CHAPTER 2

1. The crystal plane with Miller indices $hk\ell$ is a plane defined by the points \mathbf{a}_1/h , \mathbf{a}_2/k , and \mathbf{a}_3/ℓ . (a) Two vectors that lie in the plane may be taken as $\mathbf{a}_1/h - \mathbf{a}_2/k$ and $\mathbf{a}_1/h - \mathbf{a}_3/\ell$. But each of these vectors gives zero as its scalar product with $\mathbf{G} = h\mathbf{a}_1 + k\mathbf{a}_2 + \ell\mathbf{a}_3$, so that \mathbf{G} must be perpendicular to the plane $hk\ell$. (b) If $\hat{\mathbf{n}}$ is the unit normal to the plane, the interplanar spacing is $\hat{\mathbf{n}} \cdot \mathbf{a}_1/h$. But $\hat{\mathbf{n}} = \mathbf{G}/|\mathbf{G}|$, whence $d(hk\ell) = \mathbf{G} \cdot \mathbf{a}_1/h|\mathbf{G}| = 2\pi/|\mathbf{G}|$. (c) For a simple cubic lattice $\mathbf{G} = (2\pi/a)(h\hat{\mathbf{x}} + k\hat{\mathbf{y}} + \ell\hat{\mathbf{z}})$, whence

$$\frac{1}{d^2} = \frac{G^2}{4\pi^2} = \frac{h^2 + k^2 + \ell^2}{a^2} \ .$$

2. (a) Cell volume
$$\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3 = \begin{vmatrix} \frac{1}{2}\sqrt{3}a & \frac{1}{2}a & 0 \\ -\frac{1}{2}\sqrt{3}a & \frac{1}{2}a & 0 \\ 0 & 0 & c \end{vmatrix}$$

$$=\frac{1}{2}\sqrt{3}\,a^2c.$$

(b)
$$\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{|\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3|} = \frac{4\pi}{\sqrt{3}a^2c} \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ -\frac{1}{2}\sqrt{3}a & \frac{1}{2}a & 0 \\ 0 & 0 & c \end{vmatrix}$$
$$= \frac{2\pi}{a} (\frac{1}{\sqrt{3}} \hat{\mathbf{x}} + \hat{\mathbf{y}}), \text{ and similarly for } \mathbf{b}_2, \mathbf{b}_3.$$

- (c) Six vectors in the reciprocal lattice are shown as solid lines. The broken lines are the perpendicular bisectors at the midpoints. The inscribed hexagon forms the first Brillouin Zone.
- 3. By definition of the primitive reciprocal lattice vectors

$$\begin{split} V_{BZ} &= (2\pi)^3 \frac{(a_2 \times a_3) \cdot (a_3 \times a_1) \times (a_1 \times a_2)}{|(a_1 \cdot a_2 \times a_3)^3|} = (2\pi)^3 / |(a_1 \cdot a_2 \times a_3)| \\ &= (2\pi)^3 / V_C. \end{split}$$

For the vector identity, see G. A. Korn and T. M. Korn, Mathematical handbook for scientists and engineers, McGraw-Hill, 1961, p. 147.

4. (a) This follows by forming

$$\begin{split} |F|^2 &= \frac{1 - exp[-iM(a \cdot \Delta k)]}{1 - exp[-i(a \cdot \Delta k)]} \cdot \frac{1 - exp[iM(a \cdot \Delta k)]}{1 - exp[i(a \cdot \Delta k)]} \\ &= \frac{1 - cos\,M(a \cdot \Delta k)}{1 - cos(a \cdot \Delta k)} = \frac{sin^2\,\frac{1}{2}\,M(a \cdot \Delta k)}{sin^2\,\frac{1}{2}(a \cdot \Delta k)}. \end{split}$$

(b) The first zero in $\sin \frac{1}{2} M\epsilon$ occurs for $\epsilon = 2\pi/M$. That this is the correct consideration follows from

$$\sin M(\pi h + \frac{1}{2}\epsilon) = \underbrace{\sin \pi Mh}_{\substack{\text{zero,} \\ \text{as Mh is} \\ \text{an integer}}} \cos \frac{1}{2} M\epsilon + \underbrace{\cos \pi Mh}_{\stackrel{\text{t}}{=} 1} \sin \frac{1}{2} M\epsilon.$$

5.
$$S(v_1v_2v_3) = f\sum_{j} e^{-2\pi i(x_jv_1+y_jv_2+z_jv_3)}$$

Referred to an fcc lattice, the basis of diamond is 000; $\frac{1}{4} \frac{1}{4} \frac{1}{4}$. Thus in the product

$$S(v_1v_2v_3) = S(fcc \ lattice) \times S \ (basis)$$
,

we take the lattice structure factor from (48), and for the basis

S (basis) =
$$1 + e^{-i\frac{1}{2}\pi(v_1 + v_2 + v_3)}$$
.

Now S(fcc)=0 only if all indices are even or all indices are odd. If all indices are even the structure factor of the basis vanishes unless $v_1+v_2+v_3=4n$, where n is an integer. For example, for the reflection (222) we have $S(basis)=1+e^{-i3\pi}=0$, and this reflection is forbidden.

6.
$$f_{G} = \int_{0}^{\infty} 4\pi r^{2} (\pi a_{0}^{3} \text{ Gr})^{-1} \sin \text{Gr} \exp (-2r/a_{0}) dr$$

$$= (4/G^{3}a_{0}^{3}) \int dx \times \sin x \exp (-2x/Ga_{0})$$

$$= (4/G^{3}a_{0}^{3}) (4/Ga_{0})/(1+r/G^{2}a_{0}^{2})^{2}$$

$$16/(4+G^{2}a_{0}^{2})^{2}.$$

The integral is not difficult; it is given as Dwight 860.81. Observe that f=1 for G=0 and $f \propto 1/G^4$ for $Ga_0 >> 1$.

7. (a) The basis has one atom A at the origin and one atom B at $\frac{1}{2}a$. The single Laue equation $\mathbf{a} \cdot \Delta \mathbf{k} = 2\pi \times$ (integer) defines a set of parallel planes in Fourier space. Intersections with a sphere are a set of circles, so that the diffracted beams lie on a set of cones. (b) $S(n) = f_A + f_B e^{-i\pi n}$. For n odd, $S = f_A - f_B e^{-i\pi n}$.

 f_B ; for n even, $S = f_A + f_B$. (c) If $f_A = f_B$ the atoms diffract identically, as if the primitive translation vector were $\frac{1}{2}$ a and the diffraction condition $(\frac{1}{2} \mathbf{a} \cdot \Delta \mathbf{k}) = 2\pi \times (\text{integer})$.