## CHAPTER 5

- 1. (a) The dispersion relation is  $\omega = \omega_m \, | \sin \frac{1}{2} \, Ka |$ . We solve this for K to obtain  $K = (2/a) \sin^{-1}(\omega/\omega_m)$ , whence  $dK/d\omega = (2/a)(\omega_m^2 \omega^2)^{-1/2}$  and, from (15),  $D(\omega) = (2L/\pi a)(\omega_m^2 \omega^2)^{-1/2}$ . This is singular at  $\omega = \omega_m$ . (b) The volume of a sphere of radius K in Fourier space is  $\Omega = 4\pi K^3/3 = (4\pi/3)[(\omega_0 \omega)/A]^{3/2}$ , and the density of orbitals near  $\omega_0$  is  $D(\omega) = (L/2\pi)^3 \, | \, d\Omega/d\omega \, | = (L/2\pi)^3 (2\pi/A^{3/2})(\omega_0 \omega)^{1/2}$ , provided  $\omega < \omega_0$ . It is apparent that  $D(\omega)$  vanishes for  $\omega$  above the minimum  $\omega_0$ .
- 2. The potential energy associated with the dilation is  $\frac{1}{2}B(\Delta V/V)^2a^3\approx\frac{1}{2}k_BT$ . This is  $\frac{1}{2}k_BT$  and not  $\frac{3}{2}k_BT$ , because the other degrees of freedom are to be associated with shear distortions of the lattice cell. Thus  $<(\Delta V)^2>=1.5\times 10^{-47}; (\Delta V)_{rms}=4.7\times 10^{-24}cm^3;$  and  $(\Delta V)_{rms}/V=0.125$ . Now  $3\Delta a/a\approx\Delta V/V$ , whence  $(\Delta a)_{rms}/a=0.04$ .
- 3. (a) <  $R^2>=$   $(\text{M}/2\rho V)\Sigma\omega^{-1}$ , where from (20) for a Debye spectrum  $\Sigma\omega^{-1}=\int d\omega \ D(\omega)\omega^{-1}=3V\omega_D^{\ \ 2}/4\pi^3v^3$ , whence <  $R^2>=3\text{M}\omega_D^{\ \ 2}/8\pi^2\rho v^3$ . (b) In one dimension from (15) we have  $D(\omega)=L/\pi v$ , whence  $\int d\omega \ D(\omega)\ \omega^{-1}$  diverges at the lower limit. The mean square strain in one dimension is  $<(\partial R/\partial x)^2>=\frac{1}{2}\Sigma K^2u_0^2=(\text{M}/2MNv)\Sigma K$   $=(\text{M}/2MNv)(K_D^{\ \ 2}/2)=\text{M}\omega_D^{\ \ 2}/4MNv^3$ .
- 4. (a) The motion is constrained to each layer and is therefore essentially two-dimensional. Consider one plane of area A. There is one allowed value of K per area  $(2\pi/L)^2$  in K space, or  $(L/2\pi)^2 = A/4\pi^2$  allowed values of K per unit area of K space. The total number of modes with wavevector less than K is, with  $\omega = vK$

$$N = (A/4\pi^2)(\pi K^2) = A\omega^2/4\pi v^2$$
.

The density of modes of each polarization type is  $D(\omega) = dN/d\omega = A\omega/2\pi v^2$ . The thermal average phonon energy for the two polarization types is, for each layer,

$$U = 2 \int_0^{\omega_D} D(\omega) \ n(\omega, \tau) \ \hbar \omega \ d\omega = 2 \int_0^{\omega_D} \frac{A\omega}{2\pi v^2} \frac{\hbar \omega}{\exp(\hbar \omega/\tau) - 1} d\omega,$$

where  $\omega_D$  is defined by  $\,N=\int_D^{\,\Omega_D}D(\omega)\,\,d\omega$  . In the regime  $\,\hbar\omega_D^{}>>\tau$  , we have

$$U \cong \frac{2A\tau^3}{2\pi v^2\hbar^2} \int_0^\infty \frac{x^2}{e^x - 1} dx.$$

Thus the heat capacity  $C = k_B \partial U/\partial \tau \propto T^2$  .

- (b) If the layers are weakly bound together, the system behaves as a linear structure with each plane as a vibrating unit. By induction from the results for 2 and 3 dimensions, we expect  $C \propto T$ . But this only holds at extremely low temperatures such that  $\tau << \hbar\omega_D \approx \hbar v N_{layer} / L$ , where  $N_{layer}/L$  is the number of layers per unit length.
- 5. (a) From the Planck distribution < n > +  $\frac{1}{2} = \frac{1}{2} (e^x + 1)/(e^x 1) = \frac{1}{2} \coth(x/2)$ , where  $x = \text{M}\omega/k_BT$ . The partition function  $Z = e^{-x/2} \Sigma e^{-sx} = e^{-x/2}/(1 e^{-x}) = [2 \sinh(x/2)]^{-1}$  and the free energy is  $F = k_BT \log Z = k_BT \log[2 \sinh(x/2)]$ . (b) With  $\omega(\Delta) = \omega(0) \ (1 \gamma \Delta)$ , the condition  $\partial F/\partial \Delta = 0$  becomes  $B\Delta = \gamma \Sigma \frac{1}{2} \text{M}\omega \coth(\text{M}\omega/2k_BT)$  on direct differentiation. The energy < n > M $\omega$  is just the term to the right of the summation symbol, so that  $B\Delta = \gamma U(T)$ . (c) By definition of  $\gamma$ , we have  $\delta \omega/\omega = -\gamma \delta V/V$ , or d  $\log \omega = -\delta \ d \log V$ . But  $\theta \propto \omega_D$ , whence d  $\log \theta = -\gamma \ d \log V$ .