CHAPTER 4

1
la. The Kinetic energy is the sum of the individual kinetic energies each of the form E Musz. The force
between atoms s and s+1 is —C(us — Us.1); the potential energy associated with the stretching of this bond is

EC(US —Uy,,)%, and we sum over all bonds to obtain the total potential energy.

1 1
b. The time average of 2 Mus2 IS 2 Ma®?U?. In the potential energy we have

U, = U cos[ot — (s +1)Ka] = u{cos(ot —sKa) - cos Ka
+ sin (ot —sKa)-sin Ka}.

Then u,—u,,, =u {cos(ot—sKa)- (1-cos Ka)
— sin (ot —sKa)-sin Ka}.

We square and use the mean values over time:

2 - 2 1 -
<C0S” > =<SsIn >:§;<cossm>=0.
Thus the square of u{} above is

%u2[1—2cos Ka +cos’Ka +sin’Ka] = u*(1—cos Ka).

. . 1 2 . . . 2
The potential energy per bond is ECU (1—cos Ka), and by the dispersion relation o® = (2C/M) (1 -

- 1
cos Ka) this is equal to Z Ma®?u®. Just as for a simple harmonic oscillator, the time average potential

energy is equal to the time-average kinetic energy.

2. We expand in a Taylor series

au o%u _
u(s+p)=u(s)+pa(&l+ p’a [6x j +

On substitution in the equation of motion (16a) we have

o%u 9 O%U
v G Patloe

which is of the form of the continuum elastic wave equation with
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2 _np-1 2.2
vi=M p§0 p-a‘C,.

3. From Eqg. (20) evaluated at K = t/a, the zone boundary, we have

~o’Mu=-2Cu ;
~0’M,v=-2Cv .

Thus the two lattices are decoupled from one another; each moves independently. At w® = 2C/M, the
motion is in the lattice described by the displacement v; at »® = 2C/M; the u lattice moves.

2 sin pk,a

4, o’=—A Y "% (1-cospKa) ;
M p>0 pa
2
oo :% > sin pk,a sin pKa
oK M p>0
%(cos (k, —K) pa—cos (k, +K) pa)

When K = ko,

on® A

=— X (1-cos 2k,pa) ,
K ID>0( oPa)

which in general will diverge because % 1> .

5. By analogy with Eqg. (18),

Md?u, /dt? = C,(v, —u,)+C,(V,, —U,);

Md?v, /dt? = C,(u, —v,) +C,(u,,, —V,), whence
~®’Mu =C,(v-u)+C,(ve ™ —u);
~0’Mv =C,(u-v)+C,(ue"™-v) , and

(C,+C,)-Ma*> —(C,+C,e ™)
—(C,+C,e") (C,+C,)—Mo’

o Co L TN
(22¢/m) Lr\f (26¢/M)™  ForKa=0, o =0 and 2(C,+C,)/M.
: , For Ka =, o’ =2C,/M and 2C,/M.
l/ (2e/m)™ / !/

K

-

¢ 6. (a) The Coulomb force on an ion displaced a
distance r from the center of a sphere of static or rigid conduction electron sea is — ® n(r)/r?, where the
number of electrons within a sphere of radius r is (3/4 nR%) (4nr’/3). Thus the force is —e’r/R?, and the
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force constant is e%/R®. The oscillation frequency wp is (force constant/mass)”?, or (e2/MR®*Y2 (b) For
sodium M =4x107g and R=2x10°cm; thus @y =(5x10"7) (3x107)"

=3x10" s (c) The maximum phonon wavevector is of the order of 108 cm™. If we suppose that wy is

associated with this maximum wavevector, the velocity defined by wo/Kma = 3 x 10° cm s, generally a
reasonable order of magnitude.

7. The result (a) is the force of a dipole e, u, on a dipole e, u, at a distance pa. Eq. (16a)

becomes ®” = (2/ M)[y(1—cos Ka) + 20(—1)P(2e2/p3a3)(1—cos pKa)] .
p>

At the zone boundary o’ = 0 if

1+ (-~ (-)"Ip” =0,

orif o Z[1—-(~1)"]p" =1. The summation is 2(1 + 3 + 5= + ...) = 2.104 and this, by the properties of

the zeta function, is also 7 £ (3)/4. The sign of the square of the speed of sound in the limit Ka <<1 is

given by the sign of 1= 2c 20(—1)p p~°p?, which is zero when 1 — 27 + 3 — 471 + ... = 1/25. The series
p>

is just that for log 2, whence the root is o = 1/(2 log 2) = 0.7213.
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