Curve Modeling
 B-Spline Curves

Dr. S.M. Malaek
Assistant: M. Younesi

Motivation

B-Spline Basis: Motivation

Consider designing the profile of a vase.

- The left figure below is a Bézier curve of degree 11; but, it is difficult to bend the "neck" toward the line segment P4P5.
- The middle figure above uses this idea. It has three Bézier curve segments of degree 3 with joining points marked with yellow rectangles.
- The right figure above is a B-spline curve of degree 3 defined by 8 control points .

- Those little dots subdivide the B-spline curve into curve segments.
- One can move control points for modifying the shape of the curve just like what we do to Bézier curves.
- We can also modify the subdivision of the curve. Therefore, B-spline curves have higher degree of freedom for curve design.

- Subdividing the curve directly is difficult to do. Instead, we subdivide the domain of the curve.
- The domain of a curve is [0,1], this closed interval is subdivided by points called knots.
- These knots be $0<=u_{0}<=u_{1}<=\ldots<=u_{\mathrm{m}}<=1$.
- Modifying the subdivision of $[0,1]$ changes the shape of the curve.

- In summary: to design a B-spline curve, we need a set of control points, a set of knots and a set of coefficients, one for each control point, so that all curve segments are joined together satisfying certain continuity condition.

B-Spline Basis: Motivation

- The computation of the coefficients is perhaps the most complex step because they must ensure certain continuity conditions.

B-Spline Curves

B-Spline Curves (Two Advantages)

1. The degree of a B-spline polynmial can be set independently of the number of control points.
2. B-splines allow local control over the shape of a spline curve (or surface)

B-Spline Curves

(Two Advantages)

- A B-spline curve that is defined by 6 control point, and shows the effect of varying the degree of the polynomials (2,3 , and 4)
- Q_{3} is defined by $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$
- Q_{4} is defined by $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}$
- Q_{5} is defined by $\mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{5}$

■
Each curve segment
shares control points.

B-Spline Curves

(Two Advantages)

- The effect of changing the position of control point P_{4} (locality property).

B-Spline Curves

Bézier Curve

B-Spline Curve

> B-Spline

Basis Functions

B-Spline Basis Functions (Knots, Knot Vector)

- Let U be a set of $m+1$ non-decreasing numbers, $u_{0}<=u_{2}<=u_{3}<=\ldots<=u_{\mathrm{m}}$. The $u_{i}^{\prime} \mathrm{s}$ are called knots,
- The set U is the knot vector.

$$
U=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{m}\right\}
$$

B-Spline Basis Functions (Knots, Knot Vector)

$$
U=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{m}\right\}
$$

- The half-open interval $\left[u_{i}, u_{i+1}\right)$ is the i-th knot span.
- Some u_{i} 's may be equal, some knot spans may not exist.

B-Spline Basis Functions

(Knots)

$$
U=\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{m}\right\}
$$

- If a knot u_{i} appears k times (i.e., $\mathrm{u}_{\mathrm{i}}=\mathrm{u}_{\mathrm{i}+1}=\ldots=$ $\mathrm{u}_{\mathrm{i}+\mathrm{k}-1}$), where $\mathrm{k}>1$, u_{i} is a multiple knot of multiplicity k , written as $\mathrm{u}_{\mathrm{i}}(\mathrm{k})$.
- If u_{i} appears only once, it is a simple knot.
- If the knots are equally spaced (i.e., $\mathrm{u}_{\mathrm{i}+1}-\mathrm{u}_{\mathrm{i}}$ is a constant for $0<=\mathrm{i}<=\mathrm{m}-1$), the knot vector or the knot sequence is said uniform; otherwise, it is non-uniform.

B-Spline Basis Functions

All B-spline basis functions are supposed to have their domain on $\left[\mathrm{u}_{0}, \mathrm{u}_{\mathrm{m}}\right.$].

- We use $\mathrm{u}_{0}=0$ and $\mathrm{u}_{\mathrm{m}}=1$ frequently so that the domain is the closed interval [0,1].

B-Spline Basis Functions

- To define B-spline basis functions, we need one more parameter.
- The degree of these basis functions, p. The i-th B-spline basis function of degree p, written as $\mathrm{N}_{\mathrm{i}, \mathrm{p}}(\mathrm{u})$, is defined recursively as follows:

$$
\begin{aligned}
& N_{i, 0}(0)= \begin{cases}1 & \text { if } u_{i} \leq u<u_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& N_{i, p}(u)=\frac{u-u_{i}}{u_{i+p}-u_{i}} N_{i, p-1}(u)+\frac{u_{i+p+1}-u}{u_{i+p+1}-u_{i+1}} N_{i+1, p-1}(u)
\end{aligned}
$$

B-Spline Basis Functions

$$
\begin{aligned}
& N_{i, 0}(0)= \begin{cases}1 & \text { if } u_{i} \leq u<u_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& N_{i, p}(u)=\frac{u-u_{i}}{u_{i+p}-u_{i}} N_{i, p-1}(u)+\frac{u_{i+p+1}-u}{u_{i+p+1}-u_{i+1}} N_{i+1, p-1}(u)
\end{aligned}
$$

- The above is usually referred to as the Cox-de Boor recursion formula.
- If the degree is zero (i.e., $\mathrm{p}=0$), these basis functions are all step functions .
- basis function $\mathrm{N}_{\mathrm{i}, 0}(\mathrm{u})$ is 1 if u is in the i-th knot span $\left[\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1}\right)$.

We have four knots $\mathrm{u}_{0}=0, \mathrm{u}_{1}=1$, $\mathrm{u}_{2}=2$ and $\mathrm{u}_{3}=3$, knot spans 0,1 and 2 are $[0,1),[1,2),[2,3)$ and the basis functions of degree 0 are $\mathrm{N}_{0,0}(\mathrm{u})=1$ on $[0,1)$ and 0 elsewhere, $\mathrm{N}_{1,0}(\mathrm{u})=1$ on $[1,2)$ and 0 elsewhere, and $\mathrm{N}_{2,0}(\mathrm{u})=1$ on $[2,3)$ and 0 elsewhere.

B-Spline Basis Functions

- To understand the way of computing $\mathrm{N}_{\mathrm{i}, \mathrm{p}}(\mathrm{u})$ for p greater than 0 , we use the triangular computation scheme.

B-Spline Basis Functions

- To compute $N_{i, 1}(u), N_{i, 0}(u)$ and $N_{i+1,1} 0(u)$ are required. Therefore, we can compute $N_{0,1}(u), N_{1,1}(u), N_{2,1}(u), N_{3,1}(u)$ and so on. All of these $N_{\mathrm{i}, 1}(u)$'s are written on the third column. Once all $N_{\mathrm{i}, 1}(u)$'s have been computed, we can compute $N_{\mathrm{i}, 2}(u)$'s and put them on the fourth column. This process continues until all required $N_{\mathrm{i}, \mathrm{p}}(u)$'s are computed.

$$
N_{0,1}(u)=\frac{u-u_{0}}{u_{1}-u_{0}} N_{0,0}(u)+\frac{u_{2}-u}{u_{2}-u_{1}} N_{1,0}(u)
$$

B-Spline Basis Functions

$$
N_{0,1}(u)=\frac{u-u_{0}}{u_{1}-u_{0}} N_{0,0}(u)+\frac{u_{2}-u}{u_{2}-u_{1}} N_{1,0}(u)
$$

- Since $u 0=0, u 1=1$ and $u 2=2$, the above becomes

$$
N_{0,1}(u)=u N_{0,0}(u)+(2-u) N_{1,0}(u)
$$

B-Spline Basis Functions

$$
N_{0,2}(u)=\frac{u-u_{0}}{u_{2}-u_{0}} N_{0,1}(u)+\frac{u_{3}-u}{u_{3}-u_{1}} N_{1,1}(u)
$$

- u is in [0,1): In this case, only $N 0,1(u)$ contributes to the value of $N 0,2(u)$. Since $N 0,1(u)$ is u, we have

$$
N_{0,2}(u)=0.5 u^{2}
$$

- $\quad u$ is in $[1,2)$: In this case, both $N 0,1(u)$ and $N 1,1(u)$ contribute to $N 0,2(u)$. Since $N 0,1(u)=2-u$ and $N 1,1(u)=u-1$ on [1,2), we have
$N_{0,2}(u)=(0.5 u)(2-u)+0.5(3-u)(3-u)=0.5\left(-3+6 u-2 u^{2}\right)$
- u is in [2,3): In this case, only N1,1(u) contributes to N0,2(u). Since N1,1(u) = 3 u on $[2,3)$, we have

$$
N_{0,2}(u)=0.5(3-u)(3-u)=0.5(3-u)^{2}
$$

B-Spline Basis Functions

Two Important Observation

Two Important Observation

- Basis function $N_{i, p}(u)$ is non-zero on [u_{i}, u_{i+p+1}). Or, equivalently, $N_{i, p}(u)$ is non-zero on $p+1$ knot spans (u_{i}, u_{i+1}), $\left[u_{i+1}, u_{i+2}\right), \ldots,\left[u_{i+p}, u_{i+p+1}\right)$.

Two Important Observation

- On any knot span [u_{i}, u_{i+1}), at most $p+1$ degree \boldsymbol{p} basis functions are non-zero, namely: $\left.N_{i-p, p}(u), N_{i-p+1, p}(u),{ }_{N i-p+2, p(u}\right), \ldots$, $N_{i-1, p}(u)$ and $N_{i, p}(u)$,

B-Spline Basis Functions (Important Properties)

B-Spline Basis Functions (Important Properties)

$$
\begin{aligned}
& N_{i, 0}(0)= \begin{cases}1 & \text { if } u_{i} \leq u<u_{i+1} \\
0 & \text { otherwise }\end{cases} \\
& N_{i, p}(u)=\frac{u-u_{i}}{u_{i+p}-u_{i}} N_{i, p-1}(u)+\frac{u_{i+p+1}-u}{u_{i+p+1}-u_{i+1}} N_{i+1, p-1}(u)
\end{aligned}
$$

1. $\quad N_{i, p}(u)$ is a degree p polynomial in u.
2. Nonnegativity -- For all i, p and $u, N_{i, p}(u)$ is non-negative
3. Local Support -- $N_{i, p}(u)$ is a non-zero polynomial on $\left[u_{i}, u_{i+p+1}\right)$

B-Spline Basis Functions (Important Properties)

4. On any span $\left[u_{i}, u_{i+1}\right)$, at most $p+1$ degree p basis functions are non-zero, namely: $N_{i-p, p}(u), N_{i-p+1, p}(u), N_{i-}$ p+2,p $(u), \ldots$, and $N_{i, p}(u)$.
5. The sum of all non-zero degree p basis functions on span $\left[\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+1}\right)$ is 1 .
6. If the number of knots is $m+1$, the degree of the basis functions is p, and the number of degree p basis functions is $n+1$, then $m=n+p+1$

B-Spline Basis Functions (Important Properties)

7. Basis function $N_{i, p}(u)$ is a composite curve of degree p polynomials with joining points at knots in $\left[\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}+\mathrm{p}+1}\right)$
8. At a knot of multiplicity k , basis function $\mathrm{N}_{\mathrm{i}, \mathrm{p}}(\mathrm{u})$ is $\mathrm{C}^{\mathrm{P}-\mathrm{k}}$ continuous.

Increasing multiplicity decreases the level of continuity, and increasing degree increases continuity.

B-Spline Basis Functions (Computation Examples)

Simple Knots

- Suppose the knot vector is $U=\{0,0.25,0.5,0.75,1\}$.
- Basis functions of degree $0: N_{0,0}(u), N_{1,0}(u), N_{2,0}(u)$ and $N_{3,0}(u)$ defined on knot span [0,0.25,), [0.25,0.5), $[0.5,0.75)$ and $[0.75,1)$, respectively.

B-Spline Basis Functions (Computation Examples)

All Ni,1(u)'s $(U=\{0,0.25,0.5,0.75,1\})$:

$$
\begin{aligned}
& N_{0,1}(u)= \begin{cases}4 u & \text { for } 0 \leq u<0.25 \\
2(1-2 u) & \text { for } 0.25 \leq u<0.5\end{cases} \\
& N_{1,1}(u)= \begin{cases}4 u-1 & \text { for } 0.25 \leq u<0.5 \\
3-u & \text { for } 0.5 \leq u<0.75\end{cases} \\
& N_{2,1}(u)= \begin{cases}2(2 u-1) & \text { for } 0.5 \leq u<0.75 \\
4(1-u) & \text { for } 0.75 \leq u<1\end{cases}
\end{aligned}
$$

- Since the internal knots $0.25,0.5$ and 0.75 are all simple (i.e., $k=1$) and $p=1$, there are $p-k+1=1$ non-zero basis function and three knots. Moreover, $N_{0,1}(u), N_{1,1}(u)$ and $N_{2,1}(u)$ are C^{0} continuous at -knots $0.25,0.5$ and 0.75 , respectively.

B-Spline Basis Functions (Computation Examples)

- From $N_{i, 1}(u)$'s, one can compute the basis functions of degree 2. Since $m=4, p=2$, and $m=n+p+1$, we have $n=1$ and there are only two basis functions of degree 2: $N_{0,2}(u)$ and $N_{1,2}(u)$. ($U=\{0$, $0.25,0.5,0.75,1$ \}):

$$
\begin{aligned}
& N_{0,2}(u)= \begin{cases}8 u^{2} & \text { for } 0 \leq u<0.25 \\
-1.5+12 u-16 u^{2} & \text { for } 0.25 \leq u<0.5 \\
4.5-12 u+8 u^{2} & \text { for } 0.5 \leq u<0.75\end{cases} \\
& N_{1,2}(u)= \begin{cases}0.5-4 u+8 u^{2} & \text { for } 0.25 \leq u<0.5 \\
-1.5+8 u-8 u^{2} & \text { for } 0.5 \leq u<0.75 \\
8(1-u)^{2} & \text { for } 0.75 \leq u<1\end{cases}
\end{aligned}
$$

- each basis function is a composite curve of three degree 2 curve segments.
- composite curve is of C^{1} continuity

B-Spline Basis Functions (Computation Examples)

Knots with Positive Multiplicity :

Suppose the knot vector is $U=\{0,0,0,0.3,0.5,0.5,0.6,1,1,1\}$

- Since $m=9$ and $p=0$ (degree 0 basis functions), we have $n=$ $m-p-1=8$. there are only four non-zero basis functions of degree 0: $N_{2,0}(u), N_{3,0}(u), N_{5,0}(u)$ and $N_{6,0}(u)$.

B-Spline Basis Functions (Computation Examples)

- Basis functions of degree 1: Since p is $1, n=m-p-1=7$. The following table shows the result

प		प
$\mathrm{N}_{0,1 \text { (u) }}$	all u	0
$\mathrm{N}_{1,1 \text { (u) }}$	$[0,0.3)$	$1-(10 / 3) \mathrm{u}$
$\mathrm{N}_{2,1 \text { (}}$)	[0, 0.3)	(10/3)u
	[0.3, 0.5)	2.5(1-2u)
$\mathrm{N}_{3,1 \text { (u) }}$	[0.3, 0.5)	5u-1.5
$\mathrm{N}_{4,1(\mathrm{u})}$	[0.5, 0.6)	6-10u
$\mathrm{N}_{5,1(\mathrm{u})}$	[0.5, 0.6)	10u-5
	$[0.6,1)$	2.5(1-u)
$\mathrm{N}_{6,1(\mathrm{u})}$	$[0.6,1)$	2.5u-1.5
$\mathrm{N}_{7,1(\mathrm{u})}$	all u	0

B-Spline Basis Functions
 (Computation Examples)

- Basis functions of degree 1:

B-Spline Basis Functions (Computation Examples)

- Since $p=2$, we have $n=m-p-1=6$. The following table contains all Ni,2(u)'s:

-	$\square \square \square \square$	प
$\mathrm{N}_{0,2}(\mathrm{u})$	[0, 0.3)	$(1-(10 / 3) \mathrm{u})^{2}$
$\mathrm{N}_{1,2}(\mathrm{u})$	$[0,0.3)$	(20/3)(u- (8/3) \mathbf{u}^{2})
	[0.3, 0.5)	2.5(1-2u) ${ }^{2}$
$\mathrm{N}_{2,2}(\mathrm{u})$	[0, 0.3)	(20/3) U^{2}
	[0.3, 0.5)	$-3.75+25 u-35 u^{2}$
$\mathrm{N}_{3,2}(\mathrm{u})$	[0.3, 0.5)	$(5 u-1.5)^{2}$
	[0.5, 0.6)	(6-10u) ${ }^{2}$
$\mathrm{N}_{4,2}(\mathrm{U})$	[0.5, 0.6)	$20\left(-2+7 u-6 u^{2}\right)$
	$[0.6,1)$	$5(1-\mathrm{u})^{2}$
$\mathrm{N}_{5,2}(\mathrm{u})$	[0.5, 0.6)	12.5(2u-1) ${ }^{2}$
	$[0.6,1)$	$2.5\left(-4+11.5 u-7.5 u^{2}\right)$
$\mathrm{N}_{6,2}(\mathrm{u})$	$[0.6,1)$	2.5(9-30u + 25up)

B-Spline Basis Functions (Computation Examples)

- Basis functions of degree 2: $\mathrm{U}=\{0,0,0,0.3,0.5,0.5,0.6,1,1,1\}$

- Since its multiplicity is 2 and the degree of these basis functions is 2, basis function $N_{3,2}(u)$ is C^{0} continuous at $0.5(2)$. This is why $N_{3,2}(u)$ has a sharp angle at 0.5(2).
- For knots not at the two ends, say 0.3 and $0.6, C^{1}$ continuity is _ maintained since all of them are simple knots.

B-Spline
Curves

B-Spline Curves (Definition)

- Given $n+1$ control points $\mathrm{P}_{0}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}$ and a knot vector $U=\left\{u_{0}, u_{1}, \ldots, u_{\mathrm{m}}\right\}$, the B-spline curve of degree p defined by these control points and knot vector U is

$$
\mathbf{C}(u)=\sum_{i=0}^{n} N_{i, p}(u) \mathbf{p}_{i}, \quad u_{0} \leq u \leq u_{m} \quad p=m-n-1
$$

- The point on the curve that corresponds to a knot $u_{i}, \mathrm{C}\left(u_{i}\right)$, is referred to as a knot point.
- The knot points divide a B-spline curve into curve segments, each of which is defined on a knot span.

B-Spline Curves (Definition)

$$
\mathbf{C}(u)=\sum_{i=0}^{n} N_{i, p}(u) \mathbf{p}_{i}, \quad u_{0} \leq u \leq u_{m} \quad p=m-n-1
$$

- The degree of a B-spline basis function is an input.
- To change the shape of a B-spline curve, one can modify one or more of these control parameters:

1. The positions of control points
2. The positions of knots
3. The degree of the curve

(Open, Clamped \& Closed B-Spline Curves)

O Open B-spline curves: If the knot vector does not have any particular structure, the generated curve will not touch the first and last legs of the control polyline.

- Clamped B-spline curve: If the first knot and the last knot multiplicity $p+1$, curve is tangent to the first and the last legs at the first and last control polyline, as a Bézier curve does.
- Closed B-spline curves: By repeating some knots and control points, the generated curve can be a closed one. In this case, the start and the end of the generated curve join together forming a closed loop.

Open B-Spline

Clamped B-Spline

Closed B-Spline control points $(\mathrm{n}=9)$ and $\mathrm{p}=3$. m must be 13 so that the knot vector has 14 knots. To have the clamped effect, the first $p+1=4$ and the last 4 knots must be identical. The remaining 14 $-(4+4)=6$ knots can be anywhere in the domain. In fact, the curve is generated with knot vector $U=\{0,0,0,0,0.14,0.28,0.42,0.57,0.71,0.85,1,1,1,1\}$.

Open
B-Spline Curves

Open B-Spline Curves

- Recall from the B-spline basis function property that on a knot span $\left[u_{i}, u_{i+1}\right)$, there are at most $p+1$ non-zero basis functions of degree p.

For open B-spline curves, the domain is $\left[u_{p}, u_{m-p}\right]$.

Open B-Spline Curves

Example 1:

- knot vector $U=\{0,0.25,0.5,0.75,1\}$, where $m=4$. If the basis functions are of degree 1 (i.e., $p=1$), there are three basis functions $N_{0,1}(u), N_{1,1}(u)$ and $N_{2,1}(u)$.
- Since this knot vector is not clamped, the first and the last knot spans (i.e., [0, 0.25) and [0.75, 1)) have only one nonzero basis functions while the second and third knot spans (i.e., $[0.25,0.5$) and $[0.5,0.75)$) have two non-zero basis functions.

Open B-Spline Curves

Example 2:

Open B-Spline Curves

- A B-spline curve of degree 6 (i.e., $p=6$) defined by 14 control points (i.e., $n=13$). The number of knots is 21 (i.e., m $=n+p+1=20$).
- If the knot vector is uniform, the knot vector is $\{0,0.05,0.10$, $0.15, \ldots, 0.90,0.95,10\}$. The open curve is defined on $\left[u_{p}, u_{m-}\right.$ $\left.{ }_{p}\right]=\left[u_{6}, u_{14}\right]=[0.3,0.7]$ and is not tangent to the first and last

Clamped

B-Spline Curves

Clamped B-Spline Curves

We use an exampleuse to illustrate the change between an open curve and a clamped one:

- An open B-spline curve of degree $4, n=8$ and a uniform knot vector $\{0,1 / 13,2 / 13,3 / 13, \ldots, 12 / 13,1\}$.
- Multiplicity 5 (i.e., $p+1$),(second, third, fourth and fifth knot to 0) the curve not only passes through the first control point but also is tangent to the first leg of the control polyline.

Closed

B-Spline Curves

Closed B-Spline Curves

 To construct a closed B-spline curve C(u) of degree p defined by $n+1$ control points ,the number of knots is $m+1$, We must:1. Design an uniform knot sequence of $m+1$ knots: $u_{0}=0, u_{1}=$ $1 / m, u_{2}=2 / m, \ldots, u_{\mathrm{m}}=1$. Note that the domain of the curve is $\left[u_{p}, u_{n-p}\right]$.
2. Wrap the first p and last p control points. More precisely, let $\mathbf{P}_{0}=\mathbf{P}_{\mathrm{n}-\mathrm{p}+1}, \mathbf{P}_{1}=\mathbf{P}_{n-p+1},-1=\mathbf{P}_{\mathrm{n}}$.

Closed B-Spline Curves

Example. Figure (a) shows an open B-spline curve of degree 3 defined by $10(n=9)$ control points and a uniform knot vector.

- In the figure, control point pairs 0 and 7, Figure (b), 1 and 8, Figure (c), and 2 and 9, Figure (d) are placed close to each other to illustrate the construction.

Closed B-Spline Curves

a

b

B-Spline Curves
 Important Properties

B-Spline Curves Important Properties

1. B-spline curve $\mathrm{C}(u)$ is a piecewise curve with each component a curve of degree p.

- Example: where $n=10, m=14$ and $p=3$, the first four knots and last four knots are clamped and the 7 internal knots are uniformly spaced. There are 8 knot spans, each of which corresponds to a curve segment.

Clamped B-Spline Curve

Bézier Curve (degree 10!)

B-Spline Curves Important Properties

2. Equality $m=n+p+1$ must be satisfied.
3. Clamped B-spline curve $\mathrm{C}(u)$ passes through the two end control points P_{0} and P_{n}.
4. Strong Convex Hull Property: A B-spline curve is contained in the convex hull of its control polyline.

B-Spline Curves Important Properties

5. Local Modification Scheme: changing the position of control point Pi only affects the curve C(u) on interval $\left[u_{i}, u_{i+p+1}\right)$.

The right figure shows the result of moving P_{2} to the lower right corner. Only the first, second and third curve segments change their shapes and all remaining curve segments stay in their original place without any change.

B-Spline Curves Important Properties

- A B-spline curve of degree 4 defined by 13 control points and 18 knots .
- Move P_{6}.
- The coefficient of P_{6} is $N_{6,4}(u)$, which is non-zero on $\left[u_{6}, u_{11}\right)$. Thus, moving P6 affects curve segments 3, 4, 5, 6 and 7. Curve segments 1, 2, 8 and 9 are not affected.

B-Spline Curves Important Properties

6. $\mathrm{C}(u)$ is C^{p-k} continuous at a knot of multiplicity k
7. Affine Invariance
