CHAPTER 12

1.Wehave S =S,e"®. Thus

ds* /235 .
P _| &2 6— ellg-@)sy
w5 ez,

:(%)[6—2@03 k.a+cos k,a-+cos kza)}Sey;

dsgy
dt

_ {%)[6—2(005 k,a+cos k,a+cos kza)JSQX.

These equations have a solution with time-dependence ~ exp(—iot) if

o =(2JS/1)(6-2 cos k,a—2 cos k,a—2 cos k,a).

2.U=Xn, o, = [ doD(@)o<n(w)>. If o= Ak, then do/dk = 2Ak = 2VA o',

and
(co)— 4712 1 1 w”?
8 A 2JAwY?  4n® AY?
Then
_ h 3/2 1
U= a0 0 g
At low temps,

1 7. x¥? 1 5 5
= d = I = —1
J (MB)5/2£ = (MB)S/Z%Snﬁwsn(ijetag (2 )

function

[See Dwight 860.39]

U =0.45(kyT)"/n? A¥2 §¥2
C =dU/dT = 0.113 kg (ko T/HA) 2.
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3.
M,T=C(B-pM;—eM,) (B =applied field)

MBT=C(B—3MB —p.MA)
Non-trivial solution for B =0 if

T+eC  uC

=0;T.=C(n-—
UG T+eC e =Cln-e)

Now find 3 =(M, +M;y)/Bat T>T.:

2C

MT =2CH-CM =
(e41)5 T+C(n+e)

- 6/T, :(u+8)/(u—8) .

4. The termsin U,, +U_+ U, which involve e are
1 2 2
EcﬂeXX +Cpe, (8, +€, )+ Boe,.
Take 0/0ex:
Cie, +Cy (e, +€, )+B,o,” =0, for minimum.

Further:

2
Cue, +C, (e, +e,)+Boa,” =0.

2
C,e,,+C, (eXX + eyy)+ Ba, =0.
Solve this set of equations for ex:

Cp— 0L22 (Cn + 2C12) .
(Cn - C12 )(Cll + 2C12 )

e, =B,

XX

Similarly for eyy, e, and by identical method for ey, etc.
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oa.
U(6)=K sin’6—B,M, cos6

=Ko’ - BaMS%(pz, for0=n+o
and expanding about small ¢ .

For minimum near ¢ =0 we need K >%BHMS. Thus at B, = 2K/M; the magnetization

reverses direction (we assume the magnetization reverses uniformly!).

b. If we neglect the magnetic energy of the bidomain particle, the energies of the single
and bidomain particles will be roughly equal when

M.d®*~c,d?; or d, zcsw/l\/lsz.

S

For Co the wall energy will be higher than for iron roughly in the ratio of the (anisotropy
constant Kj)*2, or +10. Thus o, ~3ergs/cm’. For Co, Ms = 1400 (at room

temperature), so M_? ~ 2x10° erg/cm®. We have dc ~3/2x10° ~1.10° cm, or =100A,

as the critical size. The estimate is very rough (the wall thickness is d.; the mag. en. is
handled crudely).

6. Use the units of Eq. (9), and expand

tanh =" 1M [Dwight 657.3]
t t 3t
3
Then (9) becomes m=?—%+ e

3(t°-t*)=m? ; m* =3t*(1-1),
but 1 —t is proportional to T, — T, so that moo/T. =T for T just below T..

7. The maximum demagnetization field in a Neel wall is —4 M, and the maximum self-

energy density is %(4nMS)MS . In a wall of thickness Na, where a is the lattice constant,

the demagnetization contribution to the surface energy is ., ~ 27M*Na. The total
wall energy, exchange + demag, is ,, ~(n° JSZ/Na2)+(2nM52Na), by use of (56). The

minimum is at
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dc,, /N = 0= —n? JS?/N%a® + 2nM “a, or
1 v
N = [EnJSZ/MSZa3j ,
and is given by
o, ~7MS(2n/a)"* ~(10)(10°)(104/10*)" ~10 erg/cm?,

which is larger than (59) for iron. (According to Table 8.1 of the book by R. M. White
and T. H. Geballe, the Bloch wall thickness in Permalloy is 16 times that in iron; this
large value of 6 favors the changeover to Néel walls in thin films.)

8. (a) Consider the resistance of the up and down spins separately.
Magnetizations parallel:

R (Up) = a;l(L/ A) + a;l(L/ A) = Zagl(L/ A)

Res(down) =o' (L/ A) + o, (L1 A) = 20, (L1 A)
These resistances add in parallel:

Ris = Ry (down) Ry, (up) /[Ry4 (down) + Ry, (up)] = 2(L/ A) (o, + T,)
Magnetizations antiparallel:

R, (up) = agl(L/A) +o. (LI A)

R, (down) = '(L/A) + a;l(L/ A) =R, (up)
These (equal) resistances add in parallel :

Ry, =R (up)/2=(L/A)(o," +a;1)/2
The GMRR is then:

GMRR =R, /R -1= (o' + 0';1)(0a +o,)/4-1

=(o,lo,+0,l0,-2)/4

(b) For the T magnetization configuration, an electron of a given spin direction must
always go through a region where it is antiparallel to the magnetization. If o; — 0, then
the conductance is blocked and the resistance R, is infinite.
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