
CHAPTER 3 
 
1. 2 2 2 2E (h 2M) (2 ) (h 2M) ( L) ,  with 2L/ /= π λ = π λ .=  
 

2. bcc: 12 6U(R) 2N [9.114( R ) 12.253( R) ].= ε σ − σ  At equilibrium  and 

 

6 6
0R 1.488= σ ,

0U(R ) 2N ( 2.816).= ε −
 

fcc: 12 6U(R) 2N [12.132( R ) 14.454( R) ].= ε σ − σ  At equilibrium  and 

 Thus the cohesive energy ratio bcc/fcc = 0.956, so that the fcc structure is 
more stable than the bcc. 
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This will be decreased significantly by quantum corrections, so that it is quite reasonable to find the same 
melting points for H2 and Ne. 
 
4. We have Na → Na+ + e – 5.14 eV; Na + e → Na– + 0.78 eV. The Madelung energy in the NaCl 
structure, with Na+ at the Na+ sites and Na– at the Cl– sites, is 
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or 6.89 eV. Here R is taken as the value for metallic Na. The total cohesive energy of a Na+ Na– pair in the 
hypothetical crystal is 2.52 eV referred to two separated Na atoms, or 1.26 eV per atom. This is larger than 
the observed cohesive energy 1.13 eV of the metal. We have neglected the repulsive energy of the Na+ Na– 
structure, and this must be significant in reducing the cohesion of the hypothetical crystal. 
 
5a. 
 

2

n

A qU(R) N ; 2 log 2  Madelung const.
R R

⎛ ⎞α
= − α = =⎜ ⎟

⎝ ⎠
 

 
In equilibrium 
 

2
n

02n 1 2
0 0

U nA q nN 0 ; R
R R R+

⎛ ⎞∂ α
= − + = =⎜ ⎟

∂ α⎝ ⎠

A ,
q

 

 
and 
 

2

0
0

N q 1U(R ) (1 ).
R n
α

= − −  

 

3-1 



b.  ( ) ( )
2

2
0 0 0 0 02

1 UU(R -R ) U R R R .. . ,
2 R
∂

δ = + δ +
∂

 

 
bearing in mind that in equilibrium R0
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For a unit length 2NR0 = 1, whence 
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6. For KCl, λ = 0.34 × 10–8 ergs and ρ = 0.326 × 10–8Å. For the imagined modification of KCl with the 
ZnS structure, z = 4 and α = 1.638. Then from Eq. (23) with x ≡ R0/ρ we have 
 

2 x 3x e 8.53 10 .− −= ×  
 
By trial and error we find  or Rx 9.2, 0 = 3.00 Å. The actual KCl structure has R0 (exp) = 3.15 Å . For 
the imagined structure the cohesive energy is 
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in units with R0 in Å. For the actual KCl structure, using the data of Table 7, we calculate 2

U 0.495,
q

= −  

units as above. This is about 0.1% lower than calculated for the cubic ZnS structure. It is noteworthy that 
the difference is so slight. 
 
7. The Madelung energy of Ba+ O– is –αe2/R0 per ion pair, or –14.61 × 10–12 erg = –9.12 eV, as compared 
with –4(9.12) = –36.48 eV for Ba++ O--. To form Ba+ and O– from Ba and O requires 5.19 – 1.5 = 3.7 eV; 
to form Ba++ and O-- requires 5.19 + 9.96 – 1.5 + 9.0 = 22.65 eV. Thus at the specified value of R0 the 
binding of Ba+ O– is 5.42 eV and the binding of Ba++ O-- is 13.83 eV; the latter is indeed the stable form. 
 
8. From (37) we have eXX = S11XX, because all other stress components are zero. By (51), 

11 11 12 11 123S 2 (C C ) 1 (C C ).= − + +  
 
Thus 2 2

11 12 11 12 11 12Y (C C C 2C ) (C C );= + − +  
 
further, also from (37), eyy = S21Xx, 
 
whence yy 21 11 12 11 12xx

e e S S C (C C )σ = = = − + .  

 
9. For a longitudinal phonon with K || [111], u = v = w. 
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= ω = + +
 

 
This dispersion relation follows from (57a). 
 
10. We take u = – w; v = 0. This displacement is ⊥ to the [111] direction. Shear waves are degenerate in 
this direction. Use (57a). 
  
11. Let 1

2xx yye e= − = e  in (43). Then  
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so that 
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 is the effective shear 

constant. 
 
12a. We rewrite the element aij = p – δij(λ + p – q) as aij = p – λ′ δij, where λ′ = λ + p – q, and δij is the 
Kronecker delta function. With λ′ the matrix is in the “standard” form. The root λ′ = Rp gives λ = (R – 1)p 
+ q, and the R – 1 roots λ′ = 0 give λ = q – p. 
 
b. Set 
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as the displacements for waves in the [111] direction. On substitution in (57) we obtain the desired 
equation. Then, by (a), one root is 
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11 12 442p q K (C 2C 4C ) / 3,ω ρ = + = + +  

 
and the other two roots (shear waves) are 
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13. Set u(r,t) = u0ei(K·r – t) and similarly for v and w. Then (57a) becomes 
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and similarly for (57b), (57c). The elements of the determinantal equation are 
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and so on with appropriate permutations of the axes. The sum of the three roots of 2ω ρ  is equal to the 
sum of the diagonal elements of the matrix, which is 
 
(C11 + 2C44)K2, where 
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for the sum of the (velocities)2 of the 3 elastic modes in any direction of K. 
 
14. The criterion for stability of a cubic crystal is that all the principal minors of the quadratic form be 
positive. The matrix is: 
 

C11 C12 C12    
C12 C11 C12    
C12 C12 C11    

   C44   
    C44  
     C44

 
The principal minors are the minors along the diagonal. The first three minors from the bottom are C44, 
C44

2, C44
3; thus one criterion of stability is C44 > 0. The next minor is 

C11 C44 3, or C11 > 0. Next: C44
3 (C11

2 – C12
2), whence |C12| < C11. Finally, (C11 + 2C12) (C11 – C12)2 > 0, so 

that C11 + 2C12 > 0 for stability. 
  

3-4 


