
CHAPTER 5 
 

1. (a) The dispersion relation is m
1| sin Ka|.
2

ω = ω  We solve this for K to obtain 

, whence  and, from (15), 1
mK (2/a)sin ( / )−= ω ω 2 2 1/ 2

mdK/d (2 / a)( )−ω = ω −ω D( )ω  

. This is singular at ω = ω2 2 1/ 2
m(2L/ a)( )−= π ω −ω m. (b) The volume of a sphere of radius K in 

Fourier space is , and the density of orbitals near ω3
04 K / 3 (4 / 3)[( ) / A]Ω = π = π ω −ω 3/2

1/ 2

0 is 

, provided ω < ω3 3 3/2
0D( )= (L/2 ) | d /d | (L/2 ) (2 / A )( )ω π Ω ω = π π ω −ω 0. It is apparent that 

D(ω) vanishes for ω above the minimum ω0. 
 

2. The potential energy associated with the dilation is 2 3
B

1 1B( V/V) a k T
2 2

∆ ≈ . This is B
1 k T
2

 and not 

B
3 k T
2

, because the other degrees of freedom are to be associated with shear distortions of the lattice cell. 

Thus  and 2 47 24
rms( V) 1.5 10 ;( V) 4.7 10 cm ;− −< ∆ >= × ∆ = × 3

rms( V) / V 0.125∆ = . Now 

, whence . 3 a/a V/V∆ ≈ ∆ rms( a) / a 0.04∆ =
 
3. (a) , where from (20) for a Debye spectrum 2R (h/2 V) −/< >= ρ Σω 1 1−Σω  

, whence 21 3
Dd D( ) 3V / 4 v−= ∫ ω ω ω = ω π 3 2 3v22

DR 3h / 8/< >= ω π ρ . (b) In one dimension from 

(15) we have , whence D( ) L/ vω = π 1d D( ) −∫ ω ω ω  diverges at the lower limit. The mean square 

strain in one dimension is 22 2
0

1( R/ x) K u (h/2MNv) K
2

/< ∂ ∂ >= Σ = Σ  

 2 2 3
D D(h/2MNv) (K / 2) h / 4MNv ./ /= = ω

 
4. (a) The motion is constrained to each layer and is therefore essentially two-dimensional. Consider one 
plane of area A. There is one allowed value of K per area (2π/L)2 in K space, or (L/2π)2 = A/4π2 allowed 
values of K per unit area of K space. The total number of modes with wavevector less than K is, with ω = 
vK, 
 

2 2 2N (A/4 ) ( K ) A / 4 v .= π π = ω π 2  
 
The density of modes of each polarization type is D(ω) = dN/dω = Aω/2πv2. The thermal average phonon 
energy for the two polarization types is, for each layer, 
 

D D

20 0

AU 2 D( ) n( , ) d 2 d ,
2 v exp(h / ) 1

ω ω ω ω
= ω ω τ ω ω =

π ω τ −∫ ∫ ω

dω

 

 

where ωD is defined by . In the regime 
D

D
N D( )

ω
= ω∫ Dω >> τ , we have 

 
3 2

2 2 x0

2A xU dx.
2 v e 1

∞τ
≅

π −∫  
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Thus the heat capacity . 2
BC k U/ T= ∂ ∂τ ∝

 
(b) If the layers are weakly bound together, the system behaves as a linear structure with each plane as a 
vibrating unit. By induction from the results for 2 and 3 dimensions, we expect C . But this only 
holds at extremely low temperatures such that 

T∝
D layervN / Lτ << ω ≈ , where Nlayer/L is the number of 

layers per unit length. 
 

5. (a) From the Planck distribution x x1 1 1n (e 1) /(e 1) coth (x/2)
2 2 2

< > + = + − = , where 

. The partition function Bx h /k T/= ω x/2 sx x/2 x 1Z e e e /(1 e ) [2sinh (x/2)]− − − −= Σ = − = −  and the 
free energy is F = kBT log Z = kBT log[2 sinh(x/2)]. (b) With ω(∆) = ω(0) (1 – γ∆), the condition 

 becomes F/ 0∂ ∂∆ = B
1B h coth (h /2k T)
2
/ /∆ = γΣ ω ω  on direct differentiation. The energy 

 is just the term to the right of the summation symbol, so that Bn h/< > ω U (T)∆ = γ . (c) By definition 

of γ, we have , or / Vδω ω = −γδ /V d log d log Vω = −δ . But , whence 
. 

Dθ∝ ω
d log d log Vθ = −γ
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