CHAPTER 16

1.
$$\frac{e^2}{r} \cdot \frac{x}{r} = eE$$
; $ex = r^3E = p$; $\alpha = p/E = r^3 = a_H^3$.

- 2. $E_i = E_0 \frac{4\pi}{3}P = 0$ inside a conducting sphere. Thus $p = \frac{4\pi}{3}a^3P = a^3E_0$, and $\alpha = p/E_0 = a^3$.
- 3. Because the normal component of ${\bf D}$ is continuous across a boundary, $E_{air}=\epsilon E_{diel}$, where $E_{air}=4\pi Q/A$, with Q the charge on the boundary. The potential drop between the two plates is $E_{air}=qd+E_{diel}$ $d=E_{air}$ $d\left(q+\frac{1}{\epsilon}\right)$. For a plate of area A, the capacitance is

$$C = \frac{A}{4\pi d \left(q + \frac{1}{\varepsilon} \right)}.$$

It is useful to define an effective dielectric constant by

$$\frac{1}{\varepsilon_{\rm eff}} = \frac{1}{\varepsilon} + q .$$

If $\epsilon=\infty$, then $\epsilon_{eff}=1/q$. We cannot have a higher effective dielectric constant than 1/q. For $q=10^{-3}$, $\epsilon_{eff}=10^3$.

4. The potential drop between the plates is $E_1 d + E_2 qd$. The charge density

$$\frac{Q}{A} = \frac{D_1}{4\pi} = \frac{\varepsilon E_1}{4\pi} = \frac{i\sigma}{\omega} E_2 , \qquad (CGS)$$

by comparison of the way σ and ϵ enter the Maxwell equation for curl H. Thus

$$E_1 + \frac{4\pi i \sigma}{\epsilon \omega} E_2$$
; $V = E_2 d \left(\frac{4\pi i \sigma}{\epsilon \omega} + q \right)$;

$$Q = \frac{\sigma A i}{\omega} E_2$$
; and thus $C = \frac{Q}{V} = \frac{A}{4\pi d \left(\frac{1}{\epsilon} - \frac{i\omega q}{4\pi\sigma}\right)}$,

and
$$\epsilon_{eff} = \! \left(1 \! + \! q\right) \! \frac{\epsilon}{1 \! - \! \left(i\omega\epsilon q/4\pi\sigma\right)}$$
 .

5a.
$$E_{int} = E_0 - \frac{4\pi}{3}P = E_0 - \frac{4\pi}{3}\chi^{E_{int}}$$
.
$$E_{int} = \frac{E_0}{1 + \frac{4\pi}{3}\chi}$$
.

$$b. \ P = \chi \ E_{int} = \frac{\chi}{1 + \frac{4\pi}{3}\chi} E_0 \quad . \label{eq:barrier}$$

6. $E = 2P_1/a^3$. $P_2 = \alpha E = 2\alpha P_1/a^3$. This has solution $p_1 = p_2$ 0 if $2\alpha = a^3$; $\alpha = \frac{1}{2}a^3$.

7 (a). One condition is, from (43),

$$\gamma (T_C - T_0) - |g_4| P_s^2 + g_6 P_s^4 = 0.$$

The other condition is

$$\frac{1}{2}\gamma \big(T_c-T_0\big){P_s}^2-\frac{1}{4}\big|g_4\big|{P_s}^4+\frac{1}{6}g_6{P_s}^6=0\ .$$

Thus

$$-|g_4|P_s^2 + g_6P_s^4 = -\frac{1}{2}|g_4|P_s^2 + \frac{1}{3}g_6P_s^4;$$

$$\frac{2}{3}g_6P_s^2 = \frac{1}{2}|g_4|; P_s^2 = \frac{3}{4}\frac{|g_4|}{g_6}.$$

(b) From the first line of part (a),

$$\gamma \left(T_{c} - T_{0} \right) = \frac{3}{4} \frac{\left| g_{4} \right|^{2}}{g_{6}} - \frac{9}{16} \frac{\left| g_{4} \right|^{2}}{g_{6}} = \frac{3}{16} \frac{g_{4}^{2}}{g_{6}}.$$

8. In an electric field the equilibrium condition becomes $-E + \gamma (T - T_c)P + g_4P^3 = 0$, where the term in g_6 is neglected for a second-order transition. Now let $P = P_s + \Delta P$. If we retain only linear terms in ΔP , then $-E + \gamma (T - T_c)\Delta P + g_4 3P_s^2\Delta P = 0$, with use of (40). Further, we can eliminate P_s^2 because $P_s^2 = (\gamma/g_4)(T_c - T)$. Thus $\Delta P/E = 1/2\gamma (T_c - T)$.

9 a.
$$|\leftarrow a \rightarrow| \qquad \qquad \cos \frac{\pi}{a} (na)$$

b.
$$|\leftarrow 2a \rightarrow |$$

Deforms to new stable structure of dimers, with lattice constant $2 \times$ (former constant).

c.

10. The induced dipole moment on the atom at the origin is $p=\alpha E$, where the electric field is that of all other dipoles: $E=\left(2/a^3\right)\sum p_n=\left(4p/a^3\right)\left(\sum_n^{-3}\right)$; the sum is over positive integers. We assume all dipole moments equal to p. The self-consistency condition is that $p=\alpha(4p/a^3)$ (Σn^{-3}) , which has the solution p=0 unless $\alpha \geq (a^3/4)$ $(1/\Sigma n^{-3})$. The value of the summation is 1.202; it is the zeta function $\zeta(3)$.