
CHAPTER 4 
 

1a. The kinetic energy is the sum of the individual kinetic energies each of the form 2
S

1  Mu .
2

 The force 

between atoms s and s+1 is –C(us – us+1); the potential energy associated with the stretching of this bond is 
2

s 1
1 C(u u )
2 s+− , and we sum over all bonds to obtain the total potential energy. 

 

b. The time average of 2 2 2
S

1 1 Mu  is  M u .
2 4

ω  In the potential energy we have 
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s s 1Then u u u {cos( t sKa) (1 cos Ka)
 sin ( t sKa) sin Ka}.
+− = ω − ⋅ −

− ω − ⋅
 

 
We square and use the mean values over time: 
 

2 2 1cos sin ; cos sin 0.
2

< > = < > = < > =  

 
Thus the square of u{} above is 
 

2 2 2 21 u [1 2cos Ka cos Ka sin Ka] u (1 cos  Ka).
2

− + + = −  

 

The potential energy per bond is 21 Cu (1 cos  Ka),
2

−  and by the dispersion relation ω2 = (2C/M) (1 – 

cos Ka) 2 21this is equal to M u .
4

ω  Just as for a simple harmonic oscillator, the time average potential 

energy is equal to the time-average kinetic energy. 
 
2. We expand in a Taylor series 
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On substitution in the equation of motion (16a) we have 
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p2 2p 0
u uM (  p a C )

t x>
∂ ∂

= Σ
∂ ∂

,  

 
which is of the form of the continuum elastic wave equation with 
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2 1 2 2
pp 0

v M    p a C−

>
= Σ .  

 
3. From Eq. (20) evaluated at K = π/a, the zone boundary, we have 
 

2
1

2
2

M u 2Cu ;

M v 2Cv .

−ω = −

−ω = −
 

 
Thus the two lattices are decoupled from one another; each moves independently. At ω2 = 2C/M2 the 
motion is in the lattice described by the displacement v; at ω2 = 2C/M1 the u lattice moves. 
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When K = k0, 
 

2

0p 0
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K M >
∂ω
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∂

 

 
which in general will diverge because 

p
1 .Σ →∞  

 
5. By analogy with Eq. (18), 
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s 1 s s 2 s 1 s
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Md u dt C (v u ) C (v u );

Md v dt C (u v ) C (u v ),   whence

Mu C (v u) C (ve u);

Mv C (u v) C (ue v)  ,  and
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For Ka 0,  0 and 2(C C ) M.

For Ka ,  2C M  and 2C M.
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= π ω =
 

 
 
 
6. (a) The Coulomb force on an ion displaced a 

distance r from the center of a sphere of static or rigid conduction electron sea is – e2 n(r)/r2, where the 
number of electrons within a sphere of radius r is (3/4 πR3) (4πr3/3). Thus the force is –e2r/R2, and the 
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force constant is e2/R3. The oscillation frequency ωD is (force constant/mass)1/2, or (e2/MR3)1/2. (b) For 
sodium  and  thus 23M 4 10  g−× 8R 2 10  cm;−× 10 46 1 2

D (5 10 ) (3 10 )− −ω × ×  

 (c) The maximum phonon wavevector is of the order of 1013 13 10  s−× 8 cm–1. If we suppose that ω0 is 
associated with this maximum wavevector, the velocity defined by ω0/Kmax ≈ 3 × 105 cm s–1, generally a 
reasonable order of magnitude. 
 
7. The result (a) is the force of a dipole ep up on a dipole e0 u0 at a distance pa. Eq. (16a) 
becomes  2 P 2 3 3

p>0
(2 / M)[ (1 cos Ka) ( 1) (2e / p a )(1 cos pKa)] .ω = γ − + Σ − −

 
At the zone boundary ω2 = 0 if 
 

P P 3

p>0
1 ( 1) [1 ( 1) ]p−+ σ Σ − − − = 0 ,  

 
or if . The summation is 2(1 + 3p 3[1 ( 1) ]p 1−σ Σ − − = –3 + 5–3 + …) = 2.104 and this, by the properties of 
the zeta function, is also 7 ζ (3)/4. The sign of the square of the speed of sound in the limit Ka  is 
given by the sign of 

1<<
p 3 2

p>0
1 2 ( 1) p p ,−= σ Σ −  which is zero when 1 – 2–1 + 3–1 – 4–1 + … = 1/2σ. The series 

is just that for log 2, whence the root is σ = 1/(2 log 2) = 0.7213. 
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