Student Solutions Manual

SKOOG WEST FUNDAMENTALS OF ANALYTICAL CHEMISTRY9E

F. JAMES HOLLER | STANLEY R. CROUCH

STANLEY R. CROUCH | F. JAMES HOLLER

Fundamentals of Analytical Chemistry

NINTH EDITION

Douglas A. Skoog

Stanford University

Donald M. West

San Jose State University

F. James Holler

University of Kentucky

Stanley R. Crouch

University of Michigan

Prepared by

Stanley R. Crouch

University of Michigan

F. James Holler

University of Kentucky

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

فروشگاه کروه آموزشی سلول Egcell.ir/shop

ارائه رهنره نایاب ترین کتب رانشگاهی رر رشته های علوم زیستی و پزشکی

کتاب پیشروی شما از مرجع اصلی تهیه و با مبلغی اندک در اختیار دانشجویان، اساتید و علاقمندان قرار گرفته است لذا خواهشمندیم به منظور استمرار عرضه اینگونه کتب از انتشار آن در فضای مجازی جداً خودداری فرمایید.

جهت سفارش کتاب یا کتب خاصی خارج از آرشیو سایت از <mark>اینجا</mark> اقدام فرمایید.

Brooks/Cole www.cengage.com/global Cengage Learning Customer & Sales Support, 1-800-354-9706

www.cengage.com/permissions

permissionrequest@cengage.com

www.cengage.com/brookscole

www.cengagebrain.com

Printed in the United States of America 1 2 3 4 5 6 7 16 15 14 13 12

Table of Contents

Using Spreadsheets in Analytical Chemistry	1
Calculations Used in Analytical Chemistry	2
Errors in Chemical Analyses	12
Random Errors in Chemical Analysis	15
Statistical Data Treatment and Evaluation	23
Sampling, Standardization and Calibration	32
Aqueous Solutions and Chemical Equilibria	42
Effect of Electrolytes on Chemical Equilibria	52
Solving Equilibrium Problems for Complex Systems	63
Gravimetric Methods of Analysis	72
Titrations in Analytical Chemistry	79
Principles of Neutralization Titrations	85
Complex Acid/Base Systems	106
Applications of Neutralization Titrations	115
Complexation and Precipitation Reactions and Titrations	128
Introduction to Electrochemistry	141
Applications of Standard Electrode Potentials	150
Applications of Oxidation/Reduction Titrations	155
Potentiometry	159
Bulk Electrolysis: Electrogravimetry and Coulometry	165
Voltammetry	173
Introduction to Spectrochemical Methods	175
Instruments for Optical Spectrometry	178
Molecular Absorption Spectrometry	182
Molecular Fluorescence Spectroscopy	191
Atomic Spectroscopy	193
Mass Spectrometry	196
Kinetic Methods of Analysis	197
Introduction to Analytical Separations	202
Gas Chromatography	209
High-Performance Liquid Chromatography	212
Miscellaneous Separation Methods	215

Chapter 3

- **3-1.** (a) SQRT returns the square root of a number or result of a calculation.
 - (b) AVERAGE returns the arithmetic mean of a series of numbers.
 - (c) PI returns the value of pi accurate to 15 digits
 - (d) FACT returns the factorial of a number, equal to $1 \times 2 \times 3 \times ... \times$ number.
 - (e) EXP returns e raised to the value of a given number.
 - (f) LOG returns the logarithm of a number to a base specified by the user.

Chapter 4

4-1. (a) The *millimole* is an amount of a chemical species, such as an atom, an ion, a

molecule or an electron. There are

 $6.02 \times 10^{23} \frac{\text{particles}}{\text{mole}} \times 10^{-3} \frac{\text{mole}}{\text{millimole}} = 6.02 \times 10^{20} \frac{\text{particles}}{\text{millimole}}$

(c) The *millimolar mass* is the mass in grams of one millimole of a chemical species.

4-3. The liter:
$$1 \text{ L} = \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{1 \text{ cm}^3}{1 \text{ mL}} \times \left(\frac{1 \text{ m}}{100 \text{ cm}}\right)^3 = 10^{-3} \text{ m}^3$$

Molar concentration:
$$1 \text{ M} = \frac{1 \text{ mol}}{1 \text{ L}} \times \frac{1 \text{ L}}{10^{-3} \text{ m}^3} = \frac{1 \text{ mol}}{10^{-3} \text{ m}^3}$$

4-4. (a)
$$3.2 \times 10^8$$
 Hz $\times \frac{1 \text{ MHz}}{10^6 \text{ Hz}} = 320$ MHz

(c)
$$8.43 \times 10^7 \mu mol \times \frac{1 \text{ mol}}{10^6 \mu mol} = 84.3 \text{ mol}$$

(e)
$$8.96 \times 10^6$$
 nm $\times \frac{1 \text{ mm}}{10^6 \text{ nm}} = 8.96 \text{ mm}$

4-5. For oxygen, for example 15.999 u/atom = $15.999 \text{ g/}6.022 \times 10^{23} \text{ atoms} = 15.999 \text{ g/mol}$.

So 1 u = 1 g/mol.

Thus, $1g = 1 \mod u$.

4-7. 2.92 g Na₃PO₄ ×
$$\frac{1 \mod Na_3PO_4}{163.94}$$
 × $\frac{3 \mod Na^+}{1 \mod Na_3PO_4}$ × $\frac{6.022 \times 10^{23} Na^+}{1 \mod Na^+}$ = 3.22 × 10²² Na⁺

4-9. (a)
$$8.75 \text{ g } \text{B}_2 \text{O}_3 \times \frac{2 \text{ mol } \text{B}}{1 \text{ mol } \text{B}_2 \text{O}_3} \times \frac{1 \text{ mol } \text{B}_2 \text{O}_3}{69.62 \text{ g } \text{B}_2 \text{O}_3} = 0.251 \text{ mol } \text{B}$$

 $167.2 \text{ mg } \text{Na}_2 \text{B}_4 \text{O}_2 \cdot 10 \text{H}_2 \text{O} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{7 \text{ mol } \text{O}}{1 \text{ mol } \text{Na}_2 \text{B}_4 \text{O}_2 \cdot 10 \text{H}_2 \text{O}}$
(b) $\times \frac{1 \text{ mol } \text{Na}_2 \text{B}_4 \text{O}_2 \cdot 10 \text{H}_2 \text{O}}{381.37 \text{ g}} = 3.07 \times 10^{-3} \text{ mol } \text{O} = 3.07 \text{ mmol}$
(c) $4.96 \text{ g } \text{Mn}_3 \text{O}_4 \times \frac{1 \text{ mol } \text{Mn}_3 \text{O}_4}{228.81 \text{ g } \text{Mn}_3 \text{O}_4} \times \frac{3 \text{ mol } \text{Mn}}{1 \text{ mol } \text{Mn}_3 \text{O}_4} = 6.50 \times 10^{-3} \text{ mol } \text{Mn}$
(d) $333 \text{ mg } \text{CaC}_2 \text{O}_4 \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{\text{mol } \text{CaC}_2 \text{O}_4}{128.10 \text{ g } \text{CaC}_2 \text{O}_4} \times \frac{2 \text{ mol } \text{C}}{1 \text{ mol } \text{CaC}_2 \text{O}_4} = 5.20 \times 10^{-3} \text{ mol } \text{C}$
 $= 5.20 \text{ mmol}$
4-11. (a) $\frac{0.0555 \text{ mol } \text{KMn} \text{O}_4}{\text{L}} \times \frac{1000 \text{ mmol}}{1 \text{ mol}} \times 2.00 \text{ L} = 111 \text{ mmol } \text{KMn} \text{O}_4$
(b) $\frac{3.25 \times 10^{-3} \text{ M } \text{KSCN}}{1 \text{ mol } \text{mol}} \times \frac{1000 \text{ mmol}}{1 \text{ mol}} \times \frac{1}{1000 \text{ mL}} \times 750 \text{ mL}$
 $= 2.44 \text{ mmol } \text{KSCN}$
(c) $\frac{3.33 \text{ mg } \text{CuSO}_4}{1 \text{ L}} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ mol } \text{CuSO}_4}{159.61 \text{ g } \text{CuSO}_4} \times \frac{1000 \text{ mmol}}{1 \text{ mol}} \times 3.50 \text{ L}$
 $= 7.30 \times 10^{-2} \text{mmol } \text{CuSO}_4$
(d) $\frac{0.414 \text{ mol } \text{KCl}}{1 \text{ L}} \times \frac{1000 \text{ mmol}}{1 \text{ mol}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 250 \text{ mL} = 103.5 \text{ mmol } \text{KCl}$
4-13. (a) $0.367 \text{ mol } \text{HNO}_3 \times \frac{63.01 \text{ g } \text{HNO}_3}{1 \text{ mol } \text{HNO}_3} \times \frac{1000 \text{ mg}}{1 \text{ g}} = 9.87 \times 10^3 \text{ mg } \text{MgO}$

Chapter 4

(c)
$$12.5 \text{ mol } NH_4NO_3 \times \frac{80.04 \text{ g } NH_4NO_3}{1 \text{ mol } NH_4NO_3} \times \frac{1000 \text{ mg}}{1 \text{ g}} = 1.00 \times 10^6 \text{ mg } NH_4NO_3$$

(d) $\frac{4.95 \text{ mol } (NH_4)_2 \text{Ce}(NO_3)_6 \times \frac{548.23 \text{ g } (NH_4)_2 \text{Ce}(NO_3)_6}{1 \text{ mol } (NH_4)_2 \text{Ce}(NO_3)_6} \times \frac{1000 \text{ mg}}{1 \text{ g}}$
= 2.71 × 10⁶ mg $(NH_4)_2 \text{Ce}(NO_3)_6$
4-15. (a) $\frac{0.350 \text{ mol sucrose}}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{342 \text{ g sucrose}}{1 \text{ mol sucrose}} \times \frac{1000 \text{ mg}}{1 \text{ g}}$
× 16.0 mL = $1.92 \times 10^3 \text{ mg sucrose}$
(b) $\frac{3.76 \times 10^{-3} \text{mol } H_2O_2}{1 \text{ L}} \times \frac{34.02 \text{ g } \text{ H}_2O_2}{1 \text{ mol } \text{ H}_2O_2} \times \frac{1000 \text{ mg}}{1 \text{ g}}$
× 1.92 L = 246 mg H_2O_2
4-16. (a) $\frac{0.264 \text{ mol } \text{H}_2O_2}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{34.02 \text{ g } \text{ H}_2O_2}{1 \text{ mol } \text{ H}_2O_2} \times 250 \text{ mL}$
= 2.25 g H_2O_2
(b) $\frac{5.75 \times 10^{-4} \text{mol } \text{ benzoic } \text{acid}}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{122 \text{ g } \text{ benzoic } \text{acid}}{1 \text{ mol } \text{ benzoic } \text{acid}}$
× 37.0 mL = 2.60 \times 10^{-3} \text{ g } \text{ benzoic } \text{acid}
4-17. (a) pNa = $-\log(0.0635 + 0.0403) = -\log(0.1038) = 0.9838$
pCl = $-\log(0.0403) = 1.395$
(c)
pH = $-\log(0.400) = 0.398$
pCl = $-\log(0.400) = 0.398$
pCl = $-\log(0.400 + 2 \times 0.100) = -\log(0.600) = 0.222$

 $pZn = -\log(0.100) = 1.00$

(e)

$$pK = -\log(4 \times 1.62 \times 10^{-7} + 5.12 \times 10^{-7}) = -\log(1.16 \times 10^{-6}) = 5.936$$

 $pOH = -\log(5.12 \times 10^{-7}) = 6.291$

 $pFe(CN)_6 = -\log(1.62 \times 10^{-7}) = 6.790$

4-18. (a)
$$pH = 4.31$$
, $log[H_3O^+] = -4.31$, $[H_3O^+] = 4.9 \times 10^{-5} M$

as in part (a)

- (c) $[H_3O^+] = 0.26 \text{ M}$
- (e) $[H_3O^+] = 2.4 \times 10^{-8} M$
- (g) $[H_3O^+] = 5.8 \text{ M}$
- **4-19.** (a) pNa = pBr = -log(0.0300) = 1.523
 - (c) $pBa = -log(5.5 \times 10^{-3}) = 2.26$; $pOH = -log(2 \times 5.5 \times 10^{-3}) = 1.96$ (e) $pCa = -log(8.7 \times 10^{-3}) = 2.06$; $pBa = -log(6.6 \times 10^{-3}) = 2.18$ $pCl = -log(2 \times 8.7 \times 10^{-3} + 2 \times 6.6 \times 10^{-3}) = -log(0.0306) = 1.51$

4-20. (a)
$$pH = 1.020$$
; $log[H_3O^+] = -1.020$; $[H_3O^+] = 0.0955$ M

(c) pBr = 7.77; [Br⁻] =
$$1.70 \times 10^{-8}$$
 M
(e) pLi = 12.35; [Li⁺] = 4.5×10^{-13} M
(g) pMn = 0.135; [Mn²⁺] = 0.733 M

4-21. (a) 1.08×10^{3} ppm Na⁺ $\times \frac{1}{10^{6}}$ ppm $\times \frac{1.02 \text{ g}}{1 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{1 \text{ mol Na}^{+}}{22.99 \text{ g}} = 4.79 \times 10^{-2} \text{ M Na}^{+}$

$$270 \text{ ppm SO}_{4}^{2-} \times \frac{1}{10^{6} \text{ ppm}} \times \frac{1.02 \text{ g}}{1 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{1 \text{ mol SO}_{4}^{3-}}{96.06 \text{ g}} = 2.87 \times 10^{-3} \text{ M SO}_{4}^{2-}$$

(b)
$$pNa = -\log(4.79 \times 10^{-2}) = 1.320$$

$$pSO_4 = -log(2.87 \times 10^{-3}) = 2.542$$

4-23. (a)

$$\frac{5.76 \text{ g KCl} \cdot \text{MgCl}_2 \cdot 6\text{H}_2\text{O}}{2.00 \text{ L}} \times \frac{1 \text{ mol KCl} \cdot \text{MgCl}_2 \cdot 6\text{H}_2\text{O}}{277.85 \text{ g}} = 1.04 \times 10^{-2} \text{M KCl} \cdot \text{MgCl}_2 \cdot 6\text{H}_2\text{O}$$

(b) There is 1 mole of Mg^{2+} per mole of KCl•MgCl₂, so the molar concentration of Mg^{2+}

is the same as the molar concentration of KCl+MgCl_ or $1.04\times 10^{-2}M$

(c)
$$1.04 \times 10^{-2}$$
 M KCl•MgCl₂•6H₂O× $\frac{3 \text{ mol Cl}^{-}}{1 \text{ mol KCl} \cdot \text{MgCl}_{2} \cdot 6\text{H}_{2}\text{O}}$ = 3.12×10^{-2} M Cl⁻

(d)
$$\frac{5.76 \text{ g KCl} \cdot \text{MgCl}_2 \cdot 6\text{H}_2\text{O}}{2.00 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 100\% = 0.288\% \text{ (w/v)}$$

(e)
$$\frac{3.12 \times 10^{-2} \text{ mol Cl}^{-}}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times \frac{1000 \text{ mmol}}{1 \text{ mol}} \times 25 \text{ mL} = 7.8 \times 10^{-1} \text{ mmol Cl}^{-1}$$

1.04×10⁻²M KCl•MgCl₂•6H₂O×
$$\frac{1 \text{ mol } \text{K}^+}{1 \text{ mol } \text{KCl} \cdot \text{MgCl}_2 \cdot 6\text{H}_2\text{O}}$$
× $\frac{39.10 \text{ g } \text{K}^+}{1 \text{ mol } \text{K}^+}$ × $\frac{1000 \text{ mg}}{1 \text{ mol } \text{K}^+}$
(f)
= $\frac{407 \text{ mg}}{1 \text{ L}}$ = 407 ppm K⁺
(g) pMg = -log(1.04 × 10⁻²) = 1.983
(h) pCl = -log(3.12 × 10⁻²) = 1.506
4-25. (a) 6.42% Fe(NO₃)₃ = $\frac{6.42 \text{ g } \text{Fe}(\text{NO}_3)_3}{100 \text{ g solution}}$ × $\frac{1.059 \text{ g}}{\text{mL}}$ × $\frac{1000 \text{ mL}}{1 \text{ L}}$ × $\frac{1 \text{ mol } \text{Fe}(\text{NO}_3)_3}{241.86 \text{ g}}$
= 2.81×10⁻¹ M Fe(NO₃)₃ = 0.281 M
(b)

$$2.81 \times 10^{-1} \text{ M Fe}(\text{NO}_3)_3 = \frac{2.81 \times 10^{-1} \text{ mol Fe}(\text{NO}_3)_3}{\text{L}} \times \frac{3 \text{ mol NO}_3^{-1}}{1 \text{ mol Fe}(\text{NO}_3)_3} = 8.43 \times 10^{-1} \text{ M NO}_3^{-1}$$

(c)
$$\frac{2.81 \times 10^{-1} \text{ mol Fe}(\text{NO}_3)_3}{\text{L}} \times \frac{241.86 \text{ g Fe}(\text{NO}_3)_3}{1 \text{ mol}} \times 1 \text{ L} = 6.80 \times 10^1 \text{ g Fe}(\text{NO}_3)_3 = 68.0 \text{ g}$$

Fundamentals of Analytical Chemistry: 9th ed.

Chapter 4

4-27. (a)
$$\frac{4.75 \text{ g } \text{C}_2\text{H}_5\text{OH}}{100 \text{ mL soln}} \times 500 \text{ mL soln} = 2.38 \times 10^1 \text{ g } \text{C}_2\text{H}_5\text{OH}$$

Weigh 23.8 g ethanol and add enough water to give a final volume of 500 mL

4.75% (w/w)
$$C_2H_5OH = \frac{4.75 \text{ g } C_2H_5OH}{100 \text{ g soln}} \times 500 \text{ g soln} = 2.38 \times 10^1 \text{ g } C_2H_5OH$$

(b) $500 \text{ g soln}=23.8 \text{ g } \text{C}_2\text{H}_5\text{OH}+\text{x g water}$ x g water = $500 \text{ g soln} - 23.8 \text{ g } \text{C}_2\text{H}_5\text{OH} = 476.2 \text{ g water}$

Mix 23.8 g ethanol with 476.2 g water

(c)

$$\frac{4.75 \text{ mL } \text{C}_2\text{H}_5\text{OH}}{\frac{4.75 \text{ mL } \text{C}_2\text{H}_5\text{OH}}{100 \text{ mL soln}}} \times 500 \text{ mL soln} = 2.38 \times 10^1 \text{ mL } \text{C}_2\text{H}_5\text{OH}$$

Dilute 23.8 mL ethanol with enough water to give a final volume of 500 mL.

4-29.

$$\frac{6.00 \text{ mol } \text{H}_{3}\text{PO}_{4}}{\text{L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 750 \text{ mL} = 4.50 \text{ mol } \text{H}_{3}\text{PO}_{4}$$

$$\frac{86 \text{ g } \text{H}_{3}\text{PO}_{4}}{100 \text{ g reagent}} \times \frac{1.71 \text{ g reagent}}{\text{g water}} \times \frac{\text{g water}}{\text{mL}} \times \frac{1000 \text{ mL}}{\text{L}} \times \frac{\text{mol } \text{H}_{3}\text{PO}_{4}}{98.0 \text{ g}}$$

$$= \frac{1.50 \times 10^{1} \text{mol } \text{H}_{3}\text{PO}_{4}}{\text{L}}$$
volume 86% (w/w) H_{3}\text{PO}_{4} required = 4.50 \text{ mol } \text{H}_{3}\text{PO}_{4} \times \frac{\text{L}}{1.50 \times 10^{1} \text{mol } \text{H}_{3}\text{PO}_{4}} = 3.00 \times 10^{-1} \text{L}

$$0.0750 \text{ M AgNO}_{3} = \frac{0.0750 \text{ mol AgNO}_{3}}{L}$$

$$4-31. \quad \textbf{(a)} = \frac{0.0750 \text{ mol AgNO}_{3}}{L} \times \frac{169.87 \text{ g AgNO}_{3}}{1 \text{ mol}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 500 \text{ mL}$$

$$= 6.37 \text{ g AgNO}_{3}$$

Dissolve 6.37 g AgNO₃ in enough water to give a final volume of 500 mL.

Chapter 4

(b)
$$\frac{\frac{0.285 \text{ mol HCl}}{L} \times 1 \text{ L} = 0.285 \text{ mol HCl}}{0.285 \text{ mol HCl}} \times \frac{1 \text{ L}}{6.00 \text{ mol HCl}} = 4.75 \times 10^{-2} \text{ L HCl}$$

Take 47.5 mL of the 6.00 M HCl and dilute to 1.00 L with water.

(c)
$$\frac{\frac{0.0810 \text{ mol } \text{K}^{+}}{\text{L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 400 \text{ mL} = 3.24 \times 10^{-2} \text{ mol } \text{K}^{+}}{3.24 \times 10^{-2} \text{ mol } \text{K}^{+} \times \frac{1 \text{ mol } \text{K}_{4} \text{Fe}(\text{CN})_{6}}{4 \text{ mol } \text{K}^{+}} \times \frac{368.43 \text{ g } \text{K}_{4} \text{Fe}(\text{CN})_{6}}{\text{mol}} = 2.98 \text{ g } \text{K}_{4} \text{Fe}(\text{CN})_{6}$$

Dissolve 2.98 g K₄Fe(CN)₆ in enough water to give a final volume of 400 mL.

(d)
$$\frac{\frac{3.00 \text{ g BaCl}_2}{100 \text{ mL soln}} \times 600 \text{ mL} = 1.8 \times 10^1 \text{g BaCl}_2}{1.8 \times 10^1 \text{g BaCl}_2 \times \frac{1 \text{ mol BaCl}_2}{208.23 \text{ g}} \times \frac{\text{L}}{0.400 \text{ mol BaCl}_2} = 2.16 \times 10^{-1} \text{ L}$$

Take 216 mL of the 0.400 M BaCl₂ solution and dilute to 600 mL with water

(e)

$$\frac{0.120 \text{ mol HClO}_{4}}{L} \times 2.00 \text{ L} = 0.240 \text{ mol HClO}_{4}$$

$$\frac{71 \text{ g HClO}_{4}}{100 \text{ g reagent}} \times \frac{1.67 \text{ g reagent}}{1 \text{ g water}} \times \frac{1 \text{ g water}}{1 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} \times \frac{\text{mol HClO}_{4}}{100.46 \text{ g}}$$

$$= \frac{1.18 \times 10^{1} \text{mol HClO}_{4}}{L}$$

volume 71% (w/w) HClO₄ required = 0.240 mol HClO₄ × $\frac{L}{1.18 \times 10^{1} \text{mol HClO}_{4}}$ = 2.03×10⁻² L Take 20.3 mL of the concentrated reagent and dilute to 2.00 L with water.

$$60 \text{ ppm Na}^{+} = \frac{60 \text{ mg Na}^{+}}{\text{L soln}}$$
(f)
$$\frac{60 \text{ mg Na}^{+}}{\text{L soln}} \times 9.00 \text{ L} = 5.4 \times 10^{2} \text{ mg Na}^{+}$$

$$5.4 \times 10^{2} \text{ mg Na}^{+} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{1 \text{ mol Na}^{+}}{22.99 \text{ g}} = 2.35 \times 10^{-2} \text{ mol Na}^{+}$$

$$2.35 \times 10^{-2} \text{ mol Na}^{+} \times \frac{1 \text{ mol Na}_{2}\text{SO}_{4}}{2 \text{ mol Na}^{+}} \times \frac{142.04 \text{ g Na}_{2}\text{SO}_{4}}{1 \text{ mol}} = 1.7 \text{ g Na}_{2}\text{SO}_{4}$$

Dissolve $1.7 \text{ g Na}_2\text{SO}_4$ in enough water to give a final volume of 9.00 L.

4-33.

$$\frac{0.250 \text{ mol } \text{La}^{3+}}{\text{L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 50.0 \text{ mL} = 1.25 \times 10^{-2} \text{ mol } \text{La}^{3+}$$
$$0.302 \text{ M } \text{IO}_{3}^{-} = \frac{0.302 \text{ mol } \text{IO}_{3}^{-}}{1 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 75.0 \text{ mL} = 2.27 \times 10^{-2} \text{ mol } \text{IO}_{3}^{-}$$

Because each mole of La(IO_3)₃ requires three moles IO_3^- , IO_3^- is the limiting reagent. Thus,

$$2.27 \times 10^{-2} \text{ mol IO}_{3}^{-} \times \frac{1 \text{ mol La}(\text{IO}_{3})_{3}}{3 \text{ mol IO}_{3}^{-}} \times \frac{663.6 \text{ g La}(\text{IO}_{3})_{3}}{1 \text{ mol}} = 5.01 \text{ g La}(\text{IO}_{3})_{3} \text{ formed}$$

4-35. A balanced chemical equation can be written as:

$$Na_2CO_3 + 2HCl \rightarrow 2NaCl + H_2O + CO_2(g)$$

(a)

$$0.2220 \text{ g } \text{Na}_{2}\text{CO}_{3} \times \frac{1 \text{ mol } \text{Na}_{2}\text{CO}_{3}}{105.99 \text{ g}} = 2.094 \times 10^{-3} \text{mol } \text{Na}_{2}\text{CO}_{3}$$
$$\frac{0.0731 \text{ mol } \text{HCl}}{\text{L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 100.0 \text{ mL} = 7.31 \times 10^{-3} \text{ mol } \text{HCl}$$

Chapter 4

Because one mole of CO₂ is evolved for every mole Na₂CO₃ reacted, Na₂CO₃ is the

limiting reagent. Thus

$$2.094 \times 10^{-3} \text{ mol Na}_2 \text{CO}_3 \times \frac{1 \text{ mol CO}_2}{1 \text{ mol Na}_2 \text{CO}_3} \times \frac{44.00 \text{ g CO}_2}{1 \text{ mol}} = 9.214 \times 10^{-2} \text{ g CO}_2 \text{ evolved}$$

(b)

amnt HCl left =
$$7.31 \times 10^{-3} \text{ mol} - (2 \times 2.094 \times 10^{-3} \text{ mol}) = 3.12 \times 10^{-3} \text{ mol}$$

$$\frac{3.12 \times 10^{-3} \text{ mol HCl}}{100.0 \text{ mL}} \times \frac{1000 \text{ mL}}{1 \text{ L}} = 3.12 \times 10^{-2} \text{ M HCl}$$

4-37 A balanced chemical equation can be written as:

 $Na_2SO_3 + 2HClO_4 \rightarrow 2NaClO_4 + H_2O + SO_2(g)$

(a)

$$0.3132 \text{ M Na}_{2}\text{SO}_{3} = \frac{0.3132 \text{ mol Na}_{2}\text{SO}_{3}}{\text{L}} \times \frac{\text{L}}{1000 \text{ mL}} \times 75 \text{ mL} = 2.3 \times 10^{-2} \text{mol Na}_{2}\text{SO}_{3}$$
$$0.4025 \text{ M HClO}_{4} = \frac{0.4025 \text{ mol HClO}_{4}}{\text{L}} \times \frac{\text{L}}{1000 \text{ mL}} \times 150.0 \text{ mL} = 6.038 \times 10^{-2} \text{mol HClO}_{4}$$

Because one mole SO₂ is evolved per mole Na₂SO₃, Na₂SO₃ is the limiting reagent. Thus,

$$2.3 \times 10^{-2} \operatorname{mol} \operatorname{Na}_2 \operatorname{SO}_3 \times \frac{\operatorname{mol} \operatorname{SO}_2}{\operatorname{mol} \operatorname{Na}_2 \operatorname{SO}_3} \times \frac{64.06 \operatorname{g} \operatorname{SO}_2}{\operatorname{mol}} = 1.5 \operatorname{g} \operatorname{SO}_2 \operatorname{evolved}$$

(b)

$$\frac{\text{mol HClO}_{4} \text{ unreacted} = (6.038 \times 10^{-2} \text{ mol} - (2 \times 2.3 \times 10^{-2}) = 1.4 \times 10^{-2} \text{ mol}}{1.4 \times 10^{-2} \text{ mol HClO}_{4}} \times \frac{1000 \text{ mL}}{\text{L}} = 6.4 \times 10^{-2} \text{ M HClO}_{4} = 0.064 \text{ M}}$$

10

4-39. A balanced chemical equation can be written as:

AgNO₃ + KI
$$\rightarrow$$
 AgI(s) + KNO₃
24.31 ppt KI $\times \frac{1}{10^{3}\text{ppt}} \times \frac{1 \text{ g}}{1 \text{ mL}} \times 200.0 \text{ mL} \times \frac{1 \text{ mol KI}}{166.0 \text{ g}} = 2.93 \times 10^{-2} \text{ mol KI}$
2.93 $\times 10^{-2} \text{ mol KI} \times \frac{1 \text{ mol AgNO}_{3}}{1 \text{ mol KI}} \times \frac{1 \text{ L}}{0.0100 \text{ mol AgNO}_{3}} = 2.93 \text{ L AgNO}_{3}$

2.93 L of 0.0100 M AgNO₃ would be required to precipitate I^- as AgI.

Chapter 5

Chapter 5

5-1. (a) Random error causes data to be scattered more or less symmetrically around a mean value while systematic error causes the mean of a data set to differ from the accepted value.

(c) The absolute error of a measurement is the difference between the measured value and the true value while the relative error is the absolute error divided by the true value.

- **5-2.** (1) Meter stick slightly longer or shorter than 1.0 m systematic error.
 - (2) Markings on the meter stick always read from a given angle systematic error.
 - (3) Variability in the sequential movement of the 1-m metal rule to measure the full 3-m table width random error.
 - (4) Variability in interpolation of the finest division of the meter stick random error.
- **5-4.** (1) The analytical balance is miscalibrated.
 - (2) After weighing an empty vial, fingerprints are placed on the vial while adding sample to the vial.
 - (3) A hygroscopic sample absorbs water from the atmosphere while placing it in a weighing vial.
- **5-5.** (1) The pipet is miscalibrated and holds a slightly different volume of liquid than the indicated volume.

(2) The user repetitively reads the volume marking on the pipet from an angle rather than at eye level.

(3) The inner surfaces of the pipet are contaminated.

- **5-7.** Both constant and proportional systematic errors can be detected by varying the sample size. Constant errors do not change with the sample size while proportional errors increase or decrease with increases or decreases in the samples size.
- **5-8.** (a) $(-0.4 \text{ mg}/500 \text{ mg}) \times 100\% = -0.08\%$

As in part (a)

(c) - 0.27%

5-9. (a) First determine how much gold is needed to achieve the desired relative error.

 $(-0.4 \text{ mg}/-0.1\%) \times 100\% = 400 \text{ mg gold}$

Then determine how much ore is needed to yield the required amount of gold.

 $(400 \text{ mg}/1.2\%) \times 100\% = 33,000 \text{ mg ore or } 33 \text{ g ore}$

(c) 4.2 g ore

5-10 (a) $(0.03/50.00) \times 100\% = 0.060\%$

As in part (a)

- **(b)** 0.30%
- **(c)** 0.12%
- **5-11.** (a) $(-0.4/30) \times 100\% = -1.3\%$

As in part (a)

(c) – 0.13%

5-12. mean =
$$\left(\frac{0.0110 + 0.0104 + 0.0105}{3}\right) = 0.01063 \approx 0.0106$$

Arranging the numbers in increasing value the median is:

0.0104 0.0105 ← median 0.0110

The deviations from the mean are:

$$|0.0104 - 0.01063| = 0.00023$$

 $|0.0105 - 0.01063| = 0.00013$
 $|0.0110 - 0.01063| = 0.00037$

mean deviation = $\left(\frac{0.00023 + 0.00013 + 0.00037}{3}\right) = 0.00024 \approx 0.0002$

deviations 1.75, 0.25, 4.25, 2.75. rounded to 2, 0, 4, 3

(e) mean = 39.59 median = 39.65 mean deviation = 0.17

rounded deviations 0.24, 0.02, 0.34, 0.09

Chapter 6

- 6-1. (a) The *standard error of the mean* is the standard deviation of the mean and is given by the standard deviation of the data set divided by the square root of the number of measurements.
 - (c) The *variance* is the square of the standard deviation.
- 6-2. (a) The term *parameter* refers to quantities such as the mean and standard deviation of a population or distribution of data. The term *statistic* refers to an estimate of a parameter that is made from a sample of data.
 - (c) *Random errors* result from uncontrolled variables in an experiment while *systematic errors* are those that can be ascribed to a particular cause and can usually be determined.
- **6-3.** (a) The *sample standard deviation s* is the standard deviation of a sample drawn from the

population. It is given by $s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N-1}}$, where \overline{x} is the sample mean.

The *population standard deviation* σ is the standard deviation of an entire population

given by
$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}}$$
, where μ is the population mean.

6-5. Since the probability that a result lies between -1σ and $+1\sigma$ is 0.683, the probability that a result will lie between 0 and $+1\sigma$ will be half this value or 0.342. The probability that a result will lie between $+1\sigma$ and $+2\sigma$ will be half the difference between the probability of the result being between -2σ and $+2\sigma$, and -1σ and $+1\sigma$, or $\frac{1}{2}$ (0.954-0.683) = 0.136.

6-7. Listing the data from Set A in order of increasing value:

x_i	x_i^2
9.5	90.25
8.5	72.25
9.1	82.81
9.3	86.49
9.1	82.81
$\Sigma x_i = 45.5$	$\Sigma x_i^2 = 414.61$

- (a) mean: $\bar{x} = 45.5/5 = 9.1$
- **(b)** median = 9.1
- (c) spread: w = 9.5 8.5 = 1.0

(**d**) standard deviation:
$$s = \sqrt{\frac{414.61 - (45.5)^2 / 5}{5 - 1}} = 0.37$$

(e) coefficient of variation: $CV = (0.37/9.1) \times 100\% = 4.1\%$

Results for Sets A through F, obtained in a similar way, are given in the following table.

	А	В	С	D	Е	F
\overline{x}	9.1	55.29	0.650	5.1	20.61	0.958
median	9.1	55.32	0.653	5.0	20.64	0.954
W	1.0	0.15	0.108	1.5	0.14	0.049
S	0.37	0.08	0.056	0.6	0.07	0.02
CV, %	4.1	0.14	8.5	12.2	0.32	2.1

6-8. For Set A, E = 9.1 - 9.0 = 0.1

 $E_r = (0.1/9.0) \times 1000 \text{ ppt} = 11.1 \text{ ppt}$

Set C	E = 0.0195	$E_r = 31 \text{ ppt}$	t

Set E E = 0.03 $E_r = 1.3$ ppt

6-9. (a)
$$s_y = \sqrt{(0.03)^2 + (0.001)^2 + (0.001)^2} = 0.030$$

 $CV = (0.03/-2.082) \times 100\% = -1.4\%$

 $y = -2.08(\pm 0.03)$ 16

(c)
$$\frac{s_y}{y} = \sqrt{\left(\frac{0.3}{29.2}\right)^2 + \left(\frac{0.02 \times 10^{-17}}{2.034 \times 10^{-17}}\right)^2} = 0.01422$$

 $CV = (0.0142) \times 100\% = 1.42\%$
 $s_y = (0.0142) \times (5.93928 \times 10^{-16}) = 0.08446 \times 10^{-16}$
 $y = 5.94(\pm 0.08) \times 10^{-16}$
(e) $s_{num} = \sqrt{(6)^2 + (3)^2} = 6.71$ $y_{num} = 187 - 89 = 98$
 $s_{den} = \sqrt{(1)^2 + (8)^2} = 8.06$ $y_{den} = 1240 + 57 = 1297$
 $\frac{s_y}{y} = \sqrt{\left(\frac{6.71}{98}\right)^2 + \left(\frac{8.06}{1297}\right)^2} = 0.0688$
 $CV = (0.0688) \times 100\% = 6.88\%$
 $s_y = (0.0688) \times (0.075559) = 0.00520$
 $y = 7.6(\pm 0.5) \times 10^{-2}$

6-10. (a)
$$s_y = \sqrt{(0.02 \times 10^{-8})^2 + (0.2 \times 10^{-9})^2} = 2.83 \times 10^{-10}$$

 $y = 1.02 \times 10^{-8} - 3.54 \times 10^{-9} = 6.66 \times 10^{-9}$
 $CV = \frac{2.83 \times 10^{-10}}{6.66 \times 10^{-9}} \times 100\% = 4.25\%$
 $y = 6.7 \pm 0.3 \times 10^{-9}$
(c) $\frac{s_y}{y} = \sqrt{\left(\frac{0.0005}{0.0040}\right)^2 + \left(\frac{0.02}{10.28}\right)^2 + \left(\frac{1}{347}\right)} = 0.1250$
 $CV = (0.1250) \times 100\% = 12.5\%$
 $y = 0.0040 \times 10.28 \times 347 = 14.27$

17

6-11.

$$s_{y} = (0.125) \times (14.27) = 1.78$$

$$y = 14(\pm 2)$$
(e) $\frac{s_{y}}{y} = \sqrt{\left(\frac{1}{100}\right)^{2} + \left(\frac{1}{2}\right)^{2}} = 0.500$

$$CV = (0.500) \times 100\% = 50.0\%$$

$$y = 100 / 2 = 50.0$$

$$s_{y} = (0.500) \times (50.0) = 25$$

$$y = 50(\pm 25)$$
(a) $y = \log(2.00 \times 10^{-4}) = -3.6989$

$$s_{y} = \frac{(0.434)(0.03 \times 10^{-4})}{(2.00 \times 10^{-4})} = 6.51 \times 10^{-3}$$

$$y = -3.699 \pm 0.0065$$

$$CV = (0.0065/3.699) \times 100\% = 0.18\%$$

(c) $y = \operatorname{antilog}(1.200) = 15.849$ $\frac{s_y}{y} = (2.303)(0.003) = 0.0069$

 $s_y = (0.0069)(15.849) = 0.11$ $y = 15.8 \pm 0.1$

 $CV = (0.11/15.8) \times 100\% = 0.69\%$

18

6-12. (a)
$$y = (4.17 \times 10^{-4})^3 = 7.251 \times 10^{-11}$$
 $\frac{s_y}{y} = 3\left(\frac{0.03 \times 10^{-4}}{4.17 \times 10^{-4}}\right) = 0.0216$
 $s_y = (0.0216)(7.251 \times 10^{-11}) = 1.565 \times 10^{-12}$ $y = 7.3(\pm 0.2) \times 10^{-11}$
 $CV = (1.565 \times 10^{-12}/7.251 \times 10^{-11}) \times 100\% = 2.2\%$

6-13. From the equation for the volume of a sphere, we have

$$V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi \left(\frac{d}{2}\right)^3 = \frac{4}{3}\pi \left(\frac{2.15}{2}\right)^3 = 5.20 \text{ cm}^3$$

Hence, we may write

$$\frac{s_V}{V} = 3 \times \frac{s_d}{d} = 3 \times \frac{0.02}{2.15} = 0.0279$$
$$s_V = 5.20 \times 0.0279 = 0.145$$
$$V = 5.2(\pm 0.1) \text{ cm}^3$$

6-15. Since the titrant volume equals the final buret reading minus the initial buret reading, we can introduce the values given into the equation for %A.

$$A = [9.26(\pm 0.03) - 0.19(\pm 0.02)] \times \text{equivalent mass} \times 100/[45.0(\pm 0.2)]$$

Obtaining the value of the first term and the error in the first term

$$s_y = \sqrt{(0.03)^2 + (0.02)^2} = 0.0361$$
 $y = 9.26 - 0.19 = 9.07$

We can now obtain the relative error of the calculation

$$\frac{s_{\frac{9}{6}A}}{\frac{9}{6}A} = \sqrt{\left(\frac{0.036}{9.07}\right)^2 + \left(\frac{0.2}{45.0}\right)^2} = 0.00596$$

The coefficient of variation is then

$$CV = (0.00596) \times 100\% = 0.596\%$$
 or 0.6%

6-17. We first calculate the mean transmittance and the standard deviation of the mean.

mean T =
$$\left(\frac{0.213 + 0.216 + 0.208 + 0.214}{4}\right) = 0.2128$$

 $s_T = 0.0034$
(a) $c_X = \left(\frac{-\log T}{\varepsilon b}\right) = \frac{-\log(0.2128)}{3312} = 2.029 \times 10^{-4} \text{ M}$
(b) For $-\log T$, $s_y = (0.434)s_T/T = 0.434 \times (0.0034/0.2128) = 0.00693$
 $-\log(0.2128) = 0.672$
 $c_X = \frac{-\log T}{\varepsilon b} = \frac{0.672 \pm 0.00693}{3312 \pm 12}$
 $\frac{s_{C_X}}{c_X} = \sqrt{\left(\frac{0.00693}{0.672}\right)^2 + \left(\frac{12}{3312}\right)^2} = 0.0109$
 $s_{c_X} = (0.0109)(2.029 \times 10^{-4}) = 2.22 \times 10^{-6}$
(c) $CV = (2.22 \times 10^{-6}/2.029 \times 10^{-4}) \times 100\% = 1.1\%$

6-19.

A	В	С	D	E	F	G	Н	1	J	K	L	M
Problem	6-19		· · · · ·			2	· · · · · ·			· · · · · · · · · · · · · · · · · · ·		
Sample	1	$(x_i - x_{ave})^2$	2	(X ;-X ave)2	3	$(X_i - X_{ave})^2$	4	(X ;-X ave) ²	5	(X ; -X ave)	6	$(X_i - X_{ave})^2$
1	1.02	0.0049	1.13	0.0020	1.12	0.0071	0.77	0.0100	0.73	0.0144	0.73	0.0008
	0.84	0.0121	1.02	0.0042	1.32	0.0135	0.58	0.0081	0.92	0.0049	0.88	0.0150
	0.99	0.0016	1.17	0.0072	1.13	0.0055	0.61	0.0036	0.90	0.0025	0.72	0.0014
			1.02	0.0042	1.20	0.0000	0.72	0.0025			0.70	0.0033
					1.25	0.0021						
mean	0.950		1.085		1.204		0.670		0.850		0.758	
s	0.096		0.077		0.084		0.090		0.104		0.083	
N		3		4		5		4		3		4
Σ(x i - x av	e) ²	0.0186		0.0177		0.0281		0.0242		0.0218		0.0205
Spooled	0.088							No	. Sets	6		
Spreads	heet l	Documen	tation	n		(NTotal	23		
								$\Sigma(x_i)$	x ave)2	0.1309		
B11=AV	ERAG	E(B5:B9)										
						1				·		
						1						
						0						
			(6))									
	Problem Sample Sample Sample x_{i}	Problem 6-19 Sample 1 1.02 0.84 0.99 0.99 mean 0.950 s 0.096 N 2 Spooled 0.088 Spreadsheet I 1 B11=AVERAGI B12=STDEV(B C5=(B5-\$B\$11) C13=COUNT(C C14=SUM(C5:0) K19=SUM(C14	Problem 6-19 Sample 1 $(x_i - x_{ave})^2$ 1.02 0.0049 0.84 0.0121 0.99 0.0016 mean 0.950 s 0.096 N 3 $\Sigma(x_i - x_{ave})^2$ 0.0186 spooled 0.088 Spreadsheet Document B11=AVERAGE(B5:B9) B12=STDEV(B5:B9) C5=(B5-\$B\$11)^2 C13=COUNT(C5:C9) C14=SUM(C13:M13) K19=SUM(C14:M14)	Problem 6-19 Image: second secon	Problem 6-19 Image: style	Problem 6-19 Image: state of the system of th	Problem 6-19 Image: style	Problem 6-19 Image: constraint of the symple of the s	Problem 6-19 Image: stample indicating indindicating indicating indicating indicating indindites indicating	Problem 6-19 Image: stample Image: stampleImag	Problem 6-19 Image: state interval and interval a	Problem 6-19 Image: state

(a) The standard deviations are $s_1 = 0.096$, $s_2 = 0.077$, $s_3 = 0.084$, $s_4 = 0.090$, $s_5 = 0.104$, $s_6 = 0.090$

0.083

(b) $s_{\text{pooled}} = 0.088 \text{ or } 0.09$

6-21.

1	A	В	С	D	E	F
1	Problem 6-20					1
2						
3	Sample	<i>x</i> ₁	X 2	mean	$(X_1 - X_{ave})^2$	$(X_2 - X_{ave})^2$
4	1	2.24	2.27	2.255	0.00022	0.00023
5	2	8.4	8.7	8.55	0.02250	0.02250
6	3	7.6	7.5	7.55	0.00250	0.00250
7	4	11.9	12.6	12.25	0.12250	0.12250
8	5	4.3	4.2	4.25	0.00250	0.00250
9	6	1.07	1.02	1.045	0.00063	0.00062
10	7	14.4	14.8	14.6	0.04000	0.04000
11	8	21.9	21.1	21.5	0.16000	0.16000
12	9	8.8	8.4	8.6	0.04000	0.04000
13						
14	N	18		Total	0.39085	0.39085
15	No. of Sets	9				
16	Spooled	0.29				
17						
18	Spreadsheet De	ocumenta	ation			
19						
20	D4=AVERAGE(E	34:C4)				
21	E4=(B4-\$D\$4)^2					
22	F4=(C4-\$D4)^2					
23	B14=COUNT(B4	:C12)				
24	E14=SUM(E4:E1	2)				
25	B16=SQRT((E14	+F14)/(B1	14-B15))			

Chapter 7

Chapter 7

- **7-1.** The distribution of means is narrower than the distribution of single results. Hence, the standard error of the mean of 5 measurements is smaller than the standard deviation of a single result. The mean is thus known with more confidence than is a single result.
- **7-4.** For Set A

xi	x_i^2
2.7	7.29
3.0	9.00
2.6	6.76
2.8	7.84
3.2	10.24
$\Sigma x_i = 14.3$	$\Sigma x_i^2 = 41.13$

mean: $\bar{x} = 14.3/5 = 2.86$

standard deviation:
$$s = \sqrt{\frac{41.13 - (14.3)^2 / 5}{5 - 1}} = 0.24$$

Since, for a small set of measurements we cannot be certain *s* is a good approximation of σ , we should use the *t* statistic for confidence intervals. From Table 7-3, at 95% confidence *t* for 4 degrees of freedom is 2.78, therefore for set A,

CI for
$$\mu = 2.86 \pm \frac{(2.78)(0.24)}{\sqrt{5}} = 2.86 \pm 0.30$$

23

Similarly, for the other data sets, we obtain the results shown in the following table:

	Α	С	Ε	
\overline{x}	2.86	70.19	0.824	
S	0.24	0.08	0.051	
CI	2.86 ± 0.30	70.19 ±0.20	0.824 ± 0.081	

The 95% confidence interval is the range within which the population mean is expected to lie with a 95% probability.

7-5. If s is a good estimate of σ then we can use z = 1.96 for the 95% confidence level. For set A, at the 95% confidence,

CI for
$$\mu = 2.86 \pm \frac{(1.96)(0.30)}{\sqrt{5}} = 2.86 \pm 0.26$$
. Similarly for sets C and E, the limits are:

	Α	С	Ε
CI	2.86±0.26	70.19±0.079	0.824±0.009

7-7. (a) 99% CI = $18.5 \pm 2.58 \times 3.6 = 18.5 \pm 9.3 \,\mu\text{g Fe/mL}$

95% CI = $18.5 \pm 1.96 \times 3.6 = 18.5 \pm 7.1 \,\mu\text{g Fe/mL}$

(b) 99% CI = 18.5 ±
$$\frac{2.58 \times 3.6}{\sqrt{2}}$$
 = 18.5 ± 6.6 µg Fe/mL

95% CI = 18.5 ±
$$\frac{1.96 \times 3.6}{\sqrt{2}}$$
 = 18.5 ± 5.0 µg Fe/mL

(c) 99% CI =
$$18.5 \pm \frac{2.58 \times 3.6}{\sqrt{4}} = 18.5 \pm 4.6 \,\mu\text{g Fe/mL}$$

95% CI =
$$18.5 \pm \frac{1.96 \times 3.6}{\sqrt{4}} = 18.5 \pm 3.5 \,\mu\text{g Fe/mL}$$

7-9.
$$2.2 = \frac{1.96 \times 3.6}{\sqrt{N}}$$
 For a 95% CI, $N = 10.3 \cong 11$
 $2.2 = \frac{2.58 \times 3.6}{\sqrt{N}}$ For a 99% CI, $N = 17.8 \cong 18$

7-11. For the data set,
$$\overline{x} = 3.22$$
 and $s = 0.06$

(a) 95% CI =
$$3.22 \pm \frac{4.30 \times 0.06}{\sqrt{3}} = 3.22 \pm 0.15 \text{ meq Ca/L}$$

(b) 95% CI =
$$3.22 \pm \frac{1.96 \times 0.056}{\sqrt{3}} = 3.22 \pm 0.06 \text{ meq Ca/L}$$

7-13. (a)
$$0.3 = \frac{2.58 \times 0.38}{\sqrt{N}}$$
 For the 99% CI, $N = 10.7 \cong 11$

7-15. This is a two-tailed test where $s \rightarrow \sigma$ and from Table 7-1, $z_{crit} = 2.58$ for the 99% confidence level.

For As:
$$z = \frac{129 - 119}{9.5\sqrt{\frac{3+3}{3\times 3}}} = 1.28 \le 2.58$$

No significant difference exists at the 99% confidence level .

Proceeding in a similar fashion for the other elements

Element	Z.	Significant Difference?
As	1.28	No
Со	-3.43	Yes
La	2.45	No
Sb	0.20	No
Th	-3.42	Yes

For two of the elements there is a significant difference, but for three there are not. Thus, the defendant might have grounds for claiming reasonable doubt. It would be prudent,

25

however, to analyze other windows and show that these elements are good diagnostics for the rare window.

7-17.
$$Q = \frac{|5.6 - 5.1|}{5.6 - 4.3} = 0.385$$
 and Q_{crit} for 8 observations at 95% confidence = 0.526.

Since $Q < Q_{crit}$ the outlier value 5.6 cannot be rejected at the 95% confidence level.

- **7-19.** The null hypothesis is that for the pollutant the current level = the previous level (H_0 : $\mu_{current} = \mu_{previous}$). The alternative hypothesis is H_a : $\mu_{current} > \mu_{previous}$ This would be a one-tailed test. The type I error for this situation would be that we reject the null hypothesis when, in fact, it is true, i.e. we decide the level of the pollutant is > the previous level at some level of confidence when, in fact, it is not. The type II error would be that we accept the null hypothesis when, in fact, it is false, i.e. we decide the level of the pollutant = the previous level when, in fact, it is > than the previous level.
- 7-20. (a) H₀: μ_{ISE} = μ_{EDTA}, H_a: μ_{ISE} ≠ μ_{EDTA}. This would be a two-tailed test. The type I error for this situation would be that we decide the methods agree when they do not. The type II error would be that we decide the methods do not agree when they do.
 - (c) $H_0: \sigma_X^2 = \sigma_Y^2$; $H_a \sigma_X^2 < \sigma_Y^2$. This is a one-tailed test. The type I error would be that we decide that $\sigma_X^2 < \sigma_Y^2$ when it is not. The type II error would be that we decide that $\sigma_X^2 = \sigma_Y^2$ when actually $\sigma_X^2 < \sigma_Y^2$.
- **7-21.** (a) For the Top data set, $\bar{x} = 26.338$

For the bottom data set, $\overline{x} = 26.254$

 $s_{\text{pooled}} = 0.1199$

degrees of freedom = 5+5-2 = 8

For 8 degrees of freedom at 95% confidence $t_{crit} = 2.31$

$$t = \frac{26.338 - 26.254}{0.1199\sqrt{\frac{5+5}{5\times5}}} = 1.11$$
 Since $t < t_{crit}$, we conclude that no significant difference

exists at 95% confidence level.

(**b**) From the data, N = 5, $\overline{d} = 0.084$ and $s_d = 0.015166$

For 4 degrees of freedom at 95% confidence t = 2.78

$$t = \frac{0.084 - 0}{0.015 / \sqrt{5}} = 12.52$$

Since 12.52 > 2.78, a significant difference does exist at 95% confidence level.

- (c) The large sample to sample variability causes s_{Top} and s_{Bottom} to be large and masks the differences between the samples taken from the top and the bottom.
- **7-23.** For the first data set: $\bar{x} = 2.2978$

For the second data set: $\bar{x} = 2.3106$

$$s_{\text{pooled}} = 0.0027$$

Degrees of freedom = 4 + 3 - 2 = 5

$$t = \frac{2.2978 - 2.3106}{0.0027\sqrt{\frac{4+3}{4\times 3}}} = -6.207$$

For 5 degrees of freedom at the 99% confidence level, t = 4.03 and at the 99.9%

confidence level, t = 6.87. Thus, we can be between 99% and 99.9% confident that the nitrogen prepared in the two ways is different. The Excel TDIST(x,df,tails) function can be used to calculate the probability of getting a *t* value of -6.207. In this case we find TDIST(6.207,5,2) = 0.0016. Therefore, we can be 99.84% confident that the nitrogen

prepared in the two ways is different. There is a 0.16% probability of this conclusion being in error.

7-25 (a)

Source	SS	df	MS	\mathbf{F}
Between juices	$4 \times 7.715 = 30.86$	5 - 1 = 4	$0.913 \times 8.45 = 7.715$	8.45
Within juices	$25 \times 0.913 = 22.825$	30 - 5 = 25	0.913	
Total	30.86 + 22.82 = 50.68	30 - 1 = 29		

(**b**) H_0 : $\mu_{\text{brand1}} = \mu_{\text{brand2}} = \mu_{\text{brand3}} = \mu_{\text{brand4}} = \mu_{\text{brand5}}$; H_a : at least two of the means differ.

(c) The Excel FINV(prob,df1,df2) function can be used to calculate the *F* value for the above problem. In this case we find FINV(0.05,4,25) = 2.76. Since *F* calculated exceeds *F* critical, we reject the null hypothesis and conclude that the average ascorbic acid contents of the 5 brands of orange juice differ at the 95% confidence level.

7-27.

(a) $H_0: \mu_{\text{Analyst}1} = \mu_{\text{Analyst}2} = \mu_{\text{Analyst}3} = \mu_{\text{Analyst}4}; H_a:$ at least two of the means differ.

(b) See spreadsheet next page. From Table 7-4 the *F* value for 3 degrees of freedom in the numerator and 12 degrees of freedom in the denominator at 95% is 3.49. Since *F* calculated exceeds *F* critical, we reject the null hypothesis and conclude that the analysts differ at 95% confidence. The *F* value calculated of 13.60 also exceeds the critical values at the 99% and 99.9% confidence levels so that we can be certain that the analysts differ at these confidence levels.

(c) Based on the calculated LSD value there is a significant difference between analyst 2 and analysts 1 and 4, but not analyst 3. There is a significant difference between analyst 3 and analyst 1, but not analyst 4. There is a significant difference between analyst 1 and analyst 4.

Spreadsheet for Problem 7-27.

1	A	В	С	D	E	F	G	
1	Detmn	Analys 1	Analyst 2	Analyst 3	Analyst 4			
2	1	10.24	10.14	10.19	10.19			
3	2	10.26	10.12	10.11	10.15			
4	3	10.29	10.04	10.15	10.16			
5	4	10.23	10.07	10.12	10.10			
6								
7	Mean	10.26	10.09	10.14	10.15			
8	Std. Dev.	0.02646	0.04573	0.03594	0.03742			
9	Variance	0.00070	0.00209	0.00129	0.00140			
10								
11	Grand Mean	10.16						
12	SSF	0.05595		Differences				
13	SSE	0.01645		10.26-10.09=	0.17	Significant	difference	
14	SST	0.07240		10.15-10.09=			difference	
15				10.14-10.09=		No sig. diff.		
16	MSF	0.01865		10.26-10.14=		Significant difference		
17	MSE	0.001371		10.15-10.14=		No sig. diff.		
18				10.26-10.15=			difference	
19	F	13.60486				Ŭ		
20								
	LSD	0.057335						
22								
23	Spreadshee	t Documer	ntation					
	B7=AVERAG							
	B8=STDEV(E	· · · ·						
	B9=VAR(B2:B5)							
	B11=AVERAGE(B2:E5)							
	B12=4*((B7-B11)^2+(C7-B11)^2+(D7-B11)^2+(E7-B11)^2)							
	B13=3*SUM(B9:E9)			, _ (_, _				
	B14=B12+B13							
	B16=B12/3	_						
	B17=B13/12							
	B19=B16/B1	7						
34			4)					

7-29. (a) $H_0: \mu_{\text{ISE}} = \mu_{\text{EDTA}} = \mu_{\text{AA}}; H_a:$ at least two of the means differ.

	A	В	С	D	E	F	G	
1	Repetition	ISE	EDTA	At. Abs.				
2	1	39.2	29.9	44.0				
3	2	32.8	28.7	49.2				
4	3	41.8	21.7	35.1				
5	4	35.3	34.0	39.7				
6	5	33.5	39.1	45.9				
7								
8	Mean	36.52	30.68	42.78				
9	Std. Dev.	3.85707	6.46313	5.49791				
10	Variance	14.877	41.772	30.227				
11								
12	Grand Mean	36.660		Differences				
13	SSF	366.172		42.78-30.68=	12.1	Significant	difference	
14	SSE	347.504		36.52-30.68=	5.94	No sig. diff		
15	SST	713.676		42.78-36.52=	6.26	No sig. diff		
16						1000		
17	MSF	183.086						
18	MSE	28.95867						
19	F	6.322321						
20	LSD	7.453554						
21								
22	Spreadshee	t Documen	tation					
23	B8=AVERAGE(B2:B6)							
24	B9=STDEV(B2:B6)							
25	B10=VAR(B2:B6)							
26	B12=AVERAGE(B2:D6)							
27	B13=5*((B8-B12)^2+(C8-B12)^2+(D8-B12)^2)							
28	B14=4*SUM	(B10:D10)						
29	B15=B13+B14							
30	B17=B13/2							
31	B18=B14/12							
32	B19=B17/B18							
33	B20=2.19*S0	QRT(2*B18/	5)					

(b) See Spreadsheet

From Table 7-4 the F value for 2 degrees of freedom in the numerator and 12 degrees of freedom in the denominator at 95% is 3.89. Since F calculated is greater than F critical, we reject the null hypothesis and conclude that the 3 methods give different results at the 95% confidence level.

(c) Based on the calculated LSD value there is a significant difference between the atomic absorption method and the EDTA titration. There is no significant difference between the EDTA titration method and the ion-selective electrode method and there is no significant difference between the atomic absorption method and the ion-selective electrode method.

7-31. (a)
$$Q = \frac{|85.10 - 84.70|}{85.10 - 84.62} = 0.833$$
 and Q_{crit} for 3 observations at 95% confidence = 0.970.

Since $Q < Q_{crit}$ the outlier value 85.10 cannot be rejected with 95% confidence.

(b)
$$Q = \frac{|85.10 - 84.70|}{85.10 - 84.62} = 0.833$$
 and Q_{crit} for 4 observations at 95% confidence = 0.829.

Since $Q > Q_{crit}$ the outlier value 85.10 can be rejected with 95% confidence.

Chapter 8

Chapter 8

- 8-1. The sample size is in the micro range and the analyte level is in the trace range. Hence, the analysis is a micro analysis of a trace constituent.
- **8-3.** Step 1: Identify the population from which the sample is to be drawn.

Step 2: Collect the gross sample.

Step 3: Reduce the gross sample to a laboratory sample, which is a small quantity of homogeneous material

8-5.
$$s_o^2 = s_s^2 + s_m^2$$

From the NIST sample: $s_m^2 = 0.00947$

From the gross sample: $s_o^2 = 0.15547$

$$s_s = \sqrt{0.15547 - 0.00947} = 0.38$$

The relative standard deviation = $\left(\frac{s_s}{\overline{x}}\right) \times 100\% = \left(\frac{0.38}{49.92}\right) \times 100\% = 0.76\%$

8-7. (a)
$$N = \frac{(1-p)}{p\sigma_r^2} = \frac{(1-0.02)}{0.02(0.20)^2} = \frac{49.0}{(0.20)^2} = 1225$$

(b) $N = 49.0/(0.12)^2 = 3403$
(c) $N = 49.0/(0.07)^2 = 10000$
(d) $N = 49.0/(0.02)^2 = 122500$

8-9.
$$N = p(1-p) \left(\frac{d_A d_B}{d^2}\right)^2 \left(\frac{P_A - P_B}{\sigma_r P}\right)^2$$
(a) $d = 7.3 \times 0.15 + 2.6 \times 0.85 = 3.3$

$$P = 0.15 \times 7.3 \times 0.87 \times 100 / 3.3 = 29\%$$

$$N = 0.15(1-0.15) \left(\frac{7.3 \times 2.6}{(3.3)^2}\right)^2 \left(\frac{87-0}{0.020 \times 29}\right)^2 = 8714 \text{ particles}$$
(b) mass = $(4/3)\pi(r)^3 \times d \times N = (4/3)\pi(0.175 \text{ cm})^3 \times 3.3(g/\text{cm}^3) \times 8.714 \times 10^3$

$$= 650 \text{ g}$$
(c) $0.500 = (4/3)\pi(r)^3 \times 3.3(g/\text{cm}^3) \times 8.714 \times 10^3$

$$r = 0.016 \text{ cm} \quad (\text{diameter} = 0.32 \text{ mm})$$

8-11. (a) The following single-factor ANOVA table was generated using Excel's Data

. 1		T	
Δna	VCIC	Tool	c.
1 ma	1 9 515	100	LO.

Anova: Single Facto	or					
SUMMARY	2					
Groups	Count	Sum	Average	Variance		
1	3	185	61.66667	2.333333		
2	3	172	57.33333	0.333333		
3	3	146	48.66667	4.333333		
4	3	170	56.66667	6.333333		
ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Between Groups	264.25	3	88.08333	26.425	0.000167	4.066181
Within Groups	26.66667	8	3.333333			
Total	290.9167	11				

The Between Groups *SS* value of 264.25 compared to the Within Groups value of 26.66667 indicates that the mean concentrations vary significantly from day to day.

- (b) SST is the total variance and is the sum of the within day variance, SSE, and the day-today variance, SSF; SST = SSE + SSF. The within day variance, SSE, reflects the method variance, SSM. The day-to-day variance, SSF, reflects the sum of the method variance, SSM, and the sampling variance, SSS; SSF = SSM + SSS. Thus, SST = SSM + SSM + SSS and SSS = SST - 2×SSM SSS = 290.92 - 2×26.67 = 237.58. Dividing 3 degrees of freedom gives a mean square (estimates sampling variance σ_s^2) of 79.19.
- (c) The best approach to lowering the overall variance would be to reduce the sampling variance, since this is the major component of the total variance ($\sigma_t^2 = 88.08333$).

Chapter 8

8-13. See Example 8-3

Using
$$t = 1.96$$
 for infinite samples $N = \frac{(1.96)^2 \times (0.3)^2}{(3.7)^2 \times (0.07)^2} = 5.16$
Using $t = 2.78$ for 5 samples (4 df) $N = \frac{(2.78)^2 \times (0.3)^2}{(3.7)^2 \times (0.07)^2} = 10.36$
Using $t = 2.26$ for 10 samples $N = \frac{(2.26)^2 \times (0.3)^2}{(3.7)^2 \times (0.07)^2} = 6.85$
Using $t = 2.45$ for 7 samples $N = \frac{(2.45)^2 \times (0.3)^2}{(3.7)^2 \times (0.07)^2} = 8.05$
Using $t = 2.36$ for 8 samples $N = \frac{(2.36)^2 \times (0.3)^2}{(3.7)^2 \times (0.07)^2} = 7.47$

The iterations converge at between 7 and 8 samples, so 8 should be taken for safety.

8-15.

	A	В	С	D	E	F	G	Н		J
1	Pb 8-15									
2	pCa	E, mV	-							
3	5.00	-53.8		80	7		1	7	7	-
4	4.00	-27.7								
5	3.00	2.7		60 -						
6	2.00	31.9		40 -						
7	1.00	65.1		20		•				
8	unknown	15.3	5	20 -						
9	Part (b)		È	0	1	1	*	1	1	
10	Slope	-29.74	ů.							
11	Intercept	92.86		-20 -	v - 2	9.74x + 92.	06			
12	Std. Error	2.138224		-40 -		² = 0.9985	80	-		
13	N	5		~~	R	- 0.5565				
14	Sxx	10	8	-60 -						
	ybar	3.64		-80						
	Part (d)			0.00	1.00	2.00	3.00	4.00	5.00	6.00
17		1		0.00	1.00	2.00	0.00	1.00	5.00	0.00
18	pCa unknwn	2.607935					pCa			
	SD in pCa	0.079262								
	RSD	0.030393								
	Part(e)									
22		2								
23	SD in pCa	0.06081								
	RSD	0.023317								
25	M	8								
26	SD in pCa	0.041946								
27	RSD	0.016084								
28	Spreadshee	t Documen	tation							
	B10=SLOPE									
30	B11=INTERC	EPT(B3:B7,	A3:A7)							
31	B12=STEYX(B3:B7,A3:A	.7)							
32	B13=COUNT	(A3:A7)								
33	B14=DEVSQ	(A3:A7)								
	B15=AVERA									
35	B18=(B8-B11)/B10								
36	B19=ABS((B	12/B10)*SQ	RT(1/B17	7+1/B13+((B8-B15)^2)	/((B10^2)*B	(14)))			
	B20=B19/B1									
38	B23=ABS((B	12/B10)*SQ	RT(1/B22	2+1/B13+((B8-B15)^2)	/((B10^2)*B	(14)))			
39	B24=B23/B1	3			v 1		10.000			
40	B26=ABS((B	12/B10)*SQ	RT(1/B25	5+1/B13+((B8-B15)^2)	/((B10^2)*B	(14)))			
41	B27=B26/B1	3								

(b) Equation of the line: y = -29.74 x + 92.8

(d) $pCa_{Unk} = 2.608$; SD in pCa = 0.079; RSD = 0.030 (CV = 3.0%)

8-17.

-	A	B	С	D	E	F	G	Н	1	J
1	Pb 8-17			0.800 -						
2		Absorbance		0.000						
3	0.00			0.700 -						
4	2.00	0.150		0.600 -		v = 0.0701	x + 0.0083	/		
5	4.00	0.294	<	10.000			.9996	*		
6	6.00	0.434	e	0.500 -		N - 0	.5550	/		
7	8.00	0.570	a Le	0.400 -			*			
8	10.00	0.704	Absorbance,	0.400			/			
9	unknown	0.413	oso	0.300 -		*				
10	Part (a)		A	0.200 -		/				
11	Slope	0.070143		0.200	*					
12	Intercept	0.008286		0.100 -	/					
13	Std. Error	0.005581		0.000 🖌				10		
14	N	6								
15	Sxx	70		0.00	2.00	4.00	6.00	8.00	10.00	12.00
16	ybar	0.359				Glu	ucose con	c mM		
	Parts (b) & (c)							-,		
	SD m	0.000667								
	SD b	0.004039		LINEST Re	sults					
20	t(0.05,4)	2.776445		m	0.070143	0.008286	b			
	95% CI for m	0.001852		SD m	0.000667	0.004039	SD b			
	95% CI for b	0.011214		R ²	0.999638	0.005581	SE			
23	Part (d)			F	11058.76	4	df			
24	M	1		SSR	0.344401	0.000125	SSE			
25	Cunk	5.769857								
	SD in c _{unk}	0.086246								
27	95% CI for Cunk	0.239458								
28			n							
	B11=SLOPE(B3	· · · · · · · · · · · · · · · · · · ·		E20:F24=L		38,A3:A8,,	TRUE)			
	B12=INTERCEP		48)	B20=TINV(
	B13=STEYX(B3			B21=B20*E						
	B14=COUNT(A3			B22=B20*E						
	B15=DEVSQ(A			B25=(B9-B						
	B16=AVERAGE	:(B3:B8)		B26=(B13/		(1/B24+1/E	B14+((B9-B	16)^2)/((B1	1^2)*B15))	
	B18=E21			B27=B20*E	326					
36	B19=F21									

- (a) m = 0.07014 and b = 0.008286
- **(b)** $s_{\rm m} = 0.00067; s_{\rm b} = 0.004039; \text{ SE} = 0.00558$
- (c) 95% $CI_m = m \pm t \times s_m = 0.07014 \pm 0.0019$

95% CI_b = $b \pm t \times s_b = 0.0083 \pm 0.0112$

(d) $c_{\text{unk}} = 5.77 \text{ mM}; \ s_{\text{unk}} = 0.09; \ 95\% \text{ CI}_{\text{unk}} = c_{\text{unk}} \pm t \times s_{\text{Unk}} = 5.77 \pm 0.24 \text{ mM}$

8-19.

	A	В	С	D	E	F	G	Н	1	J	K	L
1	Pb 8-19											
2	Part (a)					0						
3	T, K	k, s ⁻¹	1000/T	log k	-0.	-						
4	599	0.00054	1.669449	-3.26761	-0.		y = -8	8.4563x +				
5	629	0.0025	1.589825	-2.60206		1 -		$R^2 = 0.99^{\circ}$	7			
6	647	0.0052	1.545595	-2.284			•					
7	666		1.501502		× -1.	.5 -						
8	683	0.025	1.464129	-1.60206	-بر -1. م	2 -		*				
9	700	0.064	1.428571	-1.19382		2						
10	Part (b)				-2.	5 -			-	-		
11	Slope	-8.45629								-		
	Intercept	10.8311			-	3 -						
	Std. Error	0.045927			-3.	5					•	
14		6			-5.		1.2 2002/00/2010				1	
15	Sxx	0.038647				1.4	1.45	1.5	1.55	1.6	1.65	1.7
16	ybar	-2.1339							1000/T			
17	Part (c)								1000/1			
18	LINEST values											
19	m	-8.45629	10.8311	b								
	SD in m	0.23362	0.358671	SD in b								
	R ²	0.996956	0.045927	SE								
22	F	1310.21	4	df								
23	SSR	2.763575	0.008437	SSE								
24	EA	38696.51										
25	SD in EA	1069.058										
26	Spreadsheet D	ocumenta	tion								8	
	C4=1000/A4											
28	D4=LOG(B4)											
29	B11=SLOPE(D4	4:D9,C4:C9)									
30	B12=INTERCEF	PT(D4:D9,C4	4:C9)									
	B13=STEYX(D4											
	B14=COUNT(C4											
33	B15=DEVSQ(C	4:C9)										
34	B16=AVERAGE	E(D4:D9)										
35	B19:C23=LINES	ST(D4:D9,C4	4:C9,,TRU	E)								
36	B24=-B11*2.303	3*1.987*100	00									
37	B25=B20*2.303	*1.987*100	0									

(b) m = -8.456; b = 10.83 and SE = 0.0459

(c) $E_A = -m \times 2.303 \times R \times 1000$ (Note: m has units of mK) =

-(-8.456 mK)×(2.303)×(1.987 cal mol⁻¹ K⁻¹)×(1000 K/mK)

= 38697 cal/mol

 $s_{\rm EA} = s_{\rm m} \times 2.303 \times R \times 1000$

= 1069 cal/mol

Thus, $E_A = 38,697 \pm 1069$ cal/mol or 38.7 ± 1.1 kcal/mol

(d) $H_0: E_A = 41.00 \text{ kcal/mol}; H_A: E_A \neq 41.00 \text{ kcal/mol}.$

$$t = (38.697 - 41.00)/1.069 = -2.15$$
$$t(0.025, 4) = 2.776$$

Since $t \ge -t_{crit}$ we retain H_0 . There is no reason to doubt that E_A is not 41.00 kcal/mol at

the 95% confidence level.

Chapter 8

- **8-21.** (c) 5.247 ppm rounded to 5.2 ppm
- **8-23.** See Example 8-8

$$c_{\rm u} = \frac{(0.300)(1.00 \times 10^{-3})(1.00)}{(0.530)(51.00) - (0.300)(50.00)} = 2.4938 \times 10^{-5} \,\mathrm{M}$$

To obtain the concentration of the original sample, we need to multiply by 25.00/1.00.

 $c_{\rm u} = (2.4938 \times 10^{-5} \,\mathrm{M})(25.00)/(1.00) = 6.23 \times 10^{-4} \,\mathrm{M}$

8-25.

(c) For k = 2, DL = 0.14 ng/mL (92.1% confidence level) for k = 3, DL = 0.21 ng/mL (98.3% confidence level)

8-27.

	A	В	С	D	E	F	G	H		1	J	К	L	M	N
1	Pb 8-27														
2	Day	Mean	SD	$\Sigma(x_i-x_{ave})^2$	UCL	LCL	9 <u></u>								
3	1	96.50	0.80	3.20	98.08	94.97		99.00							
4	2	97.38	0.88	3.87	98.08	94.97		98.50 -		UCL					
5	3	96.85	1.43	10.22	98.08	94.97		98.00						A	
6	4	96.64	1.59	12.64	98.08	94.97	ŝ	97.50 -						/ \	
7	5	96.87	1.52	11.55	98.08	94.97	Ē		Α.		۰			11	
8	6	95.52	1.27	8.06	98.08	94.97	Mean Values	97.00 -	/ `		- /			- 1	
9	7	96.08	1.16	6.73	98.08	94.97	E	96.50 - 6		•	• 1	• \			
10	8	96.48	0.79	3.12	98.08	94.97	Je	96.00 -		1.		1		1	
11	9	96.63	1.48	10.95	98.08	94.97	2			∇	V		V	V	-
12	10	95.47	1.30	8.45	98.08	94.97		95.50 -	LCL	•	•		•	•	
13	11	97.38	0.88	3.87	98.08	94.97		95.00	LUL						_
14	12	96.85	1.43	10.22	98.08	94.97		94.50		-			1		
15	13	96.64	1.59	12.64	98.08	94.97		0		5	10		15	20	25
16	14	96.87	1.52	11.55	98.08	94.97		0		2	10		15	20	25
17	15	95.52	1.27	8.06	98.08	94.97						Day			
18	16	96.08	1.16	6.73	98.08	94.97									
19	17	96.48	0.79	3.12	98.08	94.97									
20	18	96.63	1.48	10.95	98.08	94.97									
21	19	95.47	1.30	8.45	98.08	94.97									
22	20	96.43	0.75	2.81	98.08	94.97									
23	21	97.06	1.34	8.98	98.08	94.97									
24	22	98.34	1.60	12.80	98.08	94.97									
25	23	96.42	1.22	7.44	98.08	94.97									
26	24	95.99	1.18	6.96	98.08	94.97									
27	-								-						
		96.52		Spreadshe											
29	N	24		B28=AVER	AGE(B3:B2	26)		D3=C3^2	2*5						
30	S pooled	1.269523		B29=COUN	T(A3:A26)			E3=\$B\$3	31						
	UCL	98.07901		B30=SQRT(SUM(D3:D	26)/(B29*6-E	329))	F3=\$B\$3	32						
32	LCL	94.96933		B31=B28+3											
33				B32=B28-3*											

The process went out of control on Day 22.

Chapter 9

Chapter 9

9-1. (a) A *weak electrolyte* only partially ionizes when dissolved in water. H₂CO₃ is an example of a weak electrolyte.

(c) The *conjugate acid of a Brønsted-Lowry base* is the potential proton donator formed when a Brønsted-Lowry base accepts a proton. For example, the NH_4^+ is a conjugate acid in the reaction, $NH_3 + \text{proton} \rightleftharpoons NH_4^+$.

(e) An *amphiprotic solvent* can act either as an acid or a base depending on the solute.Water is an example of an amphiprotic chemical species.

(g) *Autoprotolysis* is the act of self-ionization to produce both a conjugate acid and a conjugate base.

(i) The *Le Châtelier principle* states that the position of an equilibrium always shifts in such a direction that it relieves the stress. A common ion like sulfate added to a solution containing sparingly soluble $BaSO_4$ is an example

9-2. (a) An *amphiprotic solute* is a chemical species that possesses both acidic and basic properties. The dihydrogen phosphate ion, $H_2PO_4^-$, is an example of an amphiprotic solute.

(c) A *leveling solvent* shows no difference between strong acids. Perchloric acid and hydrochloric acid ionize completely in water; thus, water is a leveling solvent.

9-3. For dilute aqueous solutions, the concentration of water remains constant and is assumed to be independent of the equilibrium. Thus, its concentration is included within the equilibrium constant. For a pure solid, the concentration of the chemical species in the solid phase is constant. As long as some solid exists as a second phase, its effect on the equilibrium is constant and is included within the equilibrium constant.

9-4.

		Acid		Conjugate Base
	(a)	HOCI		OCI ⁻
	(c)	$\mathrm{NH_4}^+$		NH ₃
	(e)	$H_2PO_4^-$		HPO_{4}^{-}
9-6.	(a) 2H ₂ O =	\doteq H ₃ O ⁺ +OH ⁻		
	(c) 2CH ₃ NI	$H_2 \rightleftharpoons CH_3 NH_3^+ + CH_3$	₃ NH ⁻	
9-7.	(a) C_2H_5NH	$H_2 + H_2 O \rightleftharpoons C_2 H_5 N H_2$	$^{+}+OH^{-}$	
	$K_b = \frac{K_w}{K_a} = \frac{K_w}{K$	$\frac{1.00 \times 10^{-14}}{2.3 \times 10^{-11}} = \frac{[C_2 H_5 NH}{[C_2 H_5]}$	$\frac{[1_2^+][OH^-]}{[NH_2]} = 4.3 \times 10^{-1}$	0^{-4}
	(c)			
	CH ₃ NH ₃ ⁺ +	$H_2O \rightleftharpoons CH_3NH_2 + H_3$	H_3O^+	
	$K_a = \frac{K_w}{K_b} = \frac{K_w}{K$	$\frac{[CH_{3}NH_{2}][H_{3}O^{+}]}{[CH_{3}NH_{3}^{+}]} = 2$	2.3×10^{-11}	
	(e) H ₃ AsO ₄	$+ H_2O \rightleftharpoons H_3O^+ + H_2A$	AsO_4^-	
	$H_2AsO_4^- + 1$	$H_2O \rightleftharpoons H_3O^+ + HAsO$	42-	
	$\underline{\text{HAsO}_4^{2-}} + 1$	$H_{\underline{2}}O \rightleftharpoons H_{\underline{3}}O^+ + AsO_{\underline{4}}$	3_	
	$H_3AsO_4 + 3$	$H_2O \rightleftharpoons 3H_3O^+ + AsO$	4 ³ =	
	$K_{a1} = \frac{[\mathrm{H}_{3}\mathrm{C}]}{[}$	$\frac{(1)^{+} [[H_{2}AsO_{4}^{-}]]}{H_{3}AsO_{4}]} K_{a2} =$	$\frac{[{\rm H}_{3}{\rm O}^{+}]\![{\rm H}{\rm As}{\rm O}_{4}^{-2-}]}{[{\rm H}_{2}{\rm As}{\rm O}_{4}^{}]}$	$K_{a3} = \frac{[\text{H}_{3}\text{O}^{+}][\text{AsO}_{4}^{3-}]}{[\text{HAsO}_{4}^{2-}]}$
	٢IJ	$[O^{+}]^{3}[A_{c}O^{3-}]$		

$$K_{\text{overall}} = \frac{[\text{H}_3\text{O}^+]^3[\text{AsO}_4^{3-}]}{[\text{H}_3\text{AsO}_4]} = K_{a1}K_{a2}K_{a3} = 5.8 \times 10^{-3} \times 1.1 \times 10^{-7} \times 3.2 \times 10^{-12} = 2.0 \times 10^{-21}$$

9-8. (a)
$$\operatorname{CuBr}(s) \rightleftharpoons \operatorname{Cu}^{+} + \operatorname{Br}^{-} K_{sp} = [\operatorname{Cu}^{+}][\operatorname{Br}^{-}]$$

(b) $\operatorname{HgClI}(s) \rightleftharpoons \operatorname{Hg}^{2+} + \operatorname{Cl}^{-} + \operatorname{I}^{-} K_{sp} = [\operatorname{Hg}^{2+}][\operatorname{Cl}^{-}][\operatorname{I}^{-}]$
(c) $\operatorname{PbCl}_{2}(s) \rightleftharpoons \operatorname{Pb}^{2+} + 2\operatorname{Cl}^{-} K_{sp} = [\operatorname{Pb}^{2+}][\operatorname{Cl}^{-}]^{2}$
9-10. (b) $\operatorname{RaSO}_{4} \rightleftharpoons \operatorname{Ra}^{2+} + \operatorname{SO}_{4}^{2-}$
 $[\operatorname{Ra}^{2+}] = [\operatorname{SO}_{4}^{2-}] = 6.6 \times 10^{-6} \text{ M}$
 $K_{sp} = [\operatorname{Ra}^{2+}][\operatorname{SO}_{4}^{2-}] = (6.6 \times 10^{-6} \text{ M})^{2} = 4.4 \times 10^{-11}$
(d) $\operatorname{Ce}(\operatorname{IO}_{3})_{3} \rightleftharpoons \operatorname{Ce}^{3+} + 3\operatorname{IO}_{3}^{-}$
 $[\operatorname{Ce}^{3+}] = 1.9 \times 10^{-3} \text{ M} [\operatorname{IO}_{3}^{-}] = 3 \times 1.9 \times 10^{-3} \text{ M} = 5.7 \times 10^{-3} \text{ M}$
 $K_{sp} = [\operatorname{Ce}^{3+}][\operatorname{IO}_{3}^{-}]^{3} = 1.9 \times 10^{-3} \times (5.7 \times 10^{-3})^{3} = 3.5 \times 10^{-10}$

9-13. Ag₂CrO₄(s)
$$\rightleftharpoons$$
 2Ag⁺ + CrO₄²⁻

(a)
$$[CrO_4^{2-}] = \frac{1.2 \times 10^{-12}}{(4.13 \times 10^{-3})^2} = 7.04 \times 10^{-8} M$$

(b) $[CrO_4^{2-}] = \frac{1.2 \times 10^{-12}}{(9.00 \times 10^{-7})^2} = 1.48 M$

9-15. $Ce^{3+} + 3IO_3^- \rightleftharpoons Ce(IO_3)_3(s)$

$$K_{\rm sp} = [{\rm Ce}^{3+}][{\rm IO}_3^-]^3 = 3.2 \times 10^{-10}$$

(a) $50.00 \text{ mL} \times 0.0450 \text{ mmol/ml} = 2.25 \text{ mmol Ce}^{3+}$

$$[Ce^{3+}] = \frac{2.25 \text{ mmol}}{(50.00 + 50.00) \text{ mL}} = 0.0225 \text{ M}$$

(b) We mix 2.25 mmol Ce³⁺ with 50.00 mL × 0.045 mmol/mL = 2.25 mmol IO₃⁻.

Each mole of IO_3^- reacts with 1/3 mole of Ce^{3+} so 2.25 mmol would consume $1/3 \times 2.25$ mmol Ce^{3+} or the amount of unreacted $Ce^{3+} = 2.25 - 2.25/3 = 1.5$ mmol

$$c_{cs^{1+}} = \frac{1.50 \text{ mmol}}{100 \text{ mL}} = 0.0150 \text{ M}$$

$$[Ce^{3^{+}}] = 0.0150 + S \qquad \text{(where S is the solubility)}.$$

$$[IO_3^{-}] = 3S$$

$$K_{sp} = [Ce^{3^{+}}][IO_3^{-}]^3 = 0.0150 \times 3S^3 = 3.2 \times 10^{-10}$$

$$S = \left(\frac{3.2 \times 10^{-10}}{27 \times 1.50 \times 10^{-2}}\right)^{1/3} = 9.2 \times 10^{-4}$$

$$[Ce^{3^{+}}] = 1.50 \times 10^{-2} + 9.2 \times 10^{-4} = 1.6 \times 10^{-2} \text{ M}$$
(c) Now we have 0.250 mmol IO_3^{-} × 50.00 mL = 12.5 mmol. Since 3 × 2.25 mmol = 6.75 mmol would be required to completely react with the Ce³⁺, we have excess IO_3^{-}.
$$[IO_3^{-}] = \frac{12.5 \text{ mmol} - 6.75 \text{ mmol}}{100 \text{ mL}} + 3S = 0.0575 + 3S$$

$$[Ce^{3^{+}}] = S$$

$$K_{sp} = S(0.0575 + 3S)^3 = 3.2 \times 10^{-10}$$
Lets assume $3S < 0.0575$

$$S = [Ce^{3^{+}}] = 3.2 \times 10^{-10}/(0.0575)^3 = 1.7 \times 10^{-6} \text{ M}$$
Checking the assumption $3 \times 1.7 \times 10^{-6} \text{ M} = 5.1 \times 10^{-6}$ which is much smaller than 0.0575.
(d) Now we are mixing 2.25 mmol Ce³⁺ with 50.00 mL × 0.050 mmol/mL = 2.50 mmol

 IO_3^{-} . The Ce³⁺ is now in excess so that

amount of $Ce^{3+} = 2.25 \text{ mmol} - 2.5/3 \text{ mmol} = 1.42 \text{ mmol}$

$$c_{\text{Ce}^{3+}} = \frac{1.42 \text{ mmol}}{100 \text{ mL}} = 0.0142 \text{ M}$$

 $[\text{Ce}^{3+}] = 1.42 \times 10^{-2} + S$
 $K_{\text{sp}} = [\text{Ce}^{3+}][\text{IO}_{3}^{-}]^{3} = 0.0142 \times 3S^{3} = 3.2 \times 10^{-10}$
45

$$S = \left(\frac{3.2 \times 10^{-10}}{27 \times 1.42 \times 10^{-2}}\right)^{1/3} = 9.42 \times 10^{-4}$$
$$[Ce^{3+}] = 1.42 \times 10^{-2} + 9.42 \times 10^{-4} = 1.5 \times 10^{-2} M$$

9-17.
$$\operatorname{CuI}(s) \rightleftharpoons \operatorname{Cu}^+ + \operatorname{I}^- \quad K_{\operatorname{sp}} = [\operatorname{Cu}^+][\operatorname{I}^-] = 1 \times 10^{-12}$$

$$\operatorname{AgI}(s) \rightleftharpoons \operatorname{Ag}^{+} + \Gamma \qquad K_{sp} = [\operatorname{Ag}^{+}][\Gamma] = 8.3 \times 10^{-17}$$

$$PbI_2(s) \Longrightarrow Pb^{2+} + 2I^ K_{sp} = [Pb^{2+}][I^-]^2 = 7.1 \times 10^{-9} = S(2S)^2 = 4S^3$$

$$\operatorname{BiI}_{3}(s) \rightleftharpoons \operatorname{Bi}^{3+} + 3\Gamma \qquad K_{\operatorname{sp}} = [\operatorname{Bi}^{3+}][\Gamma]^{3} = 8.1 \times 10^{-19} = S(3S)^{3} = 27S^{4}$$

- (a) For CuI, $S = [Cu^+] = [I^-] = \sqrt{1 \times 10^{-12}} = 1 \times 10^{-6} \text{ M}$
- For AgI, $S = [Ag^+] = [I^-] = \sqrt{8.3 \times 10^{-17}} = 9.1 \times 10^{-9} \text{ M}$

For PbI₂,
$$S = \sqrt[3]{\frac{7.1 \times 10^{-9}}{4}} = 1.2 \times 10^{-3} \text{ M}$$

For BiI₃
$$S = \sqrt[4]{\frac{8.1 \times 10^{-19}}{27}} = 1.3 \times 10^{-5} \text{ M}$$

So, solubilities are in the order
$$PbI_2 > BiI_3 > CuI > AgI$$

(b) For CuI, $S = 1 \times 10^{-12}/0.20 = 5 \times 10^{-12} M$
For AgI, $S = 8.3 \times 10^{-17}/0.20 = 4.2 \times 10^{-16} M$
For PbI₂, $S = 7.1 \times 10^{-9}/(0.20)^2 = 1.8 \times 10^{-7} M$
For BiI₃, $S = 8.1 \times 10^{-19}/(0.20)^3 = 1.0 \times 10^{-16} M$
So, solubilities are in the order PbI₂ > CuI > AgI >BiI₃
(c) For CuI, $S = 1 \times 10^{-12}/0.020 = 5 \times 10^{-11} M$
For AgI, $S = 8.3 \times 10^{-17}/0.020 = 4.2 \times 10^{-15} M$

46

For PbI₂,
$$S = \frac{1}{2} \sqrt{\frac{7.1 \times 10^{-9}}{0.020}} = 3.0 \times 10^{-4} \text{ M}$$

For BiI₃,
$$S = \frac{1}{3} \sqrt[3]{\frac{8.1 \times 10^{-19}}{0.020}} = 1.1 \times 10^{-6} \text{ M}$$

So solubilities are in the order, $PbI_2 > BiI_3 > CuI > AgI$

9-19. At 25°C,
$$pK_w = 13.99$$
, $K_w = 1.023 \times 10^{-14}$. At 75°C, $pK_w = 12.70$, $K_w = 1.995 \times 10^{-13}$
 $[H_3O^+] = [OH^-]$ in pure water. Thus $[H_3O^+] = \sqrt{K_w}$
At 25°C, $[H_3O^+] = \sqrt{1.023 \times 10^{-14}} = 1.011 \times 10^{-7}$ M, $pH = -\log[H_3O^+] = 6.99_5 \approx 7.00$
At 75°C, $[H_3O^+] = \sqrt{1.995 \times 10^{-13}} = 4.467 \times 10^{-7}$ M, $pH = 6.35$

9-20. (a) For benzoic acid, $K_a = 6.28 \times 10^{-5}$. Call benzoic acid HBz and the benzoate anion Bz⁻

 $HBz + H_2O \rightleftharpoons Bz^- + H_3O^+$

$$K_{a} = \frac{[Bz^{-}][H_{3}O^{+}]}{[HBz]} = 6.28 \times 10^{-5}$$
 Mass balance $c_{HBz} = [HBz] + [Bz^{-}] = 0.0300$
$$[Bz^{-}] = [H_{3}O^{+}]$$
 Thus, $[HBz] = 0.0300 - [Bz^{-}] = 0.0300 - [H_{3}O^{+}]$
$$\frac{[H_{3}O^{+}]^{2}}{0.0300 - [H_{3}O^{+}]} = 6.28 \times 10^{-5}$$

Solving the quadratic or solving by iterations gives,

 $[H_3O^+] = 1.34 \times 10^{-3} \text{ M}$ so $[OH^-] = 1.00 \times 10^{-14} / 1.34 \times 10^{-3} = 7.5 \times 10^{-12} \text{ M}$

(c)

$$C_{2}H_{5}NH_{2}+H_{2}O \rightleftharpoons C_{2}H_{5}NH_{3}^{+}+OH^{-}$$

$$K_{b} = \frac{[C_{2}H_{5}NH_{3}^{+}][OH^{-}]}{[C_{2}H_{5}NH_{2}]} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{2.31 \times 10^{-11}} = 4.33 \times 10^{-4}$$

$$[OH^{-}]=[C_{2}H_{5}NH_{3}^{+}] \qquad [C_{2}H_{5}NH_{2}] = 0.100 - [OH^{-}]$$

$$\frac{[OH^{-}]^{2}}{(0.100 - [OH^{-}])} = 4.33 \times 10^{-4} \qquad [OH^{-}]^{2} = 4.33 \times 10^{-4} (0.100 - [OH^{-}])$$

$$[OH^{-}]^{2} + 4.33 \times 10^{-4} [OH^{-}] - 4.33 \times 10^{-5} = 0$$

$$[OH^{-}] = -\frac{4.33 \times 10^{-4} + \sqrt{(4.33 \times 10^{-4})^{2} + 4(4.33 \times 10^{-5})}}{2} = 6.37 \times 10^{-3} M$$

$$[H_{3}O^{+}] = \frac{1.0 \times 10^{-14}}{6.37 \times 10^{-3}} = 1.57 \times 10^{-12} M$$

$$(e)$$

$$Bz^{-} + H_{2}O \rightleftharpoons HBz + OH^{-} \qquad K_{b} = K_{w}/K_{a} = 1.00 \times 10^{-14}/6.28 \times 10^{-5} = 1.60 \times 10^{-10}$$

$$[OH^{-}] = [HBz] \qquad [Bz^{-}] = 0.200 - [OH^{-}]$$
$$\frac{[OH^{-}]^{2}}{0.200 - [OH^{-}]} = 1.60 \times 10^{-10}$$
$$[OH^{-}] = 5.66 \times 10^{-6} \text{ M} \qquad [H_{3}O^{+}] = 1.00 \times 10^{-14}/5.66 \times 10^{-6} = 1.77 \times 10^{-9} \text{ M}$$
$$(g) \text{ HONH}_{3}^{+} + H_{2}O \rightleftharpoons \text{HONH}_{2} + H_{3}O^{+} \qquad K_{a} = 1.1 \times 10^{-6}$$
As in part (b)
$$\frac{[H_{3}O^{+}]^{2}}{0.250 - [H_{3}O^{+}]} = 1.1 \times 10^{-6}$$

 $[H_3O^+] = 5.24 \times 10^{-4} \text{ M}$ $[OH^-] = 1.91 \times 10^{-11} \text{ M}$

9-21. (a)

$$\begin{aligned} \text{ClCH}_2\text{COOH} + \text{H}_2\text{O} &\rightleftharpoons \text{ClCH}_2\text{COO}^- + \text{H}_3\text{O}^+ \quad K_a = \frac{[\text{ClCH}_2\text{COO}^-][\text{H}_3\text{O}^+]}{[\text{ClCH}_2\text{COOH}]} = 1.36 \times 10^{-3} \\ [\text{H}_3\text{O}^+] = [\text{ClCH}_2\text{COO}^-] \quad [\text{ClCH}_2\text{COOH}] = 0.200 - [\text{H}_3\text{O}^+] \\ \frac{[\text{H}_3\text{O}^+]^2}{(0.200 - [\text{H}_3\text{O}^+])} = 1.36 \times 10^{-3} \quad [\text{H}_3\text{O}^+]^2 = 1.36 \times 10^{-3} (0.200 - [\text{H}_3\text{O}^+]) \\ [\text{H}_3\text{O}^+]^2 + 1.36 \times 10^{-3} [\text{H}_3\text{O}^+] - 2.72 \times 10^{-4} = 0 \\ [\text{H}_3\text{O}^+] = -\frac{1.36 \times 10^{-3} + \sqrt{(1.36 \times 10^{-3})^2 + 4(2.72 \times 10^{-4})}}{2} = 1.58 \times 10^{-2} \text{ M} \end{aligned}$$

(b)

$$CICH_{2}COO^{-} + H_{2}O \rightleftharpoons CICH_{2}COOH + OH^{-}$$

$$K_{b} = \frac{[CICH_{2}COOH][OH^{-}]}{[CICH_{2}COO^{-}]} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{1.36 \times 10^{-3}} = 7.35 \times 10^{-12}$$

$$[OH^{-}] = [CICH_{2}COOH] \qquad [CICH_{2}COO^{-}] = 0.200 M - [OH^{-}]$$

$$\frac{[OH^{-}]^{2}}{(0.200 - [OH^{-}])} = 7.35 \times 10^{-12} \quad [OH^{-}]^{2} = 7.35 \times 10^{-12} (0.200 - [OH^{-}])$$

$$[OH^{-}]^{2} + 7.35 \times 10^{-12} [OH^{-}] - 1.47 \times 10^{-12} = 0$$

$$[OH^{-}] = 1.21 \times 10^{-6} M$$

$$[H_{3}O^{+}] = \frac{1.0 \times 10^{-14}}{1.21 \times 10^{-6}} = 8.26 \times 10^{-9} M$$

(e)

$$C_{6}H_{5}NH_{3}^{+} + H_{2}O \rightleftharpoons C_{6}H_{5}NH_{2} + H_{3}O^{+} \quad K_{a} = \frac{[C_{6}H_{5}NH_{2}][H_{3}O^{+}]}{[C_{6}H_{5}NH_{3}^{+}]} = 2.51 \times 10^{-5}$$

$$[H_{3}O^{+}] = [C_{6}H_{5}NH_{2}] \qquad [C_{6}H_{5}NH_{3}^{+}] = 0.0020 \text{ M} - [H_{3}O^{+}]$$

$$\frac{[H_{3}O^{+}]^{2}}{(0.0020 - [H_{3}O^{+}])} = 2.51 \times 10^{-5}$$

Proceeding as in part (d), we find $[H_3O^+] = 2.11 \times 10^{-4} M$

9-23. *Buffer capacity* of a solution is defined as the number of moles of a strong acid (or a strong base) that causes 1.00 L of a buffer to undergo a 1.00-unit change in pH.

9-25.
$$HOAc + H_2O \rightleftharpoons OAc^- + H_3O^+$$
 $OAc^- + H_2O \rightleftharpoons HOAc + OH^-$

(a)

$$[OAc^{-}] = \frac{8.00 \text{ mmol}}{200 \text{ mL}} = 4 \times 10^{-2} \text{ M}$$

[HOAc] = 0.100 M
pH = $-\log(1.75 \times 10^{-5}) + \log \frac{4 \times 10^{-2}}{0.100} = 4.359$

(b)

$$0.175 \text{ M HOAc} = \frac{0.175 \text{ mmol}}{\text{mL}} \times 100 \text{ mL} = 17.5 \text{ mmol}$$

$$0.0500 \text{ M NaOH} = \frac{0.0500 \text{ mmol}}{\text{mL}} \times 100 \text{ mL} = 5.00 \text{ mmol}$$

$$[\text{HOAc}] = \frac{(17.5 - 5.00) \text{ mmol}}{200 \text{ mL}} = 6.25 \times 10^{-2} \text{ M}$$

$$[\text{OAc}^{-}] = \frac{5 \text{ mmol}}{200 \text{ mL}} = 2.50 \times 10^{-2} \text{ M}$$

$$p\text{H} = -\log(1.75 \times 10^{-5}) + \log\frac{2.50 \times 10^{-2}}{6.25 \times 10^{-2}} = 4.359$$

(c)

$$0.0420 \text{ M OAc}^{-} = \frac{0.042 \text{ mmol}}{\text{mL}} \times 160 \text{ mL} = 6.72 \text{ mmol}$$

$$0.1200 \text{ M HCl} = \frac{0.1200 \text{ mmol}}{\text{mL}} \times 40.0 \text{ mL} = 4.80 \text{ mmol}$$

$$[\text{OAc}^{-}] = \frac{(6.72 - 4.80) \text{ mmol}}{200 \text{ mL}} = 9.6 \times 10^{-3} \text{ M}$$

$$[\text{HOAc}] = \frac{4.8 \text{ mmol}}{200 \text{ mL}} = 2.4 \times 10^{-2} \text{ M}$$

$$p\text{H} = -\log(1.75 \times 10^{-5}) + \log \frac{9.6 \times 10^{-3}}{2.4 \times 10^{-2}} = 4.359$$

The solutions all are buffers with the same pH, but they differ in buffer capacity with (a) having the greatest and (c) the least.

- **9-26.** (a) $C_6H_5NH_3^+/C_6H_5NH_2$ (p $K_a = 4.60$)
 - (c) The closest are $C_2H_5NH_3^+/C_2H_5NH_2$ (p $K_a = 10.64$) and $CH_3NH_3^+/CH_3NH_2$ p $K_a = 10.64$)

9-27.

pH =
$$3.50 = pK_a + \log \frac{[\text{HCOO}^-]}{[\text{HCOOH}]} = -\log(1.8 \times 10^{-4}) + \log \frac{[\text{HCOO}^-]}{[\text{HCOOH}]}$$

 $3.50 = 3.74 + \log \frac{[\text{HCOO}^-]}{[\text{HCOOH}]} \qquad \frac{[\text{HCOO}^-]}{[\text{HCOOH}]} = 10^{-0.24} = 0.575$

 $500 \text{ mL} \times 1.00 \frac{\text{mmol HCOOH}}{\text{mL}} = 500 \text{ mmol}$

So amount of HCOO⁻ needed = $0.575 \times 500 \text{ mmol} = 287.5 \text{ mmol}$

 $287.5 \text{ mmol} \times 10^{-3} \text{ mol/mmol} = 0.2875 \text{ mol} \text{ HCOO}^{-1}$

Mass HCOONa = $0.2875 \text{ mol} \times 67.997 \text{ g/mol} = 19.6 \text{ g}$

9-29. Let HMn = mandelic acid, $Mn^- =$ mandelate anion.

 $500 \text{ mL} \times 0.300 \text{ M} \text{ NaMn} = 150 \text{ mmol Mn}^-$.

For a pH of 3.37 need the ratio of Mn⁻ to HMn to be

$$pH = 3.37 = pK_{a} + \log \frac{[Mn^{-}]}{[HMn]} = 3.398 + \log \frac{[Mn^{-}]}{[HMn]} \qquad \log \frac{[Mn^{-}]}{[HMn]} = 3.37 - 3.398 = -0.028$$
$$\frac{[Mn^{-}]}{[HMn]} = 0.938$$
$$\frac{mmol Mn^{-} - x mmol HCl}{x mmol HCl} = 0.938$$
$$0.938 \times x mmol HCl = mmol Mn^{-} - x mmol HCl$$

x = mmol Mn/1.938 = 150 Mn/1.938 = 77.399 mmol HCl

Volume HCl = 77.399 mmol/(0.200 mmol/mL) = 387 mL

Chapter 10

Chapter 10

10-1. (a) *Activity*, a_A , is the effective concentration of a chemical species A in solution. The *activity coefficient*, γ_A , is the numerical factor necessary to convert the molar concentration of the chemical species A to activity as shown below:

 $a_{\rm A} = \gamma_{\rm A}[{\rm A}]$

(b) The *thermodynamic equilibrium constant* refers to an ideal system within which each chemical species is unaffected by any others. A *concentration equilibrium constant* takes into account the influence exerted by solute species upon one another. The thermodynamic equilibrium constant is numerically constant and independent of ionic strength; the concentration equilibrium constant depends on molar concentrations of reactants and products as well as other chemical species that may not participate in the equilibrium.

10-3. (a)
$$MgCl_2 + 2NaOH \implies Mg(OH)_2(s) + 2NaCl$$

Replacing divalent Mg²⁺ with Na⁺ causes the ionic strength to decrease.

(b) HCl + NaOH \rightleftharpoons H₂O + NaCl

There is no change in the charge states of the ions present in the solution equilibria. The ionic strength is unchanged.

(c) $HOAc + NaOH \rightleftharpoons H_2O + NaOAc$

The ionic strength will increase because NaOH and NaOAc are totally ionized wheras acetic acid is only partially ionized.

10-5. Water is a neutral molecule and its activity equals its concentration at all low to moderate ionic strengths. That is, its activity coefficient is unity. In solutions of low to moderate ionic strength, activity coefficients of ions decrease with increasing ionic strength because the ionic

atmosphere surrounding the ion causes it to lose some of its chemical effectiveness and its activity is less than its concentration.

10-7. Multiply charged ions deviate from ideality more than singly charged ions because of the effect of the surrounding ionic atmosphere. The initial slope of the activity coefficient vs square root of ionic strength for Ca^{2+} is steeper than that for K⁺ the activity coefficient of Ca^{2+} is more influenced by ionic strength than that for K⁺.

10-9. (a)
$$\mu = \frac{1}{2}[0.030 \times 2^2 + 0.030 \times 2^2] = 0.12$$

(c)
$$\mu = \frac{1}{2} [0.30 \times 3^2 + 0.90 \times 1^2 + 0.20 \times 2^2 + 0.40 \times 1^2] = 2.4$$

10-10. $-\log \gamma_{\rm X} = \frac{0.51 Z_{\rm X}^2 \sqrt{\mu}}{1 + 3.3 \alpha_{\rm X} \sqrt{\mu}}$ This problem is easiest to work with a spreadsheet.

	А	В	С	D	E	F
1	Problem	n 10-10				
2	lon X	Fe ³⁺	Pb ²⁺	Ce4+	Sn4+	
3	Ζ	3	2	4	4	
4	μ	0.062	0.042	0.07	0.045	
5	α _X	0.9	0.45	1.1	1.1	
6	$\log \gamma_{\rm X}$	0.657	0.3205	1.1013	0.9779	
7	γx	0.2203	0.478	0.0792	0.1052	
8						
9	Docume	entation				
10	Cell B6=	0.51*B3^	2*SQRT(B4)/(1+3.	3*B5*SQ	RT(B4))
11	Cell B7=	10^-B6				

Rounding these results gives

(a) 0.22 (c) 0.08

10-12. We must use
$$-\log \gamma_{\rm X} = \frac{0.51Z_{\rm X}^2 \sqrt{\mu}}{1 + 3.3\alpha_{\rm X} \sqrt{\mu}}$$

(a) For Ag⁺, $\alpha_{\rm Ag^+} = 0.25$. At $\mu = 0.08$, $\gamma_{\rm Ag^+} = 0.7639$; For SCN⁻, $\alpha_{\rm SCN}^- = 0.35$ and $\gamma_{\rm SCN}^- = 0.7785$ retaining insignificant figures for later calculations.

$$K'_{\rm sp} = \frac{K_{\rm sp}}{\gamma_{\rm Ag^+} \gamma_{\rm SCN^-}} = \frac{1.1 \times 10^{-12}}{(0.7639)(0.7785)} = 1.8 \times 10^{-12}$$

(c) For La³⁺,
$$\chi_a = 0.197$$
. For IO₃⁻, $\chi_{O3^-} = 0.7785$

$$K'_{\rm sp} = \frac{K_{\rm sp}}{\gamma_{\rm La^{3+}}\gamma_{\rm IO_3^{-}}} = \frac{1.0 \times 10^{-11}}{(0.197)(0.7785)^3} = 1.1 \times 10^{-10}$$

$$Zn(OH)_2(s) \rightleftharpoons Zn^{2+} + 2OH^ K_{sp} = 3.0 \times 10^{-16}$$

(a)
$$\mu = \frac{1}{2}[0.02 \times 1^2 + 0.02 \times 1^2] = 0.02$$

Using Equation 10-5,

$$\gamma_{Zn^{2+}} = 0.5951 \qquad \gamma_{OH^{-}} = 0.867$$

$$K'_{sp} = a_{Zn^{2+}}a_{OH^{-}}^{2} = \gamma_{Zn^{2+}}[Zn^{2+}] \times \gamma_{OH^{-}}^{2}[OH^{-}]^{2}$$

$$[Zn^{2+}][OH^{-}]^{2} = \frac{3.0 \times 10^{-16}}{\gamma_{Zn^{2+}}} = \frac{3.0 \times 10^{-16}}{(0.5951)(0.867)^{2}} = 6.706 \times 10^{-16}$$

Solubility = $S = [Zn^{2+}] = \frac{1}{2}[OH^{-}]$

$$S(2S)^2 = 6.706 \times 10^{-16}$$

$$S = \left(\frac{6.706 \times 10^{-16}}{4}\right)^{1/3} = 5.5 \times 10^{-6} \,\mathrm{M}$$

(b)
$$\mu = \frac{1}{2} [2 \times 0.03 \times 1^2 + 0.03 \times 2^2] = 0.18$$

From Equation 10-5,

$$\gamma_{Zn^{2+}} = 0.3386 \qquad \gamma_{OH^{-}} = 0.7158$$

$$K'_{sp} = a_{Zn^{2+}}a_{OH^{-}}^{2} = \gamma_{Zn^{2+}}[Zn^{2+}] \times \gamma_{OH^{-}}^{2}[OH^{-}]^{2}$$

$$[Zn^{2+}][OH^{-}]^{2} = \frac{3.0 \times 10^{-16}}{(0.3386)(0.7158)^{2}} = 1.729 \times 10^{-15}$$
Solubility = S = [Zn^{2+}] = 1/2[OH^{-}]
$$S(2S)^{2} = 1.729 \times 10^{-15}$$

$$S = \left(\frac{1.729 \times 10^{-15}}{4}\right)^{\frac{1}{3}} = 7.6 \times 10^{-6} \text{ M}$$

amount of KOH = $\frac{0.250 \text{ mmol}}{\text{mL}} \times 40.0 \text{ mL} = 10.0 \text{ mmol}$ amount of $\text{ZnCl}_2 = \frac{0.0250 \text{ mmol}}{\text{mL}} \times 60.0 \text{ mL} = 1.5 \text{ mmol}$

$$[K^{+}] = \frac{10 \text{ mmol}}{100.0 \text{ mL}} = 0.10 \text{ M}$$

$$[OH^{-}] = \frac{(10 \text{ mmol} - (2 \times 1.5 \text{ mmol}))}{100.0 \text{ mL}} \times = 0.07 \text{ M}$$

$$[CI^{-}] = \frac{2 \times 1.5 \text{ mmol}}{100.0 \text{ mL}} = 0.03 \text{ M}$$

$$[Zn^{2^{+}}] = 0$$

$$\mu = \frac{1}{2}[0.10 \times 1^{2} + 0.07 \times 1^{2} + 2 \times 0.03 \times 1^{2}] = 0.115$$

$$\mu = \frac{1}{2} [0.10 \times 1^2 + 0.07 \times 1^2 + 2 \times 0.03 \times 1^2] = 0.1$$

From Equation 10-5,

$$\gamma_{Zn^{2+}} = 0.3856 \qquad \gamma_{OH^{-}} = 0.7511 \qquad K_{sp}' = a_{Zn^{2+}} a_{OH^{-}}^2 = \gamma_{Zn^{2+}} [Zn^{2+}] \times \gamma_{OH^{-}}^2 [OH^{-}]^2$$
$$[Zn^{2+}][OH^{-}]^2 = \frac{3.0 \times 10^{-16}}{\gamma_{Zn^{2+}} \gamma_{OH^{-}}^2} = \frac{3.0 \times 10^{-16}}{(0.3856)(0.7511)^2} = 1.379 \times 10^{-15}$$
Solubility = S = [Zn^{2+}]
$$S(0.07)^2 = 1.379 \times 10^{-15}$$
$$S = \left(\frac{1.379 \times 10^{-15}}{(0.07)^2}\right) = 2.8 \times 10^{-13} \text{ M}$$

(**d**)

amount KOH =
$$\frac{0.100 \text{ mmol}}{\text{mL}} \times 20.0 \text{ mL} = 2.0 \text{ mmol}$$

amount ZnCl₂ = $\frac{0.0250 \text{ mmol}}{\text{mL}} \times 80.0 \text{ mL} = 2.0 \text{ mmol}$
 $[K^+] = \frac{2 \text{ mmol}}{100.0 \text{ mL}} = 0.02 \text{ M}$
 $[OH^-] = 0$
 $[Cl^-] = \frac{2 \times 2.0 \text{ mmol}}{100.0 \text{ mL}} = 0.04 \text{ M}$

$$[Zn^{2+}] = \frac{2 \text{ mmol} - \frac{1}{2}(2 \text{ mmol})}{100.0 \text{ mL}} = 0.01 \text{ M}$$

$$\mu = \frac{1}{2} (0.02 \times 1^{2} + 0.040 \times 1^{2} + 0.01 \times 2^{2}) = 0.05$$

From Table 10-2,

$$\gamma_{Zn^{2+}} = 0.48 \quad \gamma_{OH^{-}} = 0.81$$

$$K'_{sp} = a_{Zn^{2+}}a_{OH^{-}}^{2} = \gamma_{Zn^{2+}}[Zn^{2+}] \times \gamma_{OH^{-}}^{2}[OH^{-}]^{2}$$

$$[Zn^{2+}][OH^{-}]^{2} = \frac{3.0 \times 10^{-16}}{\gamma_{Zn^{2+}}\gamma_{OH^{-}}^{2}} = \frac{3.0 \times 10^{-16}}{(0.48)(0.81)^{2}} = 9.53 \times 10^{-16}$$

Solubility = S = [OH^{-}]/2

$$(0.01)[OH^{-}]^{2} = 9.53 \times 10^{-16}$$

$$[OH^{-}] = \left(\frac{9.53 \times 10^{-16}}{0.01}\right)^{\frac{1}{2}} = 3.09 \times 10^{-7} \text{ M}$$

$$S = (3.09 \times 10^{-7} \text{ M})/2 = 1.5 \times 10^{-7} \text{ M}$$

10-14. $\mu = \frac{1}{2}[0.0333 \times 2^2 + 2 \times 0.0333 \times 1^2] = 0.100$ Can use data in Table 10-2.

(a)
$$AgSCN(s) \rightleftharpoons Ag^+ + SCN^-$$

(1) For Ag^+ , $\gamma_{Ag^+} = 0.75$; for SCN⁻, $\gamma_{SCN^-} = 0.76$

$$K'_{sp} = \gamma_{Ag^{4}}[Ag^{+}]\gamma_{SCN^{-}}[SCN^{-}] = 1.1 \times 10^{-12}$$

$$[Ag^{+}][SCN^{-}] = \frac{1.1 \times 10^{-12}}{0.75 \times 0.76} = 1.9298 \times 10^{-12}$$

$$S = [Ag^{+}] = [SCN^{-}]$$

$$S = \sqrt{1.928 \times 10^{-12}} = 1.4 \times 10^{-6} \text{ M}$$
(2) $S = \sqrt{1.1 \times 10^{-12}} = 1.0 \times 10^{-6} \text{ M}$
(b)
PbI_{2}(s) $\rightleftharpoons Pb^{2+} + 2I^{-}$
(1) $\gamma_{Pb^{2+}} = 0.36 \quad \gamma_{T} = 0.75 \quad K'_{sp} = a_{Pb^{2+}}a_{T}^{2} = \gamma_{Pb^{2+}}[Pb^{2+}] \times (\gamma_{T}[I^{-}])^{2}$

$$[Pb^{2+}][I^{-}]^{2} = \frac{7.9 \times 10^{-9}}{\gamma_{Pb^{2+}}\gamma_{T}^{-2}} = \frac{7.9 \times 10^{-9}}{(0.36)(0.75)^{2}} = 3.90 \times 10^{-8}$$
Solubility $= S = [Pb^{2+}] = \frac{1}{2}[I^{-}]$
 $S(2S)^{2} = 3.90 \times 10^{-8}$
 $S = \left(\frac{3.90 \times 10^{-8}}{4}\right)^{\frac{1}{3}} = 2.1 \times 10^{-3} \text{ M}$
(c) $BaSO_{4}(s) \rightleftharpoons Ba^{2+} + SO_{4}^{2-}$
 $\gamma_{Ba^{3+}} = 0.38; \quad \gamma_{SO_{4}^{2-}} = 0.35$

$$[Ba^{2+}][SO_{4}^{2-}] = \frac{1.1 \times 10^{-10}}{\gamma_{Ba^{2+}}\gamma_{SO_{4}^{2-}}} = \frac{1.1 \times 10^{-10}}{(0.38)(0.35)} = 8.3 \times 10^{-10}$$
Solubility $= S = [Ba^{2+}] = [SO_{4}^{2-}]$
 $S^{2} = 8.3 \times 10^{-10}$

(2)
$$S = \sqrt{1.1 \times 10^{-10}} = 1.0 \times 10^{-5} \text{ M}$$

57

(d)
$$\operatorname{Cd}_2\operatorname{Fe}(\operatorname{CN})_6(s) \rightleftharpoons 2 \operatorname{Cd}^{2+} + \operatorname{Fe}(\operatorname{CN})_6^{4-}$$

(1)
$$\gamma_{Cd^{2+}} = 0.38 \quad \gamma_{Fe(CN)6^{4-}} = 0.020$$

 $[Cd^{2+}]^{2}[Fe(CN)_{6}^{4-}] = \frac{3.2 \times 10^{-17}}{\gamma_{Cd^{2+}}^{2} \gamma_{Fe(CN)6^{4-}}} = \frac{3.2 \times 10^{-17}}{(0.38)^{2} (0.020)} = 1.108 \times 10^{-14}$
Solubility = $S = \frac{1}{2}[Cd^{2+}] = [Fe(CN)_{6}^{4-}]$
 $(2S)^{2}S = 1.108 \times 10^{-14}$
 $S = \left(\frac{1.108 \times 10^{-14}}{4}\right)^{\frac{1}{3}} = 1.4 \times 10^{-5} M$
 $(2) \quad S = \left(\frac{3.2 \times 10^{-17}}{4}\right)^{\frac{1}{3}} = 2.0 \times 10^{-6} M$

10-15. $\mu = \frac{1}{2}[0.0167 \times 2^2 + 2 \times 0.0167 \times 1^2] = 0.050$

(a)
$$\operatorname{AgIO}_3(s) \rightleftharpoons \operatorname{Ag}^+ + \operatorname{IO}_3^-$$

(1)
$$\gamma_{Ag^+} = 0.80 \quad \gamma_{IO_3^-} = 0.82$$

 $[Ag^+][IO_3^-] = \frac{3.1 \times 10^{-8}}{\gamma_{Ag^+} \gamma_{IO_3^-}} = \frac{3.1 \times 10^{-8}}{(0.80)(0.82)} = 4.7 \times 10^{-8}$
Solubility = $S = [Ag^+] = [IO_3^-]$
 $S^2 = 4.7 \times 10^{-8}$
 $S = \sqrt{4.7 \times 10^{-8}} = 2.2 \times 10^{-4} \text{ M}$
(2) $S = \sqrt{3.1 \times 10^{-8}} = 1.8 \times 10^{-4} \text{ M}$

(b)
$$Mg(OH)_2(s) \rightleftharpoons Mg^{2+} + 2OH^-$$

(1)
$$\gamma_{\rm Mg^{2+}} = 0.52 \quad \gamma_{\rm OH^-} = 0.8$$

$$[Mg^{2+}][OH^{-}]^{2} = \frac{7.1 \times 10^{-12}}{\gamma_{Mg^{2+}}\gamma_{OH^{-}}^{2}} = \frac{7.1 \times 10^{-12}}{(0.52)(0.81)^{2}} = 2.081 \times 10^{-11}$$

Solubility = $S = [Mg^{2+}] = \frac{1}{2}[OH^{-}]$
 $S(2S)^{2} = 2.081 \times 10^{-11}$
 $S = \left(\frac{2.081 \times 10^{-11}}{4}\right)^{\frac{1}{3}} = 1.7 \times 10^{-4} M$
(2) $S = \left(\frac{7.1 \times 10^{-12}}{4}\right)^{\frac{1}{3}} = 1.2 \times 10^{-4} M$

(c)
$$BaSO_4(s) \rightleftharpoons Ba^{2+} + SO_4^{2-}$$

(1)
$$\gamma_{Ba^{2+}} = 0.46 \quad \gamma_{SO_4^{2-}} = 0.44$$

$$[Ba^{2+}][SO_4^{2-}] = \frac{1.1 \times 10^{-10}}{\gamma_{Ba^{2+}}\gamma_{SO_4^{2-}}} = \frac{1.1 \times 10^{-10}}{(0.46)(0.44)} = 5.435 \times 10^{-10}$$
Solubility $S = [SO_4^{2-}]$

Solubility =
$$S = [SO_4^{2^{-1}}]$$

(0.0167) × $S = 5.435 \times 10^{-10}$
 $S = \left(\frac{5.435 \times 10^{-10}}{0.0167}\right) = 3.3 \times 10^{-8} \text{ M}$
(2) $S = \left(\frac{1.1 \times 10^{-10}}{0.0167}\right) = 6.6 \times 10^{-9} \text{ M}$

(d)
$$La(IO_3)_3(s) \rightleftharpoons La^{3+} + 3IO_3$$

(1)
$$\gamma_{La^{3+}} = 0.24$$
 $\gamma_{IO_3^{-}} = 0.82$ $K_{sp} = a_{La^{3+}}a_{IO_3^{-}}^3 = \gamma_{La^{3+}}[La^{3+}] \times (\gamma_{IO_3^{-}}[IO_3^{-}])^3$
 $[La^{3+}][IO_3^{-}]^3 = \frac{1.0 \times 10^{-11}}{\gamma_{La^{3+}}\gamma_{IO_3^{-}}^3} = \frac{1.0 \times 10^{-11}}{(0.24)(0.82)^3} = 7.557 \times 10^{-11}$
Solubility = $S = [La^{3+}] = \frac{1}{3}[IO_3^{-}]$

$$S(3S)^{3} = 7.557 \times 10^{-11}$$
$$S = \left(\frac{7.557 \times 10^{-11}}{27}\right)^{\frac{1}{4}} = 1.3 \times 10^{-3} \text{ M}$$
$$(2) \quad S = \left(\frac{1.0 \times 10^{-11}}{27}\right)^{\frac{1}{4}} = 7.8 \times 10^{-4} \text{ M}$$

10-16. (a) $\operatorname{CuCl}(s) \rightleftharpoons \operatorname{Cu}^+ + \operatorname{Cl}^-$

If we assume that Cu^+ has an effective diameter of 0.3 like similarly charged cations, then

(1)
$$\gamma_{Cu^{+}} = 0.80$$
 $\gamma_{Cl^{-}} = 0.80$ $K'_{sp} = a_{Cu^{+}}a_{Cl^{-}} = \gamma_{Cu^{+}}[Cu^{+}] \times \gamma_{Cl^{-}}[Cl^{-}]$
 $[Cu^{+}][Cl^{-}] = \frac{1.9 \times 10^{-7}}{\gamma_{Cu^{+}}\gamma_{Cl^{-}}} = \frac{1.9 \times 10^{-7}}{(0.80)(0.80)} = 2.969 \times 10^{-7}$
Solubility = $S = [Cu^{+}] = [Cl^{-}]$
 $S^{2} = 2.969 \times 10^{-7}$
 $S = \sqrt{2.969 \times 10^{-7}} = 5.4 \times 10^{-4} M$
(2) $S = \sqrt{1.9 \times 10^{-7}} = 4.4 \times 10^{-4} M$
relative error $= \frac{(4.4 \times 10^{-4} - 5.4 \times 10^{-4})}{5.4 \times 10^{-4}} \times 100\% = -19\%$

(c)
$$Fe(OH)_3 \rightleftharpoons Fe^{3+} + 3OH^{-1}$$

(1)
$$\gamma_{\text{Fe}^{3+}} = 0.24 \quad \gamma_{\text{OH}^-} = 0.81 \quad K'_{\text{sp}} = a_{\text{Fe}^{3+}} a_{\text{OH}^-}^3 = \gamma_{\text{Fe}^{3+}} [\text{Fe}^{3+}] \times (\gamma_{\text{OH}^-} [\text{OH}^-])^3$$

60

Chapter 10

$$[Fe^{3+}][OH^{-}]^{3} = \frac{2 \times 10^{-39}}{\gamma_{Fe^{3+}}\gamma_{OH^{-}}^{3}} = \frac{2 \times 10^{-39}}{(0.24)(0.81)^{3}} = 1.568 \times 10^{-38}$$
 retaining figures until the end
Solubility = $S = [Fe^{3+}] = \frac{1}{3}[OH^{-}]$
 $S(3S)^{3} = 1.568 \times 10^{-38}$
 $S = \left(\frac{1.568 \times 10^{-38}}{27}\right)^{\frac{1}{4}} = 1.55 \times 10^{-10} \text{ M}$
(2) $S = \left(\frac{2 \times 10^{-39}}{27}\right)^{\frac{1}{4}} = 9.3 \times 10^{-11} M$
relative error $= \frac{9.3 \times 10^{-11} - 1.55 \times 10^{-10}}{1.55 \times 10^{-10}} \times 100\% = -40\%$

(e)
$$Ag_3(AsO_4)(s) \rightleftharpoons 3Ag^+ + AsO_4^{3-}$$

Since the α_X of AsO₄³⁻ was given as 0.4, the γ value will be like PO₄³⁻. So,

(1)
$$\gamma_{Ag^{+}} = 0.80$$
 $\gamma_{AsO_{4}^{3-}} = 0.16$ $K'_{sp} = a^{3}_{Ag^{+}}a_{AsO_{4}^{3-}} = (\gamma_{Ag^{+}}[Ag^{+}])^{3} \times \gamma_{AsO_{4}^{3-}}[AsO_{4}^{3-}]$
 $[Ag^{+}]^{3}[AsO_{4}^{3-}] = \frac{6 \times 10^{-23}}{\gamma^{3}_{Ag^{+}}\gamma_{AsO_{4}^{3-}}} = \frac{6 \times 10^{-23}}{(0.80)^{3}(0.16)} = 7.324 \times 10^{-22}$
Solubility = $S = [AsO_{3}^{4-}] = \frac{1}{3}[Ag^{+}]$

$$(3S)^{3}S = 7.324 \times 10^{-22}$$

$$S = \left(\frac{7.324 \times 10^{-22}}{27}\right)^{\frac{1}{4}} = 2.3 \times 10^{-6} \text{ M}$$

$$(2) \quad S = \left(\frac{6 \times 10^{-23}}{27}\right)^{\frac{1}{4}} = 1.2 \times 10^{-6} \text{ M}$$

$$(2) \quad S = \left(\frac{1.2 \times 10^{-6} - 2.3 \times 10^{-6}}{27}\right)^{\frac{1}{4}} = 1.2 \times 10^{-6} \text{ M}$$

relative error = $\frac{1.2 \times 10^{-6} - 2.3 \times 10^{-6}}{2.3 \times 10^{-6}} \times 100\% = -48\%$

10-17. (a)

In this buffer solution, we assume [HOAc] = c_{HOAc} and [OAC⁻] = c_{NaOAc} . We also assume that the ionic strength is contributed solely by NaOAc, neglecting H₃O⁺ and OH⁻.

$$\mu = \frac{1}{2}[0.250 \times 1^2 + 0.250 \times 1^2] = 0.250$$

$$-\log \gamma_{\rm H_3O^+} = \frac{(0.51)(1)^2 \sqrt{0.250}}{1 + (3.3)(0.9)\sqrt{0.250}} = 0.1026 \quad \gamma_{\rm H_3O^+} = 0.790$$

$$-\log \gamma_{\rm OAc^-} = \frac{(0.51)(1)^2 \sqrt{0.250}}{1 + (3.3)(0.425)\sqrt{0.520}} = 0.1499 \quad \gamma_{\rm OAc^-} = 0.708$$

$$K_a = \frac{\gamma_{\rm H_3O^+}[{\rm H}_3{\rm O}^+]\gamma_{\rm OAc^-}[{\rm OAc}^-]}{[{\rm HOAc}]}$$

$$K_a' = \frac{[{\rm H}_3{\rm O}^+][{\rm OAc}^-]}{[{\rm HOAc}]} = \frac{K_a}{\gamma_{\rm H_3O^+}\gamma_{\rm OAc^-}} = \frac{1.75 \times 10^{-5}}{0.790 \times 0.708} = 3.129 \times 10^{-5}$$

$$[{\rm H}_3{\rm O}^+] = \frac{K_a'[{\rm HOAc}]}{[{\rm OAc}^-]} = \frac{3.129 \times 10^{-5} \times 0.150}{0.250} = 1.9 \times 10^{-5} {\rm M}$$

pH = 4.73
With no activity corrections

$$[H_{3}O^{+}] = \frac{1.75 \times 10^{-5} \times 0.150}{0.250} = 1.05 \times 10^{-5} M$$

pH = 4.98
$$1.05 \times 10^{-5} = 1.9 \times 10^{-5}$$

relative error in $[H_3O^+] = \frac{1.05 \times 10^{-5} - 1.9 \times 10^{-5}}{1.9 \times 10^{-5}} \times 100\% = -45\%$

Chapter 11

11-2. To simplify equilibrium calculations, we sometimes assume that the concentrations of one or more species are negligible and can be approximated as 0.00 M. In a sum or difference assuming a concentration is 0.00 M leads to an appropriate result. In contrast, if we were to simplify and equilibrium constant expression by assuming on or more concentrations are zero, we would be multiplying or dividing by 0.00, which would render the expression meaningless.
11-4. A charge-balance equation is derived by relating the concentration of cations and anions

no. mol/L positive charge = no. mol/L negative charge

For a doubly charged ion, such as Ba^{2+} , the concentration of charge for each mole is twice the molar *concentration* of the Ba^{2+} . That is,

mol/L positive charge = $2[Ba^{2+}]$

Thus, the molar concentration of all multiply charged species is always multiplied by the charge in a charge-balance equation.

11-5. (a)
$$0.20 = [HF] + [F^-]$$

(c)
$$0.10 = [H_3PO_4] + [H_2PO_4^-] + [HPO_4^{2-}] + [PO_4^{3-}]$$

(e)
$$0.0500 + 0.100 = [\text{HClO}_2] + [\text{ClO}_2^-]$$

 $[Na^+] = c_{NaClO2} = 0.100 M$

(g)
$$0.100 = [Na^+] = [OH^-] + 2 [Zn(OH)_4^{2-}]$$

(i)
$$[Pb^{2+}] = \frac{1}{2}([F^{-}] + [HF])$$

11-7. Following the systematic procedure, using part (a) **Step 1** $SrC_2O_4(s) \rightleftharpoons Sr^{2^+} + C_2O_4^{2^-}$

$$H_2C_2O_4 + H_2O \rightleftharpoons H_3O^+ + HC_2O_4^-$$

$$HC_2O_4^- + H_2O \rightleftharpoons H_3O^+ + C_2O_4^{2-}$$

Step 2
$$S = \text{solubility} = [\text{Sr}^{2+}] = [\text{C}_2\text{O}_4^{2-}] + [\text{HC}_2\text{O}_4^{-}] + [\text{H}_2\text{C}_2\text{O}_4]$$

Step 3 $[\text{Sr}^{2+}][\text{C}_2\text{O}_4^{2-}] = K_{\text{sp}} = 5 \times 10^{-8}$ (1)

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{H}\mathrm{C}_{2}\mathrm{O}_{4}^{-}]}{[\mathrm{H}_{2}\mathrm{C}_{2}\mathrm{O}_{4}]} = K_{1} = 5.6 \times 10^{-2}$$
(2)

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{C}_{2}\mathrm{O}_{4}^{-}]}{[\mathrm{H}\mathrm{C}_{2}\mathrm{O}_{4}^{-}]} = K_{2} = 2.42 \times 10^{-5}$$
(3)

Step 4
$$[Sr^{2+}] = [C_2O_4^{2-}] + [HC_2O_4^{-}] + [H_2C_2O_4]$$
 (4)

 $[H_3O^+] = 1.0 \times 10^{-6} M$

Step 5 No charge balance because an unknown buffer is maintaining the pH.

Step 6 Unknowns are $[Sr^{2+}]$, $[C_2O_4^{2-}]$, $[HC_2O_4^{-}]$, $[H_2C_2O_4]$

Step 7 No approximations needed, because we have 4 equations and 4 unkowns.

Step 8 Substituting $[H_3O^+] = 1.0 \times 10^{-6}$ M into equation (3) and rearranging gives

$$[HC_2O_4^{-}] = \frac{1 \times 10^{-6} [C_2O_4^{-}]}{5.42 \times 10^{-5}} = 1.845 \times 10^{-2} [C_2O_4^{-}]$$

Substituting this relationship and $[H_3O^+] = 1.0 \times 10^{-6}$ M into equation (2) and rearranging gives

$$[H_2C_2O_4] = \frac{1 \times 10^{-6} \times 1.845 \times 10^{-2} [C_2O_4^{-1}]}{5.6 \times 10^{-2}} = 3.295 \times 10^{-7} [C_2O_4^{-1}]$$

Substituting these last two relationships in to equation (4) gives

$$[\mathrm{Sr}^{2^+}] = [\mathrm{C}_2\mathrm{O_4}^{2^-}] + 1.845 \times 10^{-2} [\mathrm{C}_2\mathrm{O_4}^{2^-}] + 3.295 \times 10^{-7} [\mathrm{C}_2\mathrm{O_4}^{2^-}] = 1.0185 [\mathrm{C}_2\mathrm{O_4}^{2^-}]$$

Substituting this last relationship into equation (1) gives

$$K_{\rm sp} = \frac{[{\rm Sr}^{2+}][{\rm Sr}^{2+}]}{1.0185} = 5 \times 10^{-8}$$
$$[{\rm Sr}^{2+}] = (5 \times 10^{-8} \times 1.0185)^{1/2} = 2.26 \times 10^{-4}$$
$$S = [{\rm Sr}^{2+}] = 2.3 \times 10^{-4} \,\mathrm{M}$$

Substituting other values for $[H_3O^+]$ gives the following:

	$[H_3O^+]$	<i>S</i> , M
(a)	$1.00 imes 10^{-6}$	2.3×10^{-4}
(c)	1.00×10^{-9}	$2.2 imes 10^{-4}$

11-8. Proceeding as in Problem 11-7, we write

 $BaSO_4 \rightleftharpoons Ba^{2+} + SO_4^{2-}$ $K_{sp} = 1.1 \times 10^{-10}$

$$\mathrm{HSO_4^-} + \mathrm{H_2O} \rightleftharpoons \mathrm{H_3O^+} + \mathrm{SO_4^{2-}} \quad K_2 = 1.02 \times 10^{-2}$$

$$S = [Ba^{2+}]$$

$$[Ba^{2^{+}}][SO_{4}^{2^{-}}] = 1.1 \times 10^{-10}$$
⁽¹⁾

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{SO}_{4}^{2^{-}}]}{[\mathrm{HSO}_{4}^{-}]} = 1.02 \times 10^{-2}$$
(2)

Mass balance requires that

$$[Ba^{2^+}] = [SO_4^{2^-}] + [HSO_4^{-}]$$
(3)

The unknowns are $[Ba^{2+}]$, $[SO_4^{2-}]$, and $[HSO_4^{-}]$

We have 3 equations and 3 unknowns so no approximations are needed.

Chapter 11

Substituting equation (2) into (3) gives

$$[Ba^{2+}] = [SO_4^{2-}] + \frac{[H_3O^+][SO_4^{2-}]}{1.02 \times 10^{-2}} = [SO_4^{2-}] \left(1 + \frac{[H_3O^+]}{1.02 \times 10^{-2}}\right)$$

Substituting equation (1) to eliminate $[SO_4^{2-}]$, gives

$$[Ba^{2+}] = \frac{1.1 \times 10^{-10}}{[Ba^{2+}]} \times \left(1 + \frac{[H_3O^+]}{1.02 \times 10^{-2}}\right) = \frac{1.1 \times 10^{-10}}{[Ba^{2+}]} \times (1 + 98.0[H_3O^+])$$

$$S = [Ba^{2+}] = \sqrt{1.1 \times 10^{-10} (1 + 98.0[H_3O^+])} = \sqrt{1.1 \times 10^{-10} + 1.078 \times 10^{-8}[H_3O^+]}$$

Using the different values of $[H_3O^+]$

	$[H_3O^+]$	<i>S</i> , M
(a)	3.5	1.9×10^{-4}
(c)	0.08	3.1×10^{-5}

11-9. The derivation that follows applies to problems 9-11.

$$MS(s) \rightleftharpoons M^{2+} + S^{2-} \qquad K_{sp}$$

$$H_2S + H_2O \rightleftharpoons H_3O^+ + HS^- \qquad K_1 = 9.6 \times 10^{-8}$$

$$HS^- + H_2O \rightleftharpoons H_3O^+ + S^{2-} \qquad K_2 = 1.3 \times 10^{-14}$$

$$Overall H_2S + 2H_2O \rightleftharpoons 2H_3O^+ + S^{2-} \qquad K_1K_2 = 1.25 \times 10^{-21}$$

$$S = solubility = [M^{2^{+}}]$$
$$[M^{2^{+}}][S^{2^{-}}] = K_{sp}$$
(1)

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{H}\mathrm{S}^{-}]}{[\mathrm{H}_{2}\mathrm{S}]} = K_{2} = 1.3 \times 10^{-14}$$
(2)

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}]^{2}[\mathrm{S}^{2-}]}{[\mathrm{H}_{2}\mathrm{S}]} = K_{1}K_{2} = 1.25 \times 10^{-21}$$
(3)

Mass balance is:

$$[M^{2^+}] = [S^{2^-}] + [HS^-] + [H_2S]$$
(4)

Substituting equation (2) and (3) into (4), gives:

$$[M^{2+}] = [S^{2-}] + \frac{[H_3O^+][S^{2-}]}{K_2} + \frac{[H_3O^+]^2[S^{2-}]}{K_1K_2} = [S^{2-}]\left(1 + \frac{[H_3O^+]}{K_2} + \frac{[H_3O^+]^2}{K_1K_2}\right)$$
(5)

Substituting equation (1) into (5), gives

$$[M^{2+}] = \frac{K_{sp}}{[M^{2+}]} \left(1 + \frac{[H_3O^+]}{K_2} + \frac{[H_3O^+]^2}{K_1K_2} \right)$$
$$[M^{2+}] = \sqrt{K_{sp} \left(1 + \frac{[H_3O^+]}{1.3 \times 10^{-14}} + \frac{[H_3O^+]^2}{1.25 \times 10^{-21}} \right)}$$
(6)

Chapter 11

(a) Substituting $K_{sp} = 3 \times 10^{-28}$ and $[H_3O^+] = 3.0 \times 10^{-1}$ into equation (6), gives

$$[M^{2+}] = \text{ solubility} = \sqrt{3 \times 10^{-28} \left(1 + \frac{0.30}{1.3 \times 10^{-14}} + \frac{(0.30)^2}{1.25 \times 10^{-21}} \right)} = 1.5 \times 10^{-4} \text{ M}$$

(**b**) Using the same K_{sp} , but $[H_3O^+] = 3.0 \times 10^{-4}$, gives

$$[M^{2^+}] =$$
solubility $= 1.5 \times 10^{-7} M$

11-11. For MnS(pink), $K_{\rm sp} = 3.0 \times 10^{-11}$

(a) For $[H_3O^+] = 3.00 \times 10^{-5}$

$$[M^{2+}]$$
 = solubility = 4.7 M

11-12. Proceeding as in Problem 11-9, we find

$$[Zn^{2+}] = \sqrt{K_{sp} \left(1 + \frac{[H_3O^+]}{K_2} + \frac{[H_3O^+]^2}{K_1K_2}\right)}$$

For ZnCO₃, $K_{\rm sp} = 1.0 \times 10^{-10}$. For H₂CO₃, $K_1 = 4.45 \times 10^{-7}$, and $K_2 = 4.69 \times 10^{-11}$

$$[Zn^{2+}] = \sqrt{1 \times 10^{-10} \left(1 + \frac{[H_3O^+]}{4.69 \times 10^{-11}} + \frac{[H_3O^+]^2}{4.45 \times 10^{-7} \times 4.69 \times 10^{-11}}\right)}$$

For pH = 7.00, $[H_3O^+] = 1.00 \times 10^{-7}$

$$[Zn^{2+}] = 5.1 \times 10^{-4} M$$

11-14. $[Cu^{2+}][OH^{-}]^2 = 4.8 \times 10^{-20}$ $[Mn^{2+}][OH^{-}]^2 = 2 \times 10^{-13}$

- (a) Cu(OH)₂ precipitates first
- **(b)** Cu^{2+} begins to precipitate when

$$[OH^{-}] = \sqrt{\frac{4.8 \times 10^{-20}}{0.05}} = 9.8 \times 10^{-10} \text{ M}$$

(c) Mn^{2+} begins to precipitate when

$$[OH^{-}] = \sqrt{\frac{2 \times 10^{-13}}{0.04}} = 2.24 \times 10^{-6} M$$

$$[Cu^{2+}] = 4.8 \times 10^{-20} / (2.24 \times 10^{-6})^{2} = 9.6 \times 10^{-9} M$$
11-16. (a)

$$[Ag^{+}] = K_{sp} / [\Gamma^{-}] = 8.3 \times 10^{-17} / (1.0 \times 10^{-6}) = 8.3 \times 10^{-11} M$$
(b)

$$[Ag^{+}] = K_{sp} / [SCN-] = 1.1 \times 10^{-12} / (0.080) = 1.375 \times 10^{-11} M \approx 1.4 \times 10^{-11} M$$
(c)

$$[\Gamma^{-}] \text{ when } [Ag^{+}] = 1.375 \times 10^{-11} M$$

$$[\Gamma^{-}] = 8.3 \times 10^{-17} / (1.375 \times 10^{-11}) = 6.0 \times 10^{-6} M$$

$$[SCN^{-}] / [\Gamma^{-}] = 0.080 / (6.0 \times 10^{-6}) = 1.3 \times 10^{4}$$
(d)

$$[\Gamma^{-}] = 8.3 \times 10^{-17} / (1.0 \times 10^{-3}) = 8.3 \times 10^{-14} M$$

$$[SCN^{-}] = 1.1 \times 10^{-12} / (1.0 \times 10^{-3}) = 1.1 \times 10^{-9} M$$

Note that this ratio is independent of $[Ag^+]$ as long as some AgSCN_(s) is present.

11-18. AgBr
$$\rightleftharpoons$$
 Ag⁺ + Br⁻ $K_{sp} = 5.0 \times 10^{-13} = [Ag^+][Br^-]$ (1)

$$Ag^{+} + 2CN^{-} \rightleftharpoons Ag(CN)_{2}^{-} \qquad \beta_{2} = 1.3 \times 10^{21} = \frac{[Ag(CN)_{2}^{-}]}{[Ag^{+}][CN^{-}]^{2}}$$
(2)

It is readily shown that $CN^- + H_2O \rightleftharpoons HCN + OH^-$ can be neglected in this problem so

that only the two equilibria shown above need to be considered.

Solubility = $[Br^{-}]$

Mass balance requires that

$$[Br^{-}] = [Ag^{+}] + [Ag(CN)_{2}^{-}]$$
(3)

 $0.200 = [CN^{-}] + 2[Ag(CN)_{2}^{-}]$ (4)

We now have 4 equations and 4 unknowns.

Because β_2 is very large, let us assume that

$$[CN^{-}] \ll 2[Ag(CN)_{2}^{-}]$$
 and $[Ag^{+}] \ll [Ag(CN)_{2}^{-}]$

(4) becomes $[Ag(CN)_2] = 0.200/2 = 0.100$

and (3) becomes $[Br^-] = [Ag(CN)_2^-] = 0.100$

To check the assumptions, we calculate $[Ag^+]$ by substituting into (1)

$$[Ag^{+}] = 5.0 \times 10^{-13} / 0.100 \cong 5 \times 10^{-12}$$
 (5 × 10⁻¹² <<

0.100)

To obtain [CN⁻] we substitute into (2) and rearrange

$$[CN^{-}] = \sqrt{\frac{0.100}{\left(1 \times 10^{-11}\right) \left(1.3 \times 10^{21}\right)}} = 2.8 \times 10^{-6} \qquad (2.8 \times 10^{-6} << 0.100)$$

Thus, the two assumptions are valid and

Solubility =
$$[Br^-]$$
 = 0.100 M

mass AgBr/200 mL = 0.100 $\frac{\text{mmol}}{\text{mL}} \times 200 \text{ mL} \times \frac{0.1877 \text{ g}}{\text{mmol}}$

= 3.754 g

11-20.
$$\operatorname{CaSO}_{4(s)} \rightleftharpoons \operatorname{Ca}^{2^+} + \operatorname{SO}_4^{2^-} \quad K_{\operatorname{sp}} = [\operatorname{Ca}^{2^+}][\operatorname{SO}_4^{2^-}] = 2.6 \times 10^{-5}$$
 (1)

$$CaSO_{4(aq)} \rightleftharpoons Ca^{2+} + SO_4^{2-}$$
 $K_d = \frac{[Ca^{2+}][SO_4^{-}]}{[CaSO_4]_{aq}} = 5.2 \times 10^{-3}$ (2)

$$CaSO_{4(s)} \rightleftharpoons CaSO_{4(aq)}$$
 (3)

70

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

Chapter 11

Chapter 11

The mass balance gives

$$[Ca^{2^+}] = [SO_4^{2^-}]$$
(4)

We have 3 equations and 3 unknowns ($[Ca^{2+}]$, $[SO_4^{2-}]$, and $[CaSO_4]_{aq}$

To solve we divide (1) by (2) to give

$$[CaSO_4]_{aq} = K_{sp}/K_d = (2.6 \times 10^{-5})/(5.2 \times 10^{-3}) = 5.0 \times 10^{-3}$$

Note that this is the equilibrium constant expression for (3) and indicates that the

concentration of un-ionized CaSO₄ is always the same in a saturated solution of CaSO₄.

Substituting (4) into (1) gives

$$[Ca^{2+}] = (2.6 \times 10^{-5})^{1/2} = 5.1 \times 10^{-3} M$$

and since $S = [CaSO_4]_{aq} + [Ca^{2+}]$, we obtain

$$S = 5.0 \times 10^{-3} + 5.1 \times 10^{-3} = 1.01 \times 10^{-2} \text{ M}$$

%CaSO_{4(aq)} =
$$(5.0 \times 10^{-3}/1.01 \times 10^{-2}) \times 100\% = 49\%$$

(b) Here $[CaSO_4]_{aq}$ is again equal to 5.0×10^{-3} and the mass balance gives

$$[SO_4^{2-}] = 0.0100 + [Ca^{2+}]$$
(5)

Substituting (1) into (5) and rearranging gives

$$0 = [SO_4^{2-}]^2 - 0.0100[SO_4^{2-}] - K_{sp}$$

which may be solved using the quadratic equation to give

$$[SO_4^{2-}] = 0.0121 \text{ and } [Ca^{2+}] = 2.14 \times 10^{-3}$$

$$S = 5.0 \times 10^{-3} + 2.14 \times 10^{-3} = 7.14 \times 10^{-3} \text{ M}$$

%CaSO_{4(aq)} = $(5.0 \times 10^{-3}/7.14 \times 10^{-3}) \times 100\% = 70\%$

Chapter 12

12-1. (a) A *colloidal precipitate* consists of solid particles with dimensions that are less than 10^{-4} cm. A *crystalline precipitate* consists of solid particles with dimensions that at least 10^{-4} cm or greater. As a result, crystalline precipitates settle rapidly, whereas colloidal precipitates remain suspended in solution unless caused to agglomerate.

(c) *Precipitation* is the process by which a solid phase forms and is carried out of solution when the solubility product of a chemical species is exceeded. *Coprecipitation* is a process in which normally soluble compounds are carried out of solution during precipitate formation.

(e) *Occlusion* is a type of coprecipitation in which a compound is trapped within a pocket formed during rapid crystal formation. *Mixed-crystal formation* is also a type of coprecipitation in which a contaminant ion replaces an ion in the crystal lattice.

12-2. (a) *Digestion* is a process in which a precipitate is heated in the presence of the solution from which it was formed (the *mother liquor*). Digestion improves the purity and filterability of the precipitate.

(c) In *reprecipitation*, the filtered solid precipitate is redissolved and reprecipitated. Because the concentration of the impurity in the new solution is lower, the second precipitate contains less coprecipitated impurity.

(e) The *counter-ion layer* describes a layer of solution containing sufficient excess negative ions that surrounds a charged particle. This counter-ion layer balances the surface charge on the particle.

(g) *Supersaturation* describes an unstable state in which a solution contains higher solute concentration than a saturated solution. Supersaturation is relieved by precipitation of excess solute.

- **12-3.** A *chelating agent* is an organic compound that contains two or more electron-donor groups located in such a configuration that five- or six-membered rings are formed when the donor groups complex a cation.
- 12-5. (a) There is positive charge on the surface of the coagulated colloidal particles.
 - (b) The positive charge arises from adsorbed Ag^+ ions.
 - (c) NO_3^- ions make up the counter-ion layer.
- 12-7. In *peptization*, a coagulated colloid returns to its original dispersed state because of a decrease in the electrolyte concentration of the solution contacting the precipitate.Peptization can be avoided by washing the coagulated colloid with an electrolyte solution instead of pure water.
- **12-9.** (a) mass SO₂ = mass BaSO₄ × $\frac{M_{SO_2}}{M_{BaSO_4}}$

(c) mass In = mass In₂O₃ × $\frac{2M_{\text{In}}}{M_{\text{In}_2\text{O}_3}}$

(e) mass CuO = mass Cu₂(SCN)₂ × $\frac{2M_{CuO}}{M_{Cu_2(SCN)_2}}$

(i) mass Na₂B₄O₇•10H₂O = mass B₂O₃ × $\frac{M_{\text{Na}_2\text{B}_4\text{O}_7} \cdot 10\text{H}_2\text{O}}{2M_{\text{B}_2\text{O}_3}}$

12-10.
$$M_{AgCl} = 143.32 \text{ g/mol}$$
 $M_{KCl} = 74.55 \text{ g/mol}$
$$\frac{0.2912 \text{ g } \text{AgCl} \times \left(\frac{1 \text{ mol } \text{AgCl}}{143.32 \text{ g}}\right) \times \left(\frac{1 \text{ mol } \text{KCl}}{1 \text{ mol } \text{AgCl}}\right) \times \left(\frac{74.55 \text{ g } \text{KCl}}{\text{ mol}}\right)}{0.2500 \text{ g impure sample}} \times 100\% = 60.59\%$$

12-12.

$$0.650 \text{ g } \text{CuSO}_{4} \bullet 5\text{H}_{2}\text{O} \times \frac{1 \text{ mol } \text{CuSO}_{4} \bullet 5\text{H}_{2}\text{O}}{249.67 \text{ g } \text{CuSO}_{4} \bullet 5\text{H}_{2}\text{O}} \times \frac{1 \text{ mol } \text{Cu}(\text{IO}_{3})_{2}}{1 \text{ mol } \text{CuSO}_{4} \bullet 5\text{H}_{2}\text{O}} \times \frac{413.35 \text{ g } \text{Cu}(\text{IO}_{3})_{2}}{1 \text{ mol } \text{Cu}(\text{IO}_{3})_{2}} = 1.076 \text{ g } \text{Cu}(\text{IO}_{3})_{2}$$

12-14.

mass AgI =
$$0.512 \text{ g} \times \frac{20.1 \text{ g}}{100 \text{ g}} \times \frac{1 \text{ mol AlI}_3}{407.69 \text{ g}} \times \frac{3 \text{ mol AgI}}{\text{mol AlI}_3} \times \frac{234.77 \text{ g AgI}}{\text{mol AgI}} = 0.178 \text{ g}$$

12-18.
$$\frac{0.6006 \text{ g BaCO}_3 \times \frac{1 \text{ mol BaCO}_3}{197.34 \text{ g}} \times \frac{1 \text{ mol C}}{1 \text{ mol BaCO}_3} \times \frac{12.011 \text{ g C}}{1 \text{ mol C}}}{0.2121 \text{ g sample}} \times 100\% = 17.23\% \text{ C}$$

12-20.

$$\begin{pmatrix} 0.5718 \text{ g } \text{Hg}_{5}(\text{IO}_{6})_{2} \times \frac{1 \text{ mol } \text{Hg}_{5}(\text{IO}_{6})_{2}}{1448.75 \text{ g } \text{Hg}_{5}(\text{IO}_{6})_{2}} \times \frac{5 \text{ mol } \text{Hg}^{2^{+}}}{1 \text{ mol } \text{Hg}_{5}(\text{IO}_{6})_{2}} \\ \times \frac{1 \text{ mol } \text{Hg}_{2}\text{Cl}_{2}}{2 \text{ mol } \text{Hg}^{2^{+}}} \times \frac{472.18 \text{ g } \text{Hg}_{2}\text{Cl}_{2}}{1 \text{ mol } \text{Hg}_{2}\text{Cl}_{2}} \end{pmatrix} \\ \times 100\% = 44.58\% \text{ Hg}_{2}\text{Cl}_{2}$$

12-22. $M_{\rm NH3} = 17.0306 \text{ g/mol}$ $M_{\rm Pt} = 195.08 \text{ g/mol}$

$$\frac{0.4693 \text{ g Pt} \times \left(\frac{1 \text{ mol Pt}}{195.08 \text{ g}}\right) \times \left(\frac{2 \text{ mol NH}_3}{1 \text{ mol Pt}}\right) \times \left(\frac{17.0306 \text{ g NH}_3}{\text{mol}}\right)}{0.2115 \text{ g impure sample}} \times 100\% = 38.74\% \text{ NH}_3$$

12-24. $M_{BaSO4} = 233.39 \text{ g/mol}$ $M_{SO42-} = 96.064 \text{ g/mol}$

Let S_w = mass of sample in grams

 $0.200 \text{ g } \text{BaSO}_{4} \times \frac{1 \text{ mol } \text{BaSO}_{4}}{233.39 \text{ g}} \times \frac{1 \text{ mol } \text{SO}_{4}^{2-}}{1 \text{ mol } \text{BaSO}_{4}} = 8.57 \times 10^{-4} \text{ mol } \text{SO}_{4}^{2-}$ $\frac{8.57 \times 10^{-4} \text{ mol } \text{SO}_{4}^{2-} \times \frac{96.064 \text{ g } \text{SO}_{4}^{2-}}{\text{mol}}}{S_{\text{w}} \text{ g sample}} = 100\% = 20\% \text{ SO}_{4}^{2-}$ $S_{\text{w}} = \frac{8.57 \times 10^{-4} \text{ mol } \text{SO}_{4}^{2-} \times \frac{96.064 \text{ g } \text{SO}_{4}^{2-}}{\text{mol}}}{20\%} = 0.412 \text{ g sample}$

The maximum precipitate mass expected given this sample mass is

$$0.412 \text{ g sample} \times \frac{55 \text{ g SO}_{4}^{2^{-}}}{100 \text{ g sample}} \times \frac{1 \text{ mol SO}_{4}^{2^{-}}}{96.064 \text{ g}} \times \frac{1 \text{ mol BaSO}_{4}}{1 \text{ g SO}_{4}^{2^{-}}} \times \frac{233.39 \text{ g BaSO}_{4}}{1 \text{ mol}}$$

=0.550 g BaSO₄

12-26. Let S_w = mass of sample in grams.

(a)
$$M_{\text{AgCl}} = 143.32 \text{ g/mol}$$
 $M_{\text{ZrCl4}} = 233.03 \text{ g/mol}$

$$\frac{0.400 \text{ g AgCl} \times \frac{1 \text{ mol AgCl}}{143.32 \text{ g}} \times \frac{1 \text{ mol ZrCl}_4}{4 \text{ mol AgCl}} \times \frac{233.03 \text{ g ZrCl}_4}{1 \text{ mol}}}{1 \text{ mol}} \times 100\% = 68\% \text{ ZrCl}_4}{S_w \text{ g sample}}$$

$$S_w = \frac{1.62 \times 10^{-1} \text{g ZrCl}_4 \times 100\%}{68\%} = 0.239 \text{ g sample}$$

$$0.239 \text{ g sample} \times \frac{84 \text{ g } \text{ZrCl}_4}{100 \text{ g sample}} \times \frac{1 \text{ mole } \text{ZrCl}_4}{233.03 \text{ g}} \times \frac{4 \text{ mole } \text{AgCl}}{1 \text{ mole } \text{ZrCl}_4} \times \frac{143.32 \text{ g } \text{AgCl}}{1 \text{ mole}} = 0.494 \text{ g } \text{AgCl}$$

%
$$\operatorname{ZrCl}_{4} = \frac{1.62 \times 10^{-1} g \operatorname{ZrCl}_{4} \times 100\%}{S_{w}} = 40\%$$

 $S_{w} = \frac{1.62 \times 10^{-1} g \operatorname{ZrCl}_{4} \times 100\%}{40\%} = 0.406 \text{ g sample}$

12-28.
$$M_{AgCl} = 143.32 \text{ g/mol}$$

 $0.4430 \text{ g} = x \text{ g AgCl} + y \text{ g AgI}$
 $g \text{ AgCl} = x \text{ g AgCl} + \left(y \text{ g AgI} \times \frac{1 \text{ mol AgI}}{234.77 \text{ g}} \times \frac{1 \text{ mol AgCl}}{1 \text{ mol AgI}} \times \frac{143.32 \text{ g AgCl}}{1 \text{ mol}} \right) = 0.3181 \text{ g}$
 $0.3181 = x \text{ g AgCl} + 0.6104698 y \text{ g AgI}$

Here again, we have 2 equations and 2 unknowns,

$$x + y = 0.4430$$

x + 0.6104698y = 0.3181

The spreadsheet is shown on the next page

We would report %Cl = 4.72 and %I = 27.05

A	A	В	С	D
1	Problem 12-28			
2	MAgci	143.32		
3	\mathcal{M}_{Agl}	243.77		
4	M _{cl}	35.453		
5	M ₁	126.9045		
6				
7	Coefficient Matrix	(Constant Matrix
8	1	1		0.443
9	1	0.6104698		0.3181
10				
11	Inverse Matrix	[]		Solution Matrix
12	-1.567195047	2.56719505		0.122357339
13	2.567195047	-2.56719505		0.320642661
14				
15	Sample Mass	0.6407		
16	Mass AgCl	0.12235734		
17	Mass Agl	0.32064266		
18	%CI	4.72412619		
19	%I	26.0533363		
20				
21	Documentation			
22	Cells A12:B13=MIN	VERSE(A8:B9)		
23	Cells D12:D13=MM	ULT(A12:B13,D8	3:D9)	
24	Cell B18=(B16*B4/B	2)/B15*100		
25	Cell B19=(B17*B5/B	3)/B15*100		

12-30.

$$M_{CO_{2}} = 44.010 \text{ g/mol} \quad M_{MgCO_{3}} = 84.31 \text{ g/mol} \quad M_{K_{2}CO_{3}} = 138.21 \text{ g/mol}$$

mol CO₂ = mol MgCO₃ + mol K₂CO₃
= $\left(2.300 \text{ g sample} \times \frac{38 \text{ g MgCO}_{3}}{100 \text{ g}} \times \frac{1 \text{ mol MgCO}_{3}}{100 \text{ g}}\right) + \frac{100 \text{ mol MgCO}_{3}}{100 \text{ g}}$

$$\left(2.300 \text{ g sample} \times \frac{42 \text{ g } \text{K}_2 \text{CO}_3}{100 \text{ g sample}} \times \frac{1 \text{ mol } \text{K}_2 \text{CO}_3}{138.21 \text{ g}}\right)$$

amount $CO_2 = 0.0104 + 6.989 \times 10^{-3} = 0.01736 \text{ mol}$ mass $CO_2 = 0.01736 \text{ mole} \times \frac{44.010 \text{ g } CO_2}{1 \text{ mole}} = 0.764 \text{ g}$

12-32.

$$\begin{split} \mathsf{M}_{\text{BaCl}_2 \bullet 2\text{H}_2\text{O}} &= 244.26 \text{ g/mol} \quad \mathsf{M}_{\text{NaIO}_3} = 197.89 \text{ g/mol} \quad \mathsf{M}_{\text{Ba(IO}_3)_2} = 487.13 \text{ g/mol} \\ 0.200 \text{ g } \text{BaCl}_2 \bullet 2\text{H}_2\text{O} \times \frac{1 \text{ mol } \text{BaCl}_2 \bullet 2\text{H}_2\text{O}}{244.26 \text{ g}} \times \frac{1 \text{ mol } \text{Ba}^{2^+}}{1 \text{ mol } \text{BaCl}_2 \bullet 2\text{H}_2\text{O}} \\ &= 8.188 \times 10^{-4} \text{ mol } \text{Ba}^{2^+} \\ 0.300 \text{ g } \text{NaIO}_3 \times \frac{1 \text{ mol } \text{NaIO}_3}{197.89 \text{ g}} \times \frac{1 \text{ mol } \text{IO}_3^-}{1 \text{ mol } \text{NaIO}_3} = 1.516 \times 10^{-3} \text{ mol } \text{IO}_3^- \end{split}$$

Because IO_3^- is the limiting reagent,

(a)

amount Ba(IO₃)₂ =
$$\frac{1.516 \times 10^{-3} \text{ mol}}{2}$$
 = 7.580 × 10⁻⁴ mol
mass Ba(IO₃)₂ = 7.580 × 10⁻⁴ mol × $\frac{487.13 \text{ g Ba(IO_3)}_2}{1 \text{ mol}}$ = 0.369 g Ba(IO₃)₂

(b)

amount BaCl₂•2H₂O remaining = $((8.188 \times 10^{-4}) - (7.580 \times 10^{-4}))$ mol = 6.080×10^{-5} mol mass BaCl₂•2H₂O = 6.08×10^{-5} mol BaCl₂•2H₂O $\times \frac{244.26 \text{ g BaCl}_2 \cdot 2\text{H}_2\text{O}}{1 \text{ mol}}$ = 0.0149 g

Chapter 13

Chapter 13

13-1. (a) The *millimole* is the amount of an elementary species, such as an atom, an ion, a molecule, or an electron. A millimole contains

 $6.02 \times 10^{23} \frac{\text{particles}}{\text{mol}} \times \frac{\text{mol}}{1000 \text{ mmol}} = 6.02 \times 10^{20} \frac{\text{particles}}{\text{mmol}}$

(c) The *stoichiometric ratio* is the molar ratio of two chemical species that appear in a balanced chemical equation.

13-3. (a) The *equivalence point* in a titration is that point at which sufficient titrant has been added so that stoichiometrically equivalent amounts of analyte and titrant are present. The *end point* in a titration is the point at which an observable physical change signals the equivalence point.

13-5. (a)
$$\frac{1 \mod H_2 NNH_2}{2 \mod I_2}$$

(c) $\frac{1 \mod Na_2 B_4 O_7 \cdot 10 H_2 O}{2 \mod S H^+}$
13-7. (a) 2.95 pmL × $\frac{0.0789 \mod}{pmL} = 0.233 \mod$
(b) $0.2011 \not L \times \frac{0.0564 \mod}{\not L} \times \frac{1000 \mod}{pmol} = 11.34 \mod$
(c)
 $\frac{47.5 \ g Mg(NO_3)_2}{10^6 \ g \, soln} \times \frac{1000 \ g \, soln}{\not L} \times \frac{1 \mod}{148.31 \ g Mg(NO_3)_2} \times 2.56 \not L \times \frac{1000 \mod}{pmol} = 0.820 \mod$
(d) 79.8 pmL × $\frac{0.1379 \mod}{pmL} = 11.00 \mod$

13-9. (a) 450.0 mL ×
$$\frac{0.0986 \text{ mol} \text{H}_2 \text{O}_2}{\cancel{k}}$$
 × $\frac{34.02 \text{ g}}{\text{mol} \text{H}_2 \text{O}_2}$ × $\frac{1 \cancel{k}}{1000 \text{ mL}}$ = 1.51 g
(b) 26.4 mL × $\frac{9.36 \times 10^{-4} \text{ mol}}{\cancel{k}}$ × $\frac{122.1 \text{ g}}{\text{mol}}$ × $\frac{1 \cancel{k}}{1000 \text{ mL}}$ = 3.02 × 10⁻³ g
(c) 2.50 \cancel{k} × $\frac{23.4 \text{ mg}}{\cancel{k}}$ × $\frac{1 \text{ g}}{1000 \text{ mg}}$ = 0.0585 g (1 ppm = 1 mg/L)
(d) 21.7 mL × $\frac{0.0214 \text{ mol}}{\cancel{k}}$ × $\frac{167.0 \text{ g}}{\cancel{mol}}$ × $\frac{1 \cancel{k}}{1000 \text{ mL}}$ = 0.0776 g
13-11. $\frac{20.0 \text{ g} \text{KCl}}{100 \text{ g} \text{ sofn}}$ × $\frac{1.13 \text{ g} \text{ sofn}}{\text{mL}}$ × $\frac{1 \text{ mmol} \text{KCl}}{0.07455 \text{ g} \text{KCl}}$ = 3.03 $\frac{\text{mmol} \text{KCl}}{\text{mL}}$ = 3.03 M

13-13. (a) $1.00 \not L \times \frac{0.150 \text{ mol}}{\not L} \times \frac{158.03 \text{ g}}{\text{mol}} = 23.70 \text{ g}$

Dissolve 23.70 g KMnO₄ in water and dilute to 1.00 L total volume.

(**b**) 2.50 L of 0.500 M HClO₄ contains 2.50 $\cancel{k} \times \frac{0.500 \text{ mol}}{\cancel{k}} = 1.25 \text{ mol}$

Need to take a volume of $\frac{1.25 \text{ mol}}{9.00 \text{ mol}/\text{L}} = 0.139 \text{ L}$

Take 139 mL of concentrated (9.00 M) reagent and dilute to 2.50 L.

$$400 \text{ mL} \times \frac{0.0500 \text{ mot } \overline{I^-}}{\cancel{k}} \times \frac{1 \cancel{k}}{1000 \text{ mL}} \times \frac{1 \text{ mol MgI}_2}{2 \text{ mot } \overline{I^-}} \times \frac{278.11 \text{ g}}{\text{mol MgI}_2} = 2.78 \text{ g}$$

Dissolve 2.78 g MgI₂ in water and bring to 400 mL total volume.

80

Chapter 13

Chapter 13

(d)

$$200 \text{ mL} \times \frac{1.00 \text{ gCuSO}_4}{100 \text{ mL}} \times \frac{1 \text{ mol}}{159.61 \text{ gCuSO}_4} \times \frac{1 \text{ k}}{0.218 \text{ mol}} \times \frac{1000 \text{ mL}}{1 \text{ k}} = 57.5 \text{ mL}$$

Take 57.5 mL of the 0.218 M solution and dilute to a volume of 200 mL.

(e) In 1.50 L of 0.215 M NaOH, there are

$$\frac{0.215 \text{ mole NaOH}}{L} \times 1.50 \text{ L} = 0.3225 \text{ mole NaOH}$$

The commercial reagent is $\frac{1.525 \times 10^3 \text{ g}}{L} \times \frac{50 \text{ g NaOH}}{100 \text{ g}} \times \frac{\text{mole}}{40.00 \text{ g NaOH}} = 19.06 \text{ M}$

Thus, volume = 0.3225 mole-NaOH × $\frac{L}{19.06 \text{ mole-NaOH}}$ = 0.0169 L

Take 16.9 mL of the concentrated reagent and dilute to 1.50 L.

(f) 12 ppm K⁺ =
$$\frac{12 \text{ mg K}^+}{\cancel{L}} \times 1.50 \cancel{L} = 18 \text{ mg K}^+$$

$$18 \text{ mg} \times \frac{1 \text{ g}}{1000 \text{ mg}} \times \frac{\text{mole } \text{K}^{+}}{39.10 \text{ g}} \times \frac{\text{mole } \text{K}_{4} \text{Fe}(\text{CN})_{6}}{4 \text{ mole } \text{K}^{+}} \times \frac{368.3 \text{ g}}{\text{mole } \text{K}_{4} \text{Fe}(\text{CN})_{6}}$$

 $= 0.0424 \text{ g K}_4 \text{Fe}(\text{CN})_6$

Dissolve 42.4 mg K₄Fe(CN)₆ in water and dilute to 1.50 L.

13-15. $M_{Na_2CO_3} = 105.99 \frac{g}{mole}$

$$CO_3^{2-} + 2H^+ \rightleftharpoons H_2O + CO_2(g)$$

$$\frac{0.4723 \text{ g Na}_2 \text{CO}_3 \times \frac{1 \text{ mole Na}_2 \text{CO}_3}{105.99 \text{ g Na}_2 \text{CO}_3} \times \frac{2 \text{ mole H}^+}{\text{mole Na}_2 \text{CO}_3} \times \frac{1 \text{ mole H}_2 \text{SO}_4}{2 \text{ mole H}^+} \times \frac{1000 \text{ mmol}}{\text{mole H}_2 \text{SO}_4}}{34.78 \text{ mL}}$$

$$= 0.1281 \text{ M}$$

13-17. $\frac{V_{\text{HCIO}_4}}{V_{\text{NaOH}}} = \frac{26.93 \text{ mL HCIO}_4}{25.00 \text{ mL NaOH}} = 1.0772 \frac{\text{mL HCIO}_4}{\text{mL NaOH}}$

The volume of HClO₄ needed to titrate 0.4126 g of Na₂CO₃ is

40.00 mL HClO₄ – 9.20 mL NaOH ×
$$\frac{1.0772 \text{ mL HClO}_4}{\text{mL NaOH}}$$
 = 30.09 mL

Thus,
$$\frac{0.4126 \text{ g Na}_2\text{CO}_3}{30.09 \text{ mL HClO}_4} \times \frac{1 \text{ mmol Na}_2\text{CO}_3}{0.10588 \text{ g Na}_2\text{CO}_3} \times \frac{2 \text{ mmol HClO}_4}{\text{mmol Na}_2\text{CO}_3} = 0.2590 \text{ M HClO}_4$$

and

$$c_{\text{NaOH}} = c_{\text{HCIO}_4} \times \frac{V_{\text{HCIO}_4}}{V_{\text{NaOH}}}$$

 $= \frac{0.2590 \text{ mmol} \text{HCtO}_4}{\text{mL} \text{HCtO}_4} \times \frac{1.0772 \text{ mL} \text{HCtO}_4}{\text{mL} \text{ NaOH}} \times \frac{1 \text{ mmol} \text{ NaOH}}{\text{mmol} \text{HCtO}_4} = 0.2790 \text{ M}$

13-19. Each mole of KIO₃ consumes 6 moles of
$$S_2O_3^{2-}$$

 $\frac{0.1142 \text{ g KHO}_3 \times \frac{1 \text{ mol-KHO}_3}{214.001 \text{ g KHO}_3} \times \frac{1000 \text{ mmol Na}_2\text{SO}_3}{\text{mol Na}_2\text{SO}_3} \times \frac{6 \text{ mol-Na}_2\text{SO}_3}{\text{mol-KHO}_3}}{27.95 \text{ mL Na}_2\text{SO}_3}$ $= 0.1146 \text{ M Na}_2\text{SO}_3$

13-21. No. mmol Fe²⁺ = 25.00 mL × $\frac{0.002517 \text{ mmol } \text{Cr}_2 \text{O}_7^{2-}}{\text{mL}}$ × $\frac{6 \text{ mmol } \text{Fe}^{2+}}{\text{mmol } \text{Cr}_2 \text{O}_7^{2-}}$ = 0.37755

= no. mmol analyte Fe^{2+} + no. mmol Fe^{2+} back titrated

No. mmol analyte $Fe^{2+} = 0.37755 - 8.53 \times 0.00949 M = 0.2966$

$$\frac{0.2966 \text{ mmot Fe}}{100 \text{ mL}} \times \frac{0.055845 \text{ g}}{\text{mmot Fe}} \times \frac{1 \text{ mL}}{\text{g}} \times 10^6 \text{ ppm} = 165.6 \text{ ppm Fe}$$

13-23. $\frac{37.31 \text{ mL Hg}^{2+} \times \frac{0.009372 \text{ mmol Hg}^{2+}}{\text{mL Hg}^{2+}} \times \frac{4 \text{ mmol}}{\text{mmol Hg}^{2+}} \times \frac{0.07612 \text{ g}}{\text{mmol}}}{1.455 \text{ g}} \times 100\%$

13-25. Total amount KOH = $40.00 \text{ mL} \times 0.04672 \text{ mmol/mL} = 1.8688 \text{ mmol}$

KOH reacting with H₂SO₄

$$= 3.41 \text{ mLH}_2 \text{SO}_4 \times \frac{0.05042 \text{ mmolH}_2 \text{SO}_4}{\text{mLH}_2 \text{SO}_4} \times \frac{2 \text{ mmol KOH}}{\text{mmol H}_2 \text{SO}_4} = 0.34386 \text{ mmol}$$

 $mass EtOAc = (1.8688 - 0.34386) \underline{mmolKOH} \times \frac{1 \underline{mmolEtOAc}}{\underline{mmolKOH}} \times \frac{0.08811 \text{ g}}{\underline{mmolEtOAc}}$

= 0.13436 g in the 20.00-mL portion. In the entire 100.00-mL there are

$$5 \times 0.13326$$
 g or 0.6718 g.

13-27. (a)
$$\frac{0.3147 \text{ g Na}_2 C_2 O_4}{0.1340 \text{ g Na}_2 C_2 O_4 / \text{ mmol Na}_2 C_2 O_4} \times \frac{2 \text{ mmol KMnO}_4}{5 \text{ mmol Na}_2 C_2 O_4} = 0.9394 \text{ mmol KMnO}_4$$

 $\frac{0.9394 \text{ mmol KMnO}_4}{31.67 \text{ mL}} = 0.02966 \text{ M KMnO}_4$

(b) $MnO_4^- + 5Fe^{2+} + 8H^+ \implies Mn^{2+} + 5Fe^{3+} + 4H_2O$

26.75 mL KMnO₄ \times 0.02966 M = 0.7934 mmol KMnO₄. Each mmol KMnO₄ consumes

5 mmol Fe^{2+} . So

mmol $Fe^{2+} = 5 \times 0.7934 = 3.967$

$$\frac{3.967 \text{ mmol Fe}^{2^{+}} \times \frac{1 \text{ mmol Fe}_{2}\text{O}_{3}}{2 \text{ mmol Fe}^{2^{+}}} \times \frac{0.15969 \text{ g Fe}_{2}\text{O}_{3}}{\text{mmol Fe}_{2}\text{O}_{3}}}{0.6656 \text{ g}} \times 100\% = 47.59\%$$

13-29. (a)
$$c = \frac{7.48 \text{ g} \times \frac{1 \text{ mol}}{277.85 \text{ g}}}{2.000 \text{ L}} = 1.35 \times 10^{-2} \text{ M}$$

(b) $[\text{Mg}^{2+}] = 1.35 \times 10^{-2} \text{ M}$
(c) There are 3 moles of Cl⁻ for each mole of KCl•MgCl₂•6H₂O. Hence,
 $[\text{Cl}^-] = 3 \times 1.346 \times 10^{-2} = 4.038 \times 10^{-2} \text{ M}$
(d) $\frac{7.48 \text{ g}}{2.00 \text{ L}} \times \frac{1 \text{ L}}{1000 \text{ mL}} \times 100\% = 0.374\% \text{ (w/v)}$
(e)
 $\frac{1.346 \times 10^{-2} \text{ mmol KCl+MgCl}_2}{\text{mul}} \times \frac{3 \text{ mmol Cl}^-}{\text{mmol KCl+MgCl}_2} \times 25.00 \text{ part} = 1.0095 \text{ mmol Cl}^-$

mL

$$\frac{1.346 \times 10^{-2} \text{ mmol KCl·MgCl}_2}{\text{mL}} \times \frac{1 \text{ mmol K}^+}{\text{mmol KCl·MgCl}_2} \times \frac{39.10 \text{ mg}}{\text{mmol K}^+} \times \frac{1000 \text{ mL}}{\text{L}} = \frac{526 \text{ mg K}^+}{\text{L}}$$
$$= 526 \text{ ppm K}^+$$
$$\frac{1.49 \times 10^{-3} \text{ mol}}{\text{L}} \times \frac{212.0 \text{ g}}{\text{mol}} \times \frac{1 \text{ L}}{1000 \text{ g}} \times 10^6 \text{ ppm} = 316 \text{ ppm}$$

Copyright 2013 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.

84

Chapter 13

Chapter 14

Chapter 14

- 14-1. The eye has limited sensitivity. To see the color change requires a roughly tenfold excess of one or the other form of the indicator. This change corresponds to a pH range of the indicator $pK_a \pm 1$ pH unit, a total range of 2 pH units.
- **14-3.** (a) The initial pH of the NH₃ solution will be less than that for the solution containing NaOH. With the first addition of titrant, the pH of the NH₃ solution will decrease rapidly and then level off and become nearly constant throughout the middle part of the titration. In contrast, additions of standard acid to the NaOH solution will cause the pH of the NaOH solution to decrease gradually and nearly linearly until the equivalence point is approached. The equivalence point pH for the NH₃ solution will be well below 7, whereas for the NaOH solution it will be exactly 7.

(**b**) Beyond the equivalence point, the pH is determined by the excess titrant. Thus, the curves become identical in this region.

- **14-5.** The variables are temperature, ionic strength, and the presence of organic solvents and colloidal particles.
- 14-6. The sharper end point will be observed with the solute having the larger $K_{\rm b}$.

(a) For NaOCl,
$$K_{\rm b} = \frac{1.00 \times 10^{-14}}{3.0 \times 10^{-8}} = 3.3 \times 10^{-7}$$

For hydroxylamine $K_{\rm b} = \frac{1.00 \times 10^{-14}}{1.1 \times 10^{-6}} = 9.1 \times 10^{-9}$ Thus, NaOCl

(c) For hydroxylamine
$$K_b = 9.1 \times 10^{-9}$$
 (part a)

For methyl amine,
$$K_{\rm b} = \frac{1.00 \times 10^{-14}}{2.3 \times 10^{-11}} = 4.3 \times 10^{-4}$$
 Thus, methyl amine

Chapter 14

14-7. The sharper end point will be observed with the solute having the larger K_{a} .

(a)	For nitrous acid	$K_{\rm a} = 7.1 \times 10^{-4}$	
	For iodic acid	$K_{\rm a} = 1.7 \times 10^{-1}$	Thus, iodic acid
(c)	For hypochlorous ac	id $K_a = 3.0 \times 10^{-8}$	3
	For pyruvic acid	$K_{\rm a} = 3.2 \times 10^{-3}$	Thus, pyruvic acid
	$InH^+ + H_2O \rightleftharpoons In +$	H_3O^+	$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{In}]}{[\mathrm{In}\mathrm{H}^{+}]} = K_{\mathrm{a}}$

For methyl orange, $pK_a = 3.46$ (Table 14-1)

$$K_{\rm a} = {\rm antilog}(-3.46) = 3.47 \times 10^{-4}$$

 $[InH^+]/[In] = 1.84$

14-9.

Substituting these values into the equilibrium expression and rearranging gives

$$[\mathrm{H}_{3}\mathrm{O}^{+}] = 3.47 \times 10^{-4} \times 1.84 = 6.385 \times 10^{-4}$$

$$pH = -\log(6.385 \times 10^{-4}) = 3.19$$

14-11. (b) At 50°C, $pK_w = -\log(5.47 \times 10^{-14}) = 13.26$

14-12. $pK_w = pH + pOH$; $pOH = -log[OH^-] = -log(1.00 \times 10^{-2}) = 2.00$

(b)
$$pH = 13.26 - 2.00 = 11.26$$

14-13.
$$\frac{3.00 \text{ g.HCl}}{100 \text{ g}} \times \frac{1.015 \text{ g}}{\text{mL}} \times \frac{1 \text{ mmol HCl}}{0.03646 \text{ g.HCl}} = 0.835 \text{ M}$$

$$[H_3O^+] = 0.835 \text{ M}; \quad pH = -\log 0.835 = 0.078$$

14-15. The solution is so dilute that we must take into account the contribution of water to $[OH^-]$ which is equal to $[H_3O^+]$. Thus,

$$[OH^{-}] = 2.00 \times 10^{-8} + [H_3O^{+}] = 2.00 \times 10^{-8} + \frac{1.00 \times 10^{-14}}{[OH^{-}]}$$

$$[OH^{-}]^{2} - 2.00 \times 10^{-8}[OH^{-}] - 1.00 \times 10^{-14} = 0$$

Solving the quadratic equation yields, $[OH^-] = 1.105 \times 10^{-7} M$

$$pOH = -log 1.105 \times 10^{-7} = 6.957; pH = 14.00 - 6.957 = 7.04$$

14-17. amount of Mg(OH)₂ taken =
$$\frac{0.093 \text{ g Mg(OH)}_2}{0.05832 \text{ g Mg(OH)}_2 / \text{mmol}} = 1.595 \text{ mmol}$$

(a)
$$c_{\text{HCl}} = (75.0 \times 0.0500 - 1.595 \times 2)/75.0 = 7.467 \times 10^{-3} \text{ M}$$

 $[\text{H}_3\text{O}^+] = 7.467 \times 10^{-3}; \quad \text{pH} = -\log(7.467 \times 10^{-3}) = 2.13$

(b)
$$c_{\text{HCl}} = 100.0 \times 0.0500 - 1.595 \times 2)/100.0 = 0.0181 \text{ M}$$

pH = -log(0.0181) = 1.74

(**d**)

(c)
$$15.0 \times 0.050 = 0.750$$
 mmol HCl added. Solid Mg(OH)₂ remains and

$$[Mg^{2+}] = 0.750 \text{ mmol } \text{HCl} \times \frac{1 \text{ mmol } Mg^{2+}}{2 \text{ mmol } \text{HCl}} \times \frac{1}{15.0 \text{ mL}} = 0.0250 \text{ M}$$

$$K_{\text{sp}} = 7.1 \times 10^{-12} = [Mg^{2+}][\text{OH}^{-}]^2$$

$$[\text{OH}^{-}] = \sqrt{\frac{7.1 \times 10^{-12}}{0.0250}} = 1.68 \times 10^{-5} \text{ M}$$

$$p\text{H} = 14.00 - (-\log(1.68 \times 10^{-5})) = 9.22$$

Since Mg(OH)₂ is fairly insoluble, the Mg²⁺ essentially all comes from the added
MgCl₂, and [Mg²⁺] = 0.0500 \text{ M}

$$[OH^{-}] = \sqrt{\frac{7.1 \times 10^{-12}}{0.0500}} = 1.19 \times 10^{-5} \,\mathrm{M}$$

$$pH = 14.00 - (-log(1.19 \times 10^{-5})) = 9.08$$

14-19. (a)
$$[H_3O^+] = 0.0500 \text{ M}; \text{ pH} = -\log(0.0500) = 1.30$$

(b) $\mu = \frac{1}{2} \{(0.0500)(+1)^2 + (0.0500)(-1)^2\} = 0.0500$
 $\gamma_{H_3O^+} = 0.85 \text{ (Table 10-2)}$
 $a_{H_3O^+} = 0.85 \times 0.0500 = 0.0425$
 $\text{pH} = -\log(0.0425) = 1.37$
14-21. $\text{HOCl} + \text{H}_2O \rightleftharpoons \text{H}_3O^+ + \text{OCl}^ K_a = \frac{[\text{H}_3O^+][\text{OCl}^-]}{[\text{HOCl}]} = 3.0 \times 10^{-8}$

$$[H_3O^+] = [OCl^-] \text{ and } [HOCl] = c_{HOCl} - [H_3O^+]$$

 $[H_3O^+]^2/(c_{HOCl} - [H_3O^+]) = 3.0 \times 10^{-8}$

rearranging gives: $[H_3O^+]^2 + 3 \times 10^{-8} [H_3O^+] - c_{HOCl} \times 3.0 \times 10^{-8} = 0$

	c _{HOCl}	$[H_3O^+]$	pH
(a)	0.100	5.476×10^{-5}	4.26
(b)	0.0100	1.731×10^{-5}	4.76
(c)	1.00×10^{-4}	1.717×10^{-6}	5.76

14-23.
$$\text{NH}_3 + \text{H}_2\text{O} \rightleftharpoons \text{NH}_4^+ + \text{OH}^ K_b = \frac{1.00 \times 10^{-14}}{5.7 \times 10^{-10}} = 1.75 \times 10^{-5}$$

 $[NH_4^+] = [OH^-]$ and $[NH_3] = c_{NH_3} - [OH^-]$

 $[OH^{-}]^{2}/(c_{_{\rm NH_{3}}} - [OH^{-}]) = 1.75 \times 10^{-5}$

rearranging gives: $[OH^{-}]^{2} + 1.75 \times 10^{-5}[OH^{-}] - c_{NH_{3}} \times 1.75 \times 10^{-5} = 0$

	${\cal C}_{ m NH_3}$	$[OH^{-}]$	рОН	pН
(a)	0.100	1.314×10^{-3}	2.88	11.12
(b)	0.0100	4.097×10^{-4}	3.39	10.62
(c)	1.00×10^{-4}	3.399×10^{-5}	4.47	9.53

88

14-25.
$$C_5H_{11}N + H_2O \implies C_5H_{11}NH^+ + OH^ K_b = \frac{1.00 \times 10^{-14}}{7.5 \times 10^{-12}} = 1.333 \times 10^{-3}$$

$$[C_5H_{11}NH^+] = [OH^-] \text{ and } [C_5H_{11}N] = c_{C_5H_{11}N} - [OH^-]$$

 $[OH^-]^2/(c_{C_5H_{11}N} - [OH^-]) = 1.333 \times 10^{-3}$

rearranging gives: $[OH^{-}]^{2} + 1.333 \times 10^{-3} [OH^{-}] - c_{C_{5}H_{11}N} \times 1.333 \times 10^{-3} = 0$

	$C_{C_5H_{11}N}$	$[OH^-]$	рОН	pН
(a)	0.100	1.090×10^{-2}	1.96	12.04
(b)	0.0100	3.045×10^{-3}	2.52	11.48
(c)	1.00×10^{-4}	9.345×10^{-5}	4.03	9.97

14-27. (a)

$$c_{\text{HA}} = 36.5 \text{ g HA} \times \frac{1 \text{ mmol HA}}{0.090079 \text{ g HA}} \times \frac{1}{500 \text{ mL soln}} = 0.8104 \text{ M HA}$$

$$HL + H_2O \rightleftharpoons H_3O^+ + L^ K_a = 1.38 \times 10^{-4}$$

$$[H_3O^+] = [L^-]$$
 and $[HL] = 0.8104 - [H_3O^+]$

$$[H_3O^+]^2/(0.8104 - [H_3O^+]) = 1.38 \times 10^{-4}$$

rearranging and solving the quadratic gives: $[H_3O^+] = 0.0105$ and pH = 1.98

(b)
$$c_{\text{HA}} = 0.8104 \times 25.0/250.0 = 0.08104 \text{ M HL}$$

Proceeding as in part (a) we obtain: $[H_3O^+] = 3.28 \times 10^{-3}$ and pH = 2.48

(c)
$$c_{\text{HA}} = 0.08104 \times 10.0/1000.0 = 8.104 \times 10^{-4} \text{ M HL}$$

Proceeding as in part (a) we obtain: $[H_3O^+] = 2.72 \times 10^{-4}$ and pH = 3.56

14-29. amount HFm taken = 20.00 mL $\times \frac{0.1750 \text{ mmol}}{\text{mL}} = 3.50 \text{ mmol}$

(a) $\text{HFm} + \text{H}_2\text{O} \rightleftharpoons \text{H}_3\text{O}^+ + \text{Fm}^ K_a = 1.80 \times 10^{-4}$

 $c_{\rm HFm} = 3.50/45.0 = 7.78 \times 10^{-2} \,\mathrm{M}$

$$[H_3O^+] = [Fm^-]$$
 and $[HFm] = 0.0778 - [H_3O^+]$

$$[H_3O^+]^2/(0.0778 - [H_3O^+]) = 1.80 \times 10^{-4}$$

rearranging and solving the quadratic gives: $[H_3O^+] = 3.65 \times 10^{-3}$ and pH = 2.44

(b) amount NaOH added = $25.0 \times 0.140 = 3.50$ mmol

Since all the formic acid has been neutralized, we are left with a solution of NaFm.

$$Fm^{-} + H_2O \Longrightarrow OH^{-} + HFm$$
 $K_b = 1.00 \times 10^{-14} / (1.80 \times 10^{-4}) = 5.56 \times 10^{-11}$

$$c_{\rm Fm^-} = 3.00/45.0 = 7.78 \times 10^{-2} \,\mathrm{M}$$

 $[OH^{-}] = [HFm]$ and $[Fm^{-}] = 0.0778 - [OH^{-}]$

$$[OH^{-}]^{2}/(0.0778 - [OH^{-}]) = 5.56 \times 10^{-11}$$

rearranging and solving the quadratic gives: $[OH^-] = 2.08 \times 10^{-6}$ and pH = 8.32

(c) amount NaOH added =
$$25.0 \times 0.200 = 5.00$$
 mmol

therefore, we have an excess of NaOH; the pH is determined by the excess [OH⁻].

$$[OH^{-}] = (5.00 - 3.50)/45.0 = 3.333 \times 10^{-2} M$$

$$pH = 14 - pOH = 12.52$$

(d) amount NaFm added =
$$25.0 \times 0.200 = 5.00$$
 mmol

$$[HFm] = 3.50/45.0 = 0.0778$$

 $[Fm^{-}] = 5.00/45.00 = 0.1111$

$$[H_3O^+] \times 0.1111/0.0778 = 1.80 \times 10^{-4}$$

 $[H_3O^+] = 1.260 \times 10^{-4}$ and pH = 3.90

14-31. (a) $NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$ $K_a = 5.70 \times 10^{-10} = \frac{[H_3O^+][NH_3]}{[NH_4^+]}$

$$[NH_3] = 0.0300 \text{ M}$$
 and $[NH_4^+] = 0.0500 \text{ M}$

$$[H_3O^+] = 5.70 \times 10^{-10} \times 0.0500/0.0300 = 9.50 \times 10^{-10} M$$

$$[OH^{-}] = 1.00 \times 10^{-14}/9.50 \times 10^{-10} = 1.05 \times 10^{-5} M$$

 $pH = -log (9.50 \times 10^{-10}) = 9.02$

(b)
$$\mu = \frac{1}{2} \{(0.0500)(+1)^2 + (0.0500)(-1)^2\} = 0.0500$$

From Table 10-2 $\gamma_{\rm NH_4^+} = 0.80$ and $\gamma_{\rm NH_3} = 1.0$

$$a_{\rm H_3O^+} = \frac{K_{\rm a} \gamma_{\rm NH_4^+} [\rm NH_4^+]}{\gamma_{\rm NH_3} [\rm NH_3]} = \frac{5.70 \times 10^{-5} \times 0.80 \times 0.0500}{1.00 \times 0.0300} = 7.60 \times 10^{-10}$$

$$pH = -\log (7.60 \times 10^{-10}) = 9.12$$

14-33. In each of the parts of this problem, we are dealing with a weak base B and its conjugate acid BHCl or $(BH)_2SO_4$. The pH determining equilibrium can then be written as BH⁺ + H₂O \rightleftharpoons H₃O⁺ + B

The equilibrium concentration of BH^+ and B are given by

$$[BH^{+}] = c_{BHCl} + [OH^{-}] - [H_{3}O^{+}]$$
(1)

$$[B] = c_{B} - [OH^{-}] + [H_{3}O^{+}]$$
(2)

In many cases $[OH^-]$ and $[H_3O^+]$ will be much smaller than c_B and c_{BHCl} and $[BH^+] \approx c_{BHCl}$ and $[B] \approx c_B$ so that

$$[\mathrm{H}_{3}\mathrm{O}^{+}] = K_{a} \times \frac{c_{\mathrm{BHCl}}}{c_{\mathrm{B}}}$$
(3)

(a) Amount
$$NH_4^+ = 3.30 \text{ g}(NH_4)_2 SO_4 \times \frac{1 \text{ mmol}(NH_4)_2 SO_4}{0.13214 \text{ g}(NH_4)_2 SO_4} \times \frac{2 \text{ mmol} NH_4^+}{\text{mmol}(NH_4)_2 SO_4}$$

=49.95 mmol

Amount NaOH = $125.0 \text{ mL} \times 0.1011 \text{ mmol/mL} = 12.64 \text{ mmol}$

$$c_{\rm NH_3} = 12.64 \text{ mmol NaOH} \times \frac{1 \text{ mmol NH}_3}{\text{mmol NaOH}} \times \frac{1}{500.0 \text{ mL}} = 2.528 \times 10^{-2} \text{ M}$$

$$c_{\text{NH}_{4}^{+}} = (49.95 - 12.64) \text{ mmol NH}_{4}^{+} \times \frac{1}{500.0 \text{ mL}} = 7.462 \times 10^{-2} \text{ M}$$

Substituting these relationships in equation (3) gives

$$[H_{3}O^{+}] = K_{a} \times \frac{c_{BHCL}}{c_{B}} = 5.70 \times 10^{-10} \times 7.462 \times 10^{-2} / (2.528 \times 10^{-2}) = 1.682 \times 10^{-9} M$$

$$[OH^{-}] = 1.00 \times 10^{-14} / 1.682 \times 10^{-9} = 5.95 \times 10^{-6} M$$

Note, $[H_3O^+]$ and $[OH^-]$ are small compared to $c_{_{NH_3}}$ and $c_{_{NH_4^+}}$ so our assumption is valid.

$$pH = -log(1.682 \times 10^{-9}) = 8.77$$

(b) Substituting into equation (3) gives

$$[H_{3}O^{+}] = 7.5 \times 10^{-12} \times 0.010/0.120 = 6.25 \times 10^{-13} M$$
$$[OH^{-}] = 1.00 \times 10^{-14}/6.25 \times 10^{-13} = 1.60 \times 10^{-2} M$$

Again our assumption is valid and

$$pH = -\log(6.25 \times 10^{-13}) = 12.20$$

(c)
$$c_{\rm B} = 0.050 \text{ M} \text{ and } c_{\rm BHCl} = 0.167 \text{ M}$$

$$[H_3O^+] = 2.31 \times 10^{-11} \times 0.167/0.050 = 7.715 \times 10^{-11} M$$
$$[OH^-] = 1.00 \times 10^{-14}/7.715 \times 10^{-11} = 1.30 \times 10^{-4} M$$

The assumption is valid and

$$pH = -log(7.715 \times 10^{-11}) = 10.11$$

(d) Original amount B =
$$2.32 \text{ g/B} \times \frac{1 \text{ mmol}}{0.09313 \text{ g/B}} = 24.91 \text{ mmol} = 24.91 \text{ mmol}$$

Amount HCl =
$$100 \text{ mL} \times 0.0200 \text{ mmol/mL} = 2.00 \text{ mmol}$$

$$c_{\rm B} = (24.91 - 2.00)/250.0 = 9.164 \times 10^{-2} \,\mathrm{M}$$

$$c_{\rm BH^+} = 2.00/250.0 = 8.00 \times 10^{-3} \,\mathrm{M}$$

$$[H_3O^+] = 2.51 \times 10^{-5} \times 8.00 \times 10^{-3} / (9.164 \times 10^{-2}) = 2.191 \times 10^{-6} M$$

$$[OH^{-}] = 1.00 \times 10^{-14}/2.191 \times 10^{-6} = 4.56 \times 10^{-9} M$$

Our assumptions are valid, so

$$pH = -log(2.191 \times 10^{-6}) = 5.66$$

14-34. (a) 0.00

(c) pH diluted solution =
$$14.000 - [-\log (0.00500)] = 11.699$$

pH undiluted solution = $14.000 - [-\log (0.0500)] = 12.699$
 $\Delta pH = 11.699 - 12.699 = -1.000$

(e)
$$OAc^- + H_2O \rightleftharpoons HOAc + OH$$

$$K_{\rm b} = \frac{[\rm HOAc][\rm OH^{-}]}{[\rm OAc^{-}]} = \frac{1.00 \times 10^{-14}}{1.75 \times 10^{-5}} = 5.71 \times 10^{-10}$$

Here we can use an approximation because K_b is very small. For the undiluted sample:

$$\frac{[OH^{-}]^{2}}{0.0500} = 5.71 \times 10^{-10}$$
$$[OH^{-}] = (5.71 \times 10^{-10} \times 0.0500)^{1/2} = 5.343 \times 10^{-6} \text{ M}$$

pH = $14.00 - [-\log(5.343 \times 10^{-6})] = 8.728$ For the diluted sample $[OH^{-}] = (5.71 \times 10^{-10} \times 0.00500)^{1/2} = 1.690 \times 10^{-6} M$ pH = $14.00 - [-\log(1.690 \times 10^{-6})] = 8.228$ $\Delta pH = 8.228 - 8.728 = -0.500$

(g) Proceeding as in part (f) a 10-fold dilution of this solution results in a pH change that is less than 1 in the third decimal place. Thus for all practical purposes, $\Delta pH = 0.000$

Note a more concentrated buffer compared to part (f) gives an even smaller pH change.

14-35. (a) After addition of acid, $[H_3O^+] = 1 \text{ mmol}/100 \text{ mL} = 0.0100 \text{ M}$ and pH = 2.00Since original pH = 7.00

 $\Delta pH = 2.00 - 7.00 = -5.00$

 $c_{\rm HCl} = (100 \times 0.0500 + 1.00)/100 = 0.0600 \text{ M}$

 $\Delta pH = -\log(0.0600) - [-\log(0.0500)] = 1.222 - 1.301 = -0.079$

(c) After addition of acid,

 $c_{\text{NaOH}} = (100 \times 0.0500 - 1.00)/100 = 0.0400 \text{ M}$

 $[OH^{-}] = 0.0400 \text{ M}$ and $pH = 14.00 - [-\log(0.0400)] = 12.602$

From Problem 14-34 (c), original pH = 12.699

 $\Delta pH = -0.097$

(d) From Solution 14-34 (d), original pH = 3.033Upon adding 1 mmol HCl to the 0.0500 M HOAc, we produce a mixture that is 0.0500 M in HOAc and 1.00/100 = 0.0100 M in HCl. The pH of this solution is approximately that of a 0.0100 M HCl solution, or 2.00. Thus $\Delta pH = 2.000 - 3.033 = -1.033$ (If the contribution of the dissociation of HOAc to the pH is taken into account, a pH of 1.996 is obtained and $\Delta pH = -1.037$ is obtained.) **(e)** From Solution 14-34 (e), original pH = 8.728Upon adding 1.00 mmol HCl we form a buffer having the composition $c_{\rm HOAc} = 1.00/100 = 0.0100$ $c_{\text{NaOAc}} = (0.0500 \times 100 - 1.00)/100 = 0.0400$ $[H_{3}O^{+}] = 1.75 \times 10^{-5} \times 0.0100/0.0400 = 4.575 \times 10^{-6} M$ $pH = -log(4.575 \times 10^{-6}) = 5.359$ $\Delta pH = 5.359 - 8.728 = -3.369$ **(f)** From Solution 14-34 (f), original pH = 4.757

With the addition of 1.00 mmol of HCl we have a buffer whose concentrations are

 $c_{\rm HOAc} = 0.0500 + 1.00/100 = 0.0600 \text{ M}$

 $c_{\text{NaOAc}} = 0.0500 - 1.00/100 = 0.0400 \text{ M}$

Proceeding as in part (e), we obtain

$$[H_3O^+] = 2.625 \times 10^{-5} \text{ M}$$
 and $pH = 4.581$

 $\Delta pH = 4.581 - 4.757 = -0.176$

Note again the very small pH change as compared to unbuffered solutions.

For the original solution

(g)

$$[H_{3}O^{+}] = 1.75 \times 10^{-5} \times 0.500/0.500 = 1.75 \times 10^{-5} M$$

$$pH = -log(1.75 \times 10^{-5}) = 4.757$$
After addition of 1.00 mmol HCl
$$c_{HOAc} = 0.500 + 1.00/100 = 0.510 M$$

$$c_{NaOAc} = 0.500 - 1.00/100 = 0.490 M$$
Proceeding as in part (e), we obtain
$$[H_{3}O^{+}] = 1.75 \times 10^{-5} \times 0.510/0.490 = 1.821 \times 10^{-5} M$$

$$pH = -log(1.821 \times 10^{-5}) = 4.740$$

$$\Delta pH = 4.740 - 4.757 = -0.017$$

Note that the more concentrated buffer is even more effective in resisting pH changes.

14-37. For lactic acid, $K_a = 1.38 \times 10^{-4} = [H_3O^+][L^-]/[HL]$

Throughout this problem we will base calculations on Equations 9-25 and 9-26

$$[L^{-}] = c_{\text{NaL}} + [H_3O^+] - [OH^-] \approx c_{\text{NaL}} + [H_3O^+]$$
$$[HL] = c_{\text{HL}} - [H_3O^+] - [OH^-] \approx c_{\text{HL}} - [H_3O^+]$$
$$\frac{[H_3O^+](c_{\text{NaL}} + [H_3O^+])}{c_{\text{HL}} - [H_3O^+]} = 1.38 \times 10^{-4}$$

This equation rearranges to

$$[\mathrm{H}_{3}\mathrm{O}^{+}]^{2} + (1.38 \times 10^{-4} + 0.0800)[\mathrm{H}_{3}\mathrm{O}^{+}] - 1.38 \times 10^{-4} \times c_{\mathrm{HL}} = 0$$

(**b**) Before addition of acid

$$[H_3O^+]^2 + (1.38 \times 10^{-4} + 0.0200)[H_3O^+] - 1.38 \times 10^{-4} \times 0.0800 = 0$$

 $[H_3O^+] = 5.341 \times 10^{-5}$ and pH = 3.272

After adding acid

$$c_{\rm HL} = (100 \times 0.0800 + 0.500)/100 = 0.0850 \text{ M}$$

 $c_{\rm NaL} = (100 \times 0.0200 - 0.500)/100 = 0.0150 \text{ M}$
 $[\text{H}_3\text{O}^+]^2 + (1.38 \times 10^{-4} + 0.0150)[\text{H}_3\text{O}^+] - 1.38 \times 10^{-4} \times 0.0850 = 0$
 $[\text{H}_3\text{O}^+] = 7.388 \times 10^{-4} \text{ and } \text{pH} = 3.131$
 $\Delta \text{pH} = 3.131 - 3.272 = -0.141$

14-39. The end point will occur when 25.00 mL of titrant have been added. Let us calculate pH

when 24.95 and 25.05 mL of reagent have been added.

$$c_{A^{-}} \approx \frac{\text{amount KOH added}}{\text{total volume soln}} = \frac{24.95 \times 0.1000 \text{ mmol KOH}}{74.95 \text{ mL soln}} = \frac{2.495}{74.95} = 0.03329 \text{ M}$$

$$c_{HA} \approx [HA] = \frac{\text{original amount HA} - \text{amount KOH added}}{\text{total volume soln}}$$

$$= \frac{(50.00 \times 0.0500 - 24.95 \times 0.1000) \text{ mmol HA}}{74.95 \text{ mL soln}}$$

$$= \frac{2.500 - 2.495}{74.95} = \frac{0.005}{74.95} = 6.67 \times 10^{-5} \text{ M}$$

Substituting into Equation 9-29

$$[H_{3}O^{+}] = K_{a} \frac{c_{HA}}{c_{A^{-}}} = \frac{1.80 \times 10^{-4} \times 6.67 \times 10^{-5}}{0.03329} = 3.607 \times 10^{-7} \text{ M}$$

$$pH = -\log(3.607 \times 10^{-7}) = 6.44$$

At 25.05 mL KOH

 $c_{\text{KOH}} = [\text{OH}^-] = \frac{\text{amount KOH added} - \text{initial amount HA}}{\text{total values calu$ total volume soln $=\frac{25.05 \times 0.1000 - 50.00 \times 0.05000}{75.05 \text{ mL soln}} = 6.66 \times 10^{-5} \text{ M}$

97

 $pH = 14.00 - [-log(6.66 \times 10^{-5})] = 9.82$

Thus, the indicator should change color in the range of pH 6.5 to 9.8. Cresol purple (range 7.6 to 9.2, Table 14-1) would be quite suitable.

Problems 14-41 through 14-43. We will set up spreadsheets that will solve a quadratic equation to determine $[H_3O^+]$ or $[OH^-]$, as needed. While approximate solutions are appropriate for many of the calculations, the approach taken represents a more general solution and is somewhat easier to incorporate in a spreadsheet. As an example consider the titration of a weak acid with a strong base. Here c_a and V_i represent initial concentration and initial volume.

Before the equivalence point:

$$[HA] = \frac{\left(c_{i HA}V_{i HA} - c_{i NaOH}V_{NaOH}\right)}{\left(V_{i HA} + V_{NaOH}\right)} - [H_{3}O^{+}]$$
and

$$[OH^{-}] = \frac{\left(c_{i NaOH}V_{NaOH} - c_{i HA}V_{i HA}\right)}{\left(V_{i HA} + V_{NaOH}\right)} + [HA]$$

Substituting these expressions into the equilibrium expression for [HA] and rearranging gives

$$[H_{3}O^{+}]^{2} + \left(\frac{(c_{i \text{ NAOH}}V_{\text{NAOH}})}{(V_{i \text{ HA}} + V_{\text{NAOH}})} + K_{a}\right)[H_{3}O^{+}] - \frac{K_{a}(c_{i \text{ HA}}V_{i \text{ HA}} - c_{i \text{ NAOH}}V_{\text{NAOH}})}{(V_{i \text{ HA}} + V_{\text{NAOH}})} = 0$$

From which $[H_3O^+]$ is directly determined.

At and after the equivalence point:

$$[A^{-}] = \frac{(c_{i HA}V_{HA})}{(V_{i HA} + V_{NaOH})} - [HA]$$

$$[OH^{-}] = \frac{(c_{i NaOH}V_{NaOH} - c_{i HA}V_{i HA})}{(V_{i HA} + V_{NaOH})} + [HA]$$

Substituting these expressions into the equilibrium expression for [A⁻] and rearranging gives

$$[\mathrm{HA}]^{2} + \left(\frac{\left(c_{\mathrm{i NaOH}}V_{\mathrm{NaOH}} - c_{\mathrm{i HA}}V_{\mathrm{i HA}}\right)}{\left(V_{\mathrm{i HA}} + V_{\mathrm{NaOH}}\right)} + \frac{K_{\mathrm{w}}}{K_{\mathrm{a}}}\right)[\mathrm{HA}] - \frac{K_{\mathrm{w}}\left(c_{\mathrm{i HA}}V_{\mathrm{HA}}\right)}{K_{\mathrm{a}}\left(V_{\mathrm{i HA}} + V_{\mathrm{NaOH}}\right)} = 0$$

From which [HA] can be determined and $[OH^-]$ and $[H_3O^+]$ subsequently calculated. A similar approach is taken for the titration of a weak base with a strong acid.

14-41.

	A	В	С	D	E	F	G
1	Pb 14-41(a)						
2	V _i HNO ₂	50.00					
3	c _i HNO ₂	0.1000					
4	c i NaOH	0.1000					
5	K_a for HNO ₂	7.10E-04					
6	K _w	1.00E-14					
7	V _{ep}	50.00					
8	-						
9	V _{NaOH} , mL	b in quadratic	c in quadratic	[HNO ₂]	[OH-]	[H₃O ⁺]	pН
10	0.00	7.1000E-04	-7.1000E-05			8.0786E-03	2.0927
11	5.00	9.8009E-03	-5.8091E-05			4.1607E-03	2.3808
12	15.00					1.5112E-03	2.8207
13	25.00	3.4043E-02	-2.3667E-05	1		6.8155E-04	3.1665
14	40.00	4.5154E-02	-7.8889E-06			1.7404E-04	3.7594
15	45.00	4.8078E-02	-3.7368E-06			7.7599E-05	4.1101
16	49.00	5.0205E-02	-7.1717E-07			1.4281E-05	4.8452
17	50.00	1.4085E-11	-7.0423E-13	8.39174E-07	8.3917E-07	1.1916E-08	7.9239
18	51.00	9.9010E-04	-6.9725E-13	7.04225E-10	9.9010E-04	1.0100E-11	10.9957
19	55.00	4.7619E-03	-6.7069E-13	1.40845E-10	4.7619E-03	2.1000E-12	11.6778
20	60.00	9.0909E-03	-6.4020E-13	7.04225E-11	9.0909E-03	1.1000E-12	11.9586
21	Spreadshee	et Documentation					
22	Cell B7=B2*						
23		\$4*A10/(\$B\$2+A10					
24		3\$5*(\$B\$3*\$B\$2-\$B		+A10)			
25	and particular in the second	10+SQRT(B10^2-4*	C10))/2				
26	Cell G10=-L0			lanawaranan D			
27	7 Cell B17=(\$B\$4*A17-\$B\$3*\$B\$2)/(\$B\$2+A17)+\$B\$6/\$B\$5						
28	and the state in the last the plant of the plant of the state of the s	3\$6*\$B\$3*\$B\$2/(\$B)				
29		17+SQRT(B17^2-4*					
		3\$4*A17-\$B\$3*\$B\$2	2)/(\$B\$2+A17)+	D17			
31	Cell F17=\$B	\$6/E17					

	A	В	С	D	E	F	G
1	Pb 14-41(c)						
2	V _i HL	50.00					
3	c _i HL	0.1000					
4	c _i NaOH	0.1000					
5	K_a for HL	1.38E-04					
6	Kw	1.00E-14					
7	V _{ep}	50.00					
8							
9	V _{NaOH} , mL	b in quadratic	c in quadratic	[HL]	[OH ⁻]	[H₃O ⁺]	pН
10	0.00	1.3800E-04	-1.3800E-05			3.6465E-03	2.4381
11	5.00	9.2289E-03	-1.12909E-05			1.0938E-03	2.9611
12	15.00	2.3215E-02	-7.43077E-06			3.1579E-04	3.5006
13	25.00	3.3471E-02	-0.0000046			1.3687E-04	3.8637
14	40.00	4.4582E-02	-1.53333E-06			3.4367E-05	4.4639
15	45.00	4.7506E-02	-7.26316E-07			1.5284E-05	4.8158
16	49.00	4.9633E-02	-1.39394E-07			2.8083E-06	5.5516
17	50.00	7.2464E-11	-3.62319E-12	1.9E-06	1.9034E-06	5.2537E-09	8.2795
18	51.00	9.9010E-04	-3.5873E-12	3.62E-09	9.9010E-04	1.0100E-11	10.9957
19	55.00	4.7619E-03	-3.4507E-12	7.25E-10	4.7619E-03	2.1000E-12	11.6778
20	60.00	9.0909E-03	-3.2938E-12	3.62E-10	9.0909E-03	1.1000E-12	11.9586
21	Spreadshee	t Documentation					
22	Cell B7=B2*E	33/B4					
23	Cell B10=\$B\$	54*A10/(\$B\$2+A10)+	+\$B\$5				
24	Cell C10=-\$B	\$5*(\$B\$3*\$B\$2-\$B\$	4*A10)/(\$B\$2+A	(10)			
25	Cell F10=(-B1	10+SQRT(B10^2-4*C	(10))/2				
26	Cell G10=-LC)G(F10)					
27	Cell B17=(\$B	\$4*A17-\$B\$3*\$B\$2)	/(\$B\$2+A17)+\$8	B\$6/\$B\$5			
28	Cell C17=-\$B	\$6*\$B\$3*\$B\$2/(\$B\$	5*(\$B\$2+A17))				
29	Cell D17=(-B	17+SQRT(B17^2-4*0	(17))/2				
30	Cell E17=(\$B	\$4*A17-\$B\$3*\$B\$2)	/(\$B\$2+A17)+D	17			
31	Cell F17=\$B\$	6/E17					
00							

14-43 (a) This titration of a weak acid with strong base follows the same basic spreadsheet as Pb

14-41 with the concentrations changed. A Scatter plot of pH vs. volume of NaOH is

produced from the data.

	A	В	С	D	E	F	G
1	Pb 14-43(a)						
2	Vi CICH2COOH	50.00					
3	ci CICH2COOH	0.0100					
4	c i NaOH	0.0100					
5	K _a for CICH ₂ COOH	1.36E-03					
6	K _w	1.00E-14					
7	V _{ep}	50.00					
8	r ep	00.00					
9	V _{NaOH} , mL	b in quadratic	c in quadratic	[HA]	[OH ⁻]	[H ₃ O ⁺]	pН
10	0.00	•	· · · · · · · · · · · · · · · · · · ·			3.0700E-03	2.5129
11	5.00	2.2691E-03	-1.11273E-05			2.3889E-03	2.6218
12	15.00	3.6677E-03	-7.32308E-06			1.4351E-03	2.8431
13	25.00					8.2196E-04	3.0852
14	40.00					2.4960E-04	3.6027
15	45.00					1.1523E-04	3.9385
16	49.00					2.1698E-05	4.6636
17	50.00			1.92E-07	1.9174E-07	5.2155E-08	7.2827
18	51.00	9.9010E-05	-3.6401E-14	3.68E-10	9.9010E-05	1.0100E-10	9.9957
19	55.00	4.7619E-04	-3.5014E-14	7.35E-11	4.7619E-04	2.1000E-11	10.6778
20	60.00		-3.3422E-14	3.68E-11	9.0909E-04	1.1000E-11	10.9586
21	Spreadsheet Docu	mentation					
22	Same as Pb 14-41a						
23	12.00 ¬						
24	12.00						
25	10.00 -				-		
26	10.00			ſ			
27	8.00 -						
28	0.00			+			
29	T 6.00 -						
30	a 0.00						
31	4.00 -			-			
32	1.00		+	+			
33	2.00 -						
34	2.00						
35	0.00 -						
36		0 10.00 2	20.00 30.00 40	0.00 50.00	60.00 70.0	0	
37	0.0	10.00 2	20.00 30.00 40	0.00 50.00	00.00 /0.0	0	
38			V _{NaOH} , n	nL			
39			Hadrid				
40			i i	1	1		

(c)

4	A	В	C	D	E	F	G
1	Pb 14-43(c)						
2	V _i HOCI	50.00					
3	ci HOCI	0.1000					
4	c, NaOH	0.1000		-			
5	K _a for HOCI	3.00E-08					
6	Kw	1.00E-14					
	- 2 C						
7	V _{ep}	50.00					
8	N/ 1	1			101-1	ILL OF	
9	V _{NaOH} , mL	b in quadratic		[HA]	[OH ⁻]	[H ₃ O ⁺]	pH
10	0.00	3.0000E-08	-3.0000E-09			5.4757E-05	4.2616
11	5.00	9.0909E-03	-2.4545E-09			2.6999E-07	6.5687
12	15.00	2.3077E-02	-1.6154E-09			7.0000E-08	7.1549
13	25.00	3.3333E-02	-1.0000E-09			3.0000E-08	7.5229
14	40.00	4.4444E-02	-3.3333E-10			7.5000E-09	8.1249
15	45.00	4.7368E-02	-1.5789E-10			3.3333E-09	8.4771
16	49.00	4.9495E-02	-3.0303E-11			6.1224E-10	9.2131
17	50.00	3.3333E-07	-1.6667E-08	0.000129	1.2893E-04	7.7560E-11	10.1104
18	51.00	9.9043E-04	-1.6502E-08	1.64E-05	1.0065E-03	9.9355E-12	11.0028
19	55.00	4.7622E-03	-1.5873E-08	3.33E-06	4.7652E-03	2.0985E-12	11.6781
20	60.00	9.0912E-03	-1.5152E-08	1.67E-06	9.0926E-03	1.0998E-12	11.9587
21	Spreadsheet	Documentatio					
22	Same as Pb 1	4-41a					
23		1.00					
24	14	1.00					
25	12	2.00 -			-		
26					*		
27	10	0.00 -		1			
28				-			
29	т 8	3.00 -					
30	- E	5.00 -	•			2 D	
31		/					
32	4	1.00 🖌					
33							
34	2	.00 -					
35		0.00					
36			20.00 20.00	40.00 50	00 00 00 70 0		
37		0.00 10.00	20.00 30.00	40.00 50	.00 60.00 70.0		
38			V	_H , mL			
39			* NaU	n,			
~~							

14-44. Here, we make use of Equations 9-36 And 9-37:

 $\alpha_0 = \frac{[H_3O^+]}{[H_3O^+] + K_a}$ $\alpha_1 = \frac{K_a}{[H_3O^+] + K_a}$

	A	В	С	D	E	F	G
1		Species	pН	[H ₃ O ⁺]	Ka	αo	α1
2	(a)	Acetic acid	5.320	4.7863E-06	1.75E-05	0.215	0.785
3	(b)	Picric acid	1.250	5.6234E-02	4.30E-01	0.116	0.884
4	(c)	HOCI	7.000	1.0000E-07	3.00E-08	0.769	0.231
5	(d)	HONH3 ⁺	5.120	7.5858E-06	1.10E-06	0.873	0.127
6	(e)	Piperdine	10.080	8.3176E-11	7.50E-12	0.917	0.083
7							
8	Spreads	heet Documen	tation				
9	Cell D2=10^(-C2)						
10	Cell F2=I	D2/(D2+E2)					
11	Cell G2=E2/(D2+E2						

14-45. $[H_3O^+] = 3.38 \times 10^{-12} \text{ M}$. For $CH_3NH_3^+$, Equation 9-37 takes the form,

$$\alpha_{1} = \frac{[CH_{3}NH_{2}]}{c_{T}} = \frac{K_{a}}{[H_{3}O^{+}] + K_{a}} = \frac{2.3 \times 10^{-11}}{3.38 \times 10^{-12} + 2.3 \times 10^{-11}} = 0.872$$

$$[CH_3NH_2] = 0.872 \times 0.120 = 0.105 M$$

14-47. For lactic acid, $K_a = 1.38 \times 10^{-4}$

$$\alpha_{0} = \frac{[H_{3}O^{+}]}{K_{a} + [H_{3}O^{+}]} = \frac{[H_{3}O^{+}]}{1.38 \times 10^{-4} + [H_{3}O^{+}]}$$

$$\alpha_{0} = 0.640 = \frac{[HA]}{c_{T}} = \frac{[HA}{0.120}$$

$$[HA] = 0.640 \times 0.120 = 0.0768 M$$

$$\alpha_{1} = 1.000 - 0.640 = 0.360$$

$$[A^{-}] = \alpha_{1} \times 0.120 = (1.000 - 0.640) \times 0.120 = 0.0432 M$$

$$[H_{3}O^{+}] = K_{a} \times c_{HA}/c_{A^{-}} = 1.38 \times 10^{-4} \times 0.640/(1 - 0.640) = 2.453 \times 10^{-4} M$$

$$pH = -\log(2.453 \times 10^{-4}) = 3.61$$

104

The remaining entries in the table are obtained in a similar manner. Bolded entries are

the missing data points.

Acid	c_{T}	pН	[HA]	[A ⁻]	$lpha_0$	$lpha_1$	
Lactic	0.120	3.61	0.0768	0.0432	0.640	0.360	
Butanoic	0.162	5.00	0.644	0.0979	0.397	0.604	
Sulfamic	0.250	1.20	0.095	0.155	0.380	0.620	

Chapter 15

15-1. Not only is NaHA a proton donor, it is also the conjugate base of the parent acid H_2A .

 $HA^- + H_2O \rightleftharpoons H_3O^+ + A^{2-}$

 $HA^- + H_2O \rightleftharpoons H_2A + OH^-$

Solutions of acid salts can be acidic or alkaline, depending on which of the above equilibria predominates. In order to calculate the pH of solutions of this type, it is necessary to take both equilibria into account.

15-4. The species HPO₄²⁻ is such a weak acid ($K_{a3} = 4.5 \times 10^{-13}$) that the change in pH in the vicinity of the third equivalence point is too small to be observable.

15-5. (a) $NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$ $K_a = 5.70 \times 10^{-10}$

$$OAc^{-} + H_2O \Longrightarrow HOAc + OH^{-}$$
 $K_b = \frac{K_w}{K_a} = \frac{1.00 \times 10^{-14}}{1.75 \times 10^{-5}} = 5.71 \times 10^{-10}$

Since the *K*'s are essentially identical, the solution should be approximately neutral

(c) Neither K^+ nor NO_3^- reacts with H_2O_3 . Solution will be neutral

(e)
$$C_2O_4^{2-} + H_2O \leftrightarrows HC_2O_4^{-} + OH^{-}$$
 $K_b = \frac{1.00 \times 10^{-14}}{5.42 \times 10^{-5}} = 1.84 \times 10^{-10}$

Solution will be basic

(g) $H_2PO_4^- + H_2O \rightleftharpoons HPO_4^{2-} + H_3O^+ \quad K_{a2} = 6.32 \times 10^{-8}$

$$H_2PO_4^- + H_2O \rightleftharpoons H_3PO_4 + OH^ K_{b3} = \frac{1.00 \times 10^{-14}}{7.11 \times 10^{-3}} = 1.4 \times 10^{-12}$$

Solution will be acidic

 0^{-7}

15-6. We can approximate the $[H_3O^+]$ at the first equivalence point by Equation 15-16. Thus,

$$[H_{3}O^{+}] = \sqrt{5.8 \times 10^{-3} \times 1.1 \times 10^{-7}} = 2.53 \times 10^{-5}$$
$$pH = -\log(2.53 \times 10^{-5}) = 4.60$$

Bromocresol green would be a satisfactory indicator.

- **15-8.** Curve *A* in figure 15-4 is the titration curve for H₃PO₄. Note that one end point occurs at about pH 4.5 and a second at about pH 9.5. Thus, H₃PO₄ would be determined by titration with bromocresol green as an indicator (pH 3.8 to 5.4). A titration to the second end point with phenolphthalein would give the number of millimoles of NaH₂PO₄ plus twice the number of millimoles of H₃PO₄. Thus, the concentration of NaH₂PO₄ is obtained from the difference in volume for the two titrations.
- 15-9. (a) To obtain the approximate equivalence point pH, we employ Equation 15-16

$$[H_{3}O^{+}] = \sqrt{K_{a1}K_{a2}} = \sqrt{4.2 \times 10^{-7} \times 4.69 \times 10^{-11}} = 4.4 \times 10^{-9}$$

pH = 8.4

Cresol purple (7.6 to 9.2) would be suitable.

(c) As in part (b)

$$[OH^{-}] = (0.05 \times 1.00 \times 10^{-14}/4.31 \times 10^{-5})^{1/2} = 3.41 \times 10^{-6} M$$

$$pH = 14.00 - [-log(3.41 \times 10^{-6})] = 8.53$$
Cresol purple (7.6 to 9.2)
(e) NH_3C_2H_4NH_3^{2+} + H_2O \Longrightarrow NH_3C_2H_4NH_2^{+} + H_3O^{+} K_{a1} = 1.42 \times 10^{-6} M
$$[H_3O^{+}] = (0.05 \times 1.42 \times 10^{-7})^{1/2} = 8.43 \times 10^{-5} M$$

$$pH = -log(8.43 \times 10^{-5}) = 4.07$$

Bromocresol green (3.8 to 5.4)

107

(g) Proceeding as in part (b) we obtain pH = 9.94Phenolphthalein (8.5 to 10.0)

15-10. (a)
$$H_3PO_4 + H_2O \rightleftharpoons H_3O^+ + H_2PO_4^ K_{a1} = 7.11 \times 10^{-3}$$

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{H}_{2}\mathrm{PO}_{4}^{-}]}{[\mathrm{H}_{3}\mathrm{PO}_{4}]} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]^{2}}{0.040 - [\mathrm{H}_{3}\mathrm{O}^{+}]} = 7.11 \times 10^{-3}$$
$$[\mathrm{H}_{3}\mathrm{O}^{+}]^{2} + 7.11 \times 10^{-3}[\mathrm{H}_{3}\mathrm{O}^{+}] - 0.040 \times 7.11 \times 10^{-3} = 0$$

Solving by the quadratic formula or by successive approximations, gives

$$[H_{3}O^{+}] = 1.37 \times 10^{-2} M$$
 $pH = -log(1.37 \times 10^{-2}) = 1.86$

(c) pH = 1.64

(e)
$$pH = 4.21$$

15-11. Throughout this problem, we will use Equation 15-15 or one of its simplificationws.

(a)
$$[H_3O^+] = \sqrt{\frac{0.0400 \times 6.32 \times 10^{-8}}{1 + 0.0400/(7.11 \times 10^{-3})}} = 1.95 \times 10^{-5}$$

(c) $pH = 4.28$
(e) $pH = 9.80$

15-12. (a)
$$PO_4^{3-} + H_2O \implies HPO_4^{2-} + OH^ K_b = \frac{K_w}{K_{a3}} = \frac{1.00 \times 10^{-14}}{4.5 \times 10^{-13}} = 2.2. \times 10^{-2}$$

$$\frac{[OH^{-}]^{2}}{0.040 - [OH^{-}]} = 2.22 \times 10^{-2}$$

$$[OH^{-}]^{2} + 2.22 \times 10^{-2} [OH^{-}] - 8.88 \times 10^{-4} = 0$$
Solving gives
$$[OH^{-}] = 2.07 \times 10^{-2} M$$

$$pH = 14.00 - [-\log(2.07 \times 10^{-2})] = 12.32$$
(c) Proceeding as in part (b), we obtain pH = 9.70.

108

- (e) Proceeding as in part (a), gives pH = 12.58
- **15-14.** (a) Proceeding as in Problem 15-12(a), $[H_3O^+] = 3.77 \times 10^{-3}$ M and pH = 2.42
 - (b) Proceeding as in 15-12(b), $[H_3O^+] = 3.10 \times 10^{-8}$ Mand pH = 7.51
 - (c) $HOC_2H_4NH_3^+ + H_2O \rightleftharpoons HOC_2H_4NH_2 + H_3O^+$ $K_a = 3.18 \times 10^{-10}$

Proceeding as in 15-12(b) we obtain $[H_3O^+] = 3.73 \times 10^{-10} \text{ M}$ and pH = 9.43

(d)
$$H_2C_2O_4 + C_2O_4^{2-} \rightarrow 2HC_2O_4^{-}$$

For each milliliter of solution, 0.0240 mmol H₂HPO₄ reacts with 0.0240 mmol $C_2O_4^{2-}$ to give 0.0480 mmol HC₂O₄⁻ and to leave 0.0120 mmol $C_2O_4^{2-}$. Thus, we have a buffer that is 0.0480 M in HC₂O₄⁻ and 0.0120 M in $C_2O_4^{2-}$. Proceeding as in 15-12(a), we obtain [H₃O⁺] = 2.17 × 10⁻⁴ M and pH = 3.66

(e) Proceeding as in 15-12(b), we obtain
$$[H_3O^+] = 2.17 \times 10^{-4}$$
 and pH = 3.66

15-16. (a) Proceeding as in 15-14(a), we obtain
$$[H_3O^+] = 1.287 \times 10^{-2}$$
 M and pH = 1.89

(b) Recognizing that the first proton of H₂SO₄ completely dissociates we obtain $HSO_4^- + H_2O \rightleftharpoons SO_4^{2--} + H_3O^+ \qquad K_{a2} = 1.02 \times 10^{-2}$

$$1.02 \times 10^{-2} = \frac{[\text{H}_{3}\text{O}^{+}][\text{SO}_{4}^{2-}]}{[\text{HSO}_{4}^{-}]} = \frac{(0.0100 + 0.0150 + x)x}{0.0150 - x}$$

Rearranging gives $x^2 + (0.0250 + 1.02 \times 10^{-2})x - (1.02 \times 10^{-2})(0.0150) = 0$ Solving the quadratic gives $x = 3.91 \times 10^{-3}$

Solving the quadratic, gives
$$x = 3.91 \times 10^{-5}$$

The total
$$[H_3O^+] = 0.0250 + x = 0.0289$$
 M and pH = 1.54

(c) Proceeding as in 15-14(c) we obtain $[OH^-] = 0.0382$ M and pH = 12.58

(d)
$$CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^ K_{b1} = \frac{1.00 \times 10^{-14}}{1.75 \times 10^{-5}} = 5.7 \times 10^{-10}$$

 CH_3COO^- is such a weak base that it makes no significant contribution to $[OH^-]$ Therefore, $[OH^-] = 0.010$ M and pH = 12.00

15-18. (a) Proceeding as in Problem 15-16(a) with $[H_3O^+] = 1.00 \times 10^{-9}$ we obtain $[H_2S]/[HS^-] = 0.010$

(b) Formulating the three species as BH_2^{2+} , BH^+ and B, where B is the symbol for $NH_2C_2H_5NH_2$.

$$\frac{[\text{H}_{3}\text{O}^{+}][\text{B}\text{H}^{+}]}{[\text{B}\text{H}_{2}^{2+}]} = K_{a1} = 1.42 \times 10^{-7} \text{ and } \frac{[\text{H}_{3}\text{O}^{+}][\text{B}]}{[\text{B}\text{H}^{+}]} = K_{a2} = 1.18 \times 10^{-10}$$

$$[BH_2^{2^+}]/[BH^+] = \frac{1.00 \times 10^{-9}}{1.42 \times 10^{-7}} = 0.0070$$

$$[B]/[BH^+] = \frac{1.18 \times 10^{-10}}{1.00 \times 10^{-9}} = 0.118$$

$$[BH_2^{2^+}]$$
 is < [B] and $[BH^+]/[B] = 1.00/0.118 = 8.5$

(c) Proceeding as in Problem 15-16(b) we find

 $[H_2AsO_4^-]/[HAsO_4^{2-}] = 9.1 \times 10^{-3}$

(d) Proceeding as in Problem 15-16(a) we find $[HCO_3^-]/[CO_3^{2-}] = 21$

15-20. pH = 5.75; $[H_3O^+] = antilog (-5.75) = 1.778 \times 10^{-6}$

$$K_{a2} = [H_3O^+][P^{2-}]/[HP^-] = 3.91 \times 10^{-6}$$

 $[P^{2-}]/[HP^-] = 3.91 \times 10^{-6}/(1.778 \times 10^{-6}) = 2.199$
 $P^{2-} + H_2P \rightarrow 2HP^-$

amount H_2P present = 750 mL × 0.0500 M = 37.5 mmol

110

amount HP⁻ in the buffer = 2×37.5 mmol = 75.0 mmol

amount P^{2-} needed in the buffer = 2.199×75.0 mmol = 164.9 mmol

Thus, we need $37.5 + 164.9 = 202.4 \text{ mmol of } \text{K}_2\text{P}$.

mass
$$K_2P = 202.4 \text{ mmol} \times 0.24232 \text{ g/mmol} = 49.0 \text{ g}$$

15-22. amount KHP = $100 \text{ mL} \times 0.150 \text{ M} = 15.0 \text{ mmol}$

(a) amount
$$P^- = 100 \text{ mL} \times 0.0800 \text{ M} = 8.00 \text{ mmol}$$

amount KHP = $15.0 - 8.00 = 7.00 \text{ mmol}$
 $c_{HP^-} = 7.00/200 = 0.0350 \text{ M};$ $c_{P^{2-}} = 8.00/200 = 0.0400 \text{ M}$
Proceeding as in Problem 15-12(b), we obtain pH = 5.47

(b)
$$c_{\text{H},\text{P}} = 8.00/200 = 0.0400 \text{ M};$$
 $c_{\text{HP}} = (15.00 - 8.00)/200 = 0.0350 \text{ M}$

Proceeding as in Problem 15-12(a), we obtain pH = 2.92

15-24. $[H_3O^+][HPO_4^{2-}]/[H_2PO_4^{-}] = 6.32 \times 10^{-8}$

$$\frac{[\text{HPO}_4^{2^-}]}{[\text{H}_2\text{PO}_4^{-}]} = \frac{6.32 \times 10^{-8}}{1.00 \times 10^{-7}} = 0.632$$
(1)

Let $V_{\rm H,PO_4}$ and $V_{\rm NaOH}$ be the volume in milliliters of the two reagents. Then

$$V_{\rm H_3PO_4} + V_{\rm NaOH} = 1000 \,\,\rm{mL}$$
 (2)

From mass-balance considerations we may write that in the 1000 mL

amount NaH₂PO₄ + amount Na₂HPO₄ =
$$0.200 \times V_{H_3PO_4}$$
 mmol (3)

amount
$$NaH_2PO_4 + 2 \times amount Na_2HPO_4 = 0.160 \times V_{NaOH} mmol$$
 (4)

Equation (1) can be rewritten

$$\frac{\text{no. mmol Na}_2\text{HPO}_4/1000}{\text{no. mmol NaH}_2\text{PO}_4/1000} = \frac{\text{no. mmol Na}_2\text{HPO}_4}{\text{no. mmol NaH}_2\text{PO}_4} = 0.632$$
(5)

Thus, we have four equations, (2), (3), (4) and (5), and four unknowns: $V_{H_3PO_4}$, V_{NaOH} , no.

mmol NaH₂PO₄ and no. mmol Na₂HPO₄. Subtracting Equation (3) from (4) yields

no. mmol Na₂HPO₄ = 0.160
$$V_{\text{NaOH}} - 0.200 V_{\text{H}_3\text{PO}_4}$$
 (6)

Substituting Equation (6) into (3) gives

no. mmo NaH₂PO₄ + 0.160
$$V_{\text{NaOH}}$$
 - 0.200 $V_{\text{H}_3\text{PO}_4}$ = 0.200 $V_{\text{H}_3\text{PO}_4}$

no. mmo NaH₂PO₄ =
$$-0.160 V_{NaOH} + 0.400 V_{H_3PO_4}$$
 (7)

Substituting Equations (6) and (7) into (5) gives

$$\frac{0.160V_{\text{NaOH}} - 0.200V_{\text{H}_3\text{PO}_4}}{0.400V_{\text{H}_3\text{PO}_4} - 0.160V_{\text{NaOH}}} = 0.632$$

This equation rearranges to

 $0.2611 V_{\text{NaOH}} = 0.4528 V_{\text{H}_{2}\text{PO}_{4}}$

Substituting Equation (2) gives

 $0.2611 (1000 - V_{H_3PO_4}) = 0.4528 V_{H_3PO_4}$

$$V_{\rm H_3PO_4} = 261.1/0.7139 = 366 \text{ mL}$$
 and $V_{\rm NaOH} = 1000 - 366 = 634 \text{ mL}$

Thus, mix 366 mL H₃PO₄ with 634 mL NaOH

15-28. For the titration of a mixture of H_3PO_4 and $H_2PO_4^-$, the volume to the first end point would have to be smaller than one half the total volume to the second end point because in the titration from the first to second end points both analytes are titrated, whereas to the first end point only the H_3PO_4 is titrated.

15-32. (a)
$$2H_2AsO_4^- \rightleftharpoons H_3AsO_4 + HAsO_4^{2-}$$

 $K_{a1} = \frac{[H_3O^+][H_2AsO_4^-]}{[H_3AsO_4]} = 5.8 \times 10^{-3}$ (1)

$$K_{a2} = \frac{[H_3O^+][HAsO_4^{2-}]}{[H_2AsO_4^{-}]} = 1.1 \times 10^{-7}$$
(2)

$$K_{a3} = \frac{[H_3O^+][AsO_4^{3-}]}{[HAsO_4^{2-}]} = 3.2 \times 10^{-12}$$
(3)

Dividing Equation (2) by Equation (1) leads to

$$\frac{K_{a2}}{K_{a1}} = \frac{[H_3AsO_4][HAsO_4^{2-}]}{[H_2AsO_4^{-}]^2} = 1.9 \times 10^{-5}$$

which is the desired equilibrium constant expression.

(b) $2HAsO_4^{2-} \rightleftharpoons AsO_4^{3-} + H_2AsO_4^{-}$

Here we divide Equation (3) by Equation (2)

$$\frac{K_{a3}}{K_{a2}} = \frac{[\text{AsO}_4^{3-}][\text{H}_2\text{AsO}_4^{-}]}{[\text{HAsO}_4^{2-}]^2} = 2.9 \times 10^{-5}$$

15-34. See spreadsheet on next page.

	A	В	C	D	E	F	G	Н	1	J	K
1	Pb15-34										
2	Part/Acid	pH	[H ₃ O ⁺]	Ka1	Ka2	K _{a3}	α_0	<i>α</i> ₁	az2	<i>a</i> ₃	Alpha sum
3	(a)	2.00	1.00E-02	1.12E-03	3.91E-06		0.899	0.101	3.94E-05		1.0000000
4	phthallic	6.00	1.00E-06				1.82E-04	0.204	7.96E-01		1.0000000
5		10.00	1.00E-10				2.28E-12	2.56E-05	1.00E+00		1.0000000
6	(b)	2.00	1.00E-02	7.11E-03	6.32E-08	4.50E-13	0.584	0.416	2.63E-06	1.18E-16	1.0000000
7	phosphoric	6.00	1.00E-06				1.32E-04	0.940	5.94E-02	2.67E-08	1.0000000
8	0 07	10.00	1.00E-10				2.21E-11	1.57E-03	9.94E-01	4.47E-03	1.0000000
9	(c)	2.00	1.00E-02	7.45E-04	1.73E-05	4.02E-07	0.931	6.93E-02	1.20E-04	4.82E-09	1.0000000
10	citric	6.00	1.00E-06				5.31E-05	3.96E-02	6.85E-01	2.75E-01	1.0000000
11		10.00	1.00E-10				1.93E-16	1.44E-09	2.49E-04	1.000	1.0000000
12	(d)	2.00	1.00E-02	5.80E-03	1.10E-07	3.20E-12	0.633	0.367	4.04E-06	1.29E-15	1.0000000
13	aresenic	6.00	1.00E-06				1.55E-04	0.901	9.91E-02	3.17E-07	1.0000000
14	3	10.00	1.00E-10				1.52E-11	8.80E-04	9.68E-01	3.10E-02	1.0000000
15	(e)	2.00	1.00E-02	3.0E-02	1.62E-07		0.250	0.750	1.21E-05		1.0000000
16	phosphorous	6.00	1.00E-06				2.87E-05	0.861	1.39E-01		1.0000000
17		10.00	1.00E-10				2.06E-12	6.17E-04	0.999		1.0000000
18	(f)	2.00	1.00E-02	5.60E-02	5.42E-05		0.151	0.845	4.58E-03		1.0000000
19	oxalic	6.00	1.00E-06				3.23E-07	0.018	9.82E-01		1.0000000
20		10.00	1.00E-10				3.29E-15	1.85E-06	1.000		1.0000000
21											
22	Spreadsheet	Docume	ntation								
23	Cell C3=10^(-	B3)									
24	Cell G3=\$C3^	2/(\$C3^2+	\$D\$3*\$C3+\$	\$D\$3*\$E\$3)							
25											
26											
27											
28	Cell G6=\$C6^	3/(\$C6^3+	\$D\$6*\$C6^2	+\$D\$6*\$E\$	6*\$C6+\$D\$	6*\$E\$6*\$F	\$6)				
29	Cell H6=\$D\$6										
30	Cell 16=\$D\$6*							5)			

Chapter 16

- **16-1**. Nitric acid is seldom used as a standard because it is an oxidizing agent and thus will react with reducible species in titration mixtures.
- **16-3.** Carbon dioxide is not strongly bonded by water molecules, and thus is readily volatilized from aqueous solution by briefly boiling. On the other hand, HCl molecules are fully dissociated into H_3O^+ and Cl^- when dissolved in water. Neither the H_3O^+ nor the Cl^- species is volatile.
- 16-5. Let us consider the standardization of 40 mL of 0.010 M NaOH using KH(IO₃)₂,

 $\frac{0.010 \text{ mmol NaOH}}{\text{mL}} \times 40 \text{ mL NaOH} \times \frac{1 \text{ mmol KH}(\text{IO}_3)_2}{1 \text{ mmol NaOH}} \times \frac{390 \text{ g KH}(\text{IO}_3)_2}{1000 \text{ mmol}} = 0.16 \text{ g KH}(\text{IO}_3)_2$ Now using benzoic acid,

$$\frac{0.010 \text{ mmol NaOH}}{\text{mL}} \times 40 \text{ mL NaOH} \times \frac{1 \text{ mmol } C_6\text{H}_5\text{COOH}}{1 \text{ mmol NaOH}} \times \frac{122 \text{ g } C_6\text{H}_5\text{COOH}}{1000 \text{ mmol}} = 0.049 \text{ g } C_6\text{H}_5\text{COOH}$$

The primary standard $KH(IO_3)_2$ is preferable because the relative mass measurement error would be less with a 0.16 g sample of $KH(IO_3)_2$ as opposed to 0.049 g sample of benzoic acid. A second reason for preferring $KH(IO_3)_2$ is because it is a strong acid and benzoic acid is not. A smaller titration error occurs when using a strong acid as a primary standard and the choice of indicator is not critical.

16-7. If the sodium hydroxide solution is to be used for titrations with an acid-range indicator, the carbonate in the base solution will consume two analyte hydronium ions just as would the two hydroxides lost in the formation of Na₂CO₃.

Chapter 16

16-9. (a)

$$\frac{0.10 \text{ mole KOH}}{L} \times 2.00 \text{ L} \times \frac{56.106 \text{ g KOH}}{\text{mole}} = 11 \text{ g KOH}$$

Dissolve 11 g KOH in water and dilute to 2.00 L total volume.

(b)

$$\frac{0.010 \text{ mole } Ba(OH)_2 \cdot 8H_2O}{L} \times 2.00 \text{ L} \times \frac{315.46 \text{ g } Ba(OH)_2 \cdot 8H_2O}{\text{mole}} = 6.3 \text{ g } Ba(OH)_2 \cdot 8H_2O$$

Dissolve 6.3 g Ba(OH)₂·8H₂O in water and dilute to 2.00 L total volume.

(c)

 $\frac{0.150 \text{ mole HCl}}{L} \times 2.00 \text{ L} \times \frac{36.461 \text{ g HCl}}{\text{mole}} \times \frac{\text{mL reagent}}{1.0579 \text{ g reagent}} \times \frac{100 \text{ g reagent}}{11.50 \text{ g HCl}} = 90 \text{ mL reagent}$

Dilute 90 mL reagent to 2.00 L total volume.

16-11. For the first data set,

$$c_{sample 1} = \frac{0.2068 \text{ g Na}_{2}\text{CO}_{3} \times \frac{1000 \text{ mmol Na}_{2}\text{CO}_{3}}{105.99 \text{ g}} \times \frac{2 \text{ mmol HClO}_{4}}{1 \text{ mmol Na}_{2}\text{CO}_{3}}}{36.31 \text{ mL HClO}_{4}} = 0.10747 \text{ M HClO}_{4}$$

The results in the accompanying table were calculated in the same way.

Sample	$c_{\text{sample i}}, M$	$c_{\text{sample i}}^2$
1	0.10747	1.15499×10^{-2}
2	0.10733	1.15196×10 ⁻²
3	0.10862	1.17987×10^{-2}
4	0.10742	1.15385×10^{-2}
	$\sum c_{\text{sample i}} = 0.43084$	$\sum c_{\text{sample i}}^{2} = 4.64069 \times 10^{-2}$

(a)
$$\overline{c}_{\text{sample i}} = \frac{0.43084}{4} = 0.1077 \text{ M HClO}_4$$

(b)

$$s = \sqrt{\frac{(4.64069 \times 10^{-2}) - (0.43084)^2 / 4}{3}} = \sqrt{\frac{1.11420 \times 10^{-6}}{3}} = 6.1 \times 10^{-4}$$
$$CV = \frac{6.1 \times 10^{-4}}{0.1077} \times 100\% = 0.57\%$$

(c)

$$Q = \frac{0.10862 - 0.10747}{0.10862 - 0.10733} = 0.89$$

$$Q_{crit} = 0.829 \text{ at the 95\% confidence level}$$

$$Q_{crit} = 0.926 \text{ at the 99\% confidence level}$$

Thus, 0.10862 could be rejected at 95% level but must be retained at 99% level.

16-13. As in part (a) of problem 16-23,

$$c_{\text{base}} = \frac{\left(\frac{0.1019 \text{ mmol NaOH}}{\text{mL}} \times 500 \text{ mL}\right) - \left(0.652 \text{ g CO}_2 \times \frac{1000 \text{ mmol CO}_2}{44.01 \text{ g}} \times \frac{1 \text{ mmol NaOH}}{1 \text{ mmol CO}_2}\right)}{500 \text{ mL}}$$
$$= 0.07227 \text{ M NaOH}$$
relative carbonate error =
$$\frac{0.07227 - 0.1019}{0.1019} \times 100\% = -29\%$$

$$\frac{0.1791 \text{ g BaSO}_{4} \times \frac{1000 \text{ mmol BaSO}_{4}}{233.39 \text{ g}} \times \frac{1 \text{ mmol Ba(OH)}_{2}}{1 \text{ mmol BaSO}_{4}}}{50.00 \text{ mL Ba(OH)}_{2}} = 0.01535 \text{ M Ba(OH)}_{2}$$

(b)

$$\frac{0.4512 \text{ g KHP} \times \frac{1000 \text{ mmol KHP}}{204.224 \text{ g}} \times \frac{1 \text{ mmol Ba(OH)}_2}{2 \text{ mmol KHP}}}{26.46 \text{ mL Ba(OH)}_2} = 0.04175 \text{ M Ba(OH)}_2$$

amnt
$$C_6H_5COOH = 0.3912 \text{ g } C_6H_5COOH \times \frac{1000 \text{ mmol } C_6H_5COOH}{122.123 \text{ g}} = 3.2033 \text{ mmol}$$

amnt $HCl = \frac{0.05317 \text{ mmol } HCl}{mL} \times 4.67 \text{ mL } HCl = 0.2483 \text{ mmol}$
total amnt acid = $3.2034 + 0.2483 = 3.4516 \text{ mmol}$

$$\frac{3.4516 \text{ mmol acid} \times \frac{1 \text{ mmol Ba(OH)}_2}{2 \text{ mmol acid}}}{50.00 \text{ mL Ba(OH)}_2} = 0.03452 \text{ M Ba(OH)}_2$$

16-17. In Example 16-1, we found that 20.00 mL of 0.0200 M HCl requires 0.048 g TRIS, 0.021 g Na₂CO₃ and 0.08 g Na₂B₄O₇·10H₂O. In each case, the absolute standard deviation in computed molar concentration of 0.0200 M HCl is

TRIS:
$$s_{\rm c} = \frac{0.0001}{0.048} \times 0.0200 \,{\rm M} = 4 \times 10^{-5} \,{\rm M}$$

Na₂CO₃: $s_{\rm c} = \frac{0.0001}{0.021} \times 0.0200 \,{\rm M} = 1 \times 10^{-4} \,{\rm M}$
Na₂B₄O₇·10H₂O: $s_{\rm c} = \frac{0.0001}{0.076} \times 0.0200 \,{\rm M} = 2.5 \times 10^{-5} \,{\rm M} \approx 3.0 \times 10^{-5} \,{\rm M}$

Proceeding as above, we calculate the relative standard deviation in the computed molar concentrations of 30.00 mL, 40.00 mL and 50.00 mL of 0.0200 M HCl and the results are shown in the table that follows.

$V_{0.0200 \text{ M HCl}}(mL)$	Calculated masses	s _c (0.0200 M
30.00		
TRIS	0.073	3×10^{-5}
Na ₂ CO ₃	0.032	6×10^{-5}
$Na_2B_4O_7$ ·10H ₂ O	0.11	2×10^{-5}

40.00		
TRIS	0.097	2×10^{-5}
Na ₂ CO ₃	0.042	5×10^{-5}
$Na_2B_4O_7$ ·10H ₂ O	0.15	1×10^{-5}
50.00		
TRIS	0.12	2×10^{-5}
Na ₂ CO ₃	0.053	4×10^{-5}
$Na_2B_4O_7$ ·10H ₂ O	0.19	1×10^{-5}

16-19.

$$amnt NaOH = \frac{0.03291 \text{ mmol NaOH}}{\text{mL}} \times 24.57 \text{ mL NaOH} = 0.80860 \text{ mol NaOH}} \frac{\left(0.80860 \text{ mol NaOH} \times \frac{1 \text{ mmol H}_2C_4H_4O_6}{2 \text{ mmol NaOH}} \times \frac{150.09 \text{ g H}_2C_4H_4O_6}{1000 \text{ mmol}}\right)}{50.00 \text{ mL}} \times 100 \text{ mL}} \times 100 \text{ mL}} = 0.1214 \text{ g H}_2C_4H_4O_6 \text{ per 100 mL}}$$

16-21. For each part, we can write

 $\frac{\frac{0.1129 \text{ mmol HCl}}{\text{mL}} \times 30.79 \text{ mL HCl}}{0.7513 \text{ g sample}} = 4.6269 \frac{\text{mmol HCl}}{\text{g sample}}$

(a)

$$4.6269 \frac{\text{mmol HCl}}{\text{g sample}} \times \frac{1 \text{ mmol Na}_2 \text{B}_4 \text{O}_7}{2 \text{ mmol HCl}} \times \frac{201.222 \text{ g Na}_2 \text{B}_4 \text{O}_7}{1000 \text{ mmol}} \times 100\% = 46.55\% \text{ Na}_2 \text{B}_4 \text{O}_7$$

Proceeding in the same way

(b)

$$4.6269 \frac{\text{mmol HCl}}{\text{g sample}} \times \frac{1 \text{ mmol Na}_2 \text{B}_4 \text{O}_7 \cdot 10 \text{H}_2 \text{O}}{2 \text{ mmol HCl}} \times \frac{381.372 \text{ g Na}_2 \text{B}_4 \text{O}_7 \cdot 10 \text{H}_2 \text{O}}{1000 \text{ mmol}} \times 100\%$$

= 88.23% Na_2 B_4 O_7 \cdot 10 \text{H}_2 O

Chapter 16

(c)

4.6269
$$\frac{\text{mmol HCl}}{\text{g sample}} \times \frac{1 \text{ mmol B}_2\text{O}_3}{1 \text{ mmol HCl}} \times \frac{69.620 \text{ g B}_2\text{O}_3}{1000 \text{ mmol}} \times 100\% = 32.21\% \text{ B}_2\text{O}_3$$

(d)

4.6269
$$\frac{\text{mmol HCl}}{\text{g sample}} \times \frac{2 \text{ mmol B}}{1 \text{ mmol HCl}} \times \frac{10.811 \text{ g B}}{1000 \text{ mmol}} \times 100\% = 10.00\% \text{ B}$$

16-23.

$$\operatorname{amnt} \operatorname{NaOH} \operatorname{consumed} = \left(\frac{0.0959 \text{ mmol} \text{ NaOH}}{\text{mL}} \times 50.0 \text{ mL} \text{ NaOH}\right) - \left(\frac{0.05370 \text{ mmol} \text{ H}_2 \text{SO}_4}{\text{mL}} \times 22.71 \text{ mL} \text{ H}_2 \text{SO}_4 \times \frac{2 \text{ mmol} \text{ NaOH}}{1 \text{ mmol} \text{ H}_2 \text{SO}_4}\right) = 2.356 \text{ mmol}$$

$$\frac{2.356 \text{ mmol} \text{ NaOH} \times \frac{1 \text{ mmol} \text{ HCHO}}{1 \text{ mmol} \text{ NaOH}} \times \frac{30.026 \text{ g} \text{ HCHO}}{1000 \text{ mmol}}}{1000 \text{ mmol}} \times 100\% = 23.7\% \text{ HCHO}$$

16-25. Tetraethylthiuram disulfide, TS₄

1 mmol $TS_4 \equiv 4$ mmol $SO_2 \equiv 4$ mmol $H_2SO_4 \equiv 8$ mmol NaOH

$$\frac{\left(\frac{0.04216 \text{ mmol NaOH}}{\text{mL}} \times 19.25 \text{ mL NaOH} \times \frac{1 \text{ mmol TS}_4}{8 \text{ mmol NaOH}} \times \frac{296.54 \text{ g TS}_4}{1000 \text{ mmol}}\right)}{0.4169 \text{ g sample}} \times 100\%$$

$$= 7.216\% \text{ TS}_4$$

16-27.

amnt HCl = mmol NaOH - 2 × mmol CO₃²⁻
amnt CO₃²⁻ =
$$\frac{\left(\frac{0.1140 \text{ mmol HCl}}{\text{mL}} \times 50.00 \text{ mL HCl}\right) - \left(\frac{0.09802 \text{ mmol NaOH}}{\text{mL}} \times 24.21 \text{ mL NaOH}\right)}{2}$$
=1.6635 mmol CO₃²⁻
molar mass carbonate salt =
$$\frac{0.1401 \text{ g salt}}{1.6635 \text{ mmol CO}_3^{2-}} \times \frac{1000 \text{ mmol}}{\text{mole}} = 84.22 \frac{\text{g salt}}{\text{mole CO}_3^{2-}}$$

molar mass of carbonate salt cation =
$$\left(84.22 \frac{\text{g salt}}{\text{mole CO}_3^{2-}} \times \frac{1 \text{ mole CO}_3^{2-}}{1 \text{ mole salt}}\right) - 60.01 \frac{\text{g CO}_3^{2-}}{\text{mole}}$$

= 24.21 $\frac{\text{g cation}}{\text{mole}}$

 $MgCO_3$ with a molar mass of 84.31 g/mole appears to be a likely candidate

16-29.

$$\operatorname{amnt} \operatorname{Ba(OH)}_{2} = \operatorname{mmol} \operatorname{CO}_{2} + \frac{\operatorname{mmol} \operatorname{HCl}}{2}$$
$$\operatorname{amnt} \operatorname{CO}_{2} = \left(\frac{0.0116 \operatorname{mmol} \operatorname{Ba(OH)}_{2}}{\operatorname{mL}} \times 50.0 \operatorname{mL} \operatorname{Ba(OH)}_{2}\right) - \left(\frac{\frac{0.0108 \operatorname{mmol} \operatorname{HCl}}{\operatorname{mL}} \times 23.6 \operatorname{mL} \operatorname{HCl}}{2}\right)$$

$$= 4.526 \times 10^{-1} \text{ mmol}$$

$$\frac{0.4526 \text{ mmol } \text{CO}_2 \times \frac{44.01 \text{ g CO}_2}{1000 \text{ mmol}}}{3.00 \text{ L}} \times \frac{1 \text{ L CO}_2}{1.98 \text{ g CO}_2} \times 10^6 \text{ ppm} = 3.35 \times 10^3 \text{ ppm CO}_2$$

16-31.
$$(NH_4)_3PO_4 \cdot 12MoO_3(s) + 26OH^- \rightarrow HPO_4^{2-} + 12MoO_4^{2-} + 14H_2O + 3NH_3(g)$$

amnt NaOH consumed =
$$\left(\frac{0.2000 \text{ mmol NaOH}}{\text{mL}} \times 50.00 \text{ mL NaOH}\right) - \left(\frac{0.1741 \text{ mmol HCl}}{\text{mL}} \times 14.17 \text{ mL HCl}\right) = 7.533 \text{ mmol}$$

amnt P = 7.533 mmol NaOH × $\frac{1 \text{ mmol (NH}_4)_3 \text{PO}_4 \cdot 12 \text{MoO}_3}{26 \text{ mmol NaOH}} \times \frac{1 \text{ mmol (NH}_4)_3 \text{PO}_4 \cdot 12 \text{MoO}_3}{26 \text{ mmol NaOH}} \times \frac{1 \text{ mmol (NH}_4)_3 \text{PO}_4 \cdot 12 \text{MoO}_3}{2.897 \times 10^{-1} \text{ mmol P}} = 2.897 \times 10^{-1} \text{ mmol}$
 $\frac{2.897 \times 10^{-1} \text{ mmol P} \times \frac{30.974 \text{ g P}}{1000 \text{ mmol}}}{0.1417 \text{ g sample}} \times 100\% = 6.333\% \text{ P}$

16-33.

Neohetramine, $C_{16}H_{21}ON_4 = RN_4$ 1 mmol $RN_4 \equiv 3 \text{ mmol } NH_3 \equiv 4 \text{ mmol } HCl$ $\frac{0.01477 \text{ mmol } HCl}{\text{mL}} \times 26.13 \text{ mL } HCl \times \frac{1 \text{ mmol } RN_4}{4 \text{ mmol } HCl} \times \frac{285.37 \text{ g } RN_4}{1000 \text{ mmol}}$ $\times 100\% = 22.08\% \text{ RN}_4$

16-35.

$$\%N = \frac{\left(\frac{0.1249 \text{ mmol HCl}}{\text{mL}} \times 20.59 \text{ mL HCl}\right) \times \frac{1 \text{ mmol N}}{\text{mmol HCl}} \times \frac{14.007 \text{ g N}}{1000 \text{ mmol}}}{0.917 \text{ g sample}} \times 100\% = 3.93\% \text{ N}$$

16-37.

	A	В	С	D	E	F
1	Problem 16-37					
2	Mass sample, g	0.5843				
3	Vol. HCl, mL	50.00				
4	Conc. HCI, M	0.1062				
5	Vol. NaOH, mL	11.89				
6	Conc. NaOH, M	0.0925				
7						
8	amnt HCI/g, mmol/g	7.20550231	amnt HCI/g = (mi	mol HCl - r	nmol NaOH	l)/sample mass
9		Molar masses	Percentages			
10	(a) N	14.007	10.09			
11	(b) urea	60.06	21.64			
12	(c) (NH ₄) ₂ SO ₄	132.141	47.61			
13	(d) (NH ₄) ₃ PO ₄	149.09	35.81			
14	Spreadsheet Docur	nentation				
15	Cell B8=(B3*B4-B5*8	B6)/B2	The percentages	are calcula	ated in Cell	s C10:C13
16	Cell C10=\$B\$8*1*B1	from the no. of mmol of HCl/g times the no. of mmol				
17	Cell C11=\$B\$8*1/2*E	of the compound/mmol HCl times the molar mass				
18	Cell C12=\$B\$8*1/2*E	of the compound	divided by	1000 (mm	olar mass).	
19	Cell C13=\$B\$8*1/3*E	313/1000*100				
20						

16-39. In the first titration,

amnt HCl consumed =
$$\left(\frac{0.08421 \text{ mmol HCl}}{\text{mL}} \times 30.00 \text{ mL}\right) - \left(\frac{0.08802 \text{ mmol NaOH}}{\text{mL}} \times 10.17 \text{ mL}\right) = 1.63114 \text{ mmol}$$

and

$$1.63114 \text{ mmol HCl} = \text{mmol NH}_4\text{NO}_3 + (2 \times \text{mmol (NH}_4)_2\text{SO}_4)$$

The amounts of the two species in the original sample are

mmol NH₄NO₃ + $(2 \times \text{mmol} (\text{NH}_4)_2 \text{SO}_4) = 1.63114 \text{ mmol} \times \frac{200 \text{ mL}}{50 \text{ mL}} = 6.5246 \text{ mmol} (1)$

In the second titration,

amnt HCl consumed =
$$\left(\frac{0.08421 \text{ mmol HCl}}{\text{mL}} \times 30.00 \text{ mL}\right) - \left(\frac{0.08802 \text{ mmol NaOH}}{\text{mL}} \times 14.16 \text{ mL}\right) = 1.27994 \text{ mmol HCl}$$

and

1.27994 mmol HCl =
$$(2 \times \text{mmol NH}_4\text{NO}_3) + (2 \times \text{mmol (NH}_4)_2\text{SO}_4)$$

The amounts of the two species in the original sample are

$$(2 \times \text{mmol NH}_4\text{NO}_3) + (2 \times \text{mmol (NH}_4)_2\text{SO}_4) = 1.27994 \text{ mmol} \times \frac{200 \text{ mL}}{25 \text{ mL}} = 10.2395 \text{ mmol}$$
(2)

Subtracting equation (1) from equation (2) gives

amnt NH₄NO₃ = 10.2395 mmol - 6.52455 mmol = 3.7149 mmol
amnt (NH₄)₂SO₄ =
$$\frac{10.2395 \text{ mmol} - (2 \times 3.7149 \text{ mmol})}{2}$$
 = 1.4048 mmol
percentage NH₄NO₃ = $\frac{3.7149 \text{ mmol NH}_4 \text{NO}_3 \times \frac{80.04 \text{ g NH}_4 \text{NO}_3}{1000 \text{ mmol}} \times 100\%$ =24.39%
percentage (NH₄)₂SO₄ = $\frac{1.4048 \text{ mmol (NH}_4)_2 \text{SO}_4 \times \frac{132.14 \text{ g (NH}_4)_2 \text{SO}_4}{1000 \text{ mmol}} \times 100\%$
= 15.23%

124

16-41. For the first aliquot,

amnt HCl = mmol NaOH + mmol NaHCO₃ + (2 × mmol Na₂CO₃) mmol NaHCO₃ + (2 × mmol Na₂CO₃) = $\left(\frac{0.01255 \text{ mmol HCl}}{\text{mL}} \times 50.00 \text{ mL HCl}\right) - \left(\frac{0.01063 \text{ mmol NaOH}}{\text{mL}} \times 2.34 \text{ mL NaOH}\right) = 0.6026 \text{ mmol}$

For the second aliquot,

amnt NaHCO₃ = mmol NaOH – mmol HCl
=
$$\left(\frac{0.01063 \text{ mmol NaOH}}{\text{mL}} \times 25.00 \text{ mL NaOH}\right) - \left(\frac{0.01255 \text{ mmol HCl}}{\text{mL}} \times 7.63 \text{ mL HCl}\right)$$

= 0.1700 mmol

percentage NaHCO₃ =
$$\frac{0.1700 \text{ mmol NaHCO}_3 \times \frac{84.01 \text{ g NaHCO}_3}{1000 \text{ mmol}}}{\left(0.5000 \text{ g} \times \frac{25.00 \text{ g}}{250.0 \text{ g}}\right)} \times 100\% = 28.56\%$$
percentage Na₂CO₃ =
$$\frac{0.2163 \text{ mmol Na}_2\text{CO}_3 \times \frac{105.99 \text{ g Na}_2\text{CO}_3}{1000 \text{ mmol}}}{\left(0.5000 \text{ g} \times \frac{25.00 \text{ mL}}{250.0 \text{ mL}}\right)} \times 100\% = 45.85\%$$

 $100\% - (28.56\% + 45.85\%) = 25.59\% H_2O$

16-43.

	A	В	С	D	E
1	Problem 16-43				
2	Conc. NaOH, M	0.07731			
3	(a) and (b)				
4	Conc. HCI, M	0.03000			
5	Conc. H ₃ PO ₄ , M	0.01000			
6	(a)		Vol. solution, mL	Amnt. acid, mmol	Vol. NaOH, mL
7	React with 1 proton		25.00	1.0000	12.93
8	to bromocresol green				
9	end point				
10			Vol. solution, mL	Amnt. acid, mmol	Vol. NaOH, mL
11	React with 2 protons		25.00	1.2500	16.17
12					
13	end point				
14	(c)		Vol. solution, mL	Amnt. acid, mmol	Vol. NaOH, mL
15	Conc. NaH ₂ PO ₄ , M	0.06407	10.00	0.6407	8.29
16			20.00	1.2814	16.57
17			30.00	1.9221	24.86
18			40.00	2.5628	33.15
19	(d) Mixture		Vol. solution, mL	Amnt. acid, mmol	Vol. NaOH, mL
20	Conc. H ₃ PO ₄ , M	0.02000	20.00	1.4000	18.11
21	Conc. NaH ₂ PO ₄ , M	0.03000	25.00	1.7500	22.64
22	React with 2 protons		30.00	2.1000	27.16
23	from H ₃ PO ₄ and 1				
24	proton from NaH ₂ PO ₄				
25					
26	Spreadsheet Docum	nentation			
27	Cell D7=C7*\$B\$4+C7	*\$B\$5			
28	Cell E7=D7/\$B\$2				
29	Cell D11=C11*\$B\$4+;	2*C11*\$B\$	5		
30	Cell E11=D11/\$B\$2				
31	Cell D15=\$B\$15*C15				
32	Cell E15=D15/\$B\$2				
33	Cell D20=2*\$B\$20*C2	20+\$B\$21*	C20		
34	Cell E20=D20/\$B\$2				

16-45.

1	A	В	С	D	E	F
1	Problem 16-45			Vol. to phenol, mL	Vol. to BCG, mL	
2	Conc. HCI, M	0.1202	(a)		22.44	
3	Vol. solution, mL	25.00			42.13	
4	M NaOH	39.997	(c)	29.64	36.42	
5	M Na ₂ CO ₃	105.989	(d)	16.12	32.23	
6	M NaHCO₃	84.007	(e)	0.00	33.33	
7	Table 16-2 gives	the volume relationships in titra	tions of these mixtures			
9	(a) Since essent	ally the same volue is used for	both end points, there is	only NaOH		
10	present. We use	the average volume to calcula	te the concentration of N	aOH in mg/mL.		
11	-	Amnt NaOH, mmol	conc. NaOH, mg/mL			
12		2.6961	4.313			
13	(b) Since V _{phth} <	1/2 V bcg, only carbonate and bio	carbonate are present.			
14		Amnt carbonate, mmol	Amnt total, mmol	Amnt bicarbonate, mmol	Conc. bicarb., mg/mL	Conc. carb., mg/mL
15		1.8835	5.0640	1.2970	7.985	4.358
16	(c) Now V phth > 1	∕₂V _{bcg.} so we have a mixture of	NaOH and Na ₂ CO ₃			
17		Amnt carb. + NaOH, mmol	Amnt carb., mmol	Amnt NaOH, mmol	Conc. Na2CO3, mg/mL	Conc. NaOH, mg/mL
18		3.5627	0.8150	2.7478	3.455	4.396
19	(d) Since V _{phth}	= 1/2 V bcg, we have only Na2CC	03 present.			
20		Ammt carbonate, mmol	Conc. Na2CO3, mg/mL			
21		1.9376	8.215			
22	(e) Since V _{phth} =	0, we have only NaHCO ₃ pres	ent which gains one proto	on.		
23		Amnt NaHCO ₃ , mmol	Conc. NaHCO3, mg/mL	-		
24		4.0063	13.462			
25	Spreadsheet Do	ocumentation				
26	Cell B12=((D2+E	2)/2)*\$B\$2	Cdll C18=(\$E\$4-\$D\$4)*\$	B\$2		
27	Cell C12=B12*1*\$B\$4/\$B\$3		Cell D18=B18-C18			
28	3 Cell B15=D3*\$B\$2		Cell E18=C18*\$B\$5/\$B\$	53		
29	Cell C15=E3*\$B\$2		Cell F18=D18*\$B\$4/\$B\$	3		
30	Cell D15=C15-2*	B15	Cell B21=\$D\$5*\$B\$2			
31	Cell E15=B15*\$E	3\$5/\$B\$3	Cell C21=B21*1*\$B\$5/\$	B\$3		
	Cell F15=D15*\$E		Cell B24=E6*\$B\$2			
33	Cell B18=D4*\$B	52	Cell C24=B24*1*\$B\$6/\$	B\$3		

16-47. (a) With bromocresol green, only one of the two protons in the oxalic acid will react.

Therefore, the equivalent mass is the molar mass, or 126.066 g.

(b) When phenolphthalein is the indicator, two of the protons are consumed. Therefore,

the equivalent mass of oxalic acid is one-half the molar mass, or 63.03 g.

Chapter 17

17-1. (a) A *ligand* is a species that contains one or more electron pair donor groups that tend to form bonds with metal ions.

(c) A *tetradentate chelating agent* is a molecule that contains four pairs of donor electron located in such positions that they all can bond to a metal ion, thus forming two rings.
(e) *Argentometric titrations* are titrations based on the formation of precipitates with standard solutions of silver nitrate. An example is the titration of a halide ion with silver nitrate to form the isoluble silver halide.

(g) In an *EDTA displacement titration*, an unmeasured excess of a solution containing the magnesium or zinc complex of EDTA is introduced into the solution of an analyte that forms a more stable complex that that of magnesium or zinc. The liberated magnesium or zinc ions are then titrated with a standard solution of EDTA. Displacement titrations are used for the determination of cations for which no good indicator exists.

17-2. Three general methods for performing EDTA titrations are (1) direct titration, (2) back titration, and (3) displacement titration. Method (1) is simple, rapid, but requires one standard reagent. Method (2) is advantageous for those metals that react so slowly with EDTA as to make direct titration inconvenient. In addition, this procedure is useful for cations for which satisfactory indicators are not available. Finally, it is useful for analyzing samples that contain anions that form sparingly soluble precipitates with the analyte under analytical conditions. Method (3) is particularly useful in situations where no satisfactory indicators are available for direct titration.

Chapter 17

$$Ag^{+} + S_{2}O_{3}^{2-} \rightleftharpoons Ag(S_{2}O_{3})^{-} \qquad K_{1} = \frac{[Ag(S_{2}O_{3})^{-}]}{[Ag^{+}][S_{2}O_{3}^{2-}]}$$
$$Ag(S_{2}O_{3})^{-} + S_{2}O_{3}^{2-} \rightleftharpoons Ag(S_{2}O_{3})_{2}^{3-} \qquad K_{2} = \frac{[Ag(S_{2}O_{3})_{2}^{3-}]}{[Ag(S_{2}O_{3})^{-}][S_{2}O_{3}^{2-}]}$$

17-4. The overall formation constant β_n is equal to the product of the individual stepwise constants. Thus, the overall constant for formation of Ag(S₂O₃)₂³⁻ in Problem 17-3 (a) is

$$\beta_2 = K_1 K_2 = \frac{[\operatorname{Ag}(S_2 O_3)_2^{3^-}]}{[\operatorname{Ag}^+][S_2 O_3^{2^-}]^2}$$

- **17-5.** The Fajans determination of chloride involves a direct titration, while a Volhard titration requires two standard solutions and a flitration step to remove AgCl before back titration of the excess SCN⁻.
- **17-6.** The ions that are preferentially absorbed on the surface of an ionic solid are generally lattice ions. Thus, in the beginning stages of a precipitation titration, one of the lattice ions is in excess and its charge determines the sign of the charge of the particles. After the equivalence point, the ion of the opposite charge is present in excess and determines the sign of the charge on the particle. Thus, in the equivalence-point region, the charge shift from positive to negative, or the reverse.
- **17-7.** (a) Acetate (OAc⁻)

$$HOAc \rightleftharpoons OAc^- + H^+$$
 $K_a = \frac{[OAc^-][H^+]}{[HOAc]}$

$$c_{\mathrm{T}} = [\mathrm{HOAc}] + [\mathrm{OAc}^{-}]$$

$$= \frac{[\mathrm{OAc}^{-}][\mathrm{H}^{+}]}{K_{\mathrm{a}}} + [\mathrm{OAc}^{-}] = [\mathrm{OAc}^{-}] \left\{ \frac{[\mathrm{H}^{+}]}{K_{\mathrm{a}}} + 1 \right\} = [\mathrm{OAc}^{-}] \left\{ \frac{[\mathrm{H}^{+}] + K_{\mathrm{a}}}{K_{\mathrm{a}}} \right\}$$

$$\alpha_{\mathrm{I}} = \frac{[\mathrm{OAc}^{-}]}{c_{\mathrm{T}}} = \frac{K_{\mathrm{a}}}{[\mathrm{H}^{+}] + K_{\mathrm{a}}}$$
(b) Tartrate (T²⁻)
$$H_{2}\mathrm{T} \rightleftharpoons \mathrm{HT}^{-} + \mathrm{H}^{+} \qquad K_{\mathrm{a1}} = \frac{[\mathrm{HT}^{-}][\mathrm{H}^{+}]}{[\mathrm{H}_{2}\mathrm{T}]}$$

$$HT^{-} \rightleftharpoons T^{2-} + H^{+} \qquad \qquad K_{a2} = \frac{[T^{2-}][H^{+}]}{[HT^{-}]}$$

$$c_{\rm T} = [{\rm H}_{2}{\rm T}] + [{\rm H}{\rm T}^{-}] + [{\rm T}^{2-}]$$

$$= \frac{[{\rm H}{\rm T}^{-}][{\rm H}^{+}]}{K_{\rm a1}} + \frac{[{\rm T}^{2-}][{\rm H}^{+}]}{K_{\rm a2}} + [{\rm T}^{2-}] = \frac{[{\rm T}^{2-}][{\rm H}^{+}]^{2}}{K_{\rm a1}K_{\rm a2}} + \frac{[{\rm T}^{2-}][{\rm H}^{+}]}{K_{\rm a2}} + [{\rm T}^{2-}]$$

$$= [{\rm T}^{2-}] \left\{ \frac{[{\rm H}^{+}]^{2}}{K_{\rm a1}K_{\rm a2}} + \frac{[{\rm H}^{+}]}{K_{\rm a2}} + 1 \right\} = [{\rm T}^{2-}] \left\{ \frac{[{\rm H}^{+}]^{2} + K_{\rm a1}[{\rm H}^{+}] + K_{\rm a1}K_{\rm a2}}{K_{\rm a1}K_{\rm a2}} \right\}$$

$$\alpha_{2} = \frac{[{\rm T}^{2-}]}{c_{\rm T}} = \frac{K_{\rm a1}K_{\rm a2}}{[{\rm H}^{+}]^{2} + K_{\rm a1}[{\rm H}^{+}] + K_{\rm a1}K_{\rm a2}}$$

(c) Phosphate

$$H_{3}PO_{4} \rightleftharpoons H_{2}PO_{4}^{-} + H^{+} \qquad \qquad K_{a1} = \frac{[H_{2}PO_{4}^{-}][H^{+}]}{[H_{3}PO_{4}]}$$

$$H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+$$
 $K_{a2} = \frac{[HPO_4^{2-}][H^+]}{[H_2PO_4^{-}]}$

$$HPO_4^{2-} \rightleftharpoons PO_4^{3-} + H^+$$
 $K_{a3} = \frac{[PO_4^{3-}][H^+]}{[HPO_4^{2-}]}$

130

$$c_{\rm T} = [{\rm H}_3{\rm PO}_4] + [{\rm H}_2{\rm PO}_4^{-}] + [{\rm HPO}_4^{2-}] + [{\rm PO}_4^{3-}]$$

Proceeding as in the preceeding problem, we obtain

$$c_{\rm T} = [{\rm PO_4}^{3-}] \left\{ \frac{[{\rm H^+}]^3 + K_{\rm a1}[{\rm H^+}]^2 + K_{\rm a1}K_{\rm a2}[{\rm H^+}] + K_{\rm a1}K_{\rm a2}K_{\rm a3}}{K_{\rm a1}K_{\rm a2}K_{\rm a3}} \right\}$$
$$\alpha_3 = \frac{[{\rm PO_4}^{3-}]}{c_{\rm T}} = \frac{K_{\rm a1}K_{\rm a2}K_{\rm a3}}{[{\rm H^+}]^3 + K_{\rm a1}[{\rm H^+}]^2 + K_{\rm a1}K_{\rm a2}[{\rm H^+}] + K_{\rm a1}K_{\rm a2}K_{\rm a3}}$$

17-8.

$$Fe^{3+} + 3Ox^{2-} \rightleftharpoons Fe(Ox)_3^{3-}$$
 $\beta_3 = \frac{[Fe(Ox)_3^{3-}]}{[Fe^{3+}][Ox^{2-}]^3}$

$$\alpha_{2} = \frac{[Ox^{2^{-}}]}{c_{T}} \qquad \text{so} [Ox^{2^{-}}] = \alpha_{2}c_{T}$$
$$\beta_{3} = \frac{[Fe(Ox)_{3}^{3^{-}}]}{[Fe^{3^{+}}][Ox^{2^{-}}]^{3}} = \frac{[Fe(Ox)_{3}^{3^{-}}]}{[Fe^{3^{+}}](\alpha_{2}c_{T})^{3}}$$
$$\beta_{3}' = (\alpha_{2})^{3}\beta_{3} = \frac{[Fe(Ox)_{3}^{3^{-}}]}{[Fe^{3^{+}}](c_{T})^{3}}$$

17-9.

$$\beta_n = \frac{[\mathrm{ML}_n]}{[\mathrm{M}][\mathrm{L}]^n}$$

Taking the logarithm of both sides of the above equation yields

 $\log \beta_n = \log[ML_n] - \log[M] - n\log[L]$

Now write the right hand side of the equation as a *p* function (i.e. pM = -log[M]).

$$\log \beta_n = pM + npL - pML_n$$

Chapter 17

17-10.

$$\frac{3.426 \text{ g.reagent}}{100 \text{ g.reagent}} \times \frac{99.7 \text{ g.Na}_2\text{H}_2\text{Y}\cdot2\text{H}_2\text{O}}{100 \text{ g.reagent}} \times \frac{1 \text{ mole EDTA}}{372.24 \text{ g.Na}_2\text{H}_2\text{Y}\cdot2\text{H}_2\text{O}} = 0.00918 \text{ M EDTA}$$

$$1.000 \text{ L}$$

17-11. First calculate the CoSO₄ concentration

$$\frac{1.569 \text{ mg}}{\text{mL}} \times \frac{1 \text{ mmol } \text{CoSO}_4}{155.0 \text{ mg}} = 0.010123 \text{ M}$$

In each part 25.00 mL of this solution is taken, so

amount $\text{CoSO}_4 = 25.00 \text{ mL} \times \frac{0.010123 \text{ mmol}}{\text{mL}} = 0.25306 \text{ mmol}$

(a)

Vol. EDTA = 0.25306 mmol·CoSO₄ ×
$$\frac{1 \text{ mmol·EDTA}}{\text{mmol·CoSO}_4}$$
 × $\frac{1 \text{ mL}}{0.007840 \text{ mmol·EDTA}}$ = 32.28 mL (b)

amnt excess EDTA =
$$\left(\frac{0.007840 \text{ mmol}}{\text{mL}} \times 50.00 \text{ mL}\right)$$

- $\left(0.25306 \text{ mmol } \text{CoSO}_4 \times \frac{1 \text{ mmol}}{\text{mmol } \text{CoSO}_4}\right) = 0.1389 \text{ mmol}$

Vol.
$$Zn^{2+} = 0.1389 \text{ mmol} \text{EDTA} \times \frac{1 \text{ mmol} Zn^{2+}}{\text{mmol} \text{EDTA}} \times \frac{1 \text{ mL}}{0.009275 \text{ mmol} Zn^{2+}} = 14.98 \text{ mL}$$

(c)

Vol. EDTA = 0.25306 mmol·CoSO₄ ×
$$\frac{1 \text{ mmol} \text{Zn}^{2+}}{\text{mmol} \text{CoSO}_4}$$
 × $\frac{1 \text{ mmol} \text{EDTA}}{\text{mmol} \text{Zn}^{2+}}$ × $\frac{1 \text{ mmol} \text{EDTA}}{0.007840 \text{ mmol} \text{EDTA}}$
= 32.28 mL

17-12. (a)

Vol. EDTA =
$$\frac{0.0598 \text{ mmol Mg(NO_3)_2}}{\text{ml}} \times 29.13 \text{ mL} \times \frac{1 \text{ mmol EDTA}}{\text{mmol Mg(NO_3)_2}} \times \frac{\text{mL}}{0.0500 \text{ mmol EDTA}}$$
$$= 34.84 \text{ mL}$$
(c)

Amnt. CaHPO₄ · 2H₂O = 0.4861 g ×
$$\frac{81.4 \text{ g} \text{ CaHPO_4 · 2H_2O}}{100 \text{ g}}$$
 × $\frac{1000 \text{ mmol}}{172.09 \text{ g} \text{ CaHPO_4 · 2H_2O}}$
= 2.2993 mmol
Vol. EDTA = 2.2993 mmol CaHPO₄ · 2H₂O × $\frac{1 \text{ mmol} \text{ EDTA}}{1 \text{ mmol} \text{ EDTA}}$ × $\frac{1 \text{ mL}}{1 \text{ mL}}$

Vol. EDTA = 2.2993 mmol CaHPO₄·2H₂O ×
$$\frac{1 \text{ mmol CaHPO}_{4} \cdot 2H_2O}{\text{mmol CaHPO}_4 \cdot 2H_2O}$$
 × $\frac{1 \text{ mm}}{0.0500 \text{ mmol EDTA}}$
= 45.99 mL

(e)

Vol. EDTA = 0.1612 g ×
$$\frac{92.5 \text{ g}}{100 \text{ g}}$$
 × $\frac{1000 \text{ mmol dolo}}{184.4 \text{ g}}$ × $\frac{2 \text{ mmol EDTA}}{\text{mmol dolo}}$ × $\frac{1 \text{ mL}}{0.0500 \text{ mmol EDTA}}$
= 32.34 mL

17-13.

Wt. Zn = $\frac{0.01639 \text{ mmol EDTA}}{\text{mL}} \times 22.57 \text{ mL} \times \frac{1 \text{ mmol Zn}^{2+}}{\text{mmol EDTA}} \times \frac{65.39 \text{ g}}{1000 \text{ mmol Zn}^{2+}} = 0.024189 \text{ g}$ Percentage Zn = $\frac{0.024189 \text{ g Zn}}{0.7457 \text{ g sample}} \times 100\% = 3.244\%$

17-14. Conc.
$$\operatorname{AgNO}_3 = \frac{14.77 \text{ g}}{\text{L}} \times \frac{1 \text{ mol AgNO}_3}{169.873 \text{ g}} = 0.08695 \text{ M}$$

(a)

Vol. AgNO₃ = 0.2631 g ×
$$\frac{\text{mmol-NaCl}}{0.05833 \text{ g}}$$
 × $\frac{1 \text{ mmol-AgNO}_3}{\text{mmol-NaCl}}$ × $\frac{1 \text{ mL AgNO}_3}{0.08695 \text{ mmol-AgNO}_3}$ = 51.78 mL

(c)

$$V_{\text{AgNO}_3} = 64.13 \text{ mg} \times \frac{\text{mmol-Na}_3 \text{AsO}_4}{207.89 \text{ mg}} \times \frac{3 \text{ mmol-AgNO}_3}{\text{mmol-Na}_3 \text{AsO}_4} \times \frac{1 \text{ mL}}{0.08695 \text{ mmol-AgNO}_3} = 10.64 \text{ mL}$$

$$V_{\text{AgNO}_3} = 25.00 \text{ mL} \times \frac{0.05361 \text{ mmol-Na}_3 \text{PO}_4}{\text{mL}} \times \frac{3 \text{ mmol-AgNO}_3}{\text{mmol-Na}_3 \text{PO}_4} \times \frac{1 \text{ mL}}{0.08695 \text{ mmol-AgNO}_3} = 46.24 \text{ mL}$$

17-15. (a) An excess is assured if the calculation is based on a pure sample.

Vol. AgNO₃ = 0.2513
$$\not g \times \frac{1 \text{ mmol NaCl}}{0.05844 \ \not g} \times \frac{1 \text{ mmol AgNO}_3}{\text{ mmol NaCl}} \times \frac{1 \text{ mL}}{0.09621 \text{ mmol AgNO}_3} = 44.70 \text{ mL}$$

(c)

Vol. AgNO₃ = 25.00 mL ×
$$\frac{0.01907 \text{ mmolAtCl}_3}{\text{mL}}$$
 × $\frac{3 \text{ mmolAgNO}_3}{\text{mmolAtCl}_3}$ × $\frac{1 \text{ mL}}{0.09621 \text{ mmolAgNO}_3}$ = 14.87 mL

$$Percent Tl_2SO_4 = \frac{\left(\frac{0.03610 \text{ mmol} \text{EDTA}}{\text{ml}} \times 12.77 \text{ mL} \times \frac{1 \text{ mmol} \text{Fl}_2SO_4}{2 \text{ mmol} \text{EDTA}} \times \frac{504.8 \text{ g}}{\text{mmol} \text{Fl}_2SO_4}\right)}{9.57 \text{ g} \text{ sample}} \times 100\%$$
$$= 1.216\%$$

17-17.

Amnt
$$Fe^{3+} = \frac{0.01500 \text{ mmol-EDTA}}{\text{mL}} \times 10.98 \text{ mL} \times \frac{1 \text{ mmol Fe}^{3+}}{\text{mmol-EDTA}} = 0.1647 \text{ mmol}$$

Amnt $Fe^{2+} = \frac{0.01500 \text{ mmol-EDTA}}{\text{mL}} \times (23.70 - 10.98) \text{ mL} \times \frac{1 \text{ mmol Fe}^{2+}}{\text{mmol-EDTA}} = 0.1908 \text{ mmol}$
Conc. $Fe^{3+} = \frac{\left(\frac{0.1647 \text{ mmol Fe}^{3+} \times \frac{55.847 \text{ mg}}{\text{mmol Fe}^{3+}}\right)}{50.00 \text{ mL} \times \frac{L}{1000 \text{ mL}}} = 183.96 \text{ ppm} \approx 184.0 \text{ ppm}$
Conc. $Fe^{2+} = \frac{\left(\frac{0.1908 \text{ mmol Fe}^{2+} \times \frac{55.847 \text{ mg}}{\text{mmol Fe}^{2+}}\right)}{50.00 \text{ mL} \times \frac{L}{1000 \text{ mL}}} = 213.1 \text{ ppm}$

17-18.

Amount
$$Cd^{2+} + Pb^{2+} =$$

$$\frac{0.06950 \text{ mmol EDTA}}{mL} \times 28.89 \text{ mL EDTA} \times \frac{1 \text{ mmol } (Cd^{2+} + Pb^{2+})}{mmol \text{ EDTA}} = 2.00786 \text{ mmol}$$
Amnt $Pb^{2+} = \frac{0.06950 \text{ mmol EDTA}}{mL} \times 11.56 \text{ mL EDTA} \times \frac{1 \text{ mmol } Pb^{2+}}{mmol \text{ EDTA}} = 0.80342 \text{ mmol}$
Amnt $Cd^{2+} = 2.00786 \text{ mmol} - 0.80342 \text{ mmol} = 1.20444 \text{ mmol}$

$$\frac{\left(0.80342 \text{ mmol } Pb^{2+} \times \frac{207.2 \text{ g Pb}^{2+}}{1000 \text{ mmol}}\right)}{1.509 \text{ g sample} \times \frac{50.00 \text{ mL}}{250.0 \text{ mL}}} \times 100\% = 55.16\% \text{ Pb}^{2+}$$

$$\frac{\left(1.204 \text{ mmol } Cd^{2+} \times \frac{112.41 \text{ g } Cd^{2+}}{1000 \text{ mmol}}\right)}{1.509 \text{ g sample} \times \frac{50.00 \text{ mL}}{250.0 \text{ mL}}} \times 100\% = 44.86\% \text{ Cd}^{2+}$$

17-19.

$$\frac{\left(\frac{0.01133 \text{ mmol EDTA}}{\text{mL}} \times 38.37 \text{ mL EDTA} \times \frac{1 \text{ mmol ZnO}}{\text{mmol EDTA}} \times \frac{81.379 \text{ g ZnO}}{1000 \text{ mmol}}\right)}{1.056 \text{ g sample} \times \frac{10.00 \text{ mL}}{250.0 \text{ mL}}} \times 100\%$$

$$= 83.75\% \text{ ZnO}$$

$$\frac{\left(\frac{0.002647 \text{ mmol } \text{ZnY}^{2-}}{\text{mL}} \times 2.30 \text{ mL } \text{ZnY}^{2-} \times \frac{1 \text{ mmol } \text{Fe}_2\text{O}_3}{2 \text{ mmol } \text{ZnY}^{2-}} \times \frac{159.69 \text{ g } \text{Fe}_2\text{O}_3}{1000 \text{ mmol}}\right)}{1.056 \text{ g sample} \times \frac{50.00 \text{ mL}}{250.0 \text{ mL}}} \times 100\%$$

 $= 0.230\% \text{ Fe}_2\text{O}_3$

17-20.

1 mmol EDTA = 1 mmol Ni²⁺ = 2 mmol NaBr = 2 mmol NaBrO₃

For the 10.00 mL aliquot,

 $\frac{\text{Amnt NaBr + amnt NaBrO}_{3}}{\text{mL sample solution}} = \frac{\left(\frac{0.02089 \text{ mmol EDTA}}{\text{mL}} \times 21.94 \text{ mL EDTA} \times \frac{2(\text{mmol NaBr+mmol NaBrO}_{3})}{\text{mmol EDTA}}\right)}{10.00 \text{ mL}} = 0.09166 \text{ M}$

For the 25.00 mL aliquot,

Amnt NaBr mL sample solution

 $\frac{\left(\frac{0.02089 \text{ mmol EDTA}}{\text{mL}} \times 26.73 \text{ mL EDTA} \times \frac{2 \text{ mmol NaBr}}{\text{mmol EDTA}}\right)}{25.00 \text{ mL}} = 0.04467 \text{ M NaBr}$

 $\frac{\text{Amnt NaBrO}_3}{\text{mL sample solution}} = 0.09166 - 0.04467 = 0.04699 \text{ M NaBrO}_3$

 $\frac{\left(\frac{0.04467 \text{ mmol NaBr}}{\text{mL}} \times 250.0 \text{ mL} \times \frac{102.9 \text{ g NaBr}}{1000 \text{ mmol}}\right)}{3.650 \text{ g sample}} \times 100\% = 31.48\% \text{ NaBr}$ $\frac{\left(\frac{0.04699 \text{ mmol NaBrO}_3}{\text{mL}} \times 250.0 \text{ mL} \times \frac{150.9 \text{ g NaBrO}_3}{1000 \text{ mmol}}\right)}{3.650 \text{ g sample}} \times 100\% = 48.57\% \text{ NaBrO}_3$

17-21.

$$Amnt EDTA reacted in 50.00 mL = \left(\frac{0.05173 \text{ mmol EDTA}}{mL} \times 50.00 \text{ mL EDTA}\right) - \left(\frac{0.06139 \text{ mmol Cu}^{2+}}{mL} \times 5.34 \text{ mL Cu}^{2+} \times \frac{1 \text{ mmol EDTA}}{mmol \text{ Cu}^{2+}}\right) = 2.2587 \text{ mmol}$$

$$Amnt EDTA reacted in 250.0 mL = Amnt (Ni+ Fe+ Cr) = \frac{2.2587 \text{ mmol}}{\left(\frac{50.00 \text{ mL}}{250.0 \text{ mL}}\right)} = 11.2934 \text{ mmol}$$

$$Amnt (Ni + Fe) = \frac{\left(\frac{0.05173 \text{ mmol EDTA}}{mL} \times 36.98 \text{ mL EDTA}\right)}{\frac{50.00 \text{ mL}}{250.0 \text{ mL}}} = 9.5649 \text{ mmol}$$

$$Amnt Cr = 11.2934 \text{ mmol} - 9.5649 \text{ mmol} = 1.7285 \text{ mmol}$$

$$Amnt Ni = \frac{\left(\frac{0.05173 \text{ mmol EDTA}}{mL} \times 24.53 \text{ mL EDTA} \times \frac{1 \text{ mmol Ni}}{mmol \text{ EDTA}}\right)}{\frac{50.00 \text{ mL}}{250.0 \text{ mL}}} = 6.3447 \text{ mmol}$$

Amnt Fe =9.5649 mmol - 6.3447 mmol = 3.2202 mmol
%Cr =
$$\frac{1.7285 \text{ mmol Cr} \times \frac{51.996 \text{ g Cr}}{1000 \text{ mmol}}}{0.6553 \text{ g}} \times 100\% = 13.72\%$$

%Ni = $\frac{6.3447 \text{ mmol Ni} \times \frac{58.69 \text{ g Ni}}{1000 \text{ mmol}}}{0.6553 \text{ g}} \times 100\% = 56.82\%$
%Fe = $\frac{3.2202 \text{ mmol Fe} \times \frac{55.847 \text{ g Fe}}{1000 \text{ mmol}}}{0.6553 \text{ g}} \times 100\% = 27.44\%$

17-22.

	A	В	С	D	E	F	G	Н	1	J	K
1	Pb 17-38 Conditional constants for the Fe ²⁺ -EDTA complex										
2	Note: The conditional constant K'_{MY} is the product of α_4 and K_{MY} (Equation 17-25).										
3	The value of K_{MY} is found in Table 17-4.										
4	K _{MY} 2	2.10E+14									
5	K ₁	1.02E-02									
6	K2	2.14E-03									1
7	K ₃	6.92E-07									
8	K4	5.50E-11				1					
9	pН	D	α_4	K' _{MY}							
10	6.0 3	3.69E-17	2.25E-05	4.7E+09							
11	8.0 1	1.54E-19	5.39E-03	1.1E+12							
12	10.0 2	2.34E-21	3.55E-01	7.5E+13							
13	Spreadsheet Documentation										
14	Cell B10=(10^-A10)^4+\$B\$5*(10^-A10)^3+\$B\$5*\$B\$6*(10^-A10)^2+\$B\$5*\$B\$6*\$B\$7*(10^-A10)+\$B\$5*\$B\$6*\$B\$7*\$B\$8										
	Cell C10=\$B										
16	6 Cell D10=\$B\$4*C10										

17-23.

Amnt Ca²⁺ + Amnt Mg²⁺ =
$$\left(\frac{0.01205 \text{ mmol EDTA}}{\text{mL}} \times 23.65 \text{ mL EDTA}\right)$$
 = 0.2850 mmol
Amnt Ca²⁺ = $\left(\frac{0.01205 \text{ mmol EDTA}}{\text{mL}} \times 14.53 \text{ mL EDTA} \times \frac{1 \text{ mmol Ca}^{2+}}{\text{mmol EDTA}}\right)$ = 0.1751 mmol

Amnt $Mg^{2+} = 0.2850 - 0.1751 = 0.1099 \text{ mmol}$

(a)

See discussion of water hardness in 17D-9.

Water hardness
$$\cong$$
 Conc. CaCO₃ in ppm \approx conc. Ca²⁺ + Mg²⁺ in ppm
= $\frac{0.2850 \text{ mmol} \times \frac{100.087 \text{ mg CaCO}_3}{\text{mmol}}}{50.00 \text{ mL} \times \frac{\text{L}}{1000 \text{ mL}}} = 570.5 \text{ ppm CaCO}_3$

(b)

$$\frac{\left(0.1751 \text{ mmol } \text{Ca}^{2^{+}} \times \frac{1 \text{ mmol } \text{CaCO}_{3}}{\text{mmol } \text{Ca}^{2^{+}}} \times \frac{100.08 \text{ mg } \text{CaCO}_{3}}{\text{mmol}}\right)}{50.00 \text{ mL} \times \frac{\text{L}}{1000 \text{ mL}}} = 350.5 \text{ ppm } \text{CaCO}_{3}$$

(c)

$$\frac{\left(0.1099 \text{ mmol } \text{Mg}^{2+} \times \frac{1 \text{ mmol } \text{MgCO}_3}{\text{mmol } \text{Mg}^{2+}} \times \frac{84.30 \text{ mg } \text{MgCO}_3}{\text{mmol}}\right)}{50.00 \text{ mL} \times \frac{L}{1000 \text{ mL}}} = 185.3 \text{ ppm } \text{MgCO}_3$$

Chapter 18

18-1. (a) Oxidation is a process in which a species loses one or more electrons.

(c) A *salt bridge* provides electrical contact but prevents mixing of dissimilar solutions in an electrochemical cell.

(e) The *Nernst equation* relates the potential to the concentrations (strictly, activities) of the participants in an electrochemical reaction.

18-2. (a) The *electrode potential* is the potential of an electrochemical cell in which a standard hydrogen electrode acts as the reference electrode on the left and the half-cell of interest is on the right.

(c) The *standard electrode potential* is the potential of a cell consisting of the halfreaction of interest on the right and a standard hydrogen electrode on the left. The activities of all the participants in the half-reaction are specified as having a value of unity. The standard electrode potential is always a *reduction potential*.

18-3. (a) *Oxidation* is the process whereby a substance loses electrons; an *oxidizing agent* causes the loss of electrons.

(c) The *cathode* of a cell is the electrode at which reduction occurs. The *right-hand electrode* is the electrode on the right in the cell diagram.

(e) The *standard electrode potential* is the potential of a cell in which the standard hydrogen electrode acts as the reference electrode on the left and all participants in the right-hand electrode process have unit activity. The *formal potential* differs in that the molar *concentrations* of all the reactants and products are unity and the concentration of other species in the solution are carefully specified.

- **18-4.** The first standard potential is for a solution saturated with I_2 , which has an $I_2(aq)$ activity significantly less than one. The second potential is for a *hypothetical* half-cell in which the $I_2(aq)$ activity is unity.
- **18-5.** To keep the solution saturated with $H_2(g)$. Only then is the hydrogen activity constant and the electrode potential constant and reproducible.

18-7. (a)
$$2Fe^{3+} + Sn^{2+} \rightarrow 2Fe^{2+} + Sn^{4+}$$

(c) $2NO_3^- + Cu(s) + 4H^+ \rightarrow 2NO_2(g) + 2H_2O + Cu^{2+}$
(e) $Ti^{3+} + Fe(CN)_6^{3-} + H_2O \rightarrow TiO^{2+} + Fe(CN)_6^{4-} + 2H^+$
(g) $2Ag(s) + 2I^- + Sn^{4+} \rightarrow 2AgI(s) + Sn^2$
(i) $5HNO_2 + 2MnO_4^- + H^+ \rightarrow 5NO_3^- + 2Mn^{2+} + 3H_2O$

18-8. (a) Oxidizing agent
$$\operatorname{Fe}^{3+}$$
; $\operatorname{Fe}^{3+} + e^{-} \rightleftharpoons \operatorname{Fe}^{2+}$

Reducing agent Sn^{2+} ; $\operatorname{Sn}^{2+} \rightleftharpoons \operatorname{Sn}^{4+} + 2e^{-}$

(b) Oxidizing agent Ag^+ ; $Ag^+ + e^- \rightleftharpoons Ag(s)$

Reducing agent Cr; $Cr(s) \rightleftharpoons Cr^{3+} + 3e^{-}$

(c) Oxidizing agent NO₃⁻, NO₃⁻ + 2H⁺ + e⁻ \rightleftharpoons NO₂(g) + H₂O

Reducing agent Cu; Cu(s) \rightleftharpoons Cu²⁺ + 2e⁻

(d) Oxidizing agent MnO_4^- ; $MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$

Reducing agent H₂SO₃; H₂SO₃ + H₂O \rightleftharpoons SO₄²⁻ + 4H⁺ + 2e⁻

(e) Oxidizing agent
$$\operatorname{Fe}(\operatorname{CN})_6^{3-}$$
; $\operatorname{Fe}(\operatorname{CN})_6^{3-} + e^- \rightleftharpoons \operatorname{Fe}(\operatorname{CN})_6^{4-}$

- Reducing agent Ti^{3+} ; $Ti^{3+} + H_2O \rightleftharpoons TiO^{2+} + 2H^+ + e^-$
- (f) Oxidizing agent Ce^{4+} ; $Ce^{4+} + e^{-} \rightleftharpoons Ce^{3+}$
- Reducing agent H₂O₂; H₂O₂ \rightleftharpoons O₂(g) + 2H⁺ + 2e⁻
- (g) Oxidizing agent Sn^{4+} ; $\operatorname{Sn}^{4+} + 2e^{-} \rightleftharpoons \operatorname{Sn}^{2+}$
- Reducing agent Ag; $Ag(s) + I^- \rightleftharpoons AgI(s) + e^-$
- (**h**) Oxidizing agent UO₂²⁺; UO₂²⁺ + 4H⁺ + 2e⁻ \rightleftharpoons U⁴⁺ + 2H₂O

Reducing agent Zn; $Zn(s) \rightleftharpoons Zn^{2+} + 2e^{-}$

(i) Oxidizing agent MnO_4^- ; $MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$ Reducing agent HNO_2 $HNO_2 + H_2O \rightleftharpoons NO_3^- + 3H^+ + 2e^-$

(j)) Oxidizing agent IO_3^- ; $IO_3^- + 6H^+ + 2Cl^- + 4e^- \rightleftharpoons ICl_2^- + 3H_2O$

Reducing agent H₂NNH₂; H₂NNH₂ \rightleftharpoons N₂(g) + 4H⁺ + 4e⁻

18-9. (a) $MnO_4^{-+} 5VO^{2+} + 11H_2O \rightarrow Mn^{2+} + 5V(OH)_4^{++} 2H^+$

(c)
$$\operatorname{Cr}_{2}\operatorname{O}_{7}^{2^{-}} + 3\operatorname{U}^{4^{+}} + 2\operatorname{H}^{+} \rightarrow 2\operatorname{Cr}^{3^{+}} + 3\operatorname{UO}_{2}^{2^{+}} + \operatorname{H}_{2}\operatorname{O}$$

(e) $\operatorname{IO}_{3}^{-} + 5\operatorname{I}^{-} + 6\operatorname{H}^{+} \rightarrow 3\operatorname{I}_{2} + 3\operatorname{H}_{2}\operatorname{O}$
(g) $\operatorname{HPO}_{3}^{2^{-}} + 2\operatorname{MnO}_{4}^{-} + 3\operatorname{OH}^{-} \rightarrow \operatorname{PO}_{4}^{3^{-}} + 2\operatorname{MnO}_{4}^{2^{-}} + 2\operatorname{H}_{2}\operatorname{O}$
(i) $\operatorname{V}^{2^{+}} + 2\operatorname{V}(\operatorname{OH})_{4}^{+} + 2\operatorname{H}^{+} \rightarrow 3\operatorname{VO}^{2^{+}} + 5\operatorname{H}_{2}\operatorname{O}$

18-11. (a) AgBr(s) + e- \rightleftharpoons Ag(s) + Br- $V^{2+} \rightleftharpoons V^{3+} + e^{-}$

$$Ti^{3+} + 2e \rightarrow Ti^{+}$$
 $Fe(CN)_6^{4-} \rightleftharpoons Fe(CN)_6^{3-} + e^{-}$

$$V^{3+} + e \rightarrow t^{2+}$$
 $Zn \rightleftharpoons Zn^{2+} + 2e^{-}$

$$Fe(CN)_6^{3-} + e^- \rightleftharpoons Fe(CN)_6^{4-}$$
 $Ag(s) + Br - \rightleftharpoons AgBr(s) + e^-$

$$S_2O_8^{2-} + 2e^- \rightleftharpoons 2SO_4^{2-}$$
 $Ti + \rightleftharpoons Ti^{3+} + 2e^-$

(b), (c)
$$E^0$$
 $S_2O_8^{2^-} + 2e^- \rightleftharpoons 2SO_4^{2^-}$ 2.01 $Ti^{3^+} + 2e^- \rightleftharpoons Ti^+$ 1.25 $Fe(CN)_6^{3^-} + e^- \rightleftharpoons Fe(CN)_6^{4^-}$ 0.36 $AgBr(s) + e^- \rightleftharpoons Ag(s) + Br^-$ 0.073 $V^{3^+} + e^- \rightleftharpoons V^{2^+}$ -0.256 $Zn^{2^+} + 2e^- \rightleftharpoons Zn(s)$ -0.763

18-13. (a)

$$E_{\rm Cu} = 0.337 - \frac{0.0592}{2} \log\left(\frac{1}{0.0380}\right) = 0.295 \text{ V}$$

(b)

$$K_{\text{CuCl}} = 1.9 \times 10^{-7} = [\text{Cu}^+][\text{Cl}^-]$$

$$E_{\text{Cu}} = 0.521 - \frac{0.0592}{1} \log \left(\frac{1}{[\text{Cu}^+]}\right) = 0.521 - \frac{0.0592}{1} \log \left(\frac{[\text{Cl}^-]}{K_{\text{CuCl}}}\right)$$

$$= 0.521 - \frac{0.0592}{1} \log \left(\frac{0.0650}{1.9 \times 10^{-7}}\right) = 0.521 - \frac{0.0592}{1} \log(3.42 \times 10^5)$$

$$= 0.521 - 0.328 = 0.193 \text{ V}$$

144

(c)
$$K_{Cu(OH)_2} = 4.8 \times 10^{-20} = [Cu^{2+}][OH^{-}]^2$$

 $E_{Cu} = 0.337 - \frac{0.0592}{2} \log \left(\frac{1}{[Cu^{2+}]} \right) = 0.337 - \frac{0.0592}{2} \log \left(\frac{[OH^{-}]^2}{K_{Cu(OH)_2}} \right)$
 $= 0.337 - \frac{0.0592}{2} \log \left(\frac{(0.0350)^2}{4.8 \times 10^{-20}} \right) = 0.337 - \frac{0.0592}{2} \log(2.55 \times 10^{16})$
 $= 0.337 - 0.486 = -0.149 \text{ V}$
(d) $\beta_4 = 5.62 \times 10^{11} = \frac{[Cu(NH_3)_4^{2+}]}{[Cu^{2+}][NH_3]^4}$
 $E_{Cu} = 0.337 - \frac{0.0592}{2} \log \left(\frac{1}{[Cu^{2+}]} \right) = 0.337 - \frac{0.0592}{2} \log \left(\frac{\beta_4 [NH_3]^4}{[Cu(NH_3)_4^{2+}]} \right)$
 $= 0.337 - \frac{0.0592}{2} \log \left(\frac{5.62 \times 10^{11} (0.108)^4}{0.0375} \right) = 0.337 - \frac{0.0592}{2} \log(2.04 \times 10^9)$
 $= 0.337 - 0.276 = 0.061 \text{ V}$
(e)

$$\frac{[\text{CuY}^{2^{-}}]}{[\text{Cu}^{2^{+}}]c_{\text{T}}} = \alpha_{4}K_{\text{CuY}} = (3.6 \times 10^{-9}) \times (6.3 \times 10^{18}) = 2.3 \times 10^{10}$$
$$[\text{CuY}^{2^{-}}] \approx 3.90 \times 10^{-3}$$
$$c_{\text{T}} = (3.90 \times 10^{-2}) - (3.90 \times 10^{-3}) = 0.0351$$

$$E_{\rm Cu} = 0.337 - \frac{0.0592}{2} \log\left(\frac{1}{[{\rm Cu}^{2^+}]}\right) = 0.337 - \frac{0.0592}{2} \log\left(\frac{\alpha_4 K_{\rm CuY^{2^-}} c_{\rm T}}{[{\rm Cu}Y^{2^-}]}\right)$$
$$= 0.337 - \frac{0.0592}{2} \log\left(\frac{2.3 \times 10^{10} \left(0.0351\right)}{3.90 \times 10^{-3}}\right) = 0.337 - \frac{0.0592}{2} \log(2.07 \times 10^{11})$$
$$= 0.337 - 0.335 = 0.002 \text{ V}$$

18-16. (a) $PtCl_4^{2-} + 2e^- \Longrightarrow Pt(s) + 4 Cl^ E^0 = 0.73 V$

$$E_{\rm Pt} = 0.73 - \frac{0.0592}{2} \log \left(\frac{(0.2450)^4}{0.0160} \right) = 0.73 - (-0.019) = 0.75 \text{ V}$$

145

(**b**)
$$E^0 = 0.154$$

 $E_{\rm Pt} = 0.154 - \frac{0.0592}{2} \log \left(\frac{3.50 \times 10^{-3}}{6.50 \times 10^{-2}} \right) = 0.154 - (-0.038) = 0.192 \text{ V}$
(**c**) pH = 6.50, [H⁺] = 3.16×10^{-7}
 $E_{\rm Pt} = 0.000 - \frac{0.0592}{2} \log \left(\frac{1.00}{(3.16 \times 10^{-7})^2} \right) = -0.385 \text{ V}$
(**d**) $E^0 = 0.359 \text{ V}$

$$E_{\rm Pt} = 0.359 - \frac{0.0592}{1} \log \left(\frac{(0.0686) \times 2}{(0.0255) \times (0.100)^2} \right) = 0.359 - 0.162 = 0.197 \,\,\mathrm{V}$$

(e)
$$2Fe^{3+} + Sn^{2+} \rightleftharpoons 2Fe^{2+} + Sn^{4+}$$

amount Sn²⁺consumed =
$$\frac{0.0918 \text{ mmol SnCl}_2}{\text{mL}} \times \frac{1 \text{ mmol Sn}^{2+}}{\text{mmol SnCl}_2} \times 25.00 \text{ mL} = 2.295 \text{ mmol}$$

amount Fe³⁺consumed = $\frac{0.1568 \text{ mmol FeCl}_3}{\text{mL}} \times \frac{1 \text{ mmol Fe}^{3+}}{\text{mmol FeCl}_3} \times 25.00 \text{ mL} = 3.920 \text{ mmol}$
amount Sn⁴⁺formed = 3.920 mmol Fe³⁺ $\times \frac{1 \text{ mmol Sn}^{4+}}{2 \text{ mmol Fe}^{3+}} = 1.960 \text{ mmol}$
amount Sn²⁺remaining=2.295 -1.960 = 0.335 mmol

$$E_{\rm Pt} = 0.154 - \frac{0.0592}{2} \log \left(\frac{(0.335)/50.0}{(1.960)/50.0} \right) = 0.154 - (-0.023) = 0.177 \,\,\mathrm{V}$$

(f)
$$V(OH)_4^+ + V^{3+} + \rightleftharpoons 2VO^{2+} + 2H_2O$$

$$V(OH)_4^+ + 2H^+ + 2e^- \Longrightarrow VO^{2+} + 3H_2O \qquad E^0 = 1.00 V$$

amountV(OH)₄⁺ consumed = $\frac{0.0832 \text{ mmol V(OH)}_{4}^{+}}{\text{mL}} \times 25.00 \text{ mL} = 2.08 \text{ mmol}$

146

Chapter 18

amount V³⁺consumed =
$$\frac{0.01087 \text{ mmol } V_2(SO_4)_3}{\text{mL}} \times \frac{2 \text{ mmol } V^{3+}}{\text{mmol } V_2(SO_4)_3} \times 50.00 \text{ mL} = 1.087 \text{ mmol } V^{3+}$$

amount VO²⁺formed = 1.087 mmol V³⁺ $\times \frac{2 \text{ mmol } VO^{2+}}{\text{mmol } V^{3+}} = 2.174 \text{ mmol}$
amount V(OH)₄⁺remaining = 2.08 - 1.087 = 0.993 mmol
 $E_{\text{Pt}} = 1.00 - 0.0592 \log \left(\frac{(2.174)/75.00}{(0.993/75.00)(0.1000)^2}\right) = 1.00 - 0.139 = 0.86 \text{ V}$

18-18. (a)

$$E_{\rm Ni} = -0.250 - \frac{0.0592}{2} \log\left(\frac{1.00}{0.0883}\right) = -0.250 - 0.031 = -0.281 \text{ V anode}$$

(b) $E_{Ag} = -0.151 - 0.0592 \log (0.0898) = -0.151 - (-0.062) = -0.089$ V anode

(c)

$$E_{0_2} = 1.229 - \frac{0.0592}{4} \log \left(\frac{1.00}{(780/760)(2.50 \times 10^{-4})^4} \right) = 1.229 - 0.213 = 1.016 \text{ V cathode}$$

(d)
$$E_{\rm Pt} = 0.154 - \frac{0.0592}{2} \log\left(\frac{0.0893}{0.215}\right) = 0.154 - (-0.011) = 0.165 \text{ V}$$
 cathode

(e)
$$E_{Ag} = 0.017 - 0.0592 \log \left(\frac{(0.1035)^2}{0.00891} \right) = 0.017 - 0.005 = 0.012 \text{ V cathode}$$

18-20. $2Ag^+ + 2e^- \rightleftharpoons 2Ag(s) \qquad E^\circ = 0.779$

$$[Ag^{+}]^{2}[SO_{3}^{2-}] = 1.5 \times 10^{-14} = K_{sp}$$

$$E = 0.799 - \frac{0.0592}{2} \log\left(\frac{1}{[Ag^{+}]^{2}}\right) = 0.799 - \frac{0.0592}{2} \log\left(\frac{[SO_{3}^{2-}]}{K_{sp}}\right)$$

When $[SO_3^{2^-}] = 1.00$, $E = E^\circ$ for $Ag_2SO_3(s) + 2e^- \rightleftharpoons 2Ag(s) + SO_3^{2^-}$.

Thus,

$$E = 0.799 - \frac{0.0592}{2} \log\left(\frac{1.00}{K_{\rm sp}}\right) = 0.799 - \frac{0.0592}{2} \log\left(\frac{1.00}{1.5 \times 10^{-14}}\right) = 0.799 - 0.409 = 0.390 \text{ V}$$

18-22. $2\text{Tl}^+ + 2\text{e}^- \rightleftharpoons 2\text{Tl}(s)$ $E^\circ = -0.336$

$$[TI^{+}]^{2}[S^{2-}] = 6 \times 10^{-22} = K_{sp}$$
$$E = -0.336 - \frac{0.0592}{2} \log\left(\frac{1}{[TI^{+}]^{2}}\right) = -0.336 - \frac{0.0592}{2} \log\left(\frac{[S^{2-}]}{K_{sp}}\right)$$

When $[S^{2-}] = 1.00$, $E = E^{\circ}$ for $Tl_2S(s) + 2e^- \rightleftharpoons 2Tl(s) + S^{2-}$.

Thus,

$$E = -0.336 - \frac{0.0592}{2} \log\left(\frac{1.00}{K_{sp}}\right) = -0.336 - \frac{0.0592}{2} \log\left(\frac{1.00}{6 \times 10^{-22}}\right)$$
$$= -0.336 - 0.628 = -0.96 \text{ V}$$

18-24.
$$E = -0.763 - \frac{0.0592}{2} \log\left(\frac{1}{[Zn^{2^+}]}\right)$$

$$\frac{[ZnY^{2^-}]}{[Zn^{2^+}][Y^{4^-}]} = 3.2 \times 10^{16}$$
$$E = -0.763 - \frac{0.0592}{2} \log\left(\frac{[Y^{4^-}](3.2 \times 10^{16})}{[ZnY^{2^-}]}\right)$$
When $[Y^{4^-}] = [ZnY^{2^-}] = 1.00$, $E = E^0$

When $[Y^{4-}] = [ZnY^{2-}] = 1.00, E = E^{o}_{ZnY^{2-}}$

$$E = -0.763 - \frac{0.0592}{2} \log \left(\frac{1.00 \left(3.2 \times 10^{16} \right)}{1.00} \right) = -0.763 - 0.489 = -1.25 \text{ V}$$

18-25.
$$[Fe^{3^+}] = \frac{[FeY^-]}{[Y^{4-}](1.3 \times 10^{25})}$$
 and $[Fe^{2^+}] = \frac{[FeY^{2^-}]}{[Y^{4-}](2.1 \times 10^{14})}$
 $E = 0.771 - 0.0592 \log \left(\frac{[Fe^{2^+}]}{[Fe^{3^+}]}\right)$
 $= 0.771 - 0.0592 \log \left(\frac{[FeY^{2^-}](1.3 \times 10^{25})}{[FeY^-](2.1 \times 10^{14})}\right)$

When $[\text{FeY}^{2-}] = [\text{FeY}^{-}] = 1.00, \ E = E_{\text{FeY}^{-}}^{\circ}$

$$E = 0.771 - 0.0592 \log \left(\frac{1.00 \left(1.3 \times 10^{25} \right)}{1.00 \left(2.1 \times 10^{14} \right)} \right) = 0.771 - 0.64 = 0.13 \text{ V}$$

Chapter 19

Chapter 19

- **19-1.** The electrode potential of a system that contains two or more redox couples is the electrode potential of all half-cell processes at equilibrium in the system.
- **19-2.** (a) *Equilibrium* is the state that a system assumes after each addition of reagent.*Equivalence* refers to a particular equilibrium state when a stoichiometric amount of titrant has been added.
- **19-4.** For points before the equivalence point, potential data are computed from the analyte standard potential and the analytical concentrations of the analyte and its reaction product. Post-equivalence point data are based upon the standard potential for the titrant and its analytical concentrations. The equivalence point potential is computed from the two standard potentials and the stoichiometric relation between the analyte and titrant.
- **19-6.** An asymmetric titration curve will be encountered whenever the titrant and the analyte react in a ratio that is not 1:1.
- **19-8.** (a)

$$\begin{split} E_{\text{right}} &= -0.277 - \frac{0.0592}{2} \log \left(\frac{1}{5.87 \times 10^{-4}} \right) = -0.373 \text{ V} \\ E_{\text{left}} &= -0.763 - \frac{0.0592}{2} \log \left(\frac{1}{0.100} \right) = -0.793 \text{ V} \\ E_{\text{cell}} &= E_{\text{right}} - E_{\text{left}} = -0.373 - (-0.793) = 0.420 \text{ V} \end{split}$$

Because E_{cell} is positive, the reaction would proceed spontaneously in the direction considered (oxidation on the left, reduction on the right).

(b)
$$E_{\text{right}} = 0.854 - \frac{0.0592}{2} \log\left(\frac{1}{0.0350}\right) = 0.811 \text{ V}$$

 $E_{\text{left}} = 0.771 - \frac{0.0592}{1} \log\left(\frac{0.0700}{0.1600}\right) = 0.792 \text{ V}$

150

$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = 0.811 - 0.792 = 0.019 \text{ V}$$

Because E_{cell} is positive, the spontaneous reaction would be oxidation on the left and reduction on the right.

(c)

$$E_{\text{right}} = 1.229 - \frac{0.0592}{4} \log \left(\frac{1}{1.12(0.0333)^4} \right) = 1.142 \text{ V}$$
$$E_{\text{left}} = 0.799 - 0.0592 \log \left(\frac{1}{0.0575} \right) = 0.726 \text{ V}$$
$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = 1.142 - 0.726 = 0.416 \text{ V}$$

The spontaneous reaction would be oxidation on the left, reduction on the right.

(**d**)

$$\begin{split} E_{\text{right}} &= -0.151 - 0.0592 \log \left(0.1220 \right) = -0.097 \text{ V} \\ E_{\text{left}} &= 0.337 - \frac{0.0592}{2} \log \left(\frac{1}{0.0420} \right) = 0.296 \text{ V} \\ E_{\text{cell}} &= E_{\text{right}} - E_{\text{left}} = -0.097 - 0.296 = -0.393 \text{ V} \end{split}$$

The spontaneous reaction would be reduction on the left, oxidation on the right, not the reaction in the direction considered.

(e)

$$\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{HCOO}^{-}]}{[\mathrm{HCOOH}]} = 1.80 \times 10^{-4} = \frac{[\mathrm{H}_{3}\mathrm{O}^{+}]0.0700}{0.1400}$$
$$[\mathrm{H}_{3}\mathrm{O}^{+}] = \frac{(1.80 \times 10^{-4})(0.1400)}{0.0700} = 3.60 \times 10^{-4}$$

151

$$E_{\text{right}} = 0.000 - \frac{0.0592}{2} \log \left(\frac{1.00}{(3.60 \times 10^{-4})^2} \right) = -0.204 \text{ V}$$
$$E_{\text{left}} = 0.000 V$$
$$E_{\text{cell}} = -0.204 - 0.000 = -0.204 \text{ V}$$

Because E_{cell} is negative, the reaction woulds not proceed spontaneously in the direction considered (reduction on the left, oxidation on the right).

(f)

$$E_{\text{right}} = 0.771 - 0.0592 \log \left(\frac{0.1134}{0.003876}\right) = 0.684 \text{ V}$$
$$E_{\text{left}} = 0.334 - \frac{0.0592}{2} \log \left(\frac{4.00 \times 10^{-2}}{(8.00 \times 10^{-3})(1.00 \times 10^{-3})^4}\right) = -0.042 \text{ V}$$
$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = 0.684 - (-0.042) = 0.726 \text{ V}$$

The direction considered (oxidation on the left, reduction on the right) is the spontaneous direction.

19-9. (a)

$$E_{\text{Pb}^{2+}} = -0.126 - \frac{0.0592}{2} \log\left(\frac{1}{0.0220}\right) = -0.175 \text{ V}$$
$$E_{\text{Zn}^{2+}} = -0.763 - \frac{0.0592}{2} \log\left(\frac{1}{0.1200}\right) = -0.790 \text{ V}$$

$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = -0.175 - (-0.790) = 0.615 \text{ V}$$

(c)

$$E_{\text{SHE}} = 0.000 V$$
$$E_{\text{TiO}^{2+}} = 0.099 - 0.0592 \log \left(\frac{0.07000}{(3.50 \times 10^{-3})(10^{-3})^2} \right) = -0.333 \text{ V}$$
$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = -0.333 - 0.000 = -0.333 \text{ V}$$

152

number.

(a)
$$\operatorname{Fe}^{3+} + \operatorname{V}^{2+} \rightleftharpoons \operatorname{Fe}^{2+} + \operatorname{V}^{3+} \quad E_{\operatorname{Fe}^{3+}}^{\circ} = 0.771 \quad E_{\operatorname{V}^{3+}}^{\circ} = -0.256$$

$$0.771 - 0.0592 \log \left(\frac{[\operatorname{Fe}^{2+}]}{[\operatorname{Fe}^{3+}]} \right) = -0.256 - 0.0592 \log \left(\frac{[\operatorname{V}^{2+}]}{[\operatorname{V}^{3+}]} \right)$$
$$\frac{0.771 - (-0.256)}{0.0592} = \log \left(\frac{[\operatorname{Fe}^{2+}][\operatorname{V}^{3+}]}{[\operatorname{Fe}^{3+}][\operatorname{V}^{2+}]} \right) = \log K_{\operatorname{eq}} = 17.348$$

$$K_{\rm eq} = 2.23 \times 10^{17} \ (2.2 \times 10^{17})$$

(c) $2V(OH)_4^+ + U^{4+} \rightleftharpoons 2VO^{2+} + UO_2^{2+} + 4H_2O \quad E_{V(OH)_4^+}^o = 1.00 \quad E_{UO_2^{2+}}^o = 0.334$

$$1.00 - \frac{0.0592}{2} \log \left(\frac{[\text{VO}^{2^+}]^2}{[\text{V(OH)}_4^+]^2[\text{H}^+]^4} \right) = 0.334 - \frac{0.0592}{2} \log \left(\frac{[\text{U}^{4^+}]}{[\text{UO}_2^{2^+}][\text{H}^+]^4} \right)$$
$$\frac{(1.00 - 0.334) 2}{0.0592} = \log \left(\frac{[\text{VO}^{2^+}]^2[\text{UO}_2^{2^+}]}{[\text{V(OH)}_4^+]^2[\text{U}^{4^+}]} \right) = \log K_{\text{eq}} = 22.50$$
$$K_{\text{eq}} = 3.2 \times 10^{22} \ (3 \times 10^{22})$$

$$2Ce^{4+} + H_{3}AsO_{3} + H_{2}O \rightleftharpoons 2Ce^{3+} + H_{3}AsO_{4} + 2H^{+}$$

$$E^{o}_{Ce^{4+}} (in 1 \text{ M HClO}_{4}) = 1.70 \quad E^{o}_{H_{3}AsO_{4}} = 0.577$$

$$1.70 - \frac{0.0592}{2} \log \left(\frac{[Ce^{3+}]^{2}}{[Ce^{4+}]^{2}}\right) = 0.577 - \frac{0.0592}{2} \log \left(\frac{[H_{3}AsO_{4}]}{[H_{3}AsO_{3}][H^{+}]^{2}}\right)$$

$$\frac{(1.70 - 0.577) 2}{0.0592} = \log \left(\frac{[Ce^{3+}]^{2}[H_{3}AsO_{3}][H^{+}]^{2}}{[Ce^{4+}]^{2}[H_{3}AsO_{4}]}\right) = \log K_{eq} = 37.94$$

$$K_{\rm eq} = 8.9 \times 10^{37} \ (9 \times 10^{37})$$

153

(g)
$$VO^{2+} + V^{2+} + 2H^+ \rightleftharpoons 2V^{3+} + H_2O \quad E^o_{VO^{2+}} = 0.359 \quad E^o_{V^{3+}} = -0.256$$

$$0.359 - 0.0592 \log \left(\frac{[V^{3+}]}{[VO^{2+}][H^+]^2}\right) = -0.256 - 0.0592 \log \left(\frac{[V^{2+}]}{[V^{3+}]}\right)$$
$$\frac{0.359 - (-0.256)}{0.0592} = \log \left(\frac{[V^{3+}]^2}{[VO^{2+}][H^+]^2[V^{2+}]}\right) = \log K_{eq} = 10.389$$

$$K_{\rm eq}=2.4\times10^{10}$$

19-14.

	$E_{\rm eq}, { m V}$	Indicator
(a)	0.258	Phenosafranine
(b)	-0.024	None
(c)	0.444	Indigo tetrasulfonate or Methylene
		blue
(d)	1.09	1,10-Phenanthroline
(e)	0.951	Erioglaucin A
(f)	0.330	Indigo tetrasulfonate
(g)	-0.008	None
(h)	-0.194	None

154

Chapter 20

20-1. (a) $2Mn^{2+} + 5S_2O_8^{2-} + 8H_2O \rightarrow 10SO_4^{2-} + 2MnO_4^{-} + 16H^+$

(c)
$$H_2O_2 + U^{4+} \rightarrow UO_2^{2+} + 2H^{-1}$$

- (e) $2MnO_4^- + 5H_2O_2 + 6H^+ \rightarrow 5O_2 + 2Mn^{2+} + 8H_2O$
- **20-2.** Only in the presence of Cl⁻ ion is Ag a sufficiently good reducing agent to be very useful for prereductions. In the presence of Cl⁻, the half-reaction occurring in the Walden reductor is

$$Ag(s) + Cl^{-} \rightarrow AgCl(s) + e^{-}$$

The excess HCl increases the tendency of this reaction to occur by the common ion effect.

- **20-4.** Standard solutions of reductants find somewhat limited use because of their susceptibility to air oxidation.
- **20-6.** Freshly prepared solutions of permanganate are inevitably contaminated with small amounts of solid manganese dioxide, which catalyzes the further decompositions of permanganate ion. By removing the dioxide at the outset, a much more stable standard reagent is produced.
- **20-8.** Solutions of $K_2Cr_2O_7$ are used extensively for back-titrating solutions of Fe²⁺ when the latter is being used as a standard reductant for the determination of oxidizing agents.
- **20-10.** When a measured volume of a standard solution of KIO₃ is introduced into an acidic solution containing an excess of iodide ion, a known amount of iodine is produced as a result of:

$$IO_3^- + 5I^- + 6H^+ \rightarrow 3I_2 + 3H_2O$$

20-12. Starch decomposes in the presence of high concentrations of iodine to give products that do not behave satisfactorily as indicators. This reaction is prevented by delaying the addition of the starch until the iodine concentration is very small.

20-13. 0.2541 g sample
$$\times \frac{1000 \text{ mmol Fe}^{2+}}{55.847 \text{ g}} = 4.5499 \text{ mmol Fe}^{2+}$$

(a)
$$\frac{4.5499 \text{ mmol Fe}^{2+}}{36.76 \text{ mL}} \times \frac{1 \text{ mmol Ce}^{4+}}{\text{mmol Fe}^{2+}} = 0.1238 \text{ M Ce}^{4+}$$

(c)
$$\frac{4.5499 \text{ mmol Fe}^{2+}}{36.76 \text{ mL}} \times \frac{1 \text{ mmol MnO}_4^-}{5 \text{ mmol Fe}^{2+}} = 0.02475 \text{ M MnO}_4^-$$

(e)
$$\frac{4.5499 \text{ mmol Fe}^{2+}}{36.76 \text{ mL}} \times \frac{1 \text{ mmol IO}_{3}^{-}}{4 \text{ mmol Fe}^{2+}} = 0.03094 \text{ M IO}_{3}^{-}$$

20-14.
$$\frac{0.05000 \text{ mol KBrO}_3}{\text{L}} \times 1.000 \text{ L} \times \frac{167.001 \text{ g KBrO}_3}{\text{mol}} = 8.350 \text{ g KBrO}_3$$

Dissolve 8.350 g KBrO₃ in water and dilute to 1.000 L.

20-16.
$$Ce^{4+} + Fe^{2+} \rightarrow Ce^{3+} + Fe^{3+}$$

 $\frac{0.2219 \text{ g}}{34.65 \text{ mL Ce}^{4+}} \times \frac{1000 \text{ mL}}{\text{L}} \times \frac{1 \text{ mol Fe}}{55.847 \text{ g}} \times \frac{1 \text{ mol Fe}^{2+}}{\text{mol Fe}} \times \frac{1 \text{ mol Ce}^{4+}}{\text{mol Fe}^{2+}} = 0.1147 \text{ M Ce}^{4+}$

20-18.

$$MnO_{2} + 2I^{-} + 4H^{+} \rightarrow Mn^{2+} + I_{2} + 2H_{2}O$$
$$I_{2} + 2S_{2}O_{3}^{2-} \rightarrow 2I^{-} + S_{4}O_{6}^{2-}$$

1 mmol $MnO_2 = 1$ mmol $I_2 = 2$ mmol $S_2O_3^{2-}$

 $\frac{\left(\frac{0.08041 \text{ mmol}}{\text{mL}} \times 29.62 \text{ mL} \text{ Na}_2 \text{S}_2 \text{O}_3 \times \frac{1 \text{ mmol} \text{ MnO}_2}{2 \text{ mmol} \text{ Na}_2 \text{S}_2 \text{O}_3} \times \frac{86.937 \text{ g} \text{ MnO}_2}{1000 \text{ mmol}}\right)}{1000 \text{ mmol}} \times 100\%$

=81.71% MnO₂

20-20.

$$2H_{2}NOH + 4Fe^{3+} \rightleftharpoons N_{2}O(g) + 4Fe^{2+} + 4H^{+} + H_{2}O$$

$$Cr_{2}O_{7}^{2-} + 6Fe^{2+} + 14H^{+} \rightleftharpoons 2Cr^{3+} + 6Fe^{3+} + 7H_{2}O$$

$$1 \text{ mmol } Cr_{2}O_{7}^{2-} = 6 \text{ mmol } Fe^{3+} = 3 \text{ mmol } H_{2}NOH$$

$$\frac{\left(\frac{0.01528 \text{ mmol } K_{2}Cr_{2}O_{7}}{\text{mL}} \times 14.48 \text{ mL } K_{2}Cr_{2}O_{7} \times \frac{3 \text{ mmol } H_{2}NOH}{\text{mmol } K_{2}Cr_{2}O_{7}}\right)}{25.00 \text{ mL sample}}$$

$$= 0.0266 \text{ M } H_{2}NOH$$

20-22.
$$H_3AsO_3 + I_2 + H_2O \rightarrow H_3AsO_4 + 2I^- + 2H^+$$

1 mmol I₂ = 1 mmol H₃AsO₃ = $\frac{1}{2}$ mmol As₂O₃

$$\frac{\left(\frac{0.03142 \text{ mmol } \text{I}_2}{\text{mL}} \times 31.36 \text{ mL } \text{I}_2 \times \frac{1 \text{ mmol } \text{As}_2\text{O}_3}{2 \text{ mmol } \text{I}_2} \times \frac{197.841 \text{ g } \text{As}_2\text{O}_3}{1000 \text{ mmol}}\right)}{8.13 \text{ g sample}} \times 100\%$$

$$= 1.199\% \text{ As}_2\text{O}_3$$

20-24.

 $\begin{array}{l} 2I^{-}+\ Br_{2}\rightarrow I_{2}+2Br^{-}\\ IO_{3}^{-}+5I^{-}+6H^{+}\rightarrow 3I_{2}+3H_{2}O\\ I_{2}+2S_{2}O_{3}^{\ 2^{-}}\rightarrow 2I^{-}+S_{4}O_{6}^{\ 2^{-}} \end{array}$

1 mmol KI = 1 mmol IO_3^- = 3 mmol I_2 = 6 mmol $S_2O_3^{2-}$

$$\frac{\left(\frac{0.04926 \text{ mmol } \text{Na}_2\text{S}_2\text{O}_3}{\text{mL}} \times 19.72 \text{ mL } \text{Na}_2\text{S}_2\text{O}_3 \times \frac{1 \text{ mmol } \text{KI}}{6 \text{ mmol } \text{Na}_2\text{S}_2\text{O}_3} \times \frac{166.00 \text{ g } \text{KI}}{1000 \text{ mmol}}\right)}{1.307 \text{ g sample}} \times 100\%$$

= 2.056% KI

20-26.

$$SO_{2}(g) + 2OH^{-} \rightarrow SO_{3}^{2-} + H_{2}O$$

$$IO_{3}^{-} + 2H_{2}SO_{3} + 2CI^{-} \rightarrow ICI_{2}^{-} + 2SO_{4}^{2-} + 2H^{+} + H_{2}O$$

$$1 \text{ mmol } IO_{3}^{-} = 2 \text{ mmol } H_{2}SO_{3} = 2 \text{ mmol } SO_{2}$$

$$In \quad \frac{2.50 \text{ L}}{\text{min}} \times 59.00 \text{ min} = 147.5 \text{ L of sample, there are}$$

$$\frac{0.002997 \text{ mmol } \text{KIO}_{3}}{\text{mL}} \times 5.15 \text{ mL } \text{KIO}_{3} \times \frac{2 \text{ mmol } SO_{2}}{\text{mmol } \text{KIO}_{3}} \times \frac{64.065 \text{ g } SO_{2}}{1000 \text{ mmol}} = 1.9776 \times 10^{-3} \text{ g } SO_{2}$$

$$\left(\frac{1.9776 \times 10^{-3} \text{ g } SO_{2}}{147.5 \text{ L} \times \frac{1.20 \text{ g}}{\text{ L}}}\right) \times 10^{6} \text{ ppm}$$

$$= 11.2 \text{ ppm } SO_{2}$$

20-28.

$$O_{2} + 4Mn(OH)_{2}(s) + 2H_{2}O \rightleftharpoons 4Mn(OH)_{3}(s)$$

$$4Mn(OH)_{3}(s) + 12H^{+} + 4I^{-} \rightleftharpoons 4Mn^{2+} + 2I_{2} + 6H_{2}O$$

$$\frac{0.00897 \text{ mmol } S_{2}O_{3}^{2-}}{mL} \times 14.60 \text{ mL } S_{2}O_{3}^{2-} \times \frac{1 \text{ mmol } O_{2}}{4 \text{ mmol } S_{2}O_{3}^{2-}} \times \frac{32.0 \text{ mg } O_{2}}{mmol} = 1.0477 \text{ mg } O_{2}$$

$$\frac{1.0477 \text{ mg } O_{2}}{\left(25 \text{ mL } \text{ sample} \times \frac{250 \text{ mL}}{254 \text{ mL}}\right)}$$

$$= 0.0426 \text{ mg O}_2/\text{mL sample}$$

Chapter 21

Chapter 21

21-1. (a) An *indicator electrode* is an electrode used in potentiometry that responds to variations in the activity of an analyte ion or molecule.

(c) An *electrode of the first kind* is a metal electrode that responds to the activity of its cation in solution.

21-2. (a) A *liquid junction potential* is the potential that develops across the interface between two solutions having different electrolyte compositions.

(c) The *asymmetry potential* is a potential that develops across an ion-sensitive membrane when the concentrations of the ion are the same on either side of the membrane. This potential arises from dissimilarities between the inner and outer surface of the membrane.

21-3. (a) A titration is generally more accurate than measurements of electrode potential.Therefore, if ppt accuracy is needed, a titration should be picked.

(**b**) Electrode potentials are related to the activity of the analyte. Thus, pick potential measurements if activity is the desired quantity.

21-5. The potential arises from the difference in positions of dissociation equilibria on each of the two surfaces. These equilibria are described by

 $\underset{\text{membrane}}{\text{H}^+\text{Gl}^-} \rightleftharpoons \underset{\text{solution}}{\text{H}^+} + \underset{\text{membrane}}{\text{Gl}^-}$

The surface exposed to the solution having the higher H^+ concentration becomes positive with respect to the other surface. This charge difference, or potential, serves as the analytical parameter when the pH of the solution on one side of the membrane is held constant.

- 21-7. Uncertainties include (1) the acid error in highly acidic solutions, (2) the alkaline error in strongly basic solutions, (3) the error that arises when the ionic strength of the calibration standards differs from that of the analyte solution, (4) uncertainties in the pH of the standard buffers, (5) nonreproducible junction potentials with solutions of low ionic strength and (6) dehydration of the working surface.
- 21-9. The *alkaline error* arises when a glass electrode is employed to measure the pH of solutions having pH values in the 10 to 12 range or greater. In the presence of alkali ions, the glass surface becomes responsive to not only hydrogen ions but also alkali metal ions. Measured pH values are low as a result.
- 21-11. (b) The *boundary potential* for a membrane electrode is a potential that develops when the membrane separates two solutions that have different concentrations of a cation or an anion that the membrane binds selectively. For an aqueous solution, the following equilibria develop when the membrane is positioned between two solutions of A⁺:

$$\begin{array}{l} A^{+}M^{-} \xrightarrow{\rightarrow} A^{+} + M^{-}_{membrane_{1}} \\ A^{+}M^{-} \xrightarrow{\rightarrow} A^{+} + M^{-}_{membrane_{2}} \end{array}$$

where the subscripts refer to the two sides of the membrane. A potential develops across this membrane if one of these equilibria proceeds further to the right than the other, and this potential is the boundary potential. For example, if the concentration of A^+ is greater in solution 1 than in solution 2, the negative charge on side 1 of the membrane will be less than that of side 2 because the equilibrium on side 1 will lie further to the left. Thus, a greater fraction of the negative charge on side 1 will be neutralized by A^+ .

(d) The membrane in a solid-state electrode for F^- is crystalline LaF₃, which when immersed in aqueous solution, dissociates according to the equation

$$LaF_3(s) \rightleftharpoons La^{3+} + 3F^{-}$$

Thus, the boundary potential develops across this membrane when it separates two solutions of F^- ion concentration. The source of this potential is the same as described in part (b).

21-12. The direct potentiometric measurement of pH provides a measure of the equilibrium activity of hydronium ions in the sample. A potentiometric titration provides information on the amount of reactive protons, both ionized and nonionized, in the sample.

21-15. AgIO₃(s) + $e^- \rightleftharpoons Ag(s) + IO_3^-$

(a)

$$E_{Ag} = 0.799 - 0.0592 \log \left(\frac{1}{[Ag^+]}\right) \quad K_{sp} = [Ag^+][IO_3^-] = 3.1 \times 10^{-8}$$
$$E_{Ag} = 0.799 - 0.0592 \log \left(\frac{[IO_3^-]}{K_{sp}}\right)$$

When $[IO_3^-] = 1.00$, E_{Ag} is equal to $E_{AgIO_3}^o$ for the reduction of AgIO₃, that is,

$$E_{\text{AgIO}_3}^{\text{o}} = 0.799 - 0.0592 \log \left(\frac{1.00}{3.1 \times 10^{-8}}\right) = 0.354 \text{ V}$$

(b) SCE $||IO_3^-(x M), AgIO_3(sat'd)| Ag$

(c)

$$E_{\text{cell}} = E_{\text{AgIO}_3} - E_{\text{SCE}}$$

= $(0.354 - 0.0592 \log([\text{IO}_3^-]) - 0.244)$
= $0.110 + 0.0592 \text{pIO}_3$
pIO₃ = $\frac{E_{\text{cell}} - 0.110}{0.0592}$

(**d**)
$$\text{pIO}_3 = \frac{0.306 - 0.110}{0.0592} = 3.31$$

21-17. (a) SCE|| Γ (*x* M), AgI (sat'd) | Ag

(c) SCE||
$$PO_4^{3-}$$
 (*x* M), Ag₃PO₄ (sat'd) | Ag

21-19. (a)
$$pI = \frac{-0.196 + 0.395}{0.0592} = 3.36$$

(c) $pPO_4 = \frac{3(0.211 - 0.163)}{0.0592} = 2.43$

21-20. SCE||Ag₂CrO₄ (sat'd),
$$CrO_4^{2-}(x M)$$
 | Ag

$$Ag_{2}CrO_{4}(s) + 2e^{-} \rightleftharpoons 2Ag(s) + CrO_{4}^{2-} \quad E^{o} = 0.446 V$$

$$0.336 = 0.446 - \frac{0.0592}{2} \log([CrO_{4}^{2-}]) - 0.244 = 0.202 + \frac{0.0592}{2} pCrO_{4}$$

$$pCrO_{4} = \frac{2(0.389 - 0.202)}{0.0592}$$

 $pCrO_4 = 6.32$

21-21. Substituting into Equation 21-22 gives

pH =
$$-\frac{1(E_{cell} - K)}{0.0592}$$
 and $4.006 = -\frac{(0.2106 - K)}{0.0592}$
 $K = (4.006 \times 0.0592) + 0.2106 = 0.447755$
(a) pH = $-\frac{(-0.2902 - 0.447755)}{0.0592} = 12.47$
 $a_{H^+} = antilog(-12.4655) = 3.42 \times 10^{-13} M$
(b) pH = $-\frac{(0.1241 - 0.447755)}{0.0592} = 5.47$
 $a_{H^+} = antilog(-5.4671) = 3.41 \times 10^{-6} M$

(c) For part (a)

If
$$E = -0.2902 + 0.002 = -0.2882$$
 V
 $pH = -\frac{(-0.2882 - 0.447755)}{0.0592} = 12.43$
 $a_{H^+} = antilog(-12.4317) = 3.70 \times 10^{-13}$
If $E = -0.2902 - 0.002 = -0.2922$ V
 $pH = -\frac{(-0.2922 - 0.447755)}{0.0592} = 12.50$
 $a_{H^+} = antilog(-12.4992) = 3.17 \times 10^{-13}$ M

Thus pH should be 12.43 to 12.50 and $a_{\rm H^+}$ in the range of 3.17 to 3.70×10^{-13} M

Proceeding in the same way for (b), we obtain

pH in the range 5.43 to 5.50

$$a_{\rm H^+}$$
 in the range 3.16×10^{-6} to 3.69×10^{-6} M

21-22.

amount HA =
$$\frac{0.1243 \text{ mmol NaOH}}{\text{mL}} \times 18.62 \text{ mL NaOH} \times \frac{1 \text{ mmol HA}}{\text{mmol NaOH}} = 2.3145 \text{ mmol}$$

 $\frac{0.4021 \text{ g HA}}{2.3145 \text{ mmol HA}} \times \frac{1000 \text{ mmol}}{\text{mol}} = \frac{173.7 \text{ g HA}}{\text{mol}}$

$$M_{\rm HA} = 173.7 \text{ g/mol}$$

21-26.

$$pNa = -\log([Na^{+}]) = -\left(\frac{E'_{cell} - K}{0.0592}\right) \text{ where } E'_{cell} = -0.2462 \text{ V}$$

After addition $E''_{cell} = -0.1994 \text{ V}$
$$-\log\left(\frac{10.00 \times [Na^{+}] + 1.00 \times (2.00 \times 10^{-2})}{10.00 + 1.00}\right) = -\left(\frac{E''_{cell} - K}{0.0592}\right)$$

$$-\log\left(0.9091[Na^{+}] + (1.818 \times 10^{-3})\right) = -\left(\frac{E''_{cell} - K}{0.0592}\right)$$

Subtracting this latter equation from that for the initial potential gives

$$-\log([Na^{+}]) + \log(0.9091[Na^{+}] + (1.818 \times 10^{-3})) = -\left(\frac{E'_{cell} - K}{0.0592}\right) + \left(\frac{E''_{cell} - K}{0.0592}\right)$$
$$= \left(\frac{E''_{cell} - E'_{cell}}{0.0592}\right)$$

$$-\log\left(\frac{[Na^{+}]}{0.9091[Na^{+}] + (1.818 \times 10^{-3})}\right) = \frac{-0.1994 + 0.2462}{0.0592} = 0.7905$$

or,
$$\log\left(\frac{[Na^{+}]}{0.9091[Na^{+}] + (1.818 \times 10^{-3})}\right) = -0.7905$$

$$\frac{[Na^{+}]}{0.9091[Na^{+}] + (1.818 \times 10^{-3})} = \operatorname{antilog}(-0.7905) = 0.16198$$

$$[Na^{+}] = 0.1473[Na^{+}] + 2.945 \times 10^{-4}$$

$$[Na^{+}] = 3.453 \times 10^{-4} \text{ M or rounding } 3.5 \times 10^{-4} \text{ M}$$

Chapter 22

Chapter 22

22-1. (a) In *Concentration polarization*, the current in an electrochemical cell is limited by the rate at which reactants are brought to or removed from the surface of one or both electrodes. In *Kinetic polarization*, the current is limited by the rate at which electrons are transferred between the electrode surfaces and the reactant in solution. For either type, the current is no longer linearly related to cell potential.

(c) *Diffusion* is the movement of species under the influence of a concentration gradient. *Migration* is the movement of an ion under the influence of an electrostatic attractive or repulsive force.

(e) The *electrolysis circuit* consists of a working electrode and a counter electrode. The *control circuit* regulates the applied potential such that the potential between the working electrode and a reference electrode in the control circuit is constant and at a desired level.

22-2. (a) *Ohmic potential*, or *IR* drop, of a cell is the product of the current in the cell in amperes and the electrical resistance of the cell in ohms.

(c) In *controlled-potential electrolysis*, the potential applied to a cell is continuously adjusted to maintain a constant potential between the working electrode and a reference electrode.

(e) *Current efficiency* is a measure of agreement between the number of faradays of charge and the number of moles of reactant oxidized or reduced at a working electrode.

22-3. *Diffusion* arises from concentration differences between the electrode surface and the bulk of solution. *Migration* results from electrostatic attraction or repulsion. *Convection* results from stirring, vibration or temperature differences.

- **22-5.** Variables that influence concentration polarization include temperature, stirring, reactant concentrations, presence or absence of other electrolytes and electrode surface areas.
- **22-7.** Kinetic polarization is often encountered when the product of a reaction is a gas, particularly when the electrode is a soft metal such as mercury, zinc or copper. It is likely to occur at low temperatures and high current densities.
- 22-9. Potentiometric methods are carried out under zero current conditions and the effect of the measurement on analyte concentration is typically undetectable. In contrast, electrogravimetric and coulometric methods depend on the presence of a net current and a net cell reaction (i.e., the analyte is quantitatively converted to a new oxidation state). Unlike potentiometric methods where the cell potential is simply the difference between two electrode potentials, two additional phenomena, *IR* drop and polarization, must be considered in electrogravimetric and coulometric methods where current is present. Finally, the final measurement in electrogravimetric and coulometric methods is the mass of the product produced electrolytically, while in potentiometric methods it is the cell potential.
- **22-11.** The species produced at the counter electrode are potential interferences by reacting with the products at the working electrode. Isolation of one from the other is ordinarily required.
- 22-13.

(b)

$$\frac{0.0175 \text{ C}}{\text{s}} \times \frac{1 \text{ F}}{96,485 \text{ C}} \times \frac{1 \text{ mol } \text{e}^-}{\text{F}} \times \frac{1 \text{ mol}}{2 \text{ mol } \text{e}^-} \times \frac{6.02 \times 10^{23} \text{ ions}}{\text{mol}} = \frac{5.5 \times 10^{16} \text{ ions}}{\text{s}}$$

22-14. (a)

$$E_{\text{right}} = 0.337 - \frac{0.0592}{2} \log\left(\frac{1}{0.250}\right) = 0.319 \text{ V}$$

$$E_{\text{left}} = 1.229 - \frac{0.0592}{4} \log\left(\frac{1}{1.00 \times (1.00 \times 10^{-3})^4}\right) = 1.051 \text{ V}$$

$$E_{\text{applied}} = E_{\text{right}} - E_{\text{left}} = 0.319 - 1.051$$

$$= -0.732 \text{ V}$$

(c)

$$[H^{+}] = \operatorname{antilog}(-3.70) = 1.995 \times 10^{-4}$$

$$E_{\text{right}} = 0.000 - \frac{0.0592}{2} \log \left(\frac{\frac{765}{760}}{(1.995 \times 10^{-4})^{2}} \right) = -0.219 \text{ V}$$

$$E_{\text{left}} = 0.073 - 0.0592 \log (0.0964) = 0.133 \text{ V}$$

$$E_{\text{applied}} = E_{\text{right}} - E_{\text{left}} = -0.219 - 0.133$$

$$= -0.352 \text{ V}$$

22-15.

$$E_{\text{right}} = -0.763 - \frac{0.0592}{2} \log \left(\frac{1}{2.95 \times 10^{-3}}\right) = -0.838 \text{ V}$$
$$E_{\text{left}} = -0.277 - \frac{0.0592}{2} \log \left(\frac{1}{5.90 \times 10^{-3}}\right) = -0.343 \text{ V}$$
$$E_{\text{cell}} = -0.838 - (-0.343) - 0.065 \times 4.50$$

$$= -0.788 V$$

22-17. (a)

$$E_{\text{right}} = 0.337 - \frac{0.0592}{2} \log\left(\frac{1}{0.250}\right) = 0.319 \text{ V}$$

$$E_{\text{left}} = 1.229 - \frac{0.0592}{4} \log\left(\frac{1}{\left(1.00 \times 10^{-4}\right)^4 \times \frac{730}{760}}\right) = 0.992 \text{ V}$$

$$E_{\text{cell}} = E_{\text{right}} - E_{\text{left}} = 0.319 - 0.992$$

$$= -0.673 \text{ V}$$

(b) $IR = -0.15 \times 3.60 = -0.54 \text{ V}$

(c) Recall that the overpotential in an electrolytic cell requires the application of a larger or more negative potential. That is, 0.50 V must be subtracted from the cell potential. F = -0.673 - 0.54 - 0.50 = -1.71 V

$$E_{\text{applied}} = -0.6/3 - 0.54 - 0.50 = -1./1$$

(**d**)

$$E_{\text{right}} = 0.337 - \frac{0.0592}{2} \log \left(\frac{1}{7.00 \times 10^{-6}}\right) = 0.184 \text{ V}$$
$$E_{\text{applied}} = 0.184 - 0.992 - 0.54 - 0.50$$

22-19. Cd begins to form when

$$E = -0.403 - \frac{0.0592}{2} \log\left(\frac{1}{0.0650}\right) = -0.438 \text{ V}$$

(a) The Co^{2+} concentration when Cd first begins to deposit is:

$$-0.438 = -0.277 - \frac{0.0592}{2} \log\left(\frac{1}{[\text{Co}^{2+}]}\right)$$
$$\log([\text{Co}^{2+}]) = \frac{2(-0.438 + 0.277)}{0.0592} = -5.439$$
$$[\text{Co}^{2+}] = \operatorname{antilog}(-5.439) = 3.6 \times 10^{-6} \text{ M}$$

168

(b)
$$E_{\text{cathode}} = -0.277 - \frac{0.0592}{2} \log \left(\frac{1}{1.00 \times 10^{-5}} \right) = -0.425 \text{ V}$$

(c) Referring to Example 22-2, quantitative separation is assumed to occur when the $[\text{Co}^{2+}]$ falls to 10^{-4} of its original concentration or 2.0×10^{-5} M. Thus, if the cathode is maintained between -0.425 V and -0.438 V, the quantitative separation of Co^{2+} from Cd^{2+} is possible in theory.

22-21. (a) Bi deposits at a lower potential, that is

$$[H^{+}] = \operatorname{antilog}(-1.95) = 1.12 \times 10^{-2} M$$
$$E_{\operatorname{cathod}e} = 0.320 - \frac{0.0592}{3} \log \left(\frac{1}{0.250(1.12 \times 10^{-2})^{2}}\right)$$

(**b**) Sn deposits when

$$E_{\text{cathode}} = -0.136 - \frac{0.0592}{2} \log\left(\frac{1}{0.250}\right) = -0.154 \text{ V}$$

$$-0.154 = 0.320 - \frac{0.0592}{3} \log\left(\frac{1}{[\text{BiO}^+](1.12 \times 10^{-2})^2}\right)$$

$$= 0.320 + \frac{0.0592}{3} \log(1.12 \times 10^{-2})^2 + \frac{0.0592}{3} \log([\text{BiO}^+])$$

$$\log([\text{BiO}^+]) = \frac{3(-0.154 - 0.320 + 0.077)}{0.0592} = -20.12$$

$$[\text{BiO}^+] = \text{antilog}(-20.12) = 7.6 \times 10^{-21} \text{ M}$$

(c) When $[\text{BiO}^+] = 10^{-6}$

$$E_{\text{eathode}} = 0.320 - \frac{0.0592}{3} \log \left(\frac{1}{1.00 \times 10^{-6} \left(1.12 \times 10^{-2} \right)^2} \right) = 0.124 \text{ V}$$

Sn begins to form when $E_{\text{cathode}} = -0.154 \text{ V}$ (see part (b))

range vs. SCE = 0.124 - 0.244 to -0.154 - 0.244 or -0.12 to -0.398 V

= -0.120 to -0.398 V

22-22. Deposition of A is complete when

$$E_{\rm A} = E_{\rm A}^{\rm o} - \frac{0.0592}{n_{\rm A}} \log \left(\frac{1}{2.00 \times 10^{-5}}\right) = E_{\rm A}^{\rm o} - \frac{0.278}{n_{\rm A}}$$

Deposition of B begins when

$$E_{\rm B} = E_{\rm B}^{\rm o} - \frac{0.0592}{n_{\rm B}} \log\left(\frac{1}{2.00 \times 10^{-1}}\right) = E_{\rm B}^{\rm o} - \frac{0.0414}{n_{\rm B}}$$

Boundary condition is that $E_A = E_B$. Thus,

$$E_{A}^{o} - \frac{0.278}{n_{A}} = E_{B}^{o} - \frac{0.0414}{n_{B}} \text{ or}$$

$$E_{A}^{o} - E_{B}^{o} = \frac{0.278}{n_{A}} - \frac{0.0414}{n_{B}}$$
(a) $E_{A}^{o} - E_{B}^{o} = \frac{0.278}{1} - \frac{0.0414}{1} = 0.237 \text{ V}$
(c) $E_{A}^{o} - E_{B}^{o} = \frac{0.278}{3} - \frac{0.0414}{1} = 0.0513 \text{ V}$
(e) $E_{A}^{o} - E_{B}^{o} = \frac{0.278}{2} - \frac{0.0414}{2} = 0.118 \text{ V}$
(g) $E_{A}^{o} - E_{B}^{o} = \frac{0.278}{1} - \frac{0.0414}{3} = 0.264 \text{ V}$
(i) $E_{A}^{o} - E_{B}^{o} = \frac{0.278}{3} - \frac{0.0414}{3} = 0.0789 \text{ V}$

22-23. (a)

$$0.250 \text{ g Co} \times \frac{1 \text{ mol Co}}{58.93 \text{ g}} \times \frac{2 \text{ mol e}^-}{\text{mol Co}} \times \frac{1 \text{ F}}{\text{mol e}^-} \times \frac{96,485 \text{ C}}{\text{F}} = 8.186 \times 10^2 \text{ C}$$
$$8.186 \times 10^2 \text{ C} \times \frac{1 \text{ A} \times \text{s}}{\text{C}} \times \frac{1}{0.851 \text{ A}} \times \frac{1 \text{ min}}{60 \text{ s}} = 16.0 \text{ min}$$

170

(b)
$$3\text{Co}^{2+} + 4\text{H}_2\text{O} \rightleftharpoons \text{Co}_3\text{O}_4(s) + 8\text{H}^+ + 2\text{e}^- \left(\frac{3}{2}\right) \mod \text{Co}^{2+} = 1 \mod \text{e}^-$$

$$0.250 \text{ g Co} \times \frac{1 \text{ mol Co}}{58.93 \text{ g}} \times \frac{2 \text{ mol e}^-}{3 \text{ mol Co}} \times \frac{1 \text{ F}}{\text{mol e}^-} \times \frac{96,485 \text{ C}}{\text{F}} = 2.727 \times 10^2 \text{ C}$$
$$2.727 \times 10^2 \text{ C} \times \frac{1 \text{ A} \times \text{s}}{\text{C}} \times \frac{1}{0.851 \text{ A}} \times \frac{1 \text{ min}}{60 \text{ s}} = 5.34 \text{ min}$$

22-25.

$$\left(5\min\times\frac{60\,\text{s}}{\min}+24\,\text{s}\right)\times0.300\,\text{A}\times\frac{1\,\text{C}}{\text{A}\times\text{s}}\times\frac{1\,\text{F}}{96,485\,\text{C}}\times\frac{1\,\text{eq}\,\text{HA}}{\text{F}}=1.007\times10^{-3}\,\text{eq}\,\text{HA}$$

$$\frac{0.1330 \text{ g HA}}{1.007 \times 10^{-3} \text{ eq HA}} = 132.0 \text{ g/eq}$$

22-27. 1 mol CaCO₃ = 1 mol HgNH₃Y²⁻ = 2 mol e^{-}

$$\frac{\left(39.4 \times 10^{-3} \text{ A} \times 3.52 \text{ min} \times \frac{60 \text{ s}}{\text{min}} \times \frac{1 \text{ C}}{\text{A} \times \text{s}} \times \frac{1 \text{ mol } \text{e}^-}{96,485 \text{ C}} \times \frac{1 \text{ mol } \text{CaCO}_3}{2 \text{ mol } \text{e}^-} \times \frac{100.09 \text{ g } \text{CaCO}_3}{\text{mol}}\right)}{25.00 \text{ mL sample} \times \frac{1.00 \text{ g } \text{H}_2 \text{O}}{\text{mL } \text{H}_2 \text{O}}} \times 10^6 \text{ppm}$$

=173 ppm CaCO₃

22-29. 1 mol $C_6H_5NO_2 = 4 \text{ mol } e^-$

$$\frac{\left(33.47 \text{ C} \times \frac{1 \text{ F}}{96,485 \text{ C}} \times \frac{1 \text{ mol } \text{e}^-}{\text{F}} \times \frac{1 \text{ mol } \text{C}_6 \text{H}_5 \text{NO}_2}{4 \text{ mol } \text{e}^-} \times \frac{123.11 \text{ g} \text{ C}_6 \text{H}_5 \text{NO}_2}{\text{mol}}\right)}{300 \text{ mg sample} \times \frac{\text{g}}{1000 \text{ mg}}} \times 100\%$$

=3.56% C₆H₅NO₂

23-34. 1 mol $C_6H_5NH_2 = 3 \text{ mol } Br_2 = 6 \text{ mol } e^-$

$$\begin{pmatrix} (3.76 - 0.27)\min \times \frac{60 \text{ s}}{\min} \times \frac{1.51 \times 10^{-3} \text{ C}}{\text{s}} \times \frac{1 F}{96,485 \text{ C}} \times \\ \frac{1 \text{ mol } e^-}{F} \times \frac{1 \text{ mol } C_6 \text{H}_5 \text{NH}_2}{6 \text{ mol } e^-} \end{pmatrix} = 5.462 \times 10^{-7} \text{ mol } C_6 \text{H}_5 \text{NH}_2$$

$$5.462 \times 10^{-7} \text{ mol } C_6 \text{H}_5 \text{NH}_2 \times \frac{93.128 \text{ g} \text{ C}_6 \text{H}_5 \text{NH}_2}{\text{mol}} \times \frac{10^6 \mu \text{g}}{\text{g}}$$

$$= 50.9 \,\mu g \, C_6 H_5 N H_2$$

23-35. 1 mol Sn⁴⁺ = 2 mol e⁻
$$\rightarrow$$
 1 mol Sn²⁺ = 2 mol C₆H₄O₂

$$\begin{pmatrix} (8.34 - 0.691) \min \times \frac{60 \text{ s}}{\min} \times \frac{1.062 \times 10^{-3} \text{ C}}{\text{s}} \times \frac{1 F}{96,485 \text{ C}} \\ \times \frac{1 \text{ mol e}^{-}}{F} \times \frac{1 \text{ mol C}_{6}\text{H}_{5}\text{NH}_{2}}{2 \text{ mol e}^{-}} \end{pmatrix} = 2.526 \times 10^{-6} \text{ mol C}_{6}\text{H}_{4}\text{O}_{2}$$
2.526 × 10⁻⁶ mol C₆H₄O₂ × $\frac{108.10 \text{ g C}_{6}\text{H}_{4}\text{O}_{2}}{\text{ mol }}$

$$= 2.73 \times 10^{-4} \text{ g C}_{6}\text{H}_{4}\text{O}_{2}$$

Chapter 23

23-1. (a) *Voltammetry* is an analytical technique that is based on measuring the current that develops at a small electrode as the applied potential is varied. *Amperometry* is a technique in which the limiting current is measured at a constant potential.

(c) *Differential pulse* and *square wave voltammetry* differ in the type of pulse sequence used as shown in Figure 23-1b and 23-1c.

(e) In voltammetry, a *limiting current* is a current that is independent of applied potential. Its magnitude is limited by the rate at which a reactant is brought to the surface of the electrode by migration, convection, and/or diffusion. A *diffusion current* is a limiting current when analyte transport is solely by diffusion.

(g) The *half-wave potential* is closely related to the *standard potential* for a reversible reaction. That is,

$$E_{1/2} = E_{\rm A}^{\rm o} - \frac{0.0592}{n} \log\left(\frac{k_{\rm A}}{k_{\rm B}}\right)$$

where k_A and k_B are constants that are proportional to the diffusion coefficients of the analyte and product. When these are approximately the same, the half-wave potential and the standard potential are essentially equal.

- **23-3.** A high supporting electrolyte concentration is used in most electroanalytical procedures to minimize the contribution of migration to concentration polarization. The supporting electrolyte also reduces the cell resistance, which decreases the *IR* drop.
- **23-5.** Most organic electrode processes consume or produce hydrogen ions. Unless buffered solutions are used, marked pH changes can occur at the electrode surface as the reaction proceeds.

23-7. The purpose of the electrodeposition step in stripping analysis is to preconcentrate the analyte on the surface of the working electrode and to separate it from many interfering species.

23-9. A plot of
$$E_{appl}$$
 versus $\log \frac{i}{i_l - i}$ should yield a straight line having a slope of $\frac{-0.0592}{n}$.

Thus, *n* is readily obtained from the slope.

23-12. Initially there are 60 mL
$$\times$$
 0.08 mmol/mL = 4.8 mmol Cu²⁺ present.

Applying a current of 6.0 µA for 45 minutes represents a charge of

 $6.0 \times 10^{-6} \text{ C/s} \times 45 \text{ min} \times 60 \text{ s/min} = 0.0162 \text{ C}$

The number of moles of Cu^{2+} reduced by that amount of charge is:

 $n_{\text{Cu}2+} = Q/nF = 0.0162 \text{ C}/(2 \times 96485 \text{ C/mol}) = 8.4 \times 10^{-8} \text{ mol or } 8.4 \times 10^{-5} \text{ mmol}$

The percentage removed is thus $(8.4 \times 10^{-5} \text{ mmol}/ 4.8 \text{ mmol}) \times 100\% = 1.7 \times 10^{-3}\%$

23-13. $i_1 = kc_u$ where $i_1 = 1.86 \,\mu\text{A}$ and c_u is the concentration of the unknown.

$$i_2 = \frac{k(25.00c_u + 5.00 \times 2.12 \times 10^{-3})}{25.00 + 5.00} = 5.27 \,\mu\text{A}$$

From above, $k = i_1/c_u$. Substituting this into the second equation and solving for c_u gives

$$c_{\rm u} = 1.77 \times 10^{-4} \,{\rm M}$$

- **24-1.** The yellow color comes about because the solution absorbs blue light in the wavelength region 435-480 nm and transmits its complementary color (yellow). The purple color comes about because green radiation (500-560 nm) is absorbed and its complementary color (purple) is transmitted.
- **24-2.** (a) Absorbance A is the negative logarithm of transmittance $T(A = -\log T)$.
- **24-3**. Deviations from linearity can occur because of polychromatic radiation, unknown chemical changes such as association or dissociation reactions, stray light, and molecular or ionic interactions at high concentration.

24-4.
$$v = c/\lambda = 3.00 \times 10^{10} \text{ cm s}^{-1}/\lambda(\text{cm}) = (3.00 \times 10^{10}/\lambda) \text{ s}^{-1} = (3.00 \times 10^{10}/\lambda) \text{ Hz}$$

(a) $v = 3.00 \times 10^{10} \text{ cm s}^{-1}/(2.65 \text{ Å} \times 10^{-8} \text{ cm}/\text{Å}) = 1.13 \times 10^{18} \text{ Hz}$

$$()$$
 2.00 \times 10¹⁰ $^{-1}$ ((C04.2) \times 10⁻⁷ () 4.22 \times 10¹⁴ I

(c)
$$v = 3.00 \times 10^{10} \text{ cm s}^{-1} / (694.3 \text{ nm} \times 10^{-7} \text{ cm/nm}) = 4.32 \times 10^{14} \text{ Hz}$$

(e)
$$v = 3.00 \times 10^{10} \text{ cm s}^{-1} / (19.6 \,\mu\text{m} \times 10^{-4} \,\text{cm/}\mu\text{m}) = 1.53 \times 10^{13} \,\text{Hz}$$

24-5.
$$\lambda = c/v = 3.00 \times 10^{10} \text{ cm s}^{-1}/v (\text{s}^{-1}) = (3.00 \times 10^{10}/v) \text{ cm}$$

(a)
$$\lambda = 3.00 \times 10^{10} \text{ cm s}^{-1} / (118.6 \text{ MHz} \times 10^{6} \text{ Hz/MHz}) = 253.0 \text{ cm}$$

(c)
$$\lambda = 3.00 \times 10^{10} \text{ cm s}^{-1} / (105 \text{ MHz} \times 10^{6} \text{ Hz/MHz}) = 286 \text{ cm}$$

24-6. (a) $\overline{\nu} = 1/(3 \,\mu\text{m} \times 10^{-4} \,\text{cm}/\mu\text{m}) = 3.33 \times 10^3 \,\text{cm}^{-1}$ to

$$1/(15 \times 10^{-4} \text{ cm}) = 6.67 \times 10^{2} \text{ cm}^{-1}$$

(b)
$$v = 3.00 \times 10^{10} \text{ cm s}^{-1} \times 3.333 \times 10^{3} \text{ cm}^{-1} = 1.00 \times 10^{14} \text{ Hz to}$$

$$3.00 \times 10^{10} \times 6.67 \times 10^2 = 2.00 \times 10^{13} \text{ Hz}$$

24-7.
$$\lambda = c/v = (3.00 \times 10^{10} \text{ cm s}^{-1}) / (220 \times 10^{6} \text{ s}^{-1}) = 136 \text{ cm or } 1.36 \text{ m}$$

$$E = hv = 6.63 \times 10^{-34} \text{ J s} \times 220 \times 10^{6} \text{ s}^{-1} = 1.46 \times 10^{-25} \text{ J}$$

- **24-8.** (a) $\lambda = 589 \text{ nm}/1.35 = 436 \text{ nm}$
- **24-9.** (a) $ppm^{-1} cm^{-1}$
 - (c) $\%^{-1}$ cm⁻¹
- **24-10.** (a) $\%T = 100 \times \text{antilog}(-0.0356) = 92.1\%$

Proceeding similarly, we obtain

(c) %T = 41.8; (e) %T = 32.7

24-11. (a) $A = -\log T = -\log (27.2\%/100\%) = 0.565$

Proceeding similarly,

(c) A = 0.514; (e) A = 1.032

24-12. (a) $\%T = \text{antilog}(-0.172) \times 100\% = 67.3\%$

 $c = A/\varepsilon b = (0.172)/(4.23 \times 10^3 \times 1.00) = 4.07 \times 10^{-5} \text{ M}$ $c = 4.07 \times 10^{-5} \frac{\text{mol}}{\text{L}} \times \frac{200 \text{ g}}{\text{mol}} \times \frac{1 \text{ L}}{1000 \text{ g}} \times 10^6 \text{ ppm} = 8.13 \text{ ppm}$

$$a = A/bc = 0.172/(1.00 \times 8.13) = 0.0211 \text{ cm}^{-1} \text{ ppm}^{-1}$$

Using similar conversions and calculations, we can evaluate the missing quantities

			ε	a	b	С	
	A	%T	L mol ⁻¹ cm ⁻¹	cm ⁻¹ ppm ⁻¹	cm	Μ	ppm
*(a)	0.172	67.3	4.23×10^{3}	0.0211	1.00	4.07×10^{-5}	8.13
*(c)	0.520	30.2	7.95×10^{3}	0.0397	1.00	$6.54 imes 10^{-5}$	13.1
*(e)	0.638	23.0	3.73×10^{3}	0.0187	0.100	1.71×10^{-3}	342
*(g)	0.798	15.9	3.17×10^{3}	0.0158	1.50	$1.68 imes 10^{-4}$	33.6
*(i)	1.28	5.23	9.78×10^{3}	0.0489	5.00	2.62×10^{-5}	5.24

24-13. (a) $A = 7.00 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1} \times 1.00 \text{ cm} \times 3.40 \times 10^{-5} \text{ mol} \text{ L}^{-1} = 0.238$

(b)
$$A = 7.00 \times 10^3 \times 1.00 \times 2 \times 3.40 \times 10^{-5} = 0.476$$

(c) For part (a), T = antilog(-0.238) = 0.578

For part (b), T = antilog(-0.476) = 0.334

(d) $A = -\log(T) = -\log(0.578/2) = 0.539$

24-14. (a) $A = 9.32 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1} \times 1.00 \text{ cm} \times 5.67 \times 10^{-5} \text{ mol} \text{ L}^{-1} = 0.528$

(b) $\%T = 100 \times \text{anitlog}(-0.528) = 29.6\%$

(c)
$$c = A/\varepsilon b = 0.528/(9.32 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1} \times 2.50 \text{ cm}) = 2.27 \times 10^{-5} \text{ M}$$

24-15. 2.10 = $-\log(P/P_0)$ $P/P_0 = 0.0079433$ $P = 0.007943 P_0$ $P_s/P_0 = 0.0075$ $P_s = 0.0075 P_0$ $A' = \left(\frac{P_0 + P_s}{P + P_s}\right) = \log\left(\frac{P_0 + 0.0075P_0}{0.007943P_0 + 0.0075P_0}\right) = \log\left(\frac{1.0075P_0}{0.015443P_0}\right) = \log(65.2139)$

$$= 1.81$$

Error = $[(1.81 - 2.10)/2.10] \times \%100 = -13.6\%$

25-1. (a) *Phototubes* consist of a single photoemissive surface (cathode) and an anode in an evacuated envelope. They exhibit low dark current, but have no inherent amplification. *Solid-state photodiodes* are semiconductor *pn*-junction devices that respond to incident light by forming electron-hole pairs. They are more sensitive than phototubes but less sensitive than photomultiplier tubes.

(c) *Filters* isolate a single band of wavelengths. They provide low resolution wavelength selection suitable for quantitative work. *Monochromators* produce high resolution for qualitative and quantitative work. With monochromators, the wavelength can be varied continuously, whereas this is not possible with filters.

- **25-2**. Quantitative analyses can tolerate rather wide slits since measurements are usually carried out at a wavelength maximum where the slope of the spectrum $dA/d\lambda$ is relatively constant. On the other hand, qualitative analyses require narrow slits so that any fine structure in the spectrum will be resolved. This can allow differentiation of one compound from another.
- **25-3**. *Tungsten/halogen lamps* contain a small amount of iodine in the evacuated quartz envelope that contains the tungsten filament. The iodine prolongs the life of the lamp and permits it to operate at a higher temperature. The iodine combines with gaseous tungsten that sublimes from the filament and causes the metal to be redeposited, thus adding to the life of the lamp.

25-4. (a) Spectrophotometers have monochromators for multiple wavelength operation and for procuring spectra while photometers utilize filters for fixed wavelength operation. While offering the advantage of multiple wavelength operation, spectrophotometers are substantially more complex and more expensive than photometers.

(c) Both a *monochromator* and a *polychromator* use a diffraction grating to disperse the spectrum, but a monochromator contains only one exit slit and detector while a polychromator contains multiple exit slits and detectors. A monochromator can be used to monitor one wavelength at a time while a polychromator can monitor several discrete wavelengths simultaneously.

25-5. (a) $\lambda_{\text{max}} = 2.90 \times 10^3 / T = 2.90 \times 10^3 / 4000 = 0.73 \,\mu\text{m}$

(c) $\lambda_{\text{max}} = 2.90 \times 10^3 / 2000 = 1.45 \,\mu\text{m}$

25-6. (a)
$$\lambda_{\text{max}} = 2.90 \times 10^3 / 2870 = 1.01 \,\mu\text{m}$$
 (1010 nm)

 $\lambda_{\rm max} = 2.90 \times 10^3 / 3000 = 0.967 \,\mu {\rm m} \ (967 \,{\rm nm})$

(b) $E_{\rm t} = 5.69 \times 10^{-8} (2870)^4 \times (1 \text{ m} / 100 \text{ cm})^2 = 386 \text{ W/cm}^2$

 $E_{\rm t} = 5.69 \times 10^{-8} (3000)^4 \times (1 \text{ m} / 100 \text{ cm})^2 = 461 \text{ W/cm}^2$

25-7. (a) The 0% transmittance is measured with no light reaching the detector and is a measure of the dark current.

(**b**) The 100% transmittance adjustment is made with a blank in the light path and measures the unattenuated source. It compensates for any absorption or reflection losses in the cell and optics.

- **25-8**. Fourier transform IR spectrometers have the advantages over dispersive instruments of higher speed and sensitivity, better light-gathering power, more accurate and precise wavelength settings, simpler mechanical design, and elimination of stray light and IR emission.
- **25-9**. (a) $\%T = (149 / 625) \times 100\% = 23.84\%$

 $A = -\log(23.84\% / 100\%) = 0.623$

- (c) Since A is proportional to light path, at twice the light path $A = 2 \times 0.623 = 1.246$ $T = \operatorname{antilog}(-A) = \operatorname{antilog}(-1.246) = 0.057; \ \%T = 5.7$
- **25-10.** (b) $A = -\log(30.96\%/100\%) = 0.509$
 - (d) $A = 2 \times 0.509 = 1.018$

T = antilog(-A) = antilog(-1.018) = 0.096

- 25-11. A photon detector produces a current or voltage as a result of the emission of electrons from a photosensitive surface when struck by photons. A *thermal detector* consists of a darkened surface to absorb infrared radiation and produce a temperature increase. A *thermal transducer* produces an electrical signal whose magnitude is related to the temperature and thus the intensity of the infrared radiation.
- **25-12**. Basically, an *absorption photometer* and a *fluorescence photometer* consist of the same components. The basic difference is in the location of the detector. The detector in a fluorometer is positioned at an angle of 90° to the direction of the beam from the source so that emission is detected rather than transmisson. In addition, a filter is often positioned in front of the detector to remove radiation from the excitation beam that may result from scattering or other nonfluorescence processes. In a transmission photometer, the detector is positioned in a line with the source, the filter, and the detector.

25-13. (a) *Transducer* indicates the type of detector that converts quantities, such as light intensity, pH, mass, and temperature, into electrical signals that can be subsequently amplified, manipulated, and finally converted into numbers proportional to the magnitude of the original quantity.

(c) A semiconductor containing unbonded electrons (e.g. produced by doping silicon with a Group V element) is termed an *n*-type semiconductor.

(e) A *depletion layer* results when a reverse bias is applied to a *pn*-junction type device. Majority carriers are drawn away from the junction leaving a nonconductive depletion layer.

26-1. (a) *Spectrophotometers* use a grating or a prism to provide narrow bands of radiation while *photometers* use filters for this purpose. The advantages of spectrophotometers are greater versatility and the ability to obtain entire spectra. The advantages of photometers are simplicity, ruggedness, higher light throughput and low cost.

(c) *Diode-array spectrophotometers* detect the entire spectral range essentially simultaneously and can produce a spectrum in less than a second. *Conventional spectrophotometers* require several minutes to scan the spectrum. Accordingly, diode-array instruments can be used to monitor processes that occur on fast time scales. Their resolution is usually lower than that of a conventional spectrophotometer.

26-2. Electrolyte concentration, pH, temperature, nature of solvent, and interfering substances.

26-3.
$$A = \varepsilon b c$$

 $c_{\min} = A/\epsilon b = 0.10/(9.32 \times 10^3 \times 1.00) = 1.1 \times 10^{-5} \text{ M}$

 $c_{\text{max}} = A/\varepsilon b = 0.90/(9.32 \times 10^3 \times 1.00) = 9.7 \times 10^{-5} \text{ M}$

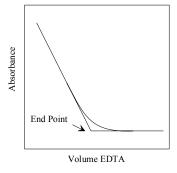
26-4. log $\varepsilon = 2.75$ $\varepsilon = 5.6 \times 10^2$ $c_{\min} = A/\varepsilon b = 0.100/(5.6 \times 10^2 \times 1.50) = 1.2 \times 10^{-4} \text{ M}$

$$c_{\text{max}} = A/\varepsilon b = 2.000/(5.6 \times 10^2 \times 1.50) = 2.4 \times 10^{-3} \text{ M}$$

26-5. (a) T = 169 mV/690 mV = 0.245

$$A = -\log(0.245) = 0.611$$

(c) Since A is proportional to light path, at twice the light path $A = 2 \times 0.611 = 1.222$


T = antilog(-A) = antilog(-1.222) = 0.060

26-6. (b)
$$A = -\log(31.4\% / 100\%) = 0.503$$

(d) $A = 2 \times 0.503 = 1.006$

$$T = \operatorname{antilog}(-A) = \operatorname{antilog}(-1.006) = 0.099$$

26-7.

The absorbance should decrease approximately linearly with titrant volume until the end point.

After the end point the absorbance becomes independent of titrant volume.

26-8. Applying the equation we developed in Solution 26-15 we write

$$c_x = \frac{0.231 \times 2.75 \times 5.00}{50.0(0.549 - 0.231)} = 0.200 \text{ ppm Fe}$$

26-9.

$$A_{510} = 0.446 = 36400 \times 1.00 \times c_{Co} + 5520 \times 1.00 \times c_{Ni}$$
$$A_{656} = 0.326 = 1240 \times 1.00 \times c_{Co} + 17500 \times 1.00 \times c_{Ni}$$
$$c_{Co} = 9.530 \times 10^{-6} \text{ M} \qquad c_{Ni} = 1.795 \times 10^{-5} \text{ M}$$

$$c_{\rm Co} = \frac{50.0 \text{ mL} \times 9.530 \times 10^{-6} \frac{\text{mmol}}{\text{mL}} \times \frac{50.0 \text{ mL}}{25.0 \text{ mL}} \times \frac{0.05893 \text{ g Co}}{\text{mmol}}}{0.425 \text{ g}} \times 10^{6} \text{ ppm} = 132 \text{ ppm}$$

$$c_{\rm Ni} = \frac{50.0 \text{ mL} \times 1.795 \times 10^{-5} \frac{\rm mmol}{\rm mL} \times \frac{50.0 \text{ mL}}{25.0 \text{ mL}} \times \frac{0.05869 \text{ g Ni}}{\rm mmol}}{0.425 \text{ g}} \times 10^{6} \text{ ppm} = 248 \text{ ppm}$$

Chapter 26

26-10.
$$\alpha_0 = \frac{[\mathrm{H}_3\mathrm{O}^+]}{[\mathrm{H}_3\mathrm{O}^+] + K_{\mathrm{HIn}}} \qquad \alpha_1 = 1 - \alpha_0$$
$$A_{450} = \varepsilon_{\mathrm{HIn}} \times 1.00 \times [\mathrm{HIn}] + \varepsilon_{\mathrm{In}} \times 1.00 \times [\mathrm{In}^-]$$
$$= \varepsilon_{\mathrm{HIn}} \alpha_0 c_{\mathrm{In}} + \varepsilon_{\mathrm{In}} \alpha_1 c_{\mathrm{In}}$$
$$= (\varepsilon_{\mathrm{HIn}} \alpha_0 + \varepsilon_{\mathrm{In}} \alpha_1) c_{\mathrm{In}}$$

where c_{In} is the analytical concentration of the indicator ($c_{\text{In}} = [\text{HIn}] + [\text{In}^-]$).

We may assume at pH 1.00 all of the indicator is present as HIn; at pH 13.0 it is all present as In⁻. Therefore, from the data in Problem 26-19 we may write

$$\varepsilon_{\rm HIn} = \frac{A_{450}}{bc_{\rm HIn}} = \frac{0.658}{1.00 \times 8.00 \times 10^{-5}} = 8.22 \times 10^3 \,\mathrm{L \ mol^{-1} \ cm^{-1}}$$

$$\varepsilon_{\text{In}} = \frac{A_{450}}{bc_{\text{In}}} = \frac{0.076}{1.00 \times 8.00 \times 10^{-5}} = 9.5 \times 10^2 \,\text{L mol}^{-1} \,\text{cm}^{-1}$$

(a) At pH = 4.92,
$$[H_3O^+] = 1.20 \times 10^{-5} M$$

$$\alpha_0 = \frac{1.20 \times 10^{-5}}{1.20 \times 10^{-5} + 4.80 \times 10^{-6}} = 0.714$$

$$\alpha_1 = 1.000 - 0.714 = 0.286$$

$$A_{450} = (8.22 \times 10^3 \times 0.714 + 9.5 \times 10^2 \times 0.286) \times 8.00 \times 10^{-5} = 0.492$$

_	pН	$[H_3O^+]$	$lpha_0$	$lpha_1$	A450
(a)	4.92	1.20×10^{-5}	0.714	0.286	0.492
(c)	5.93	1.18×10^{-6}	0.197	0.803	0.190

26-11 . The approach is identical to that of Solution 26-20. At 595 nm and	26-11 .	The ap	pproach	is i	dentical	to	that o	f Solution	26-20.	At 595 nm and
---	----------------	--------	---------	------	----------	----	--------	------------	--------	---------------

at pH = 1.00,
$$\varepsilon_{\text{HIn}} = \frac{A_{595}}{bc_{\text{HIn}}} = \frac{0.032}{1.00 \times 8.00 \times 10^{-5}} = 4.0 \times 10^2 \text{ L mol}^{-1} \text{ cm}^{-1}$$

at pH = 13.00,
$$\varepsilon_{\text{In}} = \frac{A_{595}}{bc_{\text{In}}} = \frac{0.361}{1.00 \times 8.00 \times 10^{-5}} = 4.51 \times 10^3 \text{ L mol}^{-1} \text{ cm}^{-1}$$

(a)

At pH = 5.30 and with 1.00-cm cells, $[H_3O^+] = 5.01 \times 10^{-6}$ M and

$$\alpha_{0} = \frac{[H_{3}O^{+}]}{[H_{3}O^{+}] + K_{HIn}} = \frac{5.01 \times 10^{-6}}{5.01 \times 10^{-6} + 4.80 \times 10^{-6}} = 0.511$$

$$\alpha_{1} = 1 - \alpha_{0} = 0.489$$

$$A_{595} = (\varepsilon_{HIn}\alpha_{0} + \varepsilon_{In}\alpha_{1})c_{In}$$

$$A_{595} = (4.0 \times 10^{2} \times 0.511 + 4.51 \times 10^{3} \times 0.489) \times 1.25 \times 10^{-4} = 0.301$$

Similarly for parts (b) and (c)

	pН	$[H_3O^+]$	$lpha_0$	$lpha_1$	A_{595}
(a)	5.30	5.01×10 ⁻⁶	0.511	0.489	0.301
(b)	5.70	2.00×10^{-6}	0.294	0.706	0.413
(c)	6.10	7.94×10^{-7}	0.142	0.858	0.491

26-12. In these solutions the concentrations of the two absorbers HIn and In⁻ must be determined by the analysis of mixtures, so

$$A_{450} = \varepsilon'_{\rm HIn} b[\rm HIn] + \varepsilon'_{\rm In} b[\rm In^{-}]$$

$$A_{595} = \varepsilon''_{\rm HIn} b[\rm HIn] + \varepsilon''_{\rm In} b[\rm In^{-}]$$

From the solutions to 26-20 and 26-21

$$\varepsilon'_{\text{HIn}} = 8.22 \times 10^3$$
 $\varepsilon'_{\text{In}} = 9.5 \times 10^2$ $\varepsilon''_{\text{HIn}} = 4.0 \times 10^2$ $\varepsilon''_{\text{In}} = 4.51 \times 10^3$

Thus, $A_{450} = 0.344 = (8.22 \times 10^3)[\text{HIn}] + (9.5 \times 10^2)[\text{In}^-]$

$$A_{595} = 0.310 = (4.0 \times 10^2)$$
[HIn] + (4.51×10^3) [In⁻]

Solving these equations gives

$$[HIn] = 3.42 \times 10^{-5} \text{ M}$$
 and $[In^{-}] = 6.57 \times 10^{-5} \text{ M}$

$$K_{\rm HIn} = \frac{[\rm H_3O^+][\rm In^-]}{[\rm HIn]}$$

185

$$[H_{3}O^{+}] = K_{HIn} \frac{[HIn]}{[In^{-}]} = \frac{(4.80 \times 10^{-6})(3.42 \times 10^{-5})}{6.57 \times 10^{-5}} = 2.50 \times 10^{-6} M$$

 $pH = -log[H_3O^+] = -log(2.50 \times 10^{-6}) = 5.60$

The results for all solutions are shown in the table that follows.

Solution	[HIn]	[In ⁻]	pН	
Α	3.42×10^{-5}	6.57×10^{-5}	5.60	
С	7.70×10^{-5}	2.33×10^{-5}	4.80	

26-13. $A_{440} = \varepsilon'_{\rm P} b c_{\rm P} + \varepsilon'_{\rm Q} b c_{\rm Q}$ b = 1.00 cm

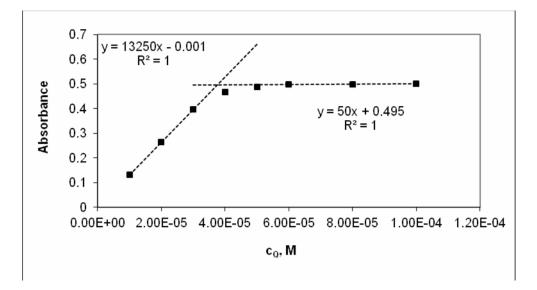
$$A_{620} = \varepsilon_{\rm P}'' b c_{\rm P} + \varepsilon_{\rm Q}'' b c_{\rm Q}$$

$$c_{\rm P} = \frac{A_{440} - \varepsilon_{\rm Q}' c_{\rm Q}}{\varepsilon_{\rm P}'}$$

Substituting for $c_{\rm P}$ in the second equation gives

$$A_{620} = \boldsymbol{\varepsilon}_{\mathrm{P}}'' \left[\frac{A_{440} - \boldsymbol{\varepsilon}_{\mathrm{Q}}' \boldsymbol{c}_{\mathrm{Q}}}{\boldsymbol{\varepsilon}_{\mathrm{P}}'} \right] + \boldsymbol{\varepsilon}_{\mathrm{Q}}'' \boldsymbol{c}_{\mathrm{Q}}$$

We then solve for $c_{\rm Q}$ and $c_{\rm P}$ as in the spreadsheet


	А	В	С	D	E					
1		ε (P), M ⁻¹ cm-1	ε(Q), M ⁻¹ cm-1							
2	440	1.123E+03	2.527E+03							
3	620	3.813E+03	2.321E+02							
4										
5		A 440	A 620	[P], M	[Q], M					
6	(a)	0.357	0.803	2.076E-04	4.901E-05					
7	(b)	0.830	0.448	1.002E-04	2.839E-04					
8	(C)	0.248	0.333	8.362E-05	6.098E-05					
9	(d)	0.910	0.338	6.858E-05	3.296E-04					
10	(e)	0.480	0.825	2.105E-04	9.640E-05					
11	(f)	0.194	0.315	8.011E-05	4.117E-05					
12	Docume	entation								
13	B2:C3 F	rom Problem 26	6-24							
14										
15	E6=(B6-	\$B\$2*D6)/\$C\$								

186

26-14.

				-	S					
	A	В	С	D	E	F	G	Н	1	
1	Determination of Fe(II)									
2	Part (a)									
3	Conc. Fe(II), ppm	A 510	1.8							
4	4.00		1.6	-						
5	10.00	0.390	1.4	-					/	
6	16.00	0.630	1.2							
7	24.00	0.950								
8	32.00	1.260	음 1.0 명	-			1			
9	40.00	1.580	₹ 0.8	-						
	Regression		0.6	-		*				
	Slope	0.03949	0.4		~					
	Intercept	-0.001008			/					
13	Part (b)		0.2	*						
14	A 510 = 0.03949 - 0.001008	3	0.0	+			1	1. 1.	125	
15	Part (c)			0.00 5.0	00 10.00	15.00	20.00 2	5.00 30.00	35.00	40.00
_										
	Error Analysis						100 000			
16	Error Analysis sr (standard error in y)	0.0033			Fe	(II) Con	centratio	n, ppm		
16 17	s_r (standard error in y)	0.0033			Fe	(II) Con	centratio	n, ppm		
16 17 18	s_r (standard error in y)				Fe	(II) Con	centratio	n, ppm		
16 17 18 19	s _r (standard error in y) N	6			Fe	(II) Con	centratio	n, ppm		
16 17 18 19 20	s _r (standard error in y) N S _{xx}	6 926			Fe	(II) Con	centratio	n, ppm		
16 17 18 19 20 21	s_r (standard error in y) N S_{xx} Σx_i	6 926 126			Fe	(II) Con	centratio	n, ppm		
16 17 18 19 20 21 22	s_r (standard error in y) N S_{xx} Σx_i Σx_i^2	6 926 126 3572			Fe	(II) Con	centratio	n, ppm		
16 17 18 19 20 21 22 23	s_r (standard error in y) N S_{xx} Σx_i Σx_i^2 s_m	6 926 126 3572 1.100E-04 2.7E-03			Fe	(II) Con	centratio	n, ppm		
16 17 18 19 20 21 22 23 24	s_r (standard error in y) N S_{xx} Σx_i Σx_i^2 s_m s_b	6 926 126 3572 1.100E-04 2.7E-03 ation			Fe	(II) Con	centratio	n, ppm		
16 17 18 19 20 21 22 23 24 25	s_r (standard error in y) N S_{xx} Σx_i Σx_i^2 s_m s_b Spreadsheet Document	6 926 126 3572 1.100E-04 2.7E-03 ation A4:A9)			Fe	(II) Con	centratio	n, ppm		
16 17 18 19 20 21 22 23 24 25 26 27	s_r (standard error in y) N S_{xx} Σx_i Σx_i^2 s_m s_b Spreadsheet Document Cell B11=SLOPE(B4:B9,A Cell B12=INTERCEPT(B4 Cell B17=STEYX(B4:B9,A	6 926 126 3572 1.100E-04 2.7E-03 ation A4:A9) :B9,A4:A9) 44:A9)			Fe	(II) Con	centratio	n, ppm		
16 17 18 19 20 21 22 23 24 25 26 27 28	s_r (standard error in y) N S_{xx} Σx_i^2 s_m s_b Spreadsheet Document Cell B11=SLOPE(B4:B9,A Cell B12=INTERCEPT(B4 Cell B17=STEYX(B4:B9,A Cell B18=COUNT(B4:B9)	6 926 126 3572 1.100E-04 2.7E-03 ation A4:A9) :B9,A4:A9) 44:A9)			Fe	(II) Con	centratio	n, ppm		
16 17 18 20 21 22 23 24 25 26 27 28 29	s_r (standard error in y) N S_{xx} Σx_i^2 s_m s_b Spreadsheet Document Cell B11=SLOPE(B4:B9,A Cell B12=INTERCEPT(B4 Cell B17=STEYX(B4:B9,A Cell B18=COUNT(B4:B9) Cell B18=COUNT(B4:B9) Cell B19=B18*VARP(A4:A	6 926 126 3572 1.100E-04 2.7E-03 ation A4:A9) :B9,A4:A9) 44:A9)			Fe	(II) Con		n, ppm		
16 17 18 20 21 22 23 24 25 26 27 28 29 30	s_r (standard error in y) N S_{xx} Σx_i^2 s_m s_b Spreadsheet Document Cell B11=SLOPE(B4:B9,A Cell B12=INTERCEPT(B4 Cell B17=STEYX(B4:B9,A Cell B18=COUNT(B4:B9) Cell B18=COUNT(B4:B9) Cell B19=B18*VARP(A4:A Cell B20=SUM(A4:A9)	6 926 126 3572 1.100E-04 2.7E-03 ation A4:A9) :B9,A4:A9) 42:A9)			Fe	(II) Con		n, ppm		
16 17 18 20 21 22 23 24 25 26 27 28 29 30 31	s_r (standard error in y) N S_{xx} Σx_i^2 s_m s_b Spreadsheet Document Cell B11=SLOPE(B4:B9,A Cell B12=INTERCEPT(B4 Cell B17=STEYX(B4:B9,A Cell B18=COUNT(B4:B9) Cell B18=COUNT(B4:B9) Cell B19=B18*VARP(A4:A Cell B20=SUM(A4:A9) Cell B21=A4^2+A5^2+A6^A	6 926 126 3572 1.100E-04 2.7E-03 ation A4:A9) :B9,A4:A9) :B9,A4:A9) (4:A9) (4:A9) (4:A9) (4:A9) (4:A9)	M2			(II) Con		n, ppm		
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32	s_r (standard error in y) N S_{xx} Σx_i^2 s_m s_b Spreadsheet Document Cell B11=SLOPE(B4:B9,A Cell B12=INTERCEPT(B4 Cell B17=STEYX(B4:B9,A Cell B18=COUNT(B4:B9) Cell B18=COUNT(B4:B9) Cell B19=B18*VARP(A4:A Cell B20=SUM(A4:A9)	6 926 126 3572 1.100E-04 2.7E-03 ation A4:A9) :B9,A4:A9) :B9,A4:A9) (4:A	JA2			(II) Con		n, ppm		

Solving for the crossing point by using the 2 best fit equations gives, $c_Q = 3.76 \times 10^{-5}$ M.

(a) Since $c_{Al} = 3.7 \times 10^{-5}$ M and no more complex forms after $c_Q = 3.76 \times 10^{-5}$ M, the complex must be 1:1, or AlQ²⁺.

(b)
$$\varepsilon$$
 for AlQ²⁺ = (0.500)/(3.7 × 10⁻⁵) = 1.4 × 10⁴ L mol⁻¹ cm⁻¹

26-16.

	A	В	С	D	E	F	G	Н	1	J	К	L	M
1	Solution	VM	VL	$V_{\rm M}/(V_{\rm M}+V_{\rm L})$	A 390								
2	0	10.00	0.00	1.00	0.000		0.900			<			
3	1	9.00	1.00	0.90	0.174	_	0.800 -		/				
4	2	8.00	2.00	0.80	0.353		v = 1	L.789x + 0.0	004 /	• \			
5	3	7.00	3.00	0.70	0.530		0.700		/•	•	y = -1.76	59x + 1.7679	9
6	4	6.00	4.00	0.60	0.672		0.600 -		/	/			
7	5		5.00	0.50	0.723	8	0.500 -	1	*		X		
8	6		6.00	0.40	0.673	A ₃₉₀	0.400 -	/					
9	7		7.00	0.30	0.537			*			*		
10	8	2.00	8.00	0.20	0.358		0.300 -	/					
11	9		9.00	0.10	0.180	_	0.200 -	*			<u>`</u>		
12	10	0.00	10.00	0.00	0.000	_	0.100 - /				ं		
13							0.000						
	Slope 1	1.789							1		section and		- Winner
	Intercept 1						0.00	0.20	0.40	0.60	0.80	1.00	1.20
16		-1.769							V	M/(VM+V	.)		
17	Intercept 2	1.7679								W/ (- W	u		
		769x = 1.76					1			4	1		1
19		0.497											
20	C _{Cd2+}	1.25E-04	M										
21	CR	1.25E-04	M										
22	b	1.00	cm										
23													
24		<i>ε</i> values											
25	Soln1	13920.00											
26	Soln2	14120.00											
27	Soln3	14133.33											
28	Soln7	14320.00											
29	Soln8	14320.00											
30	Soln9	14400.00											
31													
32	Average	14202											
	SD	162											

- (a) The two lines intercept at $V_M / (V_M + V_L) = 0.5$ (Cell B19). The Cd²⁺ to R ratio is 1:1.
- (b) The molar absorptivities can be obtained from solutions 1-3 where the reagent is limiting and solutions 7-9 where the metal is limiting. Rounding the results in Cells B32 and B33 the average $\varepsilon = 1400 \pm 200 \text{ L mol}^{-1} \text{ cm}^{-1}$
- (c) The absorbance at the volume ratio where the lines intersect is A = 0.723. Thus,

 $[CdR] = (0.723)/(14202) = 5.09 \times 10^{-5} M$

$$[Cd^{2+}] = [(5.00 \text{ mL})(1.25 \times 10^{-4} \text{ mmol/mL}) - (10.00 \text{ mL})(5.09 \times 10^{-5} \text{ mmol/mL})]/(10.00 \text{ mL})$$
$$= 1.16 \times 10^{-5} \text{ M}$$

$$[R] = [Cd^{2+}] = 1.16 \times 10^{-5} M$$
$$K_{f} = \frac{[CdR]}{[Cd^{2+}][R]} = \frac{(5.09 \times 10^{-5})}{(1.16 \times 10^{-5})^{2}} = 3.78 \times 10^{5}$$

26-17. From Figure 26F-2, the frequencies of the band maxima are estimated to be:

- (1) 740 cm⁻¹ C-Cl stretch
- (2) 1270 cm^{-1} CH₂ wagging
- (3) 2900 cm^{-1} Aliphatic C-H stretch.

27-1. (a) *Fluorescence* is a photoluminescence process in which atoms or molecules are excited by absorption of electromagnetic radiation and then relax to the ground state, giving up their excess energy as photons. The transition is from the lowest lying excited singlet state to the ground singlet state.

(c) *Internal conversion* is the nonradiative relaxation of a molecule from a low energy vibrational level of an excited electronic state to a high energy vibrational level of a lower electronic state.

(e) The *Stokes shift* is the difference in wavelength between the radiation used to excite fluorescence and the wavelength of the emitted radiation.

(g) An *inner filter effect* is a result of excessive absorption of the incident beam (primary absorption) or absorption of the emitted beam (secondary absorption).

- 27-2. (a) Fluorescein because of its greater structural rigidity due to the bridging –O– groups.
- **27-3**. Organic compounds containing aromatic rings often exhibit fluorescence. Rigid molecules or multiple ring systems tend to have large quantum yields of fluorescence while flexible molecules generally have lower quantum yields.
- 27-4. See Figure 27-8. A filter fluorometer usually consists of a light source, a filter for selecting the excitation wavelength, a sample container, an emission filter and a transducer/readout device. A spectrofluorometer has two monochromators that are the wavelength selectors.
- 27-5. Fluorometers are more sensitive because filters allow more excitation radiation to reach the sample and more emitted radiation to reach the transducer. Thus, a fluorometer can provide lower limits of detection than a spectrofluorometer. In addition, fluorometers are

substantially less expensive and more rugged than spectrofluorometer, making them

particularly well suited for routine quantitation and remote analysis applications.

27-6.

	А	В	С	D	E		F	G	Н	1	J	
1	Determination of NA	ADH		20								
2	Part (a)			20								
3	Conc., µM	Fluorescence										
4	0.100	2.24		16	-		y = 22	.346x + 0.0	004	*		
5	0.200	4.52		9			R	² = 0.9991				
6	0.300	6.63		5 12	-				/			
7	0.400	9.01		so				/	•			
8	0.500	10.94		12 Binorescence Binorescence	_			*				
9	0.600	13.71		1			*					
10	0.700	15.49		1000			/					
11	0.800	17.91		4	1	/						
12	unknown	11.34			•							
13	Part (b)			0				1		1		
14	Regression			(0.000	0.200)	0.400	0.600	0.80	0	1.000
15	Slope	22.346										
	Intercept	4.E-04						Concent	tration, μM			
	Conc. Unknown	0.51										
	Parts (c), (d), (e), (f)			Spreads								
19	Error Analysis			Cell B15=	SLOPE(B4:B11,/	44:A1	1)				
20	s_r (std. error in y)	0.175		Cell B16=	INTERCE	EPT(B4:	311,A	4:A11)				
21	N	8		Cell B17=	(B12-B1	6)/B15						
22	S _{xx}	0.42		Cell B20=	STEYX(E	34:B11, J	A4:A1	1)				
23	Sm	0.270		Cell B21=	COUNT(B4:B11)						
24	y bar	10.056		Cell B22=	B21*VA	RP(A4:A	11)					
25	M for part (e)	1		Cell B23=	SQRT(B	20^2/B22	2)					
26	M for part (f)	3		Cell B24=	AVERAC	GE(B4:B	11)					
27	Std. dev.of c (part (e)	0.008		Cell B25=	replicate	s part (e) (entr	y)				
	RSD for c (part (e)	0.016		Cell B26=								
	Std. dev. of c (part(f)	0.005		Cell B27=	=B20/B15	*SQRT(1/B25-	+1/B21+((B	B12-B24)^2)/	(B15^2)*B	(22))	
30	RSD for c (part (f)	0.011		Cell B28=								
31				Cell B29=	=B20/B15	*SQRT(1/B26-	+1/B21+((E	B12-B24)^2)/	((B15^2)*B	(22)	
32				Cell B30=								

27-7.
$$c_Q = 100 \text{ ppm} \times 288/180 = 160 \text{ ppm}$$

 $c_{\rm Q} = 100 \text{ ppm} \times 288/180 = 160 \text{ ppm}$ $160 \text{ ppm} \times \frac{100 \text{ mL}}{15 \text{ mL}} \times \frac{1 \text{ mg quinine}}{1 \times 10^3 \text{ g solution}} \times \frac{1 \text{ g solution}}{1 \text{ mL}} \times 500 \text{ mL} = 533 \text{ mg quinine}$

- **28-1.** In *atomic emission spectroscopy* the radiation source is the sample itself. The energy for excitation of analyte atoms is supplied by a plasma, a flame, an oven, or an electric arc or spark. The signal is the measured intensity of the source at the wavelength of interest. In *atomic absorption spectroscopy* the radiation source is usually a line source such as a hollow cathode lamp, and the signal is the absorbance. The latter is calculated from the radiant power of the source and the resulting power after the radiation has passed through the atomized sample. In *atomic fluorescence spectroscopy*, an external radiation source is used, and the fluorescence emitted, usually at right angles to the source, is measured. The signal is the intensity of the fluorescence emitted.
- 28-2. (a) *Atomization* is a process in which a sample, often in solution, is volatilized and decomposed to form an atomic vapor.

(c) *Doppler broadening* is an increase in the width of the atomic lines caused by the Doppler effect in which atoms moving toward a detector absorb or emit wavelengths that are slightly shorter than those absorbed or emitted b atoms moving at right angles to the detector. The reverse effect is observed for atoms moving away from the detector.
(e) A *plasma* is a conducting gas that contains a large concentration of ions and/or electrons.

(g) A *hollow cathode lamp* consists of a tungsten wire anode and a cylindrical cathode sealed in a glass tube that contains argon at a pressure of 1 to 5 torr. The cathode is constructed from or supports the element whose emission spectrum is desired.

(i) An *additive interference*, also called a blank interference, produces an effect that is independent of the analyte concentration. It could be eliminated with a perfect blank solution.

(**k**) A *chemical interference* in atomic spectroscopy is encountered when a species interacts with the analyte in such a way as to alter the spectral emission or absorption characteristics of the analyte.

(m) A *protective agent* prevents interference by forming a stable, but volatile, compound with the analyte. It protects the analyte from forming non-volatile, but less stable interfering compounds.

- **28-3.** In atomic emission spectroscopy, the analytical signal is produced by the relatively small number of *excited* atoms or ions, whereas in atomic absorption the signal results from absorption by the much larger number of *unexcited* species. Any small change in flame conditions dramatically influences the number of *excited species*, whereas such changes have a much smaller effect on the number of *unexcited species*.
- **28-4**. In atomic absorption spectroscopy the source radiation is modulated to create an ac signal at the detector. The detector is made to reject the dc signal from the flame and measure the modulated signal from the source. In this way, background emission from the flame and atomic emission from the analyte is discriminated against and prevented from causing an interference effect.
- **28-5**. The temperature and pressure in a hollow cathode lamp are much less than those in an ordinary flame. As a result, Doppler and collisional broadening effects are much less, and narrower lines results.

- 28-6. The temperatures are high which favors the formation of atoms and ions. Sample residence times are long so that desolvation and vaporization are essentially complete. The atoms and ions are formed in a nearly chemically inert environment. The high and relatively constant electron concentration leads to fewer ionization interferences.
- **28-7**. The radial geometry provides better stability and precision while the axial geometry can achieve lower detection limits. Many ICP emission systems allow both geometries.
- **28-8**. By linear interpolation

$$0.400 + (0.502 - 0.396) \frac{(0.600 - 0.400)}{(0.599 - 0.396)} = 0.504 \text{ ppm Pb}$$

28-9.

(b)
$$A_s = \frac{\varepsilon b V_s c_s}{V_t} + \frac{\varepsilon b V_x c_x}{V_t} = k V_s c_s + k V_x c_x$$

(c) For the plot of A_s versus V_s ,	$A_s =$	$mV_s + b$	where		$m = kc_s$
			and		$b = kV_xc_x$
(e) From the values in the spreads	sheet:	m = 0.00881		and	<i>b</i> = 0.2022
(g) From the values in the spread	sheet:	$c_{\rm Cu} = 28.0 \ (\pm 0.0)$	0.2) ppn	1	

Chapter 29

- **29-1.** (a) The *Dalton* is one unified atomic mass unit and equal to 1/12 the mass of a neutral ${}^{12}_{6}$ C atom.
 - (c) The *mass number* is the atomic or molecular mass expressed without units.

(e) In a *time-of-flight* analyzer ions with nearly the same kinetic energy traverse a field-free region. The time required for an ion to reach a detector at the end of the field-free region is inversely proportional to the mass of the ion.

29-2. The ICP torch serves both as an atomizer and ionizer.

- **29-3**. Interferences fall into two categories: spectroscopic interferences and matrix interferences. In a spectroscopic interference, the interfering species has the same mass-to-charge ratio as the analyte. Matrix effects occur at high concentrations where interfering species can interact chemically or physically to change the analyte signal.
- **29-4.** The higher resolution of the double focusing spectrometer allows the ions of interest to be better separated from background ions than with a relative low resolution quadrupole spectrometer. The higher signal-to-background ratio of the double focusing instrument leads to lower detection limits than with the quadrupole instrument.
- **29-5**. The high energy of the beam of electrons used in EI sources is enough to break some chemical bonds and produce fragment ions. Such fragment ions can be useful in qualitative identification of molecular species.
- **29-6**. The ion selected by the first analyzer is called the precursor ion. It then undergoes thermal decomposition, reaction with a collision gas, or photodecomposition to form product ions that are analyzed by a second mass analyzer.

Chapter 30

30-1. (a) The *order of a reaction* is the numerical sum of the exponents of the concentration terms in the rate law for the reaction.

(c) *Enzymes* are high molecular mass organic molecules that catalyze reactions of biological importance.

(e) The *Michaelis constant* K_m is an equilibrium-like constant for the dissociation of the enzyme-substrate complex. It is defined by the equation $K_m = (k_{-1} + k_2)/k_1$, where k_1 and k_{-1} are the rate constants for the forward and reverse reactions in the formation of the enzyme-substrate complex. The term k_2 is the rate constant for the dissociation of the complex to give products.

(g) *Integral methods* use integrated forms of the rate equations to calculate concentrations from kinetic data.

30-3. Advantages would include; (1) measurements are made relatively early in the reaction before side reactions can occur; (2) measurements do not depend upon the determination of absolute concentration but rather depend upon differences in concentration; (3) selectivity is often enhanced in reaction-rate methods, particularly in enzyme-based methods. Limitations would include; (1) lower sensitivity, since reaction is not allowed to proceed to equilibrium; (2) greater dependence on conditions such as temperature, ionic strength, pH and concentration of reagents; (3) lower precision since the analytical signal is lower.

Chapter 30

30-5.
$$[A]_{r} = [A]_{0}e^{-4t}$$
 $\ln \frac{|A|_{r}}{|A|_{0}} = -kt$
For $t = t_{1/2}$, $[A]_{r} = [A]_{0}/2 - \ln \frac{|A|_{r}/2}{|A|_{0}} = \ln (1/2) = -kt_{1/2}$
 $\ln 2 = kt_{1/2}$
 $t_{1/2} = \ln 2/k = 0.693/k$
30-6. (a) $\tau = 1/k = 1/0.497 \text{ s}^{-1} = 2.01 \text{ s}$
(c) $\ln \frac{|A|_{0}}{|A|_{r}} = kt$ $\tau = 1/k = t/\ln(|A|_{0}/|A|_{r}) = 3876 \text{ s/ln}(3.16/0.496) = 2.093 \times 10^{3} \text{ s}$
(e) $t_{1/2} = 26.5 \text{ yr} \times \frac{365 \text{ d}}{1 \text{ yr}} \times \frac{24 \text{ h}}{1 \text{ d}} \times \frac{60 \text{ min}}{1 \text{ h}} \times \frac{60 \text{ s}}{1 \text{ min}} = 8.36 \times 10^{8} \text{ s}$
 $\tau = 1/k = t_{1/2}/0.693 = 8.36 \times 10^{8} \text{ s/0.693} = 1.2 \times 10^{8} \text{ s}$
30-7. (a) $\ln \frac{|A|_{r}}{|A|_{0}} = -kt$ $k = -\frac{1}{t} \ln \frac{|A|_{r}}{|A|_{0}}$
 $k = -\frac{1}{0.0100} \ln(0.75) = 28.8 \text{ s}^{-1}$
(c) $k = 0.288 \text{ s}^{-1}$
(e) $k = 1.07 \times 10^{4} \text{ s}^{-1}$
30-8. Let $m = \text{no. half-lives} = \frac{t}{t_{1/2}} = -\frac{-\frac{1}{k} \ln \frac{|A|_{0}}{|A|_{0}}}{-\frac{1}{k} \ln \frac{|A|_{0}/2}{|A|_{0}}}$
 $m = \frac{\ln|A|/|A|_{0}}{\ln 1/2} = -1.4427 \ln(|A|/|A|_{0})$
(a) $m = -1.4427 \ln 0.90 = 0.152$
(c) $m = -1.4427 \ln 0.10 = 3.3$
 198

(e)
$$m = -1.4427 \ln 0.001 = 10$$

30-10. (a) $[R]_0 = 5.00[A]_0$ where 5.00 is the ratio of the initial reagent concentration to the initial concentration of the analyte.

At 1% reaction,
$$[A] = 0.99[A]_0$$

 $[R]_{1\%} = [R] - 0.01[A]_0 = 5.00[A]_0 - 0.01[A]_0 = 4.99[A]_0$
Rate_{assumed} = $k[R][A] = k(5.00[A]_0 \times 0.99[A]_0)$
Rate_{true} = $k(4.99[A]_0 \times 0.99[A]_0)$
relative error = $\frac{k(5.00[A]_0 \times 0.99[A]_0) - k(4.99[A]_0 \times 0.99[A]_0)}{k(4.99[A]_0 \times 0.99[A]_0)}$
= $\frac{(5.00 \times 0.99) - (4.99 \times 0.99)}{k(4.99[A]_0 \times 0.99[A]_0)} = 0.00200$

$$=\frac{(5.00\times0.99)^{-(4.99\times0.99)}}{(4.99\times0.99)}=0.002$$

relative error $\times 100\% = 0.2\%$

(c) (50.00 - 49.99)/49.99 = 0.000200 or 0.02%

(e) (5.00 - 4.95)/4.95 = 0.0101 or 1.0%

(g) (100.00 - 99.95)/99.95 = 0.0005002 or 0.05%


(i) (10.000 - 9.368)/9.368 = 0.06746 or 6.7%

(k) (100.00 - 99.368)/99.368 = 0.00636 or 0.64%

30-12. (a) Plot 1/Rate versus 1/[S] for known [S] to give a linear calibration curve. Measure rate for unknown [S], calculate 1/Rate and 1/[S]_{unknown} from the working curve and find [S]_{unknown}.

(**b**) The intercept of the calibration curve is $1/v_{max}$ and the slope is K_m/v_{max} . Use the intercept to calculate $K_m =$ slope/intercept, and $v_{max} = 1$ /intercept.

30-13.

We report the concentration of the unknown as 5.5 ± 0.2 ppm

30-15.

Rate =
$$R = \frac{k_2[E]_0[tryp]_t}{[tryp]_t + K_m}$$

Assume $K_m >> [tryp]_t$

$$R = \frac{v_{\max}[\text{tryp}]_t}{K_m} \quad \text{and } [\text{tryp}]_t = K_m / v_{\max}$$

 $[tryp]_t = (0.18 \ \mu M/min)(4.0 \times 10^{-4} \ M)/(1.6 \times 10^{-3} \ \mu M/min) = 0.045 \ M$

30-17.

, at	A	В	С	D	E	F	G H	1	J	K	L	M	N
	Pb 30-17												
2	k'	0.015					-						
3	[A] ₀	0.005					0.005						-
4	$[P]_t = [A]_0($	1-exp(-kt))											
5		t	[P]	[A]	Ri	% Completion	0.004 -	/	e				
6		0.000	0	0.005									
7		0.001	7.5E-08	0.005	7.49994E-05		States and a second	/					
B		0.01		0.004999	7.49944E-05		≥ ^{0.003}	/					
3		0.1	7.49E-06	0.004993	7.49438E-05		а С _{0.002} -	/					
0		0.2	1.5E-05	0.004985	7.48876E-05		E 0.002 -	/					
1		0.5	3.74E-05	0.004963	7.47195E-05		-	/					
2		1.0	7.44E-05	0.004926	7.44403E-05			/					
3		1.2		0.004911	7.4329E-05		0.001	/					
4		1.3	9.66E-05	0.004903	7.42735E-05	1.93111	/						
5		1.4	0.000104	0.004896	7.4218E-05	2.078104	0 +	1			1		
6		1.6	0.000119	0.004881	7.41072E-05	2.371429	0.0	100.0	200	0.0	300.0	400.0	500.0
7		1.8		0.004867	7.39966E-05	2.663876				Time,	8		
8		2.0	0.000148	0.004852	7.38862E-05					inno,	•		
9		5.0	0.000361	0.004639	7.22565E-05	7.225651							
0		6.0	0.00043	0.00457	7.1724E-05								
1		7.0	0.000498	0.004502									
2		8.0	0.000565	0.004435	7.06747E-05								
3		8.2	0.000579	0.004421	7.05709E-05	11.57363							
4		10.0	0.000696	0.004304	6.9646E-05	13,9292							
5		20.0	0.001296	0.003704	6.47954E-05	25,91818							
6		50.0	0.002638	0.002362	5.27633E-05	52,76334							
7		100.0		0.001116	3.88435E-05								
8		200.0			2.37553E-05								
9		500.0			9.99447E-06								
0		1000.0		1.53E-09		99.99997							
1													
2	True Ri	7.49994E-05											
3	0.99Ri	7.42494E-05											
	0.95Ri	7.12495E-05											
15													
6	Document	tation											
		3\$3*(1-EXP(-\$B	\$2*B6))										
	Cell D5=\$E												
		7-\$C\$6)/(B7-\$B	\$6)										
		C14/0.005)*100											
		C7-C6)/(B7-B6)											
	Cell B33=0												
	Cell B34=0												

(a) The initial rate drops to $0.99R_i$ between times 1.3 and 1.4 s, which is $\approx 2\%$ of the reaction.

(b) Between 6.0 and 7.0 s so a little over 9% of the reaction is completed.

Chapter 31

- **31-1.** A *collector ion* is an ion added to a solution that forms a precipitate with the reagent which carries the desired minor species out of solution.
- **31-3.** The two events are transport of material and a spatial redistibrution of the components.
- **31-5.** (a) *Elution* is a process in which species are washed through a chromatographic column by additions of fresh mobile phase.
 - (c) The *stationary phase* in chromatography is a solid or liquid phase that is fixed in place. The mobile phase then passes over or through the stationary phase.

(e) The *retention time* for an analyte is the time interval between its injection onto a column and its appearance at the detector at the other end of the column.

(g) The *selectivity factor* α of a column toward two species is given by the equation $\alpha = K_{\rm B}/K_{\rm A}$, where $K_{\rm B}$ is the distribution constant for the more strongly retained species B and $K_{\rm A}$ is the constant for the less strongly held or more rapidly eluting species A.

- 31-7. The variables that lead to *band broadening* include: (1) large particle diameters for stationary phases; (2) large column diameters; (3) high temperatures (important only in gas chromatography); (4) for liquid stationary phases, thick layers of the immobilized liquid; and (5) very rapid or very slow flow rates.
- **31-9.** Determine the retention time t_R for a solute and the width of the solute peak at its base, W. The number of plates N is then $N = 16(t_R/W)^2$.

31-11.
$$[X]_i = \left(\frac{V_{aq}}{V_{org}K + V_{aq}}\right)^i [X]_0$$

(a) $[X]_1 = \left(\frac{50.0}{40.0 \times 8.9 + 50.0}\right) (0.200) = 0.0246 \text{ M}$

(**b**)
$$[X]_2 = \left(\frac{50.0}{20.0 \times 8.9 + 50.0}\right)^2 (0.200) = 9.62 \times 10^{-3} M$$

(**c**) $[X]_4 = \left(\frac{50.0}{10.0 \times 8.9 + 50.0}\right)^4 (0.200) = 3.35 \times 10^{-3} M$
(**d**) $[X]_8 = \left(\frac{50.0}{5.0 \times 8.9 + 50.0}\right)^8 (0.200) = 1.23 \times 10^{-3} M$

31-13.
$$[A]_{i} = \left(\frac{V_{aq}}{V_{org}K + V_{aq}}\right)^{i} [A]_{0}$$
 $i = \frac{\log([A]_{i} / [A]_{0})}{\log\left(\frac{V_{aq}}{V_{org}K + V_{aq}}\right)}$

(a) $i = \frac{\log\left(\frac{1.00 \times 10^{-4}}{0.0500}\right)}{\log\left(\frac{25.0}{25.0 \times 8.9 + 25.0}\right)} = 2.7$ extractions. So 3 extractions are needed.

The total volume would be 75 mL with 3 extractions.

(**b**) As in part (a), i = 4.09 extractions, so 5 extractions are needed.

The total volume would be $5 \times 10 \text{ mL} = 50 \text{ mL}$

(c) i = 11.6 so 12 extractions are needed

The total volume would be $12 \times 2 \text{ mL} = 24 \text{ mL}$

31.15. If 99% of the solute is removed then 1% of solute remains and $[A]_i / [A]_0 = 0.01$.

(a)
$$\frac{[A]_i}{[A]_0} = \left(\frac{50.0}{25.0K + 50.0}\right)^2 = 0.01$$

(0.01)^{1/2}(25.0K + 50.0) = 50.0
2.5K + 5.0 = 50.0
 $K = (50.0 - 5.0)/2.5 = 18.0$

203

(b)
$$\frac{[A]_i}{[A]_0} = \left(\frac{50.0}{10.0K + 50.0}\right)^5 = 0.01$$

 $(0.01)^{1/5}(10.0K + 50.0) = 50.0$
 $3.98K + 19.9 = 50.0$
 $K = (50.0 - 19.9)/3.98 = 7.56$

31-16. (a) If 1.00×10^{-4} % of the solute remains, $[A]_i / [A]_0 = 1.00 \times 10^{-6}$.

$$\frac{[A]_i}{[A]_0} = \left(\frac{30.0}{10.0K + 30.0}\right)^4 = 1.00 \times 10^{-6}$$
$$(1 \times 10^{-6})^{1/4} (10.0K + 30.0) = 30.0$$
$$0.316K + 0.949 = 30.0$$
$$K = (30.0 - 0.949)/0.31 = 91.9$$
$$K = (30.0 - 3.00)/1.00 = 27.0$$

31-17. (a) Recognizing that in each of the solutions [HA] = 0.0750 due to dilution, from the data

for solution 1,

$$[HA]_{aq} = \frac{25.0(0.0750) - 25.0(0.0454)}{25.0} = 0.0296 \text{ M}$$

$$K = [HA]_{org}/[HA]_{aq} = 0.0454/0.0296 = 1.53$$

(**b**) For solution 3, after extraction

$$[HA]_{aq} = [HA]_{org} / K = 0.0225 / 1.53 = 0.0147 M$$
$$[A^{-}] = (mols HA_{tot} - mols HA_{aq} - mols HA_{org})/(25.0 mL)$$
$$[A^{-}] = \frac{(25.0)(0.0750) - (25.0)(0.0147) - (25.0)(0.0225)}{25.0} = 0.0378 M$$

(c) Since $[H^+] = [A^-], K_a = (0.0378)^2/(0.0147) = 0.0972$

204

31-19. (a) amount H⁺ resulting from exchange = 15.3 mL × 0.0202 mmol/mL = 0.3091 mmol mmols H⁺ = mol cation = 0.3091 in 0.0250 L sample 0.3091 mmol cation/0.0250 L = 12.36 mmol cation/L (b) $\frac{12.36 \text{ mmol cation}}{L} \times \frac{1 \text{ mmol CaCO}_3}{2 \text{ mmol cation}} \times \frac{100.087 \text{ mg CaCO}_3}{\text{mmol CaCO}_3} = 619 \text{ mg CaCO}_3/L$ **31-21.** [HCl] = 17.53 mL × $\frac{0.02932 \text{ mmol NaOH}}{\text{mL}} \times \frac{1 \text{ mmol HCl}}{1 \text{ mmol NaOH}} \times \frac{1}{25.00 \text{ mL}}$ = 0.02056 mmol/mL amount H₃O⁺/mL from exchange = 35.94 mL×0.02932 mmol/mL/10.00 mL = 0.10538

= (no. mmol HCl + $2 \times$ no. mmol MgCl₂)/mL

mmol MgCl₂/mL = (0.10536 - 0.02056)/2 = 0.0424

The solution is thus 0.02056 M in HCl and 0.0424 M in MgCl₂.

31-23. From equation 31-13,

$$u_0 = F/\varepsilon \pi r^2 = F/\varepsilon \pi (d/2)^2 = \frac{48 \text{ cm}^3/\text{min}}{0.43 \times 3.1415 \times \left(\frac{0.50 \text{ cm}}{2}\right)^2} \left(\frac{1 \text{ min}}{60 \text{ s}}\right) = 9.5 \text{ cm/s}$$

31-25. (a) $k = (t_R - t_M)/t_M$

For A, $k_A = (5.4 - 3.1)/3.1 = 0.742 = 0.74$ For B, $k_B = (13.3 - 3.1)/3.1 = 3.29 = 3.3$ For C, $k_C = (14.1 - 3.1)/3.1 = 3.55 = 3.5$ For D, $k_D = (21.6 - 3.1)/3.1 = 5.97 = 6.0$

(b) $K = k V_M / V_S$

For A, $K_A = 0.742 \times 1.37 / 0.164 = 6.2$

For compound B, $K_B = 3.29 \times 1.37 \ 0.164 = 27$

For compound C, $K_C = 3.55 \times 1.37/0.164 = 30$

For compound D, $K_D = 5.97 \times 1.37/0.164 = 50$

Problems 31-28 through 31-31: See next two spreadsheets

	A	В	С	D	E
1	Problem 31-28				
2	Compound	t _R , min	W	N	
3	Air	1.9			
4	Methylcyclohexane	10	0.76	2770.083	
5	Methylcyclohexene	10.9	0.82	2827.127	
6	Toluene	13.4	1.06	2556.924	
7					
8	Average N			2718.045	
9	Std. Dev.			142.4196	
10	Column Length, L			40	
11	Plate Height, H			0.014716	
12	Spreadsheet Docume	ntaion			
13	Cell D4=16*(B4/C4)^2				
14	Cell D8=AVERAGE(D4	,			
15	Cell D9=STDEV.S(D4:	D6)			
16	Cell D11=D10/D8				
17	B 11 B 100				
18	Problem 31-29				
19	R _s (methylcylohexene -	methyl cyclo	phexane)		1.14
20	R_{s} (methylcyclohexene	- toluene)			2.66
21	$R_{\rm s}$ (toluene - methylcylo	hexane)			3.74
22	Spreadsheet Docume	ntation			
23	Cell E19=2*(B5-B4)/(C3	5+C4)			
24	Cell E21=2*(B6-B4)/(C4	4+C6)			
25					
26	Problem 31-30				
27	To obtain $R_s = 1.75$	N 2	6413.6		
28	Column Length, L		94.38549		
29	Retention time t_R		25.72005		
30	Spreadsheet Docume	ntation			
31	Cell C27=D8*1.75^2/E	19^2			
32	Cell C28=C27*D11				
33	Cell C29=B5*1.75^2/E1	9^2			

The following spreadsheet is a continuation of the previous spreadsheet.

	A	В	С	D	E	
35	Problem 31-31					
36	k (methylcyclohexane)				4.263158	
37	k (methylcyclohexene)				4.736842	
38	k (toluene)				6.052632	
39	V _M				62.6	
40	Vs				19.6	
41	K (methylcyclohexane)				13.62	
42	K (methylcyclohexene)				15.13	
43	K (toluene)				19.33	
44	α (methylcyclohexane-methylcyclohexene)				1.11	
45	Spreadsheet Documentation					
46	Cell E36=(B4-\$B\$3)/\$B\$3					
47	Cell E41=E36*\$E\$39/\$E\$40					
48	Cell E44=(B5-B3)/(B4-B					

Problems 31-32 and 31-33

	Α	В	С	D	Е	F	G
1	Problem 31-32		Problem 31-33				
2							
3	K (M)	5.99		5.81			
4	<i>K</i> (N)	6.16		6.20			
5	R	1.5					
6	$V_{\rm s}/V_{\rm M}$	0.425					
7	Н	1.50E-03					
8	F	6.75					
9							
10	k (M)	2.54575		2.54575			
11	k (N)	2.618		2.618			
12	α	1.028381		1.067126			
13	Ν	90274.26		17376.19			
14	L	135.4114		26.06428			
15	$(t_R)_N$	72.5805		13.97046			
16	Spreadsheet Documentation						
17	Cell B10=\$	B\$3*\$B\$6					
18	Cell B11=\$B\$4*\$B\$6						
19	Cell B12=B4/B3						
20	Cell B13=16*\$B\$5^2*(B12/(B12-1))^2*((1+B11)/B11)^2						
21	Cell B14=E	313*\$B\$7					
22	Cell B15=(16*\$B\$5^2*	\$B\$7	/\$B\$8)*(B12	2/(B12-1))^2	2*(1+B11)^3	3/B11^2

- **32-1.** In *gas-liquid chromatography*, the stationary phase is a liquid that is immobilized on a solid. Retention of sample constituents involves equilibria between a gaseous and a liquid phase. In *gas-solid chromatography*, the stationary phase is a solid surface that retains analytes by physical adsorption. Here separation involves adsorption equilibria.
- **32-3.** Gas-solid chromatography is used primarily for separating low molecular mass gaseous species, such as carbon dioxide, carbon monoxide and oxides of nitrogen.
- **32-5.** A chromatogram is a plot of detector response versus time. The peak position, retention time, can reveal the identity of the compound eluting. The peak area is related to the concentration of the compound.
- **32-7.** In *open tubular or capillary columns,* the stationary phase is held on the inner surface of a capillary, whereas in *packed columns,* the stationary phase is supported on particles that are contained in a glass or metal tube. Open tubular columns contain an enormous number of plates that permit rapid separations of closely related species. They suffer from small sample capacities.
- **32-9.** Sample injection volume, carrier gas flow rate and column condition are among the parameters which must be controlled for highest precision quantitative GC. The use of an internal standard can minimize the impact of variations in these parameters.
- **32-11.** (a) Advantages of thermal conductivity: general applicability, large linear range, simplicity, nondestructive.

Disadvantage: low sensitivity.

(b) Advantages of flame ionization: high sensitivity, large linear range, low noise,

ruggedness, ease of use, and response that is largely independent of flow rate.

Disadvantage: destructive.

(c) Advantages of electron capture: high sensitivity selectivity towards halogen-

containing compounds and several others, nondestructive.

Disadvantage: small linear range.

(d) Advantages of thermionic detector: high sensitivity for compounds containing nitrogen and phosphorus, good linear range.

Disadvantages: destructive, not applicable for many analytes.

(e) Advantages of photoionization: versatility, nondestructive, large linear range.Disadvantages: not widely available, expensive.

- 32-13. Megabore columns are open tubular columns that have a greater inside diameter (530 μm) than typical open tubular columns (150 to 320 μm). Megabore columns can tolerate sample sizes similar to those for packed columns, but with significantly improved performance characteristics. Thus, megabore columns can be used for preparative scale GC purification of mixtures where the compound of interest is to be collected and further analyzed using other analytical techniques.
- **32-15.** Currently, liquid stationary phases are generally bonded and/or cross-linked in order to provide thermal stability and a more permanent stationary phase that will not leach off the column. Bonding involves attaching a monomolecular layer of the stationary phase to the packing surface by means of chemical bonds. Cross linking involves treating the stationary phase while it is in the column with a chemical reagent that creates cross links between the molecules making up the stationary phase.

- **32-17.** Fused silica columns have greater physical strength and flexibility than glass open tubular columns and are less reactive toward analytes than either glass or metal columns.
- **32-19.** (a) Band broadening arises from very high or very low flow rates, large particles making up packing, thick layers of stationary phase, low temperature, and slow injection rates.
 - (b) Band separation is enhanced by maintaining conditions so that k lies in the range of 1
 - to 10, using small particles for packing, limiting the amount of stationary phase so that

particle coatings are thin, and injecting the sample rapidly.

32-21.

	A	В	С	D	E			
1	Problem 32	-21						
2	Compound	Relative area	Correction factor	Corrected area	Percentage			
3	A	32.5	0.70	46.428571	21.09			
4	В	20.7	0.72	28.750000	13.06			
5	С	60.1	0.75	80.133333	36.40			
6	D	30.2	0.73	41.369863	18.79			
7	E	18.3	0.78	23.461538	10.66			
8								
9			Total area	220.143306				
10								
11	Spreadsheet Documentation							
12	Cell D3=B3/0	C3						
13	Cell D9=SUM(D3:D7)							
14	Cell E3=D3/	\$D\$9*100						

Chapter 33

- **33-1.** (a) Substances that are somewhat volatile and are thermally stable.
 - (c) Substances that are ionic.
 - (e) High molecular mass compounds that are soluble in nonpolar solvents.
 - (g) Chiral compounds (enantiomers).
- **33-2.** (a) In an *isocratic elution*, the solvent composition is held constant throughout the elution.

(c) In a *normal-phase packing*, the stationary phase is quite polar and the mobile phase is relatively nonpolar.

(e) In a *bonded-phase packing*, the stationary phase liquid is held in place by chemically bonding it to the solid support.

(g) In *ion-pair chromatography* a large organic counter-ion is added to the mobile phase as an ion-pairing reagent. Separation is achieved either through partitioning of the neutral ion-pair or as a result of electrostatic interactions between the ions in solution and charges on the stationary phase resulting from adsorption of the organic counter-ion.
(i) *Gel filtration* is a type of size-exclusion chromatography in which the packings are hydrophilic, and eluents are aqueous. It is used for separating high molecular mass polar compounds.

- **33-3.** (a) diethyl ether, benzene, *n*-hexane.
- **33-4.** (a) ethyl acetate, dimethylamine, acetic acid.
- **33-5.** In *adsorption chromatography*, separations are based on adsorption equilibria between the components of the sample and a solid surface. In *partition chromatography*, separations are based on distribution equilibria between two immiscible liquids.

- **33-7.** *Gel filtration* is a type of size-exclusion chromatography in which the packings are hydrophilic and eluents are aqueous. It is used for separating high molecular mass polar compounds. *Gel permeation chromatography* is a type of size-exclusion chromatography in which the packings are hydrophobic and the eluents are nonaqueous. It is used for separating high molecular mass nonpolar species.
- **33-9.** In an *isocratic elution*, the solvent composition is held constant throughout the elution. Isocratic elution works well for many types of samples and is simplest to implement. In a *gradient elution*, two or more solvents are employed and the composition of the eluent is changed continuously or in steps as the separation proceeds. Gradient elution is best used for samples in which there are some compounds separated well and others with inordinately long retention times.
- **33-11.** In *suppressor-column ion chromatography* the chromatographic column is followed by a column whose purpose is to convert the ions used for elution to molecular species that are largely nonionic and thus do not interfere with conductometric detection of the analyte species. In *single-column ion chromatography*, low capacity ion exchangers are used so that the concentrations of ions in the eluting solution can be kept low. Detection then is based on the small differences in conductivity caused by the presence of eluted sample components.
- **33-13.** Comparison of Table 33-1 with Table 32-1 suggests that the GC detectors that are suitable for HPLC are the mass spectrometer, FTIR and possible photoionization. Many of the GC detectors are unsuitable for HPLC because they require the eluting analyte components to be in the gas-phase.

213

33-15. A number of factors that influence separation are clearly temperature dependent including distribution constants and diffusion rates. In addition, temperature changes can influence selectivity if components A and B are influenced differently by changes in temperature. Because resolution depends on all these factors, resolution will also be temperature dependent.

(a) For a reversed phase chromatographic separation of a steroid mixture, selectivity and, as a consequence, separation could be influenced by temperature dependent changes in distribution coefficients.

(**b**) For an adsorption chromatographic separation of a mixture of isomers, selectivity and, as a consequence, separation could be influenced by temperature dependent changes in distribution coefficients.

- 34-1. (a) Nonvolatile or thermally unstable species that contain no chromophoric groups.
 (c) Inorganic anions and cations, amino acids, catecholamines, drugs, vitamins, carbohydrates, peptides, proteins, nucleic acids, nucleotides, and polynucleotides.
 (e) Proteins, synthetic polymers, and colloidal particles.
- **34-2.** (a) A *supercritical fluid* is a substance that is maintained above its critical temperature so that it cannot be condensed into a liquid no matter how great the pressure.

(c) In *two-dimensional thin layer chromatography*, development is carried out with two solvents that are applied successively at right angles to one another.

(e) The *critical micelle concentration* is the level above which surfactant molecules begin to form spherical aggregates made up to 40 to 100 ions with their hydrocarbon tails in the interior of the aggregate and their charged ends exposed to water on the outside.

- **34-3.** The properties of a supercritical fluid that are important in chromatography include its density, its viscosity, and the rates at which solutes diffuse in it. The magnitude of each of these lies intermediate between a typical gas and a typical liquid.
- 34-5. (a) Instruments for supercritical-fluid chromatography are very similar to those for HPLC except that in SFC there are provisions for controlling and measuring the column pressure. (b) SFC instruments differ substantially from those used for GC in that SFC instruments must be capable of operating at much higher mobile phase pressures than are typically encountered in GC'
- **34-7.** Their ability to dissolve large nonvolatile molecules, such as large *n*-alkanes and polycyclic aromatic hydrocarbons.

34-9. (a) An increase in flow rate results in a decrease in retention time.

(b) An increase in pressure results in a decrease in retention time.

(c) An increase in temperature results in a decrease in density of supercritical fluids and thus an increase in retention time.

- **34-11.** *Electroosmotic flow* is the migration of the solvent towards the cathode in an electrophoretic separation. This flow is due to the electrical double layer that develops at the silica/solution interface. At pH values higher than 3 the inside wall of the silica capillary becomes negatively charged leading to a build-up of buffer cations in the electrical double layer adjacent to the wall. The cations in this double layer are attracted to the cathode and, since they are solvated they drag the bulk solvent along with them.
- **34-13.** Under the influence of an electric field, mobile ions in solution are attracted or repelled by the negative potential of one of the electrodes. The rate of movement toward or away from a negative electrode is dependent on the net charge on the analyte and the size and shape of analyte molecules. These properties vary from species to species. Hence, the rate at which molecules migrate under the influence of the electric field vary, and the time it takes them to traverse the capillary varies, making separations possible.
- **34-15.** The electrophoretic mobility is given by

$$v = \frac{\mu_{\rm e}V}{L} = \frac{5.13 \times 10^{-4} \text{ cm}^2 \text{ s}^{-1} \text{ V}^{-1} \times 20000 \text{ V}}{50} = 0.2052 \text{ cm s}^{-1}$$

The electroosmotic flow rate is given as 0.65 mm s⁻¹ = 0.065 cm s⁻¹ Thus, the total flow rate = 0.2052 + 0.065 = 0.2702 cm s⁻¹, and $t = [(40.0 \text{ cm})/0.2702 \text{ cm s}^{-1})] \times (1 \text{ min}/60 \text{ s}) = 2.5 \text{ min}$

- **34-17.** Higher column efficiencies and the ease with which pseudostationary phase can be altered.
- **34-19.** B^+ followed by A^{2+} followed by C^{3+} .