CHAPTER 22

1. Disordered state: S given by Eq. (2.48) with <f> as averaged over 3 Cu and 1 Au atom. Ordered state:

 $S\big(hk\ell\big) = f_{Au} + f_{Cu}(e^{-i\pi(k+\ell)} + e^{-i(h+\ell)} + e^{-i\pi(h+k)}) \ Consider \ the \ following \ reflections: \ (x \equiv refl. \ present)$

<u>Indices</u>	Disordered	Ordered
100	no	X
110	no	X
111	X	X
200	X	X
210	no	X
211	no	X
220	X	X
221	no	X
222	X	X

2. $C = \partial E/\partial T$; now use E from Eq. (5): $E = E_0 + 2NUP^2$. Thus $C_{config} = 4NUP(T) \partial P/\partial T$, and we recall that U is negative, as otherwise an ordered state does not occur. From Fig. 7b,

in this region a treatment based on P alone gives $C_{\text{config}} = 0$. We should look at the short range order!