
CHAPTER 16 
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3. Because the normal component of D is continuous across a boundary, Eair = εEdiel, 
where Eair = 4πQ/A, with Q the charge on the boundary. The potential drop between the 

two plates is  air diel air
1E qd E d E d q⎛+ = +⎜
⎞
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. For a plate of area A, the capacitance is 
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It is useful to define an effective dielectric constant by 
 

eff

1 1 q .= +
ε ε

 

 
If ε = ∞, then εeff = 1/q. We cannot have a higher effective dielectric constant than 1/q. 
For q = 10–3, εeff = 103. 
 
4. The potential drop between the plates is E1 d + E2 qd. The charge density 
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by comparison of the way σ and ε enter the Maxwell equation for curl H. Thus 
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6. E = 2P1/a3. P2 = αE = 2αP1/a3. This has solution p1 = p2 � 0 if 3 312 a ; a
2

α = α = . 

 
7 (a). One condition is, from (43), 
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The other condition is 
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Thus 
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(b) From the first line of part (a), 
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8. In an electric field the equilibrium condition becomes ( ) 3

c 4E T T P g P 0− + γ − + = , 
where the term in g6 is neglected for a second-order transition. Now let . If 

we retain only linear terms in , then  
sP P P= + ∆

P∆ ( ) 2
c 4 sE T T P g 3P P 0− + γ − ∆ + ∆ = , with use of 

(40). Further, we can eliminate  because 2
sP ( ) ( )2

s 4 cP g T T= γ − . Thus 

( )cP E 1 2 T T∆ = γ − . 
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9 a. ( )a cos na
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b. 2a← →

i i i i i i
  

 
Deforms to new stable structure of dimers, with lattice constant 2 × (former constant). 
 
c.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

10. The induced dipole moment on the atom at the origin is p = αE, where the electric 
field is that of all other dipoles: ( ) ( )( )33 3

nnE 2 a p 4p a −= ∑ = ∑ ; the sum is over 

positive integers. We assume all dipole moments equal to p. The self-consistency 
condition is that p = α(4p/a3) (Σn–3), which has the solution p = 0 unless α ≥ (a3/4) 
 (1/Σn–3). The value of the summation is 1.202; it is the zeta function ζ(3). 
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