\frac{1-\mathrm{x}_{\mathrm{A}}}{\mathrm{x}_{\mathrm{A}}} \cdot \exp \left[0.1 \cdot\left(\mathrm{k}_{\mathrm{A}}{ }^{2}-\mathrm{x}_{\mathrm{B}}{ }^{2}\right]\right.$
$K=\frac{1-x_{A}}{x_{A}} \cdot \exp \left[0.1 \cdot\left(f \cdot x_{A}-1\right] \quad K=\exp \left(\frac{-\Delta G}{R \cdot T}\right)\right.$
$\Delta \mathrm{G}:=-1000 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$
T : = 298.15•kelvin
$\mathrm{x}_{\mathrm{A}}:=.5 \quad$ (guess)
Given $\frac{1-\mathrm{x}_{\mathrm{A}}}{\mathrm{x}_{\mathrm{A}}} \cdot \exp \left[0.1 \cdot\left(\ell \cdot \mathrm{x}_{\mathrm{A}}-1\right]=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{T}}\right) \quad \mathrm{x}_{\mathrm{A}}:=\operatorname{Find}\left(\mathrm{k}_{\mathrm{A}}\right.\right.$
$\mathrm{x}_{\mathrm{A}}=0.3955 \quad$ Ans.
For an ideal solution, the exponential term is unity:
Given $\quad \frac{1-\mathrm{x}_{\mathrm{A}}}{\mathrm{x}_{\mathrm{A}}}=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{T}}\right) \quad \mathrm{x}_{\mathrm{A}}:=\operatorname{Find}\left(\mathrm{k}_{\mathrm{A}} \quad \mathrm{x}_{\mathrm{A}}=0.4005\right.$
This result is high by 0.0050 . Ans.
$13.32 \mathrm{H} 2 \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g})=\mathrm{H} 2(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \quad v=0$
From the the data of Table C.4,

$$
\Delta \mathrm{H}_{298}:=-41166 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\mathrm{T}_{0}:=298.15 \cdot \mathrm{kelvin}$

$$
\Delta \mathrm{G}_{298}:=-28618 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\mathrm{T}:=800 \cdot \mathrm{kelvin}$
$\Delta \mathrm{A}:=1.860$
$\Delta \mathrm{B}:=-0.540 \cdot 10^{-3} \quad \Delta \mathrm{C}:=0$
$\Delta \mathrm{D}:=-1.164 \cdot 10^{5}$
$\Delta \mathrm{G}:=\Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{T}_{0}} \cdot\left(\Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots\right.$
$+\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \bar{\Delta}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \ldots$
$+-\mathrm{R} \cdot \mathrm{T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D}$
$\Delta \mathrm{G}=-9.668 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{T}}\right) \quad \mathrm{K}=4.27837$
(a) No. Since $\quad v=0$, at low pressures \mathbf{P} has no effect
(b) No. K decreases with increasing T. (The standard heat of reaction is negative.).
(c) Basis: $1 \mathrm{~mol} \mathrm{CO}, 1 \mathrm{~mol} \mathrm{H} 2$, w mol H2O feed.

From the problem statement,
$\frac{\mathrm{n}_{\mathrm{CO}}}{\mathrm{n}_{\mathrm{CO}}+\mathrm{n}_{\mathrm{H} 2}+\mathrm{n}_{\mathrm{CO} 2}}=0.02$
By Eq. (13.4), $\quad n_{\mathrm{CO}}=1-\varepsilon \quad \mathrm{n}_{\mathrm{H} 2}=1+\varepsilon \quad \mathrm{N}_{\mathrm{CO} 2}=\varepsilon$

$$
\frac{1-\varepsilon}{1-\varepsilon+\varepsilon 1+\varepsilon+}=\frac{1-\varepsilon}{2+\varepsilon}=0.02 \quad \varepsilon:=\frac{0.96}{1.02} \quad \varepsilon=0.941
$$

Let $\mathrm{z}=\mathbf{w} / \mathbf{2}=$ moles $\mathbf{H 2 O} /$ mole "Water gas".
By Eq. (13.5),

$$
\mathrm{y}_{\mathrm{H} 2 \mathrm{O}}=\frac{\mathrm{w}-\varepsilon}{2+\mathrm{w}}=\frac{2 \cdot \mathrm{z}-}{2+2 \cdot \mathrm{z}} \quad \mathrm{yCO}_{\mathrm{CO}}=\frac{1-\varepsilon}{2+2 \cdot \mathrm{z}} \quad \mathrm{yH}_{2}=\frac{1+\varepsilon}{2+2 \cdot \mathrm{z}}
$$

$\mathrm{yCO}_{\mathrm{CO}}=\frac{\varepsilon}{2+2 \cdot \mathrm{z}} \quad$ By Eq. (13.28) $\quad \mathrm{z}:=2 \quad$ (guess)
Given $\frac{\varepsilon \cdot()+\varepsilon}{(2 \cdot \varepsilon-\cdot()-\varepsilon}=K \quad \mathrm{z}:=\operatorname{Find}(\mathrm{z}) \quad \mathrm{z}=4.1 \quad$ Ans.
(d) $2 \mathbf{C O}(\mathrm{~g})=\mathbf{C O 2}(\mathrm{g})+\mathbf{C}(\mathrm{s}) \quad v=-1 \quad$ (gases)

Data from Tables C. 4 and C.1:

$$
\Delta \mathrm{H}_{298}:=-172459 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{298}:=-120021 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\Delta \mathrm{A}:=0.476$

$$
\Delta \mathrm{B}:=0.702 \cdot 10^{-3}
$$

$$
\Delta \mathrm{C}:=0
$$

$\Delta \mathrm{D}:=-1.962 \cdot 10^{5}$
$\Delta \mathrm{G}:=\Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{T}_{0}} \cdot\left(\Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \quad \ldots\right.$
$+\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D}$
$+-\mathrm{R} \cdot \mathrm{T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \bar{\pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D}$
$\Delta \mathrm{G}=-3.074 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{T}}\right) \quad \mathrm{K}=101.7$
By Eq. (13.28), gases only, with $P=P 0=1$ bar
$\frac{y_{C O} 2}{\left(y_{\mathrm{HCO}}{ }^{2}\right.}=\mathrm{K}=101.7$ for the reaction AT EQUILIBRIUM.
If the ACTUAL value of this ratio is GREATER than this value, the reaction tries to shift left to reduce the ratio. But if no carbon is present, no reaction is possible, and certainly no carbon is formed. The actual value of the ratio in the equilibrium mixture of Part (c) is

$$
\begin{array}{ll}
\mathrm{yCO}:=\frac{\varepsilon}{2+2 \cdot \mathrm{z}} & \mathrm{yCO}:=\frac{1-\varepsilon}{2+2 \cdot \mathrm{z}} \\
\mathrm{yCO}_{2}=0.092 & \mathrm{yCO}=5.767 \times 10^{-3} \\
\text { RATIO }:=\frac{\mathrm{yCO}^{2}}{\left(\mathrm{yCO}^{2}\right.} & \text { RATIO }=2.775 \times 10^{3}
\end{array}
$$

No carbon can deposit from the equilibrium mixture.

$$
\begin{equation*}
13.33 \mathbf{C O}(\mathrm{~g})+\mathbf{2 H} \mathbf{2}(\mathrm{g})=\mathbf{C H} 3 \mathrm{OH}(\mathrm{~g}) \quad v=-2 \tag{1}
\end{equation*}
$$

This is the reaction of $\mathbf{P b}$. 13.21, where the following parameter values are given:
$\Delta \mathrm{H}_{298}:=-90135 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathrm{T}:=550 \cdot \mathrm{kelvin}$

$$
+
$$

$$
\Delta \mathrm{A}:=-7.663 \quad \Delta \mathrm{~B}:=10.815 \cdot 10^{-3} \quad \Delta \mathrm{C}:=-3.45 \cdot 10^{-6} \quad \Delta \mathrm{D}:=-0.135 \cdot 10^{5}
$$

$$
\Delta \mathrm{G}:=\Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots
$$

$$
+\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \widetilde{\pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \ldots
$$

$$
+-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}\left(\Gamma_{0}, \boxed{\pi}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}\right.
$$

$$
\Delta \mathrm{G}=3.339 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}_{1}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}_{1}=6.749 \times 10^{-4}
$$

$$
\begin{equation*}
\mathrm{H} 2(\mathrm{~g})+\mathbf{C O 2}(\mathrm{g})=\mathbf{C O}(\mathrm{g})+\mathbf{H} 2 \mathrm{O}(\mathrm{~g}) \quad v=0 \tag{2}
\end{equation*}
$$

From the the data of Table C.4,

$$
\Delta \mathrm{H}_{298}:=41166 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\mathrm{T}:=550 \cdot \mathrm{kelvin}$

$$
\Delta \mathrm{G}_{298}:=28618 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$$
\mathrm{T}_{0}:=298.15 \cdot \text { kelvin }
$$

The following vectors represent the species of the reaction in the order in which they appear:
$v:=\left(\begin{array}{c}-1 \\ -1 \\ 1 \\ 1\end{array}\right)$
$\mathrm{A}:=\left(\begin{array}{l}3.249 \\ 5.457 \\ 3.376 \\ 3.470\end{array}\right)$
$B:=\left(\begin{array}{l}0.422 \\ 1.045 \\ 0.557 \\ 1.450\end{array}\right) \cdot 10^{-3}$
$\mathrm{D}:=\left(\begin{array}{c}0.083 \\ -1.157 \\ -0.031 \\ 0.121\end{array}\right) \cdot 10^{5}$

$$
\begin{array}{cc}
\mathrm{i}:=1 . .4 \quad \Delta \mathrm{~A}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{~A}_{\mathrm{i}} \quad \Delta \mathrm{~B}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{~B}_{\mathrm{i}} \quad \Delta \mathrm{D}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}} \\
\Delta \mathrm{~A}=-1.86 \quad \Delta \mathrm{~B}=5.4 \times 10^{-4} \quad \Delta \mathrm{C}:=0 \quad \Delta \mathrm{D}=1.164 \times 10^{5}
\end{array}
$$

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \quad \ldots \\
& +\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \Delta, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \quad \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \Delta, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \\
\Delta \mathrm{G}= & 1.856 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}_{2}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}_{2}=0.01726
\end{aligned}
$$

Basis: 1 mole of feed gas containing $0.75 \mathrm{~mol} \mathrm{H2}$, $0.15 \mathrm{~mol} \mathrm{CO}, 0.05 \mathrm{~mol} \mathrm{CO} 2$, and 0.05 mol N 2 .

Stoichiometric numbers, $v_{i . j}$

$\mathrm{i}=$	H 2	CO	CO 2	CH 3 OH	H 2 O
j					
1	-2	-1	0	1	0
2	-1	1	-1	0	1

By Eq. (13.7)
$\mathrm{y}_{\mathrm{H} 2}=\frac{0.75-2 \cdot \varepsilon_{1}-2}{1-2 \cdot \varepsilon_{1}} \quad \mathrm{yCO}^{2}=\frac{0.15-๕_{1}+2}{1-2 \cdot \varepsilon_{1}}$
$\mathrm{yCO} 2=\frac{0.05-\varepsilon_{2}}{1-2 \cdot \varepsilon_{1}} \quad \mathrm{yCH} 3 \mathrm{OH}=\frac{\varepsilon_{1}}{1-2 \cdot \varepsilon_{1}} \quad \mathrm{y}_{\mathrm{H} 2 \mathrm{O}}=\frac{\varepsilon_{2}}{1-2 \cdot \varepsilon_{1}}$
P := 100
$\mathrm{P} 0:=1$
By Eq. (13.40), $\quad \varepsilon_{1}:=0.1 \quad \varepsilon_{2}:=0.1 \quad$ (guesses)
Given
$\frac{\varepsilon_{1} \cdot()-2 \cdot \varepsilon_{1}^{2}}{\left(0.75-\varepsilon 2 \cdot \varepsilon_{1}-2^{2} \cdot\left(0.15-\mathscr{E}_{1}+2\right.\right.}=\left(\frac{\mathrm{P}}{\mathrm{P} 0}\right)^{2} \cdot \mathrm{~K}_{1}$
$\frac{\left(0.15-\varepsilon_{1}+2 \cdot \varepsilon_{2}\right.}{\left(0.75-\varepsilon 2 \cdot \varepsilon_{1}-2 \cdot\left(\hat{0} .05-\varepsilon_{2}\right.\right.}=\mathrm{K}_{2} \quad\left(\begin{array}{l}\left.\varepsilon_{1}\right) \\ \left.\varepsilon_{2}\right)\end{array}:=\operatorname{Find}\left(\xi_{1}, \varepsilon_{2}\right.\right.$

$$
\begin{aligned}
& \varepsilon_{1}=0.1186 \\
& \text { УН2 }:=\frac{0.75-\varepsilon 2 \cdot \varepsilon_{1}-2}{1-2 \cdot \varepsilon_{1}} \quad \text { yCO }:=\frac{0.15-๕_{1}+2}{1-2 \cdot \varepsilon_{1}} \\
& \begin{array}{l}
\mathrm{yCO}_{\mathrm{CO}}:=\frac{0.05-\varepsilon_{2}}{1-2 \cdot \varepsilon_{1}} \quad \quad \mathrm{yCH}_{2} \mathrm{OH}:=\frac{\varepsilon_{1}}{1-2 \cdot \varepsilon_{1}} \\
\mathrm{y}_{\mathrm{N} 2}:=1-\mathrm{yH}_{2}-\mathrm{yCO}^{2}-\mathrm{yCO}^{2}-\mathrm{yCH}^{2 O H}-\mathrm{yH}_{2} \mathrm{O}
\end{array} \\
& \varepsilon_{2}=8.8812 \times 10^{-3} \\
& y_{H 2}=0.6606 \\
& \mathrm{yCH} 3 \mathrm{OH}=0.1555 \\
& \mathrm{yCO}=0.0528 \\
& \mathrm{yH}_{2} \mathrm{O}=0.0116 \\
& y_{C O 2}=0.0539 \\
& y_{N} 2=0.0655 \\
& \text { Ans. }
\end{aligned}
$$

$13.34 \mathrm{CH} 4(\mathrm{~g})+\mathrm{H} 2 \mathrm{O}(\mathrm{g})=\mathbf{C O}(\mathrm{g})+\mathbf{3 H 2}(\mathrm{g}) \quad v=2$

$$
\begin{equation*}
v=2 \tag{1}
\end{equation*}
$$

From the the data of Table C.4,

$$
\Delta \mathrm{H}_{298}:=205813 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{298}:=141863 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

The following vectors represent the species of the reaction in the order in which they appear:

$\mathrm{A}:=\left(\begin{array}{l}1.702 \\ 3.470 \\ 3.376 \\ 3.249\end{array}\right)$
$\mathrm{B}:=\left(\begin{array}{l}9.081 \\ 1.450 \\ 0.557 \\ 0.422\end{array}\right) \cdot 10^{-3}$
$\Delta \mathrm{A}:=\sum_{\mathrm{i}}\left(\gamma_{\mathrm{i}} \cdot \mathrm{A}_{\mathrm{i}} \quad \Delta \mathrm{B}:=\sum_{\mathrm{i}}\left(\gamma_{\mathrm{i}} \cdot \mathrm{B}_{\mathrm{i}} \quad \Delta \mathrm{C}:=\sum_{\mathrm{i}}\left(\gamma_{\mathrm{i}} \cdot \mathrm{C}_{\mathrm{i}} \quad \Delta \mathrm{D}:=\sum_{\mathrm{i}}()_{\mathrm{i}} \cdot \mathrm{D}_{\mathrm{i}}\right.\right.\right.$
$\Delta \mathrm{A}=7.951$

$$
\Delta \mathrm{B}=-8.708 \times 10^{-3}
$$

$$
\Delta \mathrm{C}=2.164 \times 10^{-6}
$$

$$
\Delta \mathrm{D}=9.7 \times 10^{3}
$$

$\mathrm{T}:=1300 \cdot \mathrm{kelvin} \quad \mathrm{T}_{0}:=298.15 \cdot \mathrm{kelvin}$

$$
\begin{aligned}
\Delta \mathrm{G}:= & \Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot\left(\Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots\right. \\
& +\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \Delta, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D} \ldots \\
& +-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \bar{\Delta}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
\end{aligned}
$$

$$
\Delta \mathrm{G}=-1.031 \times 10^{5} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}_{1}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}_{1}=13845
$$

$$
\begin{equation*}
\mathbf{H 2 O}(\mathrm{g})+\mathbf{C O}(\mathrm{g})=\mathbf{H} 2(\mathrm{~g})+\mathbf{C O 2}(\mathrm{g}) \quad v=0 \tag{2}
\end{equation*}
$$

This is the reaction of $\mathbf{P b}$. 13.32, where parameter values are given:

$$
\Delta \mathrm{H}_{298}:=-41166 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \Delta \mathrm{G}_{298}:=-28618 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

$\Delta \mathrm{A}:=1.860$

$$
\begin{aligned}
& \Delta \mathrm{B}:=-0.540 \cdot 10^{-3} \Delta \mathrm{C} \\
& -\frac{\mathrm{T}}{\mathrm{~T}_{0}} \cdot() \Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \quad \cdots
\end{aligned}
$$

$$
+\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}
$$

$$
+-\mathrm{R} \cdot \mathrm{~T} \cdot \operatorname{IDCPS}() \Gamma_{0}, \bar{\nabla}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D}
$$

$$
\Delta \mathrm{G}=5.892 \times 10^{3} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}_{2}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \mathrm{K}_{2}=0.5798
$$

(a) No. Primary reaction (1) shifts left with increasing P.
(b) No. Primary reaction (1) shifts left with increasing T.
(c) The value of $K 1$ is so large compared with the value of $K 2$ that for all practical purposes reaction (1) may be considered to go to completion. With a feed equimolar in CH 4 and H 2 O , no H 2 O then remains for reaction (2). In this event the ratio, moles $\mathrm{H} 2 /$ moles CO is very nearly equal to 3.0.
(d) With $\mathbf{H 2 O}$ present in an amount greater than the stoichiometric ratio, reaction (2) becomes important. However, reaction (1) for all practical purposes still goes to completion, and may be considered to provide the feed for reaction (2). On the basis of 1 mol CH 4 and $2 \mathrm{~mol} \mathrm{H2O}$ initially, what is left as feed for reaction (2) is: $\mathbf{1} \mathbf{~ m o l}$ $\mathrm{H} 2 \mathrm{O}, 1 \mathrm{~mol} \mathrm{CO}$, and $3 \mathrm{~mol} \mathrm{H} 2 ; \mathrm{n} 0=5$. Thus, for reaction (2) at equilibrium by Eq. (13.5):
$\mathrm{yCO}_{\mathrm{CO}}=\mathrm{yH}_{2 \mathrm{O}}=\frac{1-\varepsilon}{5} \quad \mathrm{yCO}_{2}=\frac{\varepsilon}{5} \quad \mathrm{yH}_{2}=\frac{3+\varepsilon}{5}$
By Eq. (13.28),

$$
\varepsilon:=0.5
$$

(guess)
Given $\quad \frac{\varepsilon \cdot(\beta+\varepsilon}{()-\varepsilon^{2}}=\mathrm{K}_{2} \quad \varepsilon:=\operatorname{Find}(\varepsilon \quad \varepsilon=0.1375$
Ratio $=\frac{\mathrm{yH}_{2}}{\mathrm{yCO}_{\mathrm{CO}}} \quad$ Ratio $:=\frac{3+\varepsilon}{1-\varepsilon} \quad$ Ratio $=3.638 \quad$ Ans.
(e) One practical way is to add CO 2 to the feed. Some H 2 then reacts with the CO 2 by reaction (2) to form additional CO and to lower the H2/CO ratio.
(f) $\mathbf{2 C O}(\mathrm{g})=\mathbf{C O 2}(\mathrm{g})+\mathbf{C}(\mathrm{s}) \quad v=-1 \quad$ (gases)

This reaction is considered in the preceding problem, Part (d), from which we get the necessary parameter values:

$$
\Delta \mathrm{H}_{298}:=-172459 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}
$$

For $\mathbf{T}=\mathbf{1 3 0 0} K$,
$\Delta \mathrm{A}:=0.476$
$\Delta \mathrm{G}:=\Delta \mathrm{H}_{298}-\frac{\mathrm{T}}{\mathrm{T}_{0}} \cdot\left(\lambda \mathrm{H}_{298}-\Delta \mathrm{G}_{298} \ldots\right.$
$+\mathrm{R} \cdot \operatorname{IDCPH}() \Gamma_{0}, \pi^{2}, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D} \quad \ldots$
$+-\mathrm{R} \cdot \mathrm{T} \cdot \operatorname{IDCPS}\left(\Gamma_{0}, \pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \mathrm{D}\right.$
$\Delta \mathrm{G}=5.673 \times 10^{4} \frac{\mathrm{~J}}{\mathrm{~mol}} \quad \mathrm{~K}:=\exp \left(\frac{-\Delta \mathrm{G}}{\mathrm{R} \cdot \mathrm{T}}\right) \quad \mathrm{K}=5.255685 \times 10^{-3}$

As explained in Problem 13.32(d), the question of carbon deposition depends on:

$$
\mathrm{RATIO}=\frac{\mathrm{yCO} 2}{\left(\mathrm{yCO}^{2}\right.}
$$

When for ACTUAL compositions the value of this ratio is greater than the equilibrium value as given by K, there can be no carbon deposition. Thus in Part (c), where the $\mathbf{C O 2}$ mole fraction approaches zero, there is danger of carbon deposition. However, in Part (d) there can be no carbon deposition, because Ratio $>\mathrm{K}$:

Ratio $:=\frac{\varepsilon \cdot 5}{() 1-\varepsilon^{2}} \quad$ Ratio $=0.924$
13.37 Formation reactions:
$\mathrm{C}+\mathbf{2 H} 2=\mathbf{C H} 4$
$\mathrm{H} 2+(1 / 2) \mathrm{O} 2=\mathrm{H} 2 \mathrm{O}$
$\mathrm{C}+(1 / 2) \mathrm{O} 2=\mathrm{CO}$
$\mathrm{C}+\mathrm{O} 2=\mathbf{C O} 2$
Elimination first of \mathbf{C} and then of $\mathbf{O 2}$ leads to a pair of reactions:
$\mathrm{CH} 4+\mathrm{H} 2 \mathrm{O}=\mathrm{CO}+3 \mathrm{H} 2$
$\mathrm{CO}+\mathrm{H} 2 \mathrm{O}=\mathrm{CO} 2+\mathrm{H} 2$
There are alternative equivalent pairs, but for these:
Stoichiometric numbers, $v_{i . j}$

$\mathrm{i}=$| CH 4 | H 2 O | CO | CO 2 | H 2 | v_{j} |
| :--- | :--- | :--- | :--- | :--- | :--- |

j

1	-1	-1	1	0	3	2
2	0	-1	-1	1	1	0

For initial amounts: 2 mol CH 4 and $3 \mathrm{~mol} \mathrm{H2O}, \mathrm{nO}=5$, and by Eq. (13.7):
УСН $4=\frac{2-\varepsilon_{1}}{5+2 \cdot \varepsilon_{1}} \quad$ УН2O $=\frac{3-\varepsilon_{1}-2}{5+2 \cdot \varepsilon_{1}} \quad$ УСО $=\frac{\varepsilon_{1}-\varepsilon_{2}}{5+2 \cdot \varepsilon_{1}}$
$\mathrm{yCO}^{2}=\frac{\varepsilon_{2}}{5+2 \cdot \varepsilon_{1}} \quad \mathrm{yH}_{\mathrm{H}}=\frac{3 \cdot \varepsilon_{1}+2}{5+2 \cdot \varepsilon_{1}}$
By Eq. (13.40), with $P=P 0=1$ bar
$\frac{y \mathrm{CO} \cdot\left(\mathrm{yH}_{2}^{3}\right.}{\mathrm{yCH}^{3} \cdot \mathrm{yH}_{2} \mathrm{O}}=\mathrm{k}_{1} \quad \frac{\mathrm{yCO}^{2} \cdot \mathrm{yH}_{2}}{\mathrm{yCO}^{2} \cdot \mathrm{yH}_{2} \mathrm{O}}=\mathrm{k}_{2}$
From the data given in Example 13.14,
$\Delta \mathrm{G}_{1}:=-27540 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\Delta \mathrm{G}_{2}:=-3130 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathrm{T}:=1000 \cdot \mathrm{kelvin}$

$$
\begin{array}{ll}
\mathrm{K}_{1}:=\exp \left(\frac{\left.-\Delta \mathrm{G}_{1}\right)}{\mathrm{R} \cdot \mathrm{~T}}\right) & \mathrm{K}_{2}:=\exp \left(\frac{-\Delta \mathrm{G}_{2}}{\mathrm{R} \cdot \mathrm{~T}}\right) \\
\mathrm{K}_{1}=27.453 & \mathrm{~K}_{2}=1.457 \\
\varepsilon_{1}:=1.5 & \varepsilon_{2}:=1
\end{array} \quad \text { (guesses) }
$$

Given

$$
\begin{aligned}
& \frac{\left(\xi_{1}-\varepsilon_{2} \cdot\left(\beta \cdot \varepsilon_{1}+2_{2}^{3}\right.\right.}{\left(\beta-\varepsilon_{1} \cdot\left(\beta-๕_{1}-2 \cdot\left(\beta+2 \cdot \varepsilon_{1}^{2}\right.\right.\right.}=\mathrm{K}_{1} \\
& \frac{\varepsilon_{2} \cdot\left(\beta \cdot \varepsilon_{1}+2\right.}{\left(\xi_{1}-\varepsilon_{2} \cdot\left(\beta-\propto_{1}-2\right.\right.}=\mathrm{K}_{2}
\end{aligned}
$$

$$
\begin{array}{lcl}
\binom{\varepsilon_{1}}{\varepsilon_{2}}:=\operatorname{Find}\left(\xi_{1}, \varepsilon_{2}\right. & \varepsilon_{1}=1.8304 & \varepsilon_{2}=0.3211 \\
\text { УCH4 }:=\frac{2-\varepsilon_{1}}{5+2 \cdot \varepsilon_{1}} & \text { УH2O }:=\frac{3-๕_{1}-2}{5+2 \cdot \varepsilon_{1}} & \text { УCO }:=\frac{\varepsilon_{1}-\varepsilon_{2}}{5+2 \cdot \varepsilon_{1}}
\end{array}
$$

$\mathrm{yCO} 2:=\frac{\varepsilon_{2}}{5+2 \cdot \varepsilon_{1}} \quad \mathrm{yH}_{2}:=\frac{3 \cdot \varepsilon_{1}+2}{5+2 \cdot \varepsilon_{1}}$

yCH $4=0.0196$	YH2O $=0.098$
$y_{C O 2}=0.0371$	YH2 $=0.6711$

These results are in agreement with those of Example 13.14.

13.39 Phase-equilibrium equations:

Ethylene oxide(1):
$\mathrm{p}_{1}=\mathrm{y}_{1} \cdot \mathrm{P}=415 \cdot \mathrm{x}_{1}$
$\mathrm{P}:=101.33 \cdot \mathrm{kPa}$

$$
\mathrm{x}_{1}=\frac{\mathrm{y}_{1} \cdot \mathrm{P}}{415 \cdot \mathrm{kPa}}
$$

(steam tables)

Ethylene glycol(3): $\quad \mathrm{Psat}_{3}=0.0 \quad \mathrm{y}_{3}=0.0$
Therefore, $\mathrm{y}_{2}=1-\mathrm{y}_{1}$ and $\quad \mathrm{x}_{3}=1-\mathrm{x}_{2}-\mathrm{x}_{3}$
For the specified standard states:
$(\mathrm{CH} 2)_{2} \mathrm{O}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=\mathrm{CH}_{2} \mathrm{OH} \cdot \mathrm{CH}_{2} \mathrm{OH}(\mathrm{l})$
By Eq. (13.40) and the stated assumptions,
$\mathrm{k}=\frac{\gamma_{3} \cdot \mathrm{x}_{3}}{\left(\mathrm{y}_{1} \cdot \frac{\mathrm{P}}{\mathrm{P} 0}\right) \cdot\left(\mathrm{y}_{2} \cdot \mathrm{x}_{2}\right.}=\frac{\mathrm{x}_{3}}{\mathrm{y}_{1} \cdot \mathrm{x}_{2}}$
Data from Table C.4:
$\mathrm{k}:=\exp \left(\frac{-\Delta \mathrm{G}_{298}}{\mathrm{R} \cdot \mathrm{T}}\right)$
$\mathrm{T}:=298.15 \cdot \mathrm{kelvin}$
$\Delta \mathrm{G}_{298}:=-72941 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$
$k=6.018 \times 10^{12} \quad$ Ans

So large a value of k requires either y 1 or $\mathbf{x} 2$ to approach zero. If y 1 approaches zero, $y 2$ approaches unity, and the phase-equilibrium expression for water(2) makes $\mathbf{x} 2=32$, which is impossible. Thus $\mathbf{x} 2$ must approach zero, and the phase-equilibrium equation requires $\mathbf{y} 2$ also to approach zero. This means that for all practical purposes the reaction goes to completion. For initial amounts of 3 moles of ethylene oxide and 1 mole of water, the water present is entirely reacted along with 1 mole of the ethylene oxide. Conversion of the oxide is therefore
33.3 \%.
13.41
a) Stoichiometric coefficients: $v:=\left(\begin{array}{cc}-1 & 0 \\ 1 & -1 \\ 0 & 1\end{array}\right)$

Initial

Number of components: i $:=1$.. 4 Number of reactions: $j:=1 . .2$
$\mathrm{v}_{\mathrm{j}}:=\sum_{\mathrm{i}} \mathrm{v}_{\mathrm{i}, \mathrm{j}} \quad \mathrm{v}=\binom{-1}{-1} \quad \mathrm{n}_{0}:=\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \quad \mathrm{n}_{0}=100 \frac{\mathrm{kmol}}{\mathrm{hr}}$
Given values: $\quad \mathrm{y}_{\mathrm{A}}:=0.05 \quad \mathrm{yB}_{\mathrm{B}}:=0.10$
Guess: $\quad y_{C}:=0.4 \quad \mathrm{yD}_{\mathrm{D}}:=0.4 \quad \varepsilon_{1}:=1 \frac{\mathrm{kmol}}{\mathrm{hr}} \quad \varepsilon_{2}:=1 \frac{\mathrm{kmol}}{\mathrm{hr}}$
Given
$y_{A}=\frac{n 0_{1}-๕_{1}-2}{n_{0}-œ_{1}-2} \quad y_{B}=\frac{n 0_{2}-\varepsilon_{1}}{n_{0}-œ_{1}-2_{2}}$
Eqn. (13.7)
$y_{C}=\frac{\mathrm{n} 0_{3}+๕_{1}-2}{\mathrm{n}_{0}-\mathscr{E}_{1}-2} \quad y_{D}=\frac{\mathrm{n} 0_{4}+\varepsilon_{2}}{\mathrm{n}_{0}-\check{\varkappa}_{1}-{ }_{2}}$
$\left(\begin{array}{l}\mathrm{y}_{\mathrm{C}} \\ \mathrm{yd}_{\mathrm{D}} \\ \varepsilon_{1} \\ \varepsilon_{2}\end{array}\right):=\operatorname{Find}\left(\mathrm{yC}_{\mathrm{C}}, g_{\mathrm{D}}, \varepsilon_{1}, 2 \quad \quad \varepsilon_{1}=44.737 \frac{\mathrm{kmol}}{\mathrm{hr}} \quad \varepsilon_{2}=2.632 \frac{\mathrm{kmol}}{\mathrm{hr}}\right.$

$$
\text { (i) } \begin{array}{rlrl}
\mathrm{n}_{\mathrm{A}} & :=\mathrm{n} 0_{1}-๕_{1}-2 & \mathrm{n}_{\mathrm{A}}=2.632 \frac{\mathrm{kmol}}{\mathrm{hr}} \\
\mathrm{n}_{\mathrm{B}} & :=\mathrm{n} 0_{2}-\varepsilon_{1} & \mathrm{n}_{\mathrm{B}}=5.263 \frac{\mathrm{kmol}}{\mathrm{hr}} \\
\mathrm{n}_{\mathrm{C}} & :=\mathrm{n}_{3}+๕_{1}-2 & \mathrm{n}_{\mathrm{C}}=42.105 \frac{\mathrm{kmol}}{\mathrm{hr}} \\
\mathrm{n}_{\mathrm{D}} & :=\mathrm{n} 0_{4}+\varepsilon_{2} & \mathrm{n}_{\mathrm{D}}=2.632 \frac{\mathrm{kmol}}{\mathrm{hr}} \\
\mathrm{n}:=\mathrm{n}_{\mathrm{A}}+\mathrm{n}_{\mathrm{B}}+\mathrm{n}_{\mathrm{C}}+\mathrm{n}_{\mathrm{D}} & \mathrm{n}=52.632 \frac{\mathrm{kmol}}{\mathrm{hr}}
\end{array}
$$

Ans.
(ii) $\mathrm{yC}_{\mathrm{C}}=0.8$

$$
\mathrm{y}_{\mathrm{D}}=0.05
$$

Ans.
b) Stoichiometric coefficients: $v:=\left(\left.\begin{array}{cc}-1 & -1 \\ -1 & -2 \\ 1 & 0\end{array} \right\rvert\, \begin{array}{l}\text { Initial } \\ 0\end{array} 1\right)$ mombers of $n 0:=\left(\begin{array}{c}40 \\ \text { moles } \\ 40 \\ 0 \\ 0\end{array}\right) \frac{\mathrm{kmol}}{\mathrm{hr}}$

Number of components: $\quad i:=1 . .4 \quad$ Number of reactions: $j:=1 . .2$

Guess: $\quad \mathrm{yA}_{\mathrm{A}}:=0.4 \quad \mathrm{yB}_{\mathrm{B}}:=0.4 \quad \varepsilon_{1}:=1 \frac{\mathrm{kmol}}{\mathrm{hr}} \quad \varepsilon_{2}:=1 \frac{\mathrm{kmol}}{\mathrm{hr}}$
Given
$y_{A}=\frac{n 0_{1}-๕_{1}-2}{n_{0}-\varepsilon_{1}-2 \varepsilon_{2}} \quad$ уB $=\frac{\mathrm{n} 0_{2}-\varepsilon_{1}-2 \varepsilon_{2}}{\mathrm{n}_{0}-\varepsilon_{1}-2 \varepsilon_{2}}$
Eqn. (13.7)
$\mathrm{y}_{C}=\frac{\mathrm{n} 0_{3}+\varepsilon_{1}}{\mathrm{n}_{0}-\varepsilon_{1}-2 \varepsilon_{2}} \quad \mathrm{y}_{\mathrm{D}}=\frac{\mathrm{n} 0_{4}+\varepsilon_{2}}{\mathrm{n}_{0}-\varepsilon_{1}-2 \varepsilon_{2}}$

$$
\begin{aligned}
& \left(\begin{array}{lll}
\left.y_{A}\right) & \\
y_{B} \\
\varepsilon_{1}
\end{array} \left\lvert\,:=\operatorname{Find}\left(\forall \mathrm{A}, 9_{B}, \varepsilon_{1}, 2 \quad \varepsilon_{1}=26 \frac{\mathrm{kmol}}{\mathrm{hr}} \quad \varepsilon_{2}=2 \frac{\mathrm{kmol}}{\mathrm{hr}}\right.\right.\right. \\
& \mathrm{n}_{\mathrm{A}}:=\mathrm{n} 0_{1}-£_{1}-2 \quad \mathrm{n}_{\mathrm{A}}=12 \frac{\mathrm{kmol}}{\mathrm{hr}} \\
& \mathrm{n}_{\mathrm{B}}:=\mathrm{n} 0_{2}-\varepsilon_{1}-2 \varepsilon_{2} \\
& \mathrm{n}_{\mathrm{C}}:=\mathrm{n} 0_{3}+\varepsilon_{1} \\
& \mathrm{n}_{\mathrm{D}}:=\mathrm{n} 04+\varepsilon_{2} \\
& \begin{array}{l}
\mathrm{n}_{\mathrm{B}}=10 \frac{\mathrm{kmol}}{\mathrm{hr}} \\
\mathrm{n}_{\mathrm{C}}=26 \frac{\mathrm{kmol}}{\mathrm{hr}}
\end{array} \\
& \mathrm{n}_{\mathrm{D}}=2 \frac{\mathrm{kmol}}{\mathrm{hr}} \\
& \text { Ans. } \\
& \text { c) Stoichiometric coefficients: } v:=\left(\left.\begin{array}{cc}
-1 & -1 \\
1 & -1 \\
1 & 0
\end{array} \right\rvert\, \begin{array}{l}
\text { Initial } \\
0
\end{array} 1\right) \text { numbers of } \mathrm{n} 0:=\left(\begin{array}{c}
100 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \frac{\mathrm{kmol}}{\mathrm{hr}} \\
& \text { Number of components: } \quad i:=1 . .4 \quad \text { Number of reactions: } j:=1 \text {.. } 2 \\
& \mathrm{v}_{\mathrm{j}}:=\sum_{\mathrm{i}} \mathrm{v}_{\mathrm{i}, \mathrm{j}} \quad \mathrm{v}=\binom{1}{-1} \quad \mathrm{n}_{0}:=\sum_{\mathrm{i}} \mathrm{n}_{\mathrm{i}} \quad \mathrm{n}_{0}=100 \frac{\mathrm{kmol}}{\mathrm{hr}} \\
& \text { Given values: } \quad y_{C}:=0.3 \quad y_{D}:=0.1 \\
& \text { Guess: } \quad \mathrm{y}_{\mathrm{A}}:=0.4 \quad \mathrm{yB}_{\mathrm{B}}:=0.4 \quad \varepsilon_{1}:=1 \frac{\mathrm{kmol}}{\mathrm{hr}} \quad \varepsilon_{2}:=1 \frac{\mathrm{kmol}}{\mathrm{hr}}
\end{aligned}
$$

Given

Eqn. (13.7)
$y_{C}=\frac{\mathrm{n} 0_{3}+\varepsilon_{1}}{\mathrm{n}_{0}+๕_{1}-2} \quad y_{D}=\frac{\mathrm{n} 0_{4}+\varepsilon_{2}}{\mathrm{n}_{0}+๕_{1}-2}$
$\left(\begin{array}{l}\left.\mathrm{yA}_{\mathrm{A}}\right) \\ \mathrm{yB}^{2} \\ \varepsilon_{1}\end{array}\right):=\operatorname{Find}\left(y \mathrm{~A}, \mathrm{~g}_{\mathrm{B}}, \varepsilon_{1}, 2 \quad \varepsilon_{1}=37.5 \frac{\mathrm{kmol}}{\mathrm{hr}} \quad \varepsilon_{2}=12.5 \frac{\mathrm{kmol}}{\mathrm{hr}}\right.$

$\mathrm{n}_{\mathrm{A}}:=\mathrm{n} 0_{1}-๕_{1}-2$	$\mathrm{n}_{\mathrm{A}}=50 \frac{\mathrm{kmol}}{\mathrm{hr}}$
$\mathrm{n}_{\mathrm{B}}:=\mathrm{n} 0_{2}+æ_{1}-2$	$\mathrm{n}_{\mathrm{B}}=25 \frac{\mathrm{kmol}}{\mathrm{hr}}$
$\mathrm{n}_{\mathrm{C}}:=\mathrm{n} 0_{3}+\varepsilon_{1}$	$\mathrm{n}_{\mathrm{C}}=37.5 \frac{\mathrm{kmol}}{\mathrm{hr}}$
$\mathrm{n}_{\mathrm{D}}:=\mathrm{n} 0_{4}+\varepsilon_{2}$	$\mathrm{n}_{\mathrm{D}}=12.5 \frac{\mathrm{kmol}}{\mathrm{hr}}$

d) Stoichiometric coefficients: $v:=\left(\left.\begin{array}{cc}-1 & -1 \\ -1 & -1 \\ 1 & 0 \\ 0 & 1\end{array} \right\rvert\, \begin{array}{l}\text { Initial } \\ \text { numbers of } \\ 0\end{array} 1\right):=\left(\left.\begin{array}{l}40 \\ \text { moles } \\ 60 \\ 0 \\ 0\end{array} \right\rvert\, \frac{\mathrm{kmol}}{\mathrm{hr}}\right.$

Number of components: $\quad i:=1 . .5 \quad$ Number of reactions: $j:=1 . .2$

$$
\mathrm{v}_{\mathrm{j}}:=\sum_{\mathrm{i}} \mathrm{v}_{\mathrm{i}, \mathrm{j}} \quad \mathrm{v}=\binom{-1}{0} \quad \mathrm{n}_{0}:=\sum_{\mathrm{i}} \mathrm{n} 0_{\mathrm{i}} \quad \mathrm{n}_{0}=100 \frac{\mathrm{kmol}}{\mathrm{hr}}
$$

Given values: $y_{C}:=0.25 \quad y_{D}:=0.20$
Guess: $\quad \mathrm{y}_{\mathrm{A}}:=0.2 \quad \mathrm{yB}_{\mathrm{B}}:=0.4 \quad \mathrm{yE}:=0.1 \quad \varepsilon_{1}:=1 \frac{\mathrm{kmol}}{\mathrm{hr}} \quad \varepsilon_{2}:=1 \frac{\mathrm{kmol}}{\mathrm{hr}}$

$$
\begin{align*}
& \text { Given } \\
& y_{A}=\frac{n 0_{1}-๕_{1}-2}{n_{0}-\varepsilon_{1}} \quad y_{B}=\frac{n 0_{2}-๕_{1}-2}{n_{0}-\varepsilon_{1}} \tag{13.7}\\
& y_{C}=\frac{n 0_{3}+\varepsilon_{1}}{n_{0}-\varepsilon_{1}} \quad y_{D}=\frac{n 0_{4}+\varepsilon_{2}}{n_{0}-\varepsilon_{1}} \\
& \mathrm{yE}_{\mathrm{E}}=\frac{\mathrm{n} 0_{5}+\varepsilon_{2}}{\mathrm{n}_{0}-\varepsilon_{1}} \\
& \left(\begin{array}{l}
\mathrm{yA}_{\mathrm{A}} \\
\mathrm{yB} \\
\mathrm{yE} \\
\varepsilon_{1}
\end{array}\right) \\
& \text { (ii) } \\
& y_{A}=0.05 \\
& y B=0.3 \\
& \text { Ans. } \quad \mathrm{yC}=0.25 \\
& y_{D}=0.2 \\
& y E=0.2
\end{align*}
$$

$13.45 \quad \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})->\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g})$

$\mathrm{T} 0:=298.15 \mathrm{kelvin} \mathrm{P} 0:=1 \mathrm{bar}$	$\mathrm{T}:=400 \mathrm{kelvin}$	$\mathrm{P}:=2 \mathrm{bar}$
$\mathbf{1}=\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}} \mathbf{(g)}$	$\Delta \mathrm{H} 0_{\mathrm{f} 1}:=52500 \frac{\mathrm{~J}}{\mathrm{~mol}}$	$\Delta \mathrm{G}_{\mathrm{f} 1}:=68460 \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathbf{2}=\mathbf{H}_{\mathbf{2}} \mathbf{O}(\mathrm{g})$	$\Delta \mathrm{H} 0_{\mathrm{f} 2}:=-241818 \frac{\mathrm{~J}}{\mathrm{~mol}}$	$\Delta \mathrm{G} 0_{\mathrm{f} 2}:=-228572 \frac{\mathrm{~J}}{\mathrm{~mol}}$
$\mathbf{3}=\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{5}} \mathbf{O H}(\mathbf{g})$	$\Delta \mathrm{H} 0_{\mathrm{f} 3}:=-235100 \frac{\mathrm{~J}}{\mathrm{~mol}}$	$\Delta \mathrm{G} 0_{\mathrm{f} 3}:=-168490 \cdot \frac{\mathrm{~J}}{\mathrm{~mol}}$

$$
\begin{array}{ll}
\Delta \mathrm{H} 0:=-\Delta \mathrm{H} 0_{\mathrm{f} 1}-\Delta \mathrm{H} 0_{\mathrm{f} 2}+\mathrm{H} 0_{\mathrm{f} 3} & \Delta \mathrm{H} 0=-45.782 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta \mathrm{G} 0:=-\Delta \mathrm{G}_{\mathrm{f} 1}-\Delta \mathrm{G} 0_{\mathrm{f} 2}+\mathrm{G}_{\mathrm{f} 3} & \Delta \mathrm{G} 0=-8.378 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{array}
$$

$$
\begin{array}{ll}
\Delta \mathrm{A}:=-(1.424)-(3.470)+(3.518) & \Delta \mathrm{A}=-1.376 \\
\Delta \mathrm{~B}:=[-(14.394)-(1.450)+(20.001)] \cdot 10^{-3} & \Delta \mathrm{~B}=4.157 \times 10^{-3} \\
\Delta \mathrm{C}:=[-(-4.392)-(0)+(-6.002)] \cdot 10^{-6} & \Delta \mathrm{C}=-1.61 \times 10^{-6} \\
\Delta \mathrm{D}:=[-(0)-(0.121)+(0)] \cdot 10^{5} & \Delta \mathrm{D}=-1.21 \times 10^{4}
\end{array}
$$

a) $\mathrm{K}_{0}:=\exp \left(\frac{-\Delta \mathrm{G} 0}{\mathrm{R} \cdot \mathrm{T} 0}\right) \quad$ Eqn. (13.21) $\quad \mathrm{K}_{298}:=\mathrm{K}_{0} \quad \mathrm{~K}_{298}=29.366 \quad$ Ans.
b) $\mathrm{K}_{1}:=\exp \left[\frac{\Delta \mathrm{H} 0}{\mathrm{R} \cdot \mathrm{T} 0} \cdot\left(1-\frac{\mathrm{T} 0}{\mathrm{~T}}\right)\right]$

Eqn. (13.22)
$K_{1}=9.07 \times 10^{-3}$

$$
\begin{equation*}
\mathrm{K}_{2}:=\exp \binom{\frac{-1}{\mathrm{~T}} \operatorname{IDCPH}() \Gamma 0, \Pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}}{+\ldots} \mathrm{K}_{2}=0.989 \tag{13.23}
\end{equation*}
$$

$$
\mathrm{K}_{400}:=\mathrm{K}_{0} \cdot \mathrm{~K}_{1} \cdot \mathrm{~K}_{2} \quad \text { Eqn. (13.20) } \quad \mathrm{K}_{400}=0.263 \quad \text { Ans. }
$$

c) Assume as a basis there is initially $1 \mathbf{~ m o l}$ of $\mathbf{C} 2 \mathrm{H} 4$ and 1 mol of $\mathbf{H 2 O}$

$$
\mathrm{y}_{1}=\frac{1-\varepsilon_{\mathrm{e}}}{2-\varepsilon_{\mathrm{e}}} \quad \mathrm{y}_{2}=\frac{1-\varepsilon_{\mathrm{e}}}{2-\varepsilon_{\mathrm{e}}} \quad \mathrm{y}_{3}=\frac{\varepsilon_{\mathrm{e}}}{2-\varepsilon_{\mathrm{e}}}
$$

Assuming ideal gas behavior $\quad \frac{\mathrm{y}_{3}}{\mathrm{y}_{1} \cdot \mathrm{y}_{2}}=\mathrm{K} \cdot \frac{\mathrm{P}}{\mathrm{P} 0}$
Substituting results in the following expression: $\frac{\frac{\varepsilon_{\mathrm{e}}}{2-\varepsilon_{\mathrm{e}}}}{\frac{1-\varepsilon_{\mathrm{e}}}{2-\varepsilon_{\mathrm{e}}} \cdot \frac{1-\varepsilon_{\mathrm{e}}}{2-\varepsilon_{\mathrm{e}}}}=\mathrm{K}_{400} \cdot \frac{\mathrm{P}}{\mathrm{P} 0}$

Solve for ε_{e} using a Mathcad solve block. Guess: $\quad \varepsilon_{\mathrm{e}}:=0.5$
Given $\frac{\frac{\varepsilon_{\mathrm{e}}}{2-\varepsilon_{\mathrm{e}}}}{\frac{1-\varepsilon_{\mathrm{e}}}{2-\varepsilon_{\mathrm{e}}} \cdot \frac{1-\varepsilon_{\mathrm{e}}}{2-\varepsilon_{\mathrm{e}}}}=\mathrm{K}_{400} \cdot \frac{\mathrm{P}}{\mathrm{P} 0} \quad \quad \varepsilon_{\mathrm{e}}:=\operatorname{Find}\left(\xi_{\mathrm{e}} \quad \varepsilon_{\mathrm{e}}=0.191\right.$

$\mathrm{y}_{1}:=\frac{1-\varepsilon_{\mathrm{e}}}{2-\varepsilon_{\mathrm{e}}}$	$\mathrm{y}_{2}:=\frac{1-\varepsilon_{\mathrm{e}}}{2-\varepsilon_{\mathrm{e}}}$	$\mathrm{y}_{3}:=\frac{\varepsilon_{\mathrm{e}}}{2-\varepsilon_{\mathrm{e}}}$
$\mathrm{y}_{1}=0.447$	$\mathrm{y}_{2}=0.447$	$\mathrm{y}_{3}=0.105 \quad$ Ans.

d) Since $v=-1<0$, a decrease in pressure will cause a shift on the reaction to the left and the mole fraction of ethanol will decrease.
$13.46 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})->\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$

$$
\begin{array}{ll}
\Delta \mathrm{H} 0_{\mathrm{fH} 2 \mathrm{O} 2}:=-136.1064 \frac{\mathrm{~kJ}}{\mathrm{~mol}} & \mathrm{~T}:=298.15 \mathrm{kelvin} \mathrm{P}:=1 \mathrm{bar} \\
\mathrm{~S} 0_{\mathrm{H} 2}:=130.680 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{kelvin}} & \mathrm{~S} 0 \\
\mathrm{O} 2:=205.152 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{kelvin}} \\
\mathrm{~S} 0_{\mathrm{H} 2 \mathrm{O} 2}:=232.95 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{kelvin}}
\end{array}
$$

$$
\Delta \mathrm{S}_{\mathrm{fH} 2 \mathrm{O} 2}:=-\mathrm{S}_{\mathrm{H} 2}-\mathrm{S} 0_{\mathrm{O} 2}+\mathrm{S}_{\mathrm{H} 2 \mathrm{O} 2}
$$

$$
\Delta \mathrm{S}_{\mathrm{fH} 2 \mathrm{O} 2}=-102.882 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{kelvin}}
$$

$$
\Delta \mathrm{G}_{\mathrm{f}}:=\Delta \mathrm{H} 0_{\mathrm{fH} 2 \mathrm{O} 2}-\mathrm{T} \cdot \Delta \mathrm{~S}_{\mathrm{fH} 2 \mathrm{O} 2}
$$

$$
\Delta \mathrm{G0}_{\mathrm{f}}=-105.432 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \quad \text { Ans. }
$$

$$
\begin{array}{ll}
13.48 & \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})->\mathrm{C}_{3} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})(\mathrm{I}) \\
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})->\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{CH}_{4}(\mathrm{~g})(\mathrm{II})
\end{array}
$$

$$
\begin{array}{lll}
\mathrm{T} 0:=298.15 \mathrm{kelvin} \mathrm{P} 0:=1 \mathrm{bar} & \mathrm{~T}:=750 \mathrm{kelvin} & \mathrm{P}:=1.2 \mathrm{bar} \\
\mathbf{1}=\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{8}}(\mathbf{g}) & \Delta \mathrm{H} 0_{\mathrm{f} 1}:=-104680 \frac{\mathrm{~J}}{\mathrm{~mol}} & \Delta \mathrm{G} 0_{\mathrm{f} 1}:=-24290 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathbf{2}=\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{6}}(\mathbf{g}) & \Delta \mathrm{H} 0_{\mathrm{f} 2}:=19710 \frac{\mathrm{~J}}{\mathrm{~mol}} & \Delta \mathrm{G} 0_{\mathrm{f} 2}:=62205 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathbf{3}=\mathbf{H}_{\mathbf{2}}(\mathbf{g}) & \Delta \mathrm{H} 0_{\mathrm{f} 3}:=0 \frac{\mathrm{~J}}{\mathrm{~mol}} & \Delta \mathrm{G} 0_{\mathrm{f} 3}:=0 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathbf{4}=\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}}(\mathbf{g}) & \Delta \mathrm{H} 0_{\mathrm{f} 4}:=52510 \frac{\mathrm{~J}}{\mathrm{~mol}} & \Delta \mathrm{G} 0_{\mathrm{f} 4}:=68460 \frac{\mathrm{~J}}{\mathrm{~mol}} \\
\mathbf{5}=\mathbf{C H}_{\mathbf{4}} \text { (g) } & \Delta \mathrm{H} 0_{\mathrm{f} 5}:=-74520 \frac{\mathrm{~J}}{\mathrm{~mol}} & \Delta \mathrm{G} 0_{\mathrm{f} 5}:=-50460 \frac{\mathrm{~J}}{\mathrm{~mol}}
\end{array}
$$

Calculate equilibrium constant for reaction I:

$$
\begin{array}{ll}
\Delta \mathrm{H} 0 \mathrm{I}:=-\Delta \mathrm{H} 0_{\mathrm{f} 1}+\Delta \mathrm{H} 0_{\mathrm{f} 2}+\mathrm{H}_{\mathrm{f} 3} & \Delta \mathrm{H} 0 \mathrm{I}=124.39 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta \mathrm{G} 0 \mathrm{I}:=-\Delta \mathrm{G}_{\mathrm{f} 1}+\Delta \mathrm{G} 0_{\mathrm{f} 2}+\mathrm{G}_{\mathrm{f} 3} & \Delta \mathrm{G} 0 \mathrm{I}=86.495 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{array}
$$

$\Delta \mathrm{AI}:=-(1.213)+(1.637)+(3.249)$
$\begin{array}{ll}\Delta \mathrm{BI}:=[-(28.785)+(22.706)+(0.422)] \cdot 10^{-3} & \Delta \mathrm{BI}=-5.657 \times 10^{-3} \\ \Delta \mathrm{CI}:=[-(-8.824)+(-6.915)+(0)] \cdot 10^{-6} & \Delta \mathrm{CI}=1.909 \times 10^{-6} \\ \Delta \mathrm{DI}:=[-(0)+(0)+(0.083)] \cdot 10^{5} & \Delta \mathrm{DI}=8.3 \times 10^{3} \\ \mathrm{KI}_{0}:=\exp \left(\frac{-\Delta \mathrm{G} 0 \mathrm{I}}{\mathrm{R} \cdot \mathrm{T} 0}\right) & \mathrm{KI}_{0}=0 \\ \mathrm{KI}_{1}:=\exp \left[\frac{\Delta \mathrm{H} 0 \mathrm{I}}{\mathrm{R} \cdot \mathrm{T} 0} \cdot\left(1-\frac{\mathrm{T} 0}{\mathrm{~T}}\right)\right] \quad \text { Eqn. (13.21) (13.22) } & \mathrm{KI}_{1}=1.348 \times 10^{13}\end{array}$
$\mathrm{KI}_{2}:=\exp \left(\frac{-1}{\mathrm{~T}} \mathrm{IDCPH}() \Gamma 0, \pi, \Delta \mathrm{AI}, \Delta \mathrm{BI}, \Delta \mathrm{CI}, \quad \mathrm{DI} \ldots\right) \mathrm{KI}_{2}=1.714$ $+\operatorname{IDCPS}() \Gamma 0, \boxed{\pi}, \Delta \mathrm{AI}, \Delta \mathrm{BI}, \Delta \mathrm{CI}, \quad \mathrm{DI})$ Eqn. (13.23)

$$
\mathrm{KI}:=\mathrm{KI}_{0} \cdot \mathrm{KI}_{1} \cdot \mathrm{KI}_{2} \quad \text { Eqn. (13.20) } \quad \mathrm{KI}=0.016
$$

Calculate equilibrium constant for reaction II:

$$
\begin{array}{ll}
\Delta \mathrm{H} 0 \mathrm{II}:=-\Delta \mathrm{H} 0_{\mathrm{f} 1}+\Delta \mathrm{H} 0_{\mathrm{f} 4}+\mathrm{H}_{\mathrm{f} 5} & \Delta \mathrm{H} 0 \mathrm{II}=82.67 \frac{\mathrm{~kJ}}{\mathrm{~mol}} \\
\Delta \mathrm{G} 0 \mathrm{II}:=-\Delta \mathrm{G}_{\mathrm{f} 1}+\Delta \mathrm{G} 0_{\mathrm{f} 4}+\mathrm{G}_{\mathrm{f} 5} & \Delta \mathrm{G} 0 \mathrm{II}=42.29 \frac{\mathrm{~kJ}}{\mathrm{~mol}}
\end{array}
$$

$\Delta \mathrm{AII}:=-(1.213)+(1.424)+(1.702)$
$\Delta \mathrm{BII}:=[-(28.785)+(14.394)+(9.081)] \cdot 10^{-3}$
$\Delta \mathrm{CII}:=[-(-8.824)+(-4.392)+(-2.164)] \cdot 10^{-6}$
$\Delta \mathrm{DII}:=[-(0)+(0)+(0)] \cdot 10^{5}$
$\mathrm{KII}_{0}:=\exp \left(\frac{-\Delta \mathrm{G} 0 \mathrm{II}}{\mathrm{R} \cdot \mathrm{T} 0}\right)$
$\mathrm{KII}_{1}:=\exp \left[\frac{\Delta \mathrm{H} 0 \mathrm{II}}{\mathrm{R} \cdot \mathrm{T} 0} \cdot\left(1-\frac{\mathrm{T} 0}{\mathrm{~T}}\right)\right]$
Eqn. (13.22)
Eqn. (13.21)

$$
\Delta \mathrm{AII}=1.913
$$

$$
\Delta \mathrm{BII}=-5.31 \times 10^{-3}
$$

$$
\Delta \mathrm{CII}=2.268 \times 10^{-6}
$$

$$
\Delta \mathrm{DII}=0
$$

$$
\mathrm{KII}_{0}=3.897 \times 10^{-8}
$$

$$
\mathrm{KII}_{2}:=\exp \left(\begin{array}{lll}
\frac{-1}{\mathrm{~T}} \mathrm{IDCPH}() \Gamma 0, \boxed{\pi}, \Delta \mathrm{AII}, \Delta \mathrm{BII}, \Delta \mathrm{CII}, & \mathrm{DII} & \ldots \\
+\mathrm{IDCPS}() \Gamma 0, \pi, \Delta \mathrm{AII}, \Delta \mathrm{BII}, \Delta \mathrm{CII}, & \mathrm{DII} & \\
\hline \mathrm{IDCqn.} \mathrm{(13.23)}
\end{array}\right.
$$

$\mathrm{KII}:=\mathrm{KII}_{0} \cdot \mathrm{KII}_{1} \cdot \mathrm{KII}_{2}$ Eqn. (13.20)

$$
\mathrm{KII}=21.328
$$

Assume an ideal gas and $1 \mathbf{m o l}$ of $\mathrm{C}_{3} \mathrm{H}_{8}$ initially.

The equilibrium relationships are:

$$
\begin{equation*}
\frac{\mathrm{y}_{2} \cdot \mathrm{y}_{3}}{\mathrm{y}_{1}}=\mathrm{KI} \cdot\left(\frac{\mathrm{P} 0}{\mathrm{P}}\right) \quad \frac{\mathrm{y}_{4} \cdot \mathrm{y}_{5}}{\mathrm{y}_{1}}=\mathrm{KII} \cdot\left(\frac{\mathrm{P} 0}{\mathrm{P}}\right) \tag{13.28}
\end{equation*}
$$

$$
\begin{align*}
& \mathrm{y}_{4}=\frac{\varepsilon_{\mathrm{II}}}{1+\check{\varkappa}_{\mathrm{I}}+{ }_{\mathrm{II}}} \quad \mathrm{y}_{5}=\frac{\varepsilon_{\mathrm{II}}}{1+๕_{\mathrm{I}}+{ }_{\mathrm{II}}} \tag{13.7}
\end{align*}
$$

Substitution yields the following equations:

$$
\frac{\left(\frac{\varepsilon_{\mathrm{I}}}{1+\mathscr{E}_{\mathrm{I}}+\mathrm{II}}\right) \cdot\left(\frac{\varepsilon_{\mathrm{I}}}{1+๕_{\mathrm{I}}+\mathrm{II}}\right)}{\left(\frac{1-๕_{\mathrm{I}}-\mathrm{II}}{1+๕_{\mathrm{I}}+\mathrm{II}}\right)}=\mathrm{KI} \cdot\left(\frac{\mathrm{P} 0}{\mathrm{P}}\right)
$$

$$
\frac{\left(\frac{\varepsilon_{\mathrm{II}}}{1+๕_{\mathrm{I}}+\mathrm{II}}\right) \cdot\left(\frac{\varepsilon_{\mathrm{II}}}{1+๕_{\mathrm{I}}+\mathrm{II}}\right)}{\left(\frac{1-๕_{\mathrm{I}}-\mathrm{II}}{1+๕_{\mathrm{I}}+\mathrm{II}}\right)}=\mathrm{KII} \cdot\left(\frac{\mathrm{P} 0}{\mathrm{P}}\right)
$$

Use a Mathcad solve block to solve these two equations for ε_{I} and $\varepsilon_{\mathrm{II}}$. Note that the equations have been rearranged to facilitate the numerical solution.
Guess: $\quad \varepsilon_{I}:=0.5 \quad \varepsilon_{I I}:=0.5$
Given

$$
\begin{aligned}
& \left(\begin{array}{l}
\varepsilon_{\mathrm{I}} \\
\left.\varepsilon_{\mathrm{II}}\right)
\end{array}:=\operatorname{Find}\left(\xi_{\mathrm{I}}, \varepsilon_{\mathrm{II}} \quad \varepsilon_{\mathrm{I}}=0.026 \quad \varepsilon_{\mathrm{II}}=0.948\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{y}_{4}:=\frac{\varepsilon_{\mathrm{II}}}{1+๕_{\mathrm{I}}+_{\mathrm{II}}} \quad \mathrm{y}_{5}:=\frac{\varepsilon_{\mathrm{II}}}{1+\S_{\mathrm{I}}+{ }_{\mathrm{II}}} \\
& \mathrm{y}_{1}=0.01298 \quad \mathrm{y}_{2}=0.0132 \quad \mathrm{y}_{3}=0.0132 \quad \mathrm{y}_{4}=0.4803 \quad \mathrm{y}_{5}=0.4803
\end{aligned}
$$

A summary of the values for the other temperatures is given in the table below.

$\mathbf{T}=$	$\mathbf{7 5 0 K}$	$\mathbf{1 0 0 0 K}$	$\mathbf{1 2 5 0 K}$
\mathbf{y}_{1}	$\mathbf{0 . 0 1 3 0}$	$\mathbf{0 . 0 0 0 4 7}$	$\mathbf{0 . 0 0 0 0 6}$
$\mathbf{y}_{\mathbf{2}}$	$\mathbf{0 . 0 1 3 2}$	$\mathbf{0 . 0 3 4}$	$\mathbf{0 . 0 5 9 3}$
$\mathbf{y}_{\mathbf{3}}$	$\mathbf{0 . 0 1 3 2}$	$\mathbf{0 . 0 3 4}$	$\mathbf{0 . 0 5 9 3}$
\mathbf{y}_{4}	$\mathbf{0 . 4 8 0 3}$	$\mathbf{0 . 4 6 5 8}$	$\mathbf{0 . 4 4 0 7}$
\mathbf{y}_{5}	$\mathbf{0 . 4 8 0 3}$	$\mathbf{0 . 4 6 5 8}$	$\mathbf{0 . 4 4 0 7}$

$13.49 \quad \mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})->$ iso $-\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$

$\mathrm{T} 0:=298.15 \mathrm{kelvin}$	$\mathrm{P} 0:=1 \mathrm{bar}$
$\mathbf{1}=\mathbf{n}-\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{1 0}}(\mathbf{g})$	$\Delta \mathrm{H} 0_{\mathrm{f} 1}:=-125790 \frac{\mathrm{~J}}{\mathrm{~mol}}$

$\Delta \mathrm{H} 0:=-\Delta \mathrm{H} 0_{\mathrm{fl}}+\mathrm{H} 0_{\mathrm{f} 2}$	$\Delta \mathrm{H} 0=-8.39 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$
$\Delta \mathrm{G} 0:=-\Delta \mathrm{G} 0_{\mathrm{f} 1}+\mathrm{G} 0_{\mathrm{f} 2}$	$\Delta \mathrm{G} 0=-4.19 \frac{\mathrm{~kJ}}{\mathrm{~mol}}$

$\Delta \mathrm{A}:=-(1.935)+(1.677)$

$$
\begin{aligned}
& \Delta \mathrm{B}:=[-(36.915)+(37.853)] \cdot 10^{-3} \\
& \Delta \mathrm{C}:=[(11.402)+(-11.945)] \cdot 10^{-6} \\
& \Delta \mathrm{D}:=[-(0)+(0)] \cdot 10^{5}
\end{aligned}
$$

$$
\Delta \mathrm{A}=-0.258
$$

$$
\Delta \mathrm{B}=9.38 \times 10^{-4}
$$

$$
\Delta \mathrm{C}=-5.43 \times 10^{-7}
$$

$$
\Delta \mathrm{D}=0
$$

a) $\mathrm{K}_{0}:=\exp \left(\frac{-\Delta \mathrm{G} 0}{\mathrm{R} \cdot \mathrm{T} 0}\right) \quad$ Eqn. (13.21)
b) $\mathrm{K}_{1}:=\exp \left[\frac{\Delta \mathrm{H} 0}{\mathrm{R} \cdot \mathrm{T} 0} \cdot\left(1-\frac{\mathrm{T} 0}{\mathrm{~T}}\right)\right]$

Eqn. (13.22) $\quad \mathrm{K}_{1}=0.364$

$$
\begin{gather*}
\mathrm{K}_{2}:=\exp \binom{\frac{-1}{\mathrm{~T}} \operatorname{IDCPH}() \Gamma 0, \pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D} \quad \ldots}{+\operatorname{IDCPS}() \Gamma 0, \Pi, \Delta \mathrm{~A}, \Delta \mathrm{~B}, \Delta \mathrm{C}, \quad \mathrm{D}} \tag{13.23}
\end{gather*}
$$

$\mathrm{K}_{\mathrm{e}}:=\mathrm{K}_{0} \cdot \mathrm{~K}_{1} \cdot \mathrm{~K}_{2}$
$\mathrm{K}_{\mathrm{e}}=1.974$
Ans.
Assume as a basis there is initially 1 mol of $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})$
$y_{1}=1-\varepsilon_{\mathrm{e}} \quad \mathrm{y}_{2}=\varepsilon_{\mathrm{e}}$
a) Assuming ideal gas behavior $\quad \frac{\mathrm{y}_{2}}{\mathrm{y}_{1}}=\mathrm{K}_{\mathrm{e}}$

Substitution results in the following expression: $\quad \frac{\varepsilon_{\mathrm{e}}}{\left(1-\varepsilon_{\mathrm{e}}\right.}=\mathrm{K}_{\mathrm{e}}$
Solving for K_{e} yields the following analytical expression for ε_{e}
$\varepsilon_{\mathrm{e}}:=\frac{1}{1+\mathrm{K}_{\mathrm{e}}} \quad \varepsilon_{\mathrm{e}}=0.336$
$\mathrm{y}_{1}:=1-\varepsilon_{\mathrm{e}} \quad \mathrm{y}_{1}=0.664 \quad \mathrm{y}_{2}:=\varepsilon_{\mathrm{e}} \quad \mathrm{y}_{2}=0.336 \quad$ Ans.
b) Assume the gas is an ideal solution. In this case Eqn. (13.27) applies.

$$
\begin{equation*}
\prod_{\mathrm{i}}\left[\left(y_{\mathrm{i}} \cdot \phi_{\mathrm{i}}=\left(\frac{\mathrm{P}}{\mathrm{P} 0}\right)^{-v} \cdot \mathrm{~K}\right]\right. \tag{13.27}
\end{equation*}
$$

Substituting for $\mathbf{y}_{\mathbf{i}}$ yields: $\quad \frac{\left(1-\varepsilon_{\mathrm{e}} \cdot \phi_{2}\right.}{\varepsilon_{\mathrm{e}} \cdot \phi_{1}}=\mathrm{K}$
This can be solved analytically for ε_{e} to get: $\quad \varepsilon_{e}=\frac{\phi_{2}}{\phi_{2}+\mathrm{K}_{\mathrm{e}} \cdot \phi_{1}}$
Calculate $\phi \mathbf{i}$ for each pure component using the PHIB function.

For $\mathbf{n}-\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{1 0}}:$	$\omega_{1}:=0.200$	$\mathrm{~T}_{\mathrm{c} 1}:=425.1$ kelvin	$\mathrm{P}_{\mathrm{c} 1}:=37.96 \mathrm{bar}$
$\mathrm{T}_{\mathrm{r} 1}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c} 1}} \quad \mathrm{~T}_{\mathrm{r} 1}=1$	$\mathrm{P}_{\mathrm{r} 1}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c} 1}}$	$\mathrm{P}_{\mathrm{r} 1}=0.395$	
$\phi_{1}:=\operatorname{PHIB}\left(\mathrm{T}_{\mathrm{r} 1}, \mathrm{~B}_{\mathrm{r} 1}, \quad 1\right.$	$\phi_{1}=0.872$		
For iso-C $\mathbf{C}_{4} \mathbf{H}_{\mathbf{1 0}}:$	$\omega_{2}:=0.181$	$\mathrm{~T}_{\mathrm{c} 2}:=408.1$ kelvin	$\mathrm{P}_{\mathrm{c} 2}:=36.48 \mathrm{bar}$
$\mathrm{T}_{\mathrm{r} 2}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c} 2}}$	$\mathrm{~T}_{\mathrm{r} 2}=1.041$	$\mathrm{P}_{\mathrm{r} 2}:=\frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c} 2}}$	$\mathrm{P}_{\mathrm{r} 2}=0.411$

$$
\phi_{2}:=\operatorname{PHIB}() \Gamma_{\mathrm{r} 2}, \otimes_{\mathrm{r} 2}, \quad 2 \quad \phi_{2}=0.884
$$

Solving for ε_{e} yields: $\quad \varepsilon_{\mathrm{e}}:=\frac{\phi_{2}}{\phi_{2}+\mathrm{K}_{\mathrm{e}} \cdot \phi_{1}} \quad \varepsilon_{\mathrm{e}}=0.339$
$\mathrm{y}_{1}:=1-\varepsilon_{\mathrm{e}} \quad \mathrm{y}_{1}=0.661 \quad \mathrm{y}_{2}:=\varepsilon_{\mathrm{e}} \quad \mathrm{y}_{2}=0.339 \quad$ Ans.

The values of y_{1} and y_{2} calculated in parts a) and b) differ by less than $\mathbf{1 \%}$. Therefore, the effects of vapor-phase nonidealities is here minimal.

Chapter 14 - Section A - Mathcad Solutions

14.1 $\quad \mathrm{A}_{12}:=0.59 \quad \mathrm{~A}_{21}:=1.42 \quad \mathrm{~T}:=(55+273.15) \cdot \mathrm{K}$

Margules equations:

$$
\begin{aligned}
& \gamma_{1}\left(\mathrm{x}_{1}\right):=\exp \left[\left(1-\mathrm{x}_{1}\right)^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x}_{1}\right]\right] \\
& \gamma_{2}\left(\mathrm{x}_{1}\right):=\exp \left[\mathrm{x}_{1}^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot\left(1-\mathrm{x}_{1}\right)\right]\right] \\
& \text { Psat }_{1}:=82.37 \cdot \mathrm{kPa} \quad \quad \text { Psat }_{2}:=37.31 \cdot \mathrm{kPa}
\end{aligned}
$$

(a) BUBL P calculations based on Eq. (10.5):
$\operatorname{Pbubl}\left(\mathrm{x}_{1}\right):=\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}\right) \cdot$ Psat $_{1}+\left(1-\mathrm{x}_{1}\right) \cdot \gamma_{2}\left(\mathrm{x}_{1}\right) \cdot$ Psat $_{2}$
$\mathrm{y}_{1}\left(\mathrm{x}_{1}\right):=\frac{\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}\right) \cdot \text { Psat }_{1}}{\mathrm{P}_{\mathrm{bubl}}\left(\mathrm{x}_{1}\right)}$

$\mathrm{x}_{1}:=0.25$	$\mathrm{P}_{\text {bubl }}\left(\mathrm{x}_{1}\right)=64.533 \mathrm{kPa}$	$\mathrm{y}_{1}\left(\mathrm{x}_{1}\right)=0.562$
$\mathrm{x}_{1}:=0.50$	$\mathrm{P}_{\text {bubl }}\left(\mathrm{x}_{1}\right)=80.357 \mathrm{kPa}$	$\mathrm{y}_{1}\left(\mathrm{x}_{1}\right)=0.731$
$\mathrm{x}_{1}:=0.75$	$\mathrm{P}_{\text {bubl }}\left(\mathrm{x}_{1}\right)=85.701 \mathrm{kPa}$	$\mathrm{y}_{1}\left(\mathrm{x}_{1}\right)=0.808$

(b) BUBL P calculations with virial coefficients:

$$
\begin{aligned}
& \mathrm{B}_{11}:=-963 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{~B}_{22}:=-1523 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{~B}_{12}:=52 \cdot \frac{\mathrm{~cm}}{\mathrm{~mol}} \\
& \delta_{12}:=2 \cdot \mathrm{~B}_{12}-\mathrm{B}_{11}-\mathrm{B}_{22} \\
& \Phi_{1}\left(\mathrm{P}, \mathrm{~T}, \mathrm{y}_{1}, \mathrm{y}_{2}\right):=\exp \left[\frac{\mathrm{B}_{11} \cdot\left(\mathrm{P}-\mathrm{Psat}_{1}\right)+\mathrm{P} \cdot \mathrm{y}_{2}{ }^{2} \cdot \delta_{12}}{\mathrm{R} \cdot \mathrm{~T}}\right] \\
& \Phi_{2}\left(\mathrm{P}, \mathrm{~T}, \mathrm{y}_{1}, \mathrm{y}_{2}\right):=\exp \left[\frac{\mathrm{B}_{22} \cdot\left(\mathrm{P}-\mathrm{Psat}_{2}\right)+\mathrm{P} \cdot \mathrm{y}_{1}{ }^{2} \cdot \delta_{12}}{\mathrm{R} \cdot \mathrm{~T}}\right]
\end{aligned}
$$

Guess: $\mathrm{P}:=\frac{\text { Psat }_{1}+\text { Psat }_{2}}{2} \quad \mathrm{y}_{1}:=0.5 \quad \mathrm{y}_{2}:=1-\mathrm{y}_{1}$
$\mathrm{x}_{1}:=0.25 \quad$ Given
$\mathrm{y}_{1} \cdot \Phi_{1}\left(\mathrm{P}, \mathrm{T}, \mathrm{y}_{1}, \mathrm{y}_{2}\right) \cdot \mathrm{P}=\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}\right) \cdot$ Psat $_{1}$
$\mathrm{y}_{2} \cdot \Phi_{2}\left(\mathrm{P}, \mathrm{T}, \mathrm{y}_{1}, \mathrm{y}_{2}\right) \cdot \mathrm{P}=\left(1-\mathrm{x}_{1}\right) \cdot \gamma_{2}\left(\mathrm{x}_{1}\right) \cdot \mathrm{Psat}_{2}$
$\mathrm{y}_{2}=1-\mathrm{y}_{1}$
$\left(\begin{array}{l}\left.y_{1}\right) \\ y_{2} \mid:=\operatorname{Find}\left(y_{1}, y_{2}, P\right) \\ P\end{array}\right)$

$\mathrm{x}_{1}:=0.50 \quad$ Given
$\mathrm{y}_{1} \cdot \Phi_{1}\left(\mathrm{P}, \mathrm{T}, \mathrm{y}_{1}, \mathrm{y}_{2}\right) \cdot \mathrm{P}=\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}\right) \cdot \mathrm{Psat}_{1}$
$\mathrm{y}_{2} \cdot \Phi_{2}\left(\mathrm{P}, \mathrm{T}, \mathrm{y}_{1}, \mathrm{y}_{2}\right) \cdot \mathrm{P}=\left(1-\mathrm{x}_{1}\right) \cdot \gamma_{2}\left(\mathrm{x}_{1}\right) \cdot \mathrm{Psat}_{2}$
$\mathrm{y}_{2}=1-\mathrm{y}_{1}$
$\left(\begin{array}{l}\left.y_{1}\right) \\ y_{2} \mid:=\operatorname{Find}\left(y_{1}, y_{2}, P\right) \\ P\end{array}\right)$

$\mathrm{x}_{1}:=0.75 \quad$ Given
$\mathrm{y}_{1} \cdot \Phi_{1}\left(\mathrm{P}, \mathrm{T}, \mathrm{y}_{1}, \mathrm{y}_{2}\right) \cdot \mathrm{P}=\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}\right) \cdot$ Psat $_{1}$
$\mathrm{y}_{2} \cdot \Phi_{2}\left(\mathrm{P}, \mathrm{T}, \mathrm{y}_{1}, \mathrm{y}_{2}\right) \cdot \mathrm{P}=\left(1-\mathrm{x}_{1}\right) \cdot \gamma_{2}\left(\mathrm{x}_{1}\right) \cdot \mathrm{Psat}_{2}$
$\mathrm{y}_{2}=1-\mathrm{y}_{1}$
$\left(\begin{array}{l}\left.y_{1}\right) \\ y_{2} \mid:=\operatorname{Find}\left(y_{1}, y_{2}, P\right) \\ \mathrm{P}\end{array}\right)$

$14.3 \mathrm{~T}:=200 \cdot \mathrm{~K}$

$$
\mathrm{P}:=30 \cdot \text { bar } \quad \mathrm{y}_{1}:=0.95
$$

$\mathrm{H}_{1}:=200 \cdot$ bar

$$
\mathrm{B}:=-105 \cdot \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
$$

Assume Henry's law applies to methane(1) in the liquid phase, and that the Lewis/Randall rule applies to the methane in the vapor:

$$
\text { fhat }_{1}{ }^{1}=\mathrm{H}_{1} \cdot \mathrm{x}_{1}
$$

$$
\text { fhat }_{1}{ }^{\mathrm{v}}=\mathrm{y}_{1} \cdot \phi_{1} \cdot \mathrm{P}
$$

By Eq. (11.36):

$$
\phi_{1}:=\exp \left(\frac{\mathrm{B} \cdot \mathrm{P}}{\mathrm{R} \cdot \mathrm{~T}}\right) \quad \phi_{1}=0.827
$$

Equate the liquid- and vapor-phase fugacities and solve for x 1 :
$\mathrm{x}_{1}:=\frac{\mathrm{y}_{1} \cdot \phi_{1} \cdot \mathrm{P}}{\mathrm{H}_{1}}$

$$
\mathrm{x}_{1}=0.118 \quad \text { Ans }
$$

14.4 Pressures in kPa

Data: $\quad \mathrm{x}_{1}:=\left(\begin{array}{c}0.000 \\ 0.0895 \\ 0.1981 \\ 0.3193 \\ 0.4232 \\ 0.5119 \\ 0.6096 \\ 0.7135\end{array}\right)$
$P:=\left(\begin{array}{l}12.30 \\ 15.51 \\ 18.61 \\ 21.63 \\ 24.01 \\ 25.92 \\ 27.96 \\ 30.12\end{array}\right)$

$$
y_{1}:=\left(\begin{array}{c}
0.000 \\
0.2716 \\
0.4565 \\
0.5934 \\
0.6815 \\
0.7440 \\
0.8050 \\
0.8639
\end{array}\right)
$$

$$
\mathrm{i}:=2 . . \operatorname{rows}(\mathrm{P}) \quad \mathrm{x}_{2}:=1-\mathrm{x}_{1} \quad \text { Psat } 2:=\mathrm{P}_{1}
$$

(a) It follows immediately from Eq. (12.10a) that:

$$
\ln \left(\gamma_{1}^{\infty}\right)=A_{12}
$$

Combining this with Eq. (12.10a) yields the required expression
(b) Henry's constant will be found as part of the solution to Part (c)
(c) BARKER'S METHOD by non-linear least squares. Margules equation.

The most satisfactory procedure for reduction of this set of data is to find the value of Henry's constant by regression along with the Margules parameters.

$$
\begin{aligned}
& \gamma_{1}\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}\right):=\exp \left[(\mathrm{x} 2)^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1\right]\right] \\
& \gamma_{2}\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}\right):=\exp \left[(\mathrm{x} 1)^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2\right]\right]
\end{aligned}
$$

Guesses:

$$
\mathrm{H}_{1}:=50
$$

$$
A_{21}:=0.2
$$

$$
\mathrm{A}_{12}:=0.4
$$

Mininize the sums of the squared errors by setting sums of derivatives equal to zero.

Given

$$
\begin{aligned}
& 0=\sum_{i}\left[\frac{d}{d A_{12}}\left[P_{i}-\left(\begin{array}{ll}
x_{1} \cdot \gamma_{1}\left(x_{1_{i}}, x_{2}, A_{12}, A_{21}\right) \cdot \frac{H_{1}}{\exp \left(A_{12}\right)} \ldots \\
+x_{2} \cdot \gamma_{2}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \text { Psat }_{2} &)
\end{array}\right]^{2}\right]\right. \\
& 0=\sum_{i}\left[\frac{d}{d A_{21}}\left[P_{i}-\left(\begin{array}{ll}
x_{1} \cdot \gamma_{1}\left(x_{1_{i}}, x_{2}, A_{12}, A_{21}\right) \cdot \frac{H_{1}}{\exp \left(A_{12}\right)} \ldots \\
+x_{2} \cdot \gamma_{2}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot P s a t_{2} &)
\end{array}\right]^{2}\right]\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\left.A_{12}\right) \\
A_{21} \mid:=\operatorname{Find}\left(A_{12}, A_{21}, H_{1}\right) \\
\left.H_{1}\right)
\end{array}\right. \\
& \text { Ans. }
\end{aligned}
$$

(d) $\gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x} 2^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1\right]\right]$

$$
\begin{aligned}
& \gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x}^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2\right]\right] \\
& \mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}:=\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \frac{\mathrm{H}_{1}}{\exp \left(\mathrm{~A}_{12}\right)}+\mathrm{x}_{2} \cdot \gamma 2\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \text { Psat }_{2}
\end{aligned}
$$

$$
\mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{x}_{1}, \mathrm{x}_{\mathrm{i}}\right) \cdot \frac{\mathrm{H}_{1}}{\exp \left(\mathrm{~A}_{12}\right)}}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}
$$

Fit GE/RT data to Margules eqn. by least squares:

$$
\mathrm{i}:=2 . . \operatorname{rows}(\mathrm{P}) \quad \mathrm{y}_{2}:=1-\mathrm{y}_{1}
$$

Given

$$
\begin{aligned}
& \left(\begin{array}{l}
\left.\mathrm{A}_{12}\right) \\
\mathrm{A}_{21} \mid:=\operatorname{Find}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{H}_{1}\right) \\
\left.\mathrm{H}_{1}\right)
\end{array}\right. \\
& \gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x}^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1\right]\right] \\
& \gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x}^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2\right]\right] \\
& P_{\text {calc }_{i}}:=x_{1} \cdot \gamma 1\left(x_{1_{i}}, x_{2}\right) \cdot \frac{H_{1}}{\exp \left(A_{12}\right)}+x_{2} \cdot \gamma 2\left(x_{1_{i}}, x_{2}\right) \cdot \text { Psat }{ }_{2} \\
& \mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \frac{\mathrm{H}_{1}}{\exp \left(\mathrm{~A}_{12}\right)}}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}
\end{aligned}
$$

14.5 Pressures in $\mathbf{k P a}$

Data: $\mathrm{x}_{1}:=\left(\begin{array}{l}0.3193 \\ 0.4232 \\ 0.5119 \\ 0.6096 \\ 0.7135 \\ 0.7934 \\ 0.9102 \\ 1.000\end{array}\right) \quad \mathrm{P}:=\left(\begin{array}{l}21.63 \\ 24.01 \\ 25.92 \\ 27.96 \\ 30.12 \\ 31.75 \\ 34.15 \\ 36.09\end{array}\right) \quad \mathrm{y}_{1}:=\left(\begin{array}{l}0.5934 \\ 0.6815 \\ 0.7440 \\ 0.8050 \\ 0.8639 \\ 0.9048 \\ 0.9590 \\ 1.000\end{array}\right)$
i := 1.. 7
$\mathrm{x}_{2}:=1-\mathrm{x}_{1}$
Psat $_{1}:=\mathrm{P}_{8}$
(a) It follows immediately from Eq. (12.10a) that:

$$
\ln \left(\gamma_{2}^{\infty}\right)=A_{21}
$$

Combining this with Eq. (12.10a) yields the required expression.
(b) Henry's constant will be found as part of the solution to Part (c).
(c) BARKER'S METHOD by non-linear least squares.

Margules equation.
The most satisfactory procedure for reduction of this set of data is to find the value of Henry's constant by regression along with the Margules parameters.

$$
\begin{aligned}
& \gamma_{1}\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}\right):=\exp \left[(\mathrm{x} 2)^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1\right]\right] \\
& \gamma_{2}\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}\right):=\exp \left[(\mathrm{x} 1)^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2\right]\right]
\end{aligned}
$$

Guesses: $\quad \mathrm{H}_{2}:=14 \quad \mathrm{~A}_{21}:=0.148 \quad \mathrm{~A}_{12}:=0.375$
Mininize the sums of the squared errors by setting sums of derivatives equal to zero.

$$
\begin{aligned}
& \text { Given } 0=\sum_{i}\left[\frac{d}{d A_{12}}\left[P_{i}-\left(\begin{array}{ll}
x_{1} \cdot \gamma_{1}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \text { Psat }_{1} \ldots &) \\
+x_{2} \cdot \gamma_{2}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \frac{H_{2}}{\exp \left(A_{21}\right)} &)
\end{array}\right]^{2}\right]\right. \\
& 0=\sum_{i}\left[\frac{d}{d A_{21}}\left[P_{i}-\left(\begin{array}{ll}
x_{1} \cdot \gamma_{1}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \operatorname{Psat}_{1} \ldots &) \\
+x_{2} \cdot \gamma_{2}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \frac{H_{2}}{\exp \left(A_{21}\right)} &)
\end{array}\right]^{2}\right]\right. \\
& 0=\sum_{i}\left[\frac{d}{d H_{2}}\left[P_{i}-\left(\begin{array}{ll}
x_{1} \cdot \gamma_{1}\left(x_{1_{i}}, x_{2}, A_{12}, A_{21}\right) \cdot \operatorname{Psat}_{1} \ldots &) \\
+x_{2} \cdot \gamma_{2}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \frac{H_{2}}{\exp \left(A_{21}\right)} &)
\end{array}\right]^{2}\right]\right.
\end{aligned}
$$

$\left(\begin{array}{l}\left.\mathrm{A}_{12}\right) \\ \mathrm{A}_{21} \mid:=\operatorname{Find}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{H}_{2}\right) \\ \left.\mathrm{H}_{2}\right)\end{array}\right.$
$\left(\begin{array}{l}\mathrm{A}_{12} \\ \mathrm{~A}_{21} \\ \mathrm{H}_{2}\end{array}\right)=\left(\begin{array}{l}0.469 \\ 0.279 \\ 14.87\end{array}\right)$

Ans.
(d) $\gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x} 2^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1\right]\right]$

$$
\gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x} 1^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2\right]\right]
$$

$$
\begin{aligned}
& \mathrm{P}_{\text {calc }_{\mathrm{i}}}:=\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2_{\mathrm{i}}}\right) \cdot \operatorname{Psat}_{1}+\mathrm{x}_{2} \cdot \gamma 2\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \frac{\mathrm{H}_{2}}{\exp \left(\mathrm{~A}_{21}\right)} \\
& {\mathrm{y} 1 \mathrm{calc}_{\mathrm{i}}}:=\frac{\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \text { Psat }_{1}}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}
\end{aligned}
$$

The plot of residuals below shows that the procedure used (Barker's method with regression for $\mathbf{H} 2$) is not in this case very satisfactory, no doubt because the data do not extend close enough to $\mathbf{x 1}=0$.

Fit GE/RT data to Margules eqn. by least squares:
$\mathrm{i}:=1 . .7 \quad \mathrm{y}_{2}:=1-\mathrm{y}_{1}$
Given

$$
0=\sum_{i} \frac{d}{d A_{12}}\left[\left(\begin{array}{l}
\binom{x_{1} \cdot \ln \left(\frac{y_{1} \cdot P_{i}}{x_{1} \cdot P_{s a t}}\right) \ldots}{+x_{2} \cdot \ln \left(\frac{\mathrm{y}_{2} \cdot P_{i}}{\left.x_{2} \cdot \frac{H_{2}}{\exp \left(A_{21}\right)}\right)}\right.}
\end{array}\right)^{-\binom{\left.A_{21} \cdot x_{1} \ldots\right) \cdot x_{1} \cdot x_{2}}{+A_{12} \cdot x_{2}}}\right]^{2}
$$

$$
\begin{aligned}
& \left(\begin{array}{l}
\left.\mathrm{A}_{12}\right) \\
\mathrm{A}_{21} \mid:=\operatorname{Find}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{H}_{2}\right) \\
\left.\mathrm{H}_{2}\right)
\end{array}\right. \\
& \gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x} 2^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1\right]\right] \\
& \gamma 2(x 1, x 2):=\exp \left[x 1^{2} \cdot\left[A_{21}+2 \cdot\left(A_{12}-A_{21}\right) \cdot x 2\right]\right] \\
& P_{\text {calc }_{\mathrm{i}}}:=\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \operatorname{Psat}_{1}+\mathrm{x}_{\mathrm{L}_{\mathrm{i}}} \cdot \gamma 2\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \frac{\mathrm{H}_{2}}{\exp \left(\mathrm{~A}_{21}\right)} \\
& \mathrm{y}_{1 \mathrm{calc}_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right) \cdot \text { Psat }_{1}}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}} \\
& \text { Ans. } \\
& \mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{\mathrm{i}}\right) \cdot \text { Psat }_{1}}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}
\end{aligned}
$$

This result is considerably improved over that obtained with Barker's method.

14.6 Pressures in kPa

Data: $\quad P:=\left(\begin{array}{l}15.79 \\ 17.51 \\ 18.15 \\ 19.30 \\ 19.89 \\ 21.37 \\ 24.95 \\ 29.82 \\ 34.80 \\ 42.10\end{array}\right)$
$\mathrm{x}_{1}:=\left(\begin{array}{c}0.0 \\ 0.0932 \\ 0.1248 \\ 0.1757 \\ 0.2000 \\ 0.2626 \\ 0.3615 \\ 0.4750 \\ 0.5555 \\ 0.6718\end{array}\right)$
$\mathrm{y}_{1}:=\left(\begin{array}{c}0.0 \\ 0.1794 \\ 0.2383 \\ 0.3302 \\ 0.3691 \\ 0.4628 \\ 0.6184 \\ 0.7552 \\ 0.8378 \\ 0.9137\end{array}\right)$
i := 2 .. rows (P)
$\mathrm{x}_{2}:=1-\mathrm{x}_{1}$
Psat $2:=\mathrm{P}_{1}$
(a) It follows immediately from Eq. (12.10a) that:
$\ln \left(\gamma_{1}{ }^{\infty}\right)=A_{12}$
Combining this with Eq. (12.10a) yields the required expression
(b) Henry's constant will be found as part of the solution to Part (c)
(c) BARKER'S METHOD by non-linear least squares.

Margules equation.
The most satisfactory procedure for reduction of this set of data is to find the value of Henry's constant by regression along with the Margules parameters.

$$
\begin{aligned}
& \gamma_{1}\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}\right):=\exp \left[(\mathrm{x} 2)^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1\right]\right] \\
& \gamma_{2}\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}\right):=\exp \left[(\mathrm{x} 1)^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2\right]\right]
\end{aligned}
$$

Guesses:

$$
\mathrm{H}_{1}:=35
$$

$$
\mathrm{A}_{21}:=-1.27 \quad \mathrm{~A}_{12}:=-0.70
$$

Mininize the sums of the squared errors by setting sums of derivatives equal to zero.

Given

$$
\left.\left.\begin{array}{l}
0=\sum_{i}\left[\frac{d}{d A_{12}}\left[P_{i}-\binom{x_{1_{i}} \cdot \gamma_{1}\left(x_{1_{i}}, x_{2_{i}}, A_{12}, A_{21}\right) \cdot \frac{H_{1}}{\exp \left(A_{12}\right)} \ldots}{+x_{2} \cdot \gamma_{2}\left(x_{1_{i}}, x_{2}, A_{12}, A_{21}\right) \cdot P s a t_{2}}\right]^{2}\right] \\
0=\sum_{i}\left[\frac { d } { d A _ { 2 1 } } \left[P_{i}-\binom{x_{1} \cdot \gamma_{1}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \frac{H_{1}}{\exp \left(A_{12}\right)} \ldots}{+x_{2} \cdot \gamma_{2}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \operatorname{Psat}_{2}}\right.\right.
\end{array}\right]^{2}\right]
$$

$\left(\begin{array}{l}\left.\mathrm{A}_{12}\right) \\ \mathrm{A}_{21} \mid:=\operatorname{Find}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{H}_{1}\right) \\ \left.\mathrm{H}_{1}\right)\end{array}\right.$
$\left(\begin{array}{l}\mathrm{A}_{12} \\ \mathrm{~A}_{21} \\ \mathrm{H}_{1}\end{array}\right)=\left(\begin{array}{l}-0.731 \\ -1.187 \\ 32.065\end{array}\right)$

Ans.
(d) $\quad \gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x}^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1\right]\right]$

$$
\begin{aligned}
& \gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x}^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2\right]\right] \\
& \mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}:=\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \frac{\mathrm{H}_{1}}{\exp \left(\mathrm{~A}_{12}\right)}+\mathrm{x}_{2} \cdot \gamma 2\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \text { Psat }_{2}
\end{aligned}
$$

$$
\mathrm{y}_{1 \mathrm{calc}_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right) \cdot \frac{\mathrm{H}_{1}}{\exp \left(\mathrm{~A}_{12}\right)}}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}
$$

$\times \times \times$ Pressure residuals $\diamond \quad y 1$ residuals

Fit GE/RT data to Margules eqn. by least squares:
i := 2 .. rows (P)

$$
\mathrm{y}_{2}:=1-\mathrm{y}_{1}
$$

Given

$$
\begin{aligned}
& \left(\begin{array}{l}
\left.\mathrm{A}_{12}\right) \\
\mathrm{A}_{21} \mid:=\operatorname{Find}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{H}_{1}\right) \\
\left.\mathrm{H}_{1}\right)
\end{array}\right. \\
& \gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x}^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1\right]\right] \\
& \gamma 2(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x} 1^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2\right]\right] \\
& P_{\text {calc }_{i}}:=x_{1} \cdot \gamma 1\left(x_{1}, x_{2}\right) \cdot \frac{H_{1}}{\exp \left(A_{12}\right)}+x_{2} \cdot \gamma 2\left(x_{1}, x_{2}\right) \cdot P s a t{ }_{2} \\
& \mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{\mathrm{i}}\right) \cdot \frac{\mathrm{H}_{1}}{\exp \left(\mathrm{~A}_{12}\right)}}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}} \\
& \text { Ans. }
\end{aligned}
$$

14.7 Pressures in $\mathbf{k P a}$

Data: $\quad \mathrm{x}_{1}:=\left(\begin{array}{l}0.1757 \\ 0.2000 \\ 0.2626 \\ 0.3615 \\ 0.4750 \\ 0.5555 \\ 0.6718 \\ 0.8780 \\ 0.9398 \\ 1.0000\end{array}\right) \quad \mathrm{P}:=\left(\begin{array}{l}19.30 \\ 19.89 \\ 21.37 \\ 24.95 \\ 29.82 \\ 34.80 \\ 42.10 \\ 60.38 \\ 65.39 \\ 69.36\end{array}\right) \quad \mathrm{y}_{1}:=\left(\begin{array}{l}0.3302 \\ 0.3691 \\ 0.4628 \\ 0.6184 \\ 0.7552 \\ 0.8378 \\ 0.9137 \\ 0.9860 \\ 0.9945 \\ 1.0000\end{array}\right)$

$$
\mathrm{i}:=1 . .9 \quad \mathrm{x}_{2}:=1-\mathrm{x}_{1} \quad \text { Psat }_{1}:=\mathrm{P}_{10}
$$

(a) It follows immediately from Eq. (12.10a) that:
$\ln \left(\gamma_{2}^{\infty}\right)=A_{21}$
Combining this with Eq. (12.10a) yields the required expression.
(b) Henry's constant will be found as part of the solution to Part (c).
(c) BARKER'S METHOD by non-linear least squares.

Margules equation.
The most satisfactory procedure for reduction of this set of data is to find the value of Henry's constant by regression along with the Margules parameters.
$\gamma_{1}\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}\right):=\exp \left[(\mathrm{x} 2)^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1\right]\right]$
$\gamma_{2}\left(\mathrm{x} 1, \mathrm{x} 2, \mathrm{~A}_{12}, \mathrm{~A}_{21}\right):=\exp \left[(\mathrm{x} 1)^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2\right]\right]$
Guesses: $\quad \mathrm{H}_{2}:=4 \quad \mathrm{~A}_{21}:=-1.37 \quad \mathrm{~A}_{12}:=-0.68$
Mininize the sums of the squared errors by setting sums of derivatives equal to zero.

Given

$$
\begin{aligned}
& 0=\sum_{i}\left[\frac{d}{d A_{12}}\left[P_{i}-\left(\begin{array}{ll}
x_{1} \cdot \gamma_{1}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \operatorname{Psat}_{1} \ldots &) \\
+x_{2} \cdot \gamma_{2}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \frac{H_{2}}{\exp \left(A_{21}\right)} &)
\end{array}\right]^{2}\right]\right. \\
& 0=\sum_{i}\left[\frac{d}{d A_{21}}\left[P_{i}-\left(\begin{array}{ll}
x_{1} \cdot \gamma_{1}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \text { Psat }_{1} \ldots &) \\
+x_{2} \cdot \gamma_{2}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \frac{H_{2}}{\exp \left(A_{21}\right)} &)
\end{array}\right]^{2}\right]\right. \\
& 0=\sum_{i}\left[\frac{d}{d H_{2}}\left[P_{i}-\left(\begin{array}{ll}
x_{1} \cdot \gamma_{1}\left(x_{1_{i}}, x_{2}, A_{12}, A_{21}\right) \cdot \operatorname{Psat}_{1} \ldots &) \\
+x_{2} \cdot \gamma_{2}\left(x_{1}, x_{2}, A_{12}, A_{21}\right) \cdot \frac{H_{2}}{\exp \left(A_{21}\right)} &)
\end{array}\right]^{2}\right]\right.
\end{aligned}
$$

$\left(\begin{array}{l}\left.\mathrm{A}_{12}\right) \\ \mathrm{A}_{21} \mid:=\operatorname{Find}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{H}_{2}\right) \\ \left.\mathrm{H}_{2}\right)\end{array}\right.$
$\left(\begin{array}{l}\mathrm{A}_{12} \\ \mathrm{~A}_{21} \\ \mathrm{H}_{2}\end{array}\right)=\left(\begin{array}{c}-0.679 \\ -1.367 \\ 3.969\end{array}\right) \quad$ Ans.
(d) $\gamma 1(\mathrm{x} 1, \mathrm{x} 2):=\exp \left[\mathrm{x} 2^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1\right]\right]$

$$
\gamma 2(x 1, x 2):=\exp \left[x 1^{2} \cdot\left[A_{21}+2 \cdot\left(A_{12}-A_{21}\right) \cdot x 2\right]\right]
$$

$$
\mathrm{P}_{\text {calc }_{\mathrm{i}}}:=\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \text { Psat }_{1}+\mathrm{x}_{2} \cdot \gamma 2\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \frac{\mathrm{H}_{2}}{\exp \left(\mathrm{~A}_{21}\right)}
$$

$$
\mathrm{y}_{1 \mathrm{calc}_{\mathrm{i}}}:=\frac{\mathrm{x}_{1} \cdot \gamma 1\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right) \cdot \text { Psat }_{1}}{\mathrm{P}_{\mathrm{calc}_{\mathrm{i}}}}
$$

Fit GE/RT data to Margules eqn. by least squares:
i := 1.. 9

$$
\mathrm{y}_{2}:=1-\mathrm{y}_{1}
$$

Given

$$
\begin{aligned}
& \left(\begin{array}{l}
\left.\mathrm{A}_{12}\right) \\
\mathrm{A}_{21} \mid:=\operatorname{Find}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}, \mathrm{H}_{2}\right) \\
\left.\mathrm{H}_{2}\right)
\end{array}\right. \\
& \gamma 1(x 1, x 2):=\exp \left[x 2^{2} \cdot\left[A_{12}+2 \cdot\left(A_{21}-A_{12}\right) \cdot x 1\right]\right] \\
& \gamma 2(x 1, x 2):=\exp \left[x 1^{2} \cdot\left[A_{21}+2 \cdot\left(A_{12}-A_{21}\right) \cdot x 2\right]\right] \\
& P_{\text {calc }_{\mathrm{i}}}:=\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{\mathrm{L}_{\mathrm{i}}}\right) \cdot \text { Psat }_{1}+\mathrm{x}_{2} \cdot \gamma 2\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \frac{\mathrm{H}_{2}}{\exp \left(\mathrm{~A}_{21}\right)} \\
& \mathrm{y}_{1 \text { calc }_{\mathrm{i}}}:=\frac{\mathrm{x}_{1_{\mathrm{i}}} \cdot \gamma 1\left(\mathrm{x}_{1_{\mathrm{i}}}, \mathrm{x}_{2}\right) \cdot \text { Psat }_{1}}{\mathrm{P}_{\text {calc }_{\mathrm{i}}}} \\
& \text { Ans. }
\end{aligned}
$$

14.8 (a) Data from Table 12.1

$\left.P:=\left(\begin{array}{l}15.51 \\ 18.61 \\ 21.63 \\ 24.01 \\ 25.92 \\ 27.96 \\ 30.12 \\ 31.75\end{array}\right) \mathrm{kPa} \mathrm{x}_{1}:=\left(\begin{array}{l}0.0895 \\ 0.1981 \\ 0.3193 \\ 0.4232 \\ 0.5119 \\ 0.6096 \\ 0.7135 \\ 0.7934 \\ 0.9102\end{array}\right) \mathrm{y}_{1}\right):=\left(\begin{array}{l}0.2716 \\ 0.4565 \\ 0.5934 \\ 0.6815 \\ 0.7440 \\ 0.8050 \\ 0.8639 \\ 0.9048 \\ 0.9590\end{array}\right) \gamma_{1}:=\left(\begin{array}{l}1.304 \\ 1.188 \\ 1.114 \\ 1.071 \\ 1.044 \\ 1.023 \\ 1.010 \\ 1.003\end{array}\right) \gamma_{2}:=\left(\begin{array}{l}1.009 \\ 1.026 \\ 0.997\end{array}\right)$

$$
\begin{array}{lll}
\mathrm{n}:=\operatorname{rows}(\mathrm{P}) \quad \mathrm{n}=9 \quad \mathrm{i}:=1 . . \mathrm{n} & \mathrm{x}_{2}:=1-\mathrm{x}_{1_{\mathrm{i}}} \quad \mathrm{y}_{\mathrm{i}}:=1-\mathrm{y}_{1} \\
\text { Psat }_{1}:=36.09 \mathrm{kPa} \quad \text { Psat }_{2}:=12.30 \mathrm{kPa} & \mathrm{~T}:=(50+273.15) \mathrm{K}
\end{array}
$$

Data reduction with the Margules equation and Eq. (10.5):

$$
\gamma_{1_{\mathrm{i}}}:=\frac{\mathrm{y}_{1} \cdot \mathrm{P}_{\mathrm{i}}}{\mathrm{x}_{1} \cdot \mathrm{Psat}_{1}} \quad \gamma_{2_{\mathrm{i}}}:=\frac{\mathrm{y}_{2} \cdot \mathrm{P}_{\mathrm{i}}}{\mathrm{x}_{2} \cdot \mathrm{Psat}_{2}}
$$

$$
\mathrm{i}:=1 . . \mathrm{n} \quad \mathrm{GERT}_{\mathrm{i}}:=\mathrm{x}_{1} \cdot \ln \left(\gamma_{1_{\mathrm{i}}}\right)+\mathrm{x}_{2} \cdot \ln \left(\gamma_{2_{\mathrm{i}}}\right)
$$

Guess: $\quad \mathrm{A}_{12}:=0.1 \quad \mathrm{~A}_{21}:=0.3$
$f\left(A_{12}, A_{21}\right):=\sum_{i=1}^{n}\left[\operatorname{GERT}_{i}-\left(A_{21} \cdot x_{1}+A_{12} \cdot x_{2}\right) \cdot x_{1} \cdot x_{2}\right]^{2}$
$\binom{\mathrm{A}_{12}}{\mathrm{~A}_{21}}:=\operatorname{Minimize}\left(\mathrm{f}, \mathrm{A}_{12}, \mathrm{~A}_{21}\right) \quad \mathrm{A}_{12}=0.374 \quad \mathrm{~A}_{21}=0.197 \quad$ Ans.
RMS Error: RMS $:=\sqrt{\frac{\sum_{i=1}^{n}\left[G E R T_{i}-\left(A_{21} \cdot x_{1}+A_{12} \cdot x_{2}\right) \cdot x_{1} \cdot x_{2}{ }_{i}\right]^{2}}{n}}$
RMS $=1.033 \times 10^{-3} \quad x 1:=0,0.01 . .1$

Data reduction with the Margules equation and Eq. (14.1):

$$
\begin{aligned}
& \mathrm{B}_{11}:=-1840 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{~B}_{22}:=-1800 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{~B}_{12}:=-1150 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \\
& \delta_{12}:=2 \cdot \mathrm{~B}_{12}-\mathrm{B}_{11}-\mathrm{B}_{22} \\
& \Phi_{1_{\mathrm{i}}}:=\exp \left[\frac{\left[\mathrm{B}_{11} \cdot\left(\mathrm{P}_{\mathrm{i}}-\mathrm{Psat}_{1}\right)+\mathrm{P}_{\mathrm{i}} \cdot\left(\mathrm{y}_{\mathrm{i}}\right)^{2} \cdot \delta_{12}\right]}{\mathrm{R} \cdot \mathrm{~T}}\right] \quad \gamma_{1_{\mathrm{i}}}:=\frac{\mathrm{y}_{1_{\mathrm{i}}} \cdot \Phi_{1_{\mathrm{i}}} \cdot \mathrm{P}_{\mathrm{i}}}{\mathrm{x}_{1} \cdot \mathrm{Psat}_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi_{2_{\mathrm{i}}}:=\exp \left[\frac{\left[\mathrm{B}_{22} \cdot\left(\mathrm{P}_{\mathrm{i}}-\mathrm{Psat}_{2}\right)+\mathrm{P}_{\mathrm{i}} \cdot\left(\mathrm{y}_{1_{\mathrm{i}}}\right)^{2} \cdot \delta_{12}\right]}{\mathrm{R} \cdot \mathrm{~T}}\right] \quad \gamma_{2_{\mathrm{i}}}:=\frac{\mathrm{y}_{2} \cdot \Phi_{2_{\mathrm{i}}} \cdot \mathrm{P}_{\mathrm{i}}}{\mathrm{x}_{2_{\mathrm{i}}} \cdot \mathrm{Psat}_{2}} \\
& \mathrm{i}:=1 . . \mathrm{n} \quad \mathrm{GERT}_{\mathrm{i}}:=\mathrm{x}_{1} \cdot \ln \left(\gamma_{1_{\mathrm{i}}}\right)+\mathrm{x}_{2} \cdot \ln \left(\gamma_{2_{\mathrm{i}}}\right)
\end{aligned}
$$

Guess: $\quad \mathrm{A}_{12}:=0.1 \quad \mathrm{~A}_{21}:=0.3$
$f\left(\mathrm{~A}_{12}, \mathrm{~A}_{21}\right):=\sum_{\mathrm{i}=1}^{\mathrm{n}}\left[\mathrm{GERT}_{\mathrm{i}}-\left(\mathrm{A}_{21} \cdot \mathrm{x}_{1}+\mathrm{A}_{12} \cdot \mathrm{x}_{2}\right) \cdot \mathrm{x}_{1} \cdot \mathrm{x}_{\mathrm{i}}\right]^{2}$
$\left(\begin{array}{lll}\left.\mathrm{A}_{12}\right) \\ \left.\mathrm{A}_{21}\right)\end{array}:=\operatorname{Minimize}\left(\mathrm{f}, \mathrm{A}_{12}, \mathrm{~A}_{21}\right) \quad \mathrm{A}_{12}=0.379 \quad \mathrm{~A}_{21}=0.216 \quad\right.$ Ans.

RMS Error: RMS $:=\sqrt{\sum_{i=1}^{n} \frac{\left[\mathrm{GERT}_{\mathrm{i}}-\left(\mathrm{A}_{21} \cdot \mathrm{x}_{1}+A_{12} \cdot \mathrm{x}_{\mathrm{i}}\right) \cdot \mathrm{x}_{1} \cdot \mathrm{x}_{2}\right]^{2}}{\mathrm{n}}}$
RMS $=9.187 \times 10^{-4} \quad \mathrm{x} 1:=0,0.01 . .1$

The RMS error with Eqn. (14.1) is about 11 \% lower than the RMS error with Eqn. (10.5).

Note: The following problem was solved with the temperature (T) set at the normal boiling point. To solve for another temperature, simply change T to the approriate value.
14.9
(a) Acetylene: $\mathrm{T}_{\mathrm{C}}:=308.3 \mathrm{~K} \quad \mathrm{P}_{\mathrm{C}}:=61.39 \mathrm{bar} \quad \mathrm{T}_{\mathrm{n}}:=189.4 \mathrm{~K}$
$\mathrm{T}:=\mathrm{T}_{\mathrm{n}} \quad \mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{C}}} \quad \mathrm{T}_{\mathrm{r}}=0.614$

For Redlich/Kwong EOS:
$\sigma:=1 \quad \varepsilon:=0 \quad \Omega:=0.08664 \quad \Psi:=0.42748 \quad$ Table 3.1
$\alpha(\mathrm{Tr}):=\operatorname{Tr}^{\frac{-1}{2}} \quad$ Table $3.1 \quad \mathrm{a}\left(\mathrm{T}_{\mathrm{r}}\right):=\Psi \cdot \frac{\alpha\left(\mathrm{T}_{\mathrm{r}}\right) \cdot \mathrm{R}^{2} \cdot \mathrm{~T}_{\mathrm{C}}{ }^{2}}{\mathrm{P}_{\mathrm{C}}}$
$\mathrm{q}\left(\mathrm{T}_{\mathrm{r}}\right):=\frac{\Psi \cdot \alpha\left(\mathrm{T}_{\mathrm{r}}\right)}{\Omega \cdot \mathrm{T}_{\mathrm{r}}} \quad$ Eq. (3.54) $\quad \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}}$
Define \mathbf{Z} for the vapor (Zv) Guess: $\quad \mathrm{zv}:=0.9$
Given Eq. (3.52)
$\mathrm{zv}=1+\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-\mathrm{q}\left(\mathrm{T}_{\mathrm{r}}\right) \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right) \cdot \frac{\mathrm{zv}-\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}{\left(\mathrm{zv}+\varepsilon \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right) \cdot\left(\mathrm{zv}+\sigma \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right)}$
$\mathrm{Zv}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\operatorname{Find}(\mathrm{zv})$
Define Z for the liquid (Zl) Guess: \quad zl := 0.01
Given Eq. (3.56)
$\mathrm{zl}=\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\left(\mathrm{zl}+\varepsilon \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right) \cdot\left(\mathrm{zl}+\sigma \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right) \cdot\left(\frac{1+\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-\mathrm{zl}}{\mathrm{q}\left(\mathrm{T}_{\mathrm{r}}\right) \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}\right)$
To find liquid root, restrict search for $\mathbf{z l}$ to values less than $\mathbf{0 . 2}, \mathrm{zl}<0.2$
$\mathrm{Zl}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\operatorname{Find}(\mathrm{zl})$
Define I for liquid (II) and vapor (Iv)

$$
\begin{align*}
& \operatorname{Il}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\frac{1}{\sigma-\varepsilon} \cdot \ln \left(\frac{\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\sigma \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}{\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\varepsilon \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}\right) \\
& \operatorname{Iv}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\frac{1}{\sigma-\varepsilon} \cdot \ln \left(\frac{\mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\sigma \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}{\mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\varepsilon \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}\right) \tag{6.65b}
\end{align*}
$$

$$
\begin{equation*}
\ln \phi l\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-1-\ln \left(\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right)-\mathrm{q}\left(\mathrm{~T}_{\mathrm{r}}\right) \cdot \mathrm{Il}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right) \tag{11.37}
\end{equation*}
$$

$$
\ln \phi v\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-1-\ln \left(\mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right)-\mathrm{q}\left(\mathrm{~T}_{\mathrm{r}}\right) \cdot \operatorname{Iv}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)
$$

Guess Psat: Psat $_{\mathrm{r}}:=\frac{1 \mathrm{bar}}{\mathrm{P}_{\mathrm{C}}}$
Given

$$
\ln \phi l\left(T_{r}, \text { Psat }_{r}\right)=\ln \phi v\left(T_{r}, \text { Psat }_{r}\right) \quad \text { Psat }_{r}:=\operatorname{Find}\left(\text { Psat }_{r}\right)
$$

$$
\text { Psat }_{\mathrm{r}}=0.026 \quad \mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \text { Psat }_{\mathrm{r}}\right)=4.742 \times 10^{-3} \quad \mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \text { Psat }_{\mathrm{r}}\right)=0.965
$$

$$
\mathrm{P}_{\text {sat }}:=\text { Psat }_{\mathrm{r}} \cdot \mathrm{P}_{\mathrm{C}} \quad \mathrm{P}_{\text {sat }}=1.6 \text { bar } \quad \text { Ans. }
$$

The following table lists answers for all parts. Literature values are interpolated from tables in Perry's Chemical Engineers' Handbook, 6th ed. The last column shows the percent difference between calculated and literature values at 0.85 Tc . These range from 0.1 to $\mathbf{2 7 \%}$. For the normal boiling point (Tn), Psat should be 1.013 bar. Tabulated results for Psat do not agree well with this value. Differences range from 3 to $>\mathbf{1 0 0 \%}$.

	Tn (K)	Psat (bar)	$\mathbf{0 . 8 5}$ Tc (K)	Psat (bar)	Psat (bar)	\% Difference
		$@$ Tn		$@ \mathbf{0 . 8 5}$ Tc	Lit. Values	
Acetylene	189.4	1.60	262.1	20.27	19.78	2.5%
Argon	87.3	0.68	128.3	20.23	18.70	8.2%
Benzene	353.2	1.60	477.9	16.028	15.52	3.2%
n-Butane	272.7	1.52	361.3	14.35	12.07	18.9%
Carbon Monoxide	81.7	0.92	113.0	15.2	12.91	17.7%
n-Decane	447.3	2.44	525.0	6.633	5.21	27.3%
Ethylene	169.4	1.03	240.0	17.71	17.69	0.1%
n-Heptane	371.6	2.06	459.2	7.691	7.59	1.3%
Methane	111.4	0.71	162.0	19.39	17.33	11.9%
Nitrogen	77.3	0.86	107.3	14.67	12.57	16.7%

14.10 (a) Acetylene: $\omega:=0.187 \quad \mathrm{~T}_{\mathrm{C}}:=308.3 \mathrm{~K} \quad \mathrm{P}_{\mathrm{C}}:=61.39 \mathrm{bar} \quad \mathrm{T}_{\mathrm{n}}:=189.4 \mathrm{~K}$ $\mathrm{T}:=\mathrm{T}_{\mathrm{n}} \quad$ Note: For solution at $\mathbf{0 . 8 5 T}_{\mathbf{c}}$, set $\mathbf{T}:=\mathbf{0 . 8 5 T}_{\mathbf{c}} \quad \mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{C}}}$

For SRK EOS:
$\sigma:=1$
$\varepsilon:=0$
$\Omega:=0.08664 \quad \Psi:=0.42748$
$\mathrm{T}_{\mathrm{r}}=0.614$
Table 3.1

$$
\begin{aligned}
& \alpha\left(\mathrm{T}_{\mathrm{r}}, \omega\right):=\left[1+\left(0.480+1.574 \omega-0.176 \omega^{2}\right) \cdot\left(1-\mathrm{T}_{\mathrm{r}}{ }^{\frac{1}{2}}\right)\right]^{2} \quad \text { Table } 3.1 \\
& \mathrm{a}\left(\mathrm{~T}_{\mathrm{r}}\right):=\Psi \cdot \frac{\alpha\left(\mathrm{T}_{\mathrm{r}}, \omega\right) \cdot \mathrm{R}^{2} \cdot \mathrm{~T}_{\mathrm{C}}^{2}}{\mathrm{P}_{\mathrm{C}}} \text { Eq. (3.45) } \\
& \mathrm{q}\left(\mathrm{~T}_{\mathrm{r}}\right):=\frac{\Psi \cdot \alpha\left(\mathrm{T}_{\mathrm{r}}, \omega\right)}{\Omega \cdot \mathrm{T}_{\mathrm{r}}} \quad \text { Eq. (3.54) } \quad \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}} \quad \text { Eq. (3.53) }
\end{aligned}
$$

Define Z for the vapor (Zv) Guess: $\mathrm{Zv}:=0.9$

Given Eq. (3.52)

$$
\begin{aligned}
& \mathrm{zv}=1+\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-\mathrm{q}\left(\mathrm{~T}_{\mathrm{r}}\right) \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right) \cdot \frac{\mathrm{zv}-\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}{\left(\mathrm{zv}+\varepsilon \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right) \cdot\left(\mathrm{zv}+\sigma \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right)} \\
& \mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\operatorname{Find}(\mathrm{zv})
\end{aligned}
$$

Define Z for the liquid (Zl) Guess: \quad zl := 0.01
Given Eq. (3.56)

$$
\mathrm{zl}=\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\left(\mathrm{zl}+\varepsilon \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right) \cdot\left(\mathrm{zl}+\sigma \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right) \cdot\left(\frac{1+\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-\mathrm{zl}}{\mathrm{q}\left(\mathrm{~T}_{\mathrm{r}}\right) \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}\right)
$$

To find liquid root, restrict search for $\mathbf{z l}$ to values less than $\mathbf{0 . 2}, \mathrm{zl}<0.2$ $\mathrm{Zl}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\operatorname{Find}(\mathrm{zl})$

Define I for liquid (II) and vapor (Iv)

$$
\begin{align*}
& \operatorname{Il}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\frac{1}{\sigma-\varepsilon} \cdot \ln \left(\frac{\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\sigma \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}{\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\varepsilon \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}\right) \\
& \operatorname{Iv}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\frac{1}{\sigma-\varepsilon} \cdot \ln \left(\frac{\mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\sigma \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}{\mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\varepsilon \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}\right) \tag{6.65b}
\end{align*}
$$

$$
\begin{equation*}
\ln \phi l\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-1-\ln \left(\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right)-\mathrm{q}\left(\mathrm{~T}_{\mathrm{r}}\right) \cdot \mathrm{Il}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right) \tag{11.37}
\end{equation*}
$$

$$
\ln \phi v\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-1-\ln \left(\mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right)-\mathrm{q}\left(\mathrm{~T}_{\mathrm{r}}\right) \cdot \operatorname{Iv}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)
$$

$$
\text { Guess Psat: } \text { Psat }_{\mathrm{r}}:=\frac{2 \mathrm{bar}}{\mathrm{P}_{\mathrm{C}}}
$$

Given

$$
\ln \phi l\left(T_{r}, \text { Psat }_{r}\right)=\ln \phi v\left(T_{r}, \text { Psat }_{r}\right) \quad \text { Psat }_{r}:=\operatorname{Find}\left(\text { Psat }_{r}\right)
$$

$$
\text { Psat }_{\mathrm{r}}=0.017 \quad \mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \text { Psat }_{\mathrm{r}}\right)=3.108 \times 10^{-3} \quad \mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \text { Psat }_{\mathrm{r}}\right)=0.975
$$

$$
\mathrm{P}_{\mathrm{sat}}:=\mathrm{Psat}_{\mathrm{r}} \cdot \mathrm{P}_{\mathrm{C}} \quad \mathrm{P}_{\text {sat }}=1.073 \text { bar } \quad \text { Ans. }
$$

The following table lists answers for all parts. Literature values are interpolated from tables in Perry's Chemical Engineers' Handbook, 6th ed. The last column shows the percent difference between calculated and literature values at 0.85 Tc . These range from less than 0.1 to 2.5%. For the normal boiling point (Tn), Psat should be 1.013 bar. Tabulated results for Psat agree well with this value. Differences range from near 0 to 6%.

	Tn (K)	Psat (bar)	0.85 Tc (K)	Psat (bar)	Psat (bar)	\% Difference
		$@$ Tn		@ 0.85 Tc	Lit. Values	
Acetylene	189.4	1.073	262.1	20.016	19.78	1.2%
Argon	87.3	0.976	128.3	18.79	18.70	0.5%
Benzene	353.2	1.007	477.9	15.658	15.52	0.9%
n-Butane	272.7	1.008	361.3	12.239	12.07	1.4%
Carbon Monoxide	81.7	1.019	113.0	12.871	12.91	-0.3%
n-Decane	447.3	1.014	525.0	5.324	5.21	2.1%
Ethylene	169.4	1.004	240.0	17.918	17.69	1.3%
n-Heptane	371.6	1.011	459.2	7.779	7.59	2.5%
Methane	111.4	0.959	162.0	17.46	17.33	0.8%
Nitrogen	77.3	0.992	107.3	12.617	12.57	0.3%

14.10 (b) Acetylene: $\omega:=0.187 \quad \mathrm{~T}_{\mathrm{C}}:=308.3 \mathrm{~K} \quad \mathrm{P}_{\mathrm{C}}:=61.39 \mathrm{bar} \quad \mathrm{T}_{\mathrm{n}}:=189.4 \mathrm{~K}$

$$
\mathrm{T}:=\mathrm{T}_{\mathrm{n}} \quad \text { Note: For solution at } \mathbf{0 . 8 5 T}_{\mathbf{c}} \text {, set } \mathbf{T}:=\mathbf{0 . 8 5 T}_{\mathbf{c}} \quad \mathrm{T}_{\mathrm{r}}:=\frac{\mathrm{T}}{\mathrm{~T}_{\mathrm{C}}}
$$

For PR EOS:

$$
\mathrm{T}_{\mathrm{r}}=0.614
$$

$$
\sigma:=1+\sqrt{2} \varepsilon:=1-\sqrt{2} \Omega:=0.07779 \quad \Psi:=0.45724
$$

Table 3.1

$$
\begin{align*}
\alpha\left(\mathrm{T}_{\mathrm{r}}, \omega\right) & :=\left[1+\left(0.37464+1.54226 \omega-0.26992 \omega^{2}\right) \cdot\left(1-\mathrm{T}_{\mathrm{r}}^{\frac{1}{2}}\right)\right]^{2} \text { Table } 3.1 \\
\mathrm{a}\left(\mathrm{~T}_{\mathrm{r}}\right) & :=\Psi \cdot \frac{\alpha\left(\mathrm{T}_{\mathrm{r}}, \omega\right) \cdot \mathrm{R}^{2} \cdot \mathrm{~T}_{\mathrm{C}}^{2}}{\mathrm{P}_{\mathrm{C}}} \text { Eq. (3.45) } \\
\mathrm{q}\left(\mathrm{~T}_{\mathrm{r}}\right) & :=\frac{\Psi \cdot \alpha\left(\mathrm{T}_{\mathrm{r}}, \omega\right)}{\Omega \cdot \mathrm{T}_{\mathrm{r}}} \quad \text { Eq. (3.54) } \quad \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\frac{\Omega \cdot \mathrm{P}_{\mathrm{r}}}{\mathrm{~T}_{\mathrm{r}}} \quad \text { Eq. (3.53) } \tag{3.53}
\end{align*}
$$

Define Z for the vapor (Zv) Guess: \quad zv := 0.9

Given Eq. (3.52)

$$
\begin{aligned}
& \mathrm{zv}=1+\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-\mathrm{q}\left(\mathrm{~T}_{\mathrm{r}}\right) \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right) \cdot \frac{\mathrm{zv}-\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}{\left(\mathrm{zv}+\varepsilon \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right) \cdot\left(\mathrm{zv}+\sigma \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right)} \\
& \mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\operatorname{Find}(\mathrm{zv})
\end{aligned}
$$

Define Z for the liquid (Zl) Guess: \quad zl := 0.01
Given Eq. (3.56)

$$
\mathrm{zl}=\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\left(\mathrm{zl}+\varepsilon \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right) \cdot\left(\mathrm{zl}+\sigma \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right) \cdot\left(\frac{1+\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-\mathrm{zl}}{\mathrm{q}\left(\mathrm{~T}_{\mathrm{r}}\right) \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}\right)
$$

To find liquid root, restrict search for $\mathbf{z l}$ to values less than $\mathbf{0 . 2} \mathbf{z l}<0.2$

$$
\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\operatorname{Find}(\mathrm{zl})
$$

Define I for liquid (II) and vapor (Iv)

$$
\begin{align*}
& \operatorname{Il}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\frac{1}{\sigma-\varepsilon} \cdot \ln \left(\frac{\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\sigma \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}{\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\varepsilon \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}\right) \\
& \operatorname{Iv}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\frac{1}{\sigma-\varepsilon} \cdot \ln \left(\frac{\mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\sigma \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}{\mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)+\varepsilon \cdot \beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)}\right) \tag{6.65b}
\end{align*}
$$

$$
\begin{equation*}
\ln \phi l\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-1-\ln \left(\mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right)-\mathrm{q}\left(\mathrm{~T}_{\mathrm{r}}\right) \cdot \mathrm{Il}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right) \tag{11.37}
\end{equation*}
$$

$$
\ln \phi v\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right):=\mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-1-\ln \left(\mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)-\beta\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)\right)-\mathrm{q}\left(\mathrm{~T}_{\mathrm{r}}\right) \cdot \operatorname{Iv}\left(\mathrm{T}_{\mathrm{r}}, \mathrm{P}_{\mathrm{r}}\right)
$$

$$
\text { Guess Psat: } \quad \text { Psat }_{\mathrm{r}}:=\frac{2 \mathrm{bar}}{\mathrm{P}_{\mathrm{C}}}
$$

Given

$$
\ln \phi l\left(T_{\mathrm{r}}, \text { Psat }_{\mathrm{r}}\right)=\ln \phi \mathrm{V}\left(\mathrm{~T}_{\mathrm{r}}, \text { Psat }_{\mathrm{r}}\right) \quad \text { Psat }_{\mathrm{r}}:=\operatorname{Find}\left(\text { Psat }_{\mathrm{r}}\right)
$$

$$
\text { Psat }_{\mathrm{r}}=0.018 \quad \mathrm{Zl}\left(\mathrm{~T}_{\mathrm{r}}, \text { Psat }_{\mathrm{r}}\right)=2.795 \times 10^{-3} \quad \mathrm{Zv}\left(\mathrm{~T}_{\mathrm{r}}, \text { Psat }_{\mathrm{r}}\right)=0.974
$$

$$
\mathrm{P}_{\mathrm{sat}}:=\mathrm{Psat}_{\mathrm{r}} \cdot \mathrm{P}_{\mathrm{C}} \quad \mathrm{P}_{\text {sat }}=1.09 \mathrm{bar} \quad \text { Ans. }
$$

The following table lists answers for all parts. Literature values are interpolated from tables in Perry's Chemical Engineers' Handbook, 6th ed. The last column shows the percent difference between calculated and literature values at 0.85 Tc . These range from less than 0.1 to $\mathbf{1 . 2 \%}$. For the normal boiling point (Tn), Psat should be 1.013 bar. Tabulated results for Psat agree well with this value. Differences range from near 0 to 7.6%.

	Tn (K)	Psat (bar)	0.85 Tc (K)	Psat (bar)	Psat (bar)	\% Difference
		@ Tn		@ 0.85 Tc	Lit. Values	
Acetylene	189.4	1.090	262.1	19.768	19.78	-0.1%
Argon	87.3	1.015	128.3	18.676	18.70	-0.1%
Benzene	353.2	1.019	477.9	15.457	15.52	-0.4%
n-Butane	272.7	1.016	361.3	12.084	12.07	0.1%
Carbon Monoxide	81.7	1.041	113.0	12.764	12.91	-1.2%
n-Decane	447.3	1.016	525.0	5.259	5.21	0.9%
Ethylene	169.4	1.028	240.0	17.744	17.69	0.3%
n-Heptane	371.6	1.012	459.2	7.671	7.59	1.1%
Methane	111.4	0.994	162.0	17.342	17.33	0.1%
Nitrogen	77.3	1.016	107.3	12.517	12.57	-0.4%

14.12 (a) van der Waals Eqn. $\mathrm{Tr}:=0.7$

$$
\begin{array}{lll}
\sigma:=0 & \varepsilon:=0 & \Omega:=\frac{1}{8} \quad \Psi:=\frac{27}{64} \quad \alpha(\operatorname{Tr}):=1 \\
\mathrm{q}(\mathrm{Tr}):=\frac{\Psi \cdot \alpha(\operatorname{Tr})}{\Omega \cdot \operatorname{Tr}} & \beta(\operatorname{Tr}, \operatorname{Pr}):=\frac{\Omega \cdot \operatorname{Pr}}{\operatorname{Tr}} \quad \mathrm{zv}:=0.9 \quad \text { (guess) }
\end{array}
$$

$$
\begin{equation*}
\text { Given } \quad \mathrm{zv}=1+\beta(\operatorname{Tr}, \operatorname{Pr})-\mathrm{q}(\operatorname{Tr}) \cdot \beta(\operatorname{Tr}, \operatorname{Pr}) \cdot \frac{\mathrm{zv}-\beta(\operatorname{Tr}, \operatorname{Pr})}{(\mathrm{zv})^{2}} \tag{3.52}
\end{equation*}
$$

$\mathrm{Zv}(\mathrm{Tr}, \mathrm{Pr}):=\operatorname{Find}(\mathrm{zv})$
$\mathrm{zl}:=.01 \quad$ (guess)
Given $\quad \mathrm{zl}=\beta(\operatorname{Tr}, \operatorname{Pr})+(\mathrm{zl})^{2} \cdot \frac{1+\beta(\operatorname{Tr}, \operatorname{Pr})-\mathrm{zl}}{\mathrm{q}(\operatorname{Tr}) \cdot \beta(\operatorname{Tr}, \operatorname{Pr})} \quad$ Eq. (3.56) $\quad \mathrm{zl}<0.2$
$\mathrm{Zl}(\mathrm{Tr}, \operatorname{Pr}):=\operatorname{Find}(\mathrm{zl})$
$\operatorname{Iv}(\mathrm{Tr}, \mathrm{Pr}):=\frac{\beta(\mathrm{Tr}, \mathrm{Pr})}{\mathrm{Zv}(\mathrm{Tr}, \mathrm{Pr})} \quad \mathrm{Il}(\mathrm{Tr}, \mathrm{Pr}):=\frac{\beta(\mathrm{Tr}, \mathrm{Pr})}{\mathrm{Zl}(\mathrm{Tr}, \mathrm{Pr})} \quad$ Case II, pg. 218.

By Eq. (11.39):

$$
\begin{aligned}
& \ln \phi v(\operatorname{Tr}, \operatorname{Pr}):=\mathrm{Zv}(\mathrm{Tr}, \operatorname{Pr})-1-\ln (\mathrm{Zv}(\mathrm{Tr}, \operatorname{Pr})-\beta(\operatorname{Tr}, \operatorname{Pr}))-\mathrm{q}(\operatorname{Tr}) \cdot \operatorname{Iv}(\mathrm{Tr}, \operatorname{Pr}) \\
& \ln \phi l(\operatorname{Tr}, \operatorname{Pr}):=\mathrm{Zl}(\operatorname{Tr}, \operatorname{Pr})-1-\ln (\mathrm{Zl}(\operatorname{Tr}, \operatorname{Pr})-\beta(\operatorname{Tr}, \operatorname{Pr}))-\mathrm{q}(\operatorname{Tr}) \cdot \mathrm{Il}(\operatorname{Tr}, \operatorname{Pr}) \\
& \text { Psatr := . } 1 \\
& \text { Given } \quad \ln \phi l(T r, \text { Psatr })-\ln \phi v(T r, \text { Psatr })=0 \quad \text { Psatr }:=\text { Find(Psatr }) \\
& \mathrm{Zv}(\operatorname{Tr}, \text { Psatr })=0.839 \quad \mathrm{Zl}(\operatorname{Tr}, \text { Psatr })=0.05 \quad \text { Psatr }=0.2 \\
& \ln \phi l(\operatorname{Tr}, \text { Psatr })=-0.148 \quad \ln \phi \mathrm{v}(\mathrm{Tr}, \text { Psatr })=-0.148 \quad \beta(\mathrm{Tr}, \text { Psatr })=0.036 \\
& \omega:=-1-\log (\text { Psatr }) \quad \omega=-0.302 \quad \text { Ans. }
\end{aligned}
$$

(b) Redlich/Kwong Eqn $\mathrm{Tr}:=0.7$

$$
\begin{aligned}
& \sigma:=1 \quad \varepsilon:=0 \quad \Omega:=0.08664 \quad \Psi:=0.42748 \\
& \alpha(\operatorname{Tr}):=\operatorname{Tr}^{-.5} \\
& \mathrm{q}(\operatorname{Tr}):=\frac{\Psi \cdot \alpha(\operatorname{Tr})}{\Omega \cdot \operatorname{Tr}} \quad \beta(\operatorname{Tr}, \operatorname{Pr}):=\frac{\Omega \cdot \operatorname{Pr}}{\operatorname{Tr}} \quad \text { Guess: } \quad \mathrm{zv}:=0.9
\end{aligned}
$$

Given $\mathrm{zv}=1+\beta(\operatorname{Tr}, \operatorname{Pr})-\mathrm{q}(\operatorname{Tr}) \cdot \beta(\operatorname{Tr}, \operatorname{Pr}) \cdot \frac{\mathrm{zv}-\beta(\operatorname{Tr}, \operatorname{Pr})}{\mathrm{zv} \cdot(\mathrm{zv}+\beta(\operatorname{Tr}, \operatorname{Pr}))}$ Eq. (3.52)
$\mathrm{Zv}(\mathrm{Tr}, \operatorname{Pr}):=\operatorname{Find}(\mathrm{zv})$
Guess: $\quad \mathrm{zl}:=.01$

$$
\begin{gathered}
\text { Given } \mathrm{zl}=\beta(\operatorname{Tr}, \operatorname{Pr})+\mathrm{zl} \cdot(\mathrm{zl}+\beta(\operatorname{Tr}, \operatorname{Pr})) \cdot \frac{1+\beta(\operatorname{Tr}, \operatorname{Pr})-\mathrm{zl}}{\mathrm{q}(\operatorname{Tr}) \cdot \beta(\operatorname{Tr}, \operatorname{Pr})} \text { Eq. (3.55) } \\
\mathrm{zl}<0.2 \quad \mathrm{Zl}(\operatorname{Tr}, \operatorname{Pr}):=\operatorname{Find}(\mathrm{zl}) \\
\operatorname{Iv}(\operatorname{Tr}, \operatorname{Pr}):=\ln \left(\frac{\mathrm{Zv}(\operatorname{Tr}, \operatorname{Pr})+\beta(\operatorname{Tr}, \operatorname{Pr})}{\mathrm{Zv}(\operatorname{Tr}, \operatorname{Pr})}\right) \mathrm{Il}(\operatorname{Tr}, \operatorname{Pr}):=\ln \left(\frac{\mathrm{Zl}(\operatorname{Tr}, \operatorname{Pr})+\beta(\operatorname{Tr}, \operatorname{Pr})}{\mathrm{Zl}(\operatorname{Tr}, \operatorname{Pr})}\right)
\end{gathered}
$$

By Eq. (11.39):

$$
\begin{aligned}
& \ln \phi \mathrm{v}(\mathrm{Tr}, \operatorname{Pr}):=\mathrm{Zv}(\mathrm{Tr}, \mathrm{Pr})-1-\ln (\mathrm{Zv}(\mathrm{Tr}, \operatorname{Pr})-\beta(\mathrm{Tr}, \operatorname{Pr}))-\mathrm{q}(\mathrm{Tr}) \cdot \operatorname{Iv}(\mathrm{Tr}, \operatorname{Pr}) \\
& \ln \phi l(\operatorname{Tr}, \operatorname{Pr}):=\mathrm{Zl}(\operatorname{Tr}, \operatorname{Pr})-1-\ln (\mathrm{Zl}(\operatorname{Tr}, \operatorname{Pr})-\beta(\operatorname{Tr}, \operatorname{Pr}))-\mathrm{q}(\operatorname{Tr}) \cdot \mathrm{Il}(\operatorname{Tr}, \operatorname{Pr}) \\
& \text { Psatr := . } 1 \\
& \text { Given } \quad \ln \phi l(T r, \text { Psatr })=\ln \phi v(T r, \text { Psatr }) \quad \text { Psatr : }=\text { Find(Psatr }) \\
& \mathrm{Zv}(\operatorname{Tr}, \text { Psatr })=0.913 \quad \mathrm{Zl}(\mathrm{Tr} \text {, Psatr })=0.015 \quad \text { Psatr }=0.087 \\
& \ln \phi \mathrm{v}(\mathrm{Tr}, \text { Psatr })=-0.083 \ln \phi \mathrm{l}(\mathrm{Tr}, \text { Psatr })=-0.083 \quad \beta(\mathrm{Tr}, \text { Psatr })=0.011 \\
& \omega:=-1-\log \text { (Psatr) } \quad \omega=0.058 \quad \text { Ans. }
\end{aligned}
$$

14.15
(a) $\begin{array}{llll}\mathrm{x} 1 \alpha:=0.1 & \mathrm{x} 2 \alpha:=1-\mathrm{x} 1 \alpha & \mathrm{x} 1 \beta:=0.9 & \mathrm{x} 2 \beta:=1-\mathrm{x} 1 \beta \\ & \mathrm{~A}_{12}:=2 & \mathrm{~A}_{21}:=2 & \end{array}$

Guess: $\quad \mathrm{A}_{12}:=2 \quad \mathrm{~A}_{21}:=2$
$\gamma 1 \alpha\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right):=\exp \left[\mathrm{x} 2 \alpha^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1 \alpha\right]\right]$
$\gamma 1 \beta\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right):=\exp \left[\mathrm{x} 2 \beta^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1 \beta\right]\right]$
$\gamma 2 \alpha\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right):=\exp \left[\mathrm{x} 1 \alpha^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2 \alpha\right]\right]$
$\gamma 2 \beta\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right):=\exp \left[\mathrm{x} 1 \beta^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2 \beta\right]\right]$

Given $\quad \mathrm{x} 1 \alpha \cdot \gamma 1 \alpha\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right)=\mathrm{x} 1 \beta \cdot \gamma 1 \beta\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right)$ $\mathrm{x} 2 \alpha \cdot \gamma 2 \alpha\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right)=\mathrm{x} 2 \beta \cdot \gamma 2 \beta\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right)$
$\binom{\mathrm{A}_{12}}{\mathrm{~A}_{21}}:=\operatorname{Find}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}\right) \quad \mathrm{A}_{21}=2.747 \quad \mathrm{~A}_{12}=2.747 \quad$ Ans.
$\begin{array}{lll}\text { (b) } \mathrm{x} 1 \alpha:=0.2 & \mathrm{x} 2 \alpha:=1-\mathrm{x} 1 \alpha & \mathrm{x} 1 \beta:=0.9 \quad \mathrm{x} 2 \beta:=1-\mathrm{x} 1 \beta \\ \text { Guess: } & \mathrm{A}_{12}:=2 & \mathrm{~A}_{21}:=2\end{array}$

$$
\begin{aligned}
& \gamma 1 \alpha\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right):=\exp \left[\mathrm{x} 2 \alpha^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1 \alpha\right]\right] \\
& \gamma 1 \beta\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right):=\exp \left[\mathrm{x} 2 \beta^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1 \beta\right]\right] \\
& \gamma 2 \alpha\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right):=\exp \left[\mathrm{x} 1 \alpha^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2 \alpha\right]\right] \\
& \gamma 2 \beta\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right):=\exp \left[\mathrm{x} 1 \beta^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2 \beta\right]\right]
\end{aligned}
$$

Given $\quad \mathrm{x} 1 \alpha \cdot \gamma 1 \alpha\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right)=\mathrm{x} 1 \beta \cdot \gamma 1 \beta\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right)$ $\mathrm{x} 2 \alpha \cdot \gamma 2 \alpha\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right)=\mathrm{x} 2 \beta \cdot \gamma 2 \beta\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right)$
$\binom{\mathrm{A}_{12}}{\mathrm{~A}_{21}}:=\operatorname{Find}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}\right) \quad \mathrm{A}_{12}=2.148 \quad \mathrm{~A}_{21}=2.781 \quad$ Ans.
(c) $\mathrm{x} 1 \alpha:=0.1 \quad \mathrm{x} 2 \alpha:=1-\mathrm{x} 1 \alpha \quad \mathrm{x} 1 \beta:=0.8 \quad \mathrm{x} 2 \beta:=1-\mathrm{x} 1 \beta$

Guess:

$$
\mathrm{A}_{12}:=2 \quad \mathrm{~A}_{21}:=2
$$

$$
\gamma 1 \alpha\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right):=\exp \left[\mathrm{x} 2 \alpha^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1 \alpha\right]\right]
$$

$$
\gamma 1 \beta\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right):=\exp \left[\mathrm{x} 2 \beta^{2} \cdot\left[\mathrm{~A}_{12}+2 \cdot\left(\mathrm{~A}_{21}-\mathrm{A}_{12}\right) \cdot \mathrm{x} 1 \beta\right]\right]
$$

$$
\gamma 2 \alpha\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right):=\exp \left[\mathrm{x} 1 \alpha^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2 \alpha\right]\right]
$$

$$
\gamma 2 \beta\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right):=\exp \left[\mathrm{x} 1 \beta^{2} \cdot\left[\mathrm{~A}_{21}+2 \cdot\left(\mathrm{~A}_{12}-\mathrm{A}_{21}\right) \cdot \mathrm{x} 2 \beta\right]\right]
$$

$$
\begin{array}{clll}
14.16 \text { (a) } \begin{array}{lll}
\mathrm{x} 1 \alpha:=0.1 & \mathrm{x} 2 \alpha:=1-\mathrm{x} 1 \alpha & \mathrm{x} 1 \beta:=0.9
\end{array} \quad \mathrm{x} 2 \beta:=1-\mathrm{x} 1 \beta \\
& \text { Guess: } & \mathrm{a}_{12}:=2 & \mathrm{a}_{21}:=2
\end{array}
$$

Given

$$
\begin{aligned}
& \exp \left[a_{12} \cdot\left(1+\frac{a_{12} \cdot x 1 \alpha}{a_{21} \cdot x 2 \alpha}\right)^{-2}\right] \cdot x 1 \alpha=\exp \left[a_{12} \cdot\left(1+\frac{a_{12} \cdot x 1 \beta}{a_{21} \cdot x 2 \beta}\right)^{-2}\right] \cdot x 1 \beta \\
& \exp \left[a_{21} \cdot\left(1+\frac{a_{21} \cdot x 2 \alpha}{a_{12} \cdot x 1 \alpha}\right)^{-2}\right] \cdot x 2 \alpha=\exp \left[a_{21} \cdot\left(1+\frac{a_{21} \cdot x 2 \beta}{a_{12} \cdot x 1 \beta}\right)\right.
\end{aligned}
$$

$$
\binom{a_{12}}{a_{21}}:=\operatorname{Find}\left(\mathrm{a}_{12}, \mathrm{a}_{21}\right) \quad a_{12}=2.747 \quad a_{21}=2.747 \quad \text { Ans. }
$$

$$
\text { (b) } \mathrm{x} 1 \alpha:=0.2 \quad \mathrm{x} 2 \alpha:=1-\mathrm{x} 1 \alpha \quad \mathrm{x} 1 \beta:=0.9 \quad \mathrm{x} 2 \beta:=1-\mathrm{x} 1 \beta
$$

$$
\text { Guess: } \quad a_{12}:=2 \quad a_{21}:=2
$$

$$
\begin{aligned}
& \text { Given } \quad \exp \left[a_{12} \cdot\left(1+\frac{\left.a_{12} \cdot x 1 \alpha\right)^{-2}}{a_{21} \cdot x 2 \alpha}\right)\right] \cdot x 1 \alpha=\exp \left[a_{12} \cdot\left(1+\frac{\left.a_{12} \cdot x 1 \beta\right)^{-2}}{a_{21} \cdot x 2 \beta}\right)\right] \cdot x 1 \beta \\
& \exp \left[a_{21} \cdot\left(1+\frac{\left.a_{21} \cdot x 2 \alpha\right)^{-2}}{a_{12} \cdot x 1 \alpha}\right)\right] \cdot x 2 \alpha=\exp \left[a_{21} \cdot\left(1+\frac{a_{21} \cdot x 2 \beta}{a_{12} \cdot x 1 \beta}\right)^{-2}\right] \cdot x 2 \beta \\
& \binom{\mathrm{a}_{12}}{\mathrm{a}_{21}}:=\operatorname{Find}\left(\mathrm{a}_{12}, \mathrm{a}_{21}\right) \quad \mathrm{a}_{12}=2.199 \quad \mathrm{a}_{21}=2.81 \quad \text { Ans. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Given } \quad \mathrm{x} 1 \alpha \cdot \gamma 1 \alpha\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right)=\mathrm{x} 1 \beta \cdot \gamma 1 \beta\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right) \\
& \mathrm{x} 2 \alpha \cdot \gamma 2 \alpha\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right)=\mathrm{x} 2 \beta \cdot \gamma 2 \beta\left(\mathrm{~A}_{21}, \mathrm{~A}_{12}\right) \\
& \binom{\mathrm{A}_{12}}{\mathrm{~A}_{21}}:=\operatorname{Find}\left(\mathrm{A}_{12}, \mathrm{~A}_{21}\right) \quad \mathrm{A}_{12}=2.781 \quad \mathrm{~A}_{21}=2.148 \quad \text { Ans. }
\end{aligned}
$$

(c) $\mathrm{x} 1 \alpha:=0.1 \quad \mathrm{x} 2 \alpha:=1-\mathrm{x} 1 \alpha \quad \mathrm{x} 1 \beta:=0.8 \quad \mathrm{x} 2 \beta:=1-\mathrm{x} 1 \beta$

$$
\text { Guess: } \quad a_{12}:=2 \quad a_{21}:=2
$$

14.18
(a) $\mathrm{a}:=975$

$$
\mathrm{b}:=-18.4 \quad \mathrm{c}:=-3
$$

$$
\mathrm{T}:=250 . .450 \quad \mathrm{~A}(\mathrm{~T}):=\frac{\mathrm{a}}{\mathrm{~T}}+\mathrm{b}-\mathrm{c} \cdot \ln (\mathrm{~T})
$$

Parameter $A=2$ at two temperatures. The lower one is an UCST, because A decreases to 2 as T increases. The higher one is a LCST, because \mathbf{A} decreases to $\mathbf{2}$ as T decreases.

Guess: $\quad \mathrm{x}:=0.25$
Given $\quad A(T) \cdot(1-2 \cdot x)=\ln \left(\frac{1-x}{x}\right)$
Eq. (E), Ex. 14.5

$$
x \geq 0 \quad x \leq 0.5
$$

$$
\mathrm{x} 1(\mathrm{~T}):=\operatorname{Find}(\mathrm{x})
$$

$$
\mathrm{x} 2(\mathrm{~T}):=1-\mathrm{x} 1(\mathrm{~T})
$$

$$
\begin{aligned}
& \text { Given } \left.\quad \exp \left[a_{12} \cdot\left(1+\frac{\left.a_{12} \cdot x 1 \alpha\right)^{-2}}{a_{21} \cdot x 2 \alpha}\right)\right] \cdot x 1 \alpha=\exp \left[a_{12} \cdot\left(1+\frac{a_{12} \cdot x 1 \beta}{a_{21} \cdot x 2 \beta}\right) \quad\right)^{-2}\right] \cdot x 1 \beta \\
& \exp \left[a_{21} \cdot\left(1+\frac{\left.a_{21} \cdot x 2 \alpha\right)^{-2}}{a_{12} \cdot x 1 \alpha}\right)\right] \cdot x 2 \alpha=\exp \left[a_{21} \cdot\left(1+\frac{a_{21} \cdot x 2 \beta}{a_{12} \cdot x 1 \beta}\right)^{-2}\right] \cdot x 2 \beta \\
& \left(\begin{array}{l}
a_{12} \\
\left.a_{21}\right)
\end{array}:=\operatorname{Find}\left(\mathrm{a}_{12}, \mathrm{a}_{21}\right) \quad \mathrm{a}_{12}=2.81 \quad \mathrm{a}_{21}=2.199 \quad\right. \text { Ans. }
\end{aligned}
$$

UCST := 300 (guess)
Given $\quad \mathrm{A}(\mathrm{UCST})=2 \quad$ UCST $:=\operatorname{Find}(\mathrm{UCST}) \quad$ UCST $=272.93$
LCST := $400 \quad$ (guess)
Given $\quad \mathrm{A}(\mathrm{LCST})=2 \quad$ LCST $:=\operatorname{Find}(L C S T) \quad$ LCST $=391.21$
Plot phase diagram as a function of T
T1 := 225,225.1.. UCST T2 := LCST .. 450

$\begin{array}{rlrl}\text { (b) } & \mathrm{a}:=540 & \mathrm{~b}:=-17.1 \quad \text { c }:=-3 \\ \mathrm{~T}:=250 . .450 & \mathrm{~A}(\mathrm{~T}):=\frac{\mathrm{a}}{\mathrm{T}}+\mathrm{b}-\mathrm{c} \cdot \ln (\mathrm{T})\end{array}$

Parameter $\mathbf{A}=2$ at a single temperature. It is a LCST, because A decreases to $\mathbf{2}$ as \mathbf{T} decreases.

Guess: $\quad \mathrm{x}:=0.25$
Given $\quad A(T) \cdot(1-2 \cdot x)=\ln \left(\frac{1-x}{x}\right)$
Eq. (E), Ex. 14.5
$x \geq 0 \quad x \leq 0.5 \quad x 1(T):=\operatorname{Find}(x)$
LCST := 350 (guess)
Given $\quad \mathrm{A}(\mathrm{LCST})=2 \quad$ LCST $:=$ Find(LCST) \quad LCST $=346$
Plot phase diagram as a function of $\mathbf{T} \quad \mathrm{T}:=$ LCST.. 450

(c) $\mathrm{a}:=1500$

$$
b:=-19.9 \quad \text { c : }=-3
$$

$$
\mathrm{T}:=250 . .450 \quad \mathrm{~A}(\mathrm{~T}):=\frac{\mathrm{a}}{\mathrm{~T}}+\mathrm{b}-\mathrm{c} \cdot \ln (\mathrm{~T})
$$

Parameter $\mathbf{A}=2$ at a single temperature. It is an UCST, because A decreases to $\mathbf{2}$ as \mathbf{T} increases.

Guess: $\quad \mathrm{x}:=0.25$
Given $\quad A(T) \cdot(1-2 \cdot x)=\ln \left(\frac{1-x}{x}\right) \quad$ Eq. (E), Ex. 14.5
$x \geq 0 \quad x \leq 0.5 \quad x 1(T):=\operatorname{Find}(x)$
UCST := 350 (guess)

Given $\quad \mathrm{A}(\mathrm{UCST})=2 \quad \mathrm{UCST}:=\operatorname{Find}(\mathrm{UCST}) \quad$ UCST $=339.66$
Plot phase diagram as a function of $\mathbf{T} \quad \mathrm{T}:=$ UCST .. 250

14.20 Guess: $\quad \mathrm{x} 1 \alpha:=0.5 \quad \mathrm{x} 1 \beta:=0.5$

Given \quad Write Eq. (14.74) for species 1:
$\mathrm{x} 1 \alpha \cdot \exp \left[0.4 \cdot(1-\mathrm{x} 1 \alpha)^{2}\right]=\mathrm{x} 1 \beta \cdot \exp \left[0.8 \cdot(1-\mathrm{x} 1 \beta)^{2}\right]$
$\frac{\mathrm{x} 1 \alpha}{1-\mathrm{x} 1 \alpha}+\frac{\mathrm{x} 1 \beta}{1-\mathrm{x} 1 \beta}=1 \quad$ (Material balance)
$\binom{\mathrm{x} 1 \alpha}{\mathrm{x} 1 \beta}:=\operatorname{Find}(\mathrm{x} 1 \alpha, \mathrm{x} 1 \beta) \quad \mathrm{x} 1 \alpha=0.371 \quad \mathrm{x} 1 \beta=0.291 \quad$ Ans.
14.22 Temperatures in kelvins; pressures in kPa .

$$
\begin{array}{ll}
\text { P1sat(T) }:=\exp \left(19.1478-\frac{5363.7}{\mathrm{~T}}\right) & \text { water } \\
& \\
\text { P2sat(T) }:=\exp \left(14.6511-\frac{2048.97}{\mathrm{~T}}\right) & \text { SF6 }
\end{array}
$$

Find 3-phase equilibrium temperature and vapor-phase composition (pp. 594-5 of text):

Guess: $\quad \mathrm{T}:=300$
Given $\quad \mathrm{P}=\mathrm{P} 1$ sat $(\mathrm{T})+\mathrm{P} 2 \operatorname{sat}(\mathrm{~T}) \quad$ Tstar $:=\operatorname{Find}(\mathrm{T}) \quad$ Tstar $=281.68$
y1star $:=\frac{\text { P1sat(Tstar) }}{P} \quad y 1$ star $\cdot 10^{6}=695$
Find saturation temperatures of pure species 2:
Guess: $\quad \mathrm{T}:=300$
Given $\quad \mathrm{P} 2 \operatorname{sat}(\mathrm{~T})=\mathrm{P} \quad \mathrm{T} 2:=\operatorname{Find}(\mathrm{T}) \quad \mathrm{T} 2=281.71$

TII := Tstar, Tstar +0.0001 .. T2
$\mathrm{y} 1 \mathrm{II}(\mathrm{T}):=1-\frac{\mathrm{P} 2 \mathrm{sat}(\mathrm{T})}{\mathrm{P}}$
TI $:=$ Tstar, Tstar +0.01 .. Tstar +6
$\mathrm{y} 1 \mathrm{I}(\mathrm{T}):=\frac{\mathrm{P} 1 \text { sat }(\mathrm{T})}{\mathrm{P}}$
Because of the very large difference in scales appropriate to regions I and II [Fig. 14.21(a)], the txy diagram is presented on the following page in two parts, showing regions I and II separately.

14.24 Temperatures in deg. C; pressures in $\mathbf{k P a}$

P1sat(T) $:=\exp \left(13.9320-\frac{3056.96}{T+217.625}\right) \quad$ Toluene
$P:=101.33$
P2sat(T) $:=\exp \left(16.3872-\frac{3885.70}{T+230.170}\right) \quad$ Water
Find the three-phase equilibrium T and y :
Guess: $\quad \mathrm{T}:=25$
Given $\quad \mathrm{P}=\mathrm{P} 1 \mathrm{sat}(\mathrm{T})+\mathrm{P} 2 \operatorname{sat}(\mathrm{~T}) \quad \mathrm{Tstar}:=\operatorname{Find}(\mathrm{T}) \quad$ Tstar $=84.3$
y1star $:=\frac{\text { P1sat(Tstar) }}{P} \quad y 1$ star $=0.444$
For $\mathbf{z 1}<\mathbf{y} 1^{*}$, first liquid is pure species 2.
y1 $:=0.2 \quad$ Guess: \quad Tdew $:=$ Tstar
Given $y 1=1-\frac{\text { P2sat(Tdew) }}{P} \quad$ Tdew $:=\operatorname{Find}(T d e w)$
Tdew $=93.855$ Ans.
For $\mathbf{z 1}>\mathbf{y 1}$ *, first liquid is pure species 1 .
y1 $:=0.7 \quad$ Guess: \quad Tdew $:=$ Tstar
Given $\quad \mathrm{y} 1=\frac{\text { P1sat(Tdew) }}{\mathrm{P}} \quad$ Tdew $:=$ Find(Tdew)
Tdew $=98.494 \quad$ Ans.
In both cases the bubblepoint temperature is T^{*}, and the mole fraction of the last vapor is $\mathbf{y} 1^{*}$.
14.25 Temperatures in deg. C; pressures in kPa.
$\begin{array}{ll}\text { P1sat(T) }:=\exp \left(13.8622-\frac{2910.26}{T+216.432}\right) & \text { n-heptane } \\ \\ \text { P2sat(T) }:=\exp \left(16.3872-\frac{3885.70}{T+230.170}\right) & \text { water }\end{array}$
Find the three-phase equilibrium T and y :
Guess: $\mathrm{T}:=50$
Given $\quad \mathrm{P}=\mathrm{P} 1 \mathrm{sat}(\mathrm{T})+\mathrm{P} 2 \operatorname{sat}(\mathrm{~T}) \quad$ Tstar $:=\operatorname{Find}(\mathrm{T}) \quad$ Tstar $=79.15$
y 1 star $:=\frac{\mathrm{P} 1 \text { sat(Tstar) }}{\mathrm{P}} \quad \mathrm{y} 1$ star $=0.548$
Since $0.35<y 1^{*}$, first liquid is pure species 2.
$\mathrm{y} 1(\mathrm{~T}):=1-\frac{\mathrm{P} 2 \mathrm{sat}(\mathrm{T})}{\mathrm{P}}$
Find temperature of initial condensation at $\mathbf{y} \mathbf{1 = 0 . 3 5}$:
$\mathrm{y} 1_{0}:=0.35 \quad$ Guess: \quad Tdew $:=$ Tstar
Given $\quad \mathrm{y} 1($ Tdew $)=\mathrm{y} 1_{0} \quad$ Tdew $:=$ Find(Tdew) \quad Tdew $=88.34$

Define the path of vapor mole fraction above and below the dew point.
y1path $(\mathrm{T}):=\operatorname{if}\left(\mathrm{T}>\mathrm{Tdew}, \mathrm{y} 1_{0}, \mathrm{y} 1(\mathrm{~T})\right) \quad \mathrm{T}:=100,99.9 .$. Tstar
Path of mole fraction heptane in residual vapor as temperature is decreased. No vapor exists below Tstar.

14.26 Pressures in kPa.

P1sat := 75
$\gamma 1(\mathrm{x} 1):=\exp \left[\mathrm{A} \cdot(1-\mathrm{x} 1)^{2}\right]$

P2sat $:=110 \quad$ A := 2.25
$\gamma 2(\mathrm{x} 1):=\exp \left(\mathrm{A} \cdot \mathrm{x} 1^{2}\right)$
Find the solubility limits:
Guess: $\quad \mathrm{x} 1 \alpha:=0.1$
Given $\quad A \cdot(1-2 \cdot x 1 \alpha)=\ln \left(\frac{1-\mathrm{x} 1 \alpha}{\mathrm{x} 1 \alpha}\right) \quad \mathrm{x} 1 \alpha:=\operatorname{Find}(\mathrm{x} 1 \alpha)$
$\mathrm{x} 1 \alpha=0.224 \quad \mathrm{x} 1 \beta:=1-\mathrm{x} 1 \alpha \quad \mathrm{x} 1 \beta=0.776$
Find the conditions for VLLE:
Guess: \quad Pstar $:=$ P1sat \quad y1star $:=0.5$
Given \quad Pstar $=x 1 \beta \cdot \gamma 1(x 1 \beta) \cdot$ P1sat $+(1-x 1 \alpha) \cdot \gamma 2(x 1 \alpha) \cdot P 2$ sat $\mathrm{y} 1 \mathrm{star} \cdot \mathrm{Pstar}=\mathrm{x} 1 \alpha \cdot \gamma 1(\mathrm{x} 1 \alpha) \cdot \mathrm{P} 1$ sat
$\binom{$ Pstar }{ y1star }$:=$ Find(Pstar, y1star) \quad Pstar $=160.699 \quad$ y1star $=0.405$
Calculate VLE in two-phase region.
Modified Raoult's law; vapor an ideal gas.
Guess: $\quad \mathrm{x} 1:=0.1 \quad \mathrm{P}:=50$

Given

$$
P=x 1 \cdot \gamma 1(x 1) \cdot P 1 \text { sat }+(1-x 1) \cdot \gamma 2(x 1) \cdot P 2 \text { sat }
$$

$P(x 1):=\operatorname{Find}(P) \quad y 1(x 1):=\frac{x 1 \cdot \gamma 1(x 1) \cdot P 1 \text { sat }}{P(x 1)}$
Plot the phase diagram.
Define liquid equilibrium line:

$$
\text { PL }(\mathrm{x} 1):=\text { if }(\mathrm{P}(\mathrm{x} 1)<\text { Pstar, } \mathrm{P}(\mathrm{x} 1), \text { Pstar })
$$

Define vapor equilibrium line:

$$
\mathrm{PV}(\mathrm{x} 1):=\text { if }(\mathrm{P}(\mathrm{x} 1)<\text { Pstar, } \mathrm{P}(\mathrm{x} 1), \text { Pstar })
$$

Define pressures for liquid phases above Pstar:

$$
\begin{aligned}
& \text { Pliq := Pstar .. Pstar }+10 \\
& \mathrm{x} 1:=0,0.01 . .1
\end{aligned}
$$

x1 := 0, 0.05.. 0.2

$\mathrm{x} 1=$
0
0.05
0.1
0.15
0.2

$\mathrm{PL}(\mathrm{x} 1)=$
110
133.66
147.658
155.523
159.598

$\mathrm{x} 1:=1,0.95 . .0 .8$

14.27 Temperatures in deg. C; pressures in kPa.

Water:

$$
\text { P1sat(T) }:=\exp \left(16.3872-\frac{3885.70}{\mathrm{~T}+230.170}\right)
$$

n-Pentane: $\quad \mathrm{P} 2 \operatorname{sat}(\mathrm{~T}):=\exp \left(13.7667-\frac{2451.88}{\mathrm{~T}+232.014}\right)$
n-Heptane: $\quad P 3 \operatorname{sat}(T):=\exp \left(13.8622-\frac{2910.26}{T+216.432}\right)$

$$
\mathrm{P}:=101.33 \quad \mathrm{z} 1:=0.45 \quad \text { z2 }:=0.30 \quad \text { z3 }:=1-\mathrm{z} 1-\mathrm{z} 2
$$

(a) Calculate dew point T and liquid composition assuming the hydrocarbon layer forms first:

Guess: \quad Tdew $1:=100 \quad \mathrm{x} 2 \alpha:=\mathrm{z} 2 \quad \mathrm{x} 3 \alpha:=1-\mathrm{x} 2 \alpha$
Given $\quad \mathrm{P}=\mathrm{x} 2 \alpha \cdot \mathrm{P} 2$ sat $($ Tdew 1$)+\mathrm{x} 3 \alpha \cdot \mathrm{P} 3$ sat $($ Tdew1)

$$
\mathrm{z} 3 \cdot \mathrm{P}=\mathrm{x} 3 \alpha \cdot \mathrm{P} 3 \mathrm{sat}(\mathrm{Tdew} 1)
$$

$$
x 2 \alpha+x 3 \alpha=1
$$

$\left(\begin{array}{c}\mathrm{x} 2 \alpha) \\ \mathrm{x} 3 \alpha \\ \text { Tdew } 1)\end{array}:=\operatorname{Find}(\mathrm{x} 2 \alpha, \mathrm{x} 3 \alpha\right.$, Tdew 1$)$
Tdew $1=66.602$

$$
x 3 \alpha=0.706
$$

$$
\mathrm{x} 2 \alpha=0.294
$$

Calculate dew point temperature assuming the water layer forms first:
$\mathrm{x} 1 \beta:=1 \quad$ Guess: \quad Tdew2 $:=100$
Given $\quad \mathrm{x} 1 \beta \cdot \mathrm{P} 1 \mathrm{sat}($ Tdew2 $)=\mathrm{z} 1 \cdot \mathrm{P} \quad$ Tdew2 $:=$ Find(Tdew2)
Tdew2 $=79.021$
Since Tdew2 > Tdew1, the water layer forms first
(b) Calculate the temperature at which the second layer forms:

Guess: \quad Tdew3 := $100 \quad \mathrm{x} 2 \alpha:=\mathrm{z} 2 \quad \mathrm{x} 3 \alpha:=1-\mathrm{x} 2 \alpha$

$$
\mathrm{y} 1:=\mathrm{z} 1 \quad \mathrm{y} 2:=\mathrm{z} 2 \quad \mathrm{y} 3:=\mathrm{z} 3
$$

Given $\quad \mathrm{P}=\mathrm{P} 1$ sat $($ Tdew3 $)+\mathrm{x} 2 \alpha \cdot \mathrm{P} 2$ sat $($ Tdew3 $)+\mathrm{x} 3 \alpha \cdot \mathrm{P} 3$ sat $($ Tdew3 $)$ $\mathrm{y} 1 \cdot \mathrm{P}=\mathrm{P} 1$ sat(Tdew3)
$\frac{\mathrm{y} 2}{\mathrm{y} 3}=\frac{\mathrm{z} 2}{\mathrm{z} 3} \quad \mathrm{y} 1+\mathrm{y} 2+\mathrm{y} 3=1$
$\mathrm{y} 2 \cdot \mathrm{P}=\mathrm{x} 2 \alpha \cdot \mathrm{P} 2$ sat $($ Tdew 3$) \quad \mathrm{x} 2 \alpha+\mathrm{x} 3 \alpha=1$
$\left(\begin{array}{c}\mathrm{y} 1 \\ \mathrm{y} 2 \\ \mathrm{y} 3 \\ \text { Tdew3 } \\ \mathrm{x} 2 \alpha \\ \mathrm{x} 3 \alpha\end{array}\right):=\operatorname{Find}(\mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3$, Tdew3, $\mathrm{x} 2 \alpha, \mathrm{x} 3 \alpha)$
$y 1=0.288$
$y 2=0.388$
$y 3=0.324$
Tdew3 $=68.437$
$\mathrm{x} 2 \alpha=0.1446$
$\mathrm{x} 3 \alpha=0.8554$
(c) Calculate the bubble point given the total molar composition of the two phases

$$
\begin{array}{lll}
\text { Tbubble }:=\text { Tdew3 } & \mathrm{x} 2 \alpha:=\frac{\mathrm{z} 2}{\mathrm{z} 2+\mathrm{z} 3} & \mathrm{x} 3 \alpha:=\frac{\mathrm{z} 3}{\mathrm{z} 2+\mathrm{z} 3} \\
\mathrm{x} 2 \alpha=0.545 & \mathrm{x} 3 \alpha=0.455
\end{array}
$$

Given
$\mathrm{P}=\mathrm{P} 1$ sat(Tbubble) $+\mathrm{x} 2 \alpha \cdot$ P2sat(Tbubble) $+\mathrm{x} 3 \alpha \cdot$ P3sat(Tbubble)
Tbubble := Find(Tbubble) \quad Tbubble $=48.113$
$\mathrm{y} 1:=\frac{\text { P1sat(Tbubble) }}{\mathrm{P}}$

$$
\mathrm{y} 1=0.111
$$

$\mathrm{y} 2:=\frac{\mathrm{x} 2 \alpha \cdot \mathrm{P} 2 \mathrm{sat}(\text { Tbubble) }}{\mathrm{P}}$

$$
\mathrm{y} 2=0.81
$$

$y 3:=\frac{x 3 \alpha \cdot \text { P3sat(Tbubble) }}{P}$

$$
y 3=0.078
$$

14.28 Temperatures in deg. C; pressures in kPa.

Water:

$$
\text { P1sat(T) }:=\exp \left(16.3872-\frac{3885.70}{\mathrm{~T}+230.170}\right)
$$

n-Pentane:

$$
\operatorname{P2sat}(T):=\exp \left(13.7667-\frac{2451.88}{T+232.014}\right)
$$

n-Heptane:

$$
\operatorname{P3sat}(\mathrm{T}):=\exp \left(13.8622-\frac{2910.26}{\mathrm{~T}+216.432}\right)
$$

$\mathrm{P}:=101.33 \quad \mathrm{z} 1:=0.32 \quad \mathrm{z} 2:=0.45 \quad \mathrm{z} 3:=1-\mathrm{z} 1-\mathrm{z} 2$
(a) Calculate dew point T and liquid composition assuming the hydrocarbon layer forms first:

Guess: \quad Tdew $1:=70 \quad \mathrm{x} 2 \alpha:=\mathrm{z} 2 \quad \mathrm{x} 3 \alpha:=1-\mathrm{x} 2 \alpha$
Given $P=x 2 \alpha \cdot P 2 \operatorname{sat}($ Tdew 1$)+x 3 \alpha \cdot P 3 \operatorname{sat}($ Tdew 1$)$

$$
\mathrm{z} 3 \cdot \mathrm{P}=\mathrm{x} 3 \alpha \cdot \mathrm{P} 3 \text { sat }(\text { Tdew } 1) \quad \mathrm{x} 2 \alpha+\mathrm{x} 3 \alpha=1
$$

$\left(\begin{array}{c}\mathrm{x} 2 \alpha) \\ \mathrm{x} 3 \alpha \\ \text { Tdew1 })\end{array}:=\operatorname{Find}(\mathrm{x} 2 \alpha, \mathrm{x} 3 \alpha\right.$, Tdew 1$)$

Calculate dew point temperature assuming the water layer forms first:
$\mathrm{x} 1 \beta:=1 \quad$ Guess: \quad Tdew2 $:=70$
Given $\quad \mathrm{x} 1 \beta \cdot \mathrm{P} 1 \mathrm{sat}($ Tdew2) $=\mathrm{z} 1 \cdot \mathrm{P} \quad$ Tdew2 := Find(Tdew2)

Tdew2 $=70.854$

Since Tdew1>Tdew2, a hydrocarbon layer forms first
(b) Calculate the temperature at which the second layer forms:

Guess: Tdew3 := $100 \quad \mathrm{x} 2 \alpha:=\mathrm{z} 2 \quad \mathrm{x} 3 \alpha:=1-\mathrm{x} 2 \alpha$ $\mathrm{y} 1:=\mathrm{z} 1 \quad \mathrm{y} 2:=\mathrm{z} 2 \quad \mathrm{y} 3:=\mathrm{z} 3$

Given $\quad \mathrm{P}=\mathrm{P} 1$ sat $($ Tdew3 $)+\mathrm{x} 2 \alpha \cdot \mathrm{P} 2$ sat $($ Tdew3 $)+\mathrm{x} 3 \alpha \cdot \mathrm{P} 3$ sat $($ Tdew3 $)$ $\mathrm{y} 1 \cdot \mathrm{P}=\mathrm{P} 1$ sat $\left(\right.$ Tdew3) $\quad \frac{\mathrm{y} 2}{\mathrm{y} 3}=\frac{\mathrm{z} 2}{\mathrm{z} 3} \quad \mathrm{y} 1+\mathrm{y} 2+\mathrm{y} 3=1$ $\mathrm{y} 2 \cdot \mathrm{P}=\mathrm{x} 2 \alpha \cdot \mathrm{P} 2 \mathrm{sat}($ Tdew3 $) \quad \mathrm{x} 2 \alpha+\mathrm{x} 3 \alpha=1$
$\left(\begin{array}{c}\mathrm{y} 1 \\ \mathrm{y} 2 \\ \mathrm{y} 3 \\ \text { Tdew3 } \\ \mathrm{x} 2 \alpha \\ \mathrm{x} 3 \alpha\end{array}\right):=\operatorname{Find}(\mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3$, Tdew3, $\mathrm{x} 2 \alpha, \mathrm{x} 3 \alpha)$
$y 1=0.24$
$\mathrm{y} 2=0.503$
$y 3=0.257$
Tdew3 $=64.298$
$\mathrm{x} 2 \alpha=0.2099$
$\mathrm{x} 3 \alpha=0.7901$
(c) Calculate the bubble point given the total molar composition of the two phases

$$
\begin{array}{lll}
\text { Tbubble }:=\text { Tdew3 } & \mathrm{x} 2 \alpha:=\frac{\mathrm{z} 2}{\mathrm{z} 2+\mathrm{z} 3} & \mathrm{x} 3 \alpha:=\frac{\mathrm{z} 3}{\mathrm{z} 2+\mathrm{z} 3} \\
& \mathrm{x} 2 \alpha=0.662 & \mathrm{x} 3 \alpha=0.338
\end{array}
$$

Given $\quad \mathrm{P}=\mathrm{P} 1$ sat (Tbubble) $+\mathrm{x} 2 \alpha \cdot \mathrm{P} 2$ sat (Tbubble) $+\mathrm{x} 3 \alpha \cdot \mathrm{P} 3 \mathrm{sat}($ Tbubble)
Tbubble := Find(Tbubble) \quad Tbubble $=43.939$
$\mathrm{y} 1:=\frac{\text { P1sat(Tbubble) }}{\mathrm{P}} \quad \mathrm{y} 1=0.09$
$\mathrm{y} 2:=\frac{\mathrm{x} 2 \alpha \cdot \mathrm{P} 2 \text { sat(Tbubble) }}{\mathrm{P}} \quad \mathrm{y} 2=0.861$
$y 3:=\frac{x 3 \alpha \cdot \text { P3sat(Tbubble) }}{P} \quad y 3=0.049$
$14.32 \omega:=\binom{0.302}{0.224} \quad$ Тс $:=\binom{748.4}{304.2} \quad \mathrm{~K} \quad$ Рс $:=\binom{40.51}{73.83}$ bar
P := 10bar, 20bar.. 300bar
$\mathrm{T}:=353.15 \mathrm{~K} \quad \mathrm{Tr}:=\frac{\overrightarrow{\mathrm{T}}}{\mathrm{Tc}}$

Use SRK EOS

From Table 3.1, p. 98 of text:
$\sigma:=1$
$\varepsilon:=0$
$\Omega:=0.08664$
$\Psi:=0.42748$
$\alpha:=\overline{\left[1+\left(0.480+1.574 \cdot \omega-0.176 \cdot \omega^{2}\right) \cdot\left(1-\mathrm{Tr}^{0.5}\right)\right]^{2}}$
$\mathrm{a}:=\frac{\overrightarrow{\Psi \cdot \alpha \cdot \mathrm{R}^{2} \cdot \mathrm{Tc}^{2}}}{\mathrm{Pc}}$ Eq. (14.31)
$\mathrm{b}:=\frac{\overrightarrow{\Omega \cdot \mathrm{R} \cdot \mathrm{Tc}}}{\mathrm{Pc}} \quad$ Eq. (14.32)
$a=\binom{6.842)}{0.325)} \frac{\mathrm{kgm}^{5}}{\mathrm{~s}^{2} \mathrm{~mol}^{2}}$
$\mathrm{b}=\binom{\left.1.331 \times 10^{-4}\right)}{2.968 \times 10^{-5}} \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}$
$\beta_{2}(\mathrm{P}):=\frac{\mathrm{b}_{2} \cdot \mathrm{P}}{\mathrm{R} \cdot \mathrm{T}}$
Eq. (14.33)
$\mathrm{q}_{2}:=\frac{\mathrm{a}_{2}}{\mathrm{~b}_{2} \cdot \mathrm{R} \cdot \mathrm{T}}$
Eq. (14.34)
$z_{2}:=1 \quad$ (guess)

Given
$\mathrm{z}_{2}=1+\beta_{2}(\mathrm{P})-\mathrm{q}_{2} \cdot \beta_{2}(\mathrm{P}) \cdot \frac{\mathrm{z}_{2}-\beta_{2}(\mathrm{P})}{\left(\mathrm{z}_{2}+\varepsilon \cdot \beta_{2}(\mathrm{P})\right) \cdot\left(\mathrm{z}_{2}+\sigma \cdot \beta_{2}(\mathrm{P})\right)}$
$\mathrm{Z}_{2}(\mathrm{P}):=\operatorname{Find}\left(\mathrm{z}_{2}\right)$
$\mathrm{I}_{2}(\mathrm{P}):=\ln \left(\frac{\mathrm{Z}_{2}(\mathrm{P})+\beta_{2}(\mathrm{P})}{\mathrm{Z}_{2}(\mathrm{P})}\right)$
For simplicity, let ϕ_{1} represent the infinite-dilution value of the fugacity coefficient of species 1 in solution.

Eq. (14.103): $\quad l_{12}:=0.088$

$$
\begin{aligned}
& \phi_{1}(\mathrm{P}):=\exp \left[\left[\begin{array}{l}
{\left[\begin{array}{l}
\left.\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \cdot\left(\mathrm{Z}_{2}(\mathrm{P})-1\right)-\ln \left(\mathrm{Z}_{2}(\mathrm{P})-\beta_{2}(\mathrm{P})\right)\right] \\
+-\mathrm{q}_{2} \cdot\left[2 \cdot\left(1-\mathrm{l}_{12}\right) \cdot\left(\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}\right)^{0.5}-\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}\right] \cdot \mathrm{I}_{2}(\mathrm{P})
\end{array}\right]}
\end{array}\right]\right. \\
& \text { Psat }_{1}:=0.0102 \mathrm{bar} \quad \mathrm{~V}_{1}:=124.5 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

Eqs. (14.98) and (14.99), with $\phi s a t 1=1$ and $(P-P s a t 1)=P$, combine to give:
$\mathrm{y}_{1}(\mathrm{P}):=\frac{\mathrm{Psat}_{1}}{\mathrm{P} \cdot \phi_{1}(\mathrm{P})} \cdot \exp \left(\frac{\mathrm{P} \cdot \mathrm{V}_{1}}{\mathrm{R} \cdot \mathrm{T}}\right)$

$14.33 \omega:=\binom{0.302}{0.038} \quad$ Tc $:=\binom{748.4}{126.2} \mathrm{~K} \quad$ Pc $:=\binom{40.51}{34.00}$ bar
P := 10bar, 20bar.. 300bar
$\mathrm{T}:=308.15 \mathrm{~K}(\mathrm{~K}) \quad \mathrm{Tr}:=\frac{\overrightarrow{\mathrm{T}}}{\mathrm{Tc}}$

Use SRK EOS

From Table 3.1, p. 98 of text:
$\sigma:=1$
$\varepsilon:=0$
$\Omega:=0.08664$
$\Psi:=0.42748$
$\alpha:=\overline{\left[1+\left(0.480+1.574 \cdot \omega-0.176 \cdot \omega^{2}\right) \cdot\left(1-\operatorname{Tr}^{0.5}\right)\right]^{2}}$
$\mathrm{a}:=\frac{\overrightarrow{\Psi \cdot \alpha \cdot \mathrm{R}^{2} \cdot \mathrm{Tc}^{2}}}{\mathrm{Pc}} \quad$ Eq. (14.31) $\quad \mathrm{b}:=\frac{\overrightarrow{\Omega \cdot \mathrm{R} \cdot \mathrm{Tc}}}{\mathrm{Pc}} \quad$ Eq. (14.32)
$a=\binom{7.298)}{0.067)} \mathrm{kgm}_{\mathrm{s}^{2} \mathrm{~mol}^{2}}$
$\mathrm{b}=\binom{\left.1.331 \times 10^{-4}\right)}{2.674 \times 10^{-5}}^{\frac{\mathrm{m}^{3}}{\mathrm{~mol}}}$
$\beta_{2}(\mathrm{P}):=\frac{\mathrm{b}_{2} \cdot \mathrm{P}}{\mathrm{R} \cdot \mathrm{T}}$
Eq. (14.33)
$\mathrm{q}_{2}:=\frac{\mathrm{a}_{2}}{\mathrm{~b}_{2} \cdot \mathrm{R} \cdot \mathrm{T}} \quad$ Eq. (14.34)
$\mathrm{z}_{2}:=1 \quad$ (guess)

Given
$z_{2}=1+\beta_{2}(P)-q_{2} \cdot \beta_{2}(P) \cdot \frac{z_{2}-\beta_{2}(P)}{\left(z_{2}+\varepsilon \cdot \beta_{2}(P)\right) \cdot\left(z_{2}+\sigma \cdot \beta_{2}(P)\right)}$
$\mathrm{Z}_{2}(\mathrm{P}):=\operatorname{Find}\left(\mathrm{z}_{2}\right)$
$\mathrm{I}_{2}(\mathrm{P}):=\ln \left(\frac{\mathrm{Z}_{2}(\mathrm{P})+\beta_{2}(\mathrm{P})}{\mathrm{Z}_{2}(\mathrm{P})}\right)$
Eq. (6.65b)

For simplicity, let ϕ_{1} represent the infinite-dilution value of the fugacity coefficient of species 1 in solution.
$l_{12}:=0.0 \quad$ Eq. (14.103):

$$
\begin{aligned}
& \phi_{1}(\mathrm{P}):=\exp \left[\left[\left[\begin{array}{l}
{\left[\begin{array}{l}
\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}} \cdot\left(\mathrm{Z}_{2}(\mathrm{P})-1\right)-\ln \left(\mathrm{Z}_{2}(\mathrm{P})-\beta_{2}(\mathrm{P})\right) \\
+-\mathrm{q}_{2} \cdot\left[2 \cdot\left(1-\mathrm{l}_{12}\right) \cdot\left(\frac{\mathrm{a}_{1}}{\mathrm{a}_{2}}\right)^{0.5}-\frac{\mathrm{b}_{1}}{\mathrm{~b}_{2}}\right] \cdot \mathrm{I}_{2}(\mathrm{P})
\end{array}\right]}
\end{array}\right]\right.\right. \\
& \text { Psat }_{1}:=2 \cdot 9 \cdot 10^{-4} \mathrm{bar} \quad \mathrm{~V}_{1}:=125 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}
\end{aligned}
$$

Eqs. (14.98) and (14.99), with ϕ sat1 $=1$ and $(P-P s a t 1)=P$, combine to give:
$\mathrm{y}_{1}(\mathrm{P}):=\frac{\mathrm{Psat}_{1}}{\mathrm{P} \cdot \phi_{1}(\mathrm{P})} \cdot \exp \left(\frac{\mathrm{P} \cdot \mathrm{V}_{1}}{\mathrm{R} \cdot \mathrm{T}}\right)$

Note: y axis is log scale.
14.45 A labeled diagram of the process is given below. The feed stream is taken as the α phase and the solvent stream is taken as the β phase.

Define the values given in the problem statement. Assume as a basis a feed rate $n_{F}=1 \mathrm{~mol} / \mathrm{s}$.
$\mathrm{n}_{\mathrm{F}}:=1 \frac{\mathrm{~mol}}{\mathrm{~s}}$
$\mathrm{x}_{\mathrm{F} 1}:=0.99$
$x_{F 2}:=0.01$
XS3 $:=1$
$\mathrm{x} \alpha_{2}:=0.001$
$\mathrm{x} \alpha_{1}:=1-\mathrm{x} \alpha_{2}$

Apply mole balances around the process as well as an equilibrium relationshif
From p. 585

$$
\mathrm{A}_{12}:=1.5
$$

$$
A_{23}:=-0.8
$$

$$
\gamma \alpha_{2}\left(\mathrm{x}_{2}\right):=\exp \left[\mathrm{A}_{12} \cdot\left(1-\mathrm{x}_{2}\right)^{2}\right] \quad \gamma \beta_{2}\left(\mathrm{x}_{2}\right):=\exp \left[\mathrm{A}_{23} \cdot\left(1-\mathrm{x}_{2}\right)^{2}\right]
$$

Material Balances

$$
\begin{aligned}
& n_{S}+n_{F}=n_{E}+n_{R} \\
& n_{S}=x \beta_{3} \cdot n_{E} \\
& x_{F 1} \cdot n_{F}=x \alpha_{1} \cdot n_{R}
\end{aligned} \quad \text { (Total) } \quad \text { (Species 3) }
$$

Substituting the species balances into the total balance yields

$$
\mathrm{n}_{\mathrm{S}}+\mathrm{n}_{\mathrm{F}}=\frac{1}{\mathrm{x} \beta_{3}} \cdot \mathrm{n}_{\mathrm{S}}+\frac{\mathrm{x} \mathrm{~F} 1}{\mathrm{x} \alpha_{1}} \cdot \mathrm{n}_{\mathrm{F}}
$$

Solving for the ratio of solvent to feed $\left(n_{S} / n_{F}\right)$ gives

$$
\frac{n_{S}}{n_{F}}=\left(\frac{x \alpha_{1}-x x_{F 1}}{1-x \beta_{3}}\right) \cdot\left(\frac{x \beta_{3}}{x \alpha_{1}}\right)
$$

We need $x \beta_{3}$. Assume exiting streams are at equilibrium. Here, the only distributing species is 2 . Then
$\mathrm{x} \alpha_{2} \cdot \gamma \alpha_{2}=\mathrm{x} \beta_{2} \cdot \gamma \beta_{2}$
Substituting for $\gamma \alpha_{2}$ and $\gamma \beta_{2}$
$x \alpha_{2} \cdot \exp \left[A_{12} \cdot\left(1-x \alpha_{2}\right)^{2}\right]=x \beta_{2} \cdot \exp \left[A_{23} \cdot\left(1-x \beta_{2}\right)^{2}\right]$
Solve for $\mathbf{x} \boldsymbol{\beta}_{2}$ using Mathcad Solve Block
Guess: $\quad x \beta_{2}:=0.5$
Given
$x \alpha_{2} \cdot \exp \left[A_{12} \cdot\left(1-x \alpha_{2}\right)^{2}\right]=x \beta_{2} \cdot \exp \left[A_{23} \cdot\left(1-x \beta_{2}\right)^{2}\right]$
$x \beta_{2}:=\operatorname{Find}\left(x \beta_{2}\right) \quad x \beta_{2}=0.00979 \quad x \beta_{3}:=1-x \beta_{2} \quad x \beta_{3}=0.9902$
From above, the equation for the ratio $\mathrm{nS} / \mathrm{nF}$ is:
$n S n F:=\left(\frac{x \alpha_{1}-x_{F 1}}{1-x \beta_{3}}\right) \cdot\left(\frac{x \beta_{3}}{x \alpha_{1}}\right)$
a) $\mathrm{nSnF}=0.9112 \quad$ Ans.
b) $x \beta_{2}=0.00979 \quad$ Ans.
c) "Good chemistry" here means that species 2 and 3 "like" each other, as evidenced by the negative $G^{E}{ }_{23}$. "Bad chemistry" would be reflected in a positive $G^{\mathrm{E}}{ }_{23}$, with values less than (essential) but perhaps near to $\mathbf{G}^{\mathrm{E}}{ }_{12}$.

14.461 - n-hexane

2 - water
Since this is a dilute system in both phases, Eqns. (C) and (D) from Example 14.4 on p. 584 can be used to find $\gamma_{1}{ }^{\alpha}$ and $\gamma_{2}{ }^{\beta}$.
$\mathrm{x} \alpha_{1}:=\frac{520}{10^{6}} \quad \mathrm{x} \alpha_{2}:=1-\mathrm{x} \alpha_{1} \quad \mathrm{x} \beta_{2}:=\frac{2}{10^{6}} \quad \mathrm{x} \beta_{1}:=1-\mathrm{x} \beta_{2}$

$$
\begin{array}{lll}
\gamma \alpha_{1}:=\frac{x \beta_{1}}{x \alpha_{1}} & \gamma \alpha_{1}=1.923 \times 10^{3} & \text { Ans. } \\
\gamma \beta_{2}:=\frac{1-x \alpha_{1}}{1-x \beta_{1}} & \gamma \beta_{2}=4.997 \times 10^{5} & \text { Ans. }
\end{array}
$$

14.501 - butanenitrile	Psat $_{1}:=0.07287 \mathrm{bar}$	$\mathrm{V}_{1}:=90 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$
2- benzene	Psat $_{2}:=0.29871 \mathrm{bar}$	$\mathrm{V}_{2}:=92 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}}$

$$
\mathrm{B}_{1,1}:=-7993 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \mathrm{~B}_{2,2}:=-1247 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \mathrm{~B}_{1,2}:=-2089 \frac{\mathrm{~cm}^{3}}{\mathrm{~mol}} \quad \mathrm{~B}_{2,1}:=\mathrm{B}_{1,2}
$$

$\mathrm{T}:=318.15 \mathrm{~K} \quad \mathrm{P}:=0.20941 \mathrm{bar}$	$\mathrm{x}_{1}:=0.4819$	$\mathrm{y}_{1}:=0.1813$
$\mathrm{i}:=1 . .2 \quad \mathrm{j}:=1 . .2 \quad \mathrm{k}:=1 . .2$	$\mathrm{x}_{2}:=1-\mathrm{x}_{1}$	$\mathrm{y}_{2}:=1-\mathrm{y}_{1}$

Term A is calculated using the given data.

$$
\text { term } _\mathrm{A}_{\mathrm{i}}:=\frac{\mathrm{y}_{\mathrm{i}} \cdot \mathrm{P}}{\mathrm{x}_{\mathrm{i}} \cdot \mathrm{Psat}_{\mathrm{i}}}
$$

Term B is calculated using Eqns. (14.4) and (14.5)
$\delta_{\mathrm{j}, \mathrm{i}}:=2 \cdot \mathrm{~B}_{\mathrm{j}, \mathrm{i}}-\mathrm{B}_{\mathrm{j}, \mathrm{j}}-\mathrm{B}_{\mathrm{i}, \mathrm{i}}$
фhat ${ }_{i}:=\exp \left[\frac{P}{R \cdot T} \cdot\left[B_{i, i}+\frac{1}{2} \cdot\left[\sum_{j}\left[\sum_{k}\left[y_{j} \cdot y_{k} \cdot\left(2 \delta_{j, i}-\delta_{j, k}\right)\right]\right]\right]\right]\right]$
$\phi s a t_{i}:=\exp \left(\frac{\mathrm{B}_{\mathrm{i}, \mathrm{i}} \cdot \text { Psat }_{\mathrm{i}}}{\mathrm{R} \cdot \mathrm{T}}\right) \quad$ term_ $\mathrm{B}_{\mathrm{i}}:=\frac{\text { hhat }_{\mathrm{i}}}{\phi \mathrm{sat}_{\mathrm{i}}}$
Term C is calculated using Eqn. (11.44)
fsat $_{i}:=$ bsat $_{\mathrm{i}} \cdot$ Psat $_{\mathrm{i}} \quad \mathrm{f}_{\mathrm{i}}:=$ कsat $_{\mathrm{i}} \cdot$ Psat $_{\mathrm{i}} \cdot \exp \left[\frac{\left[\mathrm{V}_{\mathrm{i}} \cdot\left(\mathrm{P}-\text { Psat }_{\mathrm{i}}\right)\right]}{\mathrm{R} \cdot \mathrm{T}}\right] \quad$ term_C $\mathrm{C}_{\mathrm{i}}:=\frac{\text { fsat }_{\mathrm{i}}}{\mathrm{f}_{\mathrm{i}}}$

$$
\text { term_A }=\binom{1.081}{1.108}
$$

$$
\text { term_B }=\binom{0.986}{1.006}
$$

Ans.
14.51 a) Equivalent to $d^{2}(\Delta G / R T) / d x_{1}{ }^{2}=0$, use $d^{2}\left(G^{E} / R T\right) / d x_{1}{ }^{2}=-1 / x_{1} x_{2}$

For $G^{E} / R T=A x_{1} \mathbf{x}_{2}=\mathbf{A}\left(\mathbf{x}_{1}-\mathbf{x}_{1}{ }^{2}\right)$
$\mathbf{d}\left(\mathbf{G}^{\mathrm{E}} / \mathrm{RT}\right) / \mathbf{d x _ { 1 }}=\mathbf{A}\left(\mathbf{1 - 2} \mathrm{x}_{1}\right)$
$d^{2}\left(G^{E} / R T\right) / d x_{1}{ }^{2}=-2 A$
Thus, $-2 A=-1 / x_{1} x_{2}$ or $2 A x_{1} x_{2}=1$.
Substituting for $x_{2}: x_{1}-x_{1}{ }^{2}=1 /(2 A)$ or $x_{1}{ }^{2}-x_{1}+1 /(2 A)=0$.
The solution to this equation yields two roots: $x_{1}=\frac{1+\sqrt{1-\frac{2}{A}}}{2}$
and

$$
\mathrm{x}_{1}=\frac{1-\sqrt{1-\frac{2}{\mathrm{~A}}}}{2}
$$

The two roots are symmetrical around $\mathrm{x}_{1}=1 / 2$
Note that for:
A<2: No real roots
$A=2$: One root, $x_{1}=1 / 3$ (consolute point)
$A>2$: Two real roots, $x_{1}>0$ and $x_{1}<1$
b) Plot the spinodal curve along with the solubility curve

From Fig. 14.15: $\quad A(T):=\frac{-540 K}{T}+21.1-3 \ln \left(\frac{T}{K}\right)$
Both curves are symmetrical around $x_{1}=1 / 2$. Create functions to represent the left and right halves of the curves.
From above, the equations for the spinodal curves are:

$$
\begin{aligned}
& \operatorname{xspr}_{1}(\mathrm{~T}):=\frac{1}{2}+\frac{1}{2} \cdot \sqrt{\frac{\mathrm{~A}(\mathrm{~T})-2}{\mathrm{~A}(\mathrm{~T})}} \quad \operatorname{xspl}_{1}(\mathrm{~T}):=\frac{1}{2}-\frac{1}{2} \cdot \sqrt{\frac{\mathrm{~A}(\mathrm{~T})-2}{\mathrm{~A}(\mathrm{~T})}} \\
& \mathrm{xr}:=0.7 \quad \mathrm{xl}:=0.3
\end{aligned}
$$

From Eq. (E) in Example 14.5, the solubility curves are solved using a Solve Block:

Given $\quad \mathrm{A}(\mathrm{T}) \cdot(1-2 \mathrm{xr})=\ln \left(\frac{1-\mathrm{xr}}{\mathrm{xr}}\right) \quad \mathrm{xr}>0.5 \quad \mathrm{xr}_{1}(\mathrm{~T}):=\operatorname{Find}(\mathrm{xr})$
Given $\quad \mathrm{A}(\mathrm{T}) \cdot(1-2 \mathrm{xl})=\ln \left(\frac{1-\mathrm{xl}}{\mathrm{xl}}\right) \quad \mathrm{xl}<0.5 \quad \mathrm{xl}_{1}(\mathrm{~T}):=\operatorname{Find}(\mathrm{xl})$
Find the temperature of the upper consolute point.
$\mathrm{T}:=300 \mathrm{~K} \quad$ Given $\quad \mathrm{A}(\mathrm{T})=2 \quad \mathrm{Tu}:=\operatorname{Find}(\mathrm{T}) \quad \mathrm{Tu}=345.998 \mathrm{~K}$
$\mathrm{T}:=250 \mathrm{~K} . .346 \mathrm{~K}$

14.54 The solution is presented for one of the systems given. The solutions for the other systems follow in the same manner.
f) 1-Carbon tetrachloride

$\omega_{1}:=0.193$	$\mathrm{~T}_{\mathrm{c} 1}:=556.4 \mathrm{~K}$	$\mathrm{P}_{\mathrm{c} 1}:=45.60 \mathrm{bar}$
$\mathrm{A}_{1}:=14.0572$	$\mathrm{~B}_{1}:=2914.23$	$\mathrm{C}_{1}:=232.148$

$$
\operatorname{Psat}_{1}(T):=\exp \left[\mathrm{A}_{1}-\frac{\mathrm{B}_{1}}{\left(\frac{\mathrm{~T}}{\mathrm{~K}}-273.15\right)+\mathrm{C}_{1}}\right] \mathrm{kPa}
$$

2 - n-heptane

$\omega_{2}:=0.350$	$\mathrm{~T}_{\mathrm{c} 2}:=540.2 \mathrm{~K}$	$\mathrm{P}_{\mathrm{c} 2}:=27.40 \mathrm{bar}$
$\mathrm{A}_{2}:=13.8622$	$\mathrm{~B}_{2}:=2910.26$	$\mathrm{C}_{2}:=216.432$

$\operatorname{Psat}_{2}(T):=\exp \left[\mathrm{A}_{2}-\frac{\mathrm{B}_{2}}{\left(\frac{\mathrm{~T}}{\mathrm{~K}}-273.15\right)+\mathrm{C}_{2}}\right] \mathrm{kPa}$
$\mathrm{T}:=(100+273.15) \mathrm{K}$
$\mathrm{T}_{\mathrm{r} 1}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{c} 1}} \quad \mathrm{~T}_{\mathrm{r} 1}=0.671 \quad$ Psat1 $\mathrm{r}_{\mathrm{r}}:=\frac{\text { Psat }_{1}(\mathrm{~T})}{\mathrm{P}_{\mathrm{c} 1}} \quad$ Psat1 $\mathrm{r}_{\mathrm{r}}=0.043$
$\mathrm{T}_{\mathrm{r} 2}:=\frac{\mathrm{T}}{\mathrm{T}_{\mathrm{C} 2}} \quad \mathrm{~T}_{\mathrm{r} 2}=0.691 \quad$ Psat2 $\mathrm{r}_{\mathrm{r}}:=\frac{\text { Psat }_{2}(\mathrm{~T})}{\mathrm{P}_{\mathrm{C} 2}} \quad$ Psat2 ${ }_{\mathrm{r}}=0.039$

Using Wilson's equation

$$
\Lambda_{12}:=1.5410 \quad \Lambda_{21}:=0.5197
$$

$$
\gamma_{1}\left(\mathrm{x}_{1}\right):=\exp \left[\begin{array}{l}
-\ln \left[\mathrm{x}_{1}+\left(1-\mathrm{x}_{1}\right) \cdot \Lambda_{12}\right] \ldots \\
+\left(1-\mathrm{x}_{1}\right) \cdot\left[\frac{\Lambda_{12}}{\mathrm{x}_{1}+\left(1-\mathrm{x}_{1}\right) \cdot \Lambda_{12}}-\frac{\Lambda_{21}}{\left(1-\mathrm{x}_{1}\right)+\mathrm{x}_{1} \cdot \Lambda_{21}}\right]
\end{array}\right]
$$

$$
\gamma_{2}\left(\mathrm{x}_{1}\right):=\exp \left[\begin{array}{l}
-\ln \left[\left(1-\mathrm{x}_{1}\right)+\mathrm{x}_{1} \cdot \Lambda_{21}\right] \ldots \\
+\left(-\mathrm{x}_{1}\right) \cdot\left[\frac{\Lambda_{12}}{\mathrm{x}_{1}+\left(1-\mathrm{x}_{1}\right) \cdot \Lambda_{12}}-\frac{\Lambda_{21}}{\left(1-\mathrm{x}_{1}\right)+\mathrm{x}_{1} \cdot \Lambda_{21}}\right]
\end{array}\right]
$$

For part i, use the modified Raoult's Law. Define the pressure and vapor mole fraction y_{1} as functions of the liquid mole fraction, x_{1}.
$\operatorname{Pi}\left(\mathrm{x}_{1}\right):=\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{1}(\mathrm{~T})+\left(1-\mathrm{x}_{1}\right) \cdot \gamma_{2}\left(\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{2}(\mathrm{~T})$
$\mathrm{yi}_{1}\left(\mathrm{x}_{1}\right):=\frac{\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{1}(\mathrm{~T})}{\operatorname{Pi}\left(\mathrm{x}_{1}\right)} \quad$ Modified Raoult's Law: Eqn. (10.5)

For part ii, assume the vapor phase is an ideal solution. Use Eqn. (11.68) and the PHIB function to calculate ϕ hat and ϕ sat.
$\phi s a t_{1}:=\operatorname{PHIB}\left(\mathrm{T}_{\mathrm{r} 1}\right.$, Psat $\left._{\mathrm{r}}, \omega_{1}\right) \quad \phi$ sat $_{1}=0.946$
$\phi \operatorname{hat}_{1}(\mathrm{P}):=\operatorname{PHIB}\left(\mathrm{T}_{\mathrm{r} 1}, \frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c} 1}}, \omega_{1}\right) \quad \phi_{1}(\mathrm{P}):=\frac{\text { hat }_{1}(\mathrm{P})}{\text { ¢sat }_{1}}$
$\phi s a t_{2}:=\operatorname{PHIB}\left(\mathrm{T}_{\mathrm{r} 2}\right.$, Psat2 $\left._{\mathrm{r}}, \omega_{2}\right) \quad \phi \mathrm{sat}_{2}=0.95$
$\phi \operatorname{hat}_{2}(\mathrm{P}):=\operatorname{PHIB}\left(\mathrm{T}_{\mathrm{r} 2}, \frac{\mathrm{P}}{\mathrm{P}_{\mathrm{c} 2}}, \omega_{2}\right) \quad \phi_{2}(\mathrm{P}):=\frac{\text { hat }_{2}(\mathrm{P})}{\phi \mathrm{sat}_{2}}$
Solve Eqn. (14.1) for y_{1} and P given x_{1}.
Guess: $\quad \mathrm{y}_{1}:=0.5 \quad \mathrm{P}:=1 \mathrm{bar}$
Given
$\mathrm{y}_{1} \cdot \phi_{1}(\mathrm{P}) \cdot \mathrm{P}=\mathrm{x}_{1} \cdot \gamma_{1}\left(\mathrm{x}_{1}\right) \cdot \operatorname{Psat}_{1}(\mathrm{~T})$
Eqn. (14.1)
$\left(1-y_{1}\right) \cdot \phi_{2}(P) \cdot P=\left(1-x_{1}\right) \cdot \gamma_{2}\left(x_{1}\right) \cdot \operatorname{Psat}_{2}(T)$
fii $\left(\mathrm{x}_{1}\right):=\operatorname{Find}\left(\mathrm{P}, \mathrm{y}_{1}\right)$
fii is a vector containing the values of P and y_{1}. Extract the pressure, P and vapor mole fraction, $\mathbf{y 1}$ as functions of the liquid mole fraction.
$\operatorname{Pii}\left(\mathrm{x}_{1}\right):=\operatorname{fii}\left(\mathrm{x}_{1}\right)_{0} \quad$ yii ${ }_{1}\left(\mathrm{x}_{1}\right):=\mathrm{fii}\left(\mathrm{x}_{1}\right)_{1}$

Plot the results in Mathcad

$$
\mathrm{x}_{1}:=0,0.1 . .1 .0
$$

Chapter 15 - Section A - Mathcad Solutions

15.1 Initial state: Liquid water at 70 degF.

$$
\mathrm{H}_{1}:=38.05 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{~S}_{1}:=0.0745 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \quad \text { (Table F.3) }
$$

Final state: Ice at 32 degF.

$$
\begin{array}{ll}
\mathrm{H}_{2}:=(-0.02-143.3) \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{~S}_{2}:=\left(0.0-\frac{143.3}{491.67}\right) \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \\
\mathrm{T}_{\sigma}:=(70+459.67) \cdot \text { rankine } &
\end{array}
$$

(a)

Point A: sat. vapor at 32 degF.
Point C: sat. liquid at 70 degF. $P=85.79(p s i a)$.
Point D: Mix of sat. liq. \& sat. vapor at 32 degF with the enthalpy of Point C.
Point B: Superheated vapor at 85.79 (psia) and the entropy of Point A.
Data for Points A, C, \& D from Table 9.1. Data for Point B from Fig. G.2.
$\mathrm{W}_{\text {ideal }}:=\mathrm{H}_{2}-\mathrm{H}_{1}-\mathrm{T}_{\sigma} \cdot\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right.$
$\mathrm{W}_{\text {ideal }}=12.466 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \operatorname{mdot}:=1 \cdot \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}}$
Wdotideal $:=$ mdot $\cdot \mathrm{W}_{\text {ideal }}$
Wdot $_{\text {ideal }}=13.15 \mathrm{~kW}$
Ans.
(b) For the Carnot heat pump, heat equal to the enthalpy change of the water is extracted from a cold reservoir at 32 degF, with heat rejection to the surroundings at 70 degF .
$\mathrm{T}_{\mathrm{C}}:=491.67 \cdot$ rankine $\quad \mathrm{T}_{\mathrm{H}}:=\mathrm{T}_{\sigma} \quad \mathrm{Q}_{\mathrm{C}}:=\mathrm{H}_{2}-\mathrm{H}_{1} \quad \mathrm{Q}_{\mathrm{C}}=-181.37 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
Work $:=\left|\mathrm{Q}_{\mathrm{C}}\right| \cdot\left(\frac{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{C}}}\right)$
Work $=14.018 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$

Wdot := mdot•Work
$\mathrm{Wdot}=14.79 \mathrm{~kW} \quad$ Ans.
$\eta_{\mathrm{t}}:=\frac{\text { Wdot }_{\text {ideal }}}{\mathrm{Wdot}}$
$\eta_{t}=0.889 \quad$ Ans.

The only irreversibility is the transfer of heat from the water as it cools from 70 to 32 degF to the cold reservoir of the Carnot heat pump at 70 degF.
(c) Conventional refrigeration cycle under ideal conditions of operation: Isentropic compression, infinite flow rate of cooling water, \& minimum temp. difference for heat transfer $=0$.
For sat. liquid and vapor at 32 degF , by interpolation in the table:

$$
\mathrm{H}_{\mathrm{A}}:=107.60 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{S}_{\mathrm{A}}:=0.2223 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

For sat. liquid at 70 degF:

$$
\mathrm{H}_{\mathrm{C}}:=34.58 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \quad \mathrm{H}_{\mathrm{D}}:=\mathrm{H}_{\mathrm{C}}
$$

For superheated vapor at $\mathbf{8 5 . 7 9}(\mathrm{psia})$ and $S=0.2223$:

$$
\mathrm{H}_{\mathrm{B}}:=114 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

Refrigerent circulation rate:
$\operatorname{mdot}:=\frac{-\left(\mathrm{H}_{2}-\mathrm{H}_{1} \cdot 1 \cdot \frac{\mathrm{l} \mathrm{b}_{\mathrm{m}}}{\mathrm{sec}}\right.}{\mathrm{H}_{\mathrm{A}}-\mathrm{H}_{\mathrm{D}}}$
$\operatorname{mdot}=2.484 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}}$
$W \operatorname{dot}:=\operatorname{mdot} \cdot()_{\mathrm{B}}-\mathrm{H}_{\mathrm{A}}$
$\mathrm{Wdot}=16.77 \mathrm{~kW}$
Ans.
$\eta_{t}:=\frac{\text { Wdot }_{\text {ideal }}}{W \operatorname{dot}}$
$\eta_{t}=0.784$
Ans.

The irreversibilities are in the throttling process and in heat transfer in both the condenser and evaporator, where there are finite temperature differences.
(d) Practical cycle. $\quad \eta:=0.75$

Point A: Sat. vapor at 24 degF.
Point B: Superheated vapor at $134.75($ psia).
Point D: Mix of sat. liq. and sat. vapor at $24 \operatorname{deg} F$ with H of point C,
Point C: Sat. Liquid at 98 degF.
(Note that minimum temp. diff. is not at end of condenser, but it is not practical to base design on 8-degF temp. diff. at pinch. See sketch.)

For sat. liquid and vapor at 24 degF:

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{liq}}:=19.58 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \\
& \mathrm{~S}_{\mathrm{liq}}:=0.0433 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{\text {vap }}:=106.48 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{H}_{\mathrm{A}}:=\mathrm{H}_{\text {vap }} \\
& \mathrm{S}_{\text {vap }}:=0.2229 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \quad \mathrm{S}_{\mathrm{A}}:=\mathrm{S}_{\text {vap }}
\end{aligned}
$$

For sat. liquid at $98 \mathrm{degF}, \mathrm{P}=134.75$ (psia):

$$
\mathrm{H}_{\mathrm{C}}:=44.24 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{S}_{\mathrm{C}}:=0.0902 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

For isentropic compression, the entropy of Point B is 0.2229 at $\mathbf{P}=134.75$ (psia). From Fig. G.2,

$$
\begin{array}{ll}
\mathrm{H}_{\mathrm{B}}^{\prime}:=118 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{H}_{\mathrm{B}}:=\mathrm{H}_{\mathrm{A}}+\frac{\mathrm{H}_{\mathrm{B}}-\mathrm{H}_{\mathrm{A}}}{\eta} \\
\mathrm{H}_{\mathrm{B}}=121.84 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \begin{array}{l}
\text { The entropy at this } \mathrm{H} \text { is } \\
\text { read from Fig. G. } 2 \text { at } \\
\mathbf{P}=134.75(\text { psia) }
\end{array}
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{S}_{\mathrm{B}}:=0.228 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \quad \mathrm{H}_{\mathrm{D}}:=\mathrm{H}_{\mathrm{C}} & \mathrm{x}_{\mathrm{D}}:=\frac{\mathrm{H}_{\mathrm{D}}-\mathrm{H}_{\mathrm{liq}}}{\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}} \quad \mathrm{x}_{\mathrm{D}}=0.284 \\
\mathrm{~S}_{\mathrm{D}}:=\mathrm{S}_{\mathrm{liq}}+\mathrm{x}_{\mathrm{D}} \cdot\left(\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}\right. & \mathrm{S}_{\mathrm{D}}=0.094 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
\end{array}
$$

Refrigerent circulation rate:

$\operatorname{mdot}:=\frac{-()_{2}-\mathrm{H}_{1} \cdot 1 \cdot \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}}}{\mathrm{H}_{\mathrm{A}}-\mathrm{H}_{\mathrm{D}}} \quad \quad \operatorname{mdot}=2.914 \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}}$
Wdot $:=\operatorname{mdot} \cdot()_{\mathrm{B}}-\mathrm{H}_{\mathrm{A}}$
$\mathrm{Wdot}=47.22 \mathrm{~kW} \quad$ Ans.
$\eta_{\mathrm{t}}:=\frac{\mathrm{Wdot}_{\text {ideal }}}{\mathrm{Wdot}}$
$\eta_{t}=0.279 \quad$ Ans.

THERMODYNAMIC ANALYSIS
$\mathrm{T}_{\sigma}:=(70+459.67) \cdot$ rankine
$\mathrm{Wdot}_{\text {lost.compressor }}:=\operatorname{mdot} \cdot \mathrm{T}_{\sigma} \cdot\left(\mathrm{S}_{\mathrm{B}}-\mathrm{S}_{\mathrm{A}}\right.$

Qdot ${ }_{\text {condenser }}:=\operatorname{mdot} \cdot() \mathrm{H}_{\mathrm{C}}-\mathrm{H}_{\mathrm{B}}$
Wdot ${ }_{\text {lost.condenser }}:=\operatorname{mdot} \cdot \mathrm{T}_{\sigma} \cdot\left(\mathrm{S}_{\mathrm{C}}-\mathrm{S}_{\mathrm{B}}-\mathrm{Qdot}_{\text {condenser }}\right.$
$\mathrm{Wdot}_{\text {lost.throttle }}:=\mathrm{mdot} \cdot \mathrm{T}_{\sigma} \cdot\left(\mathrm{S}_{\mathrm{D}}-\mathrm{S}_{\mathrm{C}}\right.$
Wdotlost.evaporator $:=\mathrm{T}_{\sigma} \cdot\left[\begin{array}{l}\operatorname{mdot} \cdot\left(\mathrm{S}_{\mathrm{A}}-\mathrm{S}_{\mathrm{D}} \quad \ldots\right. \\ +1 \cdot \frac{\mathrm{lb}_{\mathrm{m}}}{\mathrm{sec}} \cdot\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right.\end{array}\right]$

Wdot $_{\text {ideal }}=13.152 \mathrm{~kW}$	$\mathbf{2 7 . 8 5 \%}$
Wdot $_{\text {lost.compressor }}=8.305 \mathrm{~kW}$	$\mathbf{1 7 . 5 9 \%}$
Wdot $_{\text {lost.condenser }}=14.178 \mathrm{~kW}$	$\mathbf{3 0 . 0 2 \%}$
Wdot $_{\text {lost.throttle }}=6.621 \mathrm{~kW}$	$\mathbf{1 4 . 0 2 \%}$
Wdot $_{\text {lost.evaporator }}=4.968 \mathrm{~kW}$	$\mathbf{1 0 . 5 2 \%}$

The percent values above express each quantity as a percentage of the actual work, to which the quantities sum.

15.2 Assume ideal gases. Data from Table C. 4

$$
\Delta \mathrm{H}_{298}:=-282984 \cdot \mathrm{~J}
$$

$$
\Delta \mathrm{S}_{298}:=\frac{\Delta \mathrm{H}_{298}-\Delta \mathrm{G}_{298}}{298.15 \cdot \mathrm{~K}}
$$

$$
\Delta \mathrm{G}_{298}:=-257190 \cdot \mathrm{~J}
$$

$$
\Delta \mathrm{S}_{298}=-86.513 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

BASIS: 1 mol CO and $1 / 2 \mathrm{~mol} \mathrm{O} \mathbf{O}$ entering with accompanying $\mathrm{N} 2=(1 / 2)(79 / 21)=1.881 \mathrm{~mol}$

$$
\mathrm{n}_{\mathrm{CO}}:=1 \cdot \mathrm{~mol} \quad \mathrm{n}_{\mathrm{air}}:=2.381 \cdot \mathrm{~mol} \quad \mathrm{n}_{\mathrm{CO} 2}:=1 \cdot \mathrm{~mol} \quad \mathrm{n}_{\mathrm{N} 2}:=1.881 \cdot \mathrm{~mol}
$$

(a) Isothermal process at 298.15 K :

Since the enthalpy change of mixing for ideal gases is zero, the overall enthalpy change for the process is

$\Delta \mathrm{H}:=\Delta \mathrm{H}_{298}$	For unmixing the air, define
$\mathrm{y}_{1}:=\frac{\mathrm{n}_{\mathrm{N} 2}}{\mathrm{n}_{\text {air }}}$	$\mathrm{y}_{1}=0.79 \quad \mathrm{y}_{2}:=1-\mathrm{y}_{1}$

By Eq. (12.35) with no minus sign:

$$
\begin{aligned}
& \Delta \mathrm{S}_{\text {unmixing }}:=\mathrm{n}_{\text {air }} \cdot \mathrm{R} \cdot\left(\mathrm{~S}_{1} \cdot \ln ()_{1}+\mathrm{y}_{2} \cdot \ln ()_{2}\right. \\
& \Delta \mathrm{S}_{\text {unmixing }}=-10.174 \frac{\mathrm{~J}}{\mathrm{~K}}
\end{aligned}
$$

For mixing the products of reaction, define

$$
\begin{array}{ll}
\mathrm{y}_{1}:=\frac{\mathrm{n}_{\mathrm{CO} 2}}{\mathrm{n}_{\mathrm{N} 2}+\mathrm{n}_{\mathrm{CO} 2}} \quad \mathrm{y}_{1}=0.347 & \mathrm{y}_{2}:=1-\mathrm{y}_{1} \\
\Delta \mathrm{~S}_{\text {mixing }}:=-\left(\mathrm{n}_{\mathrm{CO} 2}+\mathrm{n}_{\mathrm{N} 2} \cdot \mathrm{R} \cdot()_{1} \cdot \ln ()_{1}+\mathrm{y}_{2} \cdot \ln ()_{2} \quad \Delta \mathrm{~S}_{\text {mixing }}=15.465 \frac{\mathrm{~J}}{\mathrm{~K}}\right. \\
\Delta \mathrm{S}:=\Delta \mathrm{S}_{\mathrm{unmixing}}+\Delta \mathrm{S}_{298}+\mathrm{S}_{\text {mixing }} & \Delta \mathrm{S}=-81.223 \frac{\mathrm{~J}}{\mathrm{~K}} \\
\mathrm{~T}_{\sigma}:=300 \cdot \mathrm{~K} \quad \mathrm{~W}_{\text {ideal }}:=\Delta \mathrm{H}-\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S} & \mathrm{~W}_{\text {ideal }}=-259 \mathrm{~kJ} \quad \text { Ans. }
\end{array}
$$

(b) Adiabatic combustion:

Heat-capacity data for the product gases from Table C.1:
$\mathrm{A}:=\frac{\mathrm{n}_{\mathrm{CO} 2} \cdot 5.457+\mathrm{n}_{\mathrm{N} 2} \cdot 3.280}{\mathrm{~mol}}$

$$
\mathrm{A}=11.627
$$

$\mathrm{B}:=\frac{\mathrm{n}_{\mathrm{CO} 2} \cdot 1.045+\mathrm{n}_{\mathrm{N} 2} \cdot 0.593}{\mathrm{~mol}} \cdot 10^{-3}$
$B=2.16 \times 10^{-3}$
$\mathrm{D}:=\frac{\mathrm{n}_{\mathrm{CO} 2} \cdot-1.157+\mathrm{n}_{\mathrm{N} 2} \cdot 0.040}{\mathrm{~mol}} \cdot 10^{5}$
$D=-1.082 \times 10^{5}$

For the products,

$$
\Delta \mathrm{H}_{\mathrm{P}}=\mathrm{R} \cdot \int_{\mathrm{T}_{0}}^{\mathrm{T}} \frac{\mathrm{C}_{\mathrm{P}}}{\mathrm{R}} \mathrm{dT} \quad \mathrm{~T}_{0}:=298.15 \cdot \mathrm{~K}
$$

The integral is given by Eq. (4.7). Moreover, by an energy balance, $\Delta \mathrm{H}_{298}+\Delta \mathrm{H}_{\mathrm{P}}=0$
Guess $\quad \tau:=2 \quad \mathrm{~A}:=11.627 \quad \mathrm{~B}:=\frac{2.160 \cdot 10^{-3}}{\mathrm{~K}} \quad \mathrm{D}:=-1.082 \cdot 10^{5} \cdot \mathrm{~K}^{2}$
Given
$\Delta \mathrm{H}_{298}=-\mathrm{R} \cdot \mathrm{mol} \cdot\left[\mathrm{A} \cdot \mathrm{T}_{0} \cdot()-1+\frac{\mathrm{B}}{2} \cdot(\mathrm{f}) \Gamma_{0}{ }^{2} \cdot()^{2}-1+\frac{\mathrm{D}}{\mathrm{T}_{0}} \cdot\left(\frac{\tau-1}{\tau}\right)\right]$
$\tau:=\operatorname{Find}(t$
$\tau=8.796$
$\mathrm{T}:=\mathrm{T}_{0} \cdot \tau$
$\mathrm{T}=2622.603 \mathrm{~K}$

For the cooling process from this temperature to the final temperature of 298.15 K , the entropy change is calculated by
$\operatorname{ICPS}\left(2622.6,298.15,11.627,2.160 \cdot 10^{-3}, 0.0,-1.082 \cdot 10^{5}=-29.701\right.$
ICPS $:=-29.701 \quad \Delta \mathrm{~S}:=\mathrm{R} \cdot \mathrm{mol} \cdot \mathrm{ICPS} \quad \Delta \mathrm{S}=-246.934 \frac{\mathrm{~J}}{\mathrm{~K}}$
$\Delta \mathrm{H}:=\Delta \mathrm{H}_{298} \quad \mathrm{~W}_{\text {ideal.cooling }}:=\Delta \mathrm{H}-\mathrm{T}_{\sigma} \cdot \Delta \mathrm{S}$
$\Delta \mathrm{H}=-2.83 \times 10^{5} \mathrm{~J} \quad \mathrm{~W}_{\text {ideal.cooling }}=-208904 \mathrm{~J} \quad$ Ans.
$\eta_{\mathrm{t}}:=\frac{\mathrm{W}_{\text {ideal.cooling }}}{\mathrm{W}_{\text {ideal }}} \quad \eta_{\mathrm{t}}=0.8078 \quad$ Ans.

The surroundings increase in entropy in the amount:
$\mathrm{Q}_{\sigma}:=-() \mathrm{UH}_{298}-\mathrm{W}_{\text {ideal.cooling }} \quad \Delta \mathrm{S}_{\sigma}:=\frac{\mathrm{Q}_{\sigma}}{\mathrm{T}_{\sigma}}$
$\Delta \mathrm{S}_{\sigma}=246.93 \frac{\mathrm{~J}}{\mathrm{~K}}$

The irreversibility is in the combustion reaction. Ans.
15.3

For the sat. steam at 2700 kPa , Table F.2:

$$
\mathrm{H}_{1}:=2801.7 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{1}:=6.2244 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

For the sat. steam at 275 kPa, Table F.2:

$$
\mathrm{H}_{2}:=2720.7 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{~S}_{2}:=7.0201 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

For sat. liquid and vapor at 1000 kPa, Table F.2:

$$
\begin{array}{ll}
\mathrm{H}_{\mathrm{liq}}:=762.6 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~S}_{\mathrm{liq}}:=2.1382 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\mathrm{H}_{\text {vap }}:=2776.2 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~S}_{\text {vap }}:=6.5828 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array} \quad \mathrm{~T}_{\mathrm{sat}}:=453.03 \mathrm{~K}
$$

(a) Assume no heat losses, no shaft work, and negligible changes in kinetic and potential energy. Then by Eqs. (2.30) and (5.22) for a completely reversible process:

$$
\Delta_{\mathrm{fs}}(\mathrm{H} \cdot \mathrm{mdot})=0 \quad \Delta_{\mathrm{fs}}(\mathrm{~S} \cdot \mathrm{mdot})=0
$$

We can also write a material balance, a quantity requirement, and relation between H 3 and S 3 which assumes wet steam at point 3 .
The five equations (in 5 unknowns) are as follows:
Guesses: $\operatorname{mdot}_{1}:=0.1 \cdot \frac{\mathrm{~kg}}{\mathrm{~s}} \quad \operatorname{mdot}_{2}:=\operatorname{mdot}_{1} \quad \operatorname{mdot}_{3}:=\operatorname{mdot}_{1}+\operatorname{mdot}_{2}$

$$
\mathrm{H}_{3}:=\frac{\mathrm{H}_{1}+\mathrm{H}_{2}}{2} \quad \mathrm{~S}_{3}:=\mathrm{S}_{\mathrm{liq}}+\frac{\mathrm{H}_{3}-\mathrm{H}_{\mathrm{liq}}}{\mathrm{~T}_{\mathrm{sat}}}
$$

Given
$\mathrm{H}_{3} \cdot \mathrm{mdot}_{3}-\mathrm{H}_{1} \cdot \mathrm{mdot}_{1}-\mathrm{H}_{2} \cdot \mathrm{mdot}_{2}=0 \frac{\mathrm{~kJ}}{\mathrm{~s}}$
$\mathrm{S}_{3} \cdot \mathrm{mdot}_{3}-\mathrm{S}_{1} \cdot \mathrm{mdot}_{1}-\mathrm{S}_{2} \cdot \mathrm{mdot}_{2}=0 \frac{\mathrm{~kJ}}{\mathrm{~s} \cdot \mathrm{~K}}$
$\operatorname{mdot}_{3}=\operatorname{mdot}_{1}+$ mdot $_{2}$
$\left(\mathrm{H}_{3}-\mathrm{H}_{\mathrm{liq}} \cdot\right.$ mot $_{3}=300 \frac{\mathrm{~kJ}}{\mathrm{~s}}$
$\mathrm{S}_{3}=\mathrm{S}_{\mathrm{liq}}+\frac{\mathrm{H}_{3}-\mathrm{H}_{\mathrm{liq}}}{\mathrm{T}_{\mathrm{sat}}}$
$\left(\begin{array}{c}\left.\operatorname{mdot}_{1}\right) \\ \operatorname{mdot}_{2} \\ \operatorname{mdot}_{3} \\ \mathrm{H}_{3} \\ \mathrm{~S}_{3}\end{array}\right):=\operatorname{Find}\left(\right.$ modot $_{1}, \operatorname{mdot}_{2}, \operatorname{mdot}_{3}, \mathrm{H}_{3}, \mathrm{~S}_{3}$

$$
\begin{array}{lll}
\operatorname{mdot}_{1}=0.086 \frac{\mathrm{~kg}}{\mathrm{~s}} & \operatorname{mdot}_{2}=0.064 \frac{\mathrm{~kg}}{\mathrm{~s}} & \operatorname{mdot}_{3}=0.15 \frac{\mathrm{~kg}}{\mathrm{~s}} \\
\mathrm{H}_{3}=2.767 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~S}_{3}=6.563 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} & \text { Ans. }
\end{array}
$$

Steam at Point 3 is indeed wet.
(b) Turbine: Constant-S expansion of steam from Point 1 to 1000 kPa results in wet steam of quality

$$
\begin{array}{ll}
\mathrm{x}_{\text {turb }}:=\frac{\mathrm{S}_{1}-\mathrm{S}_{\mathrm{liq}}}{\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}} & \mathrm{H}_{\text {turb }}^{\prime}:=\mathrm{H}_{\mathrm{liq}}+\mathrm{x}_{\text {turb }}^{\prime} \cdot\left(\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}\right. \\
\mathrm{x}_{\text {turb }}^{\prime}=0.919 & \mathrm{H}_{\text {turb }}^{\prime}=2.614 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\eta_{\text {turb }}:=0.78 & \mathrm{H}_{\text {turb }}:=\mathrm{H}_{1}+\eta_{\text {turb }} \cdot\left(\mathrm{H}_{\text {turb }}^{\prime}-\mathrm{H}_{1}\right. \\
\mathrm{H}_{\text {turb }}=2.655 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
\mathrm{x}_{\text {turb }}:=\frac{\mathrm{H}_{\text {turb }}-\mathrm{H}_{\text {liq }}}{\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\text {liq }}} & \mathrm{S}_{\text {turb }}:=\mathrm{S}_{\text {liq }}+\mathrm{x}_{\text {turb }} \cdot\left(\mathrm{S}_{\mathrm{vap}}-\mathrm{S}_{\text {liq }}\right. \\
\mathrm{x}_{\text {turb }}=0.94 & \mathrm{~S}_{\text {turb }}=6.316 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

Compressor: Constant-S compression of steam from Point 2 to 1000 kPa results in superheated steam. Interpolation in Table F. 2 yields

$$
\begin{array}{ll}
\mathrm{H}_{\text {comp }}^{\prime}:=2993.5 \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \eta_{\text {comp }}:=0.75 \\
\mathrm{H}_{\text {comp }}:=\mathrm{H}_{2}+\left(\frac{\mathrm{H}_{\mathrm{comp}}^{\prime}-\mathrm{H}_{2}}{\eta_{\text {comp }}}\right) & \mathrm{H}_{\mathrm{comp}}=3084.4 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
\end{array}
$$

By interpolation: $\quad \mathrm{S}_{\mathrm{comp}}:=7.1803 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$

The energy balance, mass balance, and quantity requirement equations of Part (a) are still valid. In addition, The work output of the turbine equals the work input of the compressor. Thus we have 4 equations (in 4 unknowns):
Guesses: $\quad \operatorname{mdot}_{1}:=0.086 \frac{\mathrm{~kg}}{\mathrm{~s}} \quad \operatorname{mdot}_{2}:=0.064 \frac{\mathrm{~kg}}{\mathrm{~s}}$

$$
\operatorname{mdot}_{3}:=0.15 \frac{\mathrm{~kg}}{\mathrm{~s}} \quad \mathrm{H}_{3}:=2770 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

Given

$$
\begin{aligned}
& \left(\mathrm{H}_{\text {comp }}-\mathrm{H}_{2} \cdot \text { mdot }_{2}=-\left(\mathrm{H}_{\text {turb }}-\mathrm{H}_{1} \cdot \text { mdot }_{1}\right.\right. \\
& \mathrm{H}_{3} \cdot \mathrm{mdot}_{3}-\mathrm{H}_{1} \cdot \mathrm{mdot}_{1}-\mathrm{H}_{2} \cdot \mathrm{mdot}_{2}=0 \frac{\mathrm{~kJ}}{\mathrm{~s}} \\
& \operatorname{mdot}_{3}=\operatorname{mdot}_{1}+\operatorname{mdot}_{2} \quad\left(\mathrm{H}_{3}-\mathrm{H}_{\mathrm{liq}} \cdot \operatorname{mdot}_{3}=300 \frac{\mathrm{~kJ}}{\mathrm{~s}}\right. \\
& \left(\begin{array}{l}
\left.\operatorname{mdot}_{1}\right) \\
\operatorname{mdot}_{2} \\
\operatorname{mdot}_{3}
\end{array}\right):=\operatorname{Find}\left(\operatorname{mdot}_{1}, \operatorname{mdot}_{2}, \operatorname{mdot}_{3}, \mathrm{H}_{3}\right. \\
& \mathrm{H}_{3} \text {) } \\
& \text { mot }_{3}=0.14882 \frac{\mathrm{~kg}}{\mathrm{~s}} \\
& \operatorname{mdot}_{2}=0.04274 \frac{\mathrm{~kg}}{\mathrm{~s}} \\
& \mathrm{H}_{3}=2.77844 \times 10^{3} \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \text { Ans. }
\end{aligned}
$$

Steam at Point 3 is slightly superheated.
By interpolation, $\quad \mathrm{S}_{3}:=6.5876 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
THERMODYNAMIC ANALYSIS $\quad \mathrm{T}_{\sigma}:=300 \mathrm{~K} \quad$ (assumed)
By Eq. (5.25), with the enthalpy term equal to zero:
$\mathrm{Wdot}_{\text {ideal }}:=\mathrm{T}_{\sigma} \cdot\left(\right.$ ndot $_{3} \cdot \mathrm{~S}_{3}-\operatorname{mdot}_{1} \cdot \mathrm{~S}_{1}-\operatorname{mdot}_{2} \cdot \mathrm{~S}_{2}$
$\mathrm{Wdot}_{\text {ideal }}=6.014 \mathrm{~kW}$
Wdot $_{\text {lost.turb }}:=\mathrm{T}_{\sigma} \cdot$ mdot $_{1} \cdot\left(\mathrm{~S}_{\text {turb }}-\mathrm{S}_{1}\right.$
$\mathrm{Wdot}_{\text {lost.comp }}:=\mathrm{T}_{\sigma} \cdot$ mdot $_{2} \cdot\left(\mathrm{~S}_{\mathrm{comp}}-\mathrm{S}_{2}\right.$
Wdot $_{\text {lost.mixing }}:=\mathrm{T}_{\sigma} \cdot\left[\left(\operatorname{mdot}_{3} \cdot \mathrm{~S}_{3}-\operatorname{mdot}_{1} \cdot \mathrm{~S}_{\text {turb }}-\operatorname{mdot}_{2} \cdot \mathrm{~S}_{\mathrm{comp}}\right]\right.$
Wdot $_{\text {lost.turb }}=2.9034 \mathrm{~kW}$
48.2815\%

Wdot ${ }_{\text {lost.comp }}=2.054 \mathrm{~kW}$
34.1565\%

Wdot $_{\text {lost.mixing }}=1.0561 \mathrm{~kW}$
17.5620\%

The percent values above express each quantity as a percentage of the absolute value of the ideal work, to which the quantities sum.
15.4 Some property values with reference to Fig. 9.1 are given in Example 9.1. Others come from Table 9.1 or Fig. G.2.

For sat. liquid and vapor at the evaporator temperature of $\mathbf{0} \mathbf{d e g F}$:
$\mathrm{H}_{\text {liq }}:=12.090 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$\mathrm{S}_{\mathrm{vap}}:=0.22525 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$

$$
\mathrm{H}_{\text {vap }}:=103.015 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{S}_{\mathrm{liq}}:=0.02744 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

For sat. liquid at the condenser outlet temperature of $\mathbf{8 0} \mathbf{d e g F}$:

$$
\mathrm{H}_{4}:=37.978 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{S}_{4}:=0.07892 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

$$
\mathrm{H}_{2}:=\mathrm{H}_{\mathrm{vap}} \quad \mathrm{~S}_{2}:=\mathrm{S}_{\mathrm{vap}} \quad \mathrm{H}_{1}:=\mathrm{H}_{4}
$$

$$
\mathrm{x}_{1}:=\frac{\mathrm{H}_{1}-\mathrm{H}_{\mathrm{liq}}}{\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}}
$$

$$
\mathrm{x}_{1}=0.285
$$

$\mathrm{S}_{1}:=\mathrm{S}_{\mathrm{liq}}+\mathrm{x}_{1} \cdot\left(\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}\right.$
$\mathrm{S}_{1}=0.084 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$

From Example 9.1(b) for the compression step:

$$
\Delta \mathrm{H}:=17.48 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{H}_{3}:=\mathrm{H}_{2}+\Delta \mathrm{H} \quad \mathrm{H}_{3}=120.5 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

From Fig. G. 2 at H 3 and $\mathrm{P}=101.37$ (psia):
$\mathrm{S}_{3}:=0.231 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$

Wdot := mdot• $\Delta \mathrm{H}$
$\operatorname{mdot}:=1845.1 \cdot \frac{\mathrm{lb}}{\mathrm{hr}}$

$$
\mathrm{Wdot}=3.225 \times 10^{4} \frac{\mathrm{BTU}}{\mathrm{hr}}
$$

The purpose of the condenser is to transfer heat to the surroundings. Thus the heat transferred in the condenser is Q in the sense of Chapter 15; i.e., it is heat transfer to the SURROUNDINGS, taken here to be at a temperature of 70 degF .
Internal heat transfer (within the system) is not \mathbf{Q}. The heat transferred in the evaporator comes from a space maintained at 10 degF , which is part of the system, and is treated as an internal heat reservoir.
The ideal work of the process is that of a Carnot engine operating between the temperature of the refrigerated space and the temperature of the surroundings.
$\mathrm{T}_{\sigma}:=(70+459.67) \cdot$ rankine $\quad \mathrm{T}_{\mathrm{H}}:=\mathrm{T}_{\sigma}$
Qdot $\mathrm{C}:=-120000 \frac{\mathrm{BTU}}{\mathrm{hr}} \quad \mathrm{T}_{\mathrm{C}}:=(10+459.67) \cdot$ rankine
Wdot $_{\text {ideal }}:=\left|\operatorname{Qdot}_{\mathrm{C}}\right| \cdot \frac{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{C}}} \quad \mathrm{Wdot}_{\text {ideal }}=1.533 \times 10^{4} \frac{\mathrm{BTU}}{\mathrm{hr}}$
Wdot $_{\text {lost.comp }}:=\mathrm{T}_{\sigma} \cdot \operatorname{mdot} \cdot\left(\mathrm{S}_{3}-\mathrm{S}_{2}\right.$

Qdot := $\left(\mathrm{H}_{4}-\mathrm{H}_{3} \cdot \operatorname{mdot}\right.$
Qdot $=-1.523 \times 10^{5} \frac{\mathrm{BTU}}{\mathrm{hr}}$

Wdot $_{\text {lost.cond }}:=\mathrm{T}_{\sigma} \cdot$ mdot $\cdot\left(\mathrm{S}_{4}-\mathrm{S}_{3}-\mathrm{Qdot}\right.$

Wdot $_{\text {lost.throttle }}:=\mathrm{T}_{\sigma} \cdot \operatorname{mdot} \cdot\left(\mathrm{S}_{1}-\mathrm{S}_{4}\right.$

$$
\begin{aligned}
\text { Wdot lost.evap }= & \mathrm{T}_{\sigma} \cdot \text { mdot } \cdot\left(\mathrm{S}_{2}-\mathrm{S}_{1} \quad \ldots\right. \\
& +\mathrm{T}_{\sigma} \cdot \frac{\mathrm{H}_{1}-\mathrm{H}_{2}}{\mathrm{~T}_{\mathrm{C}}} \cdot \operatorname{mdot}
\end{aligned}
$$

The final term accounts for the entropy change of the refrigerated space (an internal heat reservoir).

$$
\begin{array}{rr}
\text { Wdot }_{\text {ideal }}=15329.9 \frac{\mathrm{BTU}}{\mathrm{hr}} & \mathbf{4 7 . 5 3 \%} \\
\text { Wdot }_{\text {lost.comp }}=5619.4 \frac{\mathrm{BTU}}{\mathrm{hr}} & \mathbf{1 7 . 4 2 \%} \\
\text { Wdot }{ }_{\text {lost.cond }}=3625.2 \frac{\mathrm{BTU}}{\mathrm{hr}} & \mathbf{1 1 . 2 4 \%} \\
\text { Wdot }_{\text {lost.throttle }}=4730.2 \frac{\mathrm{BTU}}{\mathrm{hr}} & \mathbf{1 4 . 6 7 \%} \\
\hline \text { Wdot }_{\text {lost.evap }}=2947.6 \frac{\mathrm{BTU}}{\mathrm{hr}} & \mathbf{9 . 1 4 \%}
\end{array}
$$

The percent values above express each quantity as a percentage of the actual work, to which they sum:

$$
\mathrm{Wdot}=32252.3 \frac{\mathrm{BTU}}{\mathrm{hr}}
$$

15.5 The discussion at the top of the second page of the solution to the preceding problem applies equally here. In each case,

$$
\mathrm{T}_{\sigma}:=(70+459.67) \cdot \text { rankine }
$$

$$
\mathrm{T}_{\mathrm{H}}:=\mathrm{T}_{\sigma}
$$

The following vectors refer to Parts (a)-(e):
$\mathrm{t}_{\mathrm{C}}:=\left(\begin{array}{c}40 \\ 30 \\ 20 \\ 10 \\ 0\end{array}\right)$

$\mathrm{T}_{\mathrm{C}}:=()_{\mathrm{C}}+459.67 \cdot$ rankine

$$
\mathrm{Wdot}_{\mathrm{ideal}}:=\overline{\left(|\mathrm{Qdot} \mathrm{C}| \cdot \frac{\left.\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}\right)}{\mathrm{T}_{\mathrm{C}}}\right)}
$$

For sat. liquid and vapor at the evaporator temperature, Table 9.1:
$\mathrm{H}_{\text {liq }}:=\left(\begin{array}{l}21.486 \\ 18.318 \\ 15.187 \\ 12.090\end{array}\right) \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$
$H_{\text {vap }}:=\left(\begin{array}{l}107.320 \\ 105.907 \\ 104.471 \\ 103.015\end{array}\right) \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}$

$$
\mathrm{H}_{2}:=\mathrm{H}_{\mathrm{vap}}
$$

For sat. liquid at the condenser temperature:

$$
\begin{array}{ll}
\mathrm{H}_{4}:=37.978 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} & \mathrm{~S}_{4}:=0.07892 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }} \\
\mathrm{x}_{1}:=\frac{\mathrm{H}_{1}-\mathrm{H}_{\mathrm{liq}}}{\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}} & \mathrm{~S}_{1}:=\overline{\left[\mathrm{S}_{\mathrm{liq}}+\mathrm{x}_{1} \cdot\left(\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}\right]\right.}
\end{array}
$$

From the results of $\mathbf{P b} .9 .9$, we find:

From these values we must find the corresponding entropies from Fig. G.2. They are read at the vapor pressure for 80 degF of 101.37 kPa . The flow rates come from Problem 9.9:

mdot :=	(8.653)	
	$\left\lvert\, \begin{aligned} & 7.361 \\ & 6.016\end{aligned}\right.$	$1 b_{m}$
	4.613	sec
	(3.146)	

Wdot $_{\text {lost.comp }}:=\overrightarrow{\left[\mathrm{T}_{\sigma} \cdot \operatorname{mdot} \cdot\left(\mathrm{S}_{3}-\mathrm{S}_{2}\right]\right.}$

$$
\text { Qdot }:=\overrightarrow{\left[\left(\mathrm{H}_{4}-\mathrm{H}_{3} \cdot \mathrm{mdot}\right]\right.}
$$

Wdot ${ }_{\text {lost.cond }}:=\overrightarrow{\left[\mathrm{T}_{\sigma} \cdot \mathrm{mdot} \cdot\left(\mathrm{S}_{4}-\mathrm{S}_{3}\right]\right.}-$ Qdot
Wdot $_{\text {lost.throttle }}:=\overrightarrow{\left[\mathrm{T}_{\sigma} \cdot \mathrm{mdot} \cdot\left(\mathrm{S}_{1}-\mathrm{S}_{4}\right]\right.}$

$$
\begin{aligned}
\text { Wdot }_{\text {lost.evap }}:= & \stackrel{\left[\mathrm{T}_{\sigma} \cdot \mathrm{mdot} \cdot\left(\mathrm{~S}_{2}-\mathrm{S}_{1}\right] \ldots\right.}{ } \\
& +\left[\left(\mathrm{T}_{\sigma} \cdot \frac{\left.\mathrm{H}_{1}-\mathrm{H}_{2}\right)}{\mathrm{T}_{\mathrm{C}}}\right) \cdot \mathrm{mdot}\right]
\end{aligned}
$$

The final term accounts for the entropy change of the refrigerated space (an internal heat reservoir).

$$
\text { Wdot }:=\overrightarrow{\left[\operatorname{mdot} \cdot() \mathrm{H}_{3}-\mathrm{H}_{2}\right]}
$$

Wdot $_{\text {ideal }}=\left(\begin{array}{l}36.024 \\ 40.844 \\ 41.695 \\ 38.325 \\ 30.457\end{array}\right) \frac{\mathrm{BTU}}{\mathrm{sec}}$
Wdot $_{\text {lost.comp }}=\left(\begin{array}{c}20.9 \\ 22.419 \\ 21.732 \\ 21.379\end{array}\right) \frac{\mathrm{BTU}}{\mathrm{sec}}$

In each case the ideal work and the lost work terms sum to give the actual work, and each term may be expressed as a percentage of the actual work.
15.6 The discussion at the top of the second page of the solution to Problem 15.4 applies equally here.

$$
\begin{array}{ll}
\mathrm{T}_{\sigma}:=(70+459.67) \cdot \text { rankine } & \mathrm{T}_{\mathrm{H}}:=\mathrm{T}_{\sigma} \\
\mathrm{T}_{\mathrm{C}}:=(30+459.67) \cdot \text { rankine } & \text { Qdot }:=-2000 \cdot \frac{\mathrm{BTU}}{\mathrm{sec}} \\
\text { Wdotideal }:=\left(\mid \text { Qdot }{ }_{\mathrm{C}} \left\lvert\, \cdot \frac{\mathrm{T}_{\mathrm{H}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{~T}_{\mathrm{C}}}\right.\right) & \text { Wdot }_{\text {ideal }}=163.375 \frac{\mathrm{BTU}}{\mathrm{sec}}
\end{array}
$$

For sat. liquid and vapor at the evaporator temperature, Table 9.1:

$$
\begin{aligned}
& \mathrm{H}_{\text {liq }}:=18.318 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \\
& \mathrm{H}_{\text {vap }}:=105.907 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
\end{aligned}
$$

$$
\mathrm{H}_{2}:=\mathrm{H}_{\mathrm{vap}}
$$

$\mathrm{S}_{\text {liq }}:=0.04065 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$
$\mathrm{S}_{\mathrm{vap}}:=0.22325 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$

$$
\mathrm{S}_{2}:=\mathrm{S}_{\mathrm{vap}}
$$

For sat. liquid at the condenser temperature:

$$
\mathrm{H}_{4}:=37.978 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

From Problem 9.12,

$$
\mathrm{H}_{2 \mathrm{~A}}:=116 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

$$
\mathrm{S}_{2 \mathrm{~A}}:=0.2435 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

$$
\mathrm{H}_{3}:=\mathrm{H}_{2 \mathrm{~A}}+14.667 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \quad \mathrm{H}_{3}=130.67 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}}
$$

From Fig. G. 2 at this enthalpy and 33.11(psia):

$$
\mathrm{S}_{3}:=0.2475 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
$$

Energy balance on heat exchanger:

$$
\begin{array}{ll}
\mathrm{H}_{1}:=\mathrm{H}_{4}-\mathrm{H}_{2 \mathrm{~A}}+\mathrm{H}_{2} & \mathrm{H}_{1}=27.885 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}}} \\
\mathrm{x}_{1}:=\frac{\mathrm{H}_{1}-\mathrm{H}_{\mathrm{liq}}}{\mathrm{H}_{\mathrm{vap}}-\mathrm{H}_{\mathrm{liq}}} & \mathrm{~S}_{1}:=\mathrm{S}_{\mathrm{liq}}+\mathrm{x}_{1} \cdot\left(\mathrm{~S}_{\mathrm{vap}}-\mathrm{S}_{\mathrm{liq}}\right. \\
\mathrm{x}_{1}=0.109 & \mathrm{~S}_{1}=0.061 \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}
\end{array}
$$

Upstream from the throttle (Point 4A) the state is subcooled liquid with the enthalpy:

$$
\mathrm{H}_{4 \mathrm{~A}}:=\mathrm{H}_{1}
$$

The entropy at this point is essentially that of sat. liquid with this enthalpy; by interpolation in Table 9.1:
$\mathrm{S}_{4 \mathrm{~A}}:=0.05986 \cdot \frac{\mathrm{BTU}}{\mathrm{lb}_{\mathrm{m}} \cdot \text { rankine }}$
From Problem 9.12: $\quad \operatorname{mot}:=25.634 \cdot \frac{\mathrm{lb}}{\mathrm{sec}}$

Wdot ${ }_{\text {lost.comp }}:=\mathrm{T}_{\sigma} \cdot \mathrm{mdot} \cdot\left(\mathrm{S}_{3}-\mathrm{S}_{2 \mathrm{~A}}\right.$
Qdot : $=\left(\mathrm{H}_{4}-\mathrm{H}_{3} \cdot \operatorname{mdot}\right.$
Wdot $_{\text {lost.cond }}:=\mathrm{T}_{\sigma} \cdot \operatorname{mdot} \cdot\left(\mathrm{S}_{4}-\mathrm{S}_{3}-\mathrm{Qdot}\right.$
$\mathrm{Wdot}_{\text {lost.throttle }}:=\mathrm{T}_{\sigma} \cdot \mathrm{mdot} \cdot\left(\mathrm{S}_{1}-\mathrm{S}_{4 \mathrm{~A}}\right.$

Wdot $_{\text {lost.evap }}:=\mathrm{T}_{\sigma} \cdot \mathrm{mdot} \cdot\left(\mathrm{S}_{2}-\mathrm{S}_{1} \quad \ldots\right.$

$$
+\left(\mathrm{T}_{\sigma} \cdot \frac{\mathrm{H}_{1}-\mathrm{H}_{2}}{\mathrm{~T}_{\mathrm{C}}}\right) \cdot \operatorname{mdot}
$$

The final term accounts for the entropy change of the refrigerated space (an internal heat reservoir).

Wdot ${ }_{\text {lost.exchanger }}:=\mathrm{T}_{\sigma} \cdot \operatorname{mdot} \cdot\left(\mathrm{S}_{2 \mathrm{~A}}-\mathrm{S}_{2}+\mathrm{S}_{4 \mathrm{~A}}-\mathrm{S}_{4}\right.$
Wdot $:=\operatorname{mdot} \cdot()_{3}-H_{2 A}$

$$
\text { Wdot }_{\text {ideal }}=163.38 \frac{\mathrm{BTU}}{\mathrm{sec}}
$$

43.45\%

Wdot $_{\text {lost.comp }}=54.31 \frac{\mathrm{BTU}}{\mathrm{sec}}$
14.45\%

Wdot lost.cond $=87.08 \frac{\mathrm{BTU}}{\mathrm{sec}}$
23.16\%

Wdot $_{\text {lost.throttle }}=9.98 \frac{\mathrm{BTU}}{\mathrm{sec}}$
Wdot ${ }_{\text {lost.evap }}=45.07 \frac{\mathrm{BTU}}{\mathrm{sec}}$
Wdot ${ }_{\text {lost.exchanger }}=16.16 \frac{\mathrm{BTU}}{\mathrm{sec}}$
2.65\%
W dot $=375.97 \frac{\mathrm{BTU}}{\mathrm{sec}}$

The figures on the right are percentages of the actual work, to which the terms sum.
15.7

Compression to a pressure at which condensation in coils occurs at 110 degC. Table F. 1 gives this sat. pressure as $143.27 \mathbf{k P a}$
$\eta_{\text {comp }}:=0.75$

$$
\begin{array}{ll}
\mathrm{H}_{1}:=419.1 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~S}_{1}:=1.3069 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
\mathrm{H}_{2}:=2676.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} & \mathrm{~S}_{2}:=7.3554 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
\end{array}
$$

(sat. liquid)
(sat. vapor)

For isentropic compression to 143.27 kPa , we find by double interpolation in Table F.2:
$\mathrm{H}_{3}:=2737.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \quad \mathrm{H}_{3}:=\mathrm{H}_{2}+\frac{\mathrm{H}_{3}-\mathrm{H}_{2}}{\eta_{\text {comp }}} \quad \mathrm{H}_{3}=2757.3 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
By more double interpolation in Table F. 2 at 143.27 kPa,

$$
\mathrm{S}_{3}:=7.4048 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

By an energy balance, assuming the slurry passes through unchanged,

$$
\mathrm{H}_{4}:=\mathrm{H}_{1}+\mathrm{H}_{3}-\mathrm{H}_{2} \quad \mathrm{H}_{4}=500.4 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

This enthalpy is a bit larger than that of sat. liquid at 110 degC ; find quality and then the entropy:

$$
\mathrm{S}_{\text {liq }}:=1.4185 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$$
\mathrm{x}_{4}=0.018
$$

The figures on the right are percentages of the actual work, to which the terms sum.
15.8 A thermodynamic analysis requires an exact definition of the overall process considered, and in this case we must therefore specify the source of the heat transferred to the boiler.
Since steam leaves the boiler at 900 degF , the heat source may be considered a heat reservoir at some higher temperature. We assume in the following that this temperature is $\mathbf{9 5 0} \mathbf{~ d e g F}$.
The assumption of a different temperature would provide a variation in the solution.

$$
\begin{aligned}
& \mathrm{H}_{\text {liq }}:=461.3 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \mathrm{H}_{\mathrm{lv}}:=2230.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}} \\
& \mathrm{~S}_{\mathrm{lv}}:=5.8203 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
& \mathrm{x}_{4}:=\frac{\mathrm{H}_{4}-\mathrm{H}_{\mathrm{liq}}}{\mathrm{H}_{\mathrm{lv}}} \\
& \mathrm{~S}_{4}=1.5206 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \\
& \mathrm{~S}_{4}:=\mathrm{S}_{\mathrm{liq}}+\mathrm{x}_{4} \cdot \mathrm{~S}_{\mathrm{lv}} \\
& \mathrm{~T}_{\sigma}:=300 \cdot \mathrm{~K} \\
& \text { Wdot }_{\text {ideal }}:=\operatorname{mdot} \cdot\left[\mathrm{H}_{4}-\mathrm{H}_{1}-\mathrm{T}_{\sigma} \cdot\left(\mathrm{S}_{4}-\mathrm{S}_{1}\right]\right. \\
& \mathrm{Wdot}_{\text {lost.evap }}:=\operatorname{mdot} \cdot \mathrm{T}_{\sigma} \cdot\left(\mathrm{S}_{4}-\mathrm{S}_{3}+\mathrm{S}_{2}-\mathrm{S}_{1}\right. \\
& \text { Wdotlost.comp }:=\operatorname{mdot} \cdot \mathrm{T}_{\sigma} \cdot\left(\mathrm{S}_{3}-\mathrm{S}_{2}\right. \\
& \text { Wdot }:=\operatorname{mdot} \cdot\left(\mathrm{H}_{3}-\mathrm{H}_{2}\right. \\
& \mathrm{Wdot}_{\text {ideal }}=8.606 \mathrm{~kW} \\
& \text { 21.16\% } \\
& \text { Wdotlost.evap }=24.651 \mathrm{~kW} \\
& \text { 60.62\% } \\
& \text { Wdotlost.comp }=7.41 \mathrm{~kW} \\
& 18.22 \%
\end{aligned}
$$

The ideal work of the process in this case is given by a Carnot engine operating between this temperature and that of the surroundings, here specified to be 80 degF.

We take as a basis 1 lbm of $\mathbf{H 2 O}$ passing through the boiler. Required property values come from Pb . 8.8.
$\mathrm{T}_{\mathrm{H}}:=(459.67+950) \cdot$ rankine $\quad \mathrm{T}_{\mathrm{C}}:=(459.67+80)$ rankine $\quad \mathrm{T}_{\sigma}:=\mathrm{T}_{\mathrm{C}}$
Subscripts below correspond to points on figure of Pb. 8.7.

$\mathrm{Q}_{\mathrm{H}}:=\left(\mathrm{H}_{2}-\mathrm{H}_{1} \cdot 1 \cdot \mathrm{lb} \mathrm{m}\right.$

$\mathrm{W}_{\text {ideal }}:=\mathrm{Q}_{\mathrm{H}} \cdot\left(1-\frac{\mathrm{T}_{\mathrm{C}}}{\mathrm{T}_{\mathrm{H}}}\right)$

For purposes of thermodynamic analysis, we consider the following 4 parts of the process:

The boiler/heat reservoir combination
The turbine
The condenser and throttle valve
The pump and feedwater heater
$\mathrm{W}_{\text {lost.boiler.reservoir }}:=\mathrm{T}_{\sigma} \cdot\left[\left(\mathrm{S}_{2}-\mathrm{S}_{1} \cdot 1 \cdot \mathrm{lb}_{\mathrm{m}}-\frac{\mathrm{Q}_{\mathrm{H}}}{\mathrm{T}_{\mathrm{H}}}\right]\right.$
$\mathrm{m}:=0.18688 \cdot \mathrm{lb}_{\mathrm{m}} \quad$ (From Pb. 8.8)
$\mathrm{W}_{\text {lost.turbine }}:=\mathrm{T}_{\sigma} \cdot\left[\mathrm{m} \cdot\left(\mathrm{S}_{3}-\mathrm{S}_{2}+() \cdot 1 \mathrm{lb}_{\mathrm{m}}-\mathrm{m} \cdot\left(\mathrm{S}_{4}-\mathrm{S}_{2}\right]\right.\right.$
The purpose of the condenser is to transfer heat to the surroundings. The amount of heat is

$$
\begin{aligned}
& \mathrm{Q}:=1 \cdot 1 \mathrm{~b}_{\mathrm{m}} \cdot \mathrm{H}_{5}-\left(\mathrm{l} \cdot 1 \mathrm{lb}_{\mathrm{m}}-\mathrm{m} \cdot \mathrm{H}_{4}-\mathrm{m} \cdot \mathrm{H}_{7}\right. \\
& \mathrm{Q}=-829.045 B T \mathrm{BTU}
\end{aligned}
$$

$\mathrm{W}_{\text {lost.cond.valve }}:=\mathrm{T}_{\sigma} \cdot\left[1 \cdot 1 \mathrm{~b}_{\mathrm{m}} \cdot \mathrm{S}_{5}-() \cdot 1 \cdot \mathrm{lb}_{\mathrm{m}}-\mathrm{m} \cdot \mathrm{S}_{4}-\mathrm{m} \cdot \mathrm{S}_{7}\right]-\mathrm{Q}$
$\mathrm{W}_{\text {lost.pump.heater }}:=\mathrm{T}_{\sigma} \cdot\left[1 \cdot \mathrm{lb}_{\mathrm{m}} \cdot\left(\mathrm{S}_{1}-\mathrm{S}_{5}+\mathrm{m} \cdot\left(\mathrm{S}_{7}-\mathrm{S}_{3}\right]\right.\right.$
The absolute value of the actual work comes from Pb . 8.8:

$\mathrm{W}_{\text {abs.value }}=374.61 \cdot \mathrm{BTU}$	$\mathbf{5 0 . 4 3 \%}$
$\mathrm{W}_{\text {lost.boiler.reservoir }}=224.66 \mathrm{BTU}$	$\mathbf{3 0 . 2 4 \%}$
$\mathrm{W}_{\text {lost.turbine }}=98.81 \mathrm{BTU}$	$\mathbf{1 3 . 3 0 \%}$
$\mathrm{W}_{\text {lost.cond.valve }}=36.44 \mathrm{BTU}$	$\mathbf{4 . 9 0 \%}$
$\mathrm{W}_{\text {lost.pump.heater }}=8.36 \mathrm{BTU}$	$\mathbf{1 . 1 3 \%}$

$\mathrm{W}_{\text {ideal }}=742.82 \mathrm{BTU} \quad$ The numbers on the right are percentages of the (absolute value) absolute value of the ideal work, to which they sum.
15.9 Refer to Figure 9.7, page 330 The analysis presented here is for the liquefaction section to the right of the dashed line. Enthalpy and entropy values are those given in Ex. 9.3 plus additional values from the reference cited on page 331 at conditions given in Ex. 9.3.

Property values:
$\mathrm{H}_{4}:=1140.0 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{5}:=1009.7 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{7}:=719.8 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{9}:=285.4 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{10}:=796.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{S}_{4}:=9.359 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{S}_{5}:=8.894 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{S}_{7}:=7.544 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{S} 9:=4.928 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{S}_{10}:=9.521 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{H}_{14}:=1042.1 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{15}:=1188.9 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{H}_{6}:=\mathrm{H}_{5} \quad \mathrm{~S}_{6}:=\mathrm{S}_{5}$
$\mathrm{H}_{12}:=\mathrm{H}_{10} \quad \mathrm{~S}_{12}:=\mathrm{S}_{10}$
$\mathrm{S}_{14}:=11.015 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{~S}_{15}:=11.589 \cdot \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}$
$\mathrm{H}_{11}:=\mathrm{H}_{5} \quad \mathrm{~S}_{11}:=\mathrm{S}_{5}$
$\mathrm{H}_{13}:=\mathrm{H}_{10} \mathrm{~S}_{13}:=\mathrm{S}_{10}$
$\mathrm{T}_{\sigma}:=295 \mathrm{~K}$
The basis for all calculations is $\mathbf{1} \mathbf{~ k g}$ of methane entering at point 4. All work quantities are in kJ . Results given in Ex. 9.3 on this basis are:

Fraction of entering methane that is liquefied:
Fraction of entering methane passing through the expander:
On this basis also Eq. (5.26) for Ideal Work, Eq. (5.33) for Entropy
Generation, and Eq. (5.34) for Lost Work can be written:
$z:=0.113 \quad x:=0.25$
$\mathrm{W}_{\text {ideal }}=\Delta(\mathrm{H} \cdot \mathrm{m})_{\mathrm{fs}}-\mathrm{T}_{\sigma} \cdot \Delta(\mathrm{S} \cdot \mathrm{m})_{\mathrm{fs}} \quad \mathrm{S}_{\mathrm{G}}=\Delta(\mathrm{S} \cdot \mathrm{m})_{\mathrm{fs}}-\frac{\mathrm{Q}}{\mathrm{T}_{\sigma}} \quad \mathrm{W}_{\text {lost }}=\mathrm{T}_{\sigma} \cdot \mathrm{S}_{\mathrm{G}}$
$\mathrm{W}_{\text {ideal }}:=\left[\mathrm{H}_{15} \cdot(1-\mathrm{z})+\mathrm{H}_{9} \cdot \mathrm{z}-\mathrm{H}_{4}\right]-\mathrm{T}_{\sigma} \cdot\left[\mathrm{S}_{15} \cdot(1-\mathrm{z})+\mathrm{S}_{9} \cdot \mathrm{z}-\mathrm{S}_{4}\right]$
$\mathrm{W}_{\text {ideal }}=-489.001 \frac{\mathrm{~kJ}}{\mathrm{~kg}}$
$\mathrm{~W}_{\text {out }}:=\left(\mathrm{H}_{12}-\mathrm{H}_{11} \cdot \mathrm{x} \quad \mathrm{W}_{\text {out }}:=\frac{\mathrm{kJ}}{\mathrm{kg}}\right.$
(a) Heat Exchanger I: $\mathrm{S}_{\mathrm{G} . \mathrm{a}}:=\left[\left(\mathrm{S}_{5}-\mathrm{S}_{4}+\left(\mathrm{S}_{15}-\mathrm{S}_{14} \cdot(1-\mathrm{z})\right]\right.\right.$

$$
\mathrm{S}_{\mathrm{G} . \mathrm{a}}=0.044 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}} \quad \mathrm{~W}_{\text {lost.a }}:=\mathrm{T}_{\sigma} \cdot \mathrm{S}_{\mathrm{G} . \mathrm{a}} \quad \mathrm{~W}_{\text {lost. } \mathrm{a}}=13.021 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

(b) Heat Exchanger II: $\mathrm{S}_{\mathrm{G} . \mathrm{b}}:=\left[\left(\mathrm{S}_{7}-\mathrm{S}_{6} \cdot(1-\mathrm{x})+\left(\mathrm{S}_{14}-\mathrm{S}_{13} \cdot(1-\mathrm{z})\right]\right.\right.$

$$
\mathrm{S}_{\mathrm{G} . \mathrm{b}}=0.313 \frac{\mathrm{~kJ}}{\mathrm{~kg} \cdot \mathrm{~K}}
$$

$\mathrm{W}_{\text {lost.b }}:=\mathrm{T}_{\sigma} \cdot \mathrm{S}_{\mathrm{G} . \mathrm{b}}$

$$
\mathrm{W}_{\text {lost. }}=92.24 \frac{\mathrm{~kJ}}{\mathrm{~kg}}
$$

(c) Expander: $\quad \mathrm{S}_{\mathrm{G} . \mathrm{c}}:=\left(\mathrm{S}_{12}-\mathrm{S}_{11} \cdot \mathrm{x}\right.$

(d) Throttle: $\quad \mathrm{S}_{\mathrm{G} . \mathrm{d}}:=\left[\mathrm{S}_{9} \cdot \mathrm{z}+\mathrm{S}_{10} \cdot(1-\mathrm{z}-\mathrm{x})-\mathrm{S}_{7} \cdot(1-\mathrm{x})\right]$

Entropy-generation analysis:

	kJ/kg-K	Percent of Σ
S_G $_{a}$	$\mathbf{0 . 0 4 4}$	$\mathbf{2 . 9 8 \%}$
S_G $_{b}$	$\mathbf{0 . 3 1 3}$	$\mathbf{2 1 . 1 8 \%}$
S_G $_{\mathrm{c}}$	$\mathbf{0 . 1 5 7}$	$\mathbf{1 0 . 6 2 \%}$
S_G $_{\mathrm{d}}$	$\mathbf{0 . 9 6 4}$	$\mathbf{6 5 . 2 2 \%}$
Σ	$\mathbf{1 . 4 7 8}$	$\mathbf{1 0 0 . 0 0 \%}$

Work analysis, Eq. (15.3):

	kJ/kg	Percent of Σ
$\left\|\mathrm{W}_{\text {out }}\right\|$	$\mathbf{5 3 . 2 0}$	$\mathbf{1 0 . 8 8 \%}$
$\mathrm{W}_{\text {lost.a }}$	$\mathbf{1 3 . 0 2}$	$\mathbf{2 . 6 6 \%}$
$\mathrm{W}_{\text {lost.b }}$	$\mathbf{9 2 . 2 4}$	$\mathbf{1 8 . 8 6 \%}$
$\mathrm{W}_{\text {lost.c }}$	$\mathbf{4 6 . 2 4}$	$\mathbf{9 . 4 6 \%}$
$\mathrm{W}_{\text {lost.d }}$	$\mathbf{2 8 4 . 3 0}$	$\mathbf{5 8 . 1 4 \%}$
Σ	$\mathbf{4 8 9 . 0 0}$	$\mathbf{1 0 0 . 0 0 \%}$

Note that: $\Sigma=\left|W_{\text {ideal }}\right|$

Chapter 16 - Section A - Mathcad Solutions

16.10 (Planck's constant)

$$
\mathrm{h}:=6.626 \cdot 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
$$

(Boltzmann's constant) (Avagodro's number)
$\mathrm{k}:=1.381 \cdot 10^{-23} \cdot \frac{\mathrm{~J}}{\mathrm{~K}}$

$$
\mathrm{P}:=1 \mathrm{bar} \quad \mathrm{~T}:=298.15 \mathrm{~K} \quad \mathrm{~V}:=\frac{\mathrm{R} \cdot \mathrm{~T}}{\mathrm{P}} \quad \mathrm{~V}=0.025 \frac{\mathrm{~m}^{3}}{\mathrm{~mol}}
$$

a) For Argon: $\mathrm{M}:=\frac{39.948 \frac{\mathrm{gm}}{\mathrm{mol}}}{\mathrm{N}_{\mathrm{A}}}$
$\operatorname{Sig}:=R \cdot \ln \left[\left(\frac{2 \cdot \pi \cdot \mathrm{M} \cdot \mathrm{k} \cdot \mathrm{T}}{\mathrm{h}^{2}}\right)^{\frac{3}{2}} \cdot \frac{\mathrm{~V} \cdot \mathrm{e}^{\frac{5}{2}}}{\mathrm{~N}_{\mathrm{A}}}\right]$

$$
\mathrm{Sig}=154.84 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}
$$

NIST value:

Ans.
b) For Krypton: $\mathrm{M}:=\frac{83.800 \frac{\mathrm{gm}}{\mathrm{mol}}}{\mathrm{N}_{\mathrm{A}}}$
$\operatorname{Sig}:=R \cdot \ln \left[\left(\frac{2 \cdot \pi \cdot \mathrm{M} \cdot \mathrm{k} \cdot \mathrm{T}}{\mathrm{h}^{2}}\right)^{\frac{3}{2}} \cdot \frac{\mathrm{~V} \cdot \mathrm{e}^{\frac{5}{2}}}{\mathrm{~N}_{\mathrm{A}}}\right]$

NIST value:
$164.05 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}$
Ans.
c) For Xenon $\mathrm{M}:=\frac{131.30 \frac{\mathrm{gm}}{\mathrm{mol}}}{\mathrm{N}_{\mathrm{A}}}$

$$
\operatorname{Sig}:=\mathrm{R} \cdot \ln \left[\left(\frac{2 \cdot \pi \cdot \mathrm{M} \cdot \mathrm{k} \cdot \mathrm{~T}}{\mathrm{~h}^{2}}\right)^{\frac{3}{2}} \cdot \frac{\mathrm{~V} \cdot \mathrm{e}^{\frac{5}{2}}}{\mathrm{~N}_{\mathrm{A}}}\right]
$$

NIST value:

Ans.

Chapter 1 - Section B - Non-Numerical Solutions

1.1 This system of units is the English-system equivalent of SI. Thus,

$$
g_{c}=1\left(\mathrm{l} \mathrm{~b}_{\mathrm{m}}\right)(\mathrm{ft})(\text { poundal })^{-1}(\mathrm{~s})^{-2}
$$

1.2 (a) Power is power, electrical included. Thus,

$$
\text { Power }[=] \frac{\text { energy }}{\text { time }}[=] \frac{\mathrm{N} \cdot \mathrm{~m}}{\mathrm{~s}}[=] \frac{\mathrm{kg} \cdot \mathrm{~m}^{2}}{\mathrm{~s}^{3}}
$$

(b) Electric current is by definition the time rate of transfer of electrical charge. Thus
Charge [=] (electric current)(time) [=] A•s
(c) Since power is given by the product of current and electric potential, then

$$
\text { Electric potential }[=] \frac{\text { power }}{\text { current }}[=] \frac{\mathrm{kg} \cdot \mathrm{~m}^{2}}{\mathrm{~A} \cdot \mathrm{~s}^{3}}
$$

(d) Since (by Ohm's Law) current is electric potential divided by resistance,

$$
\text { Resistance }[=] \frac{\text { electric potential }}{\text { current }}[=] \frac{\mathrm{kg} \cdot \mathrm{~m}^{2}}{\mathrm{~A}^{2} \cdot \mathrm{~s}^{3}}
$$

(e) Since electric potential is electric charge divided by electric capacitance,

$$
\text { Capacitance }[=] \frac{\text { charge }}{\text { electric potential }}[=] \frac{\mathrm{A}^{2} \cdot \mathrm{~s}^{4}}{\mathrm{~kg} \cdot \mathrm{~m}^{2}}
$$

1.3 The following are general:

$$
\begin{align*}
& \ln x=\ln 10 \times \log _{10} x \tag{A}\\
& P^{\text {sat }} / \mathrm{kPa}=P^{\text {sat }} / \text { torr } \times \frac{100}{750.061} \frac{\mathrm{kPa}}{\text { torr }} \tag{B}\\
& t /{ }^{\circ} \mathrm{C}=T / \mathrm{K}-273.15 \tag{C}
\end{align*}
$$

By Eqs. (B) and (A),

$$
\ln P^{\text {sat }} / \mathrm{kPa}=\ln 10 \times \log _{10} P^{\text {sat }} / \text { torr }+\ln \frac{100}{750.061}
$$

The given equation for $\log _{10} P^{\text {sat }} /$ torr is:

$$
\log _{10} P^{\text {sat }} / \text { torr }=a-\frac{b}{t /{ }^{\Phi} \mathrm{C}+c}
$$

Combining these last two equations with Eq. (C) gives:

$$
\begin{aligned}
\ln P^{\mathrm{sat}} / \mathrm{kPa} & =\ln 10\left[a-\frac{b}{T / \mathrm{K}-273.15+c}\left(+\ln \frac{100}{750.061}\right.\right. \\
& =2.3026\left[a-\frac{b}{T / \mathrm{K}-273.15+c}(-2.0150\right.
\end{aligned}
$$

Comparing this equation with the given equation for $\ln P^{\text {sat }} / \mathrm{kPa}$ shows that:

$$
A=2.3026 a-2.0150 \quad B=2.3026 b \quad C=c-273.15
$$

1.9 Reasons result from the fact that a spherical container has the minimum surface area for a given interior volume. Therefore:
(a) A minimum quantity of metal is required for tank construction.
(b) The tensile stress within the tank wall is everywhere uniform, with no sites of stress concentration. Moreover, the maximum stress within the tank wall is kept to a minimum.
(c) The surface area that must be insulated against heat transfer by solar radiation is minimized.
1.17 Kinetic energy as given by Eq. (1.5) has units of mass•velocity ${ }^{2}$. Its fundamental units are therefore:

$$
E_{K}[=] \mathrm{kg} \cdot \mathrm{~m}^{2} \cdot \mathrm{~s}^{-2}[=] \mathrm{N} \cdot \mathrm{~m}[=] \mathrm{J}
$$

Potential energy as given by Eq. (1.7) has units of mass•length-acceleration. Its fundamental units are therefore:

$$
E_{P}[=] \mathrm{kg} \cdot \mathrm{~m} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2}[=] \mathrm{N} \cdot \mathrm{~m}[=] \mathrm{J}
$$

1.20 See Table A.1, p. 678, of text.

- $1(\mathrm{~atm}) \approx 1 \mathrm{bar}=1 / 0.986923=1.01325 \mathrm{bar}$
- $1(\mathrm{Btu}) \approx 1 \mathrm{~kJ}=1 / 0.947831=1.05504 \mathrm{~kJ}$
- $1(\mathrm{hp}) \approx 0.75 \mathrm{~kW}=1 / 1.34102=0.745701 \mathrm{~kW}$
- $1(\mathrm{in}) \approx 2.5 \mathrm{~cm}=2.54 \mathrm{~cm}$ exactly, by definition (see p .651 of text)
- $1\left(\mathrm{l}_{\mathrm{m}}\right) \approx 0.5 \mathrm{~kg}=0.45359237 \mathrm{~kg}$ exactly, by definition (see p. 651 of text)
- $1($ mile $) \approx 1.6 \mathrm{~km}=5280 / 3280.84=1.60934 \mathrm{~km}$
- $1($ quart $) \approx 1$ liter $=1000 /(264.172 \times 4)=0.94635$ liter $\left(1\right.$ liter $\left.\equiv 1000 \mathrm{~cm}^{3}\right)$
- $1($ yard $) \approx 1 \mathrm{~m}=(0.0254)(36)=0.9144 \mathrm{~m}$ exactly, by definition of the (in) and the (yard)

An additional item could be:

- $1($ mile $)(\mathrm{hr})^{-1} \approx 0.5 \mathrm{~m} \mathrm{~s}^{-1}=(5280 / 3.28084)(1 / 3600)=0.44704 \mathrm{~m} \mathrm{~s}^{-1}$
1.21 One procedure here, which gives results that are internally consistent, though not exact, is to assume:

$$
1 \text { Year [=] } 1 \text { Yr [=] } 364 \text { Days }
$$

This makes 1 Year equivalent to exactly 527-Day Weeks. Then the average Month contains $30 \frac{1}{3}$ Days and $4 \frac{1}{3}$ Weeks. With this understanding,

$$
1 \text { Year [=] } 1 \mathrm{Yr}[=] 364 \text { Days [=] }(364)(24)(3600)=31,449,600 \text { Seconds }
$$

Whence,

- $1 \mathrm{Sc}[=] 31.4496$ Second 1 Second $[=] 0.031797 \mathrm{Sc}$
- 1 Mn [=] 314.496 Second

1 Minute [=] 60 Second [=] 0.19078 Mn

- 1 Hr [=] 3144.96 Second

1 Hour [=] 3600 Second [=] 1.14469 Hr

- 1 Dy [=] 31449.6 Second

1 Day [=] (24)(3600) Second [=] 2.74725 Dy

- 1 Wk [=] 314496. Second

1 Week [=] (7)(24)(3600) Second [=] 1.92308 Wk

- 1 Mo [=] 3144960 Second

1 Month [=] $\left(4 \frac{1}{3}\right)(7)(24)(3600)$ Second[=] 0.83333 Mo
The final item is obviously also the ratio $10 / 12$.

Chapter 2 - Section B - Non-Numerical Solutions

2.3 Equation (2.2) is here written: $\quad \partial U^{t}+\partial E_{P}+\partial E_{K}=Q+W$
(a) In this equation W does not include work done by the force of gravity on the system. This is accounted for by the ∂E_{K} term. Thus, $W=0$.
(b) Since the elevation of the egg decreases, $\operatorname{sign}\left(\partial E_{P}\right)$ is $(-)$.
(c) The egg is at rest both in its initial and final states; whence $\partial E_{K}=0$.
(d) Assuming the egg does not get scrambled, its internal energy does not change; thus $\partial U^{t}=0$.
(e) The given equation, with $\partial U^{t}=\partial E_{K}=W=0$, shows that $\operatorname{sign}(\mathrm{Q})$ is (-). A detailed examination of the process indicates that the kinetic energy of the egg just before it strikes the surface appears instantly as internal energy of the egg, thus raising its temperature. Heat transfer to the surroundings then returns the internal energy of the egg to its initial value.
2.6 If the refrigerator is entirely contained within the kitchen, then the electrical energy entering the refrigerator must inevitably appear in the kitchen. The only mechanism is by heat transfer (from the condenser of the refrigerator, usually located behind the unit or in its walls). This raises, rather than lowers, the temperature of the kitchen. The only way to make the refrigerator double as an air conditioner is to place the condenser of the refrigerator outside the kitchen (outdoors).
2.7 According to the phase rule [Eq. (2.7)], $F=2-\kappa+N$. According to the laboratory report a pure material $(N=1)$ is in 4-phase $(\kappa=4)$ equilibrium. If this is true, then $F=2-4+1=-1$. This is not possible; the claim is invalid.
2.8 The phase rule [Eq. (2.7)] yields: $F=2-\kappa+N=2-2+2=2$. Specification of T and P fixes the intensive state, and thus the phase compositions, of the system. Since the liquid phase is pure species 1 , addition of species 2 to the system increases its amount in the vapor phase. If the composition of the vapor phase is to be unchanged, some of species 1 must evaporate from the liquid phase, thus decreasing the moles of liquid present.
2.9 The phase rule [Eq. (2.7)] yields: $F=2-\kappa+N=2-2+3=3$. With only T and P fixed, one degree of freedom remains. Thus changes in the phase compositions are possible for the given T and P. If ethanol is added in a quantity that allows T and P to be restored to their initial values, the ethanol distributes itself between the phases so as to form new equilibrium phase compostions and altered amounts of the vapor and liquid phases. Nothing remains the same except T and P.
2.10 (a) Since $F=3$, fixing T and P leaves a single additional phase-rule variable to be chosen.
(b) Adding or removing liquid having the composition of the liquid phase or adding or removing vapor having the composition of the vapor phase does not change the phase compositions, and does not alter the intensive state of the system. However, such additions or removals do alter the overall composition of the system, except for the unusual case where the two phase compositions are the same. The overall composition, depending on the relative amounts of the two phases, can range from the composition of the liquid phase to that of the vapor phase.
2.14 If the fluid density is constant, then the compression becomes a constant- V process for which the work is zero. Since the cylinder is insulated, we presume that no heat is transferred. Equation (2.10) then shows that $\partial U=0$ for the compression process.
2.16 Electrical and mechanical irreversibilities cause an increase in the internal energy of the motor, manifested by an elevated temperature of the motor. The temperature of the motor rises until a dynamic equilibrium is established such that heat transfer from the motor to the srroundings exactly compensates for the irreversibilities. Insulating the motor does nothing to decrease the irreversibilities in the motor and merely causes the temperature of the motor to rise until heat-transfer equilibrium is reestablished with the surroundings. The motor temperature could rise to a level high enough to cause damage.
2.19 Let symbols without subscripts refer to the solid and symbols with subscript w refer to the water. Heat transfer from the solid to the water is manifested by changes in internal energy. Since energy is conserved, $\Delta U^{t}=-\Delta U_{w}^{t}$. If total heat capacity of the solid is $C^{t}(=m C)$ and total heat capacity of the water is $C_{w}^{t}\left(=m_{w} C_{w}\right)$, then:
or

$$
\begin{gather*}
C^{t}\left(T-T_{0}\right)=-C_{w}^{t}\left(T_{w}-T_{w_{0}}\right) \\
T_{w}=T_{w_{0}}-\frac{C^{t}}{C_{w}^{t}}\left(T-T_{0}\right) \tag{A}
\end{gather*}
$$

This equation relates instantaneous values of T_{w} and T. It can be written in the alternative form:
or

$$
\begin{align*}
& T C^{t}-T_{0} C^{t}=T_{w_{0}} C_{w}^{t}-T_{w} C_{w}^{t} \\
& T_{w_{0}} C_{w}^{t}+T_{0} C^{t}=T_{w} C_{w}^{t}+T C^{t} \tag{B}
\end{align*}
$$

The heat-transfer rate from the solid to the water is given as $\dot{Q}=K\left(T_{w}-T\right)$. [This equation implies that the solid is the system.] It may also be written:

$$
\begin{equation*}
C^{t} \frac{d T}{d \tau}=K\left(T_{w}-T\right) \tag{C}
\end{equation*}
$$

In combination with Eq. (A) this becomes:

$$
\begin{aligned}
& \qquad C^{t} \frac{d T}{d \tau}=K\left[T_{w_{0}}-\frac{C^{t}}{C_{w}^{t}}\left(T-T_{0}\right)-T\right] \\
& \text { or } \quad \frac{d T}{d \tau}=K\left(\frac{T_{w_{0}}-T}{C^{t}}-\frac{T-T_{0}}{C_{w}^{t}}\right)=-T K\left(\frac{1}{C^{t}}+\frac{1}{C_{w}^{t}}\right)+K\left(\frac{T_{w_{0}}}{C^{t}}+\frac{T_{0}}{C_{w}^{t}}\right) \\
& \text { Define: } \\
& \beta \equiv K\left(\frac{1}{C^{t}}+\frac{1}{C_{w}^{t}}\right) \quad \alpha \equiv K\left(\frac{T_{w_{0}}}{C^{t}}+\frac{T_{0}}{C_{w}^{t}}\right)
\end{aligned}
$$

where both α and β are constants. The preceding equation may now be written:

$$
\frac{d T}{d \tau}=\alpha-\beta T
$$

Rearrangement yields: $\quad \frac{d T}{\alpha-\beta T}=-\frac{1}{\beta} \frac{d(\alpha-\beta T)}{\alpha-\beta T}=d \tau$
Integration from T_{0} to T and from 0 to τ gives:

$$
-\frac{1}{\beta} \ln \left(\frac{\alpha-\beta T}{\alpha-\beta T_{0}}\right)=\tau
$$

which may be written: $\quad \frac{\alpha-\beta T}{\alpha-\beta T_{0}}=\exp (-\beta \tau)$
When solved for T and rearranged, this becomes:

$$
T=\frac{\alpha}{\beta}+\left(T_{0}-\frac{\alpha}{\beta}\right) \exp (-\beta \tau)
$$

where by the definitions of α and $\beta, \quad \frac{\alpha}{\beta}=\frac{T_{w_{0}} C_{w}^{t}+T_{0} C^{t}}{C_{w}^{t}+C^{t}}$
When $\tau=0$, the preceding equation reduces to $T=T_{0}$, as it should. When $\tau=\infty$, it reduces to $T=\alpha / \beta$. Another form of the equation for α / β is found when the numerator on the right is replaced by Eq. (B):

$$
\frac{\alpha}{\beta}=\frac{T_{w} C_{w}^{t}+T C^{t}}{C_{w}^{t}+C^{t}}
$$

By inspection, $T=\alpha / \beta$ when $T_{w}=T$, the expected result.
2.20 The general equation applicable here is Eq. (2.30):

$$
\Delta\left[\left(H+\frac{1}{2} u^{2}+z g\right) \dot{m}\right]_{\mathrm{fs}}=\dot{Q}+\dot{W}_{s}
$$

(a) Write this equation for the single stream flowing within the pipe, neglect potential- and kineticenergy changes, and set the work term equal to zero. This yields:

$$
(\Delta H) \dot{m}=\dot{Q}
$$

(b) The equation is here written for the two streams (I and II) flowing in the two pipes, again neglecting any potential- and kinetic-energy changes. There is no work, and the the heat transfer is internal, between the two streams, making $\dot{Q}=0$. Thus,

$$
(\Delta H)_{\mathrm{I}}^{\dot{m}_{\mathrm{I}}}+(\Delta H)_{\mathrm{II}} \dot{m}_{\mathrm{II}}=0
$$

(c) For a pump operating on a single liquid stream, the assumption of negligible potential- and kineticenergy changes is reasonable, as is the assumption of negligible heat transfer to the surroundings. Whence,

$$
(\Delta H) \dot{m}=\dot{W}
$$

(d) For a properly designed gas compressor the result is the same as in Part (c).
(e) For a properly designed turbine the result is the same as in Part (c).
(f) The purpose of a throttle is to reduce the pressure on a flowing stream. One usually assumes adiabatic operation with negligible potential- and kinetic-energy changes. Since there is no work, the equation is:

$$
\Delta H=0
$$

(g) The sole purpose of the nozzle is to produce a stream of high velocity. The kinetic-energy change must therefore be taken into account. However, one usually assumes negligible potential-energy change. Then, for a single stream, adiabatic operation, and no work:

$$
\Delta\left[\left(H+\frac{1}{2} u^{2}\right) \dot{m}\right]=0
$$

The usual case is for a negligible inlet velocity. The equation then reduces to:

$$
\Delta H+\frac{1}{2} u_{2}^{2}=0
$$

2.21 We reformulate the definition of Reynolds number, with mass flowrate \dot{m} replacing velocity u :

$$
\dot{m}=u A \rho=u \frac{\pi}{4} D^{2} \rho
$$

Solution for u gives:

$$
u=\frac{4}{\pi} \frac{\dot{m}}{D^{2} \rho}
$$

Whence,

$$
\operatorname{Re} \equiv \frac{u \rho D}{\mu}=\frac{4}{\pi} \frac{\dot{m}}{D^{2} \rho} \frac{\rho D}{\mu}=\frac{4}{\pi} \frac{\dot{m}}{D \mu}
$$

(a) Clearly, an increase in \dot{m} results in an increase in Re.
(b) Clearly, an increase in D results in a decrease in Re.
2.24 With the tank as control volume, Eqs. (2.25) and (2.29) become:

$$
\frac{d m}{d t}+\dot{m}^{\prime}=0 \quad \text { and } \quad \frac{d(m U)}{d t}+H^{\prime} \dot{m}^{\prime}=0
$$

Expanding the derivative in the second equation, and eliminating \dot{m}^{\prime} by the first equation yields:

$$
m \frac{d U}{d t}+U \frac{d m}{d t}-H^{\prime} \frac{d m}{d t}=0
$$

Multiply by $d t$ and rearrange:

$$
\frac{d U}{H^{\prime}-U}=\frac{d m}{m}
$$

Substitution of H^{\prime} for H requires the assumption of uniform (though not constant) conditions throughout the tank. This requires the absence of any pressure or temperature gradients in the gas in the tank.
2.32 From the given equation: $\quad P=\frac{R T}{V-b}$

By Eq. (1.3),

$$
W=-\int_{V_{1}}^{V_{2}} P d V=-\int_{V_{1}}^{V_{2}} \frac{R T}{V-b} d(V-b)
$$

Whence,

$$
W=R T \ln \left(\frac{V_{1}-b}{V_{2}-b}\right)
$$

2.35 Recall:

$$
d(P V)=P d V+V d P \quad \text { and } \quad d W=-P d V
$$

Whence, $\quad d W=V d P-d(P V) \quad$ and $\quad W=\int V d P-\Delta(P V)$
By Eq. (2.4), $\quad d Q=d U-d W$
By Eq. (2.11), $\quad U=H-P V \quad$ and $\quad d U=d H-P d V-V d P$
With $d W=-P d V$ the preceding equation becomes $d Q=d H-V d P$
Whence, $\quad Q=\Delta H-\int V d P$
2.38 (a) By Eq. (2.24a), $\quad \dot{m}=u A \rho \quad$ With \dot{m}, A, and ρ all constant, u must also be constant. With $q=u A, q$ is also constant.
(b) Because mass is conserved, \dot{m} must be constant. But $\dot{n}=\mathcal{M} / \dot{m}$ may change, because \mathcal{M} may change. At the very least, ρ depends on T and P. Hence u and q can both change.
2.40 In accord with the phase rule, the system has 2 degrees of freedom. Once T and P are specified, the intensive state of the system is fixed. Provided the two phases are still present, their compositions cannot change.
2.41 In accord with the phase rule, the system has 6 degrees of freedom. Once T and P are specified, 4 remain. One can add liquid with the liquid-phase composition or vapor with the vapor-phase composition or both. In other words, simply change the quantities of the phases.
2.43 Let \dot{n}^{\prime} represent the moles of air leaving the home. By an energy balance,

$$
\dot{Q}=\dot{n}^{\prime} H+\frac{d(n U)}{d t}=\dot{n}^{\prime} H+n \frac{d U}{d t}+U \frac{d n}{d t}
$$

But a material balance yields $\quad \dot{n}^{\prime}=-\frac{d n}{d t}$
Then

$$
\dot{Q}=-(H-U) \frac{d n}{d t}+n \frac{d U}{d t}
$$

or

$$
\dot{Q}=-P V \frac{d n}{d t}+n \frac{d U}{d t}
$$

2.44 (a) By Eq. (2.32a):

$$
\begin{gathered}
H_{2}-H_{1}+\frac{1}{2}\left(u_{2}^{2}-u_{1}^{2}\right)=0 \\
u=\frac{\dot{m}}{A \rho}=\frac{4}{\pi} \frac{\dot{m}}{\rho D^{2}}
\end{gathered}
$$

Then $\quad u_{2}^{2}-u_{1}^{2}=\left(\frac{4}{\pi}\right)^{2} \frac{\dot{m}^{2}}{\rho^{2}}\left(\frac{1}{D_{2}^{4}}-\frac{1}{D_{1}^{4}}\right) \quad$ and given $\quad H_{2}-H_{1}=\frac{1}{\rho}\left(P_{2}-P_{1}\right)$

$$
\frac{1}{\rho}\left(P_{2}-P_{1}\right)+\frac{1}{2}\left(\frac{4}{\pi}\right)^{2} \frac{\dot{m}^{2}}{\rho^{2}}\left(\frac{D_{1}^{4}-D_{2}^{4}}{D_{1}^{4} D_{2}^{4}}\right)=0
$$

Solve for \dot{m} :

$$
\dot{m}=\left[2 \rho\left(P_{1}-P_{2}\right)\left(\frac{\pi}{4}\right)^{2}\left(\frac{D_{1}^{4} D_{2}^{4}}{D_{1}^{4}-D_{2}^{4}}\right)\right]^{1 / 2}
$$

(b) Proceed as in part (a) with an extra term, Here solution for \dot{m} yields:

$$
\dot{m}=\left[2\left[\rho\left(P_{1}-P_{2}\right)-\rho^{2} C\left(T_{2}-T_{1}\right)\right]\left(\frac{\pi}{4}\right)^{2}\left(\frac{D_{1}^{4} D_{2}^{4}}{D_{1}^{4}-D_{2}^{4}}\right)\right]^{1 / 2}
$$

Because the quantity in the smaller square brackets is smaller than the leading term of the preceding result, the effect is to decrease the mass flowrate.

Chapter 3 - Section B - Non-Numerical Solutions

3.2 Differentiate Eq. (3.2) with respect to P and Eq. (3.3) with respect to T :

$$
\begin{aligned}
& \left(\frac{\pi \xi}{\pi P}\right)_{T}=-\frac{1}{V^{2}}\left(\frac{\pi V}{\pi P}\right)_{T}\left(\frac{\pi V}{\pi T}\right)_{P}+\frac{1}{V}\left(\frac{\pi^{2} V}{\pi P \pi T}\right)=\xi \epsilon+\left(\frac{\pi^{2} V}{\pi P \pi T}\right) \\
& \left(\frac{\pi \epsilon}{\pi T}\right)_{P}=\frac{1}{V^{2}}\left(\frac{\pi V}{\pi T}\right)_{P}\left(\frac{\pi V}{\pi P}\right)_{T}-\frac{1}{V}\left(\frac{\pi^{2} V}{\pi T \pi P}\right)=-\xi \epsilon-\left(\frac{\pi^{2} V}{\pi P \pi T}\right)
\end{aligned}
$$

Addition of these two equations leads immediately to the given equation.
One could of course start with Eq. (3.4) and apply the condition for an exact differential, but this topic is not covered until Chapter 6.
3.3 The Tait equation is given as: $\quad V=V_{0}\left(1-\frac{A P}{B+P}\right)$
where V_{0}, A, and B are constants. Application of Eq. (3.3), the definition of ϵ, requires the derivative of this equation:

$$
\left(\frac{\pi V}{\pi P}\right)_{T}=V_{0}\left[-\frac{A}{B+P}+\frac{A P}{(B+P)^{2}}\right]=\frac{A V_{0}}{B+P}\left(-1+\frac{P}{B+P}\right)
$$

Multiplication by $-1 / V$ in accord with Eq. (3.3), followed by substitution for V_{0} / V by the Tait equation leads to:

$$
\epsilon=\frac{A B}{(B+P)[B+(1-A) P]}
$$

3.7 (a) For constant T, Eq. (3.4) becomes: $\frac{d V}{V}=-\epsilon d P$

Integration from the initial state $\left(P_{1}, V_{1}\right)$ to an intermediate state (P, V) for constant ϵ gives:

$$
\ln \frac{V}{V_{1}}=-\epsilon\left(P-P_{1}\right)
$$

Whence,

$$
V=V_{1} \exp \left[-\epsilon\left(P-P_{1}\right)\right]=V_{1} \exp (-\epsilon P) \exp \left(\epsilon P_{1}\right)
$$

If the given equation applies to the process, it must be valid for the initial state; then, $A(T)=$ $V_{1} \exp \left(\epsilon P_{1}\right)$, and

$$
V=A(T) \exp (-\epsilon P)
$$

(b) Differentiate the preceding equation: $d V=-\epsilon A(T) \exp (-\epsilon P) d P$

$$
\text { Therefore, } \quad \begin{aligned}
W & =-\int_{V_{1}}^{V_{2}} P d V=\epsilon A(T) \int_{P_{1}}^{P_{2}} P \exp (-\epsilon P) d P \\
& =\frac{A(T)}{\epsilon}\left[\left(\epsilon P_{1}+1\right) \exp \left(-\epsilon P_{1}\right)-\left(\epsilon P_{2}+1\right) \exp \left(-\epsilon P_{2}\right)\right]
\end{aligned}
$$

With $V_{1}=A(T) \exp \left(-\kappa P_{1}\right)$ and $V_{2}=A(T) \exp \left(-\kappa P_{2}\right)$, this becomes:

$$
\begin{gathered}
W=\frac{1}{\kappa}\left[\left(\kappa P_{1}+1\right) V_{1}-\left(\kappa P_{2}+1\right) V_{2}\right] \\
W=P_{1} V_{1}-P_{2} V_{2}+\frac{V_{1}-V_{2}}{\kappa}
\end{gathered}
$$

or
3.11 Differentiate Eq. (3.35c) with respect to T :

$$
T\left(\frac{1-\delta}{\delta}\right) P^{[(1-\delta) / \delta]-1} \frac{d P}{d z}+P^{(1-\delta) / \delta} \frac{d T}{d z}=T\left(\frac{1-\delta}{\delta}\right) \frac{P^{(1-\delta) / \delta}}{P} \frac{d P}{d z}+P^{(1-\delta) / \delta} \frac{d T}{d z}=0
$$

Algebraic reduction and substitution for $d P / d z$ by the given equation yields:

$$
\frac{T}{P}\left(\frac{1-\delta}{\delta}\right)(-\mathcal{M} \rho g)+\frac{d T}{d z}=0
$$

For an ideal gas $T \rho / P=1 / R$. This substitution reduces the preceding equation to:

$$
\frac{d T}{d z}=-\frac{\mathcal{M} g}{R}\left(\frac{\delta-1}{\delta}\right)
$$

3.12 Example 2.13 shows that $U_{2}=H^{\prime}$. If the gas is ideal,

$$
H^{\prime}=U^{\prime}+P^{\prime} V^{\prime}=U^{\prime}+R T^{\prime} \quad \text { and } \quad U_{2}-U^{\prime}=R T^{\prime}
$$

For constant $C_{V}, \quad U_{2}-U^{\prime}=C_{V}\left(T_{2}-T^{\prime}\right) \quad$ and $\quad C_{V}\left(T_{2}-T^{\prime}\right)=R T^{\prime}$

Whence,

$$
\frac{T_{2}-T^{\prime}}{T^{\prime}}=\frac{R}{C_{V}}=\frac{C_{P}-C_{V}}{C_{V}}
$$

When C_{P} / C_{V} is set equal to γ, this reduces to:

$$
T_{2}=\gamma T^{\prime}
$$

This result indicates that the final temperature is independent of the amount of gas admitted to the tank, a result strongly conditioned by the assumption of no heat transfer between gas and tank.
3.13 Isobaric case ($\delta=0$). Here, Eqs. (3.36) and (3.37) reduce to:

$$
W=-R T_{1}\left(1^{\infty}-1\right) \quad \text { and } \quad Q=\frac{\gamma R T_{1}}{\gamma-1}\left(1^{\infty}-1\right)
$$

Both are indeterminate. The easiest resolution is to write Eq. (3.36) and (3.37) in the alternative but equivalent forms:

$$
W=\frac{R T_{1}}{\delta-1}\left(\frac{T_{2}}{T_{1}}-1\right) \quad \text { and } \quad Q=\frac{(\delta-\gamma) R T_{1}}{(\delta-1)(\gamma-1)}\left(\frac{T_{2}}{T_{1}}-1\right)
$$

from which we find immediately for $\delta=0$ that:

$$
W=-R\left(T_{2}-T_{1}\right) \quad \text { and } \quad Q=\frac{\gamma R}{\gamma-1}\left(T_{2}-T_{1}\right)=C_{P}\left(T_{2}-T_{1}\right)
$$

Isothermal case ($\delta=1$). Equations (3.36) and (3.37) are both indeterminate of form $0 / 0$. Application of l'Hôpital's rule yields the appropriate results:

$$
W=R T_{1} \ln \frac{P_{2}}{P_{1}} \quad \text { and } \quad Q=-R T_{1} \ln \frac{P_{2}}{P_{1}}
$$

Note that if $\quad y \equiv\left(\frac{P_{2}}{P_{1}}\right)^{(\delta-1) / \delta} \quad$ then $\quad \frac{d y}{d \delta}=\frac{1}{\delta^{2}}\left(\frac{P_{2}}{P_{1}}\right)^{(\delta-1) / \delta} \ln \frac{P_{2}}{P_{1}}$
Adiabatic case $(\delta=\gamma)$. In this case simple substitution yields:

$$
W=\frac{R T_{1}}{\gamma-1}\left[\left(\frac{P_{2}}{P_{1}}\right)^{(\gamma-1) / \gamma}-1\right] \quad \text { and } \quad Q=0
$$

Isochoric case $(\delta=\infty)$. Here, simple substitution yields:

$$
W=0 \quad \text { and } \quad Q=\frac{R T_{1}}{\gamma-1}\left(\frac{P_{2}}{P_{1}}-1\right)=\frac{R T_{1}}{\gamma-1}\left(\frac{T_{2}}{T_{1}}-1\right)=C_{V}\left(T_{2}-T_{1}\right)
$$

3.14 What is needed here is an equation relating the heat transfer to the quantity of air admitted to the tank and to its temperature change. For an ideal gas in a tank of total volume V^{t} at temperature T,

$$
n_{1}=\frac{P_{1} V^{t}}{R T} \quad \text { and } \quad n_{2}=\frac{P_{2} V^{t}}{R T}
$$

The quantity of air admitted to the tank is therefore:

$$
\begin{equation*}
n^{\prime}=\frac{V^{t}\left(P_{2}-P_{1}\right)}{R T} \tag{A}
\end{equation*}
$$

The appropriate energy balance is given by Eq. (2.29), which here becomes:

$$
\frac{d(n U)_{\mathrm{tank}}}{d t}-\dot{n}^{\prime} H^{\prime}=\dot{Q}
$$

where the prime (${ }^{\prime}$) identifies the entrance stream of constant properties. Multiplying by $d t$ and integrating over the time of the process yields:

$$
n_{2} U_{2}-n_{1} U_{1}-n^{\prime} H^{\prime}=Q
$$

With $n^{\prime}=n_{2}-n_{1}$,

$$
n_{2}\left(U_{2}-H^{\prime}\right)-n_{1}\left(U_{1}-H^{\prime}\right)=Q
$$

Because $U_{2}=H_{2}-R T$ and $U_{1}=H_{1}-R T$, this becomes:
or

$$
\begin{gathered}
n_{2}\left(H_{2}-H^{\prime}-R T\right)-n_{1}\left(U_{1}-H^{\prime}-R T\right)=Q \\
n_{2}\left[C_{P}\left(T-T^{\prime}\right)-R T\right]-n_{1}\left[C_{P}\left(T-T^{\prime}\right)-R T\right]=Q
\end{gathered}
$$

Because $n^{\prime}=n_{2}-n_{1}$, this reduces to:

$$
Q=n^{\prime}\left[C_{P}\left(T-T^{\prime}\right)-R T\right]
$$

Given: $\quad V^{t}=100,000 \mathrm{~cm}^{3} \quad T=298.15 \mathrm{~K} \quad T^{\prime}=318.15 \mathrm{~K} \quad P_{1}=101.33 \mathrm{kPa} \quad P_{2}=1500 \mathrm{kPa}$

By Eq. (A) with $R=8,314 \mathrm{~cm}^{3} \mathrm{kPa} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$,

$$
n^{\prime}=\frac{(100,000)(1500-101.33)}{(8,314)(298.15)}=56.425 \mathrm{~mol}
$$

With $R=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ and $C_{P}=(7 / 2) R$, the energy equation gives:

$$
\begin{gathered}
Q=(56.425)(8.314)\left[\frac{7}{2}(298.15-318.15)-298.15\right]=-172,705.6 \mathrm{~J} \\
Q=-172.71 \mathrm{~kJ}
\end{gathered}
$$

or
3.15 (a) The appropriate energy balance is given by Eq. (2.29), here written:

$$
\frac{d(n U)_{\mathrm{tank}}}{d t}-\dot{n}^{\prime} H^{\prime}=\dot{Q}
$$

where the prime (${ }^{\prime}$) identifies the entrance stream of constant properties. Multiplying by $d t$ and integrating over the time of the process yields:

$$
n_{2} U_{2}-n_{1} U_{1}-n^{\prime} H^{\prime}=Q
$$

Since $n^{\prime}=n_{2}-n_{1}$, rearrangement gives:

$$
n_{2}\left(U_{2}-H^{\prime}\right)-n_{1}\left(U_{1}-H^{\prime}\right)=Q
$$

(b) If the gas is ideal, $\quad H^{\prime}=U^{\prime}+P^{\prime} V^{\prime}=U^{\prime}+R T^{\prime}$

Whence for an ideal gas with constant heat capacities,

$$
U_{2}-H^{\prime}=U_{2}-U^{\prime}-R T^{\prime}=C_{V}\left(T_{2}-T^{\prime}\right)-R T^{\prime}
$$

Substitute $R=C_{P}-C_{V}: \quad U_{2}-H^{\prime}=C_{V} T_{2}-C_{V} T^{\prime}-C_{P} T^{\prime}+C_{V} T^{\prime}=C_{V} T_{2}-C_{P} T^{\prime}$
Similarly, $\quad U_{1}-H^{\prime}=C_{V} T_{1}-C_{P} T^{\prime}$
and

$$
n_{2}\left(C_{V} T_{2}-C_{P} T^{\prime}\right)-n_{1}\left(C_{V} T_{1}-C_{P} T^{\prime}\right)=Q
$$

Note also:

$$
n_{2}=\frac{P_{2} V_{\text {tank }}}{R T_{2}} \quad n_{1}=\frac{P_{1} V_{\text {tank }}}{R T_{1}}
$$

(c) If $n_{1}=0$,

$$
n_{2}\left(C_{V} T_{2}-C_{P} T^{\prime}\right)=Q
$$

(d) If in addition $Q=0$,

$$
C_{V} T_{2}=C_{P} T^{\prime} \quad \text { and } \quad T_{2}=\frac{C_{P}}{C_{V}} T
$$

Whence,

$$
T_{2}=\gamma T^{\prime}
$$

(e) 1. Apply the result of Part (d), with $\gamma=1.4$ and $T^{\prime}=298.15 \mathrm{~K}$:

$$
T_{2}=(1.4)(298.15)=417.41 \mathrm{~K}
$$

Then, with $R=83.14 \mathrm{bar} \mathrm{cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$:

$$
n_{2}=\frac{P_{2} V_{\text {tank }}}{R T_{2}}=\frac{(3)\left(4 \times 10^{6}\right)}{(83.14)(417.41)}=345.8 \mathrm{~mol}
$$

2. Heat transfer between gas and tank is: $Q=-m_{\mathrm{tank}} C\left(T_{2}-T^{\prime}\right)$
where C is the specific heat of the tank. The equation of Part (c) now becomes:

Moreover

$$
\begin{gathered}
n_{2}\left(C_{V} T_{2}-C_{P} T^{\prime}\right)=-m_{\mathrm{tank}} C\left(T_{2}-T^{\prime}\right) \\
n_{2}=\frac{P_{2} V_{\mathrm{tank}}}{R T_{2}}
\end{gathered}
$$

These two equations combine to give:

$$
\frac{P_{2} V_{\mathrm{tank}}}{R T_{2}}\left(C_{V} T_{2}-C_{P} T^{\prime}\right)=-m_{\mathrm{tank}} C\left(T_{2}-T^{\prime}\right)
$$

With $C_{P}=(7 / 2) R$ and $C_{V}=C_{P}-R=(7 / 2) R-R=(5 / 2) R$, this equation becomes:

$$
\frac{P_{2} V_{\mathrm{tank}}}{R T_{2}}\left(5 T_{2}-7 T^{\prime}\right) \frac{R}{2}=-m_{\mathrm{tank}} C\left(T_{2}-T^{\prime}\right)
$$

Note: R in the denominator has the units of $P V ; R$ in the numerator has energy units.
Given values in the appropriate units are:

$$
\begin{gathered}
m_{\text {tank }}=400 \mathrm{~kg} \quad C=460 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~kg}^{-1} \quad T^{\prime}=298.15 \mathrm{~K} \\
P_{2}=3 \mathrm{bar} \quad V_{\text {tank }}=4 \times 10^{6} \mathrm{~cm}^{3}
\end{gathered}
$$

Appropriate values for R are therefore:

$$
R(\text { denominator })=83.14 \mathrm{bar} \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \quad R(\text { numerator })=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}
$$

Numerically,

$$
\frac{(3)\left(4 \times 10^{6}\right)}{(83.14)\left(T_{2}\right)}\left[(5)\left(T_{2}\right)-(7)(298.15)\right] \frac{8.314}{2}=-(400)(460)\left(T_{2}-298.15\right)
$$

Solution for T_{2} is by trial, by an iteration scheme, or by the solve routine of a software package. The result is $T_{2}=304.217 \mathrm{~K}$. Then,

$$
n_{2}=\frac{P_{2} V_{\text {tank }}}{R T_{2}}=\frac{(3)\left(4 \times 10^{6}\right)}{(83.14)(304.217)}=474.45 \mathrm{~mol}
$$

3.16 The assumption made in solving this problem is that the gas is ideal with constant heat capacities.

The appropriate energy balance is given by Eq. (2.29), here written:

$$
\frac{d(n U)_{\mathrm{tank}}}{d t}+H^{\prime} \dot{n}^{\prime}=\dot{Q}
$$

Multiplied by $d t$ it becomes:

$$
d(n U)+H^{\prime} d n^{\prime}=d Q
$$

 bled from the tank is merely throttled, $H^{\equiv=} H$, where H is the enthalpy of the contents of the tank. By material balance, $d n=-d n$. Thus,

$$
n d U+U d n-H d n=Q \quad \text { or } \quad n d U-(H-U) d n=d Q
$$

Also, $\quad d U=C_{V} d T \quad H-U=P V=R T \quad d Q=-m C d T$
where m is the mass of the tank, and C is its specific heat.
Thus,

$$
n C_{V} d T-R T d n=-m C d T
$$

or

$$
\frac{d T}{T}=\frac{R}{n C_{V}+m C} d n=\frac{R}{C_{V}} \frac{d\left(n C_{V}\right)}{n C_{V}+m C}=\frac{R}{C_{V}} \frac{d\left(n C_{V}+m C\right)}{n C_{V}+m C}
$$

Integration yields:

$$
\ln \left(\frac{T_{2}}{T_{1}}\right)=\frac{R}{C_{V}} \ln \left(\frac{n_{2} C_{V}+m C}{n_{1} C_{V}+m C}\right)
$$

or

$$
\frac{T_{2}}{T_{1}}=\left(\frac{n_{2} C_{V}+m C}{n_{1} C_{V}+m C}\right)^{R / C_{V}}
$$

In addition,

$$
n_{1}=\frac{P_{1} V_{\text {tank }}}{R T_{1}} \quad \text { and } \quad n_{2}=\frac{P_{2} V_{\text {tank }}}{R T_{2}}
$$

These equations may be solved for T_{2} and n_{2}. If $m C \ggg n C_{V}$, then $T_{2}=T_{1}$. If $m C=0$, then we recover the isentropic expansion formulas.
3.27 For an ideal gas, $\quad \Delta U=C_{V} \Delta T \quad P V=R T \quad \Delta(P V)=R \Delta T$

Whence,

$$
\Delta U=\frac{C_{V}}{R} \Delta(P V)
$$

But $\quad \frac{C_{V}}{R}=\frac{C_{V}}{C_{P}-C_{V}}=\frac{1}{\gamma-1}$
Therefore :

$$
\Delta U=\frac{1}{\gamma-1} \Delta(P V)
$$

3.28 Since $Z=P V / R T$ the given equation can be written: $\quad V=\frac{R T}{P}+B \equiv R T$

Differentiate at constant $T: \quad d V=-\frac{R T}{P^{2}} d P$
The isothermal work is then: $\quad W=-\int_{V_{1}}^{V_{2}} P d V=R T \int_{P_{1}}^{P_{2}} \frac{1}{P} d P$

Whence,

$$
W=R T \ln \frac{P_{2}}{P_{1}}
$$

Compared with Eq. (3.27)
3.29 Solve the given equation of state for $V: \quad V=\frac{R T}{P}+b-\frac{\theta}{R T}$

Whence,

$$
\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{R T}{P^{2}}
$$

By definition [Eq. (3.3)]:

$$
\kappa \equiv \frac{-1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}
$$

Substitution for both V and the derivative yields:

$$
\kappa=\frac{R T}{P^{2}\left(\frac{R T}{P}+b-\frac{\theta}{R T}\right)}
$$

Solve the given equation of state for $P: \quad P=\frac{R T}{V-b+\frac{\theta}{R T}}$
Differentiate: $\quad\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{R}{\left(V-b+\frac{\theta}{R T}\right)}+\frac{\left(\frac{\theta}{T}-\frac{d \theta}{d T}\right)}{\left(V-b+\frac{\theta}{R T}\right)^{2}}$
By the equation of state, the quantity in parentheses is $R T / P$; substitution leads to:

$$
\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{P}{T}+\left(\frac{P}{R T}\right)^{2}\left(\frac{\theta}{T}-\frac{d \theta}{d T}\right)
$$

3.31 When multiplied by $V / R T$, Eq. (3.42) becomes:

$$
Z=\frac{V}{V-b}-\frac{a(T) V / R T}{(V+\epsilon b)(V+\sigma b)}=\frac{V}{V-b}-\frac{a(T) V / R T}{V^{2}+(\epsilon+\sigma) b V+\epsilon \sigma b^{2}}
$$

Substitute $\quad V=1 / \rho: \quad Z=\frac{1}{1-b \rho}-\frac{a(T) \rho}{R T} \frac{1}{1+(\epsilon+\sigma) b \rho+\epsilon \sigma(b \rho)^{2}}$
Expressed in series form, the first term on the right becomes: $\quad \frac{1}{1-b \rho}=1+b \rho+(b \rho)^{2}+\cdots$
The final fraction of the second term becomes:

$$
\frac{1}{1+(\epsilon+\sigma) b \rho+\epsilon \sigma(b \rho)^{2}}=1-(\epsilon+\sigma) b \rho+\left[(\epsilon+\sigma)^{2}-\epsilon \sigma\right](b \rho)^{2}+\cdots
$$

Combining the last three equations gives, after reduction:

$$
Z=1+\left(b-\frac{a(T)}{R T}\right) \rho+\left[b^{2}+\frac{(\epsilon+\sigma) a(T) b}{R T}\right] \rho^{2}+\cdots
$$

Equation (3.12) may be written: $\quad Z=1+B \rho+C \rho^{2}+\cdots$
Comparison shows: $\quad B=b-\frac{a(T)}{R T} \quad$ and $\quad C=b^{2}+\frac{(\epsilon+\sigma) b a(T)}{R T}$

For the Redlich/Kwong equation, the second equation becomes:

$$
C=b^{2}+\frac{b a(T)}{R T}=b\left(b+\frac{a(T)}{R T}\right)
$$

Values for $a(T)$ and b are found from Eqs. (3.45) and (3.46), with numerical values from Table 3.1:

$$
b=\frac{0.08664 R T_{c}}{P_{c}} \quad \frac{a(T)}{R T}=\frac{0.42748 R T_{c}}{T_{r}^{1.5} P_{c}}
$$

The numerical comparison is an open-ended problem, the scope of which must be decided by the instructor.
3.36 Differentiate Eq. (3.11): $\quad\left(\frac{\partial Z}{\partial P}\right)_{T}=B^{\prime}+2 C^{\prime} P+3 D^{\prime} P^{2}+\cdots$

Whence,

$$
\left(\frac{\partial Z}{\partial P}\right)_{T, P=0}=B^{\prime}
$$

Equation (3.12) with $\quad V=1 / \rho: \quad Z=1+B \rho+C \rho^{2}+D \rho^{3}+\cdots$

Differentiate:

$$
\left(\frac{\partial Z}{\partial \rho}\right)_{T}=B+2 C \rho+3 D \rho^{2}+\cdots
$$

Whence,

$$
\left(\frac{\partial Z}{\partial \rho}\right)_{T, \rho=0}=B
$$

3.56 The compressibility factor is related to the measured quantities by:

$$
\begin{equation*}
Z=\frac{P V^{t}}{n R T}=\frac{M P V^{t}}{m R T} \tag{A}
\end{equation*}
$$

By Eq. (3.39),

$$
\begin{equation*}
B=(Z-1) V=\frac{(Z-1) M V^{t}}{m} \tag{B}
\end{equation*}
$$

(a) By Eq. (A),

$$
\begin{equation*}
\frac{d Z}{Z}=\frac{d M}{M}+\frac{d P}{P}+\frac{d V^{t}}{V^{t}}-\frac{d m}{m}-\frac{d T}{T} \tag{C}
\end{equation*}
$$

Thus

$$
\operatorname{Max}|\% \delta Z| \approx|\% \delta M|+|\% \delta P|+\left|\% \delta V^{t}\right|+|\% \delta m|+|\% \delta T|
$$

Assuming approximately equal error in the five variables, a $\pm 1 \%$ maximum error in Z requires errors in the variables of $<0.2 \%$.
(b) By Eq. (B),

$$
\frac{d B}{B}=\frac{Z}{Z-1} \frac{d Z}{Z}+\frac{d V^{t}}{V^{t}}+\frac{d M}{M}-\frac{d m}{m}
$$

By Eq. (C), $\quad \frac{d B}{B}=\frac{Z}{Z-1}\left(\frac{d P}{P}-\frac{d T}{T}\right)+\frac{2 Z-1}{Z-1}\left(\frac{d V^{t}}{V^{t}}+\frac{d M}{M}-\frac{d m}{m}\right)$
Therefore

$$
\begin{aligned}
\operatorname{Max}|\% \delta B| & \approx\left|\frac{Z}{Z-1}\right|(|\% \delta P|+|\% \delta T|) \\
& +\left|\frac{2 Z-1}{Z-1}\right|\left(\left|\% \delta V^{t}\right|+|\% \delta M|+|\% \delta m|\right)
\end{aligned}
$$

For $Z \approx 0.9$ and for approximately equal error in the five variables, a $\pm 1 \%$ maximum error in B requires errors in the variables of less than about 0.02%. This is because the divisor $Z-1 \approx 0.1$. In the limit as $Z \rightarrow 1$, the error in B approaches infinity.
3.57 The Redlich/Kwong equation has the following equivalent forms, where a and b are constants:

$$
Z=\frac{V}{V-b}-\frac{a}{R T^{3 / 2}(V+b)} \quad P=\frac{R T}{V-b}-\frac{a}{T^{1 / 2} V(V+b)}
$$

From these by differentiation,

$$
\begin{gather*}
\left(\frac{\partial Z}{\partial V}\right)_{T}=\frac{a(V-b)^{2}-b R T^{3 / 2}(V+b)^{2}}{R T^{3 / 2}(V-b)^{2}(V+b)^{2}} \tag{A}\\
\left(\frac{\partial P}{\partial V}\right)_{T}=\frac{a(2 V+b)(V-b)^{2}-R T^{3 / 2} V^{2}(V+b)^{2}}{T^{1 / 2} V^{2}(V-b)^{2}(V+b)^{2}} \tag{B}
\end{gather*}
$$

In addition, we have the mathematical relation:

$$
\begin{equation*}
\left(\frac{\partial Z}{\partial P}\right)_{T}=\frac{(\partial Z / \partial V)_{T}}{(\partial P / \partial V)_{T}} \tag{C}
\end{equation*}
$$

Combining these three equations gives

$$
\begin{equation*}
\left(\frac{\partial Z}{\partial P}\right)_{T}=\frac{a V^{2}(V-b)^{2}-b R T^{3 / 2} V^{2}(V+b)^{2}}{a R T(2 V+b)(V-b)^{2}-R^{2} T^{5 / 2} V^{2}(V+b)^{2}} \tag{D}
\end{equation*}
$$

For $P \rightarrow 0, V \rightarrow \infty$, and Eq. (D) becomes:

$$
\lim _{P \rightarrow 0}\left(\frac{\partial Z}{\partial P}\right)_{T}=\frac{b-a / R T^{3 / 2}}{R T}
$$

For $P \rightarrow \infty, V \rightarrow b$, and Eq. (D) becomes:

$$
\lim _{P \rightarrow \infty}\left(\frac{\partial Z}{\partial P}\right)_{T}=\frac{b}{R T}
$$

3.60 (a) Differentiation of Eq. (3.11) gives:

$$
\left(\frac{\partial Z}{\partial P}\right)_{T}=B^{\prime}+2 C^{\prime} P+3 D^{\prime} P^{2}+\cdot \quad \text { whence } \quad \lim _{P \rightarrow 0}\left(\frac{\partial Z}{\partial P}\right)_{T}=B^{\prime}
$$

If the limiting value of the derivative is zero, then $B^{\prime}=0$, and $\quad B=B^{\prime} R T=0$
(b) For simple fluids, $\omega=0$, and Eqs. (3.52) and (3.53) combine to give $B^{0}=B P_{c} / R T_{c}$. If $B=0$, then by Eq. (3.65),

$$
B^{0}=0.083-\frac{0.422}{T_{r}^{1.6}}=0
$$

and

$$
T_{r}=\left(\frac{0.422}{0.083}\right)^{(1 / 1.6)}=2.763
$$

3.63 Linear isochores require that $(\gamma P / \gamma T)_{V}=$ Constant.
(a) By Eq. (3.4) applied to a constant- V process: $\left(\frac{\gamma P}{\gamma T}\right)_{V}=\frac{\beta}{\kappa}$
(b) For an ideal gas $P V=R T$, and $\quad\left(\frac{\gamma P}{\gamma T}\right)_{V}=\frac{R}{V}$
(c) Because a and b are constants, differentiation of Eq. (3.42) yields: $\left(\frac{\gamma P}{\gamma T}\right)_{V}=\frac{R}{V-b}$

In each case the quantities on the right are constant, and so therefore is the derivative.
3.64 (a) Ideal gas: Low P, or low ρ, or large V and/or high T. See Fig. 3.15 for quantitative guidance.
(b) Two-term virial equation: Low to modest P. See Fig. 3.14 for guidance.
(c) Cubic EOS: Gases at (in principle) any conditions.
(d) Lee/Kesler correlation: Same as (c), but often more accurate. Note that corresponding states correlations are strictly valid for non-polar fluids.
(e) Incompressible liquids: Liquids at normal $T \mathrm{~s}$ and $P \mathrm{~s}$. Inappropriate where changes in V are required.
(f) Rackett equation: Saturated liquids; a corresponding states application.
(g) Constant β, κ liquids: Useful where changes in V are required. For absolute values of V, a reference volume is required.
(h) Lydersen correlation for liquids: a corresponding-states method applicable to liquids at extreme conditions.
3.66 Write Eq. (3.12) with $1 / \rho$ substituted everywhere for V. Subtract 1 from each side of the equation and divide by ρ. Take the limit as $\rho \rightarrow 0$.
3.68 Follow the procedure laid out on p. 93 with respect to the van der Waals equation to obtain from Eq. (3.42) the following three more-general equations:

$$
\begin{gathered}
1+(1-\epsilon-\sigma) \Omega=3 Z_{c} \\
\epsilon \sigma \Omega^{2}-(\epsilon+\sigma) \Omega(\Omega+1)+\Psi=3 Z_{c}^{2} \\
\epsilon \sigma \Omega^{2}(\Omega+1)+\Psi \Omega=Z_{c}^{3}
\end{gathered}
$$

where by definition [see Eqs. (3.45) and (3.46)]:

$$
\Omega \equiv \frac{b P_{c}}{R T_{c}} \quad \text { and } \quad \Psi \equiv \frac{a_{c} P_{c}}{R^{2} T_{c}^{2}}
$$

For a given EOS, ϵ and σ are fixed, and the above set represents 3 equations in 3 unknowns, Ω, Ψ, and Z_{c}. Thus, for a given EOS the value of Z_{c} is preordained, unrelated to experimental values of Z_{c}.
(a, b) For the Redlich/Kwong and Soave/Redlich/Kwong equations, $\epsilon=0$ and $\sigma=1$. Substitution of these values into the 3-equation set allows their solution to yield:

$$
Z_{c}=\frac{1}{3} \quad \Omega=0.086640 \quad \Psi=0.427480
$$

(c) For the Peng/Robinson equation, $\epsilon=1-\sqrt{2}$ and $\sigma=1+\sqrt{2}$. As for the Soave and SRK equations the 3 -equation set can be solved (with considerably greater difficulty) to yield:

$$
Z_{c}=0.30740 \quad \Omega=0.077796 \quad \Psi=0.457236
$$

3.69 Equation (3.12): $Z=1+B \rho+C \rho^{2}+\ldots \quad$ where $\rho=P / Z R T$

Eliminate ρ :

$$
Z=1+\frac{B P}{Z R T}+\frac{C P^{2}}{Z^{2} R^{2} T^{2}}+\ldots
$$

$$
Z=1+\frac{B P_{c}}{R T_{c}} \cdot \frac{P_{r}}{Z T_{r}}+\frac{C P_{c}^{2}}{R^{2} T_{c}^{2}} \cdot \frac{P_{r}^{2}}{Z^{2} T_{r}^{2}}+\ldots=1+\hat{B} \cdot \frac{P_{r}}{Z T_{r}}+\hat{C} \cdot \frac{P_{r}^{2}}{Z^{2} T_{r}^{2}}+\ldots
$$

Rearrange:

$$
\frac{(Z-1) Z T_{r}}{P_{r}}=\hat{B}+\hat{C} \cdot \frac{P_{r}}{Z T_{r}}+\ldots
$$

$$
\hat{B}=\lim _{P_{r} \rightarrow 0}(Z-1) Z T_{r} / P_{r}
$$

3.74 In a cylinder filled with 1 mole of an ideal gas, the molecules have kinetic energy only, and for a given T and P occupy a volume $V^{i g}$.
(a) For 1 mole of a gas with molecules having kinetic energy and purely attractive interactions at the same T and P, the intermolecular separations are smaller, and $V<V^{i g}$. In this case $Z<1$.
(b) For 1 mole of a gas with molecules having kinetic energy and purely repulsive interactions at the same T and P, the intermolecular separations are larger, and $V>V^{i g}$. In this case $Z>1$.
(c) If attractive and repulsive interactions are both present, they tend to cancel each other. If in balance, then the average separation is the same as for an ideal gas, and $V=V^{i g}$. In this case $Z=1$.
3.75 van der Waals EOS: $\quad P=\frac{R T}{V-b}-\frac{a}{V^{2}} \quad Z=\frac{V}{V-b}-\frac{a}{V R T}$

Set $V=1 / \rho$:

$$
Z=\frac{1}{1-b \rho}-\frac{a \rho}{R T}=1+\frac{b \rho}{1-b \rho}-\frac{a \rho}{R T}
$$

whence

$$
Z_{\text {rep }}=\frac{b \rho}{1-b \rho} \quad Z_{\text {attr }}=\frac{a \rho}{R T}
$$

3.76 Write each modification in " Z-form,"
(a)

$$
Z=\frac{V}{V-b}-\frac{a}{R T} \quad \lim _{V \rightarrow \infty} Z=1-\frac{a}{R T}
$$

The required behavior is: $\quad \lim _{V \rightarrow \infty} Z=1$
(b)

$$
Z=\frac{V}{(V-b)^{2}}-\frac{a}{R T}
$$

$$
\lim _{V \rightarrow \infty} Z=-\frac{a}{R T}
$$

The required behavior is: $\quad \lim _{V \rightarrow \infty} Z=1$
(c) $\quad Z=\frac{1}{V-b}-\frac{a}{V R T} \quad \lim _{V \rightarrow \infty} Z=0$

The required behavior is: $\quad \lim _{V \rightarrow \infty} Z=1$

$$
\begin{equation*}
Z=1-\frac{a}{V R T}=1-\frac{a \rho}{R T} \tag{d}
\end{equation*}
$$

Although $\lim _{V \rightarrow \infty} Z=1$ as required, the equation makes Z linear in ρ; i.e., a 2-term virial EOS in ρ. Such an equation is quite inappropriate at higher densities.
3.77 Refer to Pb. 2.43, where the general equation was developed; $\quad \dot{Q}=-P V \frac{d n}{d t}+n \frac{d U}{d t}$ For an ideal gas, $\quad n=\frac{P V^{t}}{R T} \quad$ and $\quad \frac{d n}{d t}=-\left(\frac{P V^{t}}{R T^{2}}\right) \frac{d T}{d t} \quad$ Note that $P V^{t} / R=$ const.
Also for an ideal gas, $\quad d U=C_{V} d T \quad$ whence $\quad \frac{d U}{d t}=C_{V} \frac{d T}{d t}$

$$
\dot{Q}=-R T\left(-\frac{P V^{t}}{R T^{2}}\right) \frac{d T}{d t}+\frac{P V^{t}}{R T} C_{V} \frac{d T}{d t}=C_{P} \frac{P V^{t}}{R T} \frac{d T}{d t}
$$

Integration yields:

$$
\ln \frac{T_{2}}{T_{1}}=\frac{R}{C_{P} P V^{t}} \int_{t_{1}}^{t_{2}} \dot{Q} d t
$$

3.78 By Eq. (3.4), $\quad \frac{d V}{V}=\beta d T-\kappa d P \quad$ where β and κ are average values

Integrate: $\ln \frac{V_{2}}{V_{1}}=\ln \frac{V_{2}^{t}}{V_{1}^{t}}=\ln \frac{D_{2}^{2}}{D_{1}^{2}}=\ln \left(\frac{D_{1}+\delta D}{D_{1}}\right)^{2}=\ln \left(1+\frac{\delta D}{D_{1}}\right)^{2}=\beta\left(T_{2}-T_{1}\right)-\kappa\left(P_{2}-P_{1}\right)$

$$
\ln (1.0035)^{2}=250 \times 10^{-6}(40-10)-45 \times 10^{-6}\left(P_{2}-6\right)
$$

Solution for P_{2} yields: $\quad P_{2}=17.4 \mathrm{bar}$

Chapter 4 - Section B - Non-Numerical Solutions

4.5 For consistency with the problem statement, we rewrite Eq. (4.8) as:

$$
\left\langle C_{P} /=A+\frac{B}{2} T_{1}(v+1)+\frac{C}{3} T_{1}^{2}\left(v^{2}+v+1\right)\right.
$$

where $v \equiv T_{2} / T_{1}$. Define $C_{P_{\mathrm{am}}}$ as the value of C_{P} evaluated at the arithmetic mean temperature T_{am}. Then:

$$
C_{P_{\mathrm{am}}}=A+B T_{\mathrm{am}}+C T_{\mathrm{am}}^{2}
$$

where $\quad T_{\mathrm{am}} \equiv \frac{T_{2}+T_{1}}{2}=\frac{T_{1} v+T_{1}}{2}=\frac{T_{1}(v+1)}{2} \quad$ and $\quad T_{\mathrm{am}}^{2}=\frac{T_{1}^{2}}{4}\left(v^{2}+2 v+1\right)$

Whence,

$$
C_{P_{\mathrm{am}}}=A+\frac{B}{2} T_{1}(v+1)+\frac{C}{4} T_{1}^{2}\left(v^{2}+2 v+1\right)
$$

Define ε as the difference between the two heat capacities:

$$
\varepsilon \equiv\left\langle C_{P} /-C_{P_{\mathrm{am}}}=C T_{1}^{2}\left[\frac{v^{2}+v+1}{3}-\frac{v^{2}+2 v+1}{4}(\right.\right.
$$

This readily reduces to: $\quad \varepsilon=\frac{C T_{1}^{2}}{12}(\nu-1)^{2}$
Making the substitution $v=T_{2} / T_{1}$ yields the required answer.
4.6 For consistency with the problem statement, we rewrite Eq. (4.8) as

$$
\left\langle C_{P} /=A+\frac{B}{2} T_{1}(\nu+1)+\frac{D}{\nu T_{1}^{2}}\right.
$$

where $v \equiv T_{2} / T_{1}$. Define $C_{P_{\mathrm{am}}}$ as the value of C_{P} evaluated at the arithmetic mean temperature T_{am}. Then:

$$
C_{P_{\mathrm{am}}}=A+B T_{\mathrm{am}}+\frac{D}{T_{\mathrm{am}}^{2}}
$$

As in the preceding problem,

$$
T_{\mathrm{am}}=\frac{T_{1}(v+1)}{2} \quad \text { and } \quad T_{\mathrm{am}}^{2}=\frac{T_{1}^{2}}{4}\left(v^{2}+2 v+1\right)
$$

Whence,

$$
C_{P_{\mathrm{am}}}=A+\frac{B}{2} T_{1}(v+1)+\frac{4 D}{T_{1}^{2}\left(v^{2}+2 v+1\right)}
$$

Define ε as the difference between the two heat capacities:

$$
\varepsilon \equiv\left\langle C_{P} /-C_{P_{\mathrm{am}}}=\frac{D}{T_{1}^{2}}\left[\frac{1}{v}-\frac{4}{v^{2}+2 v+1}(\right.\right.
$$

This readily reduces to:

$$
\varepsilon=\frac{D}{T_{1}^{2} v}\left[\frac { v - 1 } { v + 1 } \left(^{2}\right.\right.
$$

Making the substitution $v=T_{2} / T_{1}$ yields the required answer.
4.8 Except for the noble gases [Fig. (4.1)], C_{P} increases with increasing T. Therefore, the estimate is likely to be low.
4.27 (a) When the water formed as the result of combustion is condensed to a liquid product, the resulting latent-heat release adds to the heat given off as a result of the combustion reaction, thus yielding a higher heating value than the lower heating value obtained when the water is not condensed.
(b) Combustion of methane (g) with $\mathrm{H}_{2} \mathrm{O}(g)$ as product (LHV):

$$
\begin{array}{rlrl}
\mathrm{C}(s)+\mathrm{O}_{2}(g) & \rightarrow \mathrm{CO}_{2}(g) & \Delta H_{298}^{\circ}=-393,509 \\
2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) & \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(g) & \Delta H_{298}^{\circ}=(2)(-241,818) \\
\mathrm{CH}_{4}(g) & \rightarrow \mathrm{C}(s)+2 \mathrm{H}_{2}(g) & \Delta H_{298}^{\circ}=74,520 \\
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) & \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) & & \Delta H_{298}^{\circ}=-802,625 \mathrm{~J}(\mathrm{LHV})
\end{array}
$$

Combustion of methane (g) with $\mathrm{H}_{2} \mathrm{O}(l)$ as product (HHV):

$$
\begin{array}{ccc}
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) & \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g) & \\
2 \mathrm{H}_{2} \mathrm{O}(g) \rightarrow 2 \mathrm{H}_{298}^{\circ}=-802,625 \\
& & \Delta H_{298}^{\circ}=(2)(-44,012) \\
\hline \mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) & & \Delta H_{298}^{\circ}=-890,649 \mathrm{~J}(\mathrm{HHV}) \\
\end{array}
$$

(c) Combustion of n-decane (l) with $\mathrm{H}_{2} \mathrm{O}(g)$ as product (LHV):

$$
\begin{array}{rlrl}
10 \mathrm{C}(s)+10 \mathrm{O}_{2}(g) & \rightarrow 10 \mathrm{CO}_{2}(g) & \Delta H_{298}^{\circ}=(10)(-393,509) \\
11 \mathrm{H}_{2}(g)+5 \frac{1}{2} \mathrm{O}_{2}(g) & \rightarrow 11 \mathrm{H}_{2} \mathrm{O}(g) & \Delta H_{298}^{\circ}=(11)(-241,818) \\
\mathrm{C}_{10} \mathrm{H}_{22}(\mathrm{l}) & \rightarrow 10 \mathrm{C}(\mathrm{~s})+11 \mathrm{H}_{2}(g) & \Delta H_{298}^{\circ}=249,700 \\
\hline \mathrm{C}_{10} \mathrm{H}_{22}(l)+15 \frac{1}{2} \mathrm{O}_{2}(g) \rightarrow 10 \mathrm{CO}_{2}(g)+11 \mathrm{H}_{2} \mathrm{O}(g) & \Delta H_{298}^{\circ}=-6,345,388 \mathrm{~J}(\mathrm{LHV})
\end{array}
$$

Combustion of n-decane (l) with $\mathrm{H}_{2} \mathrm{O}(l)$ as product (HHV):

$$
\begin{array}{cl}
\mathrm{C}_{10} \mathrm{H}_{22}(l)+15 \frac{1}{2} \mathrm{O}_{2}(g) \rightarrow 10 \mathrm{CO}_{2}(g)+11 \mathrm{H}_{2} \mathrm{O}(g) & \Delta H_{298}^{\circ}=-6,345,388 \\
11 \mathrm{H}_{2} \mathrm{O}(g) \rightarrow 11 \mathrm{H}_{2} \mathrm{O}(l) & \Delta H_{298}^{\circ}=(11)(-44,012) \\
\hline \mathrm{C}_{10} \mathrm{H}_{22}(l)+15 \frac{1}{2} \mathrm{O}_{2}(g) \rightarrow 10 \mathrm{CO}_{2}(g)+11 \mathrm{H}_{2} \mathrm{O}(l) & \Delta H_{298}^{\circ}=-6,829,520 \mathrm{~J}(\mathrm{HHV})
\end{array}
$$

4.49 Saturated because the large $\Delta H^{l v}$ overwhelms the sensible heat associated with superheat.

Water because it is cheap, available, non-toxic, and has a large $\Delta H^{l v}$.
The lower energy content is a result of the decrease in $\Delta H^{l v}$ with increasing T, and hence P. However, higher pressures allow higher temperature levels.

Chapter 5 - Section B - Non-Numerical Solutions

5.1 Shown to the right is a $P V$ diagram with two adiabatic lines $1 \infty 2$ and $2 \infty 3$, assumed to intersect at point 2 . A cycle is formed by an isothermal line from $3 \infty 1$. An engine traversing this cycle would produce work. For the cycle $\pi U=0$, and therefore by the first law, $Q+W=0$. Since W is negative, Q must be positive, indicating that heat is absorbed by the system. The net result is therefore a complete conversion of heat taken in by a cyclic process into work, in violation of Statement 1a of the second law (Pg. 160). The assumption of intersecting adiabatic lines is there-
 fore false.
5.5 The energy balance for the over-all process is written: $\quad Q=\pi U^{t}+\pi E_{K}+\pi E_{P}$

Assuming the egg is not scrambled in the process, its internal-energy change after it returns to its initial temperature is zero. So too is its change in kinetic energy. The potential-energy change, however, is negative, and by the preceding equation, so is Q. Thus heat is transferred to the surroundings.

The total entropy change of the process is: $\pi S_{\text {total }}=\pi S^{t}+\pi S_{\text {surr }}^{t}$
Just as πU^{t} for the egg is zero, so is πS^{t}. Therefore,

$$
\pi S_{\text {total }}=\pi S_{\text {surr }}^{t}=\frac{Q_{\text {surr }}}{T_{\xi}}=\frac{-Q}{T_{\xi}}
$$

Since Q is negative, $\pi S_{\text {total }}$ is positive, and the process is irreversible.
5.6 By Eq. (5.8) the thermal efficiency of a Carnot engine is: $\quad \epsilon=1-\frac{T_{C}}{T_{H}}$

Differentiate: $\quad\left[\frac{\epsilon}{T_{C}}\left(T_{H}=-\frac{1}{T_{H}} \quad\right.\right.$ and $\quad\left[\frac{\epsilon}{T_{H}}\left(T_{C}=\frac{T_{C}}{T_{H}{ }^{2}}=\frac{T_{C}}{T_{H}} \frac{1}{T_{H}}\right.\right.$
Since T_{C} / T_{H} is less unity, the efficiency changes more rapidly with T_{C} than with T_{H}. So in theory it is more effective to decrease T_{C}. In practice, however, T_{C} is fixed by the environment, and is not subject to control. The practical way to increase ϵ is to increase T_{H}. Of course, there are limits to this too.
5.11 For an ideal gas with constant heat capacities, and for the changes $T_{1} \infty T_{2}$ and $P_{1} \propto P_{2}$, Eq. (5.14) can be rewritten as:

$$
\pi S=C_{P} \ln \left[\frac { T _ { 2 } } { T _ { 1 } } \left(-R \ln \left[\frac{P_{2}}{P_{1}}(\right.\right.\right.
$$

(a) If $P_{2}=P_{1}, \quad \pi S_{P}=C_{P} \ln \left[\frac{T_{2}}{T_{1}}\left(\quad\right.\right.$ If $V_{2}=V_{1}, \quad \frac{P_{2}}{P_{1}}=\frac{T_{2}}{T_{1}}$

Whence,

$$
\pi S_{V}=C_{P} \ln \left[\frac { T _ { 2 } } { T _ { 1 } } \left(-R \ln \left[\frac { T _ { 2 } } { T _ { 1 } } \left(=C_{V} \ln \left[\frac{T_{2}}{T_{1}}(\right.\right.\right.\right.\right.
$$

Since $C_{P}>C_{V}$, this demonstrates that $\Delta S_{P}>\Delta S_{V}$.
(b) If $\quad T_{2}=T_{1}, \quad \Delta S_{T}=-R \ln \left(\frac{P_{2}}{P_{1}}\right) \quad$ If $\quad V_{2}=V_{1}, \quad \frac{T_{2}}{T_{1}}=\frac{P_{2}}{P_{1}}$

Whence,

$$
\Delta S_{V}=C_{P} \ln \left(\frac{P_{2}}{P_{1}}\right)-R \ln \left(\frac{P_{2}}{P_{1}}\right)=C_{V} \ln \left(\frac{P_{2}}{P_{1}}\right)
$$

This demonstrates that the signs for ΔS_{T} and ΔS_{V} are opposite.
5.12 Start with the equation just preceding Eq. (5.14) on p. 170:

$$
\frac{d S}{R}=\frac{C_{P}^{i g}}{R} \frac{d T}{T}-d \ln P=\frac{C_{P}^{i g}}{R} \frac{d T}{T}-\frac{d P}{P}
$$

For an ideal gas $P V=R T$, and $\ln P+\ln V=\ln R+\ln T$. Therefore,

$$
\frac{d P}{P}+\frac{d V}{V}=\frac{d T}{T} \quad \text { or } \quad \frac{d P}{P}=\frac{d T}{T}-\frac{d V}{V}
$$

Whence,

$$
\frac{d S}{R}=\frac{C_{P}^{i g}}{R} \frac{d T}{T}-\frac{d T}{T}+\frac{d V}{V}=\left(\frac{C_{P}^{i g}}{R}-1\right) \frac{d T}{T}+d \ln V
$$

Because $\left(C_{P}^{i g} / R\right)-1=C_{V}^{i g} / R$, this reduces to:

$$
\frac{d S}{R}=\frac{C_{V}^{i g}}{R} \frac{d T}{T}+d \ln V
$$

Integration yields:

$$
\frac{\Delta S}{R}=\int_{T_{0}}^{T} \frac{C_{V}^{i g}}{R} \frac{d T}{T}+\ln \frac{V}{V_{0}}
$$

As an additional part of the problem, one could ask for the following proof, valid for constant heat capacities. Return to the original equation and substitute $d T / T=d P / P+d V / V$:

$$
\frac{d S}{R}=\frac{C_{P}^{i g}}{R} \frac{d P}{P}+\frac{C_{P}^{i g}}{R} \frac{d V}{V}-\frac{d P}{P}=\frac{C_{V}^{i g}}{R} \frac{d P}{P}+\frac{C_{P}^{i g}}{R} \frac{d V}{V}
$$

Integration yields:

$$
\frac{\Delta S}{R}=\frac{C_{V}^{i g}}{R} \ln \frac{P}{P_{0}}+\frac{C_{P}^{i g}}{R} \ln \frac{V}{V_{0}}
$$

5.13 As indicated in the problem statement the basic differential equations are:

$$
\begin{align*}
& d W-d Q_{H}-d Q_{C}=0 \tag{A}\\
& \frac{d Q_{H}}{d Q_{C}}=-\frac{T_{H}}{T_{C}} \tag{B}
\end{align*}
$$

where Q_{C} and Q_{H} refer to the reservoirs.

(a) With $d Q_{H}=C_{H}^{t} d T_{H}$ and $d Q_{C}=C_{C}^{t} d T_{C}$, Eq. (B) becomes:

$$
\frac{C_{H}^{t} d T_{H}}{C_{C}^{t} d T_{C}}=-\frac{T_{H}}{T_{C}} \quad \text { or } \quad \frac{d T_{C}}{T_{C}}=-\frac{C_{H}^{t}}{C_{C}^{t}} \frac{d T_{H}}{T_{H}}
$$

Whence, $\quad d \ln T_{C}=-\Psi d \ln T^{\prime}$
Integration from $T_{H_{0}}$ and $T_{C_{0}}$ to T_{H} and T_{C} yields:

$$
\frac{T_{C}}{T_{C_{0}}}=\left(\frac{T_{H}}{T_{H_{0}}}\right)^{-\Psi} \quad \text { or } \quad T_{C}=T_{C_{0}}\left(\frac{T_{H}}{T_{H_{0}}}\right)^{-\Psi}
$$

(b) With $d Q_{H}=C_{H}^{t} d T_{H}$ and $d Q_{C}=C_{C}^{t} d T_{C}$, Eq. (A) becomes:

$$
d W=C_{H}^{t} d T_{H}+C_{C}^{t} d T_{C}
$$

Integration yields: $\quad W=C_{H}^{t}\left(T_{H}-T_{H_{0}}\right)+C_{C}^{t}\left(T_{C}-T_{C_{0}}\right)$
Eliminate T_{C} by the boxed equation of Part (a) and rearrange slightly:

$$
W=C_{H}^{t} T_{H_{0}}\left(\frac{T_{H}}{T_{H_{0}}}-1\right)+C_{C}^{t} T_{C_{0}}\left[\left(\frac{T_{H}}{T_{H_{0}}}\right)^{-\Psi}-1\right]
$$

(c) For infinite time, $T_{H}=T_{C} \equiv T$, and the boxed equation of Part (a) becomes:

$$
T=T_{C_{0}}\left(\frac{T}{T_{H_{0}}}\right)^{-\Psi}=T_{C_{0}}\left(\frac{T_{H_{0}}}{T}\right)^{\Psi}
$$

From which:

$$
T^{\Psi+1}=T_{C_{0}}\left(T_{H_{0}}\right)^{\Psi}
$$

$$
T=\left(T_{C_{0}}\right)^{1 /(\Psi+1)}\left(T_{H_{0}}\right)^{\Psi /(\Psi+1)} \quad \text { and } \quad \frac{T}{T_{H_{0}}}=\left(T_{C_{0}}\right)^{1 /(\Psi+1)}\left(T_{H_{0}}\right)^{\Psi /(\Psi+1)-1}
$$

Because $\Psi /(\Psi+1)-1=-1 /(\Psi+1)$, then:

$$
\frac{T}{T_{H_{0}}}=\left(\frac{T_{C_{0}}}{T_{H_{0}}}\right)^{1 /(\Psi+1)} \quad \text { and } \quad\left(\frac{T}{T_{H_{0}}}\right)^{-\Psi}=\left(\frac{T_{C_{0}}}{T_{H_{0}}}\right)^{-\Psi /(\Psi+1)}
$$

Because $T_{H}=T$, substitution of these quantities in the boxed equation of Part (b) yields:

$$
W=C_{H}^{t} T_{H_{0}}\left[\left(\frac{T_{C_{0}}}{T_{H_{0}}}\right)^{1 /(\Psi+1)}-1\right]+C_{C}^{t} T_{C_{0}}\left[\left(\frac{T_{C_{0}}}{T_{H_{0}}}\right)^{-\Psi /(\Psi+1)}-1\right]
$$

5.14 As indicated in the problem statement the basic differential equations are:

$$
\begin{align*}
& d W-d Q_{H}-d Q_{C}=0 \tag{A}\\
& \frac{d Q_{H}}{d Q_{C}}=-\frac{T_{H}}{T_{C}} \tag{B}
\end{align*}
$$

where Q_{C} and Q_{H} refer to the reservoirs.

(a) With $d Q_{C}=C_{C}^{t} d T_{C}$, Eq. (B) becomes:

$$
\frac{d Q_{H}}{C_{C}^{t} d T_{C}}=-\frac{T_{H}}{T_{C}} \quad \text { or } \quad d Q_{H}=-C_{C}^{t} \frac{T_{H}}{T_{C}} d T_{C}
$$

Substitute for $d Q_{H}$ and $d Q_{C}$ in Eq. (A):

$$
d W=-C_{C}^{t} T_{H} \frac{d T_{C}}{T_{C}}+C_{C}^{t} d T_{C}
$$

Integrate from $T_{C_{0}}$ to T_{C} :

$$
W=-C_{C}^{t} T_{H} \ln \frac{T_{C}}{T_{C_{0}}}+C_{C}^{t}\left(T_{C}-T_{C_{0}}\right) \quad \text { or } \quad W=C_{C}^{t}\left(T_{H} \ln \frac{T_{C_{0}}}{T_{C}}+T_{C}-T_{C_{0}}\right)
$$

(b) For infinite time, $T_{C}=T_{H}$, and the boxed equation above becomes:

$$
W=C_{C}^{t}\left(T_{H} \ln \frac{T_{C_{0}}}{T_{H}}+T_{H}-T_{C_{0}}\right)
$$

5.15 Write Eqs. (5.8) and (5.1) in rate form and combine to eliminate $\left|\dot{Q}_{H}\right|$:

$$
\frac{|\dot{W}|}{|\dot{W}|+\left|\dot{Q}_{C}\right|}=1-\frac{T_{C}}{T_{H}}=1-r \quad \text { or } \quad \frac{|\dot{W}|}{1-r}=|\dot{W}|+|\dot{Q}| \quad \text { where } \quad r \equiv \frac{T_{C}}{T_{H}}
$$

With $\quad\left|\dot{Q}_{C}\right|=k A\left(T_{C}\right)^{4}=k A\left(r T_{H}\right)^{4}$, this becomes:

$$
|\dot{W}|\left(\frac{1}{1-r}-1\right)=|\dot{W}|\left(\frac{r}{1-r}\right)=k A r^{4}\left(T_{H}\right)^{4} \quad \text { or } \quad A=\left[\frac{|\dot{W}|}{k\left(T_{H}\right)^{4}}\right] \frac{1}{(1-r) r^{3}}
$$

Differentiate, noting that the quantity in square brackets is constant:

$$
\frac{d A}{d r}=\left[\frac{|\dot{W}|}{k\left(T_{H}\right)^{4}}\right]\left[\frac{-3}{(1-r) r^{4}}+\frac{1}{(1-r)^{2} r^{3}}\right]=\left[\frac{|\dot{W}|}{k\left(T_{H}\right)^{4}}\right]\left[\frac{4 r-3}{(1-r)^{2} r^{4}}\right]
$$

Equating this equation to zero, leads immediately to: $4 r=3 \quad$ or $\quad r=0.75$
5.20 Because $W=0$, Eq. (2.3) here becomes:

$$
Q=\Delta U^{t}=m C_{V} \Delta T
$$

A necessary condition for ΔT to be zero when Q is non-zero is that $m=\infty$. This is the reason that natural bodies (air and water) that serve as heat reservoirs must be massive (oceans) or continually renewed (rivers).
5.22 An appropriate energy balance here is: $Q=\Delta H^{t}=0$

Applied to the process described, with T as the final temperature, this becomes:

$$
\begin{equation*}
m_{1} C_{P}\left(T-T_{1}\right)+m_{2} C_{P}\left(T-T_{2}\right)=0 \quad \text { whence } \quad T=\frac{m_{1} T_{1}+m_{2} T_{2}}{m_{1}+m_{2}} \tag{1}
\end{equation*}
$$

If $m_{1}=m_{2}, \quad T=\left(T_{1}+T_{2}\right) / 2$

The total entropy change as a result of temperature changes of the two masses of water:

$$
\begin{equation*}
\Delta S^{t}=m_{1} C_{P} \ln \frac{T}{T_{1}}+m_{2} C_{P} \ln \frac{T}{T_{2}} \tag{2}
\end{equation*}
$$

Equations (1) and (2) represent the general case. If $m_{1}=m_{2}=m$,

$$
\Delta S^{t}=m C_{P} \ln \frac{T^{2}}{T_{1} T_{2}} \quad \text { or } \quad \Delta S^{t}=2 m C_{P} \ln \frac{T}{\sqrt{T_{1} T_{2}}}
$$

Because $T=\left(T_{1}+T_{2}\right) / 2>\sqrt{T_{1} T_{2}}, \quad \Delta S^{t}$ is positive.
5.23 Isentropic processes are not necessarily reversible and adiabatic. The term isentropic denotes a process for which the system does not change in entropy. There are two causes for entropy changes in a system: The process may be internally irreversible, causing the entropy to increase; heat may be transferred between system amd surroundings, causing the entropy of the system to increase or decrease. For processes that are internally irreversible, it is possible for heat to be transferred out of the system in an amount such that the entropy changes from the two causes exactly compensate each other. One can imagine irreversible processes for which the state of the system is the same at the end as at the beginning of the process. The process is then necessarily isentropic, but neither reversible nor adiabatic. More generally, the system conditions may change in such a way that entropy changes resulting from temperature and pressure changes compensate each other. Such a process is isentropic, but not necessarily reversible. Expansion of gas in a piston/cylinder arrangement is a case in point. It may be reversible and adiabatic, and hence isentropic. But the same change of state may be irreversible with heat transfer to the surroundings. The process is still isentropic, but neither reversible nor adiabatic. An isentropic process must be either reversible and adiabatic or irreversible and non-adiabatic.
5.24 By definition,

$$
\left\langle C_{P}\right\rangle_{H}=\frac{\int_{T_{0}}^{T} C_{P} d T}{T-T_{0}}=\frac{\int_{T}^{T_{0}} C_{P} d T}{T_{0}-T}
$$

By inspection, one sees that for both $T>T_{0}$ and $T_{0}>T$ the numerators and denominators of the above fractions have the same sign. Thus, for both cases $\left\langle C_{P}\right\rangle_{H}$ is positive.

Similarly,

$$
\left\langle C_{P}\right\rangle_{S}=\frac{\int_{T_{0}}^{T} C_{P} \frac{d T}{T}}{\ln \left(T / T_{0}\right)}=\frac{\int_{T}^{T_{0}} C_{P} \frac{d T}{T}}{\ln \left(T_{0} / T\right)}
$$

By inspection, one sees that for both $T>T_{0}$ and $T_{0}>T$ the numerators and denominators of the above fractions have the same sign. Thus, for both cases $\left\langle C_{P}\right\rangle_{S}$ is positive.
When $T=T_{0}$, both the numerators and denominators of the above fractions become zero, and the fractions are indeterminate. Application of l'Hôpital's rule leads to the result: $\left\langle C_{P}\right\rangle_{H}=\left\langle C_{P}\right\rangle_{S}=C_{P}$.
5.31 The process involves three heat reservoirs: the house, a heat sink; the furnace, a heat source; and the surroundings, a heat source. Notation is as follows:

$$
\begin{array}{ll}
|Q| & \text { Heat transfer to the house at temperature } T \\
\left|Q_{F}\right| & \text { Heat transfer from the furnace at } T_{F} \\
\left|Q_{\sigma}\right| & \text { Heat transfer from the surroundings at } T_{\sigma}
\end{array}
$$

The first and second laws provide the two equations:

$$
|Q|=\left|Q_{F}\right|+\left|Q_{\sigma}\right| \quad \text { and } \quad \frac{|Q|}{T}-\frac{\left|Q_{F}\right|}{T_{F}}-\frac{\left|Q_{\sigma}\right|}{T_{\sigma}}=0
$$

Combine these equations to eliminate $\left|Q_{\sigma}\right|$, and solve for $\left|Q_{F}\right|$:

$$
\left|Q_{F}\right|=|Q|\left(\frac{T-T_{\sigma}}{T_{F}-T_{\sigma}}\right) \frac{T_{F}}{T}
$$

With

$$
T=295 \mathrm{~K} \quad T_{F}=810 \mathrm{~K} \quad T_{\sigma}=265 \mathrm{~K}
$$

and $|Q|=1000 \mathrm{~kJ}$
The result is:

$$
\left|Q_{F}\right|=151.14 \mathrm{~kJ}
$$

Shown to the right is a scheme designed to accomplish this result. A Carnot heat engine operates with the furnace as heat source and the house as heat sink. The work produced by the engine drives a Carnot refrigerator (reverse Carnot engine) which extracts heat from the surroundings and discharges heat to the house. Thus the heat rejected by the Carnot engine $\left(\left|Q_{1}\right|\right)$ and by the Carnot refrigerator $\left(\left|Q_{2}\right|\right)$ together provide the heat $|Q|$ for the house. The energy balances for the engine and refrigerator are:

$$
\begin{aligned}
& |W|_{\text {engine }}=\left|Q_{F}\right|-\left|Q_{1}\right| \\
& |W|_{\text {refrig }}=\left|Q_{2}\right|-\left|Q_{\sigma}\right|
\end{aligned}
$$

Equation (5.7) may be applied to both the engine and the refrigerator:

$$
\frac{\left|Q_{F}\right|}{\left|Q_{1}\right|}=\frac{T_{F}}{T} \quad \frac{\left|Q_{\sigma}\right|}{\left|Q_{2}\right|}=\frac{T_{\sigma}}{T}
$$

Combine the two pairs of equations:

$$
|W|_{\text {engine }}=\left|Q_{1}\right|\left(\frac{T_{F}}{T}-1\right)=\left|Q_{1}\right| \frac{T_{F}-T}{T} \quad|W|_{\text {refrig }}=\left|Q_{2}\right|\left(1-\frac{T_{\sigma}}{T}\right)=\left|Q_{2}\right| \frac{T-T_{\sigma}}{T}
$$

Since these two quantities are equal,

$$
\left|Q_{1}\right| \frac{T_{F}-T}{T}=\left|Q_{2}\right| \frac{T-T_{\sigma}}{T} \quad \text { or } \quad\left|Q_{2}\right|=\left|Q_{1}\right| \frac{T_{F}-T}{T-T_{\sigma}}
$$

Because the total heat transferred to the house is $|Q|=\left|Q_{1}\right|+\left|Q_{2}\right|$,

$$
|Q|=\left|Q_{1}\right|+\left|Q_{1}\right| \frac{T_{F}-T}{T-T_{\sigma}}=\left|Q_{1}\right|\left(1+\frac{T_{F}-T}{T-T_{\sigma}}\right)=\left|Q_{1}\right| \frac{T_{F}-T_{\sigma}}{T-T_{\sigma}}
$$

But

$$
\left|Q_{1}\right|=\left|Q_{F}\right| \frac{T}{T_{F}} \quad \text { whence } \quad|Q|=\left|Q_{F}\right| \frac{T}{T_{F}}\left(\frac{T_{F}-T_{\sigma}}{T-T_{\sigma}}\right)
$$

Solution for $\left|Q_{F}\right|$ yields the same equation obtained more easily by direct application of the two laws of thermodynamics to the overall result of the process.
5.32 The process involves three heat reservoirs: the house, a heat source; the tank, a heat source; and the surroundings, a heat sink. Notation is as follows:
$|Q| \quad$ Heat transfer from the tank at temperature T
$\left|Q^{\prime}\right| \quad$ Heat transfer from the house at T^{\prime}
$\left|Q_{\sigma}\right|$ Heat transfer to the surroundings at T_{σ}
The first and second laws provide the two equations:

$$
|Q|+\left|Q^{\prime}\right|=\left|Q_{\sigma}\right| \quad \text { and } \quad \frac{\left|Q_{\sigma}\right|}{T_{\sigma}}-\frac{|Q|}{T}-\frac{\left|Q^{\prime}\right|}{T^{\prime}}=0
$$

Combine these equations to eliminate $\left|Q_{\sigma}\right|$, and solve for $|Q|$:

$$
|Q|=\left|Q^{\prime}\right|\left(\frac{T_{\sigma}-T^{\prime}}{T-T_{\sigma}}\right) \frac{T}{T^{\prime}}
$$

With $\quad T=448.15 \mathrm{~K} \quad T^{\prime}=297.15 \mathrm{~K} \quad T_{\sigma}=306.15 \mathrm{~K} \quad$ and $\left|Q^{\prime}\right|=1500 \mathrm{~kJ}$
The result is:

$$
|Q|=143.38 \mathrm{~kJ}
$$

Shown to the right is a scheme designed to accomplish this result. A Carnot heat engine operates with the tank as heat source and the surroundings as heat sink. The work produced by the engine drives a Carnot refrigerator (reverse Carnot engine) which extracts heat $\left|Q^{\prime}\right|$ from the house and discharges heat to the surroundings. The energy balances for the engine and refrigerator are:

$$
\begin{aligned}
& |W|_{\text {engine }}=|Q|-\left|Q_{\sigma_{1}}\right| \\
& |W|_{\text {refrig }}=\left|Q_{\sigma_{2}}\right|-\left|Q^{\prime}\right|
\end{aligned}
$$

Equation (5.7) may be applied to both the engine and the refrigerator:

$$
\frac{\left|Q_{\sigma_{1} \mid}\right|}{|Q|}=\frac{T_{\sigma}}{T} \quad \frac{\left|Q_{\sigma_{2}}\right|}{\left|Q^{\prime}\right|}=\frac{T_{\sigma}}{T^{\prime}}
$$

Combine the two pairs of equations:

$$
|W|_{\text {engine }}=|Q|\left(1-\frac{T_{\sigma}}{T}\right)=|Q| \frac{T-T_{\sigma}}{T} \quad|W|_{\text {refrig }}=\left|Q^{\prime}\right|\left(\frac{T_{\sigma}}{T^{\prime}}\right)=\left|Q^{\prime}\right| \frac{T_{\sigma}-t^{\prime}}{T^{\prime}}
$$

Since these two quantities are equal,

$$
|Q| \frac{T-T_{\sigma}}{T}=\left|Q^{\prime}\right| \frac{T_{\sigma}-T^{\prime}}{T^{\prime}} \quad \text { or } \quad|Q|=\left|Q^{\prime}\right|\left(\frac{T_{\sigma}-T^{\prime}}{T-T_{\sigma}}\right) \frac{T}{T^{\prime}}
$$

5.36 For a closed system the first term of Eq. (5.21) is zero, and it becomes:

$$
\frac{d(m S)_{\mathrm{cv}}}{d t}+\sum_{j} \frac{\dot{Q}_{j}}{T_{\sigma, j}}=\dot{S}_{G} \geq 0
$$

where \dot{Q}_{j} is here redefined to refer to the system rather than to the surroundings. Nevertheless, the second term accounts for the entropy changes of the surroundings, and can be written simply as $d S_{\text {surr }}^{t} / d t$:

$$
\frac{d(m S)_{\mathrm{cv}}}{d t}-\frac{d S_{\mathrm{surr}}^{t}}{d t}=\dot{S}_{G} \geq 0 \quad \text { or } \quad \frac{d S_{\mathrm{cv}}^{t}}{d t}-\frac{d S_{\mathrm{surr}}^{T}}{d t}=\dot{S}_{G} \geq 0
$$

Multiplication by $d t$ and integration over finite time yields:

$$
\Delta S_{\mathrm{cv}}^{t}+\Delta S_{\mathrm{surr}}^{t} \geq 0 \quad \text { or } \quad \Delta S_{\mathrm{total}} \geq 0
$$

5.37 The general equation applicable here is Eq. (5.22):

$$
\Delta(S \dot{m})_{\mathrm{fs}}-\sum_{j} \frac{\dot{Q}_{j}}{T_{\sigma, j}}=\dot{S}_{G} \geq 0
$$

(a) For a single stream flowing within the pipe and with a single heat source in the surroundings, this becomes:

$$
(\Delta S) \dot{m}-\frac{\dot{Q}}{T_{\sigma}}=\dot{S}_{G} \geq 0
$$

(b) The equation is here written for two streams (I and II) flowing in two pipes. Heat transfer is internal, between the two streams, making $\dot{Q}=0$. Thus,

$$
(\Delta S)_{\mathrm{I}} \dot{m}_{\mathrm{I}}+(\Delta S)_{\mathrm{II}} \dot{m}_{\mathrm{II}}=\dot{S}_{G} \geq 0
$$

(c) For a pump operatiing on a single stream and with the assumption of negligible heat transfer to the surroundings:

$$
(\Delta S) \dot{m}=\dot{S}_{G} \geq 0
$$

(d) For an adiabatic gas compressor the result is the same as for Part (c).
(e) For an adiabatic turbine the result is the same as for Part (c).
(f) For an adiabatic throttle valve the result is the same as for Part (c).
(g) For an adiabatic nozzle the result is the same as for Part (c).
5.40 The figure on the left below indicates the direct, irreversible transfer of heat $|Q|$ from a reservoir at T_{1} to a reservoir at T_{2}. The figure on the right depicts a completely reversible process to accomplish the same changes in the heat reservoirs at T_{1} and T_{2}.

The entropy generation for the direct heat-transfer process is:

$$
S_{G}=|Q|\left(\frac{1}{T_{2}}-\frac{1}{T_{1}}\right)=|Q|\left(\frac{T_{1}-T_{2}}{T_{1} T_{2}}\right)
$$

For the completely reversible process the net work produced is $W_{\text {ideal }}$:

$$
\begin{gathered}
\left|W_{1}\right|=|Q|\left(\frac{T_{1}-T_{\sigma}}{T_{1}}\right) \quad \text { and } \quad\left|W_{2}\right|=|Q|\left(\frac{T_{2}-T_{\sigma}}{T_{2}}\right) \\
W_{\text {ideal }}=\left|W_{1}\right|-\left|W_{2}\right|=T_{\sigma}|Q|\left(\frac{T_{1}-T_{2}}{T_{1} T_{2}}\right)
\end{gathered}
$$

This is the work that is lost, $W_{\text {lost }}$, in the direct, irreversible transfer of heat $|Q|$. Therefore,

$$
W_{\mathrm{lost}}=T_{\sigma}|Q| \frac{T_{1}-T_{2}}{T_{1} T_{2}}=T_{\sigma} S_{G}
$$

Note that a Carnot engine operating between T_{1} and T_{2} would not give the correct $W_{\text {ideal }}$ or $W_{\text {lost }}$, because the heat it transfers to the reservoir at T_{2} is not Q.
5.45 Equation (5.14) can be written for both the reversible and irreversible processes:

$$
\Delta S_{\text {irrev }}=\int_{T_{0}}^{T_{\text {irev }}} C_{P}^{i g} \frac{d T}{T}-\ln \frac{P}{P^{\circ}} \quad \Delta S_{\mathrm{rev}}=\int_{T_{0}}^{T_{\mathrm{rev}}} C_{P}^{i g} \frac{d T}{T}-\ln \frac{P}{P^{\circ}}
$$

By difference, with $\Delta S_{\mathrm{rev}}=0: \quad \Delta S_{\mathrm{irrev}}=\int_{T_{\mathrm{rev}}}^{T_{\mathrm{irev}}} C_{P}^{i g} \frac{d T}{T}$
Since $\Delta S_{\text {irrev }}$ must be greater than zero, $T_{\text {irrev }}$ must be greater than $T_{\text {rev }}$.

Chapter 6 - Section B - Non-Numerical Solutions

6.1 By Eq. (6.8),

$$
\left(\frac{\nu H}{\nu S}\right)_{P}=T \quad \text { and isobars have positive slope }
$$

Differentiate the preceding equation: $\quad\left(\frac{\nu^{2} H}{\nu S^{2}}\right)_{P}=\left(\frac{\nu T}{\nu S}\right)_{P}$

Combine with Eq. (6.17):

$$
\left(\frac{v^{2} H}{v S^{2}}\right)_{P}=\frac{T}{C_{P}} \quad \text { and isobars have positive curvature. }
$$

6.2 (a) Application of Eq. (6.12) to Eq. (6.20) yields:

$$
\begin{gathered}
\left(\frac{\nu C_{P}}{\nu P}\right)_{T}=\left[\frac{\nu\left\{V-T(\nu V / \nu T)_{P}\right\}}{\nu T}\right]_{P} \\
\left(\frac{\nu C_{P}}{\nu P}\right)_{T}=\left(\frac{\nu V}{\nu T}\right)_{P}-T\left(\frac{\nu^{2} V}{\nu T^{2}}\right)_{P}-\left(\frac{\nu V}{\nu T}\right)_{P}
\end{gathered}
$$

or

Whence,

$$
\left(\frac{\nu C_{P}}{\nu P}\right)_{T}=-T\left(\frac{\nu^{2} V}{\nu T^{2}}\right)_{P}
$$

For an ideal gas:

$$
\left(\frac{\nu V}{\nu T}\right)_{P}=\frac{R}{P} \quad \text { and } \quad\left(\frac{\nu^{2} V}{\nu T^{2}}\right)_{P}=0
$$

(b) Equations (6.21) and (6.33) are both general expressions for $d S$, and for a given change of state both must give the same value of $d S$. They may therefore be equated to yield:

$$
\left(C_{P}-C_{V}\right) \frac{d T}{T}=\left(\frac{\nu P}{\nu T}\right)_{V} d V+\left(\frac{\nu V}{\nu T}\right)_{P} d P
$$

Restrict to constant P :

$$
C_{P}=C_{V}+T\left(\frac{\nu P}{\nu T}\right)_{V}\left(\frac{\nu V}{\nu T}\right)_{P}
$$

By Eqs. (3.2) and (6.34): $\quad\left(\frac{\nu V}{\nu T}\right)_{P}=\varepsilon V \quad$ and $\quad\left(\frac{\nu P}{\nu T}\right)_{V}=\frac{\varepsilon}{\rho}$

Combine with the boxed equation:

$$
C_{P}-C_{V}=\varepsilon T V\left(\frac{\varepsilon}{\rho}\right)
$$

6.3 By the definition of $H, U=H-P V$. Differentiate:

$$
\left(\frac{\nu U}{\nu T}\right)_{P}=\left(\frac{\nu H}{\nu T}\right)_{P}-P\left(\frac{\nu V}{\nu T}\right)_{P} \quad \text { or } \quad\left(\frac{\nu U}{\nu T}\right)_{P}=C_{P}-P\left(\frac{\nu V}{\nu T}\right)_{P}
$$

Substitute for the final derivative by Eq. (3.2), the definition of β :

$$
\left(\frac{\partial U}{\partial T}\right)_{P}=C_{P}-\beta P V
$$

Divide Eq. (6.32) by $d T$ and restrict to constant P. The immediate result is:

$$
\left(\frac{\partial U}{\partial T}\right)_{P}=C_{V}+\left[T\left(\frac{\partial P}{\partial T}\right)_{V}-P\right]\left(\frac{\partial V}{\partial T}\right)_{P}
$$

Solve for the two derivatives by Eqs. (6.34) and (3.2); substitution gives:

$$
\left(\frac{\partial U}{\partial T}\right)_{P}=C_{V}+\frac{\beta}{\kappa}(\beta T-\kappa P) V
$$

6.4 (a) In general,

$$
\begin{equation*}
d U=C_{V} d T+\left[T\left(\frac{\partial P}{\partial T}\right)_{V}-P\right] d V \tag{6.32}
\end{equation*}
$$

By the equation of state, $\quad P=\frac{R T}{V-b} \quad$ whence $\quad\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{R}{V-b}=\frac{P}{T}$
Substituting this derivative into Eq. (6.32) yields $d U=C_{V} d T$, indicating that $U=f(T)$ only.
(b) From the definition of H,

$$
d H=d U+d(P V)
$$

From the equation of state, $\quad d(P V)=R d T+b d P$
Combining these two equations and the definition of part (a) gives:

$$
d H=C_{V} d T+R d T+b d P=\left(C_{V}+R\right) d T+b d P
$$

Then,

$$
\left(\frac{\partial H}{\partial T}\right)_{P}=C_{V}+R
$$

By definition, this derivative is C_{P}. Therefore $C_{P}=C_{V}+R$. Given that C_{V} is constant, then so is C_{P} and so is $\gamma \equiv C_{P} / C_{V}$.
(c) For a mechanically reversible adiabatic process, $d U=d W$. Whence, by the equation of state,

$$
\begin{aligned}
C_{V} d T=-P d V & =-\frac{R T}{V-b} d V=-R T \frac{d(V-b)}{V-b} \\
\frac{d T}{T} & =-\frac{R}{C_{V}} d \ln (V-b)
\end{aligned}
$$

or
But from part (b), $R / C_{V}=\left(C_{P}-C_{V}\right) / C_{V}=\gamma-1$. Then

$$
d \ln T=-(\gamma-1) d \ln (V-b) \quad \text { or } \quad d \ln T+d \ln (V-b)^{\gamma-1}=0
$$

From which: $\quad T(V-b)^{\gamma-1}=$ const.
Substitution for T by the equation of state gives

$$
\frac{P(V-b)(V-b)^{\gamma-1}}{R}=\text { const. } \quad \text { or } \quad P(V-b)^{\gamma}=\text { const. }
$$

6.5 It follows immediately from Eq. (6.10) that:

$$
V=\left(\frac{\partial G}{\partial P}\right)_{T} \quad \text { and } \quad S=-\left(\frac{\partial G}{\partial T}\right)_{P}
$$

Differentation of the given equation of state yields:

$$
V=\frac{R T}{P} \quad \text { and } \quad S=-\frac{d \Gamma(T)}{d T}-R \ln P
$$

Once V and S (as well as G) are known, we can apply the equations:

$$
H=G+T S \quad \text { and } \quad U=H-P V=H-R T
$$

These become:

$$
H=\Gamma(T)-T \frac{d \Gamma(T)}{d T} \quad \text { and } \quad U=\Gamma(T)-T \frac{d \Gamma(T)}{d T}-R T
$$

By Eqs. (2.16) and (2.20),

$$
C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P} \quad \text { and } \quad C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

Because Γ is a function of temperature only, these become:

$$
C_{P}=-T \frac{d^{2} \Gamma}{d T^{2}} \quad \text { and } \quad C_{V}=-T \frac{d^{2} \Gamma}{d T^{2}}-R=C_{P}-R
$$

The equation for V gives the ideal-gas value. The equations for H and U show these properties to be functions of T only, which conforms to ideal-gas behavior. The equation for S shows its relation to P to be that of an ideal gas. The equations for C_{P} and C_{V} show these properties to be functions of T only, which conforms to ideal-gas behavior, as does the result, $C_{P}=C_{V}+R$. We conclude that the given equation of state is consistent with the model of ideal-gas behavior.
6.6 It follows immediately from Eq. (6.10) that:

$$
V=\left(\frac{\partial G}{\partial P}\right)_{T} \quad \text { and } \quad S=-\left(\frac{\partial G}{\partial T}\right)_{P}
$$

Differentation of the given equation of state yields:

$$
V=K \quad \text { and } \quad S=-\frac{d F(T)}{d T}
$$

Once V and S (as well as G) are known, we can apply the equations:

$$
H=G+T S \quad \text { and } \quad U=H-P V=H-P K
$$

These become:

$$
H=F(T)+K P-T \frac{d F(T)}{d T} \quad \text { and } \quad U=F(T)-T \frac{d F(T)}{d T}
$$

By Eqs. (2.16) and (2.20),

$$
C_{P}=\left(\frac{\partial H}{\partial T}\right)_{P} \quad \text { and } \quad C_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}
$$

Because F is a function of temperature only, these become:

$$
C_{P}=-T \frac{d^{2} F}{d T^{2}} \quad \text { and } \quad C_{V}=-T \frac{d^{2} F}{d T^{2}}=C_{P}
$$

The equation for V shows it to be constant, independent of both T and P. This is the definition of an incompressible fluid. H is seen to be a function of both T and P, whereas U, S, C_{P}, and C_{V} are functions of T only. We also have the result that $C_{P}=C_{V}$. All of this is consistent with the model of an incompressible fluid, as discussed in Ex. 6.2.
6.11 Results for this problem are given in the text on page 217 by Eqs. (6.61), (6.62) and (6.63) for G^{R}, H^{R}, and S^{R} respectively.
6.12 Parameter values for the van der Waals equation are given by the first line of Table 3.1, page 98. At the bottom of page 215, it is shown that $I=\partial / Z$. Equation (6.66b) therefore becomes:

$$
\frac{G^{R}}{R T}=Z-1-\ln (Z-\partial)-\frac{q \partial}{Z}
$$

For given T and P, Z is found by solution of Eq. (3.52) for a vapor phase or Eq. (3.56) for a liquid phase with $\sigma=\delta=0$. Equations (3.53) and (3.54) for the van der Waals equation are:

$$
\partial=\frac{P_{r}}{8 T_{r}} \quad \text { and } \quad q=\frac{27}{8 T_{r}}
$$

With appropriate substitutions, Eqs. (6.67) and (6.68) become:

$$
\frac{H^{R}}{R T}=Z-1-\frac{q \partial}{Z} \quad \text { and } \quad \frac{S^{R}}{R}=\ln (Z-\partial)
$$

6.13 This equation does not fall within the compass of the generic cubic, Eq. (3.42); so we start anew. First, multiply the given equation of state by $V / R T$:

$$
\frac{P V}{R T}=\frac{V}{V-b} \exp \left(\frac{-a}{V R T}\right)
$$

Substitute:

$$
Z \equiv \frac{P V}{R T} \quad V=\frac{1}{\rho} \quad \frac{a}{b R T} \equiv q
$$

Then,

$$
Z=\frac{1}{1-b \rho} \exp (-q b \rho)
$$

With the definition, $\xi \equiv b \rho$, this becomes:

$$
\begin{equation*}
Z=\frac{1}{1-\xi} \exp (-q \xi) \tag{A}
\end{equation*}
$$

$$
\text { Because } \rho=P / Z R T, \quad \xi=\frac{b P}{Z R T}
$$

Given T and P, these two equations may be solved iteratively for Z and ξ.
Because b is a constant, Eqs. (6.58) and (6.59) may be rewritten as:

$$
\begin{gather*}
\frac{G^{R}}{R T}=\int_{0}^{\xi}(Z-1) \frac{d \xi}{\xi}+Z-1-\ln Z \tag{B}\\
\frac{H^{R}}{R T}=\int_{0}^{\xi}\left(\frac{\partial Z}{\partial T}\right)_{\xi} \frac{d \xi}{\xi}+Z-1 \tag{C}
\end{gather*}
$$

In these equations, Z is given by Eq. (A), from which is also obtained:

$$
\ln Z=-\ln (1-\xi)-q \xi \quad \text { and } \quad\left(\frac{\partial Z}{\partial T}\right)_{\xi}=\frac{q \xi}{T(1-\xi)} \exp (-q \xi)
$$

The integrals in Eqs. (B) and (C) must be evaluated through the exponential integral, $E(x)$, a special function whose values are tabulated in handbooks and are also found from such software packages as MAPLE ${ }^{\circledR}$. The necessary equations, as found from MAPLE ${ }^{\circledR}$, are:

$$
\int_{0}^{\xi}(Z-1) \frac{d \xi}{\xi}=\exp (-q)\{E[-q(1-\xi)]-E(-q)\}-E(q \xi)-\ln (q \xi)-\gamma
$$

where γ is Euler's constant, equal to $0.57721566 \ldots$.
and

$$
-T \int_{0}^{\xi}\left(\frac{\partial Z}{\partial T}\right)_{\xi} \frac{s \xi}{\xi}=q \exp (-q)\{E[-q(1-\xi)]-E(-q)\}
$$

Once values for $G^{R} / R T$ and $H^{R} / R T$ are known, values for S^{R} / R come from Eq. (6.47). The difficulties of integration here are one reason that cubic equations have found greater favor.
6.18 Assume the validity for purposes of interpolation of Eq. (6.75), and write it for T_{2}, T, and T_{1} :

$$
\begin{align*}
& \ln P_{2}^{\text {sat }}=A-\frac{B}{T_{2}} \tag{A}\\
& \ln P^{\text {sat }}=A-\frac{B}{T} \tag{B}\\
& \ln P_{1}^{\text {sat }}=A-\frac{B}{T_{1}} \tag{C}
\end{align*}
$$

Subtract (C) from (A):

$$
\ln \frac{P_{2}^{\text {sat }}}{P_{1}^{\text {sat }}}=B\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)=B \frac{\left(T_{2}-T_{1}\right)}{T_{1} T_{2}}
$$

Subtract (C) from (B):

$$
\ln \frac{P^{\text {sat }}}{P_{1}^{\text {sat }}}=B\left(\frac{1}{T_{1}}-\frac{1}{T}\right)=B \frac{\left(T-T_{1}\right)}{T_{1} T}
$$

The ratio of these two equations, upon rearrangement, yields the required result.
6.19 Write Eq. (6.75) in $\log _{10}$ form: $\quad \log P^{\text {sat }}=A-\frac{B}{T}$

Apply at the critical point: $\quad \log P_{c}=A-\frac{B}{T_{c}}$

By difference, $\quad \log P_{r}^{\text {sat }}=B\left(\frac{1}{T_{c}}-\frac{1}{T}\right)=B\left(\frac{T_{r}-1}{T}\right)$
If $P^{\text {sat }}$ is in (atm), then application of (A) at the normal boiling point yields:

$$
\log 1=A-\frac{B}{T_{n}} \quad \text { or } \quad A=\frac{B}{T_{n}}
$$

With $\theta \equiv T_{n} / T_{c}$, Eq. (B) can now be written:

$$
\log P_{c}=B\left(\frac{1}{T_{n}}-\frac{1}{T_{c}}\right)=B\left(\frac{T_{c}-T_{n}}{T_{n} T_{c}}\right)=B\left(\frac{1-\theta}{T_{n}}\right)
$$

Whence,

$$
B=\left(\frac{T_{n}}{1-\theta}\right) \log P_{c}
$$

Equation (C) then becomes:

$$
\log P_{r}^{\text {sat }}=\left(\frac{T_{n}}{1-\theta}\right)\left(\frac{T_{r}-1}{T}\right) \log P_{c}=\left(\frac{\theta}{1-\theta}\right)\left(\frac{T_{r}-1}{T_{r}}\right) \log P_{c}
$$

Apply at $T_{r}=0.7: \quad \log \left(P_{r}^{\text {sat }}\right)_{T_{r}=0.7}=-\frac{3}{7}\left(\frac{\theta}{1-\theta}\right) \log P_{c}$
By Eq. (3.48),

$$
\omega=-1.0-\log \left(P_{r}^{\text {sat }}\right)_{T_{r}=0.7}
$$

$$
\omega=\frac{3}{7}\left(\frac{\theta}{1-\theta}\right) \log P_{c}-1
$$

6.83 The slopes of isobars and isochores on a $T S$ diagram are given by Eqs. (6.17) and (6.30):

$$
\left(\frac{\partial T}{\partial S}\right)_{P}=\frac{T}{C_{P}} \quad \text { and } \quad\left(\frac{\partial T}{\partial S}\right)_{V}=\frac{T}{C_{V}}
$$

Both slopes are necessarily positive. With $C_{P}>C_{V}$, isochores are steeper.
An expression for the curvature of isobars results from differentiation of the first equation above:
$\left(\frac{\partial^{2} T}{\partial S^{2}}\right)_{P}=\frac{1}{C_{P}}\left(\frac{\partial T}{\partial S}\right)_{P}-\frac{T}{C_{P}^{2}}\left(\frac{\partial C_{P}}{\partial S}\right)_{P}=\frac{T}{C_{P}^{2}}-\frac{T}{C_{P}^{2}}\left(\frac{\partial C_{P}}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial S}\right)_{P}=\frac{T}{C_{P}^{2}}\left[1-\frac{T}{C_{P}}\left(\frac{\partial C_{P}}{\partial T}\right)_{P}\right]$
With $C_{P}=a+b T, \quad\left(\frac{\partial C_{P}}{\partial T}\right)_{P}=b \quad$ and $\quad 1-\frac{T}{C_{P}}\left(\frac{\partial C_{P}}{\partial T}\right)_{P}=1-\frac{b T}{a+b T}=\frac{a}{a+b T}$
Because this quantity is positive, so then is the curvature of an isobar.
6.84 Division of Eq. (6.8) by $d S$ and restriction to constant T yields:

$$
\left(\frac{\partial H}{\partial S}\right)_{T}=T+V\left(\frac{\partial P}{\partial S}\right)_{T} \quad \quad \text { By Eq. (6.25), } \quad\left(\frac{\partial P}{\partial S}\right)_{T}=\frac{-1}{\beta V}
$$

Therefore,

$$
\left(\frac{\partial H}{\partial S}\right)_{T}=T-\frac{1}{\beta}=\frac{1}{\beta}(\beta T-1)
$$

Also,

$$
\left(\frac{\partial^{2} H}{\partial S^{2}}\right)_{T}=\frac{1}{\beta^{2}}\left(\frac{\partial \beta}{\partial S}\right)_{T}=\frac{1}{\beta^{2}}\left(\frac{\partial \beta}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial S}\right)_{T}=\frac{1}{\beta^{2}}\left(\frac{\partial \beta}{\partial P}\right)_{T}\left(\frac{-1}{\beta V}\right)
$$

Whence,

$$
\left(\frac{\partial^{2} H}{\partial S^{2}}\right)_{T}=-\frac{1}{\beta^{3} V}\left(\frac{\partial \beta}{\partial P}\right)_{T}
$$

By Eqs. (3.2) and (3.38): $\quad \beta=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \quad$ and $\quad V=\frac{R T}{P}+B$
Whence, $\quad\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{R}{P}+\frac{d B}{d T} \quad$ and $\quad \beta=\frac{1}{V}\left(\frac{R}{P}+\frac{d B}{d T}\right)$
Differentiation of the second preceding equation yields:

$$
\left(\frac{\partial \beta}{\partial P}\right)_{T}=-\frac{R}{V P^{2}}-\left(\frac{R}{P}+\frac{d B}{d T}\right) \frac{1}{V^{2}}\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{R}{V P^{2}}-(\beta V) \frac{1}{V^{2}}\left(\frac{\partial V}{\partial P}\right)_{T}
$$

From the equation of state, $\quad\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{R T}{P^{2}}$
Whence,

$$
\left(\frac{\partial \beta}{\partial P}\right)_{T}=-\frac{R}{V P^{2}}+\frac{\beta}{V} \frac{R T}{P^{2}}=\frac{R}{V P^{2}}(\beta T-1)
$$

Clearly, the signs of quantity $(\beta T-1)$ and the derivative on the left are the same. The sign is determined from the relation of β and V to B and $d B / d T$:

$$
\beta T-1=\frac{T}{V}\left(\frac{R}{P}+\frac{d B}{d T}\right)-1=\frac{\frac{R T}{P}+T \frac{d B}{d T}}{\frac{R T}{P}+B}-1=\frac{T \frac{d B}{d T}-B}{\frac{R T}{P}+B}
$$

In this equation $d B / d T$ is positive and B is negative. Because $R T / P$ is greater than $|B|$, the quantity $\beta T-1$ is positive. This makes the derivative in the first boxed equation positive, and the second derivative in the second boxed equation negative.
6.85 Since a reduced temperature of $T_{r}=2.7$ is well above "normal" temperatures for most gases, we expect on the basis of Fig. 3.10 that B is $(-)$ and that $d B / d T$ is $(+)$. Moreover, $d^{2} B / d T^{2}$ is $(-)$.
By Eqs. (6.54) and (6.56), $\quad G^{R}=B P \quad$ and $\quad S^{R}=-P(d B / d T)$
Whence, both G^{R} and S^{R} are (-). From the definition of $G^{R}, H^{R}=G^{R}+T S^{R}$, and H^{R} is (-).
By Eqs. (3.38) and (6.40), $\quad V^{R}=B, \quad$ and V^{R} is $(-)$.
Combine the equations above for G^{R}, S^{R}, and H^{R} :

$$
H^{R}=P\left(B-T \frac{d B}{d T}\right) \quad \text { Whence, } \quad\left(\frac{\partial H^{R}}{\partial T}\right)_{P}=P\left(\frac{d B}{d T}-T \frac{d^{2} B}{d T^{2}}-\frac{d B}{d T}\right)=-P T \frac{d^{2} B}{d T^{2}}
$$

Therefore, $C_{P}^{R} \quad\left(\frac{\partial H^{R}}{\partial T}\right)_{P}$ is (+). (See Fig. 6.5.)
6.89 By Eq. (3.5) at constant $T: \quad-P=\frac{1}{\kappa} \ln \frac{V}{V_{1}}-P_{1}$
(a) Work $\quad d W=-P d V=\left(\frac{1}{\kappa} \ln \frac{V}{V_{1}}-P_{1}\right) d V=\frac{1}{\kappa} \ln V d V-\left(P_{1}+\frac{1}{\kappa} \ln V_{1}\right) d V$

$$
\begin{gathered}
W=\frac{1}{\kappa} \int_{V_{1}}^{V_{2}} \ln V d V-\left(P_{1}+\frac{1}{\kappa} \ln V_{1}\right)\left(V_{2}-V_{1}\right) \\
W=\frac{1}{\kappa}\left[\left(V_{2} \ln V_{2}-V_{2}\right)-\left(V_{1} \ln V_{1}-V_{1}\right)\right]-P_{1}\left(V_{2}-V_{1}\right)-\frac{1}{\kappa}\left(V_{2} \ln V_{1}-V_{1} \ln V_{1}\right) \\
=\frac{1}{\kappa}\left[V_{2} \ln \frac{V_{2}}{V_{1}}+V_{1}-V_{2}\right]-P_{1}\left(V_{2}-V_{1}\right)
\end{gathered}
$$

By Eq. (3.5), $\ln \frac{V_{2}}{V_{1}}=-\kappa\left(P_{2}-P_{1}\right) \quad$ whence $\quad W=P_{1} V_{1}-P_{2} V_{2}-\frac{V_{2}-V_{1}}{\kappa}$
(b) Entropy

By Eq. (6.29), $\quad d S=-\beta V d P$
By Eq. (A), $\quad-P=\frac{\ln V}{\kappa}-\frac{\ln V_{1}}{\kappa}-P_{1} \quad$ and $\quad-d P=\frac{1}{\kappa} d \ln V$

$$
d S=\frac{\beta V}{\kappa} d \ln V=\frac{\beta}{\kappa} d V \quad \text { and } \quad \Delta S=\frac{\beta}{\kappa}\left(V_{2}-V_{1}\right)
$$

(c) Enthalpy

By Eq. (6.28), $\quad d H=(1-\beta T) V d P$
Substitute for $d P: \quad d H=-(1-\beta T) V \cdot \frac{1}{\kappa} d \ln V=-\frac{1-\beta T}{\kappa} d V$

$$
\Delta H=\frac{1-\beta T}{\kappa}\left(V_{1}-V_{2}\right)
$$

These equations are so simple that little is gained through use of an average V. For the conditions given in Pb .6 .9 , calculations give:

$$
W=4.855 \mathrm{~kJ} \mathrm{~kg}^{-1} \quad \Delta S=-0.036348 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1} \quad \Delta H=134.55 \mathrm{~kJ} \mathrm{~kg}^{-1}
$$

6.90 The given equation will be true if and only if $\quad\left(\frac{\partial M}{\partial P}\right)_{T} d P=0$

The two circumstances for which this condition holds are when $(\partial M / \partial P)_{T}=0$ or when $d P=0$. The former is a property feature and the latter is a process feature.
6.91

$$
\left(\frac{\partial H^{i g}}{\partial P}\right)_{V}=\left(\frac{\partial H^{i g}}{\partial P}\right)_{T}+\left(\frac{\partial H^{i g}}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{V}=C_{P}^{i g}\left(\frac{\partial T}{\partial P}\right)_{V}
$$

Neither $C_{P}^{i g}$ nor $(\partial T / \partial P)_{V}$ is in general zero for an ideal gas.

$$
\left(\frac{\partial H^{i g}}{\partial P}\right)_{S}=\left(\frac{\partial H^{i g}}{\partial P}\right)_{T}+\left(\frac{\partial H^{i g}}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial P}\right)_{S}=C_{P}^{i g}\left(\frac{\partial T}{\partial P}\right)_{S}
$$

$$
\begin{gathered}
\left(\frac{\partial T}{\partial P}\right)_{S}=-\left(\frac{\partial T}{\partial S^{i g}}\right)_{P}\left(\frac{\partial S^{i g}}{\partial P}\right)_{T}=\frac{T}{C_{P}^{i g}}\left(\frac{\partial S^{i g}}{\partial P}\right)_{T} \\
\left(\frac{\partial H^{i g}}{\partial P}\right)_{S}=T\left(\frac{\partial S^{i g}}{\partial P}\right)_{T}
\end{gathered}
$$

Neither T nor $\left(\partial S^{i g} / \partial P\right)_{T}$ is in general zero for an ideal gas. The difficulty here is that the expression independent of pressure is imprecise.
6.92 For $S=S(P, V): \quad d S=\left(\frac{\partial S}{\partial P}\right)_{V} d P+\left(\frac{\partial S}{\partial V}\right)_{P} d V$

By the chain rule for partial derivatives,

$$
d S=\left(\frac{\partial S}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial P}\right)_{V} d P+\left(\frac{\partial S}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial V}\right)_{P} d V
$$

With Eqs. (6.30) and (6.17), this becomes:

$$
d S=\frac{C_{V}}{T}\left(\frac{\partial T}{\partial P}\right)_{V} d P+\frac{C_{P}}{T}\left(\frac{\partial T}{\partial V}\right)_{P} d V
$$

6.93 By Eq. (6.31),

$$
P=T\left(\frac{\partial P}{\partial T}\right)_{V}-\left(\frac{\partial U}{\partial V}\right)_{T}
$$

(a) For an ideal gas, $\quad P=\frac{R T}{V} \quad$ and $\quad\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{R}{V}$

$$
\text { Therefore } \quad \frac{R T}{V}=\frac{R T}{V}-\left(\frac{\partial U}{\partial V}\right)_{T} \quad \text { and } \quad\left(\frac{\partial U}{\partial V}\right)_{T}=0
$$

(b) For a van der Waals gas, $\quad P=\frac{R T}{V-b}-\frac{a}{V^{2}} \quad$ and $\quad\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{R}{V-b}$

Therefore

$$
\frac{R T}{V-b}-\frac{a}{V^{2}}=\frac{R T}{V-b}-\left(\frac{\partial U}{\partial V}\right)_{T} \quad \text { and } \quad\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{a}{V^{2}}
$$

(c) Similarly, for a Redlich/Kwong fluid find: $\quad\left(\frac{\partial U}{\partial V}\right)_{T}=\frac{(3 / 2) A}{T^{1 / 2} V(V+b)}$
where $\quad A=a\left(T_{c}\right) \cdot T_{c}^{\frac{1}{2}}$
6.94 (a) The derivatives of G with respect to T and P follow from Eq, (6.10):

$$
-S=\left(\frac{\partial G}{\partial T}\right)_{P} \quad \text { and } \quad V=\left(\frac{\partial G}{\partial P}\right)_{T}
$$

Combining the definition of Z with the second of these gives:

$$
Z \equiv \frac{P V}{R T}=\frac{P}{R T}\left(\frac{\partial G}{\partial P}\right)_{T}
$$

Combining Eqs. (2.11) and (3.63) and solving for U gives $U=G+T S-P V$.
Replacing S and V by their derivatives gives: $\quad U=G-T\left(\frac{\partial G}{\partial T}\right)_{P}-P\left(\frac{\partial G}{\partial P}\right)_{T}$
Developing an equation for C_{V} is much less direct. First differentiate the above equation for U with respect to T and then with respect to P : The two resulting equations are:

$$
\begin{aligned}
& \left(\frac{\partial U}{\partial T}\right)_{P}=-T\left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{P}-P\left(\frac{\partial^{2} G}{\partial T \partial P}\right) \\
& \left(\frac{\partial U}{\partial P}\right)_{T}=-T\left(\frac{\partial^{2} G}{\partial T \partial P}\right)-P\left(\frac{\partial^{2} G}{\partial P^{2}}\right)_{T}
\end{aligned}
$$

From the definition of C_{V} and an equation relating partial derivatives:

$$
C_{V} \quad\left(\frac{\partial U}{\partial T}\right)_{V}=\left(\frac{\partial U}{\partial T}\right)_{P}+\left(\frac{\partial U}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial T}\right)_{V}
$$

Combining the three equations yields:

$$
C_{V}=-T\left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{P}-P\left(\frac{\partial^{2} G}{\partial T \partial P}\right)-\left[T\left(\frac{\partial^{2} G}{\partial T \partial P}\right)+P\left(\frac{\partial^{2} G}{\partial P^{2}}\right)_{T}\right]\left(\frac{\partial P}{\partial T}\right)_{V}
$$

Evaluate $(\partial P / \partial T)_{V}$ through use of the chain rule:

$$
\left(\frac{\partial P}{\partial T}\right)_{V}=-\left(\frac{\partial P}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{-(\partial V / \partial T)_{P}}{(\partial V / \partial P)_{T}}
$$

The two derivatives of the final term come from differentiation of $V=(\partial G / \partial P)_{T}$:

$$
\left(\frac{\partial V}{\partial T}\right)_{P}=\left(\frac{\partial^{2} G}{\partial P \partial T}\right) \quad \text { and } \quad\left(\frac{\partial V}{\partial P}\right)_{T}=\left(\frac{\partial^{2} G}{\partial P^{2}}\right)_{T}
$$

Then

$$
\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{-\left(\partial^{2} G / \partial T\right)_{P}}{\left(\partial^{2} G / \partial P^{2}\right)_{T}}
$$

and $\quad C_{V}=-T\left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{P}-P\left(\frac{\partial^{2} G}{\partial T \partial P}\right)+\left[T\left(\frac{\partial^{2} G}{\partial T \partial P}\right)+P\left(\frac{\partial^{2} G}{\partial P^{2}}\right)_{T}\right] \frac{\left(\partial^{2} G / \partial P \partial T\right)}{\left(\partial^{2} G / \partial P^{2}\right)_{T}}$
Some algebra transforms this equation into a more compact form:

$$
C_{V}=-T\left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{P}+T \frac{\left(\partial^{2} G / \partial T \partial P\right)^{2}}{\left(\partial^{2} G / \partial P^{2}\right)_{T}}
$$

(b) The solution here is analogous to that of part (a), but starting with the derivatives inherent in Eq. (6.9).
6.97 Equation (6.74) is exact: $\quad \frac{d \ln P^{\text {sat }}}{d(1 / T)}=-\frac{\Delta H^{l v}}{R \Delta Z^{l v}}$

The right side is approximately constant owing to the qualitatively similar behaviior of $\Delta H^{l v}$ and $\Delta Z^{l v}$. Both decrease monotonically as T increases, becoming zero at the critical point.
6.98 By the Clapeyron equation: $\quad \frac{d P^{\text {sat }}}{d T}=\frac{\Delta S^{s l}}{\Delta V^{s l}}=\frac{\Delta H^{s l}}{T \Delta V^{s l}}$

If the ratio $\Delta S^{s l}$ to $\Delta V^{s l}$ is assumed approximately constant, then

$$
P^{\mathrm{sat}}=A+B T
$$

If the ratio $\Delta H^{s l}$ to $\Delta V^{s l}$ is assumed approximately constant, then

$$
P^{\text {sat }}=A+B \ln T
$$

6.99 By Eq , (6.73) and its analog for $s v$ equilibrium:

$$
\begin{gathered}
\left(\frac{d P_{s v}^{\text {sat }}}{d T}\right)_{t}=\frac{P_{t} \Delta H_{t}^{s v}}{R T_{t}^{2} \Delta Z_{t}^{s v}} \approx \frac{P_{t} \Delta H_{t}^{s v}}{R T_{t}^{2}} \\
\left(\frac{d P_{l v}^{\mathrm{sat}}}{d T}\right)_{t}=\frac{P_{t} \Delta H_{t}^{l v}}{R T_{t}^{2} \Delta Z_{t}^{l v}} \approx \frac{P_{t} \Delta H_{t}^{l v}}{R T_{t}^{2}} \\
\left(\frac{d P_{s v}^{\text {sat }}}{d T}\right)_{t}-\left(\frac{d P_{l v}^{\text {sat }}}{d T}\right)_{t} \approx \frac{P_{t}}{R T_{t}^{2}}\left(\Delta H_{t}^{s v}-\Delta H_{t}^{l v}\right)
\end{gathered}
$$

Because $\left(\Delta H_{t}^{s v}-\Delta H_{t}^{l v}\right)=\Delta H_{t}^{s l}$ is positive, then so is the left side of the preceding equation.
6.100 By Eq. (6.72): $\quad \frac{d P^{\text {sat }}}{d T}=\frac{\Delta H^{l v}}{T \Delta V^{l v}}$

But $\quad \Delta V^{l v}=\frac{R T}{P^{\text {sat }}} \Delta Z^{l v} \quad$ whence $\quad \frac{d \ln P^{\text {sat }}}{d T}=\frac{\Delta H^{l v}}{R T^{2} \Delta Z^{l v}}$

$$
\frac{d \ln P_{r}^{\text {sat }}}{d T_{r}}=\frac{T_{c} \Delta H^{l v}}{R T^{2} \Delta Z^{l v}}=\frac{\Delta H^{l v}}{R T_{c}} \cdot \frac{1}{T_{r}^{2} \Delta Z^{l v}}=\frac{\widehat{\Delta H}^{l v}}{T_{r}^{2} \Delta Z^{l v}}
$$

6.102 Convert α_{c} to reduced conditions:

$$
\alpha_{c} \equiv\left[\frac{d \ln P^{\mathrm{sat}}}{d \ln T}\right]_{T=T_{c}}=\left[\frac{d \ln P_{r}^{\mathrm{sat}}}{d \ln T_{r}}\right]_{T_{r}=1}=T_{r}\left[\frac{d \ln P_{r}^{\mathrm{sat}}}{d T_{r}}\right]_{T_{r}=1}=\left[\frac{d \ln P_{r}^{\mathrm{sat}}}{d T_{r}}\right]_{T_{r}=1}
$$

From the Lee/Kesler equation, find that

$$
\left[\frac{d \ln P_{r}^{\mathrm{sat}}}{d T_{r}}\right]_{T_{r}=1}=5.8239+4.8300 \omega
$$

Thus, $\alpha_{c}(\mathrm{~L} / \mathrm{K})=5.82$ for $\omega=0$, and increases with increasing molecular complexity as quantified by ω.

Chapter 7 - Section B - Non-Numerical Solutions

7.2 (a) Apply the general equation given in the footnote on page 266 to the particular derivative of interest here:

$$
\left(\frac{\partial T}{\partial P}\right)_{S}=-\left(\frac{\partial T}{\partial S}\right)_{P}\left(\frac{\partial S}{\partial P}\right)_{T}
$$

The two partial derivatives on the right are found from Eqs. (6.17) and (6.16); thus,

$$
\left(\frac{\partial T}{\partial P}\right)_{S}=\frac{T}{C_{P}}\left(\frac{\partial V}{\partial T}\right)_{P}
$$

For gases, this derivative is positive. It applies to reversible adiabatic expansions and compressions in turbines and compressors.
(b) Application of the same general relation (page 266) yields:

$$
\left(\frac{\partial T}{\partial V}\right)_{U}=-\left(\frac{\partial T}{\partial U}\right)_{V}\left(\frac{\partial U}{\partial V}\right)_{T}
$$

The two partial derivatives on the right are found from Eqs. (2.16) and (6.31); thus,

$$
\left(\frac{\partial T}{\partial V}\right)_{U}=\frac{1}{C_{V}}\left[P-T\left(\frac{\partial P}{\partial T}\right)_{V}\right]
$$

For gases, this may be positive or negative, depending on conditions. Note that it is zero for an ideal gas. It applies directly to the Joule expansion, an adiabatic expansion of gas confined in a portion of a container to fill the entire container.
7.3 The equation giving the thermodynamic sound speed appears in the middle of page 257. As written, it implicitly requires that V represent specific volume. This is easily confirmed by a dimensional analysis. If V is to be molar volume, then the right side must be divided by molar mass:

$$
\begin{equation*}
c^{2}=-\frac{V^{2}}{\mathcal{M}}\left(\frac{\partial P}{\partial V}\right)_{S} \tag{A}
\end{equation*}
$$

Applying the equation given in the footnote on page 266 to the derivative yields:

$$
\left(\frac{\partial P}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}\left(\frac{\partial S}{\partial V}\right)_{P}
$$

This can also be written:

$$
\left(\frac{\partial P}{\partial V}\right)_{S}=-\left[\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial S}\right)_{V}\right]\left[\left(\frac{\partial S}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial V}\right)_{P}\right]=-\left[\left(\frac{\partial T}{\partial S}\right)_{V}\left(\frac{\partial S}{\partial T}\right)_{P}\right]\left[\left(\frac{\partial P}{\partial T}\right)_{V}\left(\frac{\partial T}{\partial V}\right)_{P}\right]
$$

Division of Eq. (6.17) by Eq. (6.30) shows that the first product in square brackets on the far right is the ratio C_{P} / C_{V}. Reference again to the equation of the footnote on page 266 shows that the second product in square brackets on the far right is $-(\partial P / \partial V)_{T}$, which is given by Eq. (3.3).

Therefore,

$$
\left(\frac{\partial P}{\partial V}\right)_{S}=\frac{C_{P}}{C_{V}}\left(\frac{\partial P}{\partial V}\right)_{T}=\frac{C_{P}}{C_{V}}\left(\frac{-1}{\kappa V}\right)
$$

Substitute into Eq. (A): $\quad c^{2}=\frac{V C_{P}}{\mathcal{M} C_{V} \kappa} \quad$ or $\quad c=\sqrt{\frac{V C_{P}}{\mathcal{M} C_{V} \kappa}}$
(a) For an ideal gas, $V=R T / P$ and $\kappa=1 / P$. Therefore, $\quad c^{i g}=\sqrt{\frac{R T}{\mathcal{M}} \frac{C_{P}}{C_{V}}}$
(b) For an incompressible liquid, V is constant, and $\kappa=0$, leading to the result: $c=\infty$. This of course leads to the conclusion that the sound speed in liquids is much greater than in gases.
7.6

As P_{2} decreases from an initial value of $P_{2}=P_{1}$, both u_{2} and \dot{m} steadily increase until the criticalpressure ratio is reached. At this value of P_{2}, u_{2} equals the speed of sound in the gas, and further reduction in P_{2} does not affect u_{2} or \dot{m}.
7.7 The mass-flow rate \dot{m} is of course constant throughout the nozzle from entrance to exit.

The velocity u rises monotonically from nozzle entrance $\left(P / P_{1}=1\right)$ to nozzle exit as P and P / P_{1} decrease.
The area ratio decreases from $A / A_{1}=1$ at the nozzle entrance to a minimum value at the throat and thereafter increases to the nozzle exit.
7.8 Substitution of Eq. (7.12) into (7.11), with $u_{1}=0$ gives:

$$
u_{\text {throat }}^{2}=\frac{2 \gamma P_{1} V_{1}}{\gamma-1}\left(1-\frac{2}{\gamma+1}\right)=\gamma P_{1} V_{1}\left(\frac{2}{\gamma+1}\right)
$$

where V_{1} is specific volume in $\mathrm{m}^{3} \cdot \mathrm{~kg}^{-1}$ and P_{1} is in Pa . The units of $u_{\mathrm{t} \text { throat }}^{2}$ are then:

$$
\mathrm{Pa} \cdot \mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1}=\frac{\mathrm{N}}{\mathrm{~m}^{2}} \cdot \mathrm{~m}^{3} \cdot \mathrm{~kg}^{-1}=\mathrm{N} \cdot \mathrm{~m} \cdot \mathrm{~kg}^{-1}=\mathrm{kg} \cdot \mathrm{~m} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~m} \cdot \mathrm{~kg}^{-1}=\mathrm{m}^{2} \cdot \mathrm{~s}^{-2}
$$

With respect to the final term in the preceding equation, note that $P_{1} V_{1}$ has the units of energy per unit mass. Because $1 \mathrm{~N} \cdot \mathrm{~m}=1 \mathrm{~J}$, equivalent units are $\mathrm{J} \cdot \mathrm{kg}^{-1}$. Moreover, $P_{1} V_{1}=R T_{1} / M$; whence

$$
u_{\text {throat }}^{2}=\frac{\gamma R T_{1}}{M}\left(\frac{2}{\gamma+1}\right)
$$

With R in units of $\mathrm{J} \cdot(\mathrm{kg} \mathrm{mol})^{-1} \cdot \mathrm{~K}^{-1}, R T_{1} / M$ has units of $\mathrm{J} \cdot \mathrm{kg}^{-1}$ or $\mathrm{m}^{2} \cdot \mathrm{~s}^{-2}$.
7.16 It is shown at the end of Ex. 7.5 that the Joule/Thomson inversion curve is the locus of states for which $(\partial Z / \partial T)_{P}=0$. We apply the following general equation of differential calculus:

$$
\begin{aligned}
\left(\frac{\partial x}{\partial y}\right)_{z} & =\left(\frac{\partial x}{\partial y}\right)_{w}+\left(\frac{\partial x}{\partial w}\right)_{y}\left(\frac{\partial w}{\partial y}\right)_{z} \\
\left(\frac{\partial Z}{\partial T}\right)_{P} & =\left(\frac{\partial Z}{\partial T}\right)_{\rho}+\left(\frac{\partial Z}{\partial \rho}\right)_{T}\left(\frac{\partial \rho}{\partial T}\right)_{P}
\end{aligned}
$$

Whence,

$$
\left(\frac{\partial Z}{\partial T}\right)_{\rho}=\left(\frac{\partial Z}{\partial T}\right)_{P}-\left(\frac{\partial Z}{\partial \rho}\right)_{T}\left(\frac{\partial \rho}{\partial T}\right)_{P}
$$

Because $\quad P=\rho Z R T, \quad \rho=\frac{P}{Z R T} \quad$ and $\quad\left(\frac{\partial \rho}{\partial T}\right)_{P}=\frac{P}{R}\left\{\frac{-1}{(Z T)^{2}}\left[Z+T\left(\frac{\partial Z}{\partial T}\right)_{P}\right]\right\}$
Setting $(\partial Z / \partial T)_{P}=0$ in each of the two preceding equations reduces them to:

$$
\left(\frac{\partial Z}{\partial T}\right)_{\rho}=-\left(\frac{\partial Z}{\partial \rho}\right)_{T}\left(\frac{\partial \rho}{\partial T}\right)_{P} \quad \text { and } \quad\left(\frac{\partial \rho}{\partial T}\right)_{P}=-\frac{P}{Z R T^{2}}=-\frac{\rho}{T}
$$

Combining these two equations yields:

$$
T\left(\frac{\partial Z}{\partial T}\right)_{\rho}=\rho\left(\frac{\partial Z}{\partial \rho}\right)_{T}
$$

(a) Equation (3.42) with van der Waals parameters becomes:

$$
P=\frac{R T}{V-b}-\frac{a}{V^{2}}
$$

Multiply through by $V / R T$, substitute $Z=P V / R T, V=1 / \rho$, and rearrange:

$$
Z=\frac{1}{1-b \rho}-\frac{a \rho}{R T}
$$

In accord with Eq. (3.51), define $q \equiv a / b R T$. In addition, define $\xi \equiv b \rho$. Then,

$$
\begin{equation*}
Z=\frac{1}{1-\xi}-q \xi \tag{A}
\end{equation*}
$$

Differentiate:

$$
\left(\frac{\partial Z}{\partial T}\right)_{\rho}=\left(\frac{\partial Z}{\partial T}\right)_{\xi}=-\xi \frac{d q}{d T}
$$

By Eq. (3.54) with $\alpha\left(T_{r}\right)=1$ for the van der Waals equation, $q=\Psi / \Omega T_{r}$. Whence,

$$
\frac{d q}{d T}=\frac{\Psi}{\Omega}\left(\frac{-1}{T_{r}^{2}}\right) \frac{d T_{r}}{d T}=-\frac{\Psi}{\Omega} \frac{1}{T_{r}^{2} T_{c}}=-\frac{\Psi}{\Omega} \frac{1}{T T_{r}}=-\frac{q}{T}
$$

Then,

$$
\left(\frac{\partial Z}{\partial T}\right)_{\rho}=(-\xi)\left(-\frac{q}{T}\right)=\frac{q \xi}{T}
$$

In addition,

$$
\left(\frac{\partial Z}{\partial \rho}\right)_{T}=b\left(\frac{\partial Z}{\partial \xi}\right)_{T}=\frac{b}{(1-\xi)^{2}}-q b
$$

Substitute for the two partial derivatives in the boxed equation:

$$
T \frac{q \xi}{T}=\frac{b \rho}{(1-\xi)^{2}}-q b \rho \quad \text { or } \quad q \xi=\frac{\xi}{(1-\xi)^{2}}-q \xi
$$

Whence,

$$
\begin{equation*}
\xi=1-\frac{1}{\sqrt{2 q}} \tag{B}
\end{equation*}
$$

By Eq. (3.46), $P_{c}=\Omega R T_{c} / b$. Moreover, $P=Z \rho R T$. Division of the second equation by the first gives $P_{r}=Z \rho b T / \Omega T_{c}$. Whence

$$
\begin{equation*}
P_{r}=\frac{Z \xi T_{r}}{\Omega} \tag{C}
\end{equation*}
$$

These equations allow construction of a T_{r} vs. P_{r} inversion curve as in Fig. 7.2. For a given value of T_{r}, calculate q. Equation (B) then gives ξ, Eq. (A) gives Z, and Eq. (C) gives P_{r}.
(b) Proceed exactly as in Part (a), with exactly the same definitions. This leads to a new Eq. (A):

$$
\begin{equation*}
Z=\frac{1}{1-\xi}-\frac{q \xi}{1+\xi} \tag{A}
\end{equation*}
$$

By Eq. (3.54) with $\alpha\left(T_{r}\right)=T_{r}^{-0.5}$ for the Redlich/Kwong equation, $q=\Psi / \Omega T_{r}^{1.5}$. This leads to:

$$
\frac{d q}{d T}=-\frac{1.5 q}{T} \quad \text { and } \quad\left(\frac{\partial Z}{\partial T}\right)_{\rho}=\frac{1.5 q \xi}{T(1+\xi)}
$$

Moreover,

$$
\left(\frac{\partial Z}{\partial \rho}\right)_{T}=\frac{b}{(1-\xi)^{2}}-\frac{b q}{(1+\xi)^{2}}
$$

Substitution of the two derivatives into the boxed equation leads to a new Eq. (B):

$$
\begin{equation*}
q=\left(\frac{1+\xi}{1-\xi}\right)^{2}\left(\frac{1}{2.5+1.5 \xi}\right) \tag{B}
\end{equation*}
$$

As in Part (a), for a given T_{r}, calculate q, and solve Eq. (B) for ξ, by trial or a by a computer routine. As before, Eq. (A) then gives Z, and Eq. (C) of Part (a) gives P_{r}.
7.17 (a) Equal to. (b) Less than. (c) Less than. (d) Equal to. (e) Equal to.
7.28 When a saturated liquid is expanded in a turbine some of the liquid vaporizes. A turbine properly designed for expansion of liquids cannot handle the much larger volumes resulting from the formation of vapor. For example, if saturated liquid at 5 bar expands isentropically to 1 bar, the fraction of the original liquid that vaporizes is found as follows:
or

$$
\begin{gathered}
S_{2}=S_{2}^{l}+x_{2}^{v}\left(S_{2}^{v}-S_{2}^{l}\right)=S_{1} \\
x_{2}^{v}=\frac{S_{1}-S_{2}^{l}}{S_{2}^{v}-S_{2}^{l}}=\frac{1.8604-1.3027}{7.3598-1.3027}=0.0921
\end{gathered}
$$

Were the expansion irreversible, the fraction of liquid vaporized would be even greater.
7.33 Apply Eq. (2.29) to this non-steady-state process, with n replacing m, with the tank as control volume, and with a single inlet stream. Since the process is adiabatic and the only work is shaft work, this equation may be multiplied by $d t$ to give:

$$
d(n U)_{\mathrm{tank}}-H d n=d W_{s}
$$

Because the inlet stream has constant properties, integration from beginning to end of the process yields:

$$
W_{s}=n_{2} U_{2}-n_{1} U_{1}-n H
$$

where the subscripted quantities refer to the contents of the tank and n and H refer to the inlet stream. Substitute $n=n_{2}-n_{1}$ and $H=U+P V=U+R T$:

$$
W_{s}=n_{2} U_{2}-n_{1} U_{1}-\left(n_{2}-n_{1}\right)(U+R T)=n_{2}\left(U_{2}-U-R T\right)-n_{1}\left(U_{1}-U-R T\right)
$$

With $\Delta U=C_{V} \Delta T$ for an ideal gas with constant heat capacities, this becomes:

$$
W_{s}=n_{2}\left[C_{V}\left(T_{2}-T\right)-R T\right]-n_{1}\left[C_{V}\left(T_{1}-T\right)-R T\right]
$$

However, $T=T_{1}$, and therefore:

$$
W_{s}=n_{2}\left[C_{V}\left(T_{2}-T_{1}\right)-R T_{1}\right]+n_{1} R T_{1}
$$

By Eq. (3.30b),

$$
T_{2}=\left(\frac{P_{2}}{P_{1}}\right)^{(\gamma-1) / \gamma)}
$$

Moreover, $\quad n_{1}=\frac{P_{1} V_{\text {tank }}}{R T_{1}} \quad$ and $\quad n_{2}=\frac{P_{2} V_{\text {tank }}}{R T_{2}}$

With $\gamma=1.4, T_{2}=573.47 \mathrm{~K}$. Then, with $R=8.314 \mathrm{~m}^{3} \mathrm{kPa} \mathrm{kmol}^{-1} \mathrm{~K}^{-1}$,

$$
n_{1}=\frac{(101.33)(20)}{(8.314)(298.15)}=0.8176 \mathrm{kmol} \quad \text { and } \quad n_{2}=\frac{(1000)(20)}{(8.314)(573.47)}=4.1948 \mathrm{kmol}
$$

Substitution of numerical values into the boxed equation, with $R=8.314 \mathrm{~kJ} \mathrm{kmol}^{-1} \mathrm{~K}^{-1}$, gives:

$$
W_{s}=15,633 \mathrm{~kJ}
$$

7.40 Combine Eqs. (7.13) and (7.17):

$$
\dot{W}_{s}=\dot{n} \Delta H=\dot{n} \frac{(\Delta H)_{S}}{\eta}
$$

By Eq. (6.8),

$$
(\Delta H)_{S}=\int V d P=\langle V\rangle \Delta P
$$

Assume now that ΔP is small enough that $\langle V\rangle$, an average value, can be approximated by $V_{1}=$ $R T_{1} / P_{1}$. Then

$$
(\Delta H)_{S}=\frac{R T_{1}}{P_{1}} \Delta P \quad \text { and } \quad \dot{W}_{s}=\dot{n} \frac{R T_{1}}{\eta P_{1}} \Delta P
$$

Equation (7.22) is the usual equation for isentropic compression of an ideal gas with constant heat capacities. For irreversible compression it can be rewritten:

$$
\dot{W}_{s}=\frac{\dot{n} C_{P} T_{1}}{\eta}\left[\left(\frac{P_{2}}{P_{1}}\right)^{R / C_{P}}-1\right]
$$

For ΔP sufficiently small, the quantity in square brackets becomes:

$$
\left(\frac{P_{2}}{P_{1}}\right)^{R / C_{P}}-1=\left(1+\frac{\Delta P}{P_{1}}\right)^{R / C_{P}}-1 \approx\left(1+\frac{R}{C_{P}} \frac{\Delta P}{P_{1}}\right)-1
$$

The boxed equation is immediately recovered from this result.
7.41 The equation immediately preceding Eq. (7.22) page 276 gives $T_{2}^{\prime}=T_{1} \pi$. With this substitution, Eq. (7.23) becomes:

$$
T_{2}=T_{1}+\frac{T_{1} \pi-T_{1}}{\eta}=T_{1}\left(1+\frac{\pi-1}{\eta}\right)
$$

The entropy generation S_{G} is simply ΔS for the compression process, for which Eq. (5.14) may be rewritten:

$$
\frac{\Delta S}{R}=\frac{C_{P}}{R} \ln \frac{T_{2}}{T_{1}}-\ln \frac{P_{2}}{P_{1}}=\frac{C_{P}}{R} \ln \frac{T_{2}}{T_{1}}-\frac{C_{P}}{R} \ln \left(\frac{P_{2}}{P_{1}}\right)^{R / C_{P}}
$$

Combine the two preceding equations:

Whence,

$$
\frac{\Delta S}{R}=\frac{C_{P}}{R}\left[\ln \left(1+\frac{\pi-1}{\eta}\right)-\ln \pi\right]=\frac{C_{P}}{R} \ln \frac{1+\frac{\pi-1}{\eta}}{\pi}
$$

$$
\frac{S_{G}}{R}=\frac{C_{P}}{R} \ln \left(\frac{\eta+\pi-1}{\eta \pi}\right)
$$

7.43 The relevant fact here is that C_{P} increases with increasing molecular complexity. Isentropic compression work on a mole basis is given by Eq. (7.22), which can be written:

$$
W_{s}=C_{P} T_{1}(\pi-1) \quad \text { where } \quad \pi \equiv\left(\frac{P_{2}}{P_{1}}\right)^{R / C_{P}}
$$

This equation is a proper basis, because compressor efficiency η and flowrate \dot{n} are fixed. With all other variables constant, differentiation yields:

$$
\frac{d W_{s}}{d C_{P}}=T_{1}\left[(\pi-1)+C_{P} \frac{d \pi}{d C_{P}}\right]
$$

From the definition of π,

$$
\ln \pi=\frac{R}{C_{P}} \ln \frac{P_{2}}{P_{1}} \quad \text { whence } \quad \frac{d \ln \pi}{d C_{P}}=\frac{1}{\pi} \frac{d \pi}{d C_{P}}=-\frac{R}{C_{P}^{2}} \ln \frac{P_{2}}{P_{1}}
$$

Then,

$$
\frac{d \pi}{d C_{P}}=-\frac{\pi R}{C_{P}^{2}} \ln \frac{P_{2}}{P_{1}}
$$

$$
\frac{d W_{s}}{d C_{P}}=T_{1}\left(\pi-1-\frac{\pi R}{C_{P}} \ln \frac{P_{2}}{P_{1}}\right)=T_{1}(\pi-1-\pi \ln \pi)
$$

When $\pi=1$, the derivative is zero; for $\pi>1$, the derivative is negative (try some values). Thus, the work of compression decreases as C_{P} increases and as the molecular complexity of the gas increases.
7.45 The appropriate energy balance can be written: $W=\Delta H-Q$. Since Q is negative (heat transfer is out of the system), the work of non-adiabatic compression is greater than for adiabatic compression. Note that in order to have the same change in state of the air, i.e., the same ΔH, the irreversibilities of operation would have to be quite different for the two cases.
7.46 There is in fact no cause for concern, as adiabatic compression sends the steam further into the superheat region.
7.49 (a) This result follows immediately from the last equation on page 267 of the text.
(b) This result follows immediately from the middle equation on page 267 of the text.
(c) This result follows immediately from Eq. (6.19) on page 267 of the text.
(d) $\quad\left(\frac{\partial Z}{\partial V}\right)_{P}=\left(\frac{\partial Z}{\partial T}\right)_{P}\left(\frac{\partial T}{\partial V}\right)_{P} \quad$ but by (a), this is zero.
(e) Rearrange the given equation: $\frac{V}{T}=-\frac{(\partial P / \partial T)_{V}}{(\partial P / \partial V)_{T}}=-\left(\frac{\partial V}{\partial P}\right)_{T}\left(\frac{\partial P}{\partial T}\right)_{V}=\left(\frac{\partial V}{\partial T}\right)_{P}$

For the final equality see footnote on p. 266. This result is the equation of (c).
7.50 From the result of Pb. 7.3: $\quad c=\sqrt{\frac{V}{\mathcal{M}} \cdot \frac{C_{P}}{C_{V}} \cdot \frac{1}{\kappa}} \quad$ where $\quad \kappa=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}$ With $\quad V=\frac{R T}{P}+B \quad$ then $\quad\left(\frac{\partial V}{\partial P}\right)_{T}=-\frac{R T}{P^{2}} \quad$ Also, let $\quad \gamma=\frac{C_{P}}{C_{V}}$

Then

$$
c=P V \sqrt{\frac{\gamma}{\mathcal{M} R T}}=(R T+B P) \sqrt{\frac{\gamma}{\mathcal{M} R T}}=\left(1+\frac{B P}{R T}\right) \sqrt{\frac{\gamma R T}{\mathcal{M}}}
$$

$$
c=\sqrt{\frac{\gamma R T}{\mathcal{M}}}+\frac{B}{R T} \sqrt{\frac{\gamma R T}{\mathcal{M}}} \cdot P
$$

A value for B at temperature T may be extracted from a linear fit of c vs. P.
7.51 (a) On the basis of Eq. (6.8), write:

$$
\begin{aligned}
& \Delta H_{S}^{i g}=\int V^{i g} d P=\int \frac{R T}{P} d P \\
& \Delta H_{S}=\int V d P=\int \frac{Z R T}{P} d P \quad(\text { const } S) \\
& \frac{\Delta H_{S}}{\Delta H_{S}^{i g}}=\frac{\int \frac{Z R T}{P} d P \quad(\text { const } S)}{\int \frac{R T}{P} d P \quad(\text { const } S)} \equiv\langle Z\rangle
\end{aligned}
$$

By extension, and with equal turbine efficiencies, $\frac{\Delta H}{\Delta H^{i g}}=\frac{\dot{W}}{\dot{W}^{i g}}=\langle Z\rangle$
7.52 By Eq. (7.16), $\Delta H=\eta(\Delta H)_{S} \quad$ For $C_{P}=$ constant, $\quad T_{2}-T_{1}=\eta\left[\left(T_{2}\right)_{S}-T_{1}\right]$

For an ideal gas with constant $C_{P},\left(T_{2}\right)_{S}$ is related to T_{1} by (see p. 77): $\quad\left(T_{2}\right)_{S}=T_{1}\left(\frac{P_{2}}{P_{1}}\right)^{R / C_{P}}$
Combine the last two equations, and solve for $T_{2}: \quad T_{2}=T_{1}\left\{1+\eta\left[\left(\frac{P_{2}}{P_{1}}\right)^{R / C_{P}}-1\right]\right\}$

$$
\text { From which } \quad \eta=\frac{\frac{T_{2}}{T_{1}}-1}{\left(\frac{P_{2}}{P_{1}}\right)^{R / C_{P}}-1} \quad \text { Note that } \eta<1
$$

Results: For $T_{2}=318 \mathrm{~K}, \eta=1.123$; For $T_{2}=348 \mathrm{~K}, \eta=1.004$; For $T_{2}=398 \mathrm{~K}, \eta=0.805$.
Only $T_{2}=398 \mathrm{~K}$ is possible.
7.55 The proposal of Pb .7 .53 , i.e., pumping of liquid followed by vaporization. The reason is that pumping a liquid is much less expensive than vapor compression.
7.56 What is required here is the lowest saturated steam temperature that satisfies the ΔT constraint. Data from Tables F. 2 and B. 2 lead to the following:

Benzene/4.5 bar; n-Decane/17 bar; Ethylene glycol/33 bar; o-Xylene/9 bar

Chapter 8 - Section B - Non-Numerical Solutions

8.12 (a) Because Eq. (8.7) for the efficiency $\eta_{\text {Diesel }}$ includes the expansion ratio, $r_{e} \equiv V_{B} / V_{A}$, we relate this quantity to the compression ratio, $r \equiv V_{C} / V_{D}$, and the Diesel cutoff ratio, $r_{c} \equiv V_{A} / V_{D}$. Since $V_{C}=V_{B}, r_{e}=V_{C} / V_{A}$. Whence,

$$
\frac{r}{r_{e}}=\frac{V_{C} / V_{D}}{V_{C} / V_{A}}=\frac{V_{A}}{V_{D}}=r_{c} \quad \text { or } \quad \frac{1}{r_{e}}=\frac{r_{c}}{r}
$$

Equation (8.7) can therefore be written:

$$
\eta_{\text {Diesel }}=1-\frac{1}{\gamma}\left[\frac{\left(r_{c} / r\right)^{\gamma}-(1 / r)^{\gamma}}{r_{c} / r-1 / r}\right]=1-\frac{1}{\gamma} \frac{(1 / r)^{\gamma}}{1 / r}\left(\frac{r_{c}^{\gamma}-1}{r_{c}-1}\right)
$$

or

$$
\eta_{\text {Diesel }}=1-\left(\frac{1}{r}\right)^{\gamma-1} \frac{r_{c}^{\gamma}-1}{\gamma\left(r_{c}-1\right)}
$$

(b) We wish to show that:

$$
\frac{r_{c}^{\gamma}-1}{\gamma\left(r_{c}-1\right)}>1 \quad \text { or more simply } \quad \frac{x^{a}-1}{a(x-1)}>1
$$

Taylor's theorem with remainder, taken to the 1st derivative, is written:

$$
g=g(1)+g^{\prime}(1) \cdot(x-1)+\mathcal{R}
$$

where,

$$
\mathcal{R} \equiv \frac{g^{\prime \prime}[1+\theta(x-1)]}{2!} \cdot(x-1)^{2} \quad(0<\theta<1)
$$

Then,

$$
x^{a}=1+a \cdot(x-1)+\frac{1}{2} a \cdot(a-1) \cdot[1+\theta(x-1)]^{a-2} \cdot(x-1)^{2}
$$

Note that the final term is \mathcal{R}. For $a>1$ and $x>1, \mathcal{R}>0$. Therefore:

$$
x^{a}>1+a \cdot(x-1) \quad x^{a}-1>a \cdot(x-1)
$$

and

$$
\frac{r_{c}^{\gamma}-1}{\gamma\left(r_{c}-1\right)}>1
$$

(c) If $\gamma=1.4$ and $r=8$, then by Eq. (8.6):

$$
\eta_{\text {Otto }}=1-\left(\frac{1}{8}\right)^{0.4} \quad \text { and } \quad \eta_{\text {Otto }}=0.5647
$$

- $r_{c}=2 \quad \eta_{\text {Desiel }}=1-\left(\frac{1}{8}\right)^{0.4} \frac{2^{1.4}-1}{1.4(2-1)} \quad$ and $\quad \eta_{\text {Diesel }}=0.4904$
- $r_{c}=3 \quad \eta_{\text {Desiel }}=1-\left(\frac{1}{8}\right)^{0.4} \frac{3^{1.4}-1}{1.4(3-1)} \quad$ and $\quad \eta_{\text {Diesel }}=0.4317$
8.15 See the figure below. In the regenerative heat exchanger, the air temperature is raised in step $B \rightarrow B^{*}$, while the air temperature decreases in step $D \rightarrow D^{*}$. Heat addition (replacing combustion) is in step $B^{*} \rightarrow C$.

By definition,

$$
\eta \equiv \frac{-W_{A B}-W_{C D}}{Q_{B^{*} C}}
$$

where,

$$
\begin{gathered}
W_{A B}=\left(H_{B}-H_{A}\right)=C_{P}\left(T_{B}-T_{A}\right) \\
W_{C D}=\left(H_{D}-H_{C}\right)=C_{P}\left(T_{D}-T_{C}\right) \\
Q_{B^{*} C}=C_{P}\left(T_{C}-T_{B^{*}}\right)=C_{P}\left(T_{C}-T_{D}\right) \\
\eta=\frac{T_{A}-T_{B}+T_{C}-T_{D}}{T_{C}-T_{D}}=1-\frac{T_{B}-T_{A}}{T_{C}-T_{D}}
\end{gathered}
$$

Whence,
By Eq. (3.30b),

$$
\begin{gathered}
T_{B}=T_{A}\left(\frac{P_{B}}{P_{A}}\right)^{(\gamma-1) / \gamma} \text { and } T_{D}=T_{C}\left(\frac{P_{D}}{P_{C}}\right)^{(\gamma-1) / \gamma}=T_{C}\left(\frac{P_{A}}{P_{B}}\right)^{(\gamma-1) / \gamma} \\
\eta=1-\frac{T_{A}\left[\left(\frac{P_{B}}{P_{A}}\right)^{(\gamma-1) / \gamma}-1\right]}{T_{C}\left[1-\left(\frac{P_{A}}{P_{B}}\right)^{(\gamma-1) / \gamma}\right]}
\end{gathered}
$$

Multiplication of numerator and denominator by $\left(P_{B} / P_{A}\right)^{(\gamma-1) / \gamma}$ gives:

$$
\eta=1-\frac{T_{A}}{T_{C}}\left(\frac{P_{B}}{P_{A}}\right)^{(\gamma-1) / \gamma}
$$

8.21 We give first a general treatment of paths on a $P T$ diagram for an ideal gas with constant heat capacities undergoing reversible polytropic processes. Equation (3.35c), p. 78, may be rewritten as

$$
P=K T^{\delta /(\delta-1)} \quad \ln P=\ln K+\frac{\delta}{\delta-1} \ln T \quad \frac{d P}{P}=\frac{\delta}{\delta-1} \frac{d T}{T}
$$

$$
\frac{d P}{d T}=\frac{\delta}{\delta-1} \frac{P}{T} \quad(A) \quad \text { Sign of } d P / d T \text { is that of } \delta-1 \text {, i.e., }+
$$

$$
\text { Special cases } \begin{cases}\delta=0 \longrightarrow d P / d T=0 & \text { Constant } P \\ \delta=1 \longrightarrow d P / d T=\infty & \text { Constant } T\end{cases}
$$

By Eq. (A), $\quad \frac{d^{2} P}{d T^{2}}=\frac{\delta}{\delta-1}\left(\frac{1}{T} \frac{d P}{d T}-\frac{P}{T^{2}}\right)=\frac{\delta}{\delta-1} \frac{1}{T}\left(\frac{\delta}{\delta-1} \frac{P}{T}-\frac{P}{T}\right)$

$$
\frac{d^{2} P}{d T^{2}}=\frac{\delta}{(\delta-1)^{2}} \frac{P}{T^{2}} \quad(B)
$$

Sign of $d^{2} P / d T^{2}$ is that of δ, i.e., +

For a constant- V process, P varies with T in accord with the ideal-gas law: $\quad P=R T / V$ or $P=K T$ With respect to the initial equation, $P=K T^{\delta /(\delta-1)}$, this requires $\delta=\infty$. Moreover, $d P / d T=K$ and $d^{2} P / d T^{2}=0$. Thus a constant- V process is represented on a $P T$ diagram as part of a straight line passing through the origin. The slope K is determined by the initial $P T$ coordinates.
For a reversible adiabatic process (an isentropic process), $\delta=\gamma$. In this case Eqs. (A) and (B) become:

$$
\frac{d P}{d T}=\frac{\gamma}{\gamma-1} \frac{P}{T} \quad \frac{d^{2} P}{d T^{2}}=\frac{\gamma}{(\gamma-1)^{2}} \frac{P}{T^{2}}
$$

We note here that $\gamma /(\gamma-1)$ and $\gamma /(\gamma-1)^{2}$ are both >1. Thus in relation to a constant- V process the isentropic process is represented by a line of greater slope and greater curvature for the same T and P. Lines characteristic of the various processes are shown on the following diagram.

The required sketches appear on the following page. (Courtesy of Prof. Mark T. Swihart, State University of New York at Buffalo.)

Figure 1: The Carnot cycle

Figure 3: The Diesel cycle

Figure 2: The Otto cycle

Figure 4: The Brayton cycle
8.23 This is a challenging and open-ended problem for which we offer no solution. Problem 8.21 may offer some insight.

Chapter 9 - Section B - Non-Numerical Solutions

9.1 Since the object of doing work $|W|$ on a heat pump is to transfer heat $\left|Q_{H}\right|$ to a heat sink, then:

$$
\begin{aligned}
\text { What you get } & =\left|Q_{H}\right| \\
\text { What you pay for } & =|W| \\
\text { Whence } v & <\frac{\left|Q_{H}\right|}{|W|}
\end{aligned}
$$

For a Carnot heat pump,

$$
v=\frac{\left|Q_{H}\right|}{\left|Q_{H}\right|-\left|Q_{C}\right|}=\frac{T_{H}}{T_{H}-T_{C}}
$$

9.3 Because the temperature of the finite cold reservoir (contents of the refrigerator) is a variable, use differential forms of Carnot's equations, Eqs. (5.7) and (5.8):

$$
\frac{d Q_{H}}{d Q_{C}}=-\frac{T_{H}}{T_{C}} \quad \text { and } \quad d W=\left[1-\frac{T_{C}}{T_{H}}\left(d Q_{H}\right.\right.
$$

In these equations Q_{C} and Q_{H} refer to the reservoirs. With $d Q_{H}=C^{t} d T_{C}$, the first of Carnot's equations becomes:

$$
d Q_{H}=-C^{t} T_{H} \frac{d T_{C}}{T_{C}}
$$

Combine this equation with the second of Carnot's equations:

$$
d W=-C^{t} T_{H} \frac{d T_{C}}{T_{C}}+C^{t} d T_{C}
$$

Integration from $T_{C}=T_{H}$ to $T_{C}=T_{C}$ yields:

$$
W=-C^{t} T_{H} \ln \frac{T_{C}}{T_{H}}+C^{t}\left(T_{C}-T_{H}\right) \quad \text { or } \quad W=C^{t} T_{H}\left[\ln \frac{T_{H}}{T_{C}}+\frac{T_{C}}{T_{H}}-1\right.
$$

9.5 Differentiation of Eq. (9.3) yields:

$$
\left[\frac { \varepsilon \rho } { \varepsilon T _ { C } } \left(T _ { T _ { H } } = \frac { 1 } { T _ { H } - T _ { C } } + \frac { T _ { C } } { (T _ { H } - T _ { C }) ^ { 2 } } = \frac { T _ { H } } { (T _ { H } - T _ { C }) ^ { 2 } } \quad \text { and } \quad \left[\frac { \varepsilon \rho } { \varepsilon T _ { H } } \left(T_{C}=-\frac{T_{C}}{\left(T_{H}-T_{C}\right)^{2}}\right.\right.\right.\right.
$$

Because $T_{H}>T_{C}$, the more effective procedure is to increase T_{C}.
For a real refrigeration system, increasing T_{C} is hardly an option if refrigeration is required at a particular value of T_{C}. Decreasing T_{H} is no more realistic, because for all practical purposes, T_{H} is fixed by environmental conditions, and not subject to control.
9.6 For a Carnot refrigerator, ρ is given by Eq. (9.3). Write this equation for the two cases:

$$
\rho=\frac{T_{C}}{T_{H}-T_{C}} \quad \text { and } \quad \rho_{\sigma}=\frac{T_{\sigma_{C}}}{T_{\sigma_{H}}-T_{\sigma_{C}}}
$$

Because the directions of heat transfer require that $T_{H}>T_{\sigma_{H}}$ and $T_{C}<T_{\sigma_{C}}$, a comparison shows that $\rho<\rho_{\sigma}$ and therefore that ρ is the more conservative value.
9.20 On average, the coefficient of performance will increase, thus providing savings on electric casts. On the other hand, installation casts would be higher. The proposed arrangement would result in cooling of the kitchen, as the refrigerator would act as an air conditioner. This would be detrimental in the winter, but beneficial in the summer, at least in temperate climates.
9.21

$$
\Delta=0.6 \Delta_{\text {Carnot }}=0.6\left(\frac{T_{C}}{T_{H}-T_{C}}\right)
$$

If $\Delta<1$, then $T_{C}<T_{H} / 1.6$. For $T_{H}=300 \mathrm{~K}$, then $T_{C}<187.5 \mathrm{~K}$, which is most unlikely.

Chapter 10 - Section B - Non-Numerical Solutions

10.5 For a binary system, the next equation following Eq. (10.2) shows that P is linear in x_{1}. Thus no maximum or minimum can exist in this relation. Since such an extremum is required for the existence of an azeotrope, no azeotrope is possible.
10.6 (a) Because benzene and toluene are chemically similar and the pressure is only 1 (atm), this system can be modeled by Raoult's law to a good approximation.
(b) Although n-hexane and n-heptane are chemically similar, a pressure of 25 bar is too high for modeling this system by Raoult's law.
(c) At 200 K , hydrogen is supercritical, and modeling the hydrogen/propane system at this temperature by Raoult's law is out of the question, because no value of $P^{\text {sat }}$ for hydrogen is known.
(d) Because isooctane and n-octane are chemically similar and at a temperature (373.15 K) close to their normal boiling points, this system can be modeled by Raoult's law to a good approximation.
(e) Water and n-decane are much too dissimilar to be modeled by Raoult's law, and are in fact only slightly soluble in one another at 300 K .
10.12 For a total volume V^{t} of an ideal gas, $P V^{t}=n R T$. Multiply both sides by y_{i}, the mole fraction of species i in the mixture:

$$
y_{i} P V^{t}=n_{i} R T \quad \text { or } \quad p_{i} V^{t}=\frac{m_{i}}{\mathcal{M}_{i}} R T
$$

where m_{i} is the mass of species i, \mathcal{M}_{i} is its molar mass, and p_{i} is its partial pressure, defined as $p_{i} \equiv y_{i} P$. Solve for m_{i} :

$$
m_{i}=\frac{\mathcal{M}_{i} p_{i} V^{t}}{R T}
$$

Applied to moist air, considered a binary mixture of air and water vapor, this gives:

$$
m_{\mathrm{H}_{2} \mathrm{O}}=\frac{\mathcal{M}_{\mathrm{H}_{2} \mathrm{O}} p_{\mathrm{H}_{2} \mathrm{O}} V^{t}}{R T} \quad \text { and } \quad m_{\mathrm{air}}=\frac{\mathcal{M}_{\mathrm{air}} p_{\mathrm{air}} V^{t}}{R T}
$$

(a) By definition,

$$
h \equiv \frac{m_{\mathrm{H}_{2} \mathrm{O}}}{m_{\text {air }}} \quad \text { or } \quad h=\frac{\mathcal{M}_{\mathrm{H}_{2} \mathrm{O}}}{\mathcal{M}_{\text {air }}} \frac{p_{\mathrm{H}_{2} \mathrm{O}}}{p_{\text {air }}}
$$

Since the partial pressures must sum to the total pressure, $p_{\text {air }}=P-p_{\mathrm{H}_{2} \mathrm{O}}$; whence,

$$
h=\frac{\mathcal{M}_{\mathrm{H}_{2} \mathrm{O}}}{\mathcal{M}_{\mathrm{air}}} \frac{p_{\mathrm{H}_{2} \mathrm{O}}}{P-p_{\mathrm{H}_{2} \mathrm{O}}}
$$

(b) If air is in equilibrium with liquid water, then the partial pressure of water vapor in the air equals the vapor pressure of the water, and the preceding equation becomes:

$$
h^{\text {sat }}=\frac{\mathcal{M}_{\mathrm{H}_{2} \mathrm{O}}}{\mathcal{M}_{\mathrm{air}}} \frac{P_{\mathrm{H}_{2} \mathrm{O}}^{\text {sat }}}{P-P_{\mathrm{H}_{2} \mathrm{O}}^{\text {sat }}}
$$

(c) Percentage humidity and relative humidity are defined as follows:

$$
h_{\mathrm{pc}} \equiv \frac{h}{h^{\mathrm{sat}}}=\frac{p_{\mathrm{H}_{2} \mathrm{O}}}{P_{\mathrm{H}_{2} \mathrm{O}}^{\text {sat }}} \frac{P-P_{\mathrm{H}_{2} \mathrm{O}}^{\text {sat }}}{P-p_{\mathrm{H}_{2} \mathrm{O}}}(100) \quad \text { and } \quad h_{\mathrm{rel}} \equiv \frac{p_{\mathrm{H}_{2} \mathrm{O}}}{P_{\mathrm{H}_{2} \mathrm{O}}^{\text {sat }}}(100)
$$

Combining these two definitions to eliminate $p_{\mathrm{H}_{2} \mathrm{O}}$ gives:

$$
h_{\mathrm{pc}}=h_{\mathrm{rel}} \frac{P-P_{\mathrm{H}_{2} \mathrm{O}}^{\text {sat }}}{P-P_{\mathrm{H}_{2} \mathrm{O}}^{\text {sat }}\left(h_{\mathrm{rel}} / 100\right)}
$$

10.14 Because the vapor space above the liquid phase is nearly pure gas, Eq. (10.4) becomes $P=x_{i} \mathcal{H}_{i}$. For the same mole fraction of gas dissolved in the liquid phase, P is then proportional to \mathcal{H}_{i}. Values given in Table 10.1 indicate that were air used rather than CO_{2}, P would be about 44 times greater, much too high a pressure to be practical.
10.15 Because Henry's constant for helium is very high, very little of this gas dissolves in the blood streams of divers at approximately atmospheric pressure.
10.21 By Eq. (10.5) and the given equations for $\ln \gamma_{1}$ and $\ln \gamma_{2}$,

$$
y_{1} P=x_{1} \exp \left(A x_{2}^{2}\right) P_{1}^{\text {sat }} \quad \text { and } \quad y_{2} P=x_{2} \exp \left(A x_{1}^{2}\right) P_{2}^{\text {sat }}
$$

These equations sum to give:

$$
P=x_{1} \exp \left(A x_{2}^{2}\right) P_{1}^{\text {sat }}+x_{2} \exp \left(A x_{1}^{2}\right) P_{2}^{\text {sat }}
$$

Dividing the equation for $y_{1} P$ by the preceding equation yields:

$$
y_{1}=\frac{x_{1} \exp \left(A x_{2}^{2}\right) P_{1}^{\text {sat }}}{x_{1} \exp \left(A x_{2}^{2}\right) P_{1}^{\text {sat }}+x_{2} \exp \left(A x_{1}^{2}\right) P_{2}^{\text {sat }}}
$$

For $x_{1}=x_{2}$ this equation obviously reduces to:

$$
P=\frac{P_{1}^{\text {sat }}}{P_{1}^{\text {sat }}+P_{2}^{\text {sat }}}
$$

10.23 A little reflection should convince anyone that there is no other way that BOTH the liquid-phase and vapor-phase mole fractions can sum to unity.
10.24 By the definition of a K-value, $y_{1}=K_{1} x_{1}$ and $y_{2}=K_{2} x_{2}$. Moreover, $y_{1}+y_{2}=1$. These equations combine to yield:

$$
K_{1} x_{1}+K_{2} x_{2}=1 \quad \text { or } \quad K_{1} x_{1}+K_{2}\left(1-x_{1}\right)=1
$$

Solve for x_{1} :

$$
x_{1}=\frac{1-K_{2}}{K_{1}-K_{2}}
$$

Substitute for x_{1} in the equation $y_{1}=K_{1} x_{1}$:

$$
y_{1}=\frac{K_{1}\left(1-K_{2}\right)}{K_{1}-K_{2}}
$$

Note that when two phases exist both x_{1} and y_{1} are independent of z_{1}.
By a material balance on the basis of 1 mole of feed,

$$
x_{1} \mathcal{L}+y_{1} \mathcal{V}=z_{1} \quad \text { or } \quad x_{1}(1-\mathcal{V})+y_{1} \mathcal{V}=z_{1}
$$

Substitute for both x_{1} and y_{1} by the equations derived above:

$$
\frac{1-K_{2}}{K_{1}-K_{2}}(1-\mathcal{V})+\frac{K_{1}\left(1-K_{2}\right)}{K_{1}-K_{2}} \mathcal{V}=z_{1}
$$

Solve this equation for $\mathcal{V}: \quad \mathcal{V}=\frac{z_{1}\left(K_{1}-K_{2}\right)-\left(1-K_{2}\right)}{\left(K_{1}-1\right)\left(1-K_{2}\right)}$
Note that the relative amounts of liquid and vapor phases do depend on z_{1}.
10.35 Molality $\equiv \mathcal{M}_{i}=\frac{n_{i}}{m_{s}}=\frac{x_{i}}{x_{s} M_{s}}$
where subscript s denotes the solvent and M_{s} is the molar mass of the solvent. The given equation may therefore be written:

$$
\frac{x_{i}}{x_{s} M_{s}}=k_{i} y_{i} P \quad \text { or } \quad x_{i}\left(\frac{1}{x_{s} M_{s} k_{i}}\right)=y_{i} P
$$

Comparison with Eq. (10.4) shows that

$$
\mathcal{H}_{i}=\frac{1}{x_{s} M_{s} k_{i}} \quad \text { or for } x_{i} \rightarrow 0 \quad \mathcal{H}_{i}=\frac{1}{M_{s} k_{i}}
$$

For water, $M_{s}=18.015 \mathrm{~g} \mathrm{~mol}^{-1}$ or $0.018015 \mathrm{~kg} \mathrm{~mol}^{-1}$.

Thus,

$$
\mathcal{H}_{i}=\frac{1}{(0.018015)(0.034)}=1633 \mathrm{bar}
$$

This is in comparison with the value of 1670 bar in Table 10.1.

Chapter 11 - Section B - Non-Numerical Solutions

11.6 Apply Eq. (11.7):
11.7 (a) Let m be the mass of the solution, and define the partial molar mass by: $\bar{m}_{i}\left\langle\frac{\mathrm{vm}}{\nu n_{i}}{ }_{T, P, n_{j}}\right.$ Let \mathcal{M}_{k} be the molar mass of species k. Then

$$
m=\varepsilon_{k} n_{k} \mathcal{M}_{k}=n_{i} \mathcal{M}_{i}+\varepsilon_{j} n_{j} \mathcal{M}_{j} \quad(j \neq i)
$$

If \mathcal{M}_{i} is the molar mass of species $i, \quad n_{i}=\frac{m_{i}}{\mathcal{M}_{i}} \quad$ and $\left.\quad \frac{v n_{i}}{v m_{i}}\right]_{T, P, m_{j}}=\frac{1}{\mathcal{M}_{i}}$

Because constant m_{j} implies constant n_{j}, the initial equation may be written:

$$
\tilde{M}_{i}=\frac{\bar{M}_{i}}{\mathcal{M}_{i}}
$$

11.8 By Eqs. (10.15) and (10.16), $\quad \bar{V}_{1}=V+x_{2} \frac{d V}{d x_{1}} \quad$ and $\quad \bar{V}_{2}=V-x_{1} \frac{d V}{d x_{1}}$

Because $\quad V=\rho^{-1} \quad$ then $\quad \frac{d V}{d x_{1}}=\frac{-1}{\rho^{2}} \frac{d \rho}{d x_{1}} \quad$ whence

$$
\begin{aligned}
& \left.\left.\left.\left.\bar{V}_{1}=\frac{1}{\rho}-\frac{x_{2}}{\rho^{2}} \frac{d \rho}{d x_{1}}=\frac{1}{\rho}\right) 1-\frac{x_{2}}{\rho} \frac{d \rho}{d x_{1}}\right]=\frac{1}{\rho^{2}}\right) \rho-x_{2} \frac{d \rho}{d x_{1}}\right] \\
& \left.\left.\left.\bar{V}_{2}=\frac{1}{\rho}+\frac{x_{1}}{\rho^{2}} \frac{d \rho}{d x_{1}}=\frac{1}{\rho} 1+\frac{x_{1}}{\rho} \frac{d \rho}{d x_{1}}\right]=\frac{1}{\rho^{2}}\right) \rho+x_{1} \frac{d \rho}{d x_{1}}\right]
\end{aligned}
$$

With $\quad \rho=a_{0}+a_{1} x_{1}+a_{2} x_{1}^{2} \quad$ and $\quad \frac{d \rho}{d x_{1}}=a_{1}+2 a_{2} x_{1} \quad$ these become:

$$
\bar{V}_{1}=\frac{1}{\rho^{2}}\left[a_{0}-a_{1}+2\left(a_{1}-a_{2}\right) x_{1}+3 a_{2} x_{1}^{2}\right] \quad \text { and } \quad \bar{V}_{2}=\frac{1}{\rho^{2}}\left(a_{0}+2 a_{1} x_{1}+3 a_{2} x_{1}^{2}\right)
$$

11.9 For application of Eq. (11.7) all mole fractions must be eliminated from the given equation by the relation $x_{i}=n_{i} / n$:

$$
\begin{aligned}
& n M=n_{1} M_{1}+n_{2} M_{2}+n_{3} M_{3}+\frac{n_{1} n_{2} n_{3}}{n^{2}} C \\
& \text { For } \bar{M}_{1}, \quad\left[\frac{\partial(n M)}{\partial n_{1}}\right]_{T, P, n_{2}, n_{3}}=M_{1}+n_{2} n_{3} C\left[\frac{1}{n^{2}}-\frac{2 n_{1}}{n^{3}}\left(\frac{\partial n}{\partial n_{1}}\right)_{T, P, n_{2}, n_{3}}\right] \\
& \text { Because } n=n_{1}+n_{2}+n_{3}, \quad\left(\frac{\partial n}{\partial n_{1}}\right)_{T, P, n_{2}, n_{3}}=1 \\
& \text { Whence, } \quad \bar{M}_{1}=M_{1}+\frac{n_{2} n_{3}}{n^{2}}\left[1-2 \frac{n_{1}}{n}\right] C \quad \text { and } \quad \bar{M}_{1}=M_{1}+x_{2} x_{3}\left[1-2 x_{1}\right] C \\
& \text { Similarly, } \\
& \bar{M}_{2}=M_{2}+x_{1} x_{3}\left[1-2 x_{2}\right] C \quad \text { and } \\
& \hline
\end{aligned} \bar{M}_{3}=M_{3}+x_{1} x_{2}\left[1-2 x_{3}\right] C, ~ \$
$$

One can readily show that application of Eq. (11.11) regenerates the original equation for M. The infinite dilution values are given by:

$$
\bar{M}_{i}^{\infty}=M_{i}+x_{j} x_{k} C \quad(j, k \neq i)
$$

Here x_{j} and x_{k} are mole fractions on an i-free basis.
11.10 With the given equation and the Dalton's-law requirement that $P=\sum_{i} p_{i}$, then:

$$
P=\frac{R T}{V} \sum_{i} y_{i} Z_{i}
$$

For the mixture, $P=Z R T / V$. These two equations combine to give $Z=\sum_{i} y_{i} Z_{i}$.
11.11 The general principle is simple enough:

Given equations that represent partial properties $\bar{M}_{i}, \bar{M}_{i}^{R}$, or \bar{M}_{i}^{E} as functions of composition, one may combine them by the summability relation to yield a mixture property. Application of the defining (or equivalent) equations for partial properties then regenerates the given equations if and only if the given equations obey the Gibbs/Duhen equation.
11.12 (a) Multiply Eq. (A) of Ex. 11.4 by $n\left(=n_{1}+n_{2}\right)$ and eliminate x_{1} by $x_{1}=n_{1} /\left(n_{1}+n_{2}\right)$:

$$
n H=600\left(n_{1}+n_{2}\right)-180 n_{1}-20 \frac{n_{1}^{3}}{\left(n_{1}+n_{2}\right)^{2}}
$$

Form the partial derivative of $n H$ with respect to n_{1} at constant n_{2} :

$$
\bar{H}_{1}=600-180-20\left[\frac{3 n_{1}^{2}}{\left(n_{1}+n_{2}\right)^{2}}-\frac{2 n_{1}^{3}}{\left(n_{1}+n_{2}\right)^{3}}\right]=420-60 \frac{n_{1}^{2}}{\left(n_{1}+n_{2}\right)^{2}}+40 \frac{n_{1}^{3}}{\left(n_{1}+n_{2}\right)^{3}}
$$

Whence,

$$
\bar{H}_{1}=420-60 x_{1}^{2}+40 x_{1}^{3}
$$

Form the partial derivative of $n H$ with respect to n_{2} at constant n_{1} :

$$
\bar{H}_{2}=600+20 \frac{2 n_{1}^{3}}{\left(n_{1}+n_{2}\right)^{3}} \quad \text { or } \quad \bar{H}_{2}=600+40 x_{1}^{3}
$$

(b) In accord with Eq. (11.11),

$$
H=x_{1}\left(420-60 x_{1}^{2}+40 x_{1}^{3}\right)+\left(1-x_{2}\right)\left(600+40 x_{1}^{3}\right)
$$

Whence,

$$
H=600-180 x_{1}-20 x_{1}^{3}
$$

(c) Write Eq. (11.14) for a binary system and divide by $d x_{1}: x_{1} \frac{d \bar{H}_{1}}{d x_{1}}+x_{2} \frac{d \bar{H}_{2}}{d x_{1}}=0$

Differentiate the the boxed equations of part (a):

$$
\frac{d \bar{H}_{1}}{d x_{1}}=-120 x_{1}+120 x_{1}^{2}=-120 x_{1} x_{2} \quad \text { and } \quad \frac{d \bar{H}_{2}}{d x_{1}}=120 x_{1}^{2}
$$

Multiply each derivative by the appropriate mole fraction and add:

$$
-120 x_{1}^{2} x_{2}+120 x_{1}^{2} x_{2}=0
$$

(d) Substitute $x_{1}=1$ and $x_{2}=0$ in the first derivative expression of part (c) and substitute $x_{1}=0$ in the second derivative expression of part (c). The results are:

$$
\left(\frac{d \bar{H}_{1}}{d x_{1}}\right)_{x_{1}=1}=\left(\frac{d \bar{H}_{2}}{d x_{1}}\right)_{x_{1}=0}=0
$$

(e)

11.13 (a) Substitute $x_{2}=1-x_{1}$ in the given equation for V and reduce:

$$
V=70+58 x_{1}-x_{1}^{2}-7 x_{1}^{3}
$$

Apply Eqs. (11.15) and (11.16) to find expressions for \bar{V}_{1} and \bar{V}_{2}. First,

\[

\]

(b) In accord with Eq. (11.11),

$$
V=x_{1}\left(128-2 x_{1}-20 x_{1}^{2}+14 x_{1}^{3}\right)+\left(1-x_{1}\right)\left(70+x_{1}^{2}+14 x_{1}^{3}\right)
$$

Whence,

$$
V=70+58 x_{1}-x_{1}^{2}-7 x_{1}^{3}
$$

which is the first equation developed in part (a).
(c) Write Eq. (11.14) for a binary system and divide by $d x_{1}: x_{1} \frac{d \bar{V}_{1}}{d x_{1}}+x_{2} \frac{d \bar{V}_{2}}{d x_{1}}=0$

Differentiate the the boxed equations of part (a):

$$
\frac{d \bar{V}_{1}}{d x_{1}}=-2-40 x_{1}+42 x_{1}^{2} \quad \text { and } \quad \frac{d \bar{V}_{2}}{d x_{1}}=2 x_{1}+42 x_{1}^{2}
$$

Multiply each derivative by the appropriate mole fraction and add:

$$
x_{1}\left(-2-40 x_{1}+42 x_{1}^{2}\right)+\left(1-x_{1}\right)\left(2 x_{1}+42 x_{1}^{2}\right)=0
$$

The validity of this equation is readily confirmed.
(d) Substitute $x_{1}=1$ in the first derivative expression of part (c) and substitute $x_{1}=0$ in the second derivative expression of part (c). The results are:

$$
\left(\frac{d \bar{V}_{1}}{d x_{1}}\right)_{x_{1}=1}=\left(\frac{d \bar{V}_{2}}{d x_{1}}\right)_{x_{1}=0}=0
$$

(e)

11.14 By Eqs. (11.15) and (11.16):

$$
\bar{H}_{1}=H+x_{2} \frac{d H}{d x_{1}} \quad \text { and } \quad \bar{H}_{2}=H-x_{1} \frac{d H}{d x_{1}}
$$

Given that:

$$
H=x_{1}\left(a_{1}+b_{1} x_{1}\right)+x_{2}\left(a_{2}+b_{2} x_{2}\right)
$$

Then, after simplification, $\quad \frac{d H}{d x_{1}}=a_{1}+2 b_{1} x_{1}-\left(a_{2}+2 b_{2} x_{2}\right)$
Combining these equations gives after reduction:

$$
\bar{H}_{1}=a_{1}+b_{1} x_{1}+x_{2}\left(x_{1} b_{1}-x_{2} b_{2}\right) \quad \text { and } \quad \bar{H}_{2}=a_{2}+b_{2} x_{2}-x_{1}\left(x_{1} b_{1}-x_{2} b_{2}\right)
$$

These clearly are not the same as the suggested expressions, which are therefore not correct. Note that application of the summability equation to the derived partial-property expressions reproduces the original equation for H. Note further that differentiation of these same expressions yields results that satisfy the Gibbs/Duhem equation, Eq. (11.14), written:

$$
x_{1} \frac{d \bar{H}_{1}}{d x_{1}}+x_{2} \frac{d \bar{H}_{2}}{d x_{1}}=0
$$

The suggested expresions do not obey this equation, further evidence that they cannot be valid.
11.15 Apply the following general equation of differential calculus:

$$
\begin{gathered}
\left(\frac{\partial x}{\partial y}\right)_{z}=\left(\frac{\partial x}{\partial y}\right)_{w}+\left(\frac{\partial x}{\partial w}\right)_{y}\left(\frac{\partial w}{\partial y}\right)_{z} \\
{\left[\frac{\partial(n M)}{\partial n_{i}}\right]_{T, P, n_{j}}=\left[\frac{\partial(n M)}{\partial n_{i}}\right]_{T, V, n_{j}}+\left[\frac{\partial(n M)}{\partial V}\right]_{T, n}\left(\frac{\partial V}{\partial n_{i}}\right)_{T, P, n_{j}}}
\end{gathered}
$$

Whence,

$$
\bar{M}_{i}=\tilde{M}_{i}+n\left(\frac{\partial M}{\partial V}\right)_{T, n}\left(\frac{\partial V}{\partial n_{i}}\right)_{T, P, n_{j}} \quad \text { or } \quad \tilde{M}_{i}=\bar{M}_{i}-n\left(\frac{\partial M}{\partial V}\right)_{T, n}\left(\frac{\partial V}{\partial n_{i}}\right)_{T, P, n_{j}}
$$

By definition,

$$
\bar{V}_{i} \equiv\left[\frac{\partial(n V)}{\partial n_{i}}\right]_{T, P, n_{j}}=n\left(\frac{\partial V}{\partial n_{i}}\right)_{T, P, n_{j}}+V \quad \text { or } \quad n\left(\frac{\partial V}{\partial n_{i}}\right)_{T, P, n_{j}}=\bar{V}_{i}-V
$$

Therefore,

$$
\tilde{M}_{i}=\bar{M}_{i}+\left(V-\bar{V}_{i}\right)\left(\frac{\partial M}{\partial V}\right)_{T, x}
$$

11.20 Equation (11.59) demonstrates that $\ln \hat{\phi}_{i}$ is a partial property with respect to $G^{R} / R T$. Thus $\ln \hat{\phi}_{i}=$ $\bar{G}_{i} / R T$. The partial-property analogs of Eqs. (11.57) and (11.58) are:

$$
\left(\frac{\partial \ln \hat{\phi}_{i}}{\partial P}\right)_{T, x}=\frac{\bar{V}_{i}^{R}}{R T} \quad \text { and } \quad\left(\frac{\partial \ln \hat{\phi}_{i}}{\partial T}\right)_{P, x}=-\frac{\bar{H}_{i}^{R}}{R T^{2}}
$$

The summability and Gibbs/Duhem equations take on the following forms:

$$
\frac{G^{R}}{R T}=\sum_{i} x_{i} \ln \hat{\phi}_{i}
$$

and

$$
\sum_{i} x_{i} d \ln \hat{\phi}_{i}=0 \quad(\text { const } T, P)
$$

11.26 For a pressure low enough that Z and $\ln \phi$ are given approximately by Eqs. (3.38) and (11.36):

$$
Z=1+\frac{B P}{R T} \quad \text { and } \quad \ln \phi=\frac{B P}{R T}
$$

then:

$$
\ln \phi \approx Z-1
$$

11.28 (a) Because Eq. (11.96) shows that $\ln \gamma_{i}$ is a partial property with respect to $G^{E} / R T$, Eqs. (11.15) and (11.16) may be written for $M \equiv G^{E} / R T$:

$$
\ln \gamma_{1}=\frac{G^{E}}{R T}+x_{2} \frac{d\left(G^{E} / R T\right)}{d x_{1}} \quad \ln \gamma_{2}=\frac{G^{E}}{R T}-x_{1} \frac{d\left(G^{E} / R T\right)}{d x_{1}}
$$

Substitute $x_{2}=1-x_{1}$ in the given equaiton for $G^{E} / R T$ and reduce:

$$
\frac{G^{E}}{R T}=-1.8 x_{1}+x_{1}^{2}+0.8 x_{1}^{3} \quad \text { whence } \quad \frac{d\left(G^{E} / R T\right)}{d x_{1}}=-1.8+2 x_{1}+2.4 x_{1}^{2}
$$

Then,

$$
\ln \gamma_{1}=-1.8+2 x_{1}+1.4 x_{1}^{2}-1.6 x_{1}^{3}
$$

$$
\text { and } \quad \ln \gamma_{2}=-x_{1}^{2}-1.6 x_{1}^{3}
$$

(b) In accord with Eq. (11.11),

$$
\frac{G^{E}}{R T}=x_{1} \ln \gamma_{1}+x_{2} \ln \gamma_{2}=x_{1}\left(-1.8+2 x_{1}+1.4 x_{1}^{2}-1.6 x_{1}^{3}\right)+\left(1-x_{1}\right)\left(-x_{1}^{2}-1.6 x_{1}^{3}\right)
$$

Whence,

$$
\frac{G^{E}}{R T}=-1.8 x_{1}+x_{1}^{2}+0.8 x_{1}^{3}
$$

which is the first equation developed in part (a).
(c) Write Eq. (11.14) for a binary system with $\bar{M}_{i}=\ln \gamma_{i}$ and divide by $d x_{1}$:

$$
x_{1} \frac{d \ln \gamma_{1}}{d x_{1}}+x_{2} \frac{d \ln \gamma_{2}}{d x_{1}}=0
$$

Differentiate the the boxed equations of part (a):

$$
\frac{d \ln \gamma_{1}}{d x_{1}}=2+2.8 x_{1}-4.8 x_{1}^{2} \quad \text { and } \quad \frac{d \ln \gamma_{2}}{d x_{1}}=-2 x_{1}-4.8 x_{1}^{2}
$$

Multiply each derivative by the appropriate mole fraction and add:

$$
x_{1}\left(2+2.8 x_{1}-4.8 x_{1}^{2}\right)+\left(1-x_{1}\right)\left(-2 x_{1}-4.8 x_{1}^{2}\right)=0
$$

The validity of this equation is readily confirmed.
(d) Substitute $x_{1}=1$ in the first derivative expression of part (c) and substitute $x_{1}=0$ in the second derivative expression of part (c). The results are:

$$
\left(\frac{d \ln \gamma_{1}}{d x_{1}}\right)_{x_{1}=1}=\left(\frac{d \ln \gamma_{2}}{d x_{1}}\right)_{x_{1}=0}=0
$$

(e)

11.29 Combine definitions of the activity coefficient and the fugacity coefficients:

$$
\gamma_{i} \equiv \frac{\hat{f}_{i} / x_{i} P}{f_{i} / P} \quad \text { or } \quad \gamma_{i}=\frac{\hat{\phi}_{i}}{\phi_{i}}
$$

Note: See Eq. (14.54).
11.30 For $C_{P}^{E}=$ const., the following equations are readily developed from those given in the last column of Table 11.1 (page 415):

$$
\Delta H^{E}=C_{P}^{E} \Delta T \quad \text { and } \quad \Delta S^{E}=-\Delta\left(\frac{\partial G^{E}}{\partial T}\right)_{P, x}=C_{P}^{E} \frac{\Delta T}{\langle T\rangle}
$$

Working equations are then:

$$
\begin{array}{cll}
S_{1}^{E}=\frac{H_{1}^{E}-G_{1}^{E}}{T_{1}} & \text { and } & S_{2}^{E}=S_{1}^{E}+C_{P}^{E} \frac{\Delta T}{\langle T\rangle} \\
H_{2}^{E}=H_{1}^{E}+C_{P}^{E} \Delta T & \text { and } & G_{2}^{E}=H_{2}^{E}-T_{2} S_{2}^{E}
\end{array}
$$

For $T_{1}=298.15, T_{2}=328.15,\langle T\rangle=313.15$ and $\Delta T=30$, results for all parts of the problem are given in the following table:

					I.				II. For $C_{P}^{E}=0$		
	G_{1}^{E}	H_{1}^{E}	S_{1}^{E}	C_{P}^{E}	S_{2}^{E}	H_{2}^{E}	G_{2}^{E}	S_{2}^{E}	H_{2}^{E}	G_{2}^{E}	
(a)	-622	-1920	-4.354	4.2	-3.951	-1794	-497.4	-4.354	-1920	-491.4	
(b)	1095	1595	1.677	3.3	1.993	1694	1039.9	1.677	1595	1044.7	
(c)	407	984	1.935	-2.7	1.677	903	352.8	1.935	984	348.9	
(d)	632	-208	-2.817	23.0	-0.614	482	683.5	-2.817	-208	716.5	
(e)	1445	605	-2.817	11.0	-1.764	935	1513.7	-2.817	605	1529.5	
(f)	734	-416	-3.857	11.0	-2.803	-86	833.9	-3.857	-416	849.7	
(g)	759	1465	2.368	-8.0	1.602	1225	699.5	2.368	1465	688.0	

11.31 (a) Multiply the given equation by $n\left(=n_{1}+n_{2}\right)$, and convert remaining mole fractions to ratios of mole numbers:

$$
\frac{n G^{E}}{R T}=A_{12} \frac{n_{1} n_{2}}{n}+A_{13} \frac{n_{1} n_{3}}{n}+A_{23} \frac{n_{2} n_{3}}{n}
$$

Differentiation with respect to n_{1} in accord with Eq. (11.96) yields [$\left.\left(\partial n / \partial n_{1}\right)_{n_{2}, n_{3}}=1\right]$:

$$
\begin{aligned}
\ln \gamma_{1} & =A_{12} n_{2}\left(\frac{1}{n}-\frac{n_{1}}{n^{2}}\right)+A_{13} n_{3}\left(\frac{1}{n}-\frac{n_{1}}{n^{2}}\right)-A_{23} \frac{n_{2} n_{3}}{n^{2}} \\
& =A_{12} x_{2}\left(1-x_{1}\right)+A_{13} x_{3}\left(1-x_{1}\right)-A_{23} x_{2} x_{3}
\end{aligned}
$$

Similarly, $\quad \ln \gamma_{2}=A_{12} x_{1}\left(1-x_{2}\right)-A_{13} x_{1} x_{3}+A_{23} x_{3}\left(1-x_{2}\right)$

$$
\ln \gamma_{3}=-A_{12} x_{1} x_{2}+A_{13} x_{1}\left(1-x_{3}\right)+A_{23} x_{2}\left(1-x_{3}\right)
$$

(b) Each $\ln \gamma_{i}$ is multiplied by x_{i}, and the terms are summed. Consider the first terms on the right of each expression for $\ln \gamma_{i}$. Multiplying each of these terms by the appropriate x_{i} and adding gives:

$$
\begin{aligned}
A_{12}\left(x_{1} x_{2}-x_{1}^{2} x_{2}+x_{2} x_{1}-x_{2}^{2} x_{1}-x_{1} x_{2} x_{3}\right) & =A_{12} x_{1} x_{2}\left(1-x_{1}+1-x_{2}-x_{3}\right) \\
& =A_{12} x_{1} x_{2}\left[2-\left(x_{1}+x_{2}+x_{3}\right)\right]=A_{12} x_{1} x_{2}
\end{aligned}
$$

An analogous result is obtained for the second and third terms on the right, and adding them yields the given equation for $G^{E} / R T$.
(c) For infinite dilution of species $1, \quad x_{1}=0: \quad \ln \gamma_{1}\left(x_{1}=0\right)=A_{12} x_{2}+A_{13} x_{3}-A_{23} x_{2} x_{3}$

For pure species 1, $\quad x_{1}=1: \quad \ln \gamma_{1}\left(x_{1}=1\right)=0$
For infinite dilution of species 2, $\quad x_{2}=0: \quad \ln \gamma_{1}\left(x_{2}=0\right)=A_{13} x_{3}^{2}$
For infinite dilution of species $3, \quad x_{3}=0: \quad \ln \gamma_{1}\left(x_{3}=0\right)=A_{12} x_{2}^{2}$
11.35 By Eq. (11.87), written with $M \equiv G$ and with x replaced by $y: \quad G^{E}=G^{R}-\sum_{i} y_{i} G_{i}^{R}$ Equations (11.33) and (11.36) together give $G_{i}^{R}=B_{i i} P$. Then for a binary mixture:

$$
G^{E}=B P-y_{1} B_{11} P-y_{2} B_{22} P \quad \text { or } \quad G^{E}=P\left(B-y_{1} B_{11}-y_{2} B_{22}\right)
$$

Combine this equation with the last equation on Pg. 402: $\quad G^{E}=\delta_{12} P y_{1} y_{2}$
From the last column of Table 11.1 (page 415): $S^{E}=-\left(\frac{\partial G^{E}}{\partial T}\right)_{P, x}$
Because δ_{12} is a function of T only: $S^{E}=-\frac{d \delta_{12}}{d T} P y_{1} y_{2}$
By the definition of $G^{E}, H^{E}=G^{E}+T S^{E} ;$ whence, $\quad H^{E}=\left(\delta_{12}-T \frac{d \delta_{12}}{d T}\right) P y_{1} y_{2}$
Again from the last column of Table 11.1: $\quad C_{P}^{E}=\left(\frac{\partial H^{E}}{\partial T}\right)_{P, x}$

This equation and the preceding one lead directly to:

$$
C_{P}^{E}=-T \frac{d^{2} \delta_{12}}{d T^{2}} P y_{1} y_{2}
$$

11.41 From Eq. (11.95): $\left(\frac{\partial\left(G^{E} / R T\right)}{\partial T}\right)_{P}=\frac{-H^{E}}{R T^{2}} \quad$ or $\quad\left(\frac{\partial\left(G^{E} / T\right)}{\partial T}\right)_{P}=\frac{-H^{E}}{T^{2}}$

To an excellent approximation, write: $\left(\frac{\partial\left(G^{E} / T\right)}{\partial T}\right)_{P} \approx \frac{\Delta\left(G^{E} / T\right)}{\Delta T} \approx \frac{-H^{E}}{T_{\text {mean }}^{2}}$
From the given data: $\frac{\Delta\left(G^{E} / T\right)}{\Delta T}=\frac{785 / 323-805 / 298}{323-298}=\frac{-0.271}{25}=-0.01084$
and

$$
\frac{-H^{E}}{T_{\text {mean }}^{2}}=\frac{-1060}{313^{2}}=-0.01082
$$

The data are evidently thermodynamically consistent.
11.42 By Eq. (11.14), the Gibbs/Duhem equation, $x_{1} \frac{d \bar{M}_{1}}{d x_{1}}+x_{2} \frac{d \bar{M}_{2}}{d x_{1}}=0$

Given that $\quad \bar{M}_{1}=M_{1}+A x_{2} \quad$ and $\quad \bar{M}_{2}=M_{2}+A x_{1} \quad$ then $\frac{d \bar{M}_{1}}{d x_{1}}=-A \quad$ and $\quad \frac{d \bar{M}_{2}}{d x_{1}}=A$
Then $\quad x_{1} \frac{d \bar{M}_{1}}{d x_{1}}+x_{2} \frac{d \bar{M}_{2}}{d x_{1}}=-x_{1} A+x_{2} A=A\left(x_{2}-x_{1}\right) \neq 0$
The given expressions cannot be correct.
11.45 (a) For $M^{E}=A x_{1}^{2} x_{2}^{2} \quad$ find $\quad \bar{M}_{1}^{E}=A x_{1} x_{2}^{2}\left(2-3 x_{1}\right) \quad$ and $\quad \bar{M}_{2}^{E}=A x_{1}^{2} x_{2}\left(2-3 x_{2}\right)$

Note that at both $x_{1}=0\left(x_{2}=1\right)$ and $x_{1}=1\left(x_{2}=0\right), \quad \bar{M}_{1}^{E}=\bar{M}_{2}^{E}=0$
In particular, $\quad\left(\bar{M}_{1}^{E}\right)^{\infty}=\left(\bar{M}_{2}^{E}\right)^{\infty}=0$
Although M^{E} has the same sign over the whole composition range, both \bar{M}_{1}^{E} and \bar{M}_{2}^{E} change sign, which is unusual behavior. Find also that

$$
\frac{d \bar{M}_{1}^{E}}{d x_{1}}=2 A x_{2}\left(1-6 x_{1} x_{2}\right) \quad \text { and } \quad \frac{d \bar{M}_{2}^{E}}{d x_{1}}=-2 A x_{1}\left(1-6 x_{1} x_{2}\right)
$$

The two slopes are thus of opposite sign, as required; they also change sign, which is unusual.

$$
\begin{array}{lll}
\text { For } & x_{1}=0 & \frac{d \bar{M}_{1}^{E}}{d x_{1}}=2 A \quad \text { and } \quad \frac{d \bar{M}_{2}^{E}}{d x_{1}}=0 \\
\text { For } & x_{1}=1 & \frac{d \bar{M}_{1}^{E}}{d x_{1}}=0 \quad \text { and } \quad \frac{d \bar{M}_{2}^{E}}{d x_{1}}=-2 A
\end{array}
$$

(b) For $M^{E}=A \sin \left(\pi x_{1}\right)$ find:

$$
\begin{gathered}
\bar{M}_{1}^{E}=A \sin \left(\pi x_{1}\right)+A \pi x_{2} \cos \left(\pi x_{1}\right) \quad \text { and } \quad \bar{M}_{2}^{E}=A \sin \left(\pi x_{1}\right)-A \pi x_{1} \cos \left(\pi x_{1}\right) \\
\frac{d \bar{M}_{1}^{E}}{d x_{1}}=-A \pi^{2} x_{2} \sin \left(\pi x_{1}\right) \quad \text { and } \quad \frac{d \bar{M}_{2}^{E}}{d x_{1}}=A \pi^{2} x_{1} \sin \left(\pi x_{1}\right)
\end{gathered}
$$

The two slopes are thus of opposite sign, as required. But note the following, which is unusual:

$$
\text { For } \quad x_{1}=0 \quad \text { and } \quad x_{1}=1 \quad \frac{d \bar{M}_{1}^{E}}{d x_{1}}=0 \quad \text { and } \quad \frac{d \bar{M}_{2}^{E}}{d x_{1}}=0
$$

PLOTS OF THE FUNCTIONS ARE SHOWN ON THE FOLLOWING PAGE.

Pb. 11.45 (a)

$$
\begin{aligned}
& \mathrm{A}:=10 \quad \mathrm{i}:=0 . .100 \quad \mathrm{x}_{\mathrm{i}}:=.00001+.01 \cdot \mathrm{i} \\
& \mathrm{ME}_{\mathrm{i}}:=\mathrm{A} \cdot\left(\mathrm{x}_{\mathrm{i}}\right)^{2} \cdot\left(1-\mathrm{x}_{\mathrm{i}}\right)^{2} \quad \text { MEbar1 }_{\mathrm{i}}:=\mathrm{A} \cdot \mathrm{x}_{\mathrm{i}} \cdot\left(1-\mathrm{x}_{\mathrm{i}}\right)^{2}\left(2-3 \cdot \mathrm{x}_{\mathrm{i}}\right) \\
& \text { MEbar } 2_{\mathrm{i}}:=\mathrm{A} \cdot \mathrm{x}_{\mathrm{i}} \cdot \mathrm{x}_{\mathrm{i}} \cdot\left(1-\mathrm{x}_{\mathrm{i}}\right) \cdot\left[2-3 \cdot\left(1-\mathrm{x}_{\mathrm{i}}\right)\right]
\end{aligned}
$$

Pb. 11.45 (b)

$$
\begin{aligned}
& \text { ME }_{\mathrm{i}}:=\mathrm{A} \cdot \sin \left(\mathbf{p} \cdot \mathrm{x}_{\mathrm{i}}\right) \quad \text { (pi prints as bf } \mathrm{p} \text {) } \\
& \text { MEbar1 }_{\mathrm{i}}:=\mathrm{A} \cdot \sin \left(\mathbf{p} \cdot \mathrm{x}_{\mathrm{i}}\right)+\mathrm{A} \cdot \mathbf{p} \cdot\left(1-\mathrm{x}_{\mathrm{i}}\right) \cdot \cos \left(\mathbf{p} \cdot \mathrm{x}_{\mathrm{i}}\right) \\
& \text { MEbar2 }_{\mathrm{i}}:=\mathrm{A} \cdot \sin \left(\mathbf{p} \cdot \mathrm{x}_{\mathrm{i}}\right)-\mathrm{A} \cdot \mathbf{p} \cdot\left(\mathrm{x}_{\mathrm{i}}\right) \cdot \cos \left(\mathbf{p} \cdot \mathrm{x}_{\mathrm{i}}\right)
\end{aligned}
$$

11.46 By Eq. (11.7),

$$
\bar{M}_{i}=\left[\frac{\partial(n M)}{\partial n_{i}}\right]_{T, P, n_{j}}=M+n\left(\frac{\partial M}{\partial n_{i}}\right)_{T, P, n_{j}}
$$

At constant T and $P, \quad d M=\sum_{k}\left(\frac{\partial M}{\partial x_{k}}\right)_{T, P, x_{j}} d x_{k}$
Divide by $d n_{i}$ with restriction to constant $n_{j}(j \neq i)$:

$$
\begin{gathered}
\left(\frac{\partial M}{\partial n_{i}}\right)_{T, P, n_{j}}=\sum_{k}\left(\frac{\partial M}{\partial x_{k}}\right)_{T, P, x_{j}}\left(\frac{\partial x_{k}}{\partial n_{i}}\right)_{n_{j}} \\
\text { With } \quad x_{k}=\frac{n_{k}}{n} \quad\left(\frac{\partial x_{k}}{\partial n_{i}}\right)_{n_{j}}= \begin{cases}-\frac{n_{k}}{n^{2}} \quad(k \neq i) \\
\frac{1}{n}-\frac{n_{i}}{n^{2}} \quad(k=i)\end{cases} \\
\left(\frac{\partial M}{\partial n_{i}}\right)_{T, P, n_{j}}=-\frac{1}{n} \sum_{k \neq i} x_{k}\left(\frac{\partial M}{\partial x_{k}}\right)_{T, P, x_{j}}+\frac{1}{n}\left(1-x_{i}\right)\left(\frac{\partial M}{\partial x_{i}}\right)_{T, P, x_{j}} \\
=\frac{1}{n}\left(\frac{\partial M}{\partial x_{i}}\right)_{T, P, x_{j}}-\frac{1}{n} \sum_{k} x_{k}\left(\frac{\partial M}{\partial x_{k}}\right)_{T, P, x_{j}} \\
\bar{M}_{i} \\
=M+\left(\frac{\partial M}{\partial x_{i}}\right)_{T, P, x_{j}}-\sum_{k} x_{k}\left(\frac{\partial M}{\partial x_{k}}\right)_{T, P, x_{j}}
\end{gathered}
$$

For species 1 of a binary mixture (all derivatives at constant T and P):

$$
\bar{M}_{1}=M+\left(\frac{\partial M}{\partial x_{1}}\right)_{x_{2}}-x_{1}\left(\frac{\partial M}{\partial x_{1}}\right)_{x_{2}}-x_{2}\left(\frac{\partial M}{\partial x_{2}}\right)_{x_{1}}=M+x_{2}\left[\left(\frac{\partial M}{\partial x_{1}}\right)_{x_{2}}-\left(\frac{\partial M}{\partial x_{2}}\right)_{x_{1}}\right]
$$

Because $x_{1}+x_{2}=1$, the partial derivatives in this equation are physically unrealistic; however, they do have mathematical significance. Because $M=\mathcal{M}\left(x_{1}, x_{2}\right)$, we can quite properly write:

$$
d M=\left(\frac{\partial M}{\partial x_{1}}\right)_{x_{2}} d x_{1}+\left(\frac{\partial M}{\partial x_{2}}\right)_{x_{1}} d x_{2}
$$

Division by $d x_{1}$ yields:

$$
\frac{d M}{d x_{1}}=\left(\frac{\partial M}{\partial x_{1}}\right)_{x_{2}}+\left(\frac{\partial M}{\partial x_{2}}\right)_{x_{1}} \frac{d x_{2}}{d x_{1}}=\left(\frac{\partial M}{\partial x_{1}}\right)_{x_{2}}-\left(\frac{\partial M}{\partial x_{2}}\right)_{x_{1}}
$$

wherein the physical constraint on the mole fractions is recognized. Therefore

$$
\bar{M}_{1}=M+x_{2} \frac{d M}{d x_{1}}
$$

The expression for \bar{M}_{2} is found similarly.
11.47 (a) Apply Eq. (11.7) to species 1: $\quad \bar{M}_{1}^{E}=\left[\frac{\partial\left(n M^{E}\right)}{\partial n_{1}}\right]_{n_{2}}$

Multiply the given equation by n and eliminate the mole fractions in favor of mole numbers:

$$
\begin{gathered}
n M^{E}=A n_{1} n_{2}\left(\frac{1}{n_{1}+B n_{2}}+\frac{1}{n_{2}+B n_{1}}\right) \\
\bar{M}_{1}^{E}=A n_{2}\left\{\left(\frac{1}{n_{1}+B n_{2}}+\frac{1}{n_{2}+B n_{1}}\right)+n_{1}\left(\frac{-1}{\left(n_{1}+B n_{2}\right)^{2}}-\frac{B}{\left(n_{2}+B n_{1}\right)^{2}}\right)\right\}
\end{gathered}
$$

Conversion back to mole fractions yields:

$$
\bar{M}_{1}^{E}=A x_{2}\left\{\left(\frac{1}{x_{1}+B x_{2}}+\frac{1}{x_{2}+B x_{1}}\right)-x_{1}\left(\frac{1}{\left(x_{1}+B x_{2}\right)^{2}}+\frac{B}{\left(x_{2}+B x_{1}\right)^{2}}\right)\right\}
$$

The first term in the first parentheses is combined with the first term in the second parentheses and the second terms are similarly combined:

$$
\bar{M}_{1}^{E}=A x_{2}\left\{\frac{1}{x_{1}+B x_{2}}\left(1-\frac{x_{1}}{x_{1}+B x_{2}}\right)+\frac{1}{x_{2}+B x_{1}}\left(1-\frac{B x_{1}}{x_{2}+B x_{1}}\right)\right\}
$$

Reduction yields:

$$
\bar{M}_{1}^{E}=A x_{2}^{2}\left[\frac{B}{\left(x_{1}+B x_{2}\right)^{2}}+\frac{1}{\left(x_{2}+B x_{1}\right)^{2}}\right]
$$

Similarly,

$$
\bar{M}_{2}^{E}=A x_{1}^{2}\left[\frac{1}{\left(x_{1}+B x_{2}\right)^{2}}+\frac{B}{\left(x_{2}+B x_{1}\right)^{2}}\right]
$$

(b) The excess partial properties should obey the Gibbs/Duhem equation, Eq. (11.14), when written for excess properties in a binary system at constant T and P :

$$
x_{1} \frac{d \bar{M}_{1}^{E}}{d x_{1}}+x_{2} \frac{d \bar{M}_{2}^{E}}{d x_{1}}=0
$$

If the answers to part (a) are mathematically correct, this is inevitable, because they were derived from a proper expression for M^{E}. Furthermore, for each partial property \bar{M}_{i}^{E}, its value and derivative with respect to x_{i} become zero at $x_{i}=1$.
(c)

$$
\left(\bar{M}_{1}^{E}\right)^{\infty}=A\left(\frac{1}{B}+1\right) \quad\left(\bar{M}_{2}^{E}\right)^{\infty}=A\left(1+\frac{1}{B}\right)
$$

11.48 By Eqs. (11.15) and (11.16), written for excess properties, find:

$$
\frac{d \bar{M}_{1}^{E}}{d x_{1}}=x_{2} \frac{d^{2} M^{E}}{d x_{1}^{2}} \quad \frac{d \bar{M}_{2}^{E}}{d x_{1}}=-x_{1} \frac{d^{2} M^{E}}{d x_{1}^{2}}
$$

At $x_{1}=1, d \bar{M}_{1}^{E} / d x_{1}=0$, and by continuity can only increase or decrease for $x_{1}<1$. Therefore the sign of $d \bar{M}_{1}^{E} / d x_{1}$ is the same as the sign of $d^{2} M^{E} / d x_{1}^{2}$. Similarly, at $x_{1}=0, d \bar{M}_{2}^{E} / d x_{1}=0$, and by the same argument the sign of $d \bar{M}_{2}^{E} / d x_{1}$ is of opposite sign as the sign of $d^{2} M^{E} / d x_{1}^{2}$.
11.49 The claim is not in general valid.

$$
\begin{gathered}
\beta \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P} \quad V^{i d}=\sum_{i} x_{i} V_{i} \\
\beta^{i d}=\frac{1}{\sum_{i} x_{i} V_{i}} \sum_{i} x_{i}\left(\frac{\partial V_{i}}{\partial T}\right)_{P}=\frac{1}{\sum_{i} x_{i} V_{i}} \sum_{i} x_{i} V_{i} \beta_{i}
\end{gathered}
$$

The claim is valid only if all the V_{i} are equal.

Chapter 12 - Section B - Non-Numerical Solutions

12.2 Equation (12.1) may be written: $y_{i} P=x_{i} \pi_{i} P_{i}^{\text {sat }}$.

Summing for $i=1,2$ gives: $\quad P=x_{1} \pi_{1} P_{1}^{\text {sat }}+x_{2} \pi_{2} P_{2}^{\text {sat }}$.
Differentiate at constant $T: \frac{d P}{d x_{1}}=P_{1}^{\text {sat }}\left[x_{1} \frac{d \pi_{1}}{d x_{1}}+\pi_{1}\left(+P_{2}^{\text {sat }}\left[x_{2} \frac{d \pi_{2}}{d x_{1}}-\pi_{2}(\right.\right.\right.$
Apply this equation to the limiting conditions:
For $x_{1}=0: \quad x_{2}=1$
$\pi_{1}=\pi_{1}^{\infty} \quad \pi_{2}=1 \quad \frac{d \pi_{2}}{d x_{1}}=0$
For $x_{1}=1: \quad x_{2}=0 \quad \pi_{1}=1 \quad \pi_{2}=\pi_{2}^{\infty} \quad \frac{d \pi_{1}}{d x_{1}}=0$
Then,

$$
\begin{gathered}
{\left[\frac { d P } { d x _ { 1 } } \left(x_{1}=0\right.\right.} \\
=P_{1}^{\text {sat }} \pi_{1}^{\infty}-P_{2}^{\text {sat }} \quad \text { or } \quad\left[\frac { d P } { d x _ { 1 } } \left(x_{x_{1}=0}^{d x_{1}}+P_{2}^{\text {sat }}=P_{1}^{\text {sat }} \pi_{1}^{\infty}\right.\right. \\
\frac{d P}{x_{1}=1}=P_{1}^{\text {sat }}-P_{2}^{\text {sat }} \pi_{2}^{\infty} \quad \text { or } \quad\left[\frac { d P } { d x _ { 1 } } \left(P_{x_{1}=1}^{\text {sat }}=-P_{2}^{\text {sat }} \pi_{2}^{\infty}\right.\right.
\end{gathered}
$$

Since both $P_{i}{ }^{\text {sat }}$ and π_{i}^{∞} are always positive definite, it follows that:

$$
\left[\frac { d P } { d x _ { 1 } } \left({ } _ { x _ { 1 } = 0 } \left\langle- P _ { 2 } ^ { \text { sat } } \quad \text { and } \quad \left[\frac{d P}{d x_{1}}{\left.\underset{x_{1}=1}{ }\right\rangle P_{1}^{\text {sat }}}^{2}\right.\right.\right.\right.
$$

12.4 By Eqs. (12.15),

$$
\ln \pi_{1}=A x_{2}^{2} \quad \text { and } \quad \ln \pi_{2}=A x_{1}^{2}
$$

Therefore,

$$
\ln \frac{\pi_{1}}{\pi_{2}}=A\left(x_{2}^{2}-x_{1}^{2}\right)=A\left(x_{2}-x_{1}\right)=A\left(1-2 x_{1}\right)
$$

By Eq. (12.1),

$$
\frac{\pi_{1}}{\pi_{2}}=\frac{y_{1} x_{2} P_{2}^{\text {sat }}}{y_{2} x_{1} P_{1}^{\text {sat }}}=\left[\frac { y _ { 1 } / x _ { 1 } } { y _ { 2 } / x _ { 2 } } \left(\left[\frac { P _ { 2 } ^ { \text { sat } } } { P _ { 1 } ^ { \text { sat } } } \left(=\xi_{12} r\right.\right.\right.\right.
$$

Whence,

$$
\ln \left(\xi_{12} r\right)=A\left(1-2 x_{1}\right)
$$

If an azeotrope exists, $\xi_{12}=1$ at 0$\left.\rangle x_{1}^{\mathrm{az}}\right\rangle 1$. At this value of $x_{1}, \quad \ln r=A\left(1-2 x_{1}^{\mathrm{az}}\right)$
The quantity $A\left(1-2 x_{1}\right)$ is linear in x_{1}, and there are two possible relationships, depending on the sign of A. An azeotrope exhists whenever $|A|\rangle \quad|\ln r|$. NO azeotrope can exist when $|A|<|\ln r|$.
12.5 Perhaps the easiest way to proceed here is to note that an extremum in $\ln \pi_{1}$ is accompanied by the opposite extremum in $\ln \pi_{2}$. Thus the difference $\ln \pi_{1}-\ln \pi_{2}$ is also an extremum, and Eq. (12.8) becomes useful:

$$
\ln \pi_{1}-\ln \pi_{2}=\ln \frac{\pi_{1}}{\pi_{2}}=\frac{d\left(G^{E} / R T\right.}{d x_{1}}
$$

Thus, given an expression for $G^{E} / R T=g\left(x_{1}\right)$, we locate an extremum through:

$$
\frac{d^{2}\left(G^{E} / R T\right)}{d x_{1}^{2}}=\frac{d \ln \left(\pi_{1} / \pi_{2}\right)}{d x_{1}}=0
$$

For the van Laar equation, write Eq. (12.16), omitting the primes (/):

Moreover,

$$
\begin{array}{ccc}
\frac{G^{E}}{R T}=A_{12} A_{21} \frac{x_{1} x_{2}}{A} & \text { where } & A \equiv A_{12} x_{1}+A_{21} x_{2} \\
\frac{d A}{d x_{1}}=A_{12}-A_{21} & \text { and } & \frac{d^{2} A}{d x_{1}^{2}}=0
\end{array}
$$

Then,

$$
\frac{d\left(G^{E} / R T\right)}{d x_{1}}=A_{12} A_{21} \frac{x_{2}-x_{1}}{A}-\frac{x_{1} x_{2}}{A^{2}} \frac{d A}{d x_{1}} \int
$$

$$
\begin{aligned}
\frac{d^{2}\left(G^{E} / R T\right)}{d x_{1}^{2}} & =A_{12} A_{21}\left[-\frac{2}{A}-\frac{x_{2}-x_{1}}{A^{2}} \frac{d A}{d x_{1}}-\frac{x_{1} x_{2}}{A^{2}} \frac{d^{2} A}{d x_{1}^{2}}-\frac{d A}{d x_{1}} \sum \frac{2 x_{1} x_{2}}{A^{3}} \frac{d A}{d x_{1}}+\frac{x_{2}-x_{1}}{A^{2}} \int\right] \\
& =A_{12} A_{21}\left[-\frac{2}{A}-\frac{2\left(x_{2}-x_{1}\right)}{A^{2}} \frac{d A}{d x_{1}}+\frac{2 x_{1} x_{2}}{A^{3}} \sum_{\vec{d} x_{1}}^{d A} \int^{2}\right] \\
& =\frac{2 A_{12} A_{21}}{A^{3}}\left[-A^{2}-\left(x_{2}-x_{1}\right) A \frac{d A}{d x_{1}}+x_{1} x_{2} \sum_{\vec{d} x_{1}}^{d A} \int^{2}\right] \\
& =\frac{2 A_{12} A_{21}}{A^{3}} \sum_{A}+x_{2} \frac{d A}{d x_{1}} \int \sum x_{1} \frac{d A}{d x_{1}}-A \int
\end{aligned}
$$

This equation has a zero value if either A_{12} or A_{21} is zero. However, this makes $G^{E} / R T$ everywhere zero, and no extremum is possible. If either quantity in parentheses is zero, substitution for A and $d A / d x_{1}$ reduces the expression to $A_{12}=0$ or $A_{21}=0$, again making $G^{E} / R T$ everywhere zero. We conclude that no values of the parameters exist that provide for an extremum in $\ln \left(\gamma_{1} / \gamma_{2}\right)$.
The Margules equation is given by Eq. (12.9b), here written:

$$
\frac{G^{E}}{R T}=A x_{1} x_{2} \quad \text { where } \quad A=A_{21} x_{1}+A_{12} x_{2} \quad \frac{d A}{d x_{1}}=A_{21}-A_{12} \quad \frac{d^{2} A}{d x_{1}^{2}}=0
$$

Then,

$$
\begin{aligned}
\frac{d^{2}\left(G^{E} / R T\right)}{d x_{1}^{2}} & =-2 A+\left(x_{2}-x_{1}\right) \frac{d A}{d x_{1}}+\left(x_{2}-x_{1}\right) \frac{d A}{d x_{1}}+x_{1} x_{2} \frac{d^{2} A}{d x_{1}^{2}} \\
& =-2 A+2\left(x_{2}-x_{1}\right) \frac{d A}{d x_{1}}=2\left[\left(x_{1}-x_{2}\right) \frac{d A}{d x_{1}}-A\right]
\end{aligned}
$$

This equation has a zero value when the quantity in square brackets is zero. Then:
$\left(x_{2}-x_{1}\right) \frac{d A}{d x_{1}}-A=\left(x_{2}-x_{1}\right)\left(A_{21}-A_{12}\right)-A_{21} x_{1}-A_{12} x_{2}=A_{21} x_{2}+A_{12} x_{1}-2\left(A_{21} x_{1}+A_{12} x_{2}\right)=0$
Substituting $x_{2}=1-x_{1}$ and solving for x_{1} yields:

$$
x_{1}=\frac{A_{21}-2 A_{12}}{3\left(A_{21}-A_{12}\right)} \quad \text { or } \quad x_{1}=\frac{(r-2)}{3(r-1)} \quad r \equiv \frac{A_{21}}{A_{12}}
$$

When $r=2, \quad x_{1}=0$, and the extrema in $\ln \gamma_{1}$ and $\ln \gamma_{2}$ occur at the left edge of a diagram such as those of Fig. 12.9. For values of $r>2$, the extrema shift to the right, reaching a limiting value for $r=\infty$ at $x_{1}=1 / 3$. For positive values of the parameters, in all of these cases $A_{21}>A_{12}$, and the intercepts of the $\ln \gamma_{2}$ curves at $x_{1}=1$ are larger than the intercepts of the $\ln \gamma_{1}$ curves at $x_{1}=0$.

When $r=1 / 2, \quad x_{1}=1$, and the extrema in $\ln \gamma_{1}$ and $\ln \gamma_{2}$ occur at the right edge of a diagram such as those of Fig. 12.9. For values of $r<1 / 2$, the extrema shift to the left, reaching a limiting value for $r=0$ at $x_{1}=2 / 3$. For positive values of the parameters, in all of these cases $A_{21}<A_{12}$, and the intercepts of the $\ln \gamma_{1}$ curves at $x_{1}=0$ are larger than the intercepts of the $\ln \gamma_{2}$ curves at $x_{1}=1$.
No extrema exist for values of r between $1 / 2$ and 2 .
12.7 Equations (11.15) and (11.16) here become:

$$
\ln \gamma_{1}=\frac{G^{E}}{R T}+x_{2} \frac{d\left(G^{E} / R T\right)}{d x_{1}} \quad \text { and } \quad \ln \gamma_{2}=\frac{G^{E}}{R T}-x_{1} \frac{d\left(G^{E} / R T\right)}{d x_{1}}
$$

(a) For simplicity of notation, omit the primes that appear on the parameters in Eqs. (12.16) and (12.17), and write Eq. (12.16) as:

$$
\frac{G^{E}}{R T}=A_{12} A_{21} \frac{x_{1} x_{2}}{D} \quad \text { where } \quad D \equiv A_{12} x_{1}+A_{21} x_{2}
$$

Then,

$$
\frac{d\left(G^{E} / R T\right)}{d x_{1}}=A_{12} A_{21}\left[\frac{x_{2}-x_{1}}{D}-\frac{x_{1} x_{2}}{D^{2}}\left(A_{12}-A_{21}\right)\right]
$$

and $\ln \gamma_{1}=A_{12} A_{21}\left[\frac{x_{1} x_{2}}{D}+x_{2}\left(\frac{x_{2}-x_{1}}{D}-\frac{x_{1} x_{2}}{D^{2}}\left(A_{12}-A_{21}\right)\right)\right]$

$$
\begin{aligned}
& =\frac{A_{12} A_{21}}{D}\left[x_{1} x_{2}+x_{2}^{2}-x_{1} x_{2}-\frac{x_{1} x_{2}^{2}}{D}\left(A_{12}-A_{21}\right)\right] \\
& =\frac{A_{12} A_{21} x_{2}^{2}}{D^{2}}\left(D-A_{12} x_{1}+A_{21} x_{1}\right)=\frac{A_{12} A_{21} x_{2}^{2}}{D^{2}}\left(A_{21} x_{2}+A_{21} x_{1}\right) \\
& =\frac{A_{12} A_{21}^{2} x_{2}^{2}}{D^{2}}=A_{12}\left(\frac{A_{21} x_{2}}{D}\right)^{2}=A_{12}\left(\frac{D}{A_{21} x_{2}}\right)^{-2}=A_{12}\left(\frac{A_{12} x_{1}+A_{21} x_{2}}{A_{21} x_{2}}\right)^{-2}
\end{aligned}
$$

$$
\ln \gamma_{1}=A_{12}\left(1+\frac{A_{12} x_{1}}{A_{21} x_{2}}\right)^{-2}
$$

The equation for $\ln \gamma_{2}$ is derived in analogous fashion.
(b) With the understanding that T and P are constant, $\quad \ln \gamma_{1}=\left[\frac{\partial\left(n G^{E} / R T\right)}{\partial n_{1}}\right]_{n_{2}}$ and Eq. (12.16) may be written:

$$
\frac{n G^{E}}{R T}=\frac{A_{12} A_{21} n_{1} n_{2}}{n D} \quad \text { where } \quad n D=A_{12} n_{1}+A_{21} n_{2}
$$

Differentiation in accord with the first equation gives:

$$
\begin{aligned}
\ln \gamma_{1} & =A_{12} A_{21} n_{2}\left[\frac{1}{n D}-\frac{n_{1}}{(n D)^{2}}\left(\frac{\partial(n D)}{\partial n_{1}}\right)_{n_{2}}\right] \\
\ln \gamma_{1} & =\frac{A_{12} A_{21} n_{2}}{n D}\left[1-\frac{n_{1}}{n D} A_{12}\right)=\frac{A_{12} A_{21} x_{2}}{D}\left(1-\frac{A_{12} x_{1}}{D}\right) \\
& =\frac{A_{12} A_{21} x_{2}}{D^{2}}\left(D-A_{12} x_{1}\right)=\frac{A_{12} A_{21} x_{2}}{D^{2}} A_{21} x_{2}=\frac{A_{12} A_{21}^{2} x_{2}^{2}}{D^{2}}
\end{aligned}
$$

The remainder of the derivation is the same as in Part (a).
12.10 This behavior requires positive deviations from Raoult's law over part of the composition range and negative deviations over the remainder. Thus a plot of G^{E} vs. x_{1} starts and ends with $G^{E}=0$ at $x_{1}=0$ and $x_{1}=1$ and shows positive values over part of the composition range and negative values over the remainder, with an intermediate crossing of the x_{1} axis. Because these deviations are usually quite small, the vapor pressures $P_{1}^{\text {sat }}$ and $P_{2}^{\text {sat }}$ must not be too different, otherwise the dewpoint and bubblepoint curves cannot exhibit extrema.
12.11 Assume the Margules equation, Eq. (12.9b), applies:

$$
\frac{G^{E}}{R T}=x_{1} x_{2}\left(A_{21} x_{1}+A_{12} x_{2}\right) \quad \text { and } \quad \frac{G^{E}}{R T}(\text { equimolar })=\frac{1}{8}\left(A_{12}+A_{21}\right)
$$

But [see page 438, just below Eq. (12.10b)]: $\quad A_{12}=\ln \gamma_{1}^{\infty} \quad A_{21}=\ln \gamma_{2}^{\infty}$

$$
\frac{G^{E}}{R T}(\text { equimolar })=\frac{1}{8}\left(\ln \gamma_{1}^{\infty}+\ln \gamma_{2}^{\infty}\right) \quad \text { or } \quad \frac{G^{E}}{R T}(\text { equimolar })=\frac{1}{8} \ln \left(\gamma_{1}^{\infty} \gamma_{2}^{\infty}\right)
$$

12.24 (a) By Eq. (12.6): $\frac{G^{E}}{R T}=x_{1} \ln \gamma_{1}+x_{2} \ln \gamma_{2}$

$$
\begin{aligned}
& =x_{1} x_{2}^{2}\left(0.273+0.096 x_{1}\right)+x_{2} x_{1}^{2}\left(0.273-0.096 x_{2}\right) \\
& =x_{1} x_{2}\left(0.273 x_{2}+0.096 x_{1} x_{2}+0.273 x_{1}-0.096 x_{1} x_{2}\right) \\
& =x_{1} x_{2}(0.273)\left(x_{1}+x_{2}\right)
\end{aligned}
$$

$$
\frac{G^{E}}{R T}=0.273 x_{1} x_{2}
$$

(b) The preceding equation is of the form from which Eqs. (12.15) are derived. From these,

$$
\begin{array}{|ll|}
\hline \ln \gamma_{1}=0.273 x_{2}^{2} & \text { and } \\
\ln \gamma_{2}=0.273 x_{1}^{2} \\
\hline
\end{array}
$$

(c) The equations of part (b) are not the reported expressions, which therefore cannot be correct. See Problem 11.11.
12.25 Write Eq. (11.100) for a binary system, and divide through by $d x_{1}$:

$$
x_{1} \frac{d \ln \gamma_{1}}{d x_{1}}+x_{2} \frac{d \ln \gamma_{2}}{d x_{1}}=0 \quad \text { whence } \quad \frac{d \ln \gamma_{2}}{d x_{1}}=-\frac{x_{1}}{x_{2}} \frac{d \ln \gamma_{1}}{d x_{1}}=\frac{x_{1}}{x_{2}} \frac{d \ln \gamma_{1}}{d x_{2}}
$$

Integrate, recalling that $\ln \gamma_{2}=1$ for $x_{1}=0$:

$$
\ln \gamma_{2}=\ln (1)+\int_{0}^{x_{1}} \frac{x_{1}}{x_{2}} \frac{d \ln \gamma_{1}}{d x_{2}} d x_{1}=\int_{0}^{x_{1}} \frac{x_{1}}{x_{2}} \frac{d \ln \gamma_{1}}{d x_{2}} d x_{1}
$$

(a) For $\ln \gamma_{1}=A x_{2}^{2}$,

$$
\frac{d \ln \gamma_{1}}{d x_{2}}=2 A x_{2}
$$

Whence

$$
\begin{array}{r}
\ln \gamma_{2}=2 A \int_{0}^{x_{1}} x_{1} d x_{1} \quad \text { or } \\
\\
\frac{G^{E}}{R T}=A x_{1} x_{2}
\end{array}
$$

(b) For $\ln \gamma_{1}=x_{2}^{2}\left(A+B x_{2}\right)$,

$$
\frac{d \ln \gamma_{1}}{d x_{2}}=2 x_{2}\left(A+B x_{2}\right)+x_{2}^{2} B=2 A x_{2}+3 B x_{2}^{2}=2 A x_{2}+3 B x_{2}\left(1-x_{1}\right)
$$

Whence
By Eq. (12.6),

$$
\ln \gamma_{2}=A x_{1}^{2}
$$

$$
\ln \gamma_{2}=A x_{1}^{2}+\frac{3 B}{2} x_{1}^{2}-B x_{1}^{3} \quad \text { or } \quad \ln \gamma_{2}=x_{1}^{2}\left(A+\frac{3 B}{2}-B x_{1}\right)=x_{1}^{2}\left[A+\frac{B}{2}\left(1+2 x_{2}\right)\right]
$$

Apply Eq. (12.6): $\quad \frac{G^{E}}{R T}=x_{1} x_{2}^{2}\left(A+B x_{2}\right)+x_{2} x_{1}^{2}\left(A+\frac{3 B}{2}-B x_{1}\right)$
Algebraic reduction can lead to various forms of this equation; e.g.,

$$
\frac{G^{E}}{R T}=x_{1} x_{2}\left[A+\frac{B}{2}\left(1+x_{2}\right)\right]
$$

(c) For $\ln \gamma_{1}=x_{2}^{2}\left(A+B x_{2}+C x_{2}^{2}\right)$,

$$
\begin{aligned}
\frac{d \ln \gamma_{1}}{d x_{2}} & =2 x_{2}\left(A+B x_{2}+C x_{2}^{2}\right)+x_{2}^{2}\left(B+2 C x_{2}\right)=2 A x_{2}+3 B x_{2}^{2}+4 C x_{2}^{3} \\
& =2 A x_{2}+3 B x_{2}\left(1-x_{1}\right)+4 C x_{2}\left(1-x_{1}\right)^{2}
\end{aligned}
$$

Whence $\ln \gamma_{2}=2 A \int_{0}^{x_{1}} x_{1} d x_{1}+3 B \int_{0}^{x_{1}} x_{1}\left(1-x_{1}\right) d x_{1}+4 C \int_{0}^{x_{1}} x_{1}\left(1-x_{1}\right)^{2} d x_{1}$
or $\quad \ln \gamma_{2}=(2 A+3 B+4 C) \int_{0}^{x_{1}} x_{1} d x_{1}-(3 B+8 C) \int_{0}^{x_{1}} x_{1}^{2} d x_{1}+4 C \int_{0}^{x_{1}} x_{1}^{3} d x_{1}$
$\ln \gamma_{2}=\left(\frac{2 A+3 B+4 C}{2}\right) x_{1}^{2}-\left(\frac{3 B+8 C}{3}\right) x_{1}^{3}+C x_{1}^{4}$

$$
\ln \gamma_{2}=x_{1}^{2}\left[A+\frac{3 B}{2}+2 C-\left(B+\frac{8 C}{3}\right) x_{1}+C x_{1}^{2}\right]
$$

or

$$
\ln \gamma_{2}=x_{1}^{2}\left[A+\frac{B}{2}\left(1+2 x_{2}\right)+\frac{C}{3}\left(1+2 x_{2}+3 x_{2}^{2}\right)\right]
$$

The result of application of Eq. (12.6) reduces to equations of various forms; e.g.:

$$
\frac{G^{E}}{R T}=x_{1} x_{2}\left[A+\frac{B}{2}\left(1+x_{2}\right)+\frac{C}{3}\left(1+x_{2}+x_{2}^{2}\right)\right]
$$

12.40 (a) As shown on page 458, $\quad x_{1}=\frac{1}{1+\tilde{n}} \quad$ and $\quad \widetilde{\Delta H}=\Delta H(1+\tilde{n})$

Eliminating $1+\tilde{n}$ gives: $\quad \widetilde{\Delta H}=\frac{\Delta H}{x_{1}}$
Differentiation yields: $\frac{d \widetilde{\Delta H}}{d \tilde{n}}=\frac{1}{x_{1}} \frac{d \Delta H}{d \tilde{n}}-\frac{\Delta H}{x_{1}^{2}} \frac{d x_{1}}{d \tilde{n}}=\left(\frac{1}{x_{1}} \frac{d \Delta H}{d x_{1}}-\frac{\Delta H}{x_{1}^{2}}\right) \frac{d x_{1}}{d \tilde{n}}$
where

$$
\frac{d x_{1}}{d \tilde{n}}=\frac{-1}{(1+\tilde{n})^{2}}=-x_{1}^{2}
$$

Whence,

$$
\frac{d \widetilde{\Delta H}}{d \tilde{n}}=\Delta H-x_{1} \frac{d \Delta H}{d x_{1}}=H^{E}-x_{1} \frac{d H^{E}}{d x_{1}}
$$

Comparison with Eq. (11.16) written with $M \equiv H^{E}, \quad \bar{H}_{2}^{E}=H^{E}-x_{1} \frac{d H^{E}}{d x_{1}}$
shows that

$$
\frac{d \widetilde{\Delta H}}{d \tilde{n}}=\bar{H}_{2}^{E}
$$

(b) By geometry, with reference to the following figure, $\quad \frac{d \widetilde{\Delta H}}{d \tilde{n}}=\frac{\widetilde{\Delta H}-I}{\tilde{n}}$

Combining this with the result of Part (a) gives: $\quad \bar{H}_{2}^{E}=\frac{\widetilde{\Delta H}-I}{\tilde{n}}$
From which,

$$
I=\widetilde{\Delta H}-\tilde{n} \bar{H}_{2}^{E}
$$

Substitute:

$$
\widetilde{\Delta H}=\frac{\Delta H}{x_{1}}=\frac{H^{E}}{x_{1}} \quad \text { and } \quad \tilde{n}=\frac{x_{2}}{x_{1}}
$$

Whence,

$$
I=\frac{H^{E}}{x_{1}}-\frac{x_{2}}{x_{1}} \bar{H}_{2}^{E}=\frac{H^{E}-x_{2} \bar{H}_{2}^{E}}{x_{1}}
$$

However, by the summability equation, $H^{E}-x_{2} \bar{H}_{2}^{E}=x_{1} \bar{H}_{1}^{E}$
Then,

$$
I=\bar{H}_{1}^{E}
$$

12.41 Combine the given equation with Eq. (A) of the preceding problem:

$$
\widetilde{\Delta H}=x_{2}\left(A_{21} x_{1}+A_{12} x_{2}\right)
$$

With $x_{2}=1-x_{1}$ and $x_{1}=1 /(1+\tilde{n}) \quad(p a g e ~ 458): \quad x_{2}=\frac{\tilde{n}}{1+\tilde{n}}$
The preceding equations combine to give:

$$
\widetilde{\Delta H}=\frac{\tilde{n}}{1+\tilde{n}}\left(\frac{A_{21}}{1+\tilde{n}}+\frac{A_{12} \tilde{n}}{1+\tilde{n}}\right)
$$

(a) It follows immediately from the preceding equation that: $\quad \lim _{\tilde{n} \rightarrow 0} \widetilde{\Delta H}=0$
(b) Because $\tilde{n} /(1+\tilde{n}) \rightarrow 1$ for $\tilde{n} \rightarrow \infty$, it follows that: $\quad \lim _{\tilde{n} \rightarrow \infty} \widetilde{\Delta H}=A_{12}$
(c) Analogous to Eq. (12.10b), page 438, we write: $\quad \bar{H}_{2}^{E}=x_{1}^{2}\left[A_{21}+2\left(A_{12}-A_{21}\right) x_{2}\right]$

Eliminate the mole fractions in favor of \tilde{n} :

$$
\bar{H}_{2}^{E}=\left(\frac{1}{1+\tilde{n}}\right)^{2}\left[A_{21}+2\left(A_{12}-A_{21}\right) \frac{\tilde{n}}{1+\tilde{n}}\right]
$$

In the limit as $\tilde{n} \rightarrow 0$, this reduces to A_{21}. From the result of Part (a) of the preceding problem, it follows that

$$
\lim _{\tilde{n} \rightarrow 0} \frac{d \widetilde{\Delta H}}{d \tilde{n}}=A_{21}
$$

12.42 By Eq. (12.29) with $M \equiv H, \Delta H=H-\sum_{i} x_{i} H_{i}$. Differentiate:

$$
\left(\frac{\partial \Delta H}{\partial t}\right)_{P, x}=\left(\frac{\partial H}{\partial t}\right)_{P, x}-\sum_{i} x_{i}\left(\frac{\partial H_{i}}{\partial t}\right)_{P, x}
$$

With $\left(\frac{\partial H}{\partial t}\right)_{P, x} \equiv C_{P}, \quad$ this becomes $\quad\left(\frac{\partial \Delta H}{\partial t}\right)_{P, x}=C_{P}-\sum_{i} x_{i} C_{P_{i}}=\Delta C_{P}$
Therefore, $\quad \int_{\Delta H_{0}}^{\Delta H} d(\Delta H)=\int_{t_{0}}^{t} \Delta C_{P} d t \quad \Delta H=\Delta H_{0}+\int_{t_{0}}^{t} \Delta C_{P} d t$
12.61 (a) From the definition of \mathcal{M} :

$$
\begin{equation*}
M^{E}=x_{1} x_{2} \mathcal{M} \tag{A}
\end{equation*}
$$

Differentiate: $\quad \frac{d M^{E}}{d x_{1}}=\mathcal{M}\left(x_{2}-x_{1}\right)+x_{1} x_{2} \frac{d \mathcal{M}}{d x_{1}}$
Substitution of Eqs. $(A) \&(B)$ into Eqs. (11.15) \& (11.16), written for excess properties, yields the required result.
(b) The requested plots are found in Section A.
12.63 In this application the microscopic "state" of a particle is its species identity, i.e., $1,2,3, \ldots$ By assumption, this label is the only thing distinguishing one particle from another. For mixing,

$$
\Delta S^{t}=S_{\text {mixed }}^{t}-S_{\text {unmixed }}^{t}=S_{\text {mixed }}^{t}-\sum_{i} S_{i}^{t}
$$

where the total emtropies are given by Eq. (5.42). Thus, for an unmixed species i, and for the mixed system of particles,

$$
S_{i}^{t}=k \ln \Omega_{i}=k \ln \frac{N_{i}!}{N_{i}!}=0 \quad S_{\text {mixed }}^{t}=k \ln \frac{N!}{N_{1}!N_{2}!N_{3}!\cdots}
$$

Combining the last three equations gives: $\quad \Delta S^{t}=k \ln \frac{N!}{N_{1}!N_{2}!N_{3}!\cdots}$
From which: $\quad \frac{\Delta S}{R}=\frac{\Delta S^{t}}{R\left(N / N_{A}\right)}=\frac{\Delta S^{t}}{k N}=\frac{1}{N} \ln \frac{N!}{N_{1}!N_{2}!N_{3}!\cdots}=\frac{1}{N}\left(\ln N!-\sum_{i} \ln N_{i}!\right)$

$$
\begin{aligned}
& \ln N!\approx N \ln N-N \quad \text { and } \quad \ln N_{i}!\approx N_{i} \ln N_{i}-N_{i} \\
& \frac{\Delta S}{R} \approx \frac{1}{N}\left(N \ln N-N-\sum_{i} N_{i} \ln N_{i}+\sum_{i} N_{i}\right)=\frac{1}{N}\left(N \ln N-\sum_{i} x_{i} N \ln x_{i} N\right) \\
&= \frac{1}{N}\left(N \ln N-\sum_{i} x_{i} N \ln x_{i}-\sum_{i} x_{i} N \ln N\right)=-\sum_{i} x_{i} \ln x_{1}
\end{aligned}
$$

12.66 Isobaric data reduction is complicated by the fact that both composition and temperature vary from point to point, whereas for isothermal data composition is the only significant variable. (The effect of pressure on liquid-phase properties is assumed negligible.) Because the activity coefficients are strong functions of both liquid composition and T, which are correlated, it is quite impossible without additional information to separate the effect of composition from that of T. Moreover, the $P_{i}^{\text {sat }}$ values depend strongly on T, and one must have accurate vapor-pressure data over a temperature range.
$\mathbf{1 2 . 6 7}$ (a) Written for G^{E}, Eqs. (11.15) and (11.16) become:

$$
\bar{G}_{1}^{E}=G^{E}+x_{2} \frac{d G^{E}}{d x_{1}} \quad \text { and } \quad \bar{G}_{2}^{E}=G^{E}-x_{1} \frac{d G^{E}}{d x_{1}}
$$

Divide through by $R T ; \quad$ define $\mathcal{G} \equiv \frac{G^{E}}{R T} ; \quad$ note by Eq. (11.91) that $\quad \frac{\bar{G}_{i}^{E}}{R T}=\ln \gamma_{i}$
Then

$$
\ln \gamma_{1}=\mathcal{G}+x_{2} \frac{d \mathcal{G}}{d x_{1}} \quad \text { and } \quad \ln \gamma_{2}=\mathcal{G}-x_{1} \frac{d \mathcal{G}}{d x_{1}}
$$

Given: $\quad \frac{G^{E}}{x_{!} x_{2} R T}=A^{1 / k} \quad$ with $\quad A \equiv x_{1} A_{21}^{k}+x_{2} A_{12}^{k}$

Whence: $\quad \mathcal{G}=x_{1} x_{2} A^{1 / k} \quad$ and $\quad \frac{d \mathcal{G}}{d x_{1}}=x_{1} x_{2} \frac{d A^{1 / k}}{d x_{1}}+A^{1 / k}\left(x_{2}-x_{1}\right)$
$\frac{d A^{1 / k}}{d x_{1}}=\frac{1}{k} A^{(1 / k)-1} \frac{d A}{d x_{1}}=\frac{1}{k} \frac{A^{1 / k}}{A}\left(A_{21}^{k}-A_{12}^{k}\right) \quad$ and $\quad \frac{d \mathcal{G}}{d x_{1}}=x_{1} x_{2} \frac{A^{1 / k}}{k A}\left(A_{21}^{k}-A_{12}^{k}\right)+A^{1 / k}\left(x_{2}-x_{1}\right)$

Finally,

$$
\ln \gamma_{1}=x_{2}^{2} A^{1 / k}\left[\frac{\left(A_{21}^{k}-A_{12}^{k}\right) x_{1}}{k A}+1\right]
$$

Similarly,

$$
\ln \gamma_{2}=x_{1}^{2} A^{1 / k}\left[1-\frac{\left(A_{21}^{k}-A_{12}^{k}\right) x_{2}}{k A}\right]
$$

(b) Appropriate substitition in the preceding equations of $x_{1}=1$ and $x_{1}=0$ yields:

$$
\ln \gamma_{1}^{\infty}=A^{1 / k}=\left(A_{12}^{k}\right)^{1 / k}=A_{12} \quad \ln \gamma_{2}^{\infty}=A^{1 / k}=\left(A_{21}^{k}\right)^{1 / k}=A_{21}
$$

(c) Let

$$
g \equiv \frac{G^{E}}{x_{1} x_{2} R T}=A^{1 / k}=\left(x_{1} A_{21}^{k}+x_{2} A_{12}^{k}\right)^{1 / k}
$$

If $k=1$,
$g=x_{1} A_{21}+x_{2} A_{12} \quad$ (Margules equation)
If $k=-1, \quad g=\left(x_{1} A_{21}^{-1}+x_{2} A_{12}^{-1}\right)^{-1}=\frac{A_{21} A_{12}}{x_{1} A_{12}+x_{2} A_{21}} \quad$ (van Laar equation)
For $k=0,-\infty,+\infty$, indeterminate forms appear, most easily resolved by working with the logarithm:

$$
\ln g=\ln \left(x_{1} A_{21}^{k}+x_{2} A_{12}^{k}\right)^{1 / k}=\frac{1}{k} \ln \left(x_{1} A_{21}^{k}+x_{2} A_{12}^{k}\right)
$$

Apply l'Hôpital's rule to the final term:

$$
\begin{equation*}
\frac{d \ln \left(x_{1} A_{21}^{k}+x_{2} A_{12}^{k}\right)}{d k}=\frac{x_{1} A_{21}^{k} \ln A_{21}+x_{2} A_{12}^{k} \ln A_{12}}{x_{1} A_{21}^{k}+x_{2} A_{12}^{k}} \tag{A}
\end{equation*}
$$

Consider the limits of the quantity on the right as k approaches several limiting values.

- For $k \rightarrow 0, \quad \ln g \rightarrow x_{1} \ln A_{21}+x_{2} \ln A_{12}=\ln A_{21}^{x_{1}}+\ln A_{12}^{x_{2}} \quad$ and $\quad g=A_{21}^{x_{1}} A_{12}^{x_{2}}$
- For $k \rightarrow \pm \infty$, Assume $A_{12} / A_{21}>1$, and rewrite the right member of Eq. (A) as

$$
\frac{x_{1} \ln A_{21}+x_{2}\left(A_{12} / A_{21}\right)^{k} \ln A_{12}}{x_{1}+x_{2}\left(A_{12} / A_{21}\right)^{k}}
$$

- For $k \rightarrow-\infty, \quad \lim _{k \rightarrow-\infty}\left(A_{12} / A_{21}\right)^{k} \rightarrow 0$ and $\quad \lim _{k \rightarrow-\infty} \ln g=\ln A_{21}$

Whence $\quad g=A_{21} \quad$ except at $x_{1}=0$ where $g=A_{12}$

- For $k \rightarrow+\infty, \quad \lim _{k \rightarrow \infty}\left(A_{12} / A_{21}\right)^{k} \rightarrow \infty \quad$ and $\quad \lim _{k \rightarrow \infty} \ln g=\ln A_{12}$

Whence $\quad g=A_{12}$ except at $x_{1}=1$ where $g=A_{21}$
If $A_{12} / A_{21}<1$ rewrite Eq. (A) to display A_{21} / A_{12}.
12.68 Assume that Eq. (12.1) is the appropriate equilibrium relation, written as

$$
x_{e} \gamma_{e} P_{e}^{\text {sat }}=x_{e} \gamma_{e}^{\infty} P_{e}^{\text {sat }}=y_{e} P \quad e \equiv \mathrm{EtOH}
$$

Because P is low, we have assumed ideal gases, and for small x_{e} let $\gamma_{e} \approx \gamma_{e}^{\infty}$. For volume fraction ξ_{e} in the vapor, the ideal-gas assumption provides $\xi_{e}^{v} \approx y_{e}$, and for the liquid phase, with x_{e} small

$$
\xi_{e}^{l}=\frac{x_{e} V_{e}^{l}}{x_{e} V_{e}^{l}+x_{b} V_{b}} \approx \frac{x_{e} V_{e}^{l}}{x_{b} V_{b}} \approx \frac{x_{e} V_{e}^{l}}{V_{b}} \quad b \equiv \operatorname{blood}
$$

Then

$$
\frac{V_{b}}{V_{e}} \xi_{e}^{l} \gamma_{e}^{\infty} P_{e}^{\text {sat }} \approx \xi_{e}^{v} P \quad \frac{\text { volume } \% \mathrm{EtOH} \text { in blood }}{\text { volume } \% \mathrm{EtOH} \text { in gas }} \approx \frac{V_{e} P}{V_{b} \gamma_{e}^{\infty} P_{e}^{\text {sat }}}
$$

12.70 By Eq. (11.95), $\frac{H^{E}}{R T}=-T\left(\frac{\kappa\left(G^{E} / R T\right)}{\kappa T}\right)_{P, x}$

$$
\begin{align*}
& \frac{G^{E}}{R T}=-x_{1} \ln \left(x_{1}+x_{2} \Lambda_{12}\right)-x_{2} \ln \left(x_{2}+x_{1} \Lambda_{21}\right) \tag{12.18}\\
& \left(\frac{\kappa\left(G^{E} / R T\right)}{\kappa T}\right)_{x}=-\frac{x_{1} x_{2} \frac{d \Lambda_{12}}{d T}}{x_{1}+x_{2} \Lambda_{12}}-\frac{x_{2} x_{1} \frac{d \Lambda_{21}}{d T}}{x_{2}+x_{1} \Lambda_{21}}
\end{align*}
$$

$$
\frac{H^{E}}{R T}=x_{1} x_{2} T\left(\frac{\frac{d \Lambda_{12}}{d T}}{x_{1}+x_{2} \Lambda_{12}}+\frac{\frac{d \Lambda_{21}}{d T}}{x_{2}+x_{1} \Lambda_{21}}\right)
$$

$$
\begin{equation*}
\Lambda_{i j}=\frac{V_{j}}{V_{i}} \exp \frac{-a_{i j}}{R T} \quad(i \neq j) \tag{12.24}
\end{equation*}
$$

$$
\frac{d \Lambda_{i j}}{d T}=\frac{V_{j}}{V_{i}}\left(\exp \frac{-a_{i j}}{R T}\right) \frac{a_{i j}}{R T^{2}}=\Lambda_{i j} \frac{a_{i j}}{R T^{2}}
$$

$$
H^{E}=x_{1} x_{2}\left(\frac{\Lambda_{12} a_{12}}{x_{1}+x_{2} \Lambda_{12}}+\frac{\Lambda_{21} a_{21}}{x_{2}+x_{1} \Lambda_{21}}\right)
$$

Because $C_{P}^{E}=d H^{E} / d T$, differentiate the preceding expression and reduce to get:

$$
\frac{C_{P}^{E}}{R}=x_{1} x_{2}\left[\frac{x_{1} \Lambda_{12}\left(a_{12} / R T\right)^{2}}{\left(x_{1}+x_{2} \Lambda_{12}\right)^{2}}+\frac{x_{2} \Lambda_{21}\left(a_{21} / R T\right)^{2}}{\left(x_{2}+x_{1} \Lambda_{21}\right)^{2}}\right]
$$

Because Λ_{12} and Λ_{21} must always be positive numbers, C_{P}^{E} must always be positive.

Chapter 13 - Section B - Non-Numerical Solutions

13.1 (a)

$$
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \infty 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)
$$

$$
v=\left[_{i} \quad v_{i}=-4-5+4+6=1 \quad n_{0}=\left[i_{i_{0}}=2+5=7\right.\right.
$$

By Eq. (13.5),

$$
y_{\mathrm{NH}_{3}}=\frac{2-4 \varepsilon}{7+\varepsilon} \quad y_{\mathrm{O}_{2}}=\frac{5-5 \varepsilon}{7+\varepsilon} \quad y_{\mathrm{NO}}=\frac{4 \varepsilon}{7+\varepsilon} \quad y_{\mathrm{H}_{2} \mathrm{O}}=\frac{6 \varepsilon}{7+\varepsilon}
$$

(b)

$$
2 \mathrm{H}_{2} \mathrm{~S}(g)+3 \mathrm{O}_{2}(g) \infty 2 \mathrm{H}_{2} \mathrm{O}(g)+2 \mathrm{SO}_{2}(g)
$$

$$
v=\left[v_{i} \quad v_{i}=-2-3+2+2=-1 \quad n_{0}=\left[\quad{ }_{i_{0}}=3+5=8\right.\right.
$$

By Eq. (13.5),
(c)

By Eq. (13.5),

$$
y_{\mathrm{NO}_{2}}=\frac{3-6 \varepsilon}{8+5 \varepsilon} \quad y_{\mathrm{NH}_{3}}=\frac{4-8 \varepsilon}{8+5 \varepsilon} \quad y_{\mathrm{N}_{2}}=\frac{1+7 \varepsilon}{8+5 \varepsilon} \quad y_{\mathrm{H}_{2} \mathrm{O}}=\frac{12 \varepsilon}{8+5 \varepsilon}
$$

13.2

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \infty\left\langle\left(\mathrm{CH}_{2}\right)_{2}\right\rangle \mathrm{O}(\mathrm{~g}) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \infty 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \tag{2}
\end{equation*}
$$

The stoichiometric numbers $v_{i, j}$ are as follows:

$i=$	$\mathrm{C}_{2} \mathrm{H}_{4}$	O_{2}	$\left\langle\left(\mathrm{CH}_{2}\right)_{2}\right\rangle \mathrm{O}$	CO_{2}	$\mathrm{H}_{2} \mathrm{O}$	
j						ν_{j}
1	-1	$-\frac{1}{2}$	1	0	0	$-\frac{1}{2}$
2	-1	-3	0	2	2	0

By Eq. (13.7),

$$
\begin{gathered}
y_{\mathrm{C}_{2} \mathrm{H}_{4}}=\frac{2-\varepsilon_{1}-\varepsilon_{2}}{5-\frac{1}{2} \varepsilon_{1}} \quad y_{\mathrm{O}_{2}}=\frac{3-\frac{1}{2} \varepsilon_{1}-3 \varepsilon_{2}}{5-\frac{1}{2} \varepsilon_{1}} \quad y_{\left(\left(\mathrm{CH}_{2}\right)\right\rangle \mathrm{O}}=\frac{\varepsilon_{1}}{5-\frac{1}{2} \varepsilon_{1}} \\
y_{\mathrm{CO}_{2}}=\frac{2 \varepsilon_{2}}{5-\frac{1}{2} \varepsilon_{1}} \quad y_{\mathrm{H}_{2} \mathrm{O}}=\frac{2 \varepsilon_{2}}{5-\frac{1}{2} \varepsilon_{1}}
\end{gathered}
$$

$$
\begin{aligned}
& y_{\mathrm{H}_{2} \mathrm{~S}}=\frac{3-2 \varepsilon}{8-\varepsilon} \quad y_{\mathrm{O}_{2}}=\frac{5-3 \varepsilon}{8-\varepsilon} \quad y_{\mathrm{H}_{2} \mathrm{O}}=\frac{2 \varepsilon}{8-\varepsilon} \quad y_{\mathrm{SO}_{2}}=\frac{2 \varepsilon}{8-\varepsilon} \\
& 6 \mathrm{NO}_{2}(g)+8 \mathrm{NH}_{3}(g) \infty 7 \mathrm{~N}_{2}(g)+12 \mathrm{H}_{2} \mathrm{O}(g) \\
& v=\left[{ }_{i} v_{i}=-6-8+7+12=5 \quad n_{0}=\left[{ }_{i_{0}}=3+4+1=8\right.\right.
\end{aligned}
$$

13.3

$$
\begin{align*}
\mathrm{CO}_{2}(g)+3 \mathrm{H}_{2}(g) & \rightarrow \mathrm{CH}_{3} \mathrm{OH}(g)+\mathrm{H}_{2} \mathrm{O}(g) \tag{1}\\
\mathrm{CO}_{2}(g)+\mathrm{H}_{2}(g) & \rightarrow \mathrm{CO}(g)+\mathrm{H}_{2} \mathrm{O}(g) \tag{2}
\end{align*}
$$

The stoichiometric numbers $v_{i, j}$ are as follows:

$i=$	CO_{2}	H_{2}	$\mathrm{CH}_{3} \mathrm{OH}$	CO	$\mathrm{H}_{2} \mathrm{O}$	
j						v_{j}
1	-1	-3	1	0	1	-2
2	-1	-1	0	1	1	0
$n_{0}=\sum_{i_{0}}=2+5+1=8$						

By Eq. (13.7),

$$
y_{\mathrm{CO}_{2}}=\frac{2-\varepsilon_{1}-\varepsilon_{2}}{8-2 \varepsilon_{1}} \quad y_{\mathrm{H}_{2}}=\frac{5-3 \varepsilon_{1}-\varepsilon_{2}}{8-2 \varepsilon_{1}} \quad y_{\mathrm{CH}_{3} \mathrm{OH}}=\frac{\varepsilon_{1}}{8-2 \varepsilon_{1}} \quad y_{\mathrm{CO}}=\frac{1+\varepsilon_{2}}{8-2 \varepsilon_{1}} \quad y_{\mathrm{H}_{2} \mathrm{O}}=\frac{\varepsilon_{1}+\varepsilon_{2}}{8-2 \varepsilon_{1}}
$$

13.7 The equation for ΔG°, appearing just above Eq. (13.18) is:

$$
\Delta G^{\circ}=\Delta H_{0}^{\circ}-\frac{T}{T_{0}}\left(\Delta H_{0}^{\circ}-\Delta G_{0}^{\circ}\right)+R \int_{T_{0}}^{T} \frac{\Delta C_{P}^{\circ}}{R} d T-R T \int_{T_{0}}^{T} \frac{\Delta C_{P}^{\circ}}{R} \frac{d T}{T}
$$

To calculate values of ΔG°, one combines this equation with Eqs. (4.19) and (13.19), and evaluates parameters. In each case the value of $\Delta H_{0}^{\circ}=\Delta H_{298}^{\circ}$ is tabulated in the solution to Pb . 4.21. In addition, the values of $\Delta A, \Delta B, \Delta C$, and ΔD are given in the solutions to Pb .4 .22 . The required values of $\Delta G_{0}^{\circ}=\Delta G_{298}^{\circ}$ in $\mathrm{J} \mathrm{mol}^{-1}$ are:
(a) -32,900; (f) -2,919,124; (i) 113,245; (n) 173,100; (r) -39,630; (t) 79,455; (и) 166,365; (x) 39,430; (y) 83,010
13.8 The relation of K_{y} to P and K is given by Eq. (13.28), which may be concisely written:

$$
K_{y}=\left[\frac{P}{P^{\circ}}\right]^{-\nu} K
$$

(a) Differentiate this equation with respect to T and combine with Eq. (13.14):

$$
\left[\frac{\partial K_{y}}{\partial T}\right]_{P}=\left[\frac{P}{P^{\circ}}\right]^{-v} \frac{d K}{d T}=\frac{K_{y}}{K} \frac{d K}{d T}=K_{y} \frac{d \ln K}{d T}=\frac{K_{y} \Delta H^{\circ}}{R T^{2}}
$$

Substitute into the given equation for $\left(\partial \varepsilon_{e} / \partial T\right)_{P}$:

$$
\left[\frac{\partial \varepsilon_{e}}{\partial T}\right]_{P}=\frac{K_{y}}{R T^{2}} \frac{d \varepsilon_{e}}{d K_{y}} \Delta H^{\circ}
$$

(b) The derivative of K_{y} with respect to P is:

$$
\left[\frac{\partial K_{y}}{\partial P}\right]_{T}=-v\left[\frac{P}{P^{\circ}}\right]^{-v-1} \frac{1}{P^{\circ}} K=-v K\left[\frac{P}{P^{\circ}}\right]^{-v}\left[\frac{P}{P^{\circ}}\right]^{-1} \frac{1}{P^{\circ}}=\frac{-v K_{y}}{P}
$$

Substitute into the given equation for $\left(\partial \varepsilon_{e} / \partial P\right)_{T}$:

$$
\left(\frac{\partial \varepsilon_{e}}{\partial P}\right)_{T}=\frac{K_{y}}{P} \frac{d \varepsilon_{e}}{d K_{y}}(-v)
$$

(c) With $K_{y} \quad \prod_{i}\left(y_{i}\right)^{v_{i}}, \ln K_{y}=\sum_{i} v_{i} \ln y_{i}$. Differentiation then yields:

$$
\begin{equation*}
\frac{1}{K_{y}} \frac{d K_{y}}{d \varepsilon_{e}}=\sum_{i} \frac{\nu_{i}}{y_{i}} \frac{d y_{i}}{d \varepsilon_{e}} \tag{A}
\end{equation*}
$$

Because $y_{i}=n_{i} / n, \quad \frac{d y_{i}}{d \varepsilon_{e}}=\frac{1}{n} \frac{d n_{i}}{d \varepsilon_{e}}-\frac{n_{i}}{n^{2}} \frac{d n}{d \varepsilon_{e}}=\frac{1}{n}\left(\frac{d n_{i}}{d \varepsilon_{e}}-y_{i} \frac{d n}{d \varepsilon_{e}}\right)$
But $\quad n_{i}=n_{i_{0}}+v_{i} \varepsilon_{e} \quad$ and $\quad n=n_{0}+\nu \varepsilon_{e}$
Whence,

$$
\frac{d n_{i}}{d \varepsilon_{e}}=v_{i} \quad \text { and } \quad \frac{d n}{d \varepsilon_{e}}=v
$$

Therefore,

$$
\frac{d y_{i}}{d \varepsilon_{e}}=\frac{v_{i}-y_{i} \nu}{n_{0}+\nu \varepsilon_{e}}
$$

Substitution into Eq. (A) gives

$$
\begin{aligned}
\frac{1}{K_{y}} \frac{d K_{y}}{d \varepsilon_{e}} & =\sum_{i} \frac{v_{i}}{y_{i}}\left(\frac{v_{i}-y_{i} \nu}{n_{0}+\nu \varepsilon_{e}}\right)=\frac{1}{n_{0}+\nu \varepsilon_{e}} \sum_{i}\left(\frac{v_{i}^{2}}{y_{i}}-v_{i} \nu\right) \\
& =\frac{1}{n_{0}+\nu \varepsilon_{e}} \sum_{i=1}^{m}\left(\frac{v_{i}^{2}}{y_{i}}-v_{i} \sum_{k=1}^{m} v_{k}\right)
\end{aligned}
$$

In this equation, both K_{y} and $n_{0}+v \varepsilon_{e}(=n)$ are positive. It remains to show that the summation term is positive. If $m=2$, this term becomes

$$
\frac{v_{1}^{2}}{y_{1}}-v_{1}\left(\nu_{1}+\nu_{2}\right)+\frac{v_{2}^{2}}{y_{2}}-v_{2}\left(v_{1}+\nu_{2}\right)=\frac{\left(y_{2} \nu_{1}-y_{1} v_{2}\right)^{2}}{y_{1} y_{2}}
$$

where the expression on the right is obtained by straight-forward algebraic manipulation. One can proceed by induction to find the general result, which is

$$
\sum_{i=1}^{m}\left(\frac{v_{i}^{2}}{y_{i}}-v_{i} \sum_{k=1}^{m} v_{k}\right)=\sum_{i}^{m} \sum_{k}^{m} \frac{\left(y_{k} v_{i}-y_{i} v_{k}\right)^{2}}{y_{i} y_{k}} \quad(i<k)
$$

All quantities in the sum are of course positive.

$$
\frac{1}{2} \mathrm{~N}_{2}(g)+\frac{3}{2} \mathrm{H}_{2}(g) \rightarrow \mathrm{NH}_{3}(g)
$$

For the given reaction, $\nu=-1$, and for the given amounts of reactants, $n_{0}=2$.
By Eq. (13.5), $\quad y_{\mathrm{N}_{2}}=\frac{\frac{1}{2}\left(1-\varepsilon_{e}\right)}{2-\varepsilon_{e}} \quad y_{\mathrm{H}_{2}}=\frac{\frac{3}{2}\left(1-\varepsilon_{e}\right)}{2-\varepsilon_{e}} \quad y_{\mathrm{NH}_{3}}=\frac{\varepsilon_{e}}{2-\varepsilon_{e}}$
By Eq. (13.28),

$$
\frac{y_{\mathrm{NH}_{3}}}{y_{\mathrm{N}_{2}}^{1 / 2} y_{\mathrm{H}_{2}}^{3 / 2}}=\frac{\varepsilon_{e}\left(2-\varepsilon_{e}\right)}{\left[\frac{1}{2}\left(1-\varepsilon_{e}\right)\right]^{1 / 2}\left[\frac{3}{2}\left(1-\varepsilon_{e}\right)\right]^{3 / 2}}=K \frac{P}{P^{\circ}}
$$

Whence,

$$
\frac{\varepsilon_{e}\left(2-\varepsilon_{e}\right)}{\left(1-\varepsilon_{e}\right)^{2}}=\frac{1}{2}^{1 / 2} \frac{3}{2}^{3 / 2} K \frac{P}{P^{\circ}}=1.299 K \frac{P}{P^{\circ}}
$$

This may be written:

$$
r \varepsilon_{e}^{2}-2 r \varepsilon_{e}+(r-1)=0
$$

where,

$$
r \equiv 1+1.299 K \frac{P}{P^{\circ}}
$$

The roots of the quadratic are: $\quad \varepsilon_{e}=1 \pm \frac{1}{r^{1 / 2}}=1 \pm r^{-1 / 2}$
Because $\varepsilon_{e}<1, \varepsilon_{e}=1-r^{-1 / 2}, \quad \varepsilon_{e}=1-1+1.299 K{\frac{P}{P^{\circ}}}^{-1 / 2}$
13.10 The reactions are written:

Mary:

$$
\begin{align*}
& 2 \mathrm{NH}_{3}+3 \mathrm{NO} \rightarrow 3 \mathrm{H}_{2} \mathrm{O}+\frac{5}{2} \mathrm{~N}_{2} \tag{A}\\
& 4 \mathrm{NH}_{3}+6 \mathrm{NO} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}+5 \mathrm{~N}_{2} \tag{B}\\
& 3 \mathrm{H}_{2} \mathrm{O}+\frac{5}{2} \mathrm{~N}_{2} \rightarrow 2 \mathrm{NH}_{3}+3 \mathrm{NO} \tag{C}
\end{align*}
$$

Each applied Eqs. (13.11b) and (13.25), here written:

$$
\ln K=-\Delta G^{\circ} / R T \quad \text { and } \quad K=\left(P^{\circ}\right)^{-\nu} \prod_{i}\left(\hat{f_{i}}\right)^{v_{i}}
$$

For reaction (A),

$$
\Delta G_{A}^{\circ}=3 \Delta G_{f_{\mathrm{H}_{2} \mathrm{O}}}^{\circ}-2 \Delta G_{f_{\mathrm{NH}_{3}}}^{\circ}-3 \Delta G_{f_{\mathrm{NO}}}^{\circ}
$$

For Mary's reaction $v=\frac{1}{2}$, and:

$$
K_{A}=\left(P^{\circ}\right)^{-\frac{1}{2}} \frac{\hat{f}_{f_{\mathrm{H}_{2} \mathrm{O}}}^{3} \hat{f}_{f_{\mathrm{N}_{2}}}^{5 / 2}}{\hat{f}_{\mathrm{fNH}_{3}}^{2} \hat{f}_{f_{\mathrm{NO}}}^{3}} \quad \text { and } \quad \ln K_{A}=\frac{-\Delta G_{A}^{\circ}}{R T}
$$

For Paul's reaction $v=1$, and

$$
K_{B}=\left(P^{\circ}\right)^{-1} \frac{\hat{f}_{f_{\mathrm{H}^{2} \mathrm{O}}}^{6} \hat{f}_{f_{\mathrm{N}_{2}}}^{5}}{\hat{f}_{f_{\mathrm{NH}}^{3}}} \hat{f}_{f \mathrm{NO}}^{6} \quad \text { and } \quad \ln K_{B}=\frac{-2 \Delta G_{A}^{\circ}}{R T}
$$

For Peter's reaction $v=-\frac{1}{2}$, and:

$$
K_{C}=\left(P^{\circ}\right)^{\frac{1}{2}} \frac{\hat{f}_{f_{\mathrm{NH}_{3}}}^{2} \hat{f}_{f_{\mathrm{NO}}}^{3}}{\hat{f}_{f_{\mathrm{H}_{2} \mathrm{O}}}^{3} \hat{f}_{f_{\mathrm{N}_{2}}}^{5 / 2}} \quad \text { and } \quad \ln K_{C}=\frac{\Delta G_{A}^{\circ}}{R T}
$$

In each case the two equations are combined:
Mary:

$$
\left(P^{\circ}\right)^{-\frac{1}{2}} \frac{\hat{f}_{f_{\mathrm{H}_{2} \mathrm{O}}}^{3} \hat{f}_{f_{\mathrm{N}_{2}}}^{5 / 2}}{\hat{f}_{\mathrm{NH}_{3}}^{2} \hat{f}_{\mathrm{fNO}^{3}}^{3}}=\exp \frac{-\Delta G_{A}^{\circ}}{R T}
$$

Paul: $\quad\left(P^{\circ}\right)^{-1} \frac{\hat{f}_{f_{\mathrm{H}_{2} \mathrm{O}}}^{6} \hat{f}_{\mathrm{fN}_{2}}^{5}}{\hat{f}_{f_{\mathrm{NH}_{3}}}^{4} \hat{f}_{f_{\mathrm{NO}}}^{6}}=\left[\exp \frac{-\Delta G_{A}^{\circ}}{R T}\right]^{2}$
Taking the square root yields Mary's equation.
Peter:

$$
\left(P^{\circ}\right)^{\frac{1}{2}} \frac{\hat{f}_{\mathrm{fNH}_{3}}^{2} \hat{f}_{f_{\mathrm{NO}}}^{3}}{\hat{f}_{f_{\mathrm{H}_{2} \mathrm{O}}}^{3} \hat{f}_{f_{\mathrm{N}_{2}}}^{5 / 2}}=\left[\exp \frac{-\Delta G_{A}^{\circ}}{R T}\right]^{-1}
$$

Taking the reciprocal yields Mary's equation.
13.24 Formation reactions:

$$
\begin{align*}
& \frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3} \tag{1}\\
& \frac{1}{2} \mathrm{~N}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{NO} \tag{2}\\
& \frac{1}{2} \mathrm{~N}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{NO}_{2} \tag{3}\\
& \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \tag{4}
\end{align*}
$$

Combine Eq. (3) with Eq. (1) and with Eq. (2) to eliminate N_{2} :

$$
\begin{gather*}
\mathrm{NO}_{2}+\frac{3}{2} \mathrm{H}_{2} \rightarrow \mathrm{NH}_{3}+\mathrm{O}_{2} \tag{5}\\
\mathrm{NO}_{2} \rightarrow \frac{1}{2} \mathrm{O}_{2}+\mathrm{NO} \tag{6}
\end{gather*}
$$

The set now comprises Eqs. (4), (5), and (6); combine Eq. (4) with Eq. (5) to eliminate H_{2} :

$$
\begin{equation*}
\mathrm{NO}_{2}+\frac{3}{2} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NH}_{3}+1 \frac{3}{4} \mathrm{O}_{2} \tag{7}
\end{equation*}
$$

Equations (6) and (7) represent a set of independent reactions for which $r=2$. Other equivalent sets of two reactions may be obtained by different combination procedures. By the phase rule,

$$
\begin{array}{ll}
F=2-\pi+N-r-s=2-1+5-2-0 & F=4
\end{array}
$$

13.35 (a) Equation (13.28) here becomes: $\quad \frac{y_{\mathrm{B}}}{y_{\mathrm{A}}}=\left[\frac{P}{P^{\circ}}\right]^{0} K=K$

Whence,

$$
\frac{y_{\mathrm{B}}}{1-y_{\mathrm{B}}}=K(T)
$$

(b) The preceding equation indicates that the equilibrium composition depends on temperature only. However, application of the phase rule, Eq. (13.36), yields:

$$
F=2+2-1-1=2
$$

This result means in general for single-reaction equilibrium between two species A and B that two degrees of freedom exist, and that pressure as well as temperature must be specified to fix the equilibrium state of the system. However, here, the specification that the gases are ideal removes the pressure dependence, which in the general case appears through the $\hat{\phi}_{i}$ s.
13.36 For the isomerization reaction in the gas phase at low pressure, assume ideal gases. Equation (13.28) then becomes:

$$
\frac{y_{\mathrm{B}}}{y_{\mathrm{A}}}=\left[\frac{P}{P^{\circ}}\right]^{0} K=K \quad \text { whence } \quad \frac{1-y_{\mathrm{A}}}{y_{\mathrm{A}}}=K(T)
$$

Assume that vapor/liquid phase equilibrium can be represented by Raoult's law, because of the low pressure and the similarity of the species:

$$
x_{\mathrm{A}} P_{\mathrm{A}}^{\mathrm{sat}}(T)=y_{\mathrm{A}} P \quad \text { and } \quad\left(1-x_{\mathrm{A}}\right) P_{\mathrm{B}}^{\text {sat }}(T)=\left(1-y_{\mathrm{A}}\right) P
$$

(a) Application of Eq. (13.36) yields: $\quad F=2-\pi+N-r=2-2+2-1=1$
(b) Given T, the reaction-equilibriuum equation allows solution for y_{A}. The two phase-equilibrium equations can then be solved for x_{A} and P. The equilibrium state therefore depends solely on T.
13.38 (a) For low pressure and a temperature of 500 K , the system is assumed to be a mixture of ideal gases, for which Eq. (13.28) is appropriate. Therefore,

$$
\frac{y_{\mathrm{MX}}}{y_{\mathrm{OX}}}=\left(\frac{P}{P^{\circ}}\right)^{0} K_{\mathrm{I}}=K_{\mathrm{I}} \quad \frac{y_{\mathrm{PX}}}{y_{\mathrm{OX}}}=\left(\frac{P}{P^{\circ}}\right)^{0} K_{\mathrm{II}}=K_{\mathrm{II}} \quad \frac{y_{\mathrm{EB}}}{y_{\mathrm{OX}}}=\left(\frac{P}{P^{\circ}}\right)^{0} K_{\mathrm{III}}=K_{\mathrm{III}}
$$

(b) These equation equations lead to the following set:

$$
\begin{equation*}
y_{\mathrm{MX}}=K_{\mathrm{I}} y_{\mathrm{OX}} \tag{2}
\end{equation*}
$$

The mole fractions must sum to unity, and therefore:

$$
\begin{gather*}
y_{\mathrm{OX}}+K_{\mathrm{I}} y_{\mathrm{OX}}+K_{\mathrm{II}} y_{\mathrm{OX}}+K_{\mathrm{III}} y_{\mathrm{OX}}=y_{\mathrm{OX}}\left(1+K_{\mathrm{I}}+K_{\mathrm{II}}+K_{\mathrm{III}}\right)=1 \\
y_{\mathrm{OX}}=\frac{1}{1+K_{\mathrm{I}}+K_{\mathrm{II}}+K_{\mathrm{III}}} \tag{4}
\end{gather*}
$$

(c) With the assumption that $\Delta C_{P}^{\circ}=0$ and therefore that $K_{2}=1$, Eqs. (13.20), (13.21), and (13.22) combine to give:

$$
K=K_{0} K_{1}=\exp \left(\frac{-\Delta G_{298}^{\circ}}{R T_{0}}\right) \exp \left[\frac{\Delta H_{298}^{\circ}}{R T_{0}}\left(1-\frac{T_{0}}{T}\right)\right]
$$

Whence, $\quad K=\exp \left[\frac{\Delta H_{298}^{\circ}\left(1-\frac{298.15}{500}\right)-\Delta G_{298}^{\circ}}{(8.314)(298.15)}\right]$
The data provided lead to the following property changes of reaction and equilibrium constants at 500 K :

Reaction	ΔH_{298}°	ΔG_{298}°	K
I	$-1,750$	$-3,300$	2.8470
II	$-1,040$	$-1,000$	1.2637
III	10,920	8,690	0.1778

(d) Substitution of numerical values into Eqs. (1), (2), (3), and (4) yields the following values for the mole fractions:

$$
y_{\mathrm{OX}}=0.1891 \quad y_{\mathrm{MX}}=0.5383 \quad y_{\mathrm{PX}}=0.2390 \quad y_{\mathrm{EB}}=0.0336
$$

13.40 For the given flowrates, $n_{A_{0}}=10$ and $n_{B_{0}}=15$, with $n_{A_{0}}$ the limiting reactant without (II)

$$
\begin{aligned}
& n_{A}=n_{A_{0}}-\varepsilon_{\mathrm{I}}-\varepsilon_{\mathrm{II}} \\
& n_{B}=n_{B_{0}}-\varepsilon_{\mathrm{I}} \\
& n_{C}=\varepsilon_{\mathrm{I}}-\varepsilon_{\mathrm{II}} \\
& n_{D}=\varepsilon_{\mathrm{II}} \\
& \hline n=n_{0}-\varepsilon_{\mathrm{I}}-\varepsilon_{\mathrm{II}}
\end{aligned}
$$

Use given values of Y_{C} and $S_{C / D}$ to find ε_{I} and $\varepsilon_{\mathrm{II}}$:

$$
Y_{C}=\frac{\varepsilon_{\mathrm{I}}-\varepsilon_{\mathrm{II}}}{n_{A_{0}}} \quad \text { and } \quad S_{C / D}=\frac{\varepsilon_{\mathrm{I}}-\varepsilon_{\mathrm{II}}}{\varepsilon_{\mathrm{II}}}
$$

Solve for ε_{I} and $\varepsilon_{\mathrm{II}}$:

$$
\begin{aligned}
& \varepsilon_{\mathrm{I}}=\left(\frac{S_{C / D}+1}{S_{C / D}}\right) n_{A_{0}} Y_{C}=\left(\frac{2+1}{2}\right) \times 10 \times 0.40=6 \\
& \varepsilon_{\text {II }}=\frac{n_{A_{0}} Y_{C}}{S_{C / D}}=\frac{10 \times 0.40}{2}=2 \\
& \begin{array}{llllll}
n_{A} & =10-6-2 & =2 & & y_{A} & =2 / 17 \\
n_{B} & =15-6 & =9 & & =0.1176 \\
n_{C} & =6-2 & =4 & & y_{B} & =9 / 17 \\
n_{C}=0.5295 \\
n_{D} & =2 & & y_{C} & =4 / 17 & =0.2353 \\
\hline n & =17 & & y_{D} & =2 / 17 & =0.1176 \\
\end{array}
\end{aligned}
$$

13.42 A compound with large positive ΔG_{f}° has a disposition to decompose into its constituent elements. Moreover, large positive ΔG_{f}° often implies large positive ΔH_{f}°. Thus, if any decomposition product is a gas, high pressures can be generated in a closed system owing to temperature increases resulting from exothermic decomposition.
13.44 By Eq. (13.12), $\quad \Delta G^{\circ} \equiv \sum_{i} v_{i} G_{i}^{\circ} \quad$ and from Eq. (6.10), $\quad\left(\partial G_{i}^{\circ} / \partial P\right)_{T}=V_{i}^{\circ}$

$$
\left(\frac{\partial \Delta G^{\circ}}{\partial P^{\circ}}\right)_{T}=\sum_{i} v_{i}\left(\frac{\partial G_{i}^{\circ}}{\partial P^{\circ}}\right)_{T}=\sum_{i} v_{i} V_{i}^{\circ}
$$

For the ideal-gas standard state, $V_{i}^{\circ}=R T / P^{\circ}$. Therefore

$$
\left(\frac{\partial \Delta G^{\circ}}{\partial P^{\circ}}\right)_{T}=\sum_{i} v_{i}\left(\frac{R T}{P^{\circ}}\right)=\frac{\nu R T}{P^{\circ}} \quad \text { and } \quad \Delta G^{\circ}\left(P_{2}^{\circ}\right)-\Delta G^{\circ}\left(P_{1}^{\circ}\right)=\nu R T \ln \frac{P_{2}^{\circ}}{P_{1}^{\circ}}
$$

13.47 (a) For isomers at low pressure Raoult's law should apply:

$$
P=x_{A} P_{A}^{\text {sat }}+x_{B} P_{B}^{\text {sat }}=P_{B}^{\text {sat }}+x_{A}\left(P_{A}^{\text {sat }}-P_{B}^{\text {sat }}\right)
$$

For the given reaction with an ideal solution in the liquid phase, Eq. (13.33) becomes:

$$
K^{l}=\frac{x_{B}}{x_{A}}=\frac{1-x_{A}}{x_{A}} \quad \text { from which } \quad x_{A}=\frac{1}{K^{l}+1}
$$

The preceding equation now becomes,

$$
\begin{align*}
& P=\left[1-\frac{1}{K^{l}+1}\right] P_{B}^{\mathrm{sat}}+\left[\frac{1}{K^{l}+1}\right] P_{A}^{\mathrm{sat}} \\
& P=\left[\frac{K^{l}}{K^{l}+1}\right] P_{B}^{\mathrm{sat}}+\left[\frac{1}{K^{l}+1}\right] P_{A}^{\mathrm{sat}} \tag{A}
\end{align*}
$$

For $K^{l}=0 \quad P=P_{A}^{\text {sat }} \quad$ For $K^{l}=\infty \quad P=P_{B}^{\text {sat }}$
(b) Given Raoult's law:

$$
\begin{gathered}
1=x_{A}+x_{B}=y_{A} \frac{P}{P_{A}^{\text {sat }}}+y_{B} \frac{P}{P_{B}^{\text {sat }}}=P\left[\frac{y_{A}}{P_{A}^{\text {sat }}}+\frac{y_{B}}{P_{B}^{\text {sat }}}\right] \\
P=\frac{1}{y_{A} / P_{A}^{\text {sat }}+y_{B} / P_{B}^{\text {sat }}}=\frac{P_{A}^{\text {sat }} P_{B}^{\text {sat }}}{y_{A} P_{B}^{\text {sat }}+y_{B} P_{A}^{\text {sat }}}=\frac{P_{A}^{\text {sat }} P_{B}^{\text {sat }}}{P_{A}^{\text {sat }}+y_{A}\left(P_{B}^{\text {sat }}-P_{A}^{\text {sat }}\right)}
\end{gathered}
$$

For the given reaction with ideal gases in the vapor phase, Eq. (13.28) becomes:

$$
\frac{y_{B}}{y_{A}}=K^{v} \quad \text { whence } \quad y_{A}=\frac{1}{K^{v}+1}
$$

Elimination of y_{A} from the preceding equation and reduction gives:

$$
\begin{equation*}
P=\frac{\left(K^{v}+1\right) P_{A}^{\text {sat }} P_{B}^{\text {sat }}}{K^{v} P_{A}^{\text {sat }}+P_{B}^{\text {sat }}} \tag{B}
\end{equation*}
$$

$$
\text { For } K^{v}=0 \quad P=P_{A}^{\text {sat }} \quad \text { For } K^{v}=\infty \quad P=P_{B}^{\text {sat }}
$$

(c) Equations (A) and (B) must yield the same P. Therefore

$$
\left[\frac{K^{l}}{K^{l}+1}\right] P_{B}^{\text {sat }}+\left[\frac{1}{K^{l}+1}\right] P_{A}^{\text {sat }}=\frac{\left(K^{v}+1\right) P_{A}^{\text {sat }} P_{B}^{\text {sat }}}{K^{v} P_{A}^{\text {sat }}+P_{B}^{\text {sat }}}
$$

Some algebra reduces this to:

$$
\frac{K^{v}}{K^{l}}=\frac{P_{B}^{\text {sat }}}{P_{A}^{\text {sat }}}
$$

(d) As mentioned already, the species (isomers) are chemically similar, and the low pressure favors ideal-gas behavior.
(e) $F=N+2-\pi-r=2+2-2-1=1 \quad$ Thus fixing T should suffice.

Chapter 14 - Section B - Non-Numerical Solutions

14.2 Start with the equation immediately following Eq. (14.49), which can be modified slightly to read:

$$
\ln \hat{v}_{i}=\frac{\varepsilon\left(n G^{R} / R T\right)}{\varepsilon n_{i}}-\frac{\varepsilon(n Z)}{\varepsilon n_{i}}+n \frac{\varepsilon \ln Z}{\varepsilon n_{i}}+1
$$

where the partial derivatives written here and in the following development without subscripts are understood to be at constant $T, n / \rho$ (or ρ / n), and n_{j}. Equation (6.61) after multiplication by n can be written:

$$
\frac{n G^{R}}{R T}=2 n(n B)\left[\frac { \rho } { n } \left(+\frac{3}{2} n^{2}(n C)\left[\frac { \rho } { n } \left(^{2}-n \ln Z\right.\right.\right.\right.
$$

Differentiate:

$$
\frac{\varepsilon\left(n G^{R} / R T\right)}{\varepsilon n_{i}}=2\left[\frac { \rho } { n } \left(\left(n B+n \bar{B}_{i}\right)+\frac{3}{2}\left[\frac { \rho } { n } \left(^{2}\left(2 n^{2} C+n^{2} \bar{C}_{i}\right)-n \frac{\varepsilon \ln Z}{\varepsilon n_{i}}-\ln Z\right.\right.\right.\right.
$$

or

$$
\frac{\varepsilon\left(n G^{R} / R T\right)}{\varepsilon n_{i}}=2 \rho\left(B+\bar{B}_{i}\right)+\frac{3}{2} \rho^{2}\left(2 C+\bar{C}_{i}\right)-n \frac{\varepsilon \ln Z}{\varepsilon n_{i}}-\ln Z
$$

By definition, $\quad \bar{B}_{i}\left(\frac{\varepsilon(n B)}{\varepsilon n_{i}}\right]_{T, n_{j}} \quad$ and $\quad \bar{C}_{i}\left(\frac{\varepsilon(n C)}{\varepsilon n_{i}}\right]_{T, n_{j}}$
The equation of state, Eq. (3.40), can be written:

$$
Z=1+B \rho+C \rho^{2} \quad \text { or } \quad n Z=n+n(n B)\left[\frac { \rho } { n } \left(+n^{2}(n C)\left[\frac { \rho } { n } \left(^{2}\right.\right.\right.\right.
$$

Differentiate: $\quad \frac{\varepsilon(n Z)}{\varepsilon n_{i}}=1+\left[\frac{\rho}{n}\left(\left(n B+n \bar{B}_{i}\right)+\left[\frac{\rho}{n}\left({ }^{2}\left(2 n^{2} C+n^{2} \bar{C}_{i}\right)\right.\right.\right.\right.$
or

$$
\frac{\varepsilon(n Z)}{\varepsilon n_{i}}=1+\rho\left(B+\bar{B}_{i}\right)+\rho^{2}\left(2 C+\bar{C}_{i}\right)
$$

When combined with the two underlined equations, the initial equation reduces to:

$$
\ln \hat{v}_{i}=1+\rho\left(B+\bar{B}_{i}\right)+\frac{1}{2} \rho^{2}\left(2 C+\bar{C}_{i}\right)
$$

The two mixing rules are:

$$
\begin{gathered}
B=y_{1}^{2} B_{11}+2 y_{1} y_{2} B_{12}+y_{2}^{2} B_{22} \\
C=y_{1}^{3} C_{111}+3 y_{1}^{2} y_{2} C_{112}+3 y_{1} y_{2}^{2} C_{122}+y_{2}^{3} C_{222}
\end{gathered}
$$

Application of the definitions of \bar{B}_{i} and \bar{C}_{i} to these mixing rules yields:

$$
\begin{aligned}
& \bar{B}_{1}=y_{1}\left(2-y_{1}\right) B_{11}+2 y_{2}^{2} B_{12}-y_{2}^{2} B_{22} \\
& \bar{C}_{1}=y_{1}^{2}\left(3-2 y_{1}\right) C_{111}+6 y_{1} y_{2}^{2} C_{112}+3 y_{2}^{2}\left(1-2 y_{1}\right) C_{122}-2 y_{2}^{3} C_{222} \\
& \bar{B}_{2}=-y_{1}^{2} B_{11}+2 y_{1}^{2} B_{12}+y_{2}\left(2-y_{2}\right) B_{22} \\
& \bar{C}_{2}=-2 y_{1}^{3} C_{111}+3 y_{1}^{2}\left(1-2 y_{2}\right) C_{112}+6 y_{1} y_{2}^{2} C_{122}+2 y_{2}^{2}\left(3-2 y_{2}\right) C_{222}
\end{aligned}
$$

In combination with the mixing rules, these give:

$$
\begin{aligned}
B+\bar{B}_{1} & =2\left(y_{1} B_{11}+y_{2} B_{12}\right) \\
2 C+\bar{C}_{1} & =3\left(y_{1}^{2} C_{111}+2 y_{1} y_{2} C_{112}+y_{2}^{2} C_{122}\right) \\
B+\bar{B}_{2} & =2\left(y_{2} B_{22}+y_{1} B_{12}\right) \\
2 C+\bar{C}_{2} & =3\left(y_{2}^{2} C_{222}+2 y_{1} y_{2} C_{122}+y_{1}^{2} C_{112}\right)
\end{aligned}
$$

In combination with the boxed equation these expressions along with Eq. (3.40) allow calculation of $\ln \hat{\phi}_{1}$ and $\ln \hat{\phi}_{2}$.
14.11 For the case described, Eqs. (14.1) and (14.2) combine to give: $\quad y_{i} P=x_{i} P_{i}^{\text {sat }} \frac{\phi_{i}^{\text {sat }}}{\hat{\phi}_{i}}$ If the vapor phase is assumed an ideal solution, $\hat{\phi}_{i}=\phi_{i}$, and $y_{i} P=x_{i} P_{i}^{\text {sat }} \frac{\phi_{i}^{\text {sat }}}{\phi_{i}}$

When Eq. (3.38) is valid, the fugacity coefficient of pure species i is given by Eq. (11.36):

$$
\begin{gathered}
\ln \phi_{i}=\frac{B_{i i} P}{R T} \quad \text { and } \quad \phi_{i}^{\text {sat }}=\frac{B_{i i} P_{i}^{\text {sat }}}{R T} \\
\ln \frac{\phi_{i}^{\text {sat }}}{\phi_{i}}=\ln \phi_{i}^{\text {sat }}-\ln \phi_{i}=\frac{B_{i i} P_{i}^{\text {sat }}}{R T}-\frac{B_{i i} P}{R T}=\frac{B_{i i}\left(P_{i}^{\text {sat }}-P\right)}{R T}
\end{gathered}
$$

Therefore,

For small values of the final term, this becomes approximately:

$$
\frac{\phi_{i}^{\text {sat }}}{\phi_{i}}=1+\frac{B_{i i}\left(P_{i}^{\text {sat }}-P\right)}{R T}
$$

Whence,

$$
\begin{aligned}
& y_{i} P=x_{i} P_{i}^{\text {sat }}\left[1+\frac{B_{i i}\left(P_{i}^{\text {sat }}-P\right)}{R T}\right] \\
& y_{i} P-x_{i} P_{i}^{\text {sat }}=\frac{x_{i} P_{i}^{\text {sat }} B_{i i}\left(P_{i}^{\text {sat }}-P\right)}{R T}
\end{aligned}
$$

Write this equation for species 1 and 2 of a binary mixture, and sum. This yields on the left the difference between the actual pressure and the pressure given by Raoult's law:

$$
P-P(\mathrm{RL})=\frac{x_{1} B_{11} P_{1}^{\text {sat }}\left(P_{1}^{\text {sat }}-P\right)+x_{2} B_{22} P_{2}^{\text {sat }}\left(P_{2}^{\text {sat }}-P\right)}{R T}
$$

Because deviations from Raoult's law are presumably small, P on the right side may be replaced by its Raoult's-law value. For the two terms,

$$
\begin{aligned}
& P_{1}^{\text {sat }}-P=P_{1}^{\text {sat }}-x_{1} P_{1}^{\text {sat }}-x_{2} P_{2}^{\text {sat }}=P_{1}^{\text {sat }}-\left(1-x_{2}\right) P_{1}^{\text {sat }}-x_{2} P_{2}^{\text {sat }}=x_{2}\left(P_{1}^{\text {sat }}-P_{2}^{\text {sat }}\right) \\
& P_{2}^{\text {sat }}-P=P_{2}^{\text {sat }}-x_{1} P_{1}^{\text {sat }}-x_{2} P_{2}^{\text {sat }}=P_{2}^{\text {sat }}-x_{1} P_{1}^{\text {sat }}-\left(1-x_{1}\right) P_{2}^{\text {sat }}=x_{1}\left(P_{2}^{\text {sat }}-P_{1}^{\text {sat }}\right)
\end{aligned}
$$

Combine the three preceding equations:

$$
\begin{aligned}
P-P(\mathrm{RL}) & =\frac{x_{1} x_{2} B_{11}\left(P_{1}^{\text {sat }}-P_{2}^{\text {sat }}\right) P_{1}^{\text {sat }}-x_{1} x_{2} B_{22}\left(P_{1}^{\text {sat }}-P_{2}^{\text {sat }}\right) P_{2}^{\text {sat }}}{R T} \\
& =\frac{x_{1} x_{2}\left(P_{1}^{\text {sat }}-P_{2}^{\text {sat }}\right)}{R T}\left(B_{11} P_{1}^{\text {sat }}-B_{22} P_{2}^{\text {sat }}\right)
\end{aligned}
$$

Rearrangement yields the following:

$$
\begin{aligned}
P-P(\mathrm{RL}) & =\frac{x_{1} x_{2}\left(P_{1}^{\text {sat }}-P_{2}^{\text {sat }}\right)^{2}}{R T}\left(\frac{B_{11} P_{1}^{\text {sat }}-B_{22} P_{2}^{\text {sat }}}{P_{1}^{\text {sat }}-P_{2}^{\text {sat }}}\right) \\
& =\frac{x_{1} x_{2}\left(P_{1}^{\text {sat }}-P_{2}^{\text {sat }}\right)^{2}}{R T}\left[B_{11}+\frac{\left(B_{11}-B_{22}\right) P_{2}^{\text {sat }}}{P_{1}^{\text {sat }}-P_{2}^{\text {sat }}}\right] \\
& =\frac{x_{1} x_{2}\left(P_{1}^{\text {sat }}-P_{2}^{\text {sat }}\right)^{2}}{R T}\left(B_{11}\right)\left[1+\left(1-\frac{B_{22}}{B_{11}}\right) \frac{P_{2}^{\text {sat }}}{P_{1}^{\text {sat }}-P_{2}^{\text {sat }}}\right]
\end{aligned}
$$

Clearly, when $B_{22}=B_{11}$, the term in square brackets equals 1, and the pressure deviation from the Raoult's-law value has the sign of B_{11}; this is normally negative. When the virial coefficients are not equal, a reasonable assumption is that species 2, taken here as the "heavier" species (the one with the smaller vapor pressure) has the more negative second virial coefficient. This has the effect of making the quantity in parentheses negative and the quantity in square brackets <1. However, if this latter quantity remains positive (the most likely case), the sign of B_{11} still determines the sign of the deviations.
14.13 By Eq. (11.90), the definition of $\gamma_{i}, \quad \ln \gamma_{i}=\ln \hat{f_{i}}-\ln x_{i}-\ln f_{i}$

Whence,

$$
\frac{d \ln \gamma_{i}}{d x_{i}}=\frac{d \ln \hat{f_{i}}}{d x_{i}}-\frac{1}{x_{i}}=\frac{1}{\hat{f_{i}}} \frac{d \hat{f_{i}}}{d x_{i}}-\frac{1}{x_{i}}
$$

Combination of this expression with Eq. (14.71) yields: $\quad \frac{1}{\hat{f}_{i}} \frac{d \hat{f_{i}}}{d x_{i}}>0$

Because $\hat{f_{i}} \geq 0$,

$$
\left.\frac{d \hat{f_{i}}}{d x_{i}}>0 \quad \text { (const } T, P\right)
$$

By Eq. (11.46), the definition of $\hat{f_{i}}, \quad \frac{d \mu_{i}}{d x_{i}}=R T \frac{d \ln \hat{f_{i}}}{d x_{i}}=\frac{R T}{\hat{f_{i}}} \frac{d \hat{f_{i}}}{d x_{i}}$

Combination with Eq. (14.72) yields:

$$
\frac{d \mu_{i}}{d x_{i}}>0 \quad(\text { const } T, P)
$$

14.14 Stability requires that $\Delta G<0$ (see Pg. 575). The limiting case obtains when $\Delta G=0$, in which event Eq. (12.30) becomes:

$$
G^{E}=-R T \sum_{i} x_{i} \ln x_{i}
$$

For an equimolar solution $x_{i}=1 / N$ where N is the number of species. Therefore,

$$
G^{E}(\max)=-R T \sum_{i} \frac{1}{N} \ln \frac{1}{N}=R T \sum_{i} \frac{1}{N} \ln N=R T \ln N
$$

For the special case of a binary solution, $N=2$, and $\quad G^{E}(\max)=R T \ln 2$
14.17 According to $\mathrm{Pb} .11 .35, \quad G^{E}=\delta_{12} P y_{1} y_{2} \quad$ or $\quad \frac{G^{E}}{R T}=\frac{\delta_{12} P}{R T} y_{1} y_{2}$

This equation has the form: $\quad \frac{G^{E}}{R T}=A x_{1} x_{2}$
for which it is shown in Examples 14.5 and 14.6 that phase-splitting occurs for $A>2$. Thus, the formation of two immiscible vapor phases requires: $\delta_{12} P / R T>2$.
Suppose $T=300 \mathrm{~K}$ and $P=5$ bar. The preceding condition then requires: $\delta_{12}>9977 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ for vapor-phase immiscibility. Such large positive values for δ_{12} are unknown for real mixtures. (Examples of gas/gas equilibria are known, but at conditions outside the range of applicability of the two-term virial EOS.)
14.19 Consider a quadratic mixture, described by: $\quad \frac{G^{E}}{R T}=A x_{1} x_{2}$

It is shown in Example 14.5 that phase splitting occurs for such a mixture if $A>2$; the value of $A=2$ corresponds to a consolute point, at $x_{1}=x_{2}=0.5$. Thus, for a quadratic mixture, phase-splitting obtains if:

$$
G^{E}>2 \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot R T=0.5 R T
$$

This is a model-dependent result. Many liquid mixtures are known which are stable as single phases, even though $G^{E}>0.5 R T$ for equimolar composition.
14.21 Comparison of the Wilson equation, Eq. (12.18) with the modified Wilson equation shows that $\left(G^{E} / R T\right)_{\mathrm{m}}=C\left(G^{E} / R T\right)$, where subscript m distinguishes the modified Wilson equation from the original Wilson equation. To simplify, define $g \equiv\left(G^{E} / R T\right)$; then

$$
g_{\mathrm{m}}=C g \quad n g_{\mathrm{m}}=C n g \quad \frac{\partial\left(n g_{\mathrm{m}}\right)}{\partial n_{1}}=C \frac{\partial(n g)}{\partial n_{1}} \quad \ln \left(\gamma_{1}\right)_{\mathrm{m}}=C \ln \gamma_{1}
$$

where the final equality follows from Eq. (11.96). Addition and subtraction of $\ln x_{1}$ on the left side of this equation and of $C \ln x_{1}$ on the right side yields:
or

$$
\ln \left(x_{1} \gamma_{1}\right)_{\mathrm{m}}-\ln x_{1}=C \ln \left(x_{1} \gamma_{1}\right)-C \ln x_{1}
$$

$$
\ln \left(x_{1} \gamma_{1}\right)_{\mathrm{m}}=C \ln \left(x_{1} \gamma_{1}\right)-(C-1) \ln x_{1}
$$

Differentiate:

$$
\frac{d \ln \left(x_{1} \gamma_{1}\right)_{\mathrm{m}}}{d x_{1}}=C \frac{d \ln \left(x_{1} \gamma_{1}\right)}{d x_{1}}-\frac{C-1}{x_{1}}
$$

As shown in Example 14.7, the derivative on the right side of this equation is always positive. However, for C sufficiently greater than unity, the contribution of the second term on the right can make

$$
\frac{d \ln \left(x_{1} \gamma_{1}\right)_{\mathrm{M}}}{d x_{1}}<0
$$

over part of the composition range, thus violating the stability condition of Eq. (14.71) and implying the formation of two liquid phases.
14.23 (a) Refer to the stability requirement of Eq. (14.70). For instability, i.e., for the formation of two liquid phases,

$$
\frac{d^{2}\left(G^{E} / R T\right)}{d x_{1}^{2}}<-\frac{1}{x_{1} x_{2}}
$$

over part of the composition range. The second derivative of G^{E} must be sufficiently negative so as to satisfy this condition for some range of x_{1}. Negative curvature is the norm for mixtures for which G^{E} is positive; see, e.g., the sketches of G^{E} vs. x_{1} for systems $(a),(b),(d),(e)$, and (f) in Fig. 11.4. Such systems are candidates for liquid/liquid phase splitting, although it does not in fact occur for the cases shown. Rather large values of G^{E} are usually required.
(b) Nothing in principle precludes phase-splitting in mixtures for which $G^{E}<0$; one merely requires that the curvature be sufficiently negative over part of the composition range. However, positive curvature is the norm for such mixtures. We know of no examples of liquid/liquid phasesplitting in systems exhibiting negative deviations from ideal-solution behavior.
14.29 The analogy is Raoult's law, Eq. (10.1), applied at constant P (see Fig. 10.12): $\quad y_{i} P=x_{i} P_{i}^{\text {sat }}$ If the vapor phase in VLE is ideal and the liquid molar volumes are negligible (assumptions inherent in Raoult's law), then the Clausius/Clapeyron equation applies (see Ex. 6.5):

$$
\frac{d \ln P_{i}^{\text {sat }}}{d T}=\frac{\Delta H_{i}^{l v}}{R T^{2}}
$$

Integration from the boiling temperature $T_{b_{i}}$ at pressure P (where $P_{i}^{\text {sat }}=P$) to the actual temperature T (where $P_{i}^{\text {sat }}=P_{i}^{\text {sat }}$) gives:

$$
\ln \frac{P_{i}^{\text {sat }}}{P}=\int_{T_{b_{i}}}^{T} \frac{\Delta H_{i}^{l v}}{R T^{2}} d T
$$

Combination with Eq. (10.1) yields:

$$
y_{i}=x_{i} \exp \int_{T_{b_{i}}}^{T} \frac{\Delta H_{i}^{l v}}{R T^{2}} d T
$$

which is an analog of the Case I SLE equations.
14.30 Consider binary (two-species) equilibrium between two phases of the same kind. Equation (14.74) applies:

$$
x_{i}^{\alpha} \gamma_{i}^{\alpha}=x_{i}^{\beta} \gamma_{i}^{\beta} \quad(i=1,2)
$$

If phase β is pure species 1 and phase α is pure species 2 , then $x_{1}^{\beta}=\gamma_{1}^{\beta}=1$ and $x_{2}^{\alpha}=\gamma_{2}^{\alpha}=1$.
Hence, $\quad x_{1}^{\alpha} \gamma_{1}^{\alpha}=x_{1}^{\beta} \gamma_{1}^{\beta}=1 \quad$ and $\quad x_{2}^{\alpha} \gamma_{2}^{\alpha}=x_{2}^{\beta} \gamma_{2}^{\beta}=1$
The reasoning applies generally to (degenerate) N-phase equilibrium involving N mutually immiscible species. Whence the cited result for solids.
14.31 The rules of thumb are based on Case II binary SLE behavior. For concreteness, let the solid be pure species 1 and the solvent be liquid species 2. Then Eqs. (14.93) and (14.92a) apply:
(a) Differentiate:

$$
\begin{gathered}
x_{1}=\psi_{1}=\exp \frac{\Delta H_{1}^{s l}}{R T_{m_{1}}}\left(\frac{T-T_{m_{1}}}{T}\right) \\
\frac{d x_{1}}{d T}=\psi_{1} \cdot \frac{\Delta H_{1}^{s l}}{R T^{2}}
\end{gathered}
$$

Thus $d x_{1} / d T$ is necessarily positive: the solid solubility x_{1} increases with increasing T.
(b) Equation (14.92a) contains no information about species 2. Thus, to the extent that Eqs. (14.93) and (14.92a) are valid, the solid solubility x_{1} is independent of the identity of species 2 .
(c) Denote the two solid phases by subscripts A and B. Then, by Eqs. (14.93) and (14.92a), the solubilities x_{A} and x_{B} are related by:

$$
\frac{x_{A}}{x_{B}}=\exp \left[\frac{\Delta H^{s l}\left(T_{m_{B}}-T_{m_{A}}\right)}{R T_{m_{A}} T_{m_{B}}}\right]
$$

where by assumption,

$$
\Delta H_{A}^{s l}=\Delta H_{B}^{s l} \equiv \Delta H^{s l}
$$

Accordingly, $x_{A} / x_{B}>1$ if and only if $T_{A}<T_{B}$, thus validating the rule of thumb.
(d) Identify the solid species as in Part (c). Then x_{A} and x_{B} are related by:

$$
\frac{x_{A}}{x_{B}}=\exp \left[\frac{\left(\Delta H_{B}^{s l}-\Delta H_{A}^{s l}\right)\left(T_{m}-T\right)}{R T_{m} T}\right]
$$

where by assumption,

$$
T_{m_{A}}=T_{m_{B}} \equiv T_{m}
$$

Notice that $T_{m}>T$ (see Fig. 14.21b). Then $x_{A} / x_{B}>1$ if and only if $\Delta H_{A}^{s l}<\Delta H_{B}^{s l}$, in accord with the rule of thumb.
14.34 The shape of the solubility curve is characterized in part by the behavior of the derivative $d y_{i} / d P$ (constant T). A general expression is found from Eq. (14.98), $y_{1}=P_{1}^{\text {sat }} P / F_{1}$, where the enhancement factor F_{1} depends (at constant T) on P and y_{1}. Thus,

$$
\begin{gather*}
\frac{d y_{1}}{d P}=-\frac{P_{1}^{\text {sat }}}{P^{2}} F_{1}+\frac{P_{1}^{\text {sat }}}{P}\left[\left(\frac{\partial F_{1}}{\partial P}\right)_{y_{1}}+\left(\frac{\partial F_{1}}{\partial y_{1}}\right)_{P} \frac{d y_{1}}{d P}\right] \\
=-\frac{y_{1}}{P}+y_{1}\left[\left(\frac{\partial \ln F_{1}}{\partial P}\right)_{y_{1}}+\left(\frac{\partial \ln F_{1}}{\partial y_{1}}\right)_{P} \frac{d y_{1}}{d P}\right] \\
\frac{d y_{1}}{d P}=\frac{y_{1}\left[\left(\frac{\partial \ln F_{1}}{\partial P}\right)_{y_{1}}-\frac{1}{P}\right]}{1-y_{1}\left(\frac{\partial \ln F_{1}}{\partial y_{1}}\right)_{P}} \tag{A}
\end{gather*}
$$

Whence,

This is a general result. An expression for F_{1} is given by Eq. (14.99):

$$
F_{1} \equiv \frac{\phi_{1}^{\text {sat }}}{\hat{\phi}_{1}} \exp \frac{V_{1}^{s}\left(P-P_{1}^{\text {sat }}\right)}{R T}
$$

From this, after some reduction:

$$
\begin{align*}
& \qquad\left(\frac{\partial \ln F_{1}}{\partial P}\right)_{y_{1}}=-\left(\frac{\partial \ln \hat{\phi}_{1}}{\partial P}\right)_{y_{1}}+\frac{V_{1}^{s}}{R T} \quad \text { and } \quad\left(\frac{\partial \ln F_{1}}{\partial y_{1}}\right)_{P}=-\left(\frac{\partial \ln \hat{\phi}_{1}}{\partial y_{1}}\right)_{P} \\
& \text { Whence, by Eq. (A), } \quad \frac{d y_{1}}{d P}=\frac{y_{1}\left[-\left(\frac{\partial \ln \hat{\phi}_{1}}{\partial P}\right)_{y_{1}}+\frac{V_{1}^{s}}{R T}-\frac{1}{P}\right]}{1+y_{1}\left(\frac{\partial \ln \hat{\phi}_{1}}{\partial y_{1}}\right)_{P}} \tag{B}
\end{align*}
$$

This too is a general result. If the two-term virial equation in pressure applies, then $\ln \hat{\phi}_{1}$ is given by Eq. (11.63a), from which:

$$
\left(\frac{\partial \ln \hat{\phi}_{1}}{\partial P}\right)_{y_{1}}=\frac{1}{R T}\left(B_{11}+y_{2}^{2} \delta_{12}\right) \quad \text { and } \quad\left(\frac{\partial \ln \hat{\phi}_{1}}{\partial y_{1}}\right)_{P}=-\frac{2 y_{2} \delta_{12} P}{R T}
$$

Whence, by Eq. $(B), \quad \frac{d y_{1}}{d P}=\frac{y_{1}\left(\frac{V_{1}^{s}-B_{11}-y_{2}^{2} \delta_{12}}{R T}-\frac{1}{P}\right)}{1-\frac{2 y_{1} y_{2} \delta_{12} P}{R T}}$
The denominator of this equation is positive at any pressure level for which Eq. (3.38) is likely to be valid. Hence, the sign of $d y_{1} / d P$ is determined by the sign of the group in parentheses. For very low pressures the $1 / P$ term dominates and $d y_{1} / d P$ is negative. For very high pressures, $1 / P$ is small, and $d y_{1} / d P$ can be positive. If this is the case, then $d y_{1} / d P$ is zero for some intermediate pressure, and the solubility y_{1} exhibits a minimum with respect to pressure. Qualitatively, these features are consistent with the behavior illustrated by Fig. 14.23. However, the two-term virial equation is only valid for low to moderate pressures, and is unable to mimic the change in curvature and "flattening" of the y_{1} vs. P curve observed for high pressures for the naphthalene $/ \mathrm{CO}_{2}$ system.
14.35 (a) Rewrite the UNILAN equation:

$$
\begin{equation*}
n=\frac{m}{2 s}\left[\ln \left(c+P e^{s}\right)-\ln \left(c+P e^{-s}\right)\right] \tag{A}
\end{equation*}
$$

As $s \rightarrow 0$, this expression becomes indeterminate. Application of l'Hôpital's rule gives:

$$
\begin{aligned}
\lim _{s \rightarrow 0} n & =\lim _{s \rightarrow 0} \frac{m}{2}\left(\frac{P e^{s}}{c+P e^{s}}+\frac{P e^{-s}}{c+P e^{-s}}\right) \\
& =\frac{m}{2}\left(\frac{P}{c+P}+\frac{P}{c+P}\right)
\end{aligned}
$$

or

$$
\lim _{s \rightarrow 0} n=\frac{m P}{c+P}
$$

which is the Langmuir isotherm.
(b) Henry's constant, by definition: $\quad k \equiv \lim _{P \rightarrow 0} \frac{d n}{d P}$

Differentiate Eq. (A): $\quad \frac{d n}{d P}=\frac{m}{2 s}\left(\frac{e^{s}}{c+P e^{s}}-\frac{e^{-s}}{c+P e^{-s}}\right)$
Whence, $\quad k=\frac{m}{2 s}\left(\frac{e^{s}}{c}-\frac{e^{-s}}{c}\right)=\frac{m}{c s}\left(\frac{e^{s}-e^{-s}}{2}\right) \quad$ or $\quad k=\frac{m}{c s} \sinh s$
(c) All derivatives of n with respect to P are well-behaved in the zero-pressure limit:

$$
\lim _{P \rightarrow 0} \frac{d n}{d P}=\frac{m}{c s} \sinh s
$$

$$
\begin{aligned}
& \lim _{P \rightarrow 0} \frac{d^{2} n}{d P^{2}}=-\frac{m}{c^{2} s} \sinh 2 s \\
& \lim _{P \rightarrow 0} \frac{d^{3} n}{d P^{3}}=\frac{2 m}{c^{3} s} \sinh 3 s
\end{aligned}
$$

Etc.
Numerical studies show that the UNILAN equation, although providing excellent overall correlation of adsorption data at low-to-moderate surface coverage, tends to underestimate Henry's constant.
14.36 Start with Eq. (14.109), written as:

$$
\ln (P / n)=-\ln k+\int_{0}^{n}(z-1) \frac{d n}{n}+z-1
$$

With $z=1+B n+C n^{2}+\cdots$, this becomes:

$$
\ln (P / n)=-\ln k+2 B n+\frac{3}{2} C n^{2}+\cdots
$$

Thus a plot of $\ln (P / n)$ vs. n produces $-\ln k$ as the intercept and $2 B$ as the limiting slope (for $n \rightarrow 0$). Alternatively, a polynomial curve fit of $\ln (P / n)$ in n yields $-\ln k$ and $2 B$ as the first two coefficients.
14.37 For species i in a real-gas mixture, Eqs. (11.46) and (11.52) give:

$$
\begin{gathered}
\mu_{i}^{g}=\Gamma_{i}(T)+R T \ln y_{i} \hat{\phi}_{i} P \\
d \mu_{i}^{g}=R T d \ln y_{i} \hat{\phi}_{i} P
\end{gathered}
$$

At constant temperature,
With $d \mu_{i}=d \mu_{i}^{g}$, Eq. (14.105) then becomes:

$$
-\frac{a}{R T} d \Pi+d \ln P+\sum_{i} x_{i} d \ln y_{i} \hat{\phi}_{i}=0 \quad(\text { const } T)
$$

For pure-gas adsorption, this simplifies to:

$$
\begin{equation*}
\frac{a}{R T} d \Pi=d \ln P+d \ln \phi \quad(\text { const } T) \tag{A}
\end{equation*}
$$

which is the real-gas analog of Eq. (14.107). On the left side of Eq. (A), introduce the adsorbate compressibility factor z through $z \equiv \Pi a / R T=\Pi A / n R T$:

$$
\begin{equation*}
\frac{a}{R T} d \Pi=d z+z \frac{d n}{n} \tag{B}
\end{equation*}
$$

where n is moles adsorbed. On the right side of Eq. (A), make the substitution:

$$
\begin{equation*}
d \ln \phi=(Z-1) \frac{d P}{P} \tag{C}
\end{equation*}
$$

which follows from Eq. (11.35). Combination of Eqs. (A), (B), and (C) gives on rearrangement (see Sec. 14.8):

$$
d \ln \frac{n}{P}=(1-z) \frac{d n}{n}-d z+(Z-1) \frac{d P}{P}
$$

which yields on integration and rearrangement:

$$
n=k P \cdot \exp \int_{0}^{P}(Z-1) \frac{d P}{P} \cdot \exp \left[\int_{0}^{n}(1-z) \frac{d n}{n}+1-z\right]
$$

This equation is the real-gas analog of Eq. (14.109).
$14.39 \& 14.40$ Start with Eq. (14.109). With $z=(1-b m)^{-1}$, one obtains the isotherm:

$$
\begin{equation*}
n=k P(1-b n) \exp \left(-\frac{b n}{1-b n}\right) \tag{A}
\end{equation*}
$$

For $b n$ sufficiently small, $\quad \exp \left(-\frac{b n}{1-b n}\right) \approx 1-\frac{b n}{1-b n}$
Whence, by Eq. $(A), \quad n \approx k P(1-2 b n) \quad$ or $\quad n \approx \frac{k P}{1+2 b k P}$
which is the Langmuir isotherm.
With $z=1+\beta n$, the adsorption isotherm is: $\quad n=k P \exp (-2 \beta n)$
from which, for βn sufficiently small, the Langmuir isotherm is again recovered.
14.41 By Eq. (14.107) with $a=A / n, \quad \frac{A d \Pi}{R T}=n \frac{d P}{P}$

The definition of ψ and its derivative are:

$$
\psi \equiv \frac{\Pi A}{R T} \quad \text { and } \quad d \psi=\frac{A d \Pi}{R T}
$$

Whence,

$$
\begin{equation*}
d \psi=n \frac{d P}{P} \tag{A}
\end{equation*}
$$

By Eq. (14.128), the Raoult's law analogy, $\quad x_{i}=y_{i} P / P_{i}{ }^{\circ}$. Summation for given P yields:

$$
\begin{equation*}
\sum_{i} x_{i}=P \sum_{i} \frac{y_{i}}{P_{i}^{\circ}} \tag{B}
\end{equation*}
$$

By general differentiation,

$$
\begin{equation*}
d \sum_{i} x_{i}=P d \sum_{i} \frac{y_{i}}{P_{i}^{\circ}}+\sum_{i} \frac{y_{i}}{P_{i}^{\circ}} d P \tag{C}
\end{equation*}
$$

The equation, $\sum_{i} x_{i}=1$, is an approximation that becomes increasingly accurate as the solution procedure converges. Thus, by rearrangement of Eq. (B),

$$
\sum_{i} \frac{y_{i}}{P_{i}^{\circ}}=\frac{\sum_{i} x_{i}}{P}=\frac{1}{P}
$$

With P fixed, Eq. (C) can now be written in the simple but approximate form:

$$
d \sum_{i} x_{i}=\frac{d P}{P}
$$

Equation (A) then becomes:

$$
d \psi=n d \sum_{i} x_{i} \quad \text { or } \quad \delta \psi=n \delta\left(\sum_{i} x_{i}\right)
$$

where we have replaced differentials by deviations. The deviation in $\sum_{i} x_{i}$ is known, since the true value must be unity. Therefore,

$$
\delta \sum_{i} x_{i}=P \sum_{i} \frac{y_{i}}{P_{i}^{\circ}}-1
$$

By Eq. (14.132),

$$
n=\frac{1}{\sum_{i}\left(x_{i} / n_{i}^{\circ}\right)}
$$

Combine the three preceding equations:

$$
\delta \psi=\frac{P \sum_{i} \frac{y_{i}}{P_{i}^{\circ}}-1}{\sum_{i}\left(x_{i} / n_{i}^{\circ}\right)}
$$

When $x_{i}=y_{i} P / P_{i}{ }^{\circ}$, the Raoult's law analogy, is substituted the required equation is reproduced:

$$
\delta \psi=\frac{P \sum_{i} \frac{y_{i}}{P_{i}^{\circ}}-1}{P \sum_{i} \frac{y_{i}}{P_{i}^{\circ} n_{i}^{\circ}}}
$$

14.42 Multiply the given equation for $G^{E} / R T$ by n and convert all mole fractions to mole numbers:

$$
\frac{n G^{E}}{R T}=A_{12} \frac{n_{1} n_{2}}{n}+A_{13} \frac{n_{1} n_{3}}{n}+A_{23} \frac{n_{2} n_{3}}{n}
$$

Apply Eq. (11.96) for $i=1$:

$$
\begin{aligned}
\ln \gamma_{1} & =A_{12} n_{2}\left(\frac{1}{n}-\frac{n_{1}}{n^{2}}\right)+A_{13} n_{3}\left(\frac{1}{n}-\frac{n_{1}}{n^{2}}\right)-A_{23} \frac{n_{2} n_{3}}{n^{2}} \\
& =A_{12} x_{2}\left(1-x_{1}\right)+A_{13} x_{3}\left(1-x_{1}\right)-A_{23} x_{2} x_{3}
\end{aligned}
$$

Introduce solute-free mole fractions:

$$
x_{2}^{\prime} \equiv \frac{x_{2}}{x_{2}+x_{3}}=\frac{x_{2}}{1-x_{1}} \quad \text { and } \quad x_{3}^{\prime}=\frac{x_{3}}{1-x_{1}}
$$

Whence, $\quad \ln \gamma_{1}=A_{12} x_{2}^{\prime}\left(1-x_{1}\right)^{2}+A_{13} x_{3}^{\prime}\left(1-x_{1}\right)^{2}-A_{23} x_{2}^{\prime} x_{3}^{\prime}\left(1-x_{1}\right)^{2}$
For $x_{1} \rightarrow 0$,

$$
\ln \gamma_{1}^{\infty}=A_{12} x_{2}^{\prime}+A_{13} x_{3}^{\prime}-A_{23} x_{2}^{\prime} x_{3}^{\prime}
$$

Apply this equation to the special case of species 1 infinitely dilute in pure solvent 2 . In this case, $x_{2}^{\prime}=1, x_{3}^{\prime}=0$, and

Whence,

$$
\ln \gamma_{1,2}^{\infty}=A_{12}^{\prime} \quad \text { Also } \quad \ln \gamma_{1,3}^{\infty}=A_{13}^{\prime}
$$

$$
\ln \gamma_{1}^{\infty}=x_{2}^{\prime} \ln \gamma_{1,2}^{\infty}+x_{3}^{\prime} \ln \gamma_{1,3}^{\infty}-A_{23} x_{2}^{\prime} x_{3}^{\prime}
$$

In logarithmic form the equation immediately following Eq. (14.24) on page 552 may be applied to the several infinite-dilution cases:

$$
\ln \mathcal{H}_{1}=\ln f_{1}+\ln \gamma_{1}^{\infty} \quad \ln \mathcal{H}_{1,2}=\ln f_{1}+\ln \gamma_{1,2}^{\infty} \quad \ln \mathcal{H}_{1,3}=\ln f_{1}+\ln \gamma_{1,3}^{\infty}
$$

Whence, $\quad \ln \mathcal{H}_{1}-\ln f_{1}=x_{2}^{\prime}\left(\ln \mathcal{H}_{1,2}-\ln f_{1}\right)+x_{3}^{\prime}\left(\ln \mathcal{H}_{1,3}-\ln f_{1}\right)-A_{23} x_{2}^{\prime} x_{3}^{\prime}$
or

$$
\ln \mathcal{H}_{1}=x_{2}^{\prime} \ln \mathcal{H}_{1,2}+x_{3}^{\prime} \ln \mathcal{H}_{1,3}-A_{23} x_{2}^{\prime} x_{3}^{\prime}
$$

14.43 For the situation described, Figure 14.12 would have two regions like the one shown from α to β, probably one on either side of the minimum in curve II.
14.44 By Eq. (14.136) with $\bar{V}_{2}=V_{2}: \quad \frac{\Pi V_{2}}{R T}=-\ln \left(x_{2} \gamma_{2}\right)$

Represent $\ln \gamma_{2}$ by a Taylor series:

$$
\ln \gamma_{2}=\left.\ln \gamma_{2}\right|_{x_{1}=0}+\left.\frac{d \ln \gamma_{2}}{d x_{1}}\right|_{x_{1}=0} x_{1}+\left.\frac{1}{2} \frac{d^{2} \ln \gamma_{2}}{d x_{1}^{2}}\right|_{x_{1}=0} x_{1}^{2}+\cdots
$$

But at $\quad x_{1}=0\left(x_{2}=1\right)$, both $\ln \gamma_{2}$ and its first derivative are zero. Therefore,

$$
\ln \gamma_{2}=\frac{1}{2}\left(\frac{d^{2} \ln \gamma_{2}}{d x_{1}^{2}}\right)_{x_{1}=0} x_{1}^{2}+\cdots
$$

Also,

$$
\ln x_{2}=\ln \left(1-x_{1}\right)=-x_{1}-\frac{x_{1}^{2}}{2}-\frac{x_{1}^{3}}{3}-\frac{x_{1}^{4}}{4}-\cdots
$$

Therefore, $\quad \ln \left(x_{2} \gamma_{2}\right)=+\ln x_{2}+\ln \gamma_{2}=-x_{1}-\frac{1}{2}\left[1-\frac{1}{2}\left(\frac{d^{2} \ln \gamma_{2}}{d x_{1}^{2}}\right)_{x_{1}=0}\right] x_{1}^{2}-\cdots$
and

$$
\frac{\Pi V_{2}}{x_{1} R T}=1+\frac{1}{2}\left[1-\frac{1}{2}\left(\frac{d^{2} \ln \gamma_{2}}{d x_{1}^{2}}\right)_{x_{1}=0}\right] x_{1}+\cdots
$$

Comparison with the given equation shows that:

$$
\mathcal{B}=\frac{1}{2}\left[1-\frac{1}{2}\left(\frac{d^{2} \ln \gamma_{2}}{d x_{1}^{2}}\right)_{x_{1}=0}\right]
$$

14.47 Equation (11.95) applies: $\quad\left(\frac{\partial\left(G^{E} / R T\right)}{\partial T}\right)_{P, x}=-\frac{H^{E}}{R T^{2}}$

For the partially miscible system $G^{E} / R T$ is necessarily "large," and if it is to decrease with increasing T, the derivative must be negative. This requires that H^{E} be positive.
14.48 (a) In accord with Eqs. (14.1) and (14.2), $\quad y_{i} \frac{\hat{\phi}_{i}}{\phi_{i}^{\text {sat }}} P=x_{i} \gamma_{i} P_{i}^{\text {sat }} \quad \Longrightarrow \quad K_{i} \equiv \frac{y_{i}}{x_{i}}=\frac{\gamma_{i} P_{i}^{\text {sat }}}{P} \cdot \frac{\phi_{i}^{\text {sat }}}{\hat{\phi}_{i}}$

$$
\alpha_{12} \equiv \frac{K_{1}}{K_{2}}=\frac{\gamma_{1} P_{1}^{\text {sat }}}{\gamma_{2} P_{2}^{\text {sat }}} \cdot \frac{\phi_{1}^{\text {sat }}}{\hat{\phi}_{1}} \cdot \frac{\hat{\phi}_{2}}{\phi_{2}^{\text {sat }}}
$$

$$
\begin{gather*}
\alpha_{12}\left(x_{1}=0\right)=\frac{\gamma_{1}^{\infty} P_{1}^{\text {sat }}}{P_{2}^{\text {sat }}} \cdot \frac{\phi_{1}\left(P_{1}^{\text {sat }}\right)}{\hat{\phi}_{1}^{\infty}\left(P_{2}^{\text {sat }}\right)} \cdot \frac{\phi_{2}\left(P_{2}^{\text {sat }}\right)}{\phi_{2}\left(P_{2}^{\text {sat }}\right)}=\frac{\gamma_{1}^{\infty} P_{1}^{\text {sat }}}{P_{2}^{\text {sat }}} \cdot \frac{\phi_{1}\left(P_{1}^{\text {sat }}\right)}{\hat{\phi}_{1}^{\infty}\left(P_{2}^{\text {sat }}\right)} \tag{b}\\
\alpha_{12}\left(x_{1}=1\right)=\frac{P_{1}^{\text {sat }}}{\gamma_{2}^{\infty} P_{2}^{\text {sat }}} \cdot \frac{\phi_{1}\left(P_{1}^{\text {sat }}\right)}{\phi_{1}\left(P_{1}^{\text {sat }}\right)} \cdot \frac{\hat{\phi}_{2}^{\infty}\left(P_{1}^{\text {sat }}\right)}{\phi_{2}\left(P_{2}^{\text {sat }}\right)}=\frac{P_{1}^{\text {sat }}}{\gamma_{2}^{\infty} P_{2}^{\text {sat }}} \cdot \frac{\hat{\phi}_{2}^{\infty}\left(P_{1}^{\text {sat }}\right)}{\phi_{2}\left(P_{2}^{\text {sat }}\right)}
\end{gather*}
$$

The final fractions represent corrections to modified Raoult's law for vapor nonidealities.
(c) If the vapor phase is an ideal solution of gases, then $\hat{\phi}_{i}=\phi_{i}$ for all compositions.
14.49 Equation (11.98) applies: $\quad\left(\frac{\partial \ln \gamma_{i}}{\partial T}\right)_{P, x}=-\frac{\bar{H}_{i}^{E}}{R T^{2}}$

Assume that H^{E} and \bar{H}_{i}^{E} are functions of composition only. Then integration from T_{k} to T gives:

$$
\begin{gathered}
\ln \frac{\gamma_{i}(x, T)}{\gamma_{i}\left(x, T_{k}\right)}=\frac{\bar{H}_{i}^{E}}{R} \int_{T_{k}}^{T} \frac{d T}{T^{2}}=\frac{\bar{H}_{i}^{E}}{R}\left(\frac{1}{T}-\frac{1}{T_{k}}\right)=-\frac{\bar{H}_{i}^{E}}{R T}\left(\frac{T}{T_{k}}-1\right) \\
\gamma_{i}(x, T)=\gamma_{i}\left(x, T_{k}\right) \cdot \exp \left[-\frac{\bar{H}_{i}^{E}}{R T}\left(\frac{T}{T_{k}}-1\right)\right]
\end{gathered}
$$

14.52 (a) From Table 11.1, p. 415, find: $\quad\left(\frac{\partial G^{E}}{\partial T}\right)_{P, x}=-S^{E}=0 \quad$ and $\quad G^{E}$ is independent of T.

$$
\text { Therefore } \quad \frac{G^{E}}{R T}=\frac{F_{R}(x)}{R T}
$$

(b) By Eq. (11.95), $\quad\left(\frac{\partial\left(G^{E} / R T\right)}{\partial T}\right)_{P, x}=-\frac{H^{E}}{R T^{2}}=0 \quad \Longrightarrow \quad \frac{G^{E}}{R T}=F_{A}(x)$
(c) For solutions exhibiting LLE, $G^{E} / R T$ is generally positive and large. Thus α and β are positive for LLE. For symmetrical behavior, the magic number is $A=2$:

$$
A<2 \text { homogeneous; } A=2 \text { consolute point; } A>2 \text { LLE }
$$

With respect to Eq. (A), increasing T makes $G^{E} / R T$ smaller. thus, the consolute point is an upper consolute point. Its value follows from:

$$
\frac{\alpha}{R T_{U}}=2 \quad \Longrightarrow \quad T_{U}=\frac{\alpha}{2 R}
$$

The shape of the solubility curve is as shown on Fig. 14.15.
14.53 Why? Because they are both nontoxic, relatively inexpensive, and readily available. For CO_{2}, its T_{c} is near room temperature, making it a suitable solvent for temperature-sensitive materials. It is considereably more expensive than water, which is probably the cheapest possible solvent. However, both T_{c} and P_{c} for water are high, which increases heating and pumping costs.

Chapter 16 - Section B - Non-Numerical Solutions

16.1 The potential is displayed as follows. Note that K is used in place of k as a parameter to avoid confusion with Boltzmann's constant.

Combination of the potential with Eq. (16.10) yields on piecewise integration the following expression for B :

$$
B=\frac{2}{3} \pi N_{A} d^{3}\left[1+\left(K^{3}-1\right)\left(1-e^{-\xi / k T}\right)-\left(l^{3}-K^{3}\right)\left(e^{\epsilon / k T}-1\right)\right]
$$

From this expression, $\quad \frac{d B}{d T}=\frac{1}{k T^{2}}\left[-\left(K^{3}-1\right) \xi e^{-\xi / k T}+\left(l^{3}-K^{3}\right) \epsilon e^{\epsilon / k T}\right]$
according to which $d B / d T=0$ for $T \infty\left\langle\right.$ and also for an intermediate temperature T_{m} :

$$
T_{m}=\frac{\epsilon+\xi}{k \ln \frac{\xi}{\epsilon} \frac{K^{3}-1}{l^{3}-K^{3}}}
$$

That T_{m} corresponds to a maximum is readily shown by examination of the second derivative $d^{2} B / d T^{2}$.
16.2 The table is shown below. Here, contributions to \mathcal{U} (long range) are found from Eq. (16.3) [for $\mathcal{U}(\mathrm{el})$], Eq. (16.4) [for \mathcal{U} (ind)], and Eq. (16.5) [for \mathcal{U} (disp)]. Note the following:

1. As also seen in Table 16.2, the magnitude of the dispersion interaction in all cases is substantial.
2. $\mathcal{U}(\mathrm{el})$, hence $f(\mathrm{el})$, is identically zero unless both species in a molecular pair have non-zero permanent dipole moments.
3. As seen for several of the examples, the fractional contribution of induction forces can be substantial for unlike molecular pairs. Roughly: f (ind) is larger, the greater the difference in polarity of the interacting species.

Molecular Pair	$C_{6} / 10^{-78} \mathrm{~J} \mathrm{~m}^{6}$	$f($ el $)$	$f($ ind $)$	$f($ disp $)$	$f($ el $) / f($ disp $)$
$\mathrm{CH}_{4} / \mathrm{C}_{7} \mathrm{H}_{16}$	49.8	0	0	1.000	0
$\mathrm{CH}_{4} / \mathrm{CHCl}_{3}$	34.3	0	0.008	0.992	0
$\mathrm{CH}_{4} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$	24.9	0	0.088	0.912	0
$\mathrm{CH}_{4} / \mathrm{CH}_{3} \mathrm{CN}$	22.1	0	0.188	0.812	0
$\mathrm{C}_{7} \mathrm{H}_{16} / \mathrm{CHCl}_{3}$	161.9	0	0.008	0.992	0
$\mathrm{C}_{7} \mathrm{H}_{16} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$	119.1	0	0.096	0.904	0
$\mathrm{C}_{7} \mathrm{H}_{16} / \mathrm{CH}_{3} \mathrm{CN}$	106.1	0	0.205	0.795	0
$\mathrm{CHCl}_{3} /\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$	95.0	0.143	0.087	0.770	0.186
$\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{CN}$	98.3	0.263	0.151	0.586	0.450
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}_{2} / \mathrm{CH}_{3} \mathrm{CN}$	270.3	0.806	0.052	0.142	5.680

16.3 Water $\left(\mathrm{H}_{2} \mathrm{O}\right)$, a highly polar hydrogen donor and acceptor, is the common species for all four systems; in all four cases, it experiences strong attractive interactions with the second species. Here, interactions between unlike molecular pairs are stronger than interactions between pairs of molecules of the same kind, and therefore ΔH is negative. (See the discussion of signs for H^{E} in Sec. 16.7.)
16.4 Of the eight potential combinations of signs, two are forbidden by Eq. (16.25). Suppose that H^{E} is negative and S^{E} is positive. Then, by Eq. (16.25), G^{E} must be negative: the sign combination $G^{E} \oplus$, $H^{E} \ominus$, and $S^{E} \oplus$ is outlawed. Similar reasoning shows that the combination $G^{E} \ominus, H^{E} \oplus$, and $S^{E} \ominus$ is inconsistent with Eq. (16.25). All other combinations are possible in principle.
16.5 In Series A, hydrogen bonding occurs between the donor hydrogens of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the electron-rich benzene molecule. In series B, a charge-transfer complex occurs between acetone and the aromatic benzene molecule. Neither cyclohexane nor n-hexane offers the opportunity for these special solvation interactions. Hence the mixtures containing benzene have more negative (smaller positive) values of H^{E} than those containing cyclohexane and n-hexane. (See Secs. 16.5 and 16.6.)
16.6 (a) Acetone/cyclohexane is an NA/NP system; one expects $G^{E} \oplus, H^{E} \oplus$, and $S^{E} \oplus$.
(b) Acetone/dichloromethane is a solvating NA/NA mixture. Here, without question, one will see $G^{E} \ominus, H^{E} \ominus$, and $S^{E} \ominus$.
(c) Aniline/cyclohexane is an AS/NP mixture. Here, we expect either Region I or Region II behavior: $G^{E} \oplus$ and $H^{E} \oplus$, with $S^{E} \oplus$ or \ominus. [At $323 \mathrm{~K}\left(50^{\circ} \mathrm{C}\right)$, experiment shows that S^{E} is \oplus for this system.]
(d) Benzene/carbon disulfide is an NP/NP system. We therefore expect $G^{E} \oplus, H^{E} \oplus$, and $S^{E} \oplus$.
(e) Benzene/ n-hexane is NP/NP. Hence, $G^{E} \oplus, H^{E} \oplus$, and $S^{E} \oplus$.
(f) Chloroform/1,4-dioxane is a solvating NA/NA mixture. Hence, $G^{E} \ominus, H^{E} \ominus$, and $S^{E} \ominus$.
(g) Chloroform/ n-hexane is NA/NP. Hence, $G^{E} \oplus, H^{E} \oplus$, and $S^{E} \oplus$.
(h) Ethanol/ n-nonane is an AS/NP mixture, and ethanol is a very strong associator. Hence, we expect Region II behavior: $G^{E} \oplus, H^{E} \oplus$, and $S^{E} \ominus$.
16.7 By definition, $\quad \delta_{i j} \equiv 2\left[B_{i j}-\frac{1}{2}\left(B_{i i}+B_{j j}\right)\right]$

At normal temperature levels, intermolecular attractions prevail, and the second virial coefficients are negative. (See Sec. 16.2 for a discussion of the connection between intermolecular forces and the second virial coefficient.) If interactions between unlike molecular pairs are weaker than interactions between pairs of molecules of the same kind,

$$
\left|B_{i j}\right|<\frac{1}{2}\left|B_{i i}+B_{j j}\right|
$$

and hence (since each B is negative) $\delta_{i j}>0$. If unlike interactions are stronger than like interactions,

$$
\left|B_{i j}\right|>\frac{1}{2}\left|B_{i i}+B_{j j}\right|
$$

Hence $\delta_{i j}<0$. For identical interactions of all molecular pairs, $B_{i j}=B_{i i}=B_{j j}$, and $\delta_{i j}=0$ The rationalizations of signs for H^{E} of binary liquid mixtures presented in Sec. 16.7 apply approximately to the signs of δ_{12} for binary gas mixtures. Thus, positive δ_{12} is the norm for NP/NP, NA/NP, and $\mathrm{AS} / \mathrm{NP}$ mixtures, whereas δ_{12} is usually negative for NA/NA mixtures comprising solvating species. One expects δ_{12} to be essentially zero for ideal solutions of real gases, e.g., for binary gas mixtures of the isomeric xylenes.
16.8 The magnitude of Henry's constant \mathcal{H}_{i} is reflected through Henry's law in the solubility of solute i in a liquid solvent: The smaller \mathcal{H}_{i}, the larger the solubility [see Eq. (10.4)]. Hence, molecular factors that influence solubility also influence \mathcal{H}_{i}. In the present case, the triple bond in acetylene and the double bond in ethylene act as proton acceptors for hydrogen-bond formation with the donor H in water, the triple bond being the stronger acceptor. No hydrogen bonds form between ethane and water. Because hydrogen-bond formation between unlike species promotes solubility through smaller values of G^{E} and γ_{i} than would otherwise obtain, the values of \mathcal{H}_{i} are in the observed order.
16.9 By Eq. (6.70), $\Delta H^{\alpha \beta}=T \Delta S^{\alpha \beta}$. For the same temperaature and pressure, less structure or order means larger S. Consequently, $\Delta S^{s l}, \Delta S^{l v}$, and $\Delta S^{s v}$ are all positive, and so therefore are $\Delta H^{s l}$, $\Delta H^{l v}$, and $\Delta H^{s v}$.
16.11 At the normal boiling point: $\Delta H^{l v} \equiv H^{v}-H^{l}=\left(H^{v}-H^{i g}\right)-\left(H^{l}-H^{i g}\right)=H^{R, v}-H^{R, l}$

Therefore $\quad H^{R, l}=H^{R, v}-\Delta H^{l v}$
At $1(\mathrm{~atm}), H^{R, v}$ should be negligible relative to $\Delta H^{l v}$. Then $H^{R, l} \approx-\Delta H^{l v}$. Because the normal boiling point is a representative T for typical liquid behavior, and because H^{R} reflects intermolecular forces, $\Delta H^{l v}$ has the stated feature. $\Delta H^{l v}\left(\mathrm{H}_{2} \mathrm{O}\right)$ is much larger than $\Delta H^{l v}\left(\mathrm{CH}_{4}\right)$ because of the strong hydrogen bonding in liquid water.
16.12 By definition, write $C_{P}^{l}=C_{P}^{i g}+C_{P}^{R, l}$, where $C_{P}^{R, l}$ is the residual heat capacity for the liquid phase. Also by definition, $\quad C_{P}^{R, l}=\left(\partial H^{R, l} / \partial T\right)_{P} . \quad$ By assumption (modest pressure levels) $C_{P}^{i g} \approx C_{P}^{v}$.

Thus,

$$
C_{P}^{l} \approx C_{P}^{v}+\left(\frac{\partial H^{R, l}}{\partial T}\right)_{P}
$$

For liquids, $H^{R, l}$ is highly negative, becoming less so as T increases, owing to diminution of intermolecular forces (see, e.g., Fig. 6.5 or Tables E. 5 and E.6). Thus $C_{P}^{R, l}$ is positive, and $C_{P}^{l}>C_{P}^{v}$.
16.13 The ideal-gas equation may be written: $\quad V^{t}=\frac{n R T}{P}=\frac{N}{N_{A}} \cdot \frac{R T}{P} \quad \Longrightarrow \quad \frac{V^{t}}{N}=\frac{R T}{N_{A} P}$

The quantity V^{t} / N is the average volume available to a particle, and the average length available is about:

$$
\begin{gathered}
\left(\frac{V^{t}}{N}\right)^{1 / 3}=\left(\frac{R T}{N_{A} P}\right)^{1 / 3} \\
\left(\frac{V^{t}}{N}\right)^{1 / 3}=\left(\frac{83.14 \mathrm{~cm}^{3} \mathrm{bar} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K}}{6.023 \times 10^{23} \mathrm{~mol}^{-1} \times 1 \mathrm{bar} \times 10^{6} \mathrm{~cm}^{3} \mathrm{~m}^{-3}}\right)^{1 / 3}=34.6 \times 10^{-10} \mathrm{~m} \text { or } 34.6 \AA
\end{gathered}
$$

For argon, this is about 10 diameters. See comments on p. 649 with respect to separations at which attractions become negligible.

