
CHAPTER 15 
 
1a. The displacement under this force is 
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With ω = ωR + iωI, the integral is ( ) R Ii t te e d− ω ω .α ω ω∫  This integral is zero for t < 0 
because we may then complete a contour with a semicircle in the upper half-plane, over 
which semicircle the integral vanishes. The integral over the entire contour is zero 
because α(ω) is analytic in the upper half-plane. Therefore x(t) = 0 for t < 0. 
 
1b. We want 
 

( )
i t

2 2
0

1 e dx t ,
2 i

∞ − ω

−∞

ω
=

π ω −ω − ωρ∫                                         (A) 

 
which is called the retarded Green’s function of the problem. We can complete a contour 
integral by adding to x(t) the integral around an infinite semicircle in the upper half-
plane. The complete contour integral vanishes because the integrand is analytic 
everywhere within the contour. But the integral over the infinite semicircle vanishes at t 
< 0, for then 
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which → 0 as |ω| → ∞. Thus the integral in (A) must also vanish. For t > 0 we can 
evaluate x(t) by carrying out a Cauchy integral in the lower half-plane. The residues at 
the poles are 
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so that 
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2. In the limit ω → ∞ we have 
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from (9), while from (11a) 
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3. The reflected wave in vacuum may be written as 
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where the sign of Ey has been reversed relative to Bz in order that the direction of energy 
flux (Poynting vector) be reversed in the reflected wave from that in the incident wave. 
For the transmitted wave in the dielectric medium we find 
 

( ) ( )
( ) ( )

y z

i kx t1 2
z

E trans ck B trans

B trans A"e ,−ω−

= εω

= ε =
 

 
by use of the Maxwell equation c curl H = ε∂E/∂t and the dispersion relation εω2 = c2k2 
for electromagnetic waves. 
 
The boundary conditions at the interface at x = 0 are that Ey should be continuous: Ey 
(inc) + Ey (refl) = Ey (trans), or A – A' = A''. Also Bz should be continuous, so that A + A' 
= ε1/2 A''. We solve for the ratio A'/A to obtain ε1/2 (A – A') = A + A', whence 
  

1 2

1 2

A' 1 ,
A 1

− ε
=
ε +

 

 
and 
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The power reflectance is 
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4. (a) From (11) we have 
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In the limit ω → ∞ the denominator comes out of the integrand and we have 
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(b) A superconductor has infinite conductivity at zero frequency and zero conductivity at 
frequencies up to ωg at the energy gap. We can replace the lost portion of the integral 
(approximately σ'nωg) by a delta function σ'nωg δ(ω) in σ's(ω) at the origin. Then the KK 
relation above gives 
 

( )s n
2'' ' .gσ ω = σ ω
πω

 

 
(c) At very high frequencies the drift velocity of the conduction electrons satisfies the 
free electron equation of motion 
 

mdv dt eE; i mv eE ,= − − ω = −  
 
so that the current density is 
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and ωσ'' (ω) = ne2/m in this limit. Then use (a) to obtain the desired result. 
 
5. From (11a) we have 
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6. n2 – K2 + 2inK = 1 + 4πiσ0/ω. For normal metals at room temperature σ0 ∼ 1017 – 1018 
sec–1, so that in the infrared 0.ω σ  Thus  so that 2n K2, R 1 2 n−  and 

( )0n 2πσ ω ,  whence ( )0R 1 2− ω πσ .

N

 (The units of σ0 are sec–1 in CGS.) 
 
7. The ground state of the line may be written g 1 1 2 2 NA B A B A B .ψ = …  Let the asterisk 
denote excited state; then if specific single atoms are excited the states are 

 The hamiltonian acts 
thusly: 

j 1 1 2 2 j j N N j 1 1 2 2 j j NA B A B A B A B ; A B A B A B A B .∗ ∗ϕ = θ =… … … … N
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H
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θ = ε θ + ϕ + ϕ +
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An eigenstate for a single excitation will be of the form ( )ijka
k j

j
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form 
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This is satisfied if 
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The eigenvalues are the roots of 
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