
CHAPTER 12 
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These equations have a solution with time-dependence ∼ exp(–iωt) if 
 

( ) ( )x y2JS h 6 2 cos k a 2 cos k a 2 cos k a/ω = − − − z .  
 
2. ( ) ( )k k

k
U n h h d n/ /= ∑ ω = ω ω ω< ω >∫ D .   If ω = Ak2, then  1 2d dk 2Ak 2 A ,ω = = ω  
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At low temps, 
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e 1 2 2h h

∞ ⎛ ⎞ ⎛ ⎞= Γ ς⎜ ⎟ ⎜ ⎟− ⎝ ⎠ ⎝ ⎠/ /β β∫ ∫  

 
[See Dwight 860.39] 
 

( )5 2 2 3 2 3 2
BU 0.45 k T / A h/π  

( )3 2
B BC dU dT 0.113 k k T hA ./=  
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3. 
( ) (
( )

A B A

B B A

M T C B M M B applied field

M T C B M M

= −µ − ε =

= − ε −µ

)
  

 
Non-trivial solution for B = 0 if 
 

( )C

T C C
0; T C

C T C
+ ε µ

= = µ −
µ + ε

ε  

 
Now find ( )A B CM M B at T Tχ = + > :  
 

( ) ( )
( ) ( )C

2CMT 2CH CM ;
T C

T .

= − ε +µ χ =
+ µ + ε

∴θ = µ + ε µ − ε
 

 
4. The terms in  which involve ee cU U U+ + K xx are 
 

( )2 2
11 xx 12 xx yy zz 1 1 xx

1 C e C e e e B e .
2

+ + + α  

 
Take ∂/∂exx: 
 

( ) 2
11 xx 12 yy zz 1 1C e C e e B 0, for minimum.+ + + α =  

 
Further: 
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Solve this set of equations for exx: 
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− +

.  

 
Similarly for eyy, ezz, and by identical method for exy, etc. 
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5a. 
( ) 2

a s

2 2
a s

U K sin B M cos
1K B M , for
2

θ = θ− θ

ϕ − ϕ θ = π+ϕ
 

 
and expanding about small ϕ . 
 

For minimum near  we need 0ϕ = a s
1K B M
2

> .  Thus at Ba = 2K/Ms the magnetization 

reverses direction (we assume the magnetization reverses uniformly!). 
 
b. If we neglect the magnetic energy of the bidomain particle, the energies of the single 
and bidomain particles will be roughly equal when 

 
2 23 2

s w c wM d d ; or d M .≈ σ ≈ σ s  
 
For Co the wall energy will be higher than for iron roughly in the ratio of the (anisotropy 
constant K1)1/2, or 10. Thus 2

w 3 ergs cm .σ ≈  For Co, Ms = 1400 (at room 

temperature), so 2 36
sM 2 10 erg cm≈ × .  We have 6 6dc 3 2 10 1.10 cm,−≈ × ≈  or   

as the critical size. The estimate is 
100A,

°

very rough (the wall thickness is dc; the mag. en. is 
handled crudely). 
 
6. Use the units of Eq. (9), and expand 
 

3

3

m m 1 mtanh . [Dwight 657.3]
t t 3 t
= − +  

 

Then (9) becomes 
3

3

m mm ;
t 3t
− +  

 
( ) ( )3 2 2 2 23 t t m ; m 3t 1 t ,− −  

 
but 1 – t is proportional to Tc – T, so that cm T T∞ −  for T just below Tc. 
 
7. The maximum demagnetization field in a Néel wall is –4 πMs, and the maximum self-

energy density is ( )s
1 4 M M
2

π s . In a wall of thickness Na, where a is the lattice constant, 

the demagnetization contribution to the surface energy is  The total 

wall energy, exchange + demag, is 

2
demag s2 M Na.σ ≈ π

( ) ( )22 2 2
w JS Na 2 M Na ,σ ≈ π + π s  by use of (56). The 

minimum is at 
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w s
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∂σ ∂ = = −π + π

⎛ ⎞= π⎜ ⎟
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and is given by 
 

( ) ( ) ( ) ( )1 21 2 3 4 8
w sM S 2 J a 10 10 10 10 10 erg cm ,− −σ ≈ π π ≈ ≈ 2

)

)

 
 
which is larger than (59) for iron. (According to Table 8.1 of the book by R. M. White 
and T. H. Geballe, the Bloch wall thickness in Permalloy is 16 times that in iron; this 
large value of δ favors the changeover to Néel walls in thin films.) 
 
8. (a) Consider the resistance of the up and down spins separately.  
Magnetizations parallel: 
  )/(2)/()/()( 111 ALALALupR ppp

−−−
↑↑ =+= σσσ

  /(2)/()/()( 111 ALALALdownR aaa
−−−

↑↑ =+= σσσ
These resistances add in parallel: 
 /()/(2)]()(/[)()( paALupRdownRupRdownRR σσ +=+= ↑↑↑↑↑↑↑↑↑↑  
Magnetizations antiparallel: 
  )/()/()( 11 ALALupR ap

−−
↑↓ += σσ

  )()/()/()( 11 upRALALdownR pa ↑↓
−−

↑↓ =+= σσ
These (equal) resistances add in parallel : 
  2/))(/(2/)( 11 −−

↑↓↑↓ +== paALupRR σσ
 The GMRR is then: 

  
4/)2//(

14/))((1/ 11

−+=

−++=−= −−
↑↑↑↓

appa

papaRRGMRR

σσσσ

σσσσ

 
(b) For the ↑↓ magnetization configuration, an electron of a given spin direction must 
always go through a region where it is antiparallel to the magnetization. If σa → 0, then 
the conductance is blocked and the resistance is infinite.    ↑↓R
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