CHAPTER 14

1. E, :—Z—q):kA sin kx e, and at the boundary this is equal to E. The normal
X

component of D at the boundary, but outside the medium, is e(w)KA cos kx, where for a
plasma g(w) = 1 - mpzlcoz. The boundary condition is —kA cos kx = g(m)kA cos kx, or

e(w) = -1, or oy’ = 2”. This frequency ® = o, /+/2 is that of a surface plasmon.

2. A solution below the interface is of the form ¢(-) = Acos kx e**, and above the
interface @(+) = Acos kx €™, just as for Prob. (1). The condition that the normal
component of D be continuous across the interface reduces to &;(®) = —e(®), or

2 2
o ® 1
— 2= 14— 50 that o == (02 + 03) .
® © 2

3. (a) The equation of motion of the electrons is
—0’X, =—(e/m,)E, +inw.y,; —o’y, =—(e/m,)E, —inw,X, . For the holes,

—o’x, = (e/m,)E, +inwn,y,; —o’y, =(e/m,)E, —iow,X, .

The result follows on forming & = Xe + iye and &, = X;, + iyp. (b) Expand
(o, + @) :coe’l(l—oa/ooe) and (o, —®) =o, "1+ o/, ). In this approximation

(&, —E)IE" =(c/B)(w,  +o,)=(c’/eB’)(m, +m,).

4. From the solution to Problem 3 we have P* = pe’E* /m, w,®, where we have dropped
a term in w® in comparison with one. The dielectric constant

g(w) =1+ 4nP* /E* =4npe® /m, o, , and the dispersion relation &(m)m? = c’k? becomes
Anpe’w/(eBlc) = c’k®. Numerically, o ~[(10°)(3x10")/(10)(3x10%)(5x107°)]~ 0.2 s*.

It is true that wt will be <<1 for any reasonable relaxation time, but o, t > 1 can be
shown to be the applicable criterion for helicon resonance.

5. md’r/dt* = -me’r = —eE = 4neP/3 = —47ne’r/3. Thus ®> = 4ne”/3m.

6. md?r/dt? = —ma’r = —(e/c) (v x BZ)—ma,’r, where o,’ = 4nne?/3m, from the
solution to A. Thus, with o = eB/mc,

. 2
—0’X =00,y — o, X ;

. 2
—0'Y = —i0o,X-0,Y .
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Form & = x + iy; then —0’E— 00 & +m,°E =0, or ®* +wo, —o,” =0, a quadratic
equation for .

7. Eq. (53) becomes ¢*K*E = ’[e¢()E + 4nP], where P is the ionic contribution to the
polarization. Then (55) becomes

0’g(0)—C*K? 4nw’
2 2 2| =0,

Ng?/M ® —Or
or

o'e’ (0) -’ [CZK2 +e(0)0, +47 qu/M} +C*K%0,> =0.

Onerootat K=0is o’ = c)TZ +4Tth2/8(oo) M. For the root at low » and K we neglect
terms in ”* and in w’K2. Then

o’ =c?K? o, [[e(0)o,” +4nNg? /M]
= ¢?K?/[e(w0) +4nNg? /Mo, ] = ¢?K2/&(0)

where ¢ (0) is given by (58) with o = 0.
8(a). c =ne’r/m=(o,” /4n)r=0.73 x 10* s =800(Q2 cm)*
(b) ©,° =4mne’/m*; m*= 4nne2/mp2 =4.2x107"g; m*m=4.7.

9. The Kkinetic energy of a Fermi gas of N electrons in volume V is

U = N(3/5) (H?/2m) (3n°N/V)?. Then dU/dV = - (2/3)U/V and d°U/dV? = (10/9)U/V?.
The bulk modulus B = Vd?U/dV? = (10/9) U/V = (10/9) (3/5)n(mv,”/2) =nmv,” /3.
The velocity of sound v = (B/p)*?, where the density p =n(m+M) =nM, whence
v=(m/3M)"* v,.

10. The response is given, with p = 1/1, by
m(d2 x/dt? + pax /dt + mpzx) =F(t).

The conductivity o does not enter this equation directly, although it may be written as
= oy t/4n. For order of magnitude,
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o =(1/10°)(9x10")=10* s7* ;

p=1/t=V/l=(16x10°)/(4x10°) = 0.4x10* s ;

0, = (4nne?/m)”* = (10x10% x 23x107% /107 )"

=1.5x10" s .

The homogeneous equation has a solution of the form x(t > 0) = Ae™ sin(ot + ¢),

2
where o = [o)pz - (p/Z)Z} and A = p/2. To this we add the particular solution x =
—e/me and find A and ¢ to satisfy the initial conditions x(0) = 0 and x(0) = 0.

11. The Laplacian V*¢ =0, whence

2
oo
dz

This has solutions

f=Ae forz<0
f=Ae Y forz>d
f =B cosh K(z-d/2)for0<z<d.

This solution assures that ¢ will be continuous across the boundaries if B =
Alcosh(Kd/2). To arrange that the normal component of D is continuous, we need (o)
ooploz continuous, or g(w) = — tanh(Kd/2).
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