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| PREFACE

This Student Solutions Manual contains detailed solutions to selected exercises in the text
Multivariable Calculus, Seventh Edition (Chapters 10-17 of Calculus, Seventh Edition, and
Calculus: Early Transcendentals, Seventh Edition) by James Stewart. Specifically, it includes solu-
tions to the odd-numbered exercises in each chapter section, review section, True-False Quiz, and
Problems Plus section. Also included are all solutions to the Concept Check questions.

Because of differences between the regular version and the Early Transcendentals version of the
text, some references are given in a dual format. In these cases, readers of the Early Transcendentals
text should use the references denoted by “ET.”

Each solution is presented in the context of the corresponding section of the text. In general,
solutions to the initial exercises involving a new concept illustrate that concept in more detail; this
knowledge is then utilized in subsequent solutions. Thus, while the intermediate steps of a solution
are given, you may need to refer back to earlier exercises in the section or prior sections for addition-
al explanation of the concepts involved. Note that, in many cases, different routes to an answer may
exist which are equally valid; also, answers can be expressed in different but equivalent forms. Thus,
the goal of this manual is not to give the definitive solution to each exercise, but rather to assist you
as a student in understanding the concepts of the text and learning how to apply them to the chal-
lenge of solving a problem.

We would like to thank James Stewart for entrusting us with the writing of this manual and offer-
ing suggestions and Kathi Townes of TECH-arts for typesetting and producing this manual as well as
creating the illustrations. We also thank Richard Stratton, Liz Covello, and Elizabeth Neustaetter of
Brooks/Cole, Cengage Learning, for their trust, assistance, and patience.

DAN CLEGG
Palomar College

BARBARA FRANK
Cape Fear Community College
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| ABBREVIATIONS AND SYMBOLS

CD  concave downward
CU  concave upward
D the domain of f
FDT  First Derivative Test
HA  horizontal asymptote(s)

I interval of convergence
I/D  Increasing/Decreasing Test
1P inflection point(s)

R radius of convergence

VA vertical asymptote(s)

CAS . ..
= indicates the use of a computer algebra system.

[|=

indicates the use of 1’Hospital’s Rule.

indicates the use of Formula j in the Table of Integrals in the back endpapers.

= indicates the use of the substitution {u = sin z, du = cosx dzx}.

[le

indicates the use of the substitution {u = cos z,du = —sinxz dz}.
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10 [ PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

Lao=t24+t y=t>—-t, —2<t<2

t | -2 -1 0 1 2
T 2 0 0 2 6
y 6 2 0 0 2

3.z =cos’t, y=1—sint, 0<t<7/2
t |0 w/6 /3 /2
z |1 3/4 1/4 0

N
y |1 1/2 1-%~013 0

S.x=3—-4, y=2-3t

(a)
t -1 0 1 2
T 7 3 -1 -5
vl 5 2 —1 —a
bz=3-4 = 4dt=-2+3 = t=—72+3,50

y=2—3t:2—3(—%x+%)=2+%x—% = yz%x—

T.a=1—1% y=t—-2, —2<t<2

@
t|-2 -1 0 1 2

x| -3 0 1 0 -3
y| -4 -3 -2 -1 0

My=t—2 = t=y+2,s0x=1-t>=1—(y+2)? =

r=—(y+2)%4+1, or x = —y* —4y — 3, with -4 <y <0

T

=]
o =
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O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

z=+Vt y=1—1t o1 =0
(a) 1
t |0 1 2 3 4 (1,0) t=1
z[0 1 1414 1732 2 0 *
y|l1l 0 -1 -2 -3
®z=vt = t=2> = y=1—-t=1—2% Sincet >0,z >0. -
2,-3) t=4
So the curve is the right half of the parabolay = 1 — 2.
(a) x = sin %6’, Y = CoS %9, —r<0<m. (b) Y
1
x? + 9% = sin? %6’ + cos? %9 = 1. For —7 < 6 < 0, we have
—1<z<0and0<y<1.For0<f<mwehave0 <z <1
and 1 > y > 0. The graph is a semicircle.
- 0 1 x
. - 1 1 :
(@) z =sint,y =csct,0 <t < §.y=csct = — = —. (b) Y
sint T
For0 <t < 5, wehave 0 < x < 1and y > 1. Thus, the curve is the K
portion of the hyperbola y = 1/x with y > 1. (L1
0 X
@z=€ = 2t=lhz = tz%ln;r. (b) Y
y=t+1:%ln$+1. 1»/'/
0 i X
(@) x =sinht,y = cosht = y? —x? = cosh®t —sinh®¢ = 1. Since (b) 7
y = cosht > 1, we have the upper branch of the hyperbola y*> — x? = 1. /
1
0 X

x=342cost,y=1+2sint,7/2 <t <3w/2. ByExample4 withr =2, h = 3, and k = 1, the motion of the particle
takes place on a circle centered at (3, 1) with a radius of 2. As ¢ goes from Z to 37", the particle starts at the point (3, 3) and

moves counterclockwise along the circle (z — 3)% 4 (y — 1)> = 4to (3, —1) [one-half of a circle].

2 2
sin?t +cos?t=1 = (%) + (%) = 1. The motion of the

s t goes from —7 to 5, the particle starts at the point (0, —2) and moves

r =>5sint,y =2cost = sint= %, cost = %
particle takes place on an ellipse centered at (0, 0). A
clockwise around the ellipse 3 times.

We must have 1 < z < 4 and 2 < y < 3. So the graph of the curve must be contained in the rectangle [1, 4] by [2, 3].

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 10.1  CURVES DEFINED BY PARAMETRIC EQUATIONS U

25. When ¢t = —1, (z,y) = (0,—1). As ¢ increases to 0, z decreases to —1 and y Y
increases to 0. As ¢ increases from 0 to 1, x increases to 0 and y increases to 1. /(i o
As t increases beyond 1, both 2 and y increase. For ¢t < —1, x is positive and /
decreasing and y is negative and increasing. We could achieve greater accuracy (;1,00)\ 0-1) 1= _lx

by estimating - and y-values for selected values of ¢ from the given graphs and

plotting the corresponding points.

27. When t = 0 we see that = 0 and y = 0, so the curve starts at the origin. As ¢
increases from 0 to %, the graphs show that y increases from 0 to 1 while x

increases from 0 to 1, decreases to 0 and to —1, then increases back to 0, so we

arrive at the point (0, 1). Similarly, as ¢ increases from % to 1, y decreases from 1
to 0 while x repeats its pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating x- and

y-values for selected values of ¢ from the given graphs and plotting the corresponding points.

29. Use y = t and x = ¢t — 2 sin 7t with a t-interval of [—, 7].

-

M. (@) z=xz1+ (x2 —x1)t, y = y1 + (y2 — y1)t, 0 < ¢ < 1. Clearly the curve passes through P (z1,y1) when ¢t = 0 and

through P> (x2,y2) whent = 1. For 0 < t < 1, x is strictly between z1 and x5 and y is strictly between y1 and y». For

Y2 — 1
= (

x — x1), which is the equation of the line through
T2 — X1

every value of ¢, x and y satisfy the relation y — y1 =

Pl(l’l, y1) and Pz(xz, yg).

Finally, any point (z, y) on that line satisfies you _ T ; if we call that common value ¢, then the given
Y2 — Y1 T2 — T1

3

parametric equations yield the point (x, y); and any (x, y) on the line between P (z1,y1) and Pz (x2, y2) yields a value of

t in [0, 1]. So the given parametric equations exactly specify the line segment from P; (x1,y1) to Pz (x2,y2).

b)z=-2+3—-(-2)t=-2+5tandy=7+(-1-T)t=7—8tfor0 <t <1.

33. The circle 2° + (y — 1)® = 4 has center (0, 1) and radius 2, so by Example 4 it can be represented by = = 2 cost,

y =1+ 2sint, 0 <t < 27. This representation gives us the circle with a counterclockwise orientation starting at (2, 1).

(a) To get a clockwise orientation, we could change the equations to x = 2cost,y = 1 — 2sint, 0 <t < 27.

(b) To get three times around in the counterclockwise direction, we use the original equations x = 2 cost, y = 1 + 2 sin ¢ with

the domain expanded to 0 < t < 6.

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
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39.

O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(c) To start at (0, 3) using the original equations, we must have 1 = 0; that is, 2 cost = 0. Hence, ¢ = 5. So we use
x =2cost,y=1+2sint, 7 <t < 377'
Alternatively, if we want ¢ to start at 0, we could change the equations of the curve. For example, we could use
r=—2sint,y =14+ 2cost,0 <t <.
Big circle: 1t’s centered at (2, 2) with a radius of 2, so by Example 4, parametric equations are
=2+ 2cost, y =2+ 2sint, 0<t<2r
Small circles: They are centered at (1, 3) and (3, 3) with a radius of 0.1. By Example 4, parametric equations are
(left) xr=140.1cost, y =3+ 0.1sint, 0<t<2r
and (right) r=340.1cost, y =3+ 0.1sint, 0<t<2r
Semicircle: 1t’s the lower half of a circle centered at (2, 2) with radius 1. By Example 4, parametric equations are
r =2+ lcost, y =2+ 1lsint, T<t<2mw
To get all four graphs on the same screen with a typical graphing calculator, we need to change the last ¢-interval to[0, 27] in

order to match the others. We can do this by changing ¢ to 0.5¢. This change gives us the upper half. There are several ways to

get the lower half—one is to change the “+” to a “—” in the y-assignment, giving us

z = 2+ 1cos(0.5t), y =2 — 1sin(0.5¢t), 0<t<2r

@z=t = t:x1/3,soy:t2:xz/3. bz=t" = t:x1/6,s0y:t4:x4/6:m2/3.
We get the entire curve y = 2%/2 traversed in a left to Since z = t° > 0, we only get the right half of the
right direction. curve y = /3.

Y y
x=thy=+ x=15
y=t* >0
/'
“T<o
0 X 0 X
©r=e%= (" [soet =23, Y
x=e ¥
—2t —t\2 1/3\2 2/3 ’
y=e " =(e) :(.r/)::(:/. y=e? | 1<0
Ift < 0, then x and y are both larger than 1. If ¢ > 0, then = and y > (/
11
are between 0 and 1. Since > 0 and y > 0, the curve never quite 0 ”
reaches the origin.
The case 5 < 6 <  is illustrated. C has coordinates (76, r) as in Example 7, Y
. _ P i
and @ has coordinates (10, r + r cos(m — 6)) = (rf,r(1 — cos0)) G0

[since cos(m — a)) = cos 7 cos « + sin 7 sinaw = — cos &, so P has 1C

0
coordinates (rf — rsin(m — 0),7(1 — cosd)) = (r(8 —sin ), (1 — cos 60))
[since sin(m — &) = sin 7 cos & — cos 7 sin & = sin «r]. Again we have the 0f——ro — x

parametric equations x = r(6 — sinf), y = r(1 — cos9).

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
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43.

45.

47.

SECTION 10.1  CURVES DEFINED BY PARAMETRIC EQUATIONS U

It is apparent that x = |OQ)| and y = |QP| = |ST'|. From the diagram,

z = |0Q| = acosfandy = |ST| = bsin . Thus, the parametric equations are

S
x = acosf and y = bsin 6. To eliminate 6 we rearrange: sinf = y/b = N b R

sin?@ = (y/b)* andcos@ = z/a = cos?6 = (z/a)’. Adding the two Qj Q x

equations: sin” @ 4 cos® @ = 1 = 2 /a® 4 3 /b*. Thus, we have an ellipse.

C = (2acot 0, 2a), so the z-coordinate of P is x = 2a cot §. Let B = (0, 2a). Y

2
Then ZOAB is aright angle and ZOBA = 6, so |OA| = 2asin 6 and _/a\
A = ((2asin ) cos 0, (2a sin 6) sin §). Thus, the y-coordinate of P

0] X

is y = 2asin? 4.

(a) 4 There are 2 points of intersection:

(—3,0) and approximately (—2.1,1.4).

_\ 6
N

(b) A collision point occurs when z1 = x2 and y1 = y2 for the same ¢. So solve the equations:
3sint = -3 +cost (1)
2cost =1+ sint 2)
From (2), sint = 2cost — 1. Substituting into (1), we get 3(2cost — 1) = =3 4+ cost = bHcost=0 (x) =
cost=0 = t=For 37” We check that t = 37” satisfies (1) and (2) but ¢ = 7 does not. So the only collision point

occurs when t = 37”, and this gives the point (—3,0). [We could check our work by graphing 1 and z together as

functions of ¢ and, on another plot, y1 and y» as functions of ¢. If we do so, we see that the only value of ¢ for which both

pairs of graphs intersect is t = %’T.]

(c) The circle is centered at (3, 1) instead of (—3, 1). There are still 2 intersection points: (3, 0) and (2.1, 1.4), but there are
no collision points, since (*) in part (b) becomes 5cost =6 = cost = g > 1.
x =%,y = t> — ct. We use a graphing device to produce the graphs for various values of ¢ with —7 < t < 7. Note that all

the members of the family are symmetric about the x-axis. For ¢ < 0, the graph does not cross itself, but for c = 0 it has a

cusp at (0, 0) and for ¢ > 0 the graph crosses itself at z = ¢, so the loop grows larger as ¢ increases.

3 1

-3 -1

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

5



6 [ CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

49. x =t+acost,y =t+ asint,a > 0. From the first figure, we see that
curves roughly follow the line y = x, and they start having loops when a

is between 1.4 and 1.6. The loops increase in size as a increases.

While not required, the following is a solution to determine the exact values for which the curve has a loop,
that is, we seek the values of a for which there exist parameter values ¢ and w such that ¢ < u and

(t+acost,t+asint) = (u+ acosu,u + asinu).

) //f**"——\ In the diagram at the left, 7" denotes the point (¢, t), U the point (u, u),
f’é_\ “ 7747\\ and P the point (¢ + acost, ¢t + asint) = (u 4+ acosu,u + asinu).
—\ a | -
// a t S Since PT = PU = a, the triangle PTU is isosceles. Therefore its base
. \\474\/ angles, « = ZPTU and 8 = ZPUT are equal. Since a« =t — 7 and
// 6 =2m— ‘%’r —u= 5I u, the relation a = 3 implies that
X
Since TU = distance((t, t), = /2(u— )2 = /2 (u — t), we see that r
TU (- |
cosa = 2— = (u t)/\/i, sou —t = v/2acos a, that is,
PT a
uft:\/iacos(t——) 2). Nowcos(t Z) :sin[g—(t—§)} :sin(%”—t), ,
a ,—E—| B
so we can rewrite (2) as u — t = v/2asin(2 — t) (2'). Subtracting (2') from (1) and T u—t bi/*t U
V2 2
dividing by 2, we obtain t = 3% — ‘fa sin(28 —t),or & —t = N sin(28 —t) (3). | J20 -1 |

Since a > 0 and ¢ < wu, it follows from (2”) that sin (2% ) > 0. Thus from (3) we see that t < 3%, [We have
implicitly assumed that 0 < ¢ < 7 by the way we drew our diagram, but we lost no generality by doing so since replacing ¢

by ¢ + 27 merely increases x and y by 27. The curve’s basic shape repeats every time we change ¢ by 27.] Solving for a in

Va(E 1)
sin(%’r —t) '

[Asz—>0+, thatis,as t — (%)~ a—>\/_}

. 2 .
3), we geta = Write z = %” —t. Thena = #,wherez > 0. Nowsinz < zforz > 0,50 a > v/2.
11 2

51. Note that all the Lissajous figures are symmetric about the z-axis. The parameters a and b simply stretch the graph in the

x- and y-directions respectively. For a = b = n = 1 the graph is simply a circle with radius 1. For n = 2 the graph crosses

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 10.2 CALCULUS WITH PARAMETRICCURVES 0O 7

itself at the origin and there are loops above and below the x-axis. In general, the figures have n — 1 points of intersection,

all of which are on the y-axis, and a total of n closed loops.

2.1
) —(a,b):(é,Z) — (a,b) = (2,3)
— (a,b)=(3,2)
1+ (a,b)=(2,1)
2.1 -3.1 3.1
-2.1
n=2
10.2 Calculus with Parametric Curves
. dy dx . dy dy/dt 2t + 1
1. x =tsint, y=t>+t = —= =2t+1,— =tcost t,and == = = .
v ismb Y + dt +h dt cost + sint, an dx  dz/dt  tcost+sint
dy dx dy dy/dt  —3t3
Lao=14+4t—t* y=2-t*t=1 —=-3t,— =4—2tand = = = . Whent = 1,
=L v dt dt M T dejat  d—2r "
(z,y) = (4,1) and dy/dz = —£, so an equation of the tangent to the curve at the point corresponding to ¢ = 1 is

y—1=-3(@z—4),ory=—-32+7

d d t t t i
5. x =tcost, y =tsint; t = 7. Z—?z =tcost + sint, d—f = t(—sint) + cost, and Z—i = dzézt = —tc;)isntt—sgstt'

When ¢t = 7, (z,y) = (—=,0) and dy/dx = —7/(—1) = =, so an equation of the tangent to the curve at the point

corresponding to t = wisy — 0 = w[x — (—)], or y = wx + 7°.

dy de 1 dy dy/dt 2t 9
7. =141 =242 (1,3). =2 =2t — == = = = =2t2. At(1
@@ =1+Int, y=1"+2 (1,3). Zr =2 7 =7,and 5 dejdt ~ 1t 2 t(1,3),

z=14+Int=1 = Int=0 = t:landj—z:2,soanequationofthetangentisy—3:2(35—1),
ory =2x + 1.

M z=14+Int = Int=z—-1 = t=c" Lsoy=1t>+2=(c""12+2=e"2 42 andy =e>*72.2.
At (1,3),y = 2™ ~=2.92 = 2 50 an equation of the tangent is y — 3 = 2(x — 1), ory = 2z + 1.

9. x = 6sint, y =t> +; (0,0). 20
dy dy/dt 2t+1

dr  dx/dt 6cost’

The point (0, 0) corresponds to ¢ = 0, so the

slope of the tangent at that point is %. An equation of the tangent is therefore

y—O:%(w—O),ory:%x.

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
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O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

d (dy
dy _dy/dt _2t+1 1 d?y E(%) —1/(2t?) 1

=41, y=t>+t = = = =1+ -— = = =-—T3
r=rrby=tAt = T a2 w7 @ deja 2 43

2
The curve is CU when % > 0, that is, when t < 0.

_ dy dy/dt —tet4+et  eTH1-1t) _
. = t —_— = = = = 2t —
r=¢€, y=te = o o /i = o e '1-t) =
(&)
2 T\ g —2t(_ 1\ (_9,—2t =2t _
dy _dt\de) 7 (Z)+{A-t)(=2e77) (Z1=2+2) _ e~3!(2t — 3). The curve is CU when
dz? dx/dt et et

d2y : 3
T2 > 0, thatis, when t > 3.

r =2sint, y =3cost, 0 <t < 2.
d(dy
dy _ dy/dt _ —3sint 3 d*y  dt\dx —3sec’t 3

= = = —Ztant, s0 —2 = = ==
dr  dz/dt  2cost g ARE 50 g dx /dt 2cost 4

The curve is CU whensec®t <0 = sect<0 = cost<0 = §<t<37“.

=3 _ = 2_ —_— = —_— = = 2
=t 3, y=t 3. 7t 2t,sodt 0 & t=0 &
dx 2 dx
(z,y) = (0,-3). =3t"-3=3t+1)(t—-1),s0—=0 <
dt dt -3 3
t=—-1lorl & (z,y)=(2,—2)or (—2,—2). The curve has a horizontal (—tz,:—IZ) (,2;12’
tangent at (0, —3) and vertical tangents at (2, —2) and (—2, —2). 0, -3 /
t=0
—4
x = cos 6, y = cos 30. The whole curve is traced out for 0 < 0 < 7. 2
dy 31 |
0 = —3sin 36, so dH_O & sin30=0 < 30=0,7 2w o0r37n < 0=2m/3 0=0
0=0.5. % or & (r.)= (L1, (5-1). (3.1, 0r(-1,-1), 2 :
dx . dx .
— =—sinf,so— =0 < sinf=0 < O0=0orm <
do do !
4 e -1,-1) (3:-1)
(z,y) = (1,1) or (=1, —1). Both dz and — 70 equal 0 when @ = 0 and 7. o=m 9=m/3
-2
dy in 360 - 0 L
To find the slope when 6 = 0, we find hm —= = lim ﬁ 2 im M = 9, which is the same slope when 0 = 7.
odr 6—0 —sinf 6—0 —cosf

Thus, the curve has horizontal tangents at (3, —1) and (—3, 1), and there are no vertical tangents.
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES  UJ

From the graph, it appears that the rightmost point on the curve x =t — %, y = €' 3
is about (0.6, 2). To find the exact coordinates, we find the value of ¢ for which the
graph has a vertical tangent, that is, 0 = dz/dt =1 — 6t° < t=1//6. >
Hence, the rightmost point is

5 5 1/ 5% ~1/5 I 1
(1/¥6-1/ (6 9/8) e/ ¥5) = (5-67°/°,¢" ') ~ (0.58,2.01). 0

We graph the curve x = t* — 2t® — 2¢2, y = * — ¢ in the viewing rectangle [—2, 1.1] by [~0.5, 0.5]. This rectangle
corresponds approximately to ¢ € [—1,0.8].

0.5 7.5

-2 ’ 1.1
}\_/ ’ 78-5| '3

-05 -1

We estimate that the curve has horizontal tangents at about (—1, —0.4) and (—0.17, 0.39) and vertical tangents at

dy _ dy/dt 2 —1 .
about (0, 0) and (—0.19,0.37). We calculate ﬁ = dzé FTRRTE 3_ epTE The horizontal tangents occur when

9

dy/dt =3t> —1=0 < t==+-L, so0both horizontal tangents are shown in our graph. The vertical tangents occur when

V3’

de/dt =2t(2t> =3t —2) =0 < 2t(2t+1)(t—2)=0 < t=0,—3 or2. It seems that we have missed one vertical

tangent, and indeed if we plot the curve on the ¢-interval [—1.2, 2.2] we see that there is another vertical tangent at (—8, 6).

x = cost,y =sintcost. dx/dt = —sint,dy/dt = —sin®t + cos®>t = cos 2t. Y

(z,y) =(0,0) < cost=0 < tisanoddmultiple of . Whent = %,

dr/dt = —1and dy/dt = —1,s0 dy/dz = 1. Whent = 2L, dz/dt = 1 and

dy/dt = —1. So dy/dx = —1. Thus, y = z and y = —x are both tangent to the

curve at (0, 0).

x=1r0—dsinf, y =r — dcosb.

dx dy . dy dsin@
O _dcos, Y — dsing, so Y = 4507
(@) 75 =7 —deost, 55 =dsinf,s0 70 =29

(b) If0 < d < 7, then |dcos O] < d < r,s0r —dcosf > r — d > 0. This shows that dz/d6 never vanishes,

so the trochoid can have no vertical tangent if d < 7.

dy dy/dt 4-—2t dy 4 — 2t
=28, y=14+4t—-¢t> = 2= = .N lve 2 =1 &
v vyt Ao~ dwjd 6 O SOV Gy 612

=1 &

607 +2t—4=0 & 2(3t—2)(t+1)=0 & t=2Zort=—1Ift=32, thepointis (32,2 ), andift = —1,

the point is (—2, —4).
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10 [ CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

31. By symmetry of the ellipse about the x- and y-axes,
A=4[lyde=4[° bsin0(—asinf)d0 = 4ab [;/*sin> 0 d0 = 4ab [;7/* 1(1 — cos 20) 0

= 2ab[9 — %sin 20]3/2 = 2ab(g) = mab

33. Thecurvex = 14 e,y =t — t* = t(1 — t) intersects the z-axis when y = 0,

t=0 r=1
that is, when ¢ = 0 and ¢ = 1. The corresponding values of = are 2 and 1 + e. ) \/\/
o] N
The shaded area is given by 1
rz=14e t=1
/ (yr —yp)dx = / [y(t) — = [y (t = t*)e" at
=2 t=0

= fol tet dt — fol t2el dt = fol te! dt — [tht]; +2 fol tet dt [Formula 97 or parts]
=3[ te"dt — (e —0)=3[(t— 1)et](1) —e  [Formula 96 or parts]
=3[0-(-1)]—e=3-¢

35. z =r0 —dsinf, y =r — dcosf.

= [Zyde = [7(r —dcosf)(r — dcosf)dd = [ (r* — 2dr cos 0 + d? cos® 0) df
= [r?0 — 2drsin6 + 3d*(0 + 3 sin 20)]§7r =27mr% 4+ wd?
Marx=tt+e,y=t—e ' 0<t<2 dr/dt=1—e‘anddy/dt=1+e " s0
(de/dt)? + (dy/dt)? = (1 —e )2+ (1+e )2 =1—-2 " +e 2+ 142" +e 2 =242,

Thus, L = [ \/(dz/dt)® + (dy/dt)? dt = [} /2 + 2% dt ~ 3.1416.

39. x =¢—2sint, y=1—2cost, 0 <t <4wr. dx/dt =1—2costanddy/dt = 2sint, so
(dz/dt)? + (dy/dt)? = (1 — 2cost)® + (2sint)® = 1 — 4cost + 4cos®t + 4sin® t = 5 — 4 cost.

Thus, L = [ \/(dz/dt)? + (dy/dt)? dt = [\™ /5 — dcostdt ~ 26.7298.

M.ox=1+3t2 y=4+2t3 0<t<1 dr/dt =6tanddy/dt = 6t*, so (dz/dt)* + (dy/dt)* = 36t + 36t*
1 1 2
Thus, L:/ 36t2+36t4dt:/ 6t 1+t2dt:6/ Vi (3du)  [u=1+1t du=2tdt]
0 0 1

2
=3[2u%?] =202 - 1) =2(2v2 - 1)
1
. dx . dy .
43. x =tsint, y =tcost, 0 <t < 1. T :tcostJrsmtandE = —tsint + cost, so

d 2 d 2 . . s 1
(d_gtc> + (d_ztl> =t2cos?t + 2tsint cost + sin®t + t?sin®t — 2t sint cost + cos? t

=t*(cos® t +sin®t) +sin®t + cos®t =t + 1.

Thus, L= fj VE+ 1dt 2 [MVEF 1+ Ln(t+VE+1)], = 1v2+ 2 In(1+v2).
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SECTION 10.2  CALCULUS WITH PARAMETRIC CURVES U

45, 8 x=c'cost, y=-e'sint, 0 <t < m.

(%)Z + (%)2 = [e’(cost — sint)]® + [e’(sint 4 cost)]?
= (e")?(cos®t — 2cost sint + sin® t)

+ (e')?(sin? t + 2sint cost + cos? ¢

-25 2.5
0 = e*(2cos? t + 2sin? t) = 2e*

Thus,L=fOW\/2€2fdt:f07r\/§etdt:\/5 [et]g =\/§(e”—1).

47. 14 The figure shows the curve z = sint 4 sin 1.5¢, y = cost for 0 < t < 4.

dx/dt = cost + 1.5 cos 1.5t and dy/dt = —sint, so

2.1 21 (dw/dt)® + (dy/dt)® = cos®t + 3cost cos 1.5t + 2.25 cos® 1.5t + sin’ .

Thus, L = f0477 V14 3cost cos 1.5t + 2.25cos2 1.5t dt ~ 16.7102.

-1.4

49. x =t—e, y=t+e, 6 <t <6

(%)2 + (%)2 =(1—e? 4+ (14e)? =1 —2"+e*)+ (142" +e*) =2+ 2e*, 50 L = ffﬁ V2 + 2e?t di.

Set f(t) = v/2 + 2e?t. Then by Simpson’s Rule with n = 6 and At = # = 2, we get
L~ %[f(fﬁ) +4f(—4)+2f(—2)+4f(0) +2f(2) +4f(4) + f(6)] =~ 612.3053.

51, z = sin®t, y = cos’t, 0 < t < 3.

(dx/dt)* + (dy/dt)* = (2sint cost)® + (—2costsint)? = 8sin®tcos’ t = 2sin? 2t =

/2
Distance = 03” V2|sin2t| dt =6 \/5]0"/2 sin 2t d¢ [by symmetry] = —3+/2 [cos Zt}

™
0

(since x, y > 0), and this segment is completely traversed as ¢ goes from 0 to 5. Thus, L = /2

53. x = asinf, y =bcosl, 0 < 0 < 2m.

(%)2 + (d—y)z = (acos®)® + (—bsinh)? = a® cos® O + b sin® 0 = a*(1 — sin® ) + b? sin” 0

t
2
=a® — (a® = b?) sin?0 = a® — ?sin® 0 = a® (1 - C—2 sin® 9) =a?(1 — e?sin® 0)
a
SoL = 4f07r/2 a? (1 — €2 sin? 9) df  [bysymmetry] = 4a 0”/2 V1 —e2sin? 0 db.
55. (a) x = 11cost — 4 cos(11t/2), y = 11sint — 4sin(11¢/2). 15
Notice that 0 < ¢ < 27 does not give the complete curve because

2(0) # x(27). In fact, we must take ¢ € [0, 4] in order to obtain the

complete curve, since the first term in each of the parametric equations has

27 — 47 and the least common

period 27 and the second has period 1375 = 77,

integer multiple of these two numbers is 47.
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=-3V2(-1-1)=6V2.
The full curve is traversed as ¢ goes from 0 to 5, because the curve is the segment of = + y = 1 that lies in the first quadrant

o sin2tdt = V2, as above.
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12 O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(b) We use the CAS to find the derivatives dz/dt and dy/dt, and then use Theorem 6 to find the arc length. Recent versions

of Maple express the integral [)\" \/(dz/dt)? + (dy/dt)? dt as 88E(2v/21), where E(x) is the elliptic integral

/1 — 2242
/ il ———— dt and 7 is the imaginary number /—

Some earlier versions of Maple (as well as Mathematica) cannot do the integral exactly, so we use the command
evalf (Int (sqrt (diff (x,t)"2+diff(y,t)"2),t=0..4*P1i)) ; to estimate the length, and find that the arc

length is approximately 294.03. Derive’s Para_arc_length function in the utility file Int_apps simplifies the

integral to 11 f \/ 4cost cos(45t) —4sint sin(45) + 5dt.

57. x =tsint, y =tcost, 0 <t <w/2. dx/dt =tcost+sintand dy/dt = —tsint + cost, so
(dz/dt)? + (dy/dt)? = > cos® t + 2tsint cost + sin® ¢t + t?sin® t — 2tsint cost + cos® t
=t*(cos® t +sin®t) +sin®t + cos®t =2 + 1

S = [2ryds = []/? 2nt costv/TZ + 1 dt ~ 4.7394.

59. z =1+4tet, y= (> +1)e', 0<t < 1.
(L) + (L) = (te' + )2+ [(2 + e’ + e (20))* = [e"(t + )] + [ (12 + 2t + 1)]?

=P+ 12+ HE+ D =P+ D21+ (t+1)2], so

S = [2myds = [} 2m(t* + 1)e' \/e2(t + 1)2(12 + 2t + 2) dt = [y 2m(t* + 1)e(t + 1) V12 + 2t + 2 dt ~ 103.5999.
o=t y=13 0<t <1 (L) 4 (%) = (32 + (20)? = 9t* + 442,

1 1 1
§= /0 2myy/ (L) + (L) dt = /0 2t /9t + 42 dt = 27r/ /(98 + 4) dt

0
13 13
_ u—4 1 uw=9t2 + 4,12 = (u—4)/9, _ 2m 3/2 1/2
_27r/; ( 9 )x/ﬂ(l—sdu) |:du:18tdt,50tdt:1—18du ~9.18 , (u”* —4u’") du

— [gus/z _ §u3/2] R [3u5/2 2Ou3/2} h
4 4

81

= 2 [(3-13? V13- 20- 13V13) — (3-32 — 20 8)] = 25 (24713 + 64)

63. z =acos®0, y=asin®0, 0 <6 < Z. (‘2—3)2 + (%)2 = (—3acos® 0 sin6)? + (3asin® § cos#)* = 9a”sin” § cos? 6.

S:f’r/227r asin® 6 - 3asin cosh df = 6wa> 7r/231n 0 cosfdf = $ma®[sin® 0]77/2 Sra®

65. 2 =31%, y=26% 0<t<5 = (L) 4 (%) =(6)° + (662 = 366>(1 + %) =

S= [P 2mx\/(dz/dt)? + (dy/d)2 dt = [, 2m(3t*)6t VI + 2 dt = 18w [ t2v/T+ {2 2t dt

26

1

_ 2
= 187rf126 (u—1)yudu {dz_:lmtl: ’] = 187rf126(u3/2 —u'?) du = 187r[2 5/2 _ §u3/2}

=187[(2-676v26 — 2-26v26) — (2 — 2)] = Z7(949v26 + 1)
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SECTION 10.3 POLAR COORDINATES 0 13

67. If ' is continuous and f'(t) # 0 for a < ¢ < b, then either f'(¢) > 0 for all ¢ in [a, ] or f'(t) < 0 for all ¢ in [a, b]. Thus, f
is monotonic (in fact, strictly increasing or strictly decreasing) on [a, b]. It follows that f has an inverse. Set F' = go f*,

that is, define F' by F'(z) = g(f~"(z)). Thenz = f(t) = f'(z)=t,s0y=g(t) =g(f ' (z)) = F(z).

e o _d o afdyy_ 1 [d(dy dy _ dy/dt _ g
69. (a) ¢ = tan (dw T w - a™ &) " Tr @y |#\ae )] P T deja ~ w

i @ _i g gy — 2y @_ 1 yr—aIy\ Ty — Iy . .
i (dw) =7 <x> i = i 15 ()7 2 pETEerE Using the Chain Rule, and the
t
fact that s = /O \/ (fli—f)z + (%)2 dt = 4=/ (‘;—f)z + (%)2 = (&®+ gf)l/z, we have that
d¢ _ d¢/dt _ (ij— iy 1 _ Ty —3y So s — do| | @j—&y | |#§— 3y
ds ~dsjat T\ )@ @A T G| T @ | T G
b)z=zandy = f(x) = =1 fé*Oand'*@ "—@
- Yy = - 5 - y_dx’y_dxg
Sox — |1 (d®y/dz?) — 0 - (dy/dx)| B |d?y/da?|
T T i (dy/de) R T [T+ (dy/da)T

M.xz=60—-sinf = £=1—cosl = Z=sinf,andy=1—cos = y=sinfd = ¢ = cosf. Therefore,

B |c0397c0526’fsin29{ B |c0397(c0526’+sin29)| _ |cos® —1]
(1 —cos0)2 +sin26]3/2 (1 —2cosf + cos2 +sin? 0)3/2 (2 — 2cos 0)3/2

. The top of the arch is

characterized by a horizontal tangent, and from Example 2(b) in Section 10.2, the tangent is horizontal when § = (2n — 1),

|cosm — 1] |—1—1| 1

(2—2cosm)3/2 — [2—2(-1)]3/2 4

so take n = 1 and substitute § = 7 into the expression for x: x =

73. The coordinates of T" are (r cos 6, rsin ). Since TP was unwound from ,,-R
s ;
arc TA, TP has length 7. Also ZPTQ = Z/PTR— ZQTR = 37 — 0,
T/
so P has coordinates = r cos @ + 76 cos(37 — ) = r(cos 6 + Osin6), , e
P
=rsing — rfsin(im — 0) = r(sind — 0 cos9). b

y =rsing — r@sin(im — ) = r(sin cos0) 5 < -

10.3 Polar Coordinates
1. (@ (2,%) .7) By adding 27 to §, we obtain the point (2, 2T ). The direction
3

opposite % is 4, so (—2, &) is a point that satisfies the r < 0

[y

requirement.

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



14 [ CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

P> 0: (1,5 4 om) = (1, %)

®) (1, -%)
r<0:(-1,-3 4+ 7)=(-1,%)
/0
i
©) (-1,%) > 0:(—(=1), % +7) = (1,%)
. r<0:(—1,Z+2m)=(—1,2)
o[ \2
(-1.3)
3 () x=1cosm=1(—1) = —1and

y = lsinm = 1(0) = 0 give us

the Cartesian coordinates (—1, 0).

S
s

(b)
y=2sin(-%) =2(—L) =3
0/2 give us (71,7\/5).
T3
(%)
(c) $:72COS%T7T 272(74) =+/2and

Yy = —ZSin%7T = —2(@) =2

0 gives us (\/_ , f\/i )

™,
.

(2%

—Z. Since (2, —2) is in the fourth

5. (@az=2andy=-2 = r=,/22+(-2)2=2v2and0 =tan ' () =

quadrant, the polar coordinates are (i) (2 V2, %’) and (ii) (72 V2, ST")

M z=—-landy=+3 = r=4/(-1)2+ (\/5)2 =2and§ = tan’l(‘_/—f) = 22 Since (—1,v/3) is in the second

quadrant, the polar coordinates are (i) (2, %”) and (ii) (72, 5?")
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SECTION 10.3 POLAR COORDINATES I 15

r > 1. The curve r = 1 represents a circle with center 9.7>0, 7/4 <6 < 3n/4.
O and radius 1. So 7 > 1 represents the region on or 0 = k represents a line through O.

outside the circle. Note that § can take on any value.

r=1 _37 _m
\ 0= 0=5
J 0

-
\

2<r<3, F<o<

— 17
0=-73
f‘x\\r:3
F=2—/5 W
1 A
1 1
T T
0] ]
’ 1
1’ ,l
’
’
_ 57
0="-73

Converting the polar coordinates (2, 7/3) and (4,27 /3) to Cartesian coordinates gives us (2cos Z,2sin Z) = (1,/3) and

(4cos &, 4sin 2F) = (—2,2+/3). Now use the distance formula.

d= /(w2 —2)* + (o -y = /(-2- 1+ 2V3-V3) = VT3 =vI2=2V3
=5 & 22+ y2 = 5, a circle of radius v/5 centered at the origin.

r=2cosf = r’=2rcosf & *+y*=22r & 2?-22x+1+y =1 & (z—1)>+y*>=1,acircleof
radius 1 centered at (1, 0). The first two equations are actually equivalent since 7> = 2rcos = r(r—2cosf) =0 =
r =0 or r = 2cosf. But r = 2 cos @ gives the point r = 0 (the pole) when § = 0. Thus, the equation » = 2 cos 0 is

equivalent to the compound condition (r =0 or r = 2cos6).

2

r’cos20 =1 < r?*(cos’f —sin®0) =1 < (rcosf)® — (rsinfd)® =1 < 2% —y? =1, ahyperbola centered at

the origin with foci on the z-axis.

2

- & r=2csch
sin 6

y=2 & rsinf=2 & r=

y=14+3z & rsinf@=1+3rcosf < rsinf—3rcosf =1 < r(sinf—3cosf)=1 &<

1
" sinf — 3cosf

> +y*=2cx & r>=2rcosfd & 1r>—2crcosf=0 & r(r—2ccosf)=0 < r=0orr=2ccosh.

r = 0 is included in r = 2ccos ¢ when 0 = 7 + n, so the curve is represented by the single equation r = 2c cos 6.
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27. (a) The description leads immediately to the polar equation & = %, and the Cartesian equation y = tan(%) T = % T is
slightly more difficult to derive.

(b) The easier description here is the Cartesian equation z = 3.

29. r = —2sinf

-
2,,
A 0
0 T 27 0
27 2,37/2)
31. 7 =2(1+ cosb)
-
4.
4,0)
0\/
7 Py
B.r=6, >0 .
\(271',277)
0
0 0
35. r = 4sin 36 r
g==
4+ 3
5 2 ”
(+.%)
6 1
0 ' T 0

37. r = 2cos 46

r 5 /
2 M )
A /\ /\ / g £ 2.0
0 \/ | \/ | \/ | \/2I7T LT S
-2 ’/’ ‘\\
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39.r=1-—2sinf

N w

#1. 2 =9sin 20 72
N
(3, m/4)
) 0]
0 T 270 0
3]
43. r =2 +sin36
4 (3, 7/6)
3,,
24
(0]
1
2
3w Iw Uz 0
6 6 6
45. r =1+ 2cos 20 g=2z g=Z
R 773
r \\\ ,’/
AN / 3
1 NG
T 3, (3,0)
| ™ 2m \( )
. ; f - -
o =\ [2z " an\ sz s Lz
1+ 3\/3 3 3

47. For 0 = 0, 7, and 27, r has its minimum value of about 0.5. For § = 5 and 37“, r attains its maximum value of 2

We see that the graph has a similar shape for 0 < § < wand 7 < 6 < 27.

r 2
2

1__
1
0 R 0
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49. x = rcosf = (44 2secf)cosf = 4cosh + 2. Now,r — co =

T\~ 3w\t . '
(4+2secl) w00 = 0— (F) orf — (3)7 [since we need only 2.0 6.0
consider 0 < 0 < 27],s0 lim z = lim (4cos@+ 2) = 2. Also, 0 |
r—oco 0—m/2-
r——o0o = (4+2sech) —» 0o = 60— () orf— (32)7,s0
lim z= lim (4cosf+2)= 2. Therefore, lim = =2 = x = 2isa vertical asymptote.
r——00 0—m/2F r—+too
51. To show that x = 1 is an asymptote we must prove lim z = 1.
r—too x=1
x = (r)cosf = (sinf tanf) cos @ = sin® 0. Now,r — oo = sinf tanf — co =
_ 0
60— (%) .s0 lim z= lim sin’f =1 Also,r — —oc0 = sinf tanf — —co =
r—oo 0—m /2~
0 — (%)+, so lim z= lim sin?6 = 1. Therefore, lirf r=1 = x=1is
r— —00 94.7‘—/2 T— 100

a vertical asymptote. Also notice that & = sin? @ > 0 for all , and = sin? § < 1 for all . And z # 1, since the curve is not

defined at odd multiples of 7. Therefore, the curve lies entirely within the vertical strip 0 < z < 1.

53. (a) We see that the curve r = 1 + csin 6 crosses itself at the origin, where » = 0 (in fact the inner loop corresponds to
negative r-values,) so we solve the equation of the limagon forr =0 < c¢sinf = -1 < sinf = —1/c. Now if
|c| < 1, then this equation has no solution and hence there is no inner loop. But if ¢ < —1, then on the interval (0, 27)
the equation has the two solutions § = sin™!(—1/¢) and @ = m — sin™*(—1/c), and if ¢ > 1, the solutions are
0 =7 +sin~'(1/c) and = 27 — sin~*(1/c). In each case, r < 0 for § between the two solutions, indicating a loop.

(b) For 0 < ¢ < 1, the dimple (if it exists) is characterized by the fact that y has a local maximum at = 37“ So we

. d’y . . . o s .
determine for what c-values d_eg is negative at § = 37”, since by the Second Derivative Test this indicates a maximum:

2
y=rsind =sinf + csin®f = %:COSH+2csin0c039:cos6’+csin26’ = %:fsinHJr%cosQQ.

At = 3Z, this is equal to —(—1) + 2¢(—1) = 1 — 2c, which is negative only for ¢ > 1. A similar argument shows that

for —1 < ¢ < 0, y only has a local minimum at ¢ = % (indicating a dimple) for ¢ < f%.

55. 1 =2sinfl = x=r7cosf =2sinfcosf =sin26,y =rsinf = 2sin’f =

dy dy/d0 2-2sinf cosf sin20
dr = dx/dd cos20-2  cos20 tan 26

When 6 = %, Z—i = tan (2 . %) = tang = /3. [Another method: Use Equation 3.]

5. r=1/0 = =z =rcosl = (cosh)/0,y=rsinfd = (sinh)/0 =

dy dy/d9 sin0(—1/6%)+ (1/0)cosf 6° —sin6+0cosf

dr ~ dz/df ~ cosO(—1/60%) — (1/0)sinf 6% —cosf — Osind

__dy  —O0+4n(-1)  -m
Whene_ﬂ’dx_if(—l)fw(o)_ =
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SECTION 10.3 POLAR COORDINATES O
59. r =cos20 = x =rcost =cos20 cosl,y=rsinf =cos20 sinf =
dy _ dy/df _ cos20 cosf + sinf (—2sin 20)
dr ~ dx/df  cos20 (—sin®) + cosd (—2sin 20)
oy O(VE/2) + (VE/2)(-2) _ —3
Whenf = —, —= = — —1
T 0V + (VD) V3
61. r =3cosf = x=rcosf =3cosf cosf, y=rsinf =3cosf sinf =
%g = —3sin®0+3cos’0 =3cos20=0 = 20= gor%’r & 0=7 or?ﬂT”.
So the tangent is horizontal at (%, %) and (—%, %T") [same as (%, —%)}.
% = —6sinfcosf = —3sin20 =0 = 20=0orm < 6 =0or%. Sothe tangent is vertical at (3,0) and (0, 3 ).

63. r=1+4+cos = x=rcosfd=cosb(1l+cosh), y=rsinf =sinf(1+ cosd)

=

94 = (1+ cos0) cosf —sin® @ = 2cos® 6 + cosf — 1 = (2cosf) — 1)(cosf +1) =0 = cosf=3Zor—1 =

0=%,mor 5?” = horizontal tangent at (%, %), (0, ), and (%, %’T)

42 — —(1+cos)sinf — cosfsinfd = —sin6 (1+2cosf) =0 = sinf=0orcosd = —

6=0,7, %, or &= = vertical tangent at (2,0), (3, %), and (3, %).

Note that the tangent is horizontal, not vertical when 6§ = 7, since glim % =
—m AX

65. r = asinf 4+ bcosd = r?

@ —be+ (30 +9° —ay+ (30 = (30)° + (30 = (- 30) + (v - 50

with center (3b, a) and radius $v/a? + b2.

=arsinf+brcosd = +yi=ay+br =

1
3 =

= i(GQ + b?), and this is a circle

67. r = 1 + 2sin(0/2). The parameter interval is [0, 47]. 69. r = "% — 2 cos(40).

p 2.6 \ The parameter interval is [0, 27].

3.5
-34 18
-3 3
\. J
-26

-2.5 ’

71. 7 = 1 + cos®® 0. The parameter interval is [0, 27].

1.1

—1.1
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20 O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

73. It appears that the graph of = 1 4 sin (0 — %) is the same shape as

the graph of » = 1 + sin 6, but rotated counterclockwise about the =1+ sinf
Fr=1+sin(g —%
origin by %. Similarly, the graph of r = 1 + sin(f — %) is rotated by - sinze 7% ;
%. In general, the graph of r = f(@ — «) is the same shape as that of 5 "
r = f(0), but rotated counterclockwise through « about the origin.
(- v
That is, for any point (rg, 6o) on the curve r = f(6), the point -0.9

(r0,00 + @) is on the curve 7 = f(6 — ), since 7o = f(60) = f((fo + @) — ).

75. Consider curves with polar equation = 1 4 ccos 6, where c is a real number. If ¢ = 0, we get a circle of radius 1 centered at
the pole. For 0 < ¢ < 0.5, the curve gets slightly larger, moves right, and flattens out a bit on the left side. For 0.5 < ¢ < 1,
the left side has a dimple shape. For ¢ = 1, the dimple becomes a cusp. For ¢ > 1, there is an internal loop. For ¢ > 0, the

rightmost point on the curve is (1 + ¢, 0). For ¢ < 0, the curves are reflections through the vertical axis of the curves

with ¢ > 0.

1.5 1.5 1.5 2
( \

) (D . D - D - |
-L.5 -1.5 -1.5 -2
c=0.25 c=0.75 c=1 c=2

dy dy/do
_ —= —tan#f —— 7 —tan0
77 tany = tan(¢ —6) = 1tintjn ¢>t?;ln€ g= g —= dm/j;/de
1+ —=tan6
+dw an 1+dm/d0tan6
dy _dw (ﬁ sin9+rcos9> —tane(ﬁ cos@—rsin@) sin® 0
_ @ detanez a0 a0 _ rcosf +r 050
d d in?2
d—Zer—gtane (%cosﬂfrsin0>+tan9(%sin0+rc086’> %cosé’+%~scl§s;
B rcos2 0 + rsin? 0 T
T odr dr . © dr/df
& cos? & sin?
70 cos? 6 + 70 sin® 0
10.4 Areas and Lengths in Polar Coordinates
1. r=e9", w/2<0<m.
A= / %7’2 do = / %(6_9/4)2 do = / %6_0/2 do = 3 [726_6/2}77 =—1(e ™ — ey =T/ _gT/?
/2 /2 /2 /2
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SECTION 10.4  AREAS AND LENGTHS IN POLAR COORDINATES U

3. 72 =9sin20, r >0, 0< 0 < 7/2.

/2 /2
A:/O %erez/O 1(95in20) df = [~ 4 cos20]7* = ~2(~1—1) =

/2 /2
A:/ ((4+3sin9)2d0:é/ (16 + 24 sin 6 + 9sin’ 0) do

=

—7/2 —7/2

—7/2

I
=

/2
/ (L — 2 cos20) df = [420 — 2sin20]7/> = (=
0

9. The area is bounded by r = 2sin 6 for 0 = 0 to 0 = .
A:/ %erG:%/ (2sin6’)2d0:%/ 4sin® 0 df
0 0 0
:2/ 2(1 — cos260)df = [0—%511129}”:71'
0 0

Also, note that this is a circle with radius 1, so its area is 7(1)? = 7.

27 27 2m
1. A:/ %T‘2d9:/ %(3+2c039)2d0:%/ (9 4 12 cos 0 + 4 cos® 0) df
0 0 0

2m
%/0 [9+12cos0 + 4 - $(1+ cos26)] df

[N

27
/ (11 + 12cos 0 + 2cos20) df = £ [110 + 12sin 6 + sin 20] "
0

1
2

1(22m) =11in

27 27 27
13. A:/ ir? d9:/ 1(2+5sin46)* do = %/ (4 + 4sin 46 + sin” 46) do
0 0 0

27
:%/ [4+4sin40 + (1 — cos86)] df
0

Nl=

27
/0 (%+4sin4075cos86’) dé’:%[ngcoséwf1—165in86’]§7r

3O —1) = (-1)] =

[Me)

™

/2
% / (16+9 sin® 0) do [by Theorem 4.5.6(b) [ET 5.5.7(b)]]

-0)—(0-0)

/2
-2 / [16 +9- 3(1 — cos26)] df [by Theorem 4.5.6(a) [ET 5.5.7(a)]]
0

41w

4

(2, m/2)

r=2sin 0

—4

(3, 7/2

A, )

e

(3.372

O\J

3

N
-

\/)
D
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22 0 CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

1.4

27 27
15. A:/ %TZdG:/ %(\/1+c05256’)2d6’
0 0

2.1

27 27
/0 (1 + cos® 50) df = %/0 [1+ 3(1+4 cos100)] df

1120 + & sin100]2"

= %(37r) = %7‘(

i)
s

s
&,

4

17. The curve passes through the pole whenr =0 = 4cos30 =0 = cos30=0 = 30=F+mm =
0 = % + n. The part of the shaded loop above the polar axis is traced out for
0 =0tof =m/6,s0we’lluse —7/6 and 7/6 as our limits of integration. r=4cos 36
/6 /6
A= 1(4cos30)*do = 2/ 1 (16 cos® 30) do
—7/6 0
/6 6
= 16/ 1(1+ cos66) d = [0+—s1n69]ﬁ/ =8(%)=4%nr
0
19.7r=0 = sindd=0 = 40=7mn = 0=73n r=sin 46
/4 /4 /4
A:/ 1 (sin46) dG:%/ sin® 40 df = %/ 1(1 — cos 89) do
0 0 0
/4 -
= 1[0 - 5sin80]7 = 5(§) = 57
21. r This is a limagon, with inner loop traced
r=1+ 2sin 0 (rect.) r=1+2sin6
3 out between 0 = %“ and HT“ [found by
. solving r = 0].
~/
0 1w 4
1 NS .
- _In S, Ua
0="¢ 0="¢"
37/2 37/2 3m/2
A:2/ %(1+2sin9)2d6’:/ (1+4sin9+4sin29)d6’:/ [1+4sin6+4- (1 —cos20)| db
Tw/6 Tw/6 7w /6
= [0~ 4cos0+20 —sin20]770 = (%) = (F+2vF—F) =r— 2

23. 2cos=1 = = f#=Zor

off

_1
cost = 3

w|y

—2f7r/31 [(2cos0)® —1%]do = 7T/3(4(‘,05 0—1)do

Tr/3{4[ (1+cos20)] —1}do = 7r/3(1—4—2c0s29) de

7"/3_7r

V3
3+ 3

[6’ + sin 26’}
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SECTION 10.4  AREAS AND LENGTHS IN POLAR COORDINATES U

25. To find the area inside the leminiscate 2 = 8 cos 26 and outside the circle r = 2,

we first note that the two curves intersect when 2 = 8 cos 20 and r = 2,

2=8cos26
thatis,whencos%’:%.For 77r<0§7r,cos26’:% & 20=+4n/3 TR

or £57/3 < 0 = +m/6 or 57 /6. The figure shows that the desired area is

4 times the area between the curves from 0 to 7 /6. Thus,

A=4 [ [5(8cos20) — §(2)*] d0 =8 [7/*(2c0s20 — 1) do

/6

=8 [sin26’76’}0 —8(v/3/2—7/6) = 43— 473

27. 3cosf =1+cosf < COS@Z% = 0=ZFor—

w|y

f2f7r/31 [(3cos ) — (1 + cos0)?] do =1+ cos 6

_ O”/?’(Scos 0 —2cosf —1)do = ”/3[ 4(1 4 cos260) — 2cos @ — 1] db

= foﬂ/3(3 +4cos20 —2cosf)df = [36’ + 2sin 20 — 2sm0] /3

=n+vV3-V3=nm

sin 6

29. v/3cosf =sinf = \/§=C

= tanf=+3 = 0=2Z. 0="1
os 0 r=sin6, S

fﬂ/s 1(sin®) d6’+fﬁ/32 % (\/§c039)2 do

= [7% % 3(1—cos20)d0 + [7/7 % -3+ §(1 + cos20) dO
o
= i[@— —s1n29]7r/3 %[9—{— —81n29}

HE-8) -+ 360 - (3+9)] = aeoss

_ = 3 ™ 3v3 __ 5= V3
=T T® 6 24
. sin 260
31. sin26 = cos20 = =1 = tan20=1 = 20=% =
cos 20

0=% =

A=8- ZIW/S 151n220d9*8fﬁ/8 (1 — cos46) db

=40~ Lsindd])F =4(z -1 1) =7 1

PN

33.sin20 =cos20 = tan20=1 = 20=5 = 0=3%
A= 4fﬂ/slsm20d0 [since 2 = sin 26]
/8

= 7% 25in 20 df = [~ cos20]
=—3V2-(-1)=1-3V2
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O CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

35. The darker shaded region (from 6 = 0 to @ = 27/3) represents % of the desired area plus % of the area of the inner loop.

37.

39.

41.

From this area, we’ll subtract % of the area of the inner loop (the lighter shaded region from 6 = 27/3 to @ = ), and then
double that difference to obtain the desired area.
A=2[ [ 3 (4 +cos0)” b — [ 3 (4 +cos0)” db)]

= fOQTr/B (% + cos @ + cos? 9) db — f2:/3 (i + cos @ + cos? 9) do

_ [r2w/3

=/ E+cos€+é(1+cos29)] do

= Jonsa [+ cosf+ 5(1+ cos20)] do

= Q+sm9+g+ﬂ 2‘”/3_ Q+Sln9+g+51n20 T
12 2 4 0 4 2 4 2 /3
—(53+F+5-0) -G+ +(5+F+35-%)
Z4+33=1(r+3V3)

The pole is a point of intersection.

r=23sin 60
1+sinf =3sinf = 1=2sinf = sinf = % =
_ 5
0= % or .
The other two points of intersection are (%, %) and (%, %’r)
r=1+sin6

2sin20 =1 = sin20=3 = 20=%, 3% 1% or Iz
By symmetry, the eight points of intersection are given by
r=2sin260

. 5w 13w 17w
(1,0), where 0 = 5, 22, =% and <+, and

__ 7m 11w 197 237w
(—1,0), where 0 = £5, 557, 5, and 5.

[There are many ways to describe these points. ]

The pole is a point of intersection. sin § = sin 26 = 2sinf cosf <«

sinf (1 —2cosf) =0 < sinf=0orcosf =1 =

[

0 =0,m, 5,or—% = the other intersection points are ( >, %)

and (?, %”) [by symmetry].

r=sin26
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SECTION 10.4  AREAS AND LENGTHS IN POLAR COORDINATES

43 34 3 y=2x
: A - N
—t 7 =2 .
! 0 \/ y=1+sinx
-3 3
-7 =1+ sinf
—1.4 1.4
N | \. J
-0.3 -3

25

From the first graph, we see that the pole is one point of intersection. By zooming in or using the cursor, we find the 6-values

of the intersection points to be o ~ 0.88786 ~ 0.89 and m — o =~ 2.25. (The first of these values may be more easily

estimated by plotting y = 1 + sinz and y = 2z in rectangular coordinates; see the second graph.) By symmetry, the total

area contained is twice the area contained in the first quadrant, that is,

/2

e’ /2 «a
A:2/0 1(20)° d0+2/ 1(1+sing)® d9:/ 46’2d0+/ [1+ 2sin6 + (1 — cos 20)] df

0 e

= [%93]3 + [0 —2cosf + (%9 sm20)]ﬁ/2 = %oﬁ + [(% + 1) — (a —2cosa + %a— %sinQa)] =~ 3.4645

4

b b
45. L:/ \/r2—|—(dr/d9)2d9:/ V/(2cos0)2 + (—2sin )2 df
a 0
:/ ,/4(cos29+sin29)d9:/ Vado = [20]; =
0 0

As a check, note that the curve is a circle of radius 1, so its circumference is 27 (1

) = 2.

41. L:/b\/m(w:/ZWW/(02)2+(29)2d9:/2ﬂ\/94+492d9

27 27
:/ ,/92(92+4)d9:/ 0V 6 +4do
0 0

Now let u = 6% + 4, so that du = 260 d6 [6’ df = % du} and

0 4

49. The curve r = cos*(0/4) is completely traced with 0 < @ < 4.
r? + (dr/df)* = [cos*(6/4)]* + [4cos®(0/4) - (—sin(6/4)) - i]
= cos®(0/4) + cos®(0/4) sin®(0/4)

= cos®(0/4)[cos?(0/4) + sin*(0/4)] = cos®(0/4)

= [" \/cos®(0/4) df = [, |cos®(0/4)| db

= 2f cos®(6/4)df [since cos®(0/4) > 0for0 <0 <2r] = 8f0”/2 cos’udu  [u=

dx = cosudu

—8f7r/2 1—sinzu)cosuduz8f01(1—a:2)dm |:m:sinu,

=8l -3l =80-3) = ¥

2 47r2+4 4(71.2+1)
/ 9\/92-1—4(10:/ Wadu =3 2[u?] = 142 1 1)V 42 = 8(n% 4 1)P2 1
4

1
—0.75 D 1.25

-1

|
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26 0 CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

51. One loop of the curve r = cos 26 is traced with —7/4 < 0 < 7 /4.

/4

2
r? 4 (%) = cos? 20+ (—2sin20)? = cos? 20 + 4sin® 20 = 1+ 3sin®20 = L V1 + 3sin? 20 df ~ 2.4221.
—7/4

. . . . d .
53. The curve r = sin(6sin @) is completely traced with0 < 0 < 7. r =sin(6sinf) = d_g = cos(6sin@) - 6 cos b, so

2 ™
r? 4 (%) = sin®(6sin 6) + 36 cos® O cos?(6sinh) = L/ \/sin2(6 sin @) + 36 cos? 0 cos?(6sin 6) df ~ 8.0091.
0

55. (a) From (10.2.6),

S = [P 2myy/(da/dO)? + (dy/dO)? do

= ff 2my+/r? + (dr/d0)? do [from the derivation of Equation 10.4.5]

= fab 27 sin 04/ 72 + (dr/d6)? do

(b) The curve 2 = cos 26 goes through the pole when cos20 =0 = ( 7)
0.7 2= cos 20
20 =% = 0= 7. We’ll rotate the curve from 6 = 0 to 6 = 7 and double 4\ <&
(1,0)
this value to obtain the total surface area generated.
%
dr dr\® sin®20 sin?26
?=cos20 = 2r— =-2sin20 = [(— | = = .
e "o S d6 2 cos20

/4 /4 2 i 02
S:2/ 27 v/cos 20 sin 0 | / cos 20 + (sin® 29)/60829d9=47r/ VCOSZGSinG\/WdG
0 0

/4 1 /4
=4 cos20sin ) ———=df = 4 / sinf df = 4 —cos@ﬂ/4:—4 2 1) =2 2-2
7r/0 V4 in W T ; in 7r[ }O 7r(2 ) 7r( )

10.5 Conic Sections

1. 22 =6yanda’ =4py = 4p=6 = p:%. 3.2t =—y® = ¢yP=-2z.4p=-2 = p:—%.
The vertex is (0, 0), the focus is (O, %), and the directrix The vertex is (0, 0), the focus is (f%, 0), and the
isy=—3. directrix is z = 3.

y 1
6 :
1 Py
VT2
!
©.3) i
:6 X , X
- i
:
]
g
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SECTION 10.5 CONIC SECTIONS O 27

5 (x42)° =8(y —3). 4p = 8,50 p = 2. The vertex is 792 4+2y+ 120 +25=0 =
(=2, 3), the focus is (—2, 5), and the directrix is y = 1. Vv+w+1=—-12—-24 =
y (y+1)2=—-12(x+2). 4p = —12,50p = —3.
(72.5) The vertex is (—2, —1), the focus is (—5, —1), and the
\// directrix is z = 1.
y
y=1
x
(=5,—1) e 0 x

9. The equation has the form y? = 4px, where p < 0. Since the parabola passes through (—1, 1), we have 12 = 4p(—1), so

4p = —1 and an equationis y?> = —zorz = —y>. 4dp= —1,s0p = f% and the focus is (f%, 0) while the directrix
isz = 1.
2 2

11.%+%:1 = a=VA=2b=V2c=Va? —b?=I-2 =2 The )

ellipse is centered at (0, 0), with vertices at (0, +:2). The foci are (0, £v/2). V2

N
22 2
13. 224+ 9% =9 < 3+T:1 = a=+9=3, 15. 922 — 18z + 4> =27 &
2 2 _
bZﬁZl,C:m:\/QT:\/gZQ\/i 9(1’ —21’—'—1)—'—41} =27T4+9 <
2 2
The ellipse is centered at (0, 0), with vertices (£3, 0). Iz —12+42 =36 < (1) +¥4 -1 =
4 9
The foci +2v/2,0).
e foci are ( V2 ) a=3b=2c=+v6 = center (1,0),
y
1 vertices (1, £3), foci (1,£v/5)
/—2\/5 _m Y
73!_/3 * G2
71 °
=110 3 x
1,-3)
.’K2 y2

17. The center is (0, 0), a = 3, and b = 2, so an equation is T + 9= 1. ¢ = vaZ — b2 = /5, so the foci are (0, :I:\/g)
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19.

21.

23.

25.

27.

29

31

33.

O  CHAPTER10 PARAMETRIC EQUATIONS AND POLAR COORDINATES
y2 J)Z
2_5_321 = a=5b=3c=v/25+9=34 =

center (0,0), vertices (0, £5), foci (0,4+/34), asymptotes y = +3x.

=)
-~z
3
.
<
<
Il
Wl
=

Note: 1t is helpful to draw a 2a-by-2b rectangle whose center is the center of

the hyperbola. The asymptotes are the extended diagonals of the rectangle.

(0,—/34) ym
2 2
2— 2:1 I——y—zl = :1 . y yij:'
7 —y 00 < 100~ 100 = a=0b=10, 10.10) 7
c=+/100 + 100 = 10v/2 = center (0, 0), vertices (410, 0), \
(-104/2,0)

oo | (105/2, 0)
foci (£10+/2,0), asymptotes y = 1%z = 4o 0.0 C wol

y=x,

4o —y? — 24 —4y+28=0 & ’
4(z* —6r+9) — (y* +4y+4)=-28+36—-4 <

xz—3)2 y +2)2 0
4z -3 - (y+2?2=4 & ( 1 ) 1 ) =1 = b A )]
2,-2) 4,-2)
N Nl Y
a=VI=Lb=Vi=2c=VITi=V§ = EENCIE s (3+5.-2)
center (3, —2), vertices (4, —2) and (2, —2), foci (3 + /5, —2),
asymptotes y + 2 = £2(z — 3). @, _4)\‘\

2> =y+1 < 2°=1(y+1). This s an equation of a parabola with 4p = 1, so p = 1. The vertex is (0, —1) and the

focus is (0, —3).

=4y -2y & 22+20 —4dy=0 & 22+2P-2y+1)=2 & 224+2y—-102=2 &

2 - 1)? - . . . .
% + -1 _ 1. This is an equation of an ellipse with vertices at (+£+/2,1). The foci are at (£+v/2 — 1,1) = (&1, 1).

2 a2 2 4.2 2 4.2 (y+1)272_ s :
Y'+2y=42"+3 & y +2y+1=42"4+4 & (y+1)° —4z*=4 & e = 1. This is an equation

of a hyperbola with vertices (0, —1 + 2) = (0,1) and (0, —3). The fociare at (0, —1 + 4+ 1) = (0, -1 £ /5).
The parabola with vertex (0, 0) and focus (1, 0) opens to the right and has p = 1, so its equation is 4> = 4px, or > = 4x.

The distance from the focus (—4, 0) to the directrix © = 2 is 2 — (—4) = 6, so the distance from the focus to the vertex is
1(6) = 3 and the vertex is (—1, 0). Since the focus is to the left of the vertex, p = —3. An equation is Vv =dpz+1) =

y? = —12(z + 1).
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45.

47.

49.

51.
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A parabola with vertical axis and vertex (2, 3) has equation y — 3 = a(z — 2)2. Since it passes through (1, 5), we have

5—-3=a(1-2)> = a=2,s0anequationisy — 3 = 2(x — 2)°.

The ellipse with foci (42, 0) and vertices (£5, 0) has center (0, 0) and a horizontal major axis, with a = 5 and ¢ = 2,

1'2 2

sob>=a%2—c*=25—-4=21. Anequationis—er

55 Tor b

Since the vertices are (0, 0) and (0, 8), the ellipse has center (0,4) with a vertical axis and a = 4. The foci at (0, 2) and (0, 6)

(z -0  (y—47°
b2 + a? =1 =

are 2 units from the center, so ¢ = 2 and b = v/a2? — c2 = /42 — 22 = 1/12. An equation is

2 (y-4°
LW
2" 16

L@+ " (y —4)?

An equation of an ellipse with center (—1,4) and vertex (—1,0) = 1. The focus (—1, 6) is 2 units

b2 JE
2 a2
from the center, so ¢ = 2. Thus, b* +2* = 4> = b” = 12, and the equation is @ —1i_21) + s 164) =1
R
An equation of a hyperbola with vertices (£3,0) is e 1. Foci (£5,0) = c=5and3*+b* =5 =
22
b? =25 — 9 = 16, so the equation is T 1.

The center of a hyperbola with vertices (—3, —4) and (—3,6) is (—3,1), so a = 5 and an equation is

12 2
(y 521) _ ;3) = 1. Foci (=3, —7) and (=3,9) = c=8,5052+0% =82 = b2 =64—25=39and the
(y—1* (@+3)? _

25 39

1.

equation is

1'2 2

The center of a hyperbola with vertices (%3, 0) is (0,0), so a = 3 and an equation is 37 Z—Q =
b S T
Asymptotes y = +2x = o= 2 = b =2(3) = 6 and the equation is i 1.

In Figure 8, we see that the point on the ellipse closest to a focus is the closer vertex (which is a distance
a — c from it) while the farthest point is the other vertex (at a distance of a + ¢). So for this lunar orbit,

(a—c)+ (a+c) =2a= (1728 + 110) + (1728 + 314), or a = 1940; and (a + ¢) — (a — ¢) = 2¢ = 314 — 110,
2 Y’

_ 2 _ 2 2 _ P _
or ¢ = 102. Thus, b = a c 3,753,196, and the equation is 3.763.600 + 3.753.106 1

(a) Set up the coordinate system so that A is (—200,0) and B is (200, 0).

|PA| — |PB| = (1200)(980) = 1,176,000 ft = 222 mi = 2¢ = a = 1225 and ¢ = 200 so

11 11 >

B a2 3,339,375 12122 12192

121 = 1,500,625 3,339,375
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(121)(200)? 121y° 133,575

() Duenorthof 8 = = 200 1,500,625 3339375 Y= 7539

~ 248 mi

The function whose graph is the upper branch of this hyperbola is concave upward. The function is

2

y:f(a:) 1+_ = \/b2+—1'2 SOy = bl’(b2+x2)_1/2 and

Y % [(b2 4+ 22) 7Y% 22 (% + w2)_3/2} = ab(b? + 2*)~*/2 > 0 for all z, and so f is concave upward.

2 2
(a) Ifk > 16, then £ — 16 > 0, and % + ﬁ = 1 is an ellipse since it is the sum of two squares on the left side.
2

k—16

2
(b) If0 < k < 16, then k£ — 16 < 0, and % + = 1is a hyperbola since it is the difference of two squares on the

left side.
(¢) If k < 0, then k — 16 < 0, and there is no curve since the left side is the sum of two negative terms, which cannot equal 1.
(d) In case (a), a2 = k, b2 = k — 16, and ¢® = a? — b% = 186, so the foci are at (+4,0). Incase (b), k — 16 < 0, so a® =k,

b? = 16 — k, and ¢* = a® + b® = 16, and so again the foci are at (44, 0).

P =dpy = 2o=4py = y = %, so the tangent line at (xo, yo) is Y
=4py
1’2 Xo
% — 2 (x — x0). This line passes through the point (a, —p) on the
CAp 2p
37% Zo 2 2 2
directrix, so —p — = (a—z0) = —4p° —x5=2ax0—2x5 & -
4p 2p \/ X
g —2ax0 —4p’ =0 o 22 —2az0+a®=d’+4p® & @) e

(xo —a)? = a® +4p> & x0 = a =+ +/a® + 4p2. The slopes of the tangent lines at x = a % /a2 + 4p2

+ /a2 + 4p? .
are ”ﬂ’ so the product of the two slopes is
p

a+ /a2 + 4p? a— Va2 + 4p? _ a? — (a® + 4p?) _ —4p? _
2p 2p 4p? 4p? ’

showing that the tangent lines are perpendicular.

.ZL'2

922 + 4y2 =36 & T + % = 1. We use the parametrization x = 2 cost, y = 3sint, 0 < ¢t < 27. The circumference

is given by

L= [27\/dz/dt)* + (dy/dt)2 dt = [:™ \/(—2sint)? + (Bcost)2dt = [;" \/4sin®t + 9cos? t dt
= 027r V4 +5cos?tdt

Now use Simpson’s Rule with n = 8, At = 27T8_ 0_ %, and f(t) = v/4 + 5cos? t to get

L S = T2 [£0) + 4 (5) +20(5) + 45 () +20(m) +41 (3) + 2/ () +47 (%) + f(27)] ~ 159,
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2 P v 2 —a? b
61¥—b—2:1 = b—2:T = yZ:I:E\/a:Z—cﬂ.
c 2 c
A=2/ S\/JUQ—anxQ% gx/mQ—az—%ln‘x—i—\/mQ—aQ”
:S[C\/c2—az—a21n|c+\/02—a2|+a21n\a|]
Since a? +b% = ¢2,¢? — a® = b2, and V2 — a2 = b.

b [cb—a®In(c+b) + a’lna] = g[cb—l— a’(Ina —In(b + ¢))]

a

=b%c/a + ablnfa/(b + ¢)], where ¢ = a® + b°.

£B2

2
63. 922 +4y° =36 < T + % =1 = a=3,b=2. Bysymmetry, 7 = 0. By Example 2 in Section 7.3, the area of the
top half of the ellipse is %(wab) = 3. Solve 92 + 44> = 36 for y to get an equation for the top half of the ellipse:

902 +4y° =36 o 42 =36—92> o =

7= [ jera=a [ l(ﬁm)z g =

3m J_52\2

_3 2 2 _3 132_3

so the centroid is (0,4/7).

5N

2 2 / 2
. e 2 2 b
65. Differentiating implicitly, z + g 1 = 2 + Yoo = y = 2z [y # 0]. Thus, the slope of the tangent
a? b2 a? b2 a?y
. . b2.1’1 . Y1 . Y1
line at PP is ———. The slope of F1 P is and of Fo P is . By the formula from Problems Plus, we have
a“1 x1+c¢ Tr1 —¢C
Y1 bzl‘l
tan o — 1 +c  a’yi a’y? +b%z1 (21 +¢) _ a?b? + b2exq using b22? 4 a?y? = a?b?,
N b2z1y1 a?yi(z1 ) — B2y cRriyr + aleyr and a? — b2 = ¢?
a?y1 (w1 + )
b? (cxl + a2) b2
cyi(czi +a2) oy
d
an 7b2m1 m
tan 3 = a2y, w1 —c _ —ad’yi —bxi(z1—c)  —ad’b’ +bPcry b (cz1 — a®) _ E
B b2z1y1 a?yr (r1 —¢) = V?xiy1r Axiyr —aleyr eyi(err —a?)  cn
a?y1 (21 —c)
Thus, a = .
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10.6 Conic Sections in Polar Coordinates

1.

1.

. T

The directrix « = 4 is to the right of the focus at the origin, so we use the form with “+ e cos #” in the denominator.

ed 54 4
1+ecosh 1—1—%(:050 T 2+4cosf’

(See Theorem 6 and Figure 2.) An equation is r =

. The directrix y = 2 is above the focus at the origin, so we use the form with “4 e sin #” in the denominator. An equation is

ed 1.5(2) 6

" T 1Y esnd 1415806 2+ 3smd’

. The vertex (4, 37/2) is 4 units below the focus at the origin, so the directrix is 8 units below the focus (d = 8), and we

use the form with “— esin #” in the denominator. e = 1 for a parabola, so an equation is

. ed 18) 8
" 1—esinf 1—1sinf 1—sinf’

r

. The directrix 7 = 4 sec 8 (equivalent to r cos § = 4 or © = 4) is to the right of the focus at the origin, so we will use the form

with “4 e cos 6” in the denominator. The distance from the focus to the directrix is d = 4, so an equation is

oo ed 34 2 4
T 1l4ecosf 1—0—%c059 2 24cosf’
4 1/5 4/5 . .
= L = ————— wh =zanded=: = d=1.
5—4sinf 1/5 1_%Sin9,weree 5 anCe 5
y
(a) Eccentricity = e = 2 & m/2)
(b) Since e = 4 < 1, the conic is an ellipse.
(c) Since “— esin #” appears in the denominator, the directrix is below the focus ( % Tr) o ( % ‘ 0)
at the origin, d = |Fl| = 1, so an equation of the directrix is y = —1. N x
T
(d) The vertices are (4, %) and (3, 2F).
2 1/3 2/3 . .
=—— . =__"17 _'wh =landed=% = d=+%.
"T 31 3sm0 1/3 1+lsmg oocT AMGeET3 3
y
y=2/3

(a) Eccentricity=e¢e=1 = Al

(b) Since e = 1, the conic is a parabola. (% ﬂ)/\(% O)

(c) Since “+ esin 0” appears in the denominator, the directrix is above the focus 0

=

2

at the origin. d = |F| = 2, so an equation of the directrix is y = 2.

(d) The vertex is at (5, Z ), midway between the focus and directrix.
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9 16 3/2

Bor=——0 .2 °°
" T 6+2cos0 1/6 1+ Lcosd

,wheree =1 anded =32 = d=3.

(a) Eccentricity = ¢ = +
(b) Since e = % < 1, the conic is an ellipse.
(c) Since “+e cos 0 appears in the denominator, the directrix is to the right of
the focus at the origin. d = |Fl| = %, so an equation of the directrix is
_9

(d) The vertices are (3,0) and (2, 7), so the center is midway between them,

that is, (%, 7).

15. r = ﬁ . % = %,wheree:Zanded:% = d=3.

(a) Eccentricity=¢e¢ = 2

(b) Since e = 2 > 1, the conic is a hyperbola.

(c) Since “—e cos 0 ” appears in the denominator, the directrix is to the left of
the focus at the origin. d = |FI| = £, so an equation of the directrix is
v=-3.

(d) The vertices are (—32,0) and (4, ), so the center is midway between them,
that is, (%,7().

17. @) r = ﬁlsine’ wheree =2anded =1 = d= % The eccentricity

e = 2 > 1, so the conic is a hyperbola. Since “—esin 6 ” appears in the

denominator, the directrix is below the focus at the origin. d = |FI| = 1,

so an equation of the directrix is y = f%. The vertices are (71, %) and
(3,2, so the center is midway between them, that is, (2, 2).

(b) By the discussion that precedes Example 4, the equation

1

1—2sin(0— %ﬁ)

isr=

\/’

y=—L
y=73

TN

—\
A

Ve

L/
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19. For e < 1 the curve is an ellipse. It is nearly circular when e is close to 0. As e

increases, the graph is stretched out to the right, and grows larger (that is, its

right-hand focus moves to the right while its left-hand focus remains at the

origin.) At e = 1, the curve becomes a parabola with focus at the origin.

21. |PF|=¢|Pl] = r=e[d—rcos(m—0)]=e(d+rcosl) = , Y
ed
— — ___ € p
r(l—ecosf) =ed = r T ocosd
r*\e
F x
x=—d
23. |PF|=¢|Pl] = r=e[d—rsin(0 —7)] =e(d+rsinf) = Y
0
r(l—esinf) =ed = T:e—d_ K\
1 —esinf \F X
P
l y=—d

25. We are given e = 0.093 and a = 2.28 x 108. By (7), we have

.o e’)  2.28 x 10%[1 —(0.093)°] ~ 2.26 x 10°
T 1+ecosh 1+ 0.093 cos 0 = 1+40.093cos0

27. Here 2a = length of major axis = 36.18 AU = a = 18.09 AU and e = 0.97. By (7), the equation of the orbit is

~18.09[1 — (0.97)%] 1.07 . . .
= T 097c0s0 17097050 By (8), the maximum distance from the comet to the sun is

18.09(1 + 0.97) ~ 35.64 AU or about 3.314 billion miles.

29. The minimum distance is at perihelion, where 4.6 x 107 = = a(1 — e) = a(1 — 0.206) = a(0.794) =
a = 4.6 x 107/0.794. So the maximum distance, which is at aphelion, is
r=a(l+e)= (4.6 x 107/0.794)(1.206) ~ 7.0 x 107 km.

31. From Exercise 29, we have e = 0.206 and a(1 — e) = 4.6 x 107 km. Thus, @ = 4.6 x 107/0.794. From (7), we can write the
2

e
equation of Mercury’s orbit as » = a———. So since
d Y 1+ ecosf

dr _a(l— e?)esind
d9  (1+ecosf)?

o (dr)z a®(1—-€?)? | a’(1—e®)?e’sin?0  a?(1—e?)?

a6 = 2
do (1+€COSG)2 (1+€COS€)4 (1+6C039)4 (1+2€COSQ+€ )
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the length of the orbit is

2m v /TF 2 ¥ Jecosh
L:/ V24 (dr/df)? d = a(1 — €%) 1te +2€C080d9%3.6><108 km
0

0 (1+ecosh)?

This seems reasonable, since Mercury’s orbit is nearly circular, and the circumference of a circle of radius a

is 27a &~ 3.6 x 10® km.

Review
CONCEPT CHECK

. (a) You can find d—x as a function of ¢ by calculating g

. (a) A parametric curve is a set of points of the form (z,y) = (f(¢), g(¢)), where f and g are continuous functions of a

variable ¢.

(b) Sketching a parametric curve, like sketching the graph of a function, is difficult to do in general. We can plot points on the
curve by finding f(¢) and g(t) for various values of ¢, either by hand or with a calculator or computer. Sometimes, when
f and g are given by formulas, we can eliminate ¢ from the equations = = f(¢) and y = g(t) to get a Cartesian equation

relating « and y. It may be easier to graph that equation than to work with the original formulas for z and y in terms of ¢.

dy/dt

o [if dz/dt # 0].

(b) Calculate the area as ff ydx = ff g(t) f/(t)dt [or f; g(t) f'(t)dt if the leftmost point is (f(3), g(B)) rather

than (f(a), g(@))].

@ L= [ \/z]dt)?+ (dy/d)2dt = [°/TTOP + g OF dt

(b) S = [7 2my\/(da/dt)? + (dy/dt)2 dt = [7 2mg(t)\/[F O + [ D] dt

. (a) See Figure 5 in Section 10.3.

(b) x =rcosf, y=rsinf

(c) To find a polar representation (7, 8) with » > 0 and 0 < 6 < 2, first calculate r = /22 + y2. Then € is specified by

cosf =z /randsinf = y/r.

dy  d d . . 4\ ging 0
= —(y) = (rsinf) (d6’ ) sin.¢ + 7 cos
. (a) Calculate dy =40 _ df = 49 = , where r = f(6).
de dx - d (z) 4 (rcosb) dr cosf —rsinf
do do db do

(b) Caleulate A = [* 1r2df = [’ L[ f(0)]* do

(©) L= [*\/(dz]d0)® + (dy/dB)® db = [* \/rZ + (dr/dB)Z do = [* \/[FO)® + [J'(O)] db

. (a) A parabola is a set of points in a plane whose distances from a fixed point F' (the focus) and a fixed line [ (the directrix)

are equal.
(b) 2* = 4py; y* = dpz
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7. (a) An ellipse is a set of points in a plane the sum of whose distances from two fixed points (the foci) is a constant.

2 2
T Yy _
() =+ —"— =1

8. (a) A hyperbola is a set of points in a plane the difference of whose distances from two fixed points (the foci) is a constant.

This difference should be interpreted as the larger distance minus the smaller distance.

2 2
T y _
(b)ﬁ_CQ—cﬁ_l

C2 _ a2
=4 =
©y o

9. (a) If a conic section has focus F" and corresponding directrix I, then the eccentricity e is the fixed ratio |[PF'| / | Pl| for points
P of the conic section.

(b) e < 1 for an ellipse; e > 1 for a hyperbola; e = 1 for a parabola.

e—d. r=—d:r ed ed —d:r = ed
1+ ecosf

—dr= =%  y—dr=—"* 4= S
©z=dr T—ccos0 /=% " " T1ecsmo ¥ I—csind

TRUE-FALSE QUIZ

1. False.  Consider the curve defined by z = f(t) = (t — 1)* and y = g(t) = (¢t — 1). Then ¢'(t) = 2(t — 1), 50 ¢’(1) = 0,

but its graph has a vertical tangent when t = 1. Note: The statement is true if f’(1) # 0 when ¢'(1) = 0.

3. False.  For example, if f(¢) = cost and g(¢) = sint for 0 < ¢ < 4, then the curve is a circle of radius 1, hence its length

is 27, but f047r [FO)2+[g'@)2dt = 047T V/(—sint)? + (cost)2 dt = 047T 1dt = 4, since as ¢ increases

from O to 4, the circle is traversed twice.

5. True. The curve » = 1 — sin 26 is unchanged if we rotate it through 180° about O because
1—sin2(6 +7) =1 —sin(20 + 27r) = 1 — sin 26. So it’s unchanged if we replace r by —r. (See the discussion

after Example 8 in Section 10.3.) In other words, it’s the same curve as 7 = —(1 — sin20) = sin26 — 1.

7. False.  The first pair of equations gives the portion of the parabola y = x with = > 0, whereas the second pair of equations

traces out the whole parabola y = z2.

9. True. By rotating and translating the parabola, we can assume it has an equation of the form y = cx?, where ¢ > 0.
The tangent at the point (a, ca2) is the line y — ca® = 2ca(z — a); i.e., y = 2caz — ca®. This tangent meets
the parabola at the points (x, c:cz) where cx? = 2cax — ca®. This equation is equivalent to z> = 2ax — a>

[since ¢ > 0]. Butz? = 2ax —a®> & 2°—2ax+ad*’=0 & (z—-a)’=0 & zr=a &

(z,cx?) = (a, ca®). This shows that cach tangent meets the parabola at exactly one point.
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EXERCISES

Lo=t"44t,y=2—-t,—-4<t<1t=2—y,50 y
0,6),t=—4

r=02-y)’4+42-y)=4—4dy+1y*+8—4dy=y>*-8y+12 <

x+4=1y?—8y+ 16 = (y — 4)%. This is part of a parabola with vertex

(5,
(—4, 4), opening to the right. \,: !

3. y=sech = ! :l.SinceOSGSw/2,0<:ﬂ§1andy21. Y
cosf =z

This is part of the hyperbolay = 1/x.

(L1),6=0
0 X
5. Three different sets of parametric equations for the curve y = V are
hz=t y=+1i
(i) z =1, y=1>
(iii) = tan®t, y =tant, 0 <t < 7/2
There are many other sets of equations that also give this curve.
1. (a) (4 277r> The Cartesian coordinates are x = 4 cos %’T = 4(7 é) = —2and
3
K\Lﬂ y =4sin 2¢ :4(@) = 2+/3, that is, the point (—2,2\/3).
3
o

(b) Givenz = —3and y = 3, we have r = /(—3)2 + 32 = /18 = 31/2. Also, tan ) = % = tanf = _13, and since

(—3,3) is in the second quadrant, & = 2= Thus, one set of polar coordinates for (—3, 3) is (3 /2, %), and two others are

(3v2. 42) and (-3 V3, 7).

9. r = 1 — cos §. This cardioid is r
symmetric about the polar axis. 51 (1L.%)
(2, m)
| 0
0 T 27 0
3
(.5)
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M. 7 = cos 30. Thisis a d

. 11
three-leaved rose. The curve is 0=
traced twice. -
6 . (1,0)
7'r

EE}

(=}

13. r = 1 4 cos 20. The curve is r
symmetric about the pole and 5 T
. . 2, 2,0
both the horizontal and vertical il 0 &2
axes.
+ ; + : —1+
0 ki - 3w 2m 0
2 2
3 -
15. r = e =2 > 1, so the conic is a hyperbola. de =3 =

T 1+ 2sinf

d= % and the form “+2 sin #” imply that the directrix is above the focus at

the origin and has equation y = 2. The vertices are (1, 3) and (-3, 3°).

17 2+y=2 & rcosf@+rsinf=2 & r(cosf+sinfd)=2 & r=——
cosf +sinf

19. r = (sin6)/6. Asf — too,7 — 0.
As 0 — 0,7 — 1. In the first figure,

there are an infinite number of

x-intercepts at x = mn, n a nonzero

integer. These correspond to pole

points in the second figure.

—0.25 \

—0.75

dy de 1 dy  dy/dt 2t
_ _ 2., _ _ _ 1 _ _ _ o2
. c=Int,y=1+4+1t*;t=1. dt_Qtanddt_t’sodx_dz/dt_l/t_

Whent =1, (z,y) = (0,2) and dy/dz = 2.

B.r=e? = y=rsind=e’sinfandz =rcosd =e ?cosh =

dy _ dy/df & sinf+rcosf  —esinf 4 e’ cosf —e’ _ sinf —cosf
dr ~ dx/df 4 cosf — rsing ~ —ef%cosf—efsinf —e®  cosf+sind’
When@:w,ﬂzo_i(_l):i:—l.

dx -1+0 -1

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



25.

27.

29.

3.

33.

CHAPTER10 REVIEW O 39
. dy dy/dt 1-+sint
=t t, y=1=1— t - = = —
r sty cost = dx  dx/dt 1+ cost
d (dy (14 cost) cost — (1 +sint)(—sint)
d’y _ dt \dx) _ (1 + cost)? _cost+cos’t+sint +sin®t 1+ cost+sint
de? —  dx/dt 1+ cost - (1+ cost)3 " (1+4cost)d
We graph the curve z = 3 — 3¢,y = > + ¢t + 1 for —2.2 <t < 1.2. 4
By zooming in or using a cursor, we find that the lowest point is about
(1.4,0.75). To find the exact values, we find the ¢-value at which 5
W=211=0 & 1=} & @y=(1).
—4 2.2
0
dx . . .
x =2acost —acos2t = E:—2asmt—|—2asm2t:2asmt(2cost—1)=O &
: — _ 1 _ us 5
sint=0orcost=5 = t=0,3,m o0r=.
— asint — asi dy _ o B 2.\ _ _ —
y =2asint —asin2t = EfZacost 2a cos 2t = 2a(1 4 cost — 2cos® t) = 2a(1 — cost)(1+2cost) =0 =

t:O,%’r,or%’r.

Thus the graph has vertical tangents where ¢t = %, m and %”, and horizontal tangents where ¢t = %” and 4?”. To determine

. . . dy/dt . .
what the slope is where t = 0, we use 1’Hospital’s Rule to evaluate }lr% dyédt = 0, so there is a horizontal tangent there.
—0 dz
t T Y y
0 a 0 >
bl 3 \/§
3 2 2 (=34, 0) (@, 0)
27 1 3V3 ’ i
3 | Tae| Tya .
m —3a 0
4w 1 3V3
3 | T20| —T2a =
5m 3 V3
3 | 20 | —Zoa

The curve 2 = 9 cos 50 has 10 “petals.” For instance, for — = < § < X there are two petals, one with > 0 and one

10 10°
with r < 0.
A=10["1% 4r2do =5 [/} 9cosbOdd =592 [/ cos50d = 18 sin56] ;1 = 18
] — 1 _ us
The curves intersect when4cos =2 = cosf =35 = 0=+% F=4cos 6

for —m < 6 < . The points of intersection are (2, ) and (2, —%).

N
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35. The curves intersect where 2sin# = sinf + cos =

sinff = cos® = 0= 7, and also at the origin (at which § = 3T

53
Il
ESE

on the second curve).

fﬂ/41 25sin 6) d9+f37r/41 (sin@ 4 cos 0)* df

P

Oﬂ/4 (1 —cos20)dd + & f3“/4 (1 + sin 20) do

=1[0- —51n20r/4 + [30 - —(‘,05249]37r/4 =1i(r—-1)

r=2sin 0 r=sin 6+ cos 6

37. x = 3t%, y = 23,

[2 /(602 + (612)2 dt = [7 /3617 + 36t7 dt = [ /3612 1+ €2 dt

L= [2/(dx/dt)? + (dy/dt)? dt =
[w =1+t du = 2t dt]

:fo 6|t\\/1+t2dt:6f0 t\/lJr—t2dt:6f1 ul/Q(%du)

:6.1.%[UB/Q}T:2(53/2—1):2(5\/5_1)

2

39. L= [2"\/rF+ (dr/d0)2do = [*" \/(1/0) + (—1/6)2 dO = Zﬂ 7”;2“ de

2
\Ve?+1 Va2l VAr2 +1 2 +V4An2 + 1
= | X -4 V0% +1 = — In( m—M———
[ 0 +n(0+ 0° + ) ) — o +In PR e

2\/7r2—|—1—\/47r2—|—1Jrl (27r+\/4712 )
T+ 72

[N]
FN

2

Mozx=14 =L 1<t<4 =
=41, y +2t2, <t<

S = [} omy /@] dD? T (dyJdi7 dt = [} 2w (56 + 5672) ) (2/VE)" + (12 — t-9)2 e
=27 [ (300 + 37%) @ )2 dt = 2 [ (367 + & + $t70) dt = 2 [ 510 + 2t — Le4]] = 474205

43. For all c except —1, the curve is asymptotic to the line z = 1. For ( -
i
¢ < —1, the curve bulges to the right near y = 0. As c increases, the ,."{:;? -3
bulge becomes smaller, until at ¢ = —1 the curve is the straight line z = 1. /},__1_.5\\ nl":,'::"i -1 fl
As c continues to increase, the curve bulges to the left, until at ¢ = 0 there 3 i . : ,__ny’,{,
. 7 ‘\\\\‘\

is a cusp at the origin. For ¢ > 0, there is a loop to the left of the origin, \\\_____:_:’/' ‘:\‘:\::‘* ;0'5
whose size and roundness increase as c increases. Note that the x-intercept “:\“-\‘:‘.
of the curve is always —c. \ - “'?e'
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2 2
45. % + % = 1is an ellipse with center (0, 0). 47.6y° +x —36y+55=0 &
2 = —
a=3b=2v2,c=1 = 6y —6y+9)=—(z+1) &
foci (41, 0), vertices (£3,0). (y —3)® = —¢ (¢ + 1), a parabola with vertex (1, 3),
y opening to the left, p = —5; = focus (—23,3) and
22 directrix x = —ﬁ
/>(1,0)
y
-3 0 3 X
I
22
0 X

49. The ellipse with foci (£4, 0) and vertices (£5, 0) has center (0, 0) and a horizontal major axis, with a = 5 and ¢ = 4,

sob? =a’?—c2=5%2-42=9. Anequationis%—i—%:l.

2 xZ

51. The center of a hyperbola with foci (0, £4) is (0, 0), so ¢ = 4 and an equation is y_2 —E s 1.
a

The asymptote y = 3z has slope 3, so % = % = a=3bandad’* +0* =2 = (B +p*=4> =

2 2
z o5

- =1,
72/5  8/5 72 8

100° =16 = b* = % and so a® = 16 — % = % Thus, an equation is

53. 2> = —(y — 100) has its vertex at (0, 100), so one of the vertices of the ellipse is (0, 100). Another form of the equation of a
parabola is 2> = 4p(y — 100) so 4p(y — 100) = —(y — 100) = 4p=—1 = p= —21 Therefore the shared focus is

foundat (0,222) s02c =22 —0 = ¢ = 22 and the center of the ellipse is (0, 232). So a = 100 — 222 = 43 and
2 2 2 _399)\2 _ 399
B =a?—-c%= %ngg = 25. So the equation of the ellipse is i—2 + % =1 = x_5 + % =1,
8
2 _ 2
or & n (8y —399)%
25 160,801
. . ed 4
55. Directrixx =4 = d=4,s0e=3 = 1= T ecosf ~ 3% cosd"
. . 3t 3t3
57. (a) If (a, b) lies on the curve, then there is some parameter value ¢1 such that T = a and T =b.Ift1 =0,
1 1

the point is (0, 0), which lies on the line y = x. If¢1 # 0, then the point corresponding to ¢ = tl is given by
1

3(1/ty) 33

B B 3(1/t1)2 3ty
T4+t B34

1+ (1/t1)3 3 +1

b,y =

= a. So (b,a) also lies on the curve. [Another way to see

. . . . . 3t 3t°
this is to do part (e) first; the result is immediate.] The curve intersects the line y = x when T =7 s

t=t> = t=0orl,so the points are (0,0) and (3, ).
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dy _ (1+1t°)(6t) — 3t*(3t*) _ 6t —3t*
dt (1 +13)2 T (1+13)2

(b) =0when6t —3t* =3t(2—t3) =0 = t=0o0rt= /2, so there are

horizontal tangents at (0, 0) and (\3/5 V4 ) Using the symmetry from part (a), we see that there are vertical tangents at

(0,0) and (V/4, V/2).

(c) Notice that as t — —11, we have x — —oco andy — co. Ast — —1, we have £ — oo and y — —oo. Also

3t+3°+(1+¢°)  (t+1)°  (t+1)?

y—(—z—1)=y+ax+1= e =17 7t2_t+1HOastHfl.Soy:fxflisa
slant asymptote.
de  (1+t)(3) —3t(3t%) 3—6t dy 6t —3t! dy  dy/dt  t(2—1t%)
d) — = = d fi rt (b have = = ———. S0 —= = =2
@ % 1+ )2 (T )z 2nd from part (b) we have 7 = s So o0 = Go/@t ~ 1— 2
d (dy)
d?y  dt\dzx 2(1 + %) S
Also —= = = >0 & t<——. y P
dzx? dx/dt 3(1 —2t3)3 2 Nt e
So the curve is concave upward there and has a minimum point at (0, 0) <- t=1

and a maximum point at (\3/5, \3/41) Using this together with the

information from parts (a), (b), and (c), we sketch the curve.

s s 3t 322 \° 2P 4 2mS  27P(1447) 27
@z +y = = = =
1413 1413 (1+1¢3)3 (1+1¢3)3 (141¢3)2

3t 3t2 273 3 3
3$y_3<1+t3)<1+t3> BRCETD MR

(f) We start with the equation from part (e) and substitute z = 7 cos, y = rsinf. Thenz® +4* = 30y =

3cosf sinf

3.3 3.3 2 . .
r° cos” 0 4+ r°sin® 6 = 3r“ cos @ sin 0. For r #£ 0, this givesr = ——————.
7 £ cos3 0 + sin® @

Dividing numerator and denominator

3( 1 )sin@

cosf) /) cosf)  3sech tanf
sin0 ~ 1+tan30
cos3 6

by cos® 6, we obtain r =

() The loop corresponds to € (0, %), so its area is

/2 .2 w/2 2 w/2 2 2 oo 2
A:/ T—d9:1/ (356(}9 tezn@) d0:2/ sec Gtasn 0 dG:g/ u? du [iet s = tan 0]
o 2 2 /o 1+ tan36 2 /o (1+tan30)? 2 /o (1+u?)?

= lim 2[_%(1 +u3)71}b = 3

2 0 2

(h) By symmetry, the area between the folium and the line y = —x — 1 is equal to the enclosed area in the third quadrant,
plus twice the enclosed area in the fourth quadrant. The area in the third quadrant is %, andsincey = —z—1 =
1 . .
rsinf = —rcosf —1 = r=— the area in the fourth quadrant is

sin@ + cos§’
1 [/ 1 2 3sech tan 6\’ cas 1 — 1 3
5/7”/2 {(—m> - (m) do = 5> Therefore, the total area is 3 + 2(3) = 3.
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t t o .
d t d t . .
1. 2= / cosu du,y = / Sy du, so by FTC1, we have o _ L and Y& _ ﬂ. Vertical tangent lines occur when
;U 1 u dt t dt t
dx . . .
i 0 < cost = 0. The parameter value corresponding to (z,y) = (0, 0) is t = 1, so the nearest vertical tangent
occurs when t = 7. Therefore, the arc length between these points is

dz\’ dy\* /2 [cos?t  sin®t /2 dt x/2
= - = = — =11 =InZ
(dt> +<dt>dt /1 VT /1 n [Int]] nZ

. In terms of z and y, we have z = r cos§ = (1 4 csin6) cos @ = cos 6§ + csinf cosd = cos 6 + csin 260 and
y=rsind = (1+csinf)sind = sinf + csin?0. Now -1 <sinf <1 = —1<sinf+csin®<14+c<2,50
—1 <y < 2. Furthermore, y = 2 whenc = land 6 = 7, whiley = —1 forc = 0and § = %’T Therefore, we need a viewing
rectangle with —1 <y < 2.
To find the z-values, look at the equation z = cos 6 + %c sin 20 and use the fact that sin20 > 0 for 0 < ¢ < 7 and

sin 20 < 0 for —5 < 6 < 0. [Because 7 = 1 + csin § is symmetric about the y-axis, we only need to consider

INIE]

<60 < 5.]Sofor —5 < 6 <0, z has a maximum value when ¢ = 0 and then & = cos 6 has a maximum value
of 1 at = 0. Thus, the maximum value of @ must occur on [0, 5| with ¢ = 1. Then z = cos§ + 3sin20 =
42 — —sinf +cos20 = —sinf+ 1 —2sin’0 = 9 =—(2sinf — 1)(sin@ + 1) = 0 whensinf = —1 or 1

[butsinf # —1for0 < 6 < Z]. If sinf) = %,then& = % and

T =cos % + % sin 3 = %\/5 Thus, the maximum value of x is % 3, and,
by symmetry, the minimum value is —% /3. Therefore, the smallest

viewing rectangle that contains every member of the family of polar curves

-1.6
r=1+csinf, where 0 < ¢ < 1,is [-2v/3,2v/3] x [-1,2].
\
.’EQ y2
. Without loss of generality, assume the hyperbola has equation — — =i 1. Use implicit differentiation to get
a
2z 2yy b? bic

;b . . . g be
e " 0,s0y = 2y The tangent line at the point (¢, d) on the hyperbola has equation y — d 24 (z—c).

o b b b’
The tangent line intersects the asymptote y = —x when —x — d = Tlcj(x —¢) = abdx —d*d® =bcx — b’ =
a a a
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252 12 2
abda — bPcx = a®d® — 2 = z=2 d —be = ad + be and the y-value is badtbe = ad—l—bc.
b(ad — bc) b a b a
Similarly, the tangent line intersects y = — gaz at (bc ; ad7 ad — bc) . The midpoint of these intersection points is
1/ad+bc bc—ad\ 1[ad+bc ad—bc _ (12bc 12ad) _ .
<§< 5 + 2 >,§< ’ + - ))—(2 5’3 4 )—(c7d),thepomtoftangency.

Note: If y = 0, then at (+a, 0), the tangent line is z = +a, and the points of intersection are clearly equidistant from the point

of tangency.
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11.1  Sequences

1. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers.

(b) The terms a., approach 8 as n becomes large. In fact, we can make a., as close to 8 as we like by taking n sufficiently

large.

(c) The terms a,, become large as n becomes large. In fact, we can make a,, as large as we like by taking n sufficiently large.

3. a _2_n so the sequence is 2 4 6 8 10 = 1é§ii
T T R4 10 q 1+1744+1'94+1"164+1"25+1""""f 175517713 [

5 a —£ so the sequence is i———— = l—iL—LL
YT g 4 517 527537 547557 [ T |57 2571257 625731257 "

7a—#sotheseuenceis 11111 Jri11 1 1
T (n+ 1)V q 2173174517617 T 127672471207 7207

9. a1 =1, ant1 = Ban, — 3. Each term is defined in terms of the preceding term. as = 5a1 —3 =5(1) —3 =2.
a3 =5a2 —3=5(2) —3=7. as=>5as—3=>5(7)—3=232. as=>5as—3="5(32) —3=157.

The sequence is {1, 2, 7,32, 157,...}.

M. a1=2,a _ _On Qo = a1 ——2 —g a—L—i—z Q—L— 2/5 _2
. a1 = 2, 7l+1—1+an- 2*1_"_&171_"_273 371—’-0,2714—2/375 47]_—}—0,371-’-2/577
a4 2/7

2
. 2. 2 2 2
=. Thesequenceis {2,%,2,2,2,...}.

T Tta 1+2/T 9

1

13. {1,%,%,2,1,...}. The denominator of the nth term is the nth positive odd integer, so a, = T

15. {—3,2,—3,5,—32,...}. The first term is —3 and each term is — times the preceding one, s0 a,, = —3(—%)”71.

17. {4,-4,2,-15 25 1 The numerator of the nth term is n* and its denominator is n + 1. Including the alternating signs,
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INFINITE SEQUENCES AND SERIES

19.

3

Gn

_ 3n
 14+6n

© 00 N O Ot s W N

[y
o

0.4286
0.4615
0.4737
0.4800
0.4839
0.4865
0.4884
0.4898
0.4909
0.4918

21,

3

=1+ (-3

© 0 O O W N -

—
o

0.5000
1.2500
0.8750
1.0625
0.9688
1.0156
0.9922
1.0039
0.9980
1.0010

a,
0.5+ R
041 °
0 + + + + 51 + + + + 110 ~
It appears that lim a, = 0.5.
im = lim (3n)/n = lim 3 = § = 1
n=oo 14+6n noco (14+6n)/n nocol/n+6 6 2
un .
1 R )
0 5 "0

It appears that lim a, = 1.
n—oo

lim (14 (—%)") = lim 1+ lim (—3)" =1+ 0= Lsince

n— oo n—o00 n— oo

lim (—3)" =0by(9).

n— oo

23. a, =1—(0.2)",s0 lim a, =1—0=1by(9). Converges

34507

_ (3+5n%)/n*  5+3/n° 540

25. a, =

n + n?

(n+n?)/n?

T 14+1/n°

SO an =5asn — oo. Converges

- 2=
140

27. Because the natural exponential function is continuous at 0, Theorem 7 enables us to write

lim an, = lim /™ = elimn—oc(1/7) — 0 — 1 Converges
29, If b, = 2n_7r then lim b, = lim M = lim I _ 2—7T -z Since tan is continuous at =, b
' 7L_1+8n7 n—oo n (1+8n)/’n_n~>001/’n+8_ 8 _4 4’ y
Theorem 7, lim tan 2nm —tan | lm 2nm = tan T Converges

31

33.

_ n? _ n?n3 _ Vn
V3 +dn  nd+danind \J/1+4/n2

lim /1+4/n? =1. Diverges

n—oo

an

$0 a, — oo asm — oo since lim /n = oo and

n—oo

1 1
lim = 5(0) =0,s0 lim a, = 0by (6). Converges

. . (=" 1
lim |an| = lim =3 im —
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35. an, = cos(n/2). This sequence diverges since the terms don’t approach any particular real number as n — oo.
The terms take on values between —1 and 1.
(2n —1)! (2n —1)! 1
3. ap = = = .
“ = G E ) @nr @ En =D @)@ | oasn oo Converges
e +e " e l4e “an n_ —n
¥ an=—F—F —=—"——>0an—oobecausel +e¢ — lande™ —e™™ — oco. Converges
e n __ 1 677L e’ll — 677L
S x>, 2w, 2 . }
4. a, =n“e”" = —.Since lim — = lim — = lim — =0, it follows from Theorem 3 that lim a, = 0. Converges
en r—oo e r—oo et r—oo et n—oo
£8.0< oL Ghee0 <cos?n < 1 ince lim —— — 0, { <" 0 by the S Th
0 —— <5 [since 0 < cos“n < 1], so since Jim o= =0, ¢ ——  converges to 0 by the Squeeze Theorem.
45. a, = nsin(1l/n) = sin(1/n) Since lim sin(1/z) = lim sint [where t = 1/x] = 1, it follows from Theorem 3
1/n z—oo 1)z t—ot+
that {a., } converges to 1.
2\* 2
7. y = (14 — = lhy=zIn({14—),s0
T x
_ V(2
. . In(1+2/z) u .. 1+2/x x? , 2
lim Iny = lim ————~ =1 = lim ——— =
eoe Y T T 1/ sl —1/z2 woo 1+ 2/
. 2 * . In 2 H 2 " 2
lim (14 =) = lim e™Y =e¢°,soby Theorem3, lim ( 1+ — | =e°. Converges
T — 00 x T— 00 n— o0 n
49. a, =In(2n*> +1) —In(n®*+1) =1n 07 1Y) In Ll/nz — In2asn — co. Converges
Fan = “M\ a1 ) T M v ' g
51. a, = arctan(Inn). Let f(x) = arctan(Inz). Then lim f(x) = % since Inz — oo as x — oo and arctan is continuous.
Thus, lim a, = lim f(n) = %. Converges
53. {0,1,0,0,1,0,0,0,1,...} diverges since the sequence takes on only two values, 0 and 1, and never stays arbitrarily close to
either one (or any other value) for n sufficiently large.
nl 1 2 3 (n=1) n_1 n n .
Uy = — = .2 2 s 2 - = , ” )
55. a 5w =333 3 5255 [forn > 1] 4 T ooasn — oo so {a, } diverges
57. 2 P From the graph, it appears that the sequence converges to 1.
{(—2/e)™} converges to 0 by (7), and hence {1 + (—2/e)"}
convergesto 1 + 0 = 1.
0 - 21
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59. 1 From the graph, it appears that the sequence converges to %

Asn — oo,

o /3207 [3mii2 0+2_\/I_1
e e . " Ven2+n \ 8+1/n 8+0 V4 2

so lim a, = %

n—oo

0\ /21
61. 2 From the graph, it appears that the sequence {a,,} = n cos is
.S graph, it app q TN T2
divergent, since it oscillates between 1 and —1 (approximately). To
2
0 21 prove this, suppose that {a,, } converges to L. If b, = #, then
. an L an
{b,} converges to 1, and lim — = — = L. But — = cosn, so
n—oo Op 1 bn,
2\ lim 22 does not exist. This contradiction shows that {a,} diverges.
- n—o0 Op
63. l( < From the graph, it appears that the sequence approaches 0.
Dy L35 @nol) 13 5 -l
e (2n)" T 2n 2n 2n 2n
<i.(1).(1) ..... (1)7i_)0asn_)oo
— 2n T 2n
1-3-5c.-. on—1
So by the Squeeze Theorem, { 3-5 n( n—1) } converges to 0.
0\ 10 (Qn)

65. (a) a, = 1000(1.06)" = a1 = 1060, az = 1123.60, az = 1191.02, as = 1262.48, and a5 = 1338.23.

(b) lim a, = 1000 lim (1.06)", so the sequence diverges by (9) with » = 1.06 > 1.

n— oo

67. (a) We are given that the initial population is 5000, so Py = 5000. The number of catfish increases by 8% per month and is
decreased by 300 per month, so P = Py + 8% Py — 300 = 1.08 Py — 300, P> = 1.08 1 — 300, and so on. Thus,
P, =1.08F,_1 — 300.
(b) Using the recursive formula with Py = 5000, we get P1 = 5100, P» = 5208, P3 = 5325 (rounding any portion of a
catfish), P4 = 5451, Ps = 5587, and Ps = 5734, which is the number of catfish in the pond after six months.

69. If |r| > 1, then {r"} diverges by (9), so {nr"} diverges also, since |nr"| = n|r"| > |r"|. If |r| < 1 then

T

. . H oo 1 . .
lim zr” = lim = lim ————— = lim = 0,s0 lim nr"™ =0, and hence {nr"} converges
T—00 z—oo 7T —00 (— ln’r‘) r—= rz—oo —In7r n— 00

whenever |r| < 1.
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Since {ay } is a decreasing sequence, a, > a,+1 for all » > 1. Because all of its terms lie between 5 and 8, {a, } is a
bounded sequence. By the Monotonic Sequence Theorem, {a, } is convergent; that is, {a, } has a limit L. L must be less than

8 since {an } is decreasing, so 5 < L < 8.

is decreasing since a,+1 = 2n +11) 3 2n1+ 5 < 2n1+ 3= an for each n > 1. The sequence is

Gn

- 2n+3

bounded since 0 < a,, < % for all n > 1. Note that a; =

S

The terms of a,, = n(—1)" alternate in sign, so the sequence is not monotonic. The first five terms are —1, 2, —3, 4, and —5.
Since lim |a,| = lim n = oo, the sequence is not bounded.
n—oo n—o0

’ _ ($2+1)(1) —JE(QJJ) . 1—2?
FO=""ry  “wrp=’

x
241’

n . .
an = T defines a decreasing sequence since for f(z) =

n2

for x > 1. The sequence is bounded since 0 < a,, < % foralln > 1.

For {\/5 V2v2,1/2v22, } a1 =22 ay =23/ a3 =27/8 .. soa, = 23" "1/2" = 91-(1/2")

lim a, = lim 2'~(/2") = 2! =2,
n—oo n—00

Alternate solution: Let L = lim a,. (We could show the limit exists by showing that {a,, } is bounded and increasing.)

n— oo

Then L must satisfy L = +2-L = L?*=2L = L(L —2)=0. L # 0 since the sequence increases, so L = 2.

a1 =1, any1 =3 — —. We show by induction that {a,, } is increasing and bounded above by 3. Let P,, be the proposition

an
. . 1
that an+1 > ayn and 0 < a,, < 3. Clearly P; is true. Assume that P, is true. Then an+1 > an = < — =
An+1 Qn
1 1 1 1 . .. .
- > —— NOoW @nt2 = 3 — >3— — =any1 < Ppnti1. This proves that {a,} is increasing and bounded
An+1 Qn An+1 79}

above by 3,50 1 = a1 < a, < 3, thatis, {a, } is bounded, and hence convergent by the Monotonic Sequence Theorem.

If L = lim an, then lim an41 = L also, so L must satisfy L=3—-1/L = IL? -3L+1=0 = L:#.

n—oo

But L > 1,50 L = 345,

(a) Let a,, be the number of rabbit pairs in the nth month. Clearly a; = 1 = as. In the nth month, each pair that is
2 or more months old (that is, a,,—2 pairs) will produce a new pair to add to the a,_1 pairs already present. Thus,

an = Gn-1 + an_2, so that {a, } = {f»}, the Fibonacci sequence.

f’}“ = an_ = fn :f”—1+f"—2:1+ﬁzl ! 1+ L 7= tim an,

(b) On = fn71 fn—l fnfl * fnfl /fn72 - An—2

S

= [’-L-1=0 = L=

then L = lim a,—1 and L = lim ap—_2, so L must satisfy L =1+ 5

n— 00 n—o0

SIS

[since L must be positive].
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5
. n
85. (a) 52 ~ From the graph, it appears that the sequence { — }
n!
n®
converges to 0, that is, lim — = 0.
n— 00 ’n,!
N . J
0 10
1 0.03
(®) e N s N
y = 0.1
2 y=0.001
7.5 * -~ 125 9.5 T 15.5
0 0

From the first graph, it seems that the smallest possible value of N corresponding to e = 0.1 is 9, since n° /n! < 0.1
whenever n > 10, but 9° /9! > 0.1. From the second graph, it seems that for £ = 0.001, the smallest possible value for N

is 11 since n® /n! < 0.001 whenever n > 12.

87. Theorem 6: If lim |a,| = 0then lim — |a,| =0, and since — |an| < an < |an|, we have that lim a, = 0 by the
n—oo n—oo

n—oo

Squeeze Theorem.

89. To Prove: If lim a, = 0and {b,} is bounded, then lim (a,b,) = 0.

Proof: Since {b,,} is bounded, there is a positive number M such that |b,,| < M and hence, |a,| |bn| < |an| M for

alln > 1. Lete > 0 be given. Since lim a, = 0, there is an integer N such that |a, — 0| < % if n > N. Then

|anbn — 0] = |anbn| = |an||bn| < |an| M = |an, — 0| M < % - M = e foralln > N. Since ¢ was arbitrary,

lim (anbn) = 0.

91. (a) First we show thata > a1 > b1 > b.
2
al,blz%ﬂ,@:%(a,QM+b):%(\/_,\/E) >0 [sincea>b] = a1 > bi. Also
a—a1:a—%(a—i—b):%(a—b)>0andb—bl:b—\/a_:\/l_)(\/g—\/ﬁ)<0,soa>a1>b1>b.Inthesame

way we can show that a; > a2 > by > by and so the given assertion is true for n = 1. Suppose it is true for n = k, that is,

ak > ag4+1 > bgr1 > b. Then
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2
Akt — brsz = 3(art1 + bres1) — \/ahr1bes1 = %(akﬂ —2v/apt1bry1 + bk+1) = %(\/akJrl - \/bk+1) >0,

1 1
k41 — Qky2 = Gyl — 5 (@kt1 + bry1) = 3 (ar1 — brg1) > 0, and

b1 — begz = beg1 — Vart1ber1 = Voit1 (\/bk+1 - \/ak+1) <0 = akt1 > aky2 > bryo > by,

so the assertion is true for n = k 4 1. Thus, it is true for all n by mathematical induction.

(b) From part (a) we have @ > a,, > ant1 > bnt1 > by, > b, which shows that both sequences, {a, } and {b, }, are

monotonic and bounded. So they are both convergent by the Monotonic Sequence Theorem.

(o) Let lim an = aand lim by = 8. Then lim ansy = lim 22000 o o= a‘gﬁ =
2a=a+p = a=p.
bp b lim pn, bp
93. (a) Suppose {p, } converges to p. Then p,+1 = ﬁ = n}irr;opn+1 = m p= P =

pPPHap=bp = plp+a—b)=0 = p=0orp=>b—a.

bpn " b . n
B _ a—p < (—)pn s1ncel+p— > 1.
a+ pn 1+ 22 a a

a

b b b\’ b b\* b\"
(c) Bypart(b),p1 < | = |po,p2 < | = |p1 < (=) po,p3 < | = |p2 < (= po,etc. Ingeneral, p, < | =] po,
a a a a a a

so lim p, < lim (g) -po = 0 since b < a. {By(7), lim r":Oif—1<r<1.Herer:§6(0,1).]

n—oo n—oo

(®) prt1 =

(d) Let a < b. We first show, by induction, that if pyp < b — a, then p, < b — a and pr,+1 > pn.

bpo __ po(b—a—po)

For n = 0, we have p; — pg =
pr=po a+ po o a + po

> 0 since po < b — a. So p1 > po.

Now we suppose the assertion is true for n = k, that is, pr, < b — a and pg+1 > pr. Then

_ _ _b Ca—
b—a—pri1i=b—a— bp, :a(b a) + bpk — apx pk:a(b @ pk)>0becausepk<b—a.80
a + pk a+ pr a + Dk

b b—a—
Prit <b—a. And pris — pepr = — 2L = Prt1( Pr+1)
@+ Pr+1 a + Pr41

> 0 since pr4+1 < b — a. Therefore,

Pk+2 > pr+1. Thus, the assertion is true for n = k + 1. It is therefore true for all n by mathematical induction.
A similar proof by induction shows that if po > b — a, then p,, > b — a and {p,, } is decreasing.
In either case the sequence {p, } is bounded and monotonic, so it is convergent by the Monotonic Sequence Theorem.

It then follows from part (a) that lim p, = b — a.

11.2 Series

1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.
(b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.
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3 > an = lim s, = lim [2—3(0.8)"] = lim 2 —3 lim (0.8)" =2 —3(0) =2

n=1 n—oo n— oo
> 1 1 1 1
5. For > Fan T 5. S1=a1= g5 = 1, 52 = 51 —&—az:l—&—? = 1.125, s3 = s2 + a3z ~ 1.1620,
n=1

Sq4 = 83+ aq = 1.1777, 85 = s4 + a5 = 1.1857, s¢ = s5 + ag =~ 1.1903, s7 = s + a7 = 1.1932, and

ss = s7 + as = 1.1952. It appears that the series is convergent.

OO

~ 1.3284,

n n 1 2
7. For , Qp = . s1=a1=———==05, sao=5+ax=05+ ——+
n;11+\/ﬁ 1+vn T 1E A 2T ST a 112

S3 = S2 + az =~ 2.4265, s4 = S3 + a4 = 3.7598, s5 = s4 + a5 =~ 5.3049, s = s5 + ag ~ 7.0443,
s7 =S¢ + a7 = 8.9644, ss = s7 + as = 11.0540. It appears that the series is divergent.

1
9 ( )
n Sn : {an}
1| —2.40000 0 !
2 | —1.92000
3 | —2.01600
{84}
4 | —1.99680 .o
5 | —2.00064
6 | —1.99987 By g
7 | —2.00003 . . - .
From the graph and the table, it seems that the series converges to —2. In fact, it is a geometric
8 | —1.99999 1 o4 04
9 | —2.00000 series witha = —2.4 and 7 = —1, so its sumis ) SR _(' y = 71 2 =-2.
10 | —2.00000 " 5 '

Note that the dot corresponding to n = 1 is part of both {a, } and {s,}.

TI-86 Note: To graph {a,, } and {s, }, set your calculator to Param mode and DrawDot mode. (DrawDot is under
GRAPH, MORE, FORMT (F3).) Now under E (t) = make the assignments: xt1=t, ytl=12/(-5)"t, xt2=t,
yt2=sum seq(ytl,t,1,t,1). (sum and seq are under LIST, OPS (F5), MORE.) Under WIND use

1,10,1,0,10,1,-3,1,1 to obtain a graph similar to the one above. Then use TRACE (F4) to see the values.

1. 10

Sn
0.44721
1.15432
1.98637 {s) -
2.88080 7 .
3.80927 i S fa)
4.75796 N bt
5.71948

. e n
(73222683? The series n§1 \/ﬁ

8.64639

3

diverges, since its terms do not approach 0.

© 00 g O Utk W N =

—_
=]
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13.
n Sn
1| 0.29289
{5}
2 | 0.42265 .
3 | 0.50000
4 | 0.55279
5 | 0.59175
Co. {a.}
6 | 0.62204 0 S S S ST S S 1
7 | 0.64645 . .
From the graph and the table, it seems that the series converges.
8 | 0.66667
9 | 0.68377 Z’“:(L_ 1 >:<L_L)+(L_L)+...+<L_ 1 )
10 | 0.69849 SANIERCES viov2/ o A\v2 V3 vk VEFI
1
= 1 — ,
vVk+1
1 1 1
N = lim (1— =1
£ () (-
15. (a) hm an = lim n__ 2 so the sequence {an } is convergent by (11.1.1)
: B TNIE B & sed " semoy i
(b) Since hm an =2 5 # 0, the series Z an, 1s divergent by the Test for Divergence.
n=1
17.3-44 18 — 6—94 + - -+ is a geometric series with ratio r = —%. Since |r| = % > 1, the series diverges.
19. 10 — 24 0.4 — 0.08 + - - - is a geometric series with ratio —=5 = —%. Since |r| = % < 1, the series converges to
@ __ 010 50 2
1—r 1-—(=1/5) 6/5 6 3°
21. 3 6(0.9)" ! is a geometric series with first term @ = 6 and ratio » = 0.9. Since |r| = 0.9 < 1, the series converges to
n=1
a 6 6
T—r 1090 01
<><>(—3)"*1 1=/ 3\ o o . 3 3 .
23. Y =1 > 1 . The latter series is geometric with a = 1 and ratio r = —3. Since |r| = § < 1, it
n=1 n=1
1 . .
converges to Iy = 2. Thus, the given series converges to () (3) = =.
o " 1 X /m\», . . . . T . Lo
2. Y — == (—) is a geometric series with ratio » = —. Since |r| > 1, the series diverges.
n=o 3"t 3. =5\3 3
27 1 + ! + 1 + 1 + 1 += i 1.1 i 1 This is a constant multiple of the divergent harmonic series, so
"376 79 12" 15 T 3.4 P g ’
it diverges.
°° — n—1 1
29. Z dlverges by the Test for Divergence since hm an = lim .13 #0.
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31. Converges.

> 142" ) 1 2n ) 1 2\" . .
> ;n = > ( ™ 3n) => { §> (§> ] [sum of two convergent geometric series]
n=1 n=1 n=1
1/3 2/3 1 5
1-1/3 172/3_2jL2 2

. =24 + + + .- diverges the Test for Divergence since
33 V2=24+V2+2+V2 diverges by the Test for Diverg i

n=1
lim a, = lim ¥2= lim 2"/" =2°=1+#0.

e 21 . .
35. 7;::1 In (27:127—:_1> diverges by the Test for Divergence since

2 2
. . n”+1 .oon"+1
o = fim (G ) <t ) =m0

(%)k is a geometric series with ratio = £ ~ 1.047. It diverges because |r| > 1.

18

37.

=
I

0

o0
39. > arctan n diverges by the Test for Divergence since 11m an = lim arctann = 5 # 0.

ne1 — o0 n—oo
> 1 > " . . . 1 . 1 .. 1 .
M. > — = > (=) isageometric series with first term a = — and ratio r = —. Since |r| = = < 1, the series converges
n=1 en n=1 \ € € e €
1/e 1/e e 1 "
= - = .ByE le 7, ——— = 1. Thus, by Th 8(ii),
0T~ e T-1/c ¢ =1 y Example Z Py us, by Theorem 8(ii)
x 1 1 x 1 x 1 1 1 e—1 e
.,;1(6” n(n+1)) nz::le"—i_nz::ln(n+1) 671—’_ 671+671 e—1
x 2
43. Using partial fractions, the partial sums of the series > 7 e
n=2 N" —

szg mzé (%Uil)

) i) o) ) )

n—1 n
x 2 1 1 1 3
Th = 1 n — 1. 1 _——— = = = =.
us, 3 Ty T s nlnéo< R n) 3
45, For the series io: _3 Sp = Zn: 3 _ i 11 [using partial fractions]. The latter sum is
' sinn+3) 7" T FHii+3) Z\d i+3 &P .

(1_%)+(%_%)+(%_%)—F(%_%)Jf—'“—’_(nlﬁii_%)—'_(ﬁ_n}kl)—’_(nil_n~1#2)+(%_n<1k3>

=143 + 5 %_H - %H - #_3 [telescoping series]
* 3 o _ 1 1 _ -1
Thus, nZ=:1 T3 nILHolo Sp = nlingo(l +34+3- e e n_+3) 143+ 3 =42 Converges
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OO
For the series ) (el/" - el/("ﬂ)),
n=1

- Zn: (el/i _ el/(i+1)) = (e —eM?) 4 (M2 — M3 ..y (el/n _ el/(n+1)) — e _ /(4D

[telescoping series]

Thus, 5 (el/" - el/(”“)) = lim s, = lim (e - el/(”+1)) =e—e’=e¢—1. Converges
n=1 n—oo n—oo

(a) Many people would guess that < 1, but note that = consists of an infinite number of 9s.

9 9 9 9 ® 9
—0. =242 42 47 4 =S L whichi tric series with a; = 0.
(b) z = 0.99999 0 + 100 + 1000 + 10,000 + n§1 T Which is a geometric series with a1 0.9 and
. 0.9 0.9 .
r = 0.1. Its sum is T—01-09°- 1, thatis, z = 1.

(c) The number 1 has two decimal representations, 1.00000. .. and 0.99999. . ..

(d) Except for 0, all rational numbers that have a terminating decimal representation can be written in more than one way. For

example, 0.5 can be written as 0.49999. .. as well as 0.50000. . . .

0.8= 8 + 8 + .- is a geometric series with a = 8 andr = L It converges to ——— = 8/710 -8
©7 10 " 102 & =10 ~ 10 S P I TS
— 516 516 516 516 . . . . 516 1

2.516 =2 + 0% + 106 + .. Now 0 + 106 + --- is a geometric series with a = 0 and r = 05 It converges to

a 516/10°  516/10° 516 — 516 2514 838
= = = Thus, 2516 =2+ — = —— = ——,
=7~ T—1/10° _ 099/10° _ 999 2510 =2+ 555 = 559 = 333
— 42 42 42 42 . . . . 42 1
1.5342 =1.53 + 0% + 106 +-+-. Now ot + To° + - - is a geometric series with a = ot andr = 07
It converges to ——— = 42/10° = 42/10° _ L
B T T T T 1/10° ~ 997102~ 9900°
— 42 153 42 15,147 42 15,189 5063
Thus, 1.5342 = 1.53 + —— = — == == .
- *9900 ~ 100 9900 ~ 9900 ' 9900 _ 9900 " 3300
> (=5)"z™ = > (—bx)" is a geometric series with r = —5x, so the series converges < |r| <1 <

. _ -5 -5
|-bz| <1 & || < ¢, thatis, =+ < < £. In that case, the sum of the series is 1ir =1 (j:5m) = 1+§x'

2 .
, so the series converges < |r| <1 <

> (z-2) =3 (m;2) is a geometric series with r = T

n=0 3n _n:O
r—2 r—2 P
3 <l & _1<T<1 & —3<x—2<3 & —1<ax<5. Inthat case, the sum of the series is
a 1 . 1 3
1—r 1_x=2 S 3—(z—-2) 5-—a
3 3
o 2" = (2\". . L 2 . 2
.Y, — =5 (=) isageometric series with r = =, so the series converges < |r|<1 & |=|<1 &
n=02Z"  n=0 \ZT x T

a 1 oz
1—r 1-2/z =x-2

2<|z| < x>2orz < —2. Inthatcase, the sum of the series is
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o0 e
63. > e = 3 ()" is a geometric series with = e®, so the series converges < [r|<1 & |ef|<1 &
n=0

.. a 1
—1<e <1l & 0<e <1l & m<O.Inthatcase,thesumoftheser1e51s1 =1 —.
—r —e

65. After defining f, We use convert (f, parfrac) ; in Maple, Apart in Mathematica, or Expand Rational and

2
Simplify in Derive to find that the general term is Sn” +3ntl = 1 ; So the nth partial sum is
(n?+n)3 n3  (n+1)>3

The series converges to lim s, = 1. This can be confirmed by directly computing the sum using
n—oo

sum (f,n=1..infinity); (in Maple), Sum[f, {n, 1, Infinity}] (in Mathematica), or Calculus Sum

(from 1 to co) and Simplify (in Derive).

67. Forn =1,a1 = 0since s1 = 0. Forn > 1,

Gn = Sp — S _n-1l m-1-1_m=-Dn-(m+1)(n-2) _ 2
S N i+ Dn ETCES)
1-1/n

oo
Also, > an = lim s, = lim

n—=1 n— oo n—oo 1 + l/n a

69. (a) The quantity of the drug in the body after the first tablet is 150 mg. After the second tablet, there is 150 mg plus 5%
of the first 150- mg tablet, that is, [150 + 150(0.05)] mg. After the third tablet, the quantity is

[150 + 150(0.05) + 150(0.05)%] = 157.875 mg. After n tablets, the quantity (in mg) is

150(1 — 0.05™) 3000

1005~ 19 (L7005

150 + 150(0.05) + - - - + 150(0.05)™~*. We can use Formula 3 to write this as

(b) The number of milligrams remaining in the body in the long run is nler;o [2990(1—0.05")] = 2939(1 — 0) ~ 157.895,
only 0.02 mg more than the amount after 3 tablets.

71. (a) The first step in the chain occurs when the local government spends D dollars. The people who receive it spend a

fraction c of those D dollars, that is, Dc dollars. Those who receive the Dc dollars spend a fraction c of it, that is,

Dc? dollars. Continuing in this way, we see that the total spending after n transactions is

Sn:D+Dc+Dc2+---+Dc"*1:%bym

lim (1 —c") = D [Since 0<ec<l = lim "= O]

n— o0

. . D(1-c")
lim S, = 1 - -2
(b) lim Sp = lim ——= T—cnl 1—c

Zg [sincec+s=1] = kD [since k = 1/s]

If ¢ = 0.8, then s = 1 — ¢ = 0.2 and the multiplieris k = 1/s = 5.
(=]
73. 3 (14 ¢)™™ is a geometric series with a = (14 ¢) > and r = (1 4 ¢) ™", so the series converges when
n=2

|(1+c)_1|<1 & |14+¢>1 & 14c>lorl4+ec<—1 & c¢>0o0re< —2. We calculate the sum of the
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. . (1+¢)7? 1\? 1 )
series and set it equal to 2: ————— =2 & T+e =2-2— ) & 1=2(14¢)°-21+¢) <

1—(1+ce)" l+c
22 4+2c—1=0 & c==2 i‘/ﬁ = i‘/g_ L. However, the negative root is inadmissible because —2 < =2=1 < 0.
Soc= —‘/52’ L.

€Sn_el+ + +-- +n _6161/2 1/3 . 61/">(1+1)(1+%) (1+%)(1+%) [6t>1+1']

123 n

Thus, e*» > n+ 1and lim e’" = co. Since {s,, } is increasing, lim s, = oo, implying that the harmonic series is
n—oo n— oo
divergent.

Let d,, be the diameter of C),,. We draw lines from the centers of the C; to

the center of D (or '), and using the Pythagorean Theorem, we can write

124+ (1- 1)’ = (1+3di)? &

1=(1+ %d1)2 -(1- %d1)2 = 2d, [difference of squares] = di = 3.

Similarly,

= (14 31d2)” = (1 —di — 1d2)® = 2do + 2d1 — & — drd2
:(Q—dl)(dl-i-dz) =4

1 (1 — d1)2 1 2 1 2 []— - (dl + dz)]2 :
de = —di=——,1=(14+3d3)" — (1 —d1 —da — 5d dy = ————5— 1
2= 54 1 =, (1+ 3ds) ( 1 2—1ds)” & ds 7= (4 + o) , and in general,
(1-r, d)? 11
dnt1 = ~———=5——" If we actually calculate d2 and d3 from the formulas above, we find that they are =~ = —— and
237" 1 ds 6 2-3
1 1 . . 1 . . .
— = —— respectively, so we suspect that in general, d,, = ————. To prove this, we use induction: Assume that for all
12 3-4 n(n+1)
k<n,d = _ 1t Then i di =1-— L __n [telescoping sum]. Substituting this into our
=0T kk+) kK k+1 20T T+l n+1 PINg SuMml. &
s s
- — >
formula for dy, 41, we get dp+1 = L i —; = (72112) = T 1)1(n T2’ and the induction is complete.
n+1 n+1

Now, we observe that the partial sums .-, d; of the diameters of the circles approach 1 as n — oo; that is,

o=} (o=}
= 1, which is what we wanted to prove.
o= D P
Theseriesl —1+1—1+1—1+--- diverges (geometric series with r = —1) so we cannot say that

0=1-14+1—1+41—1+---

oo _ . n L . n L . n o 0o . . .
> ican = lim Y7 ca;= lim ¢} ja;=c lim >  a;=c) o, an, which exists by hypothesis.
n—oo n— 00 n—00
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83. Suppose on the contrary that Y (an + by) converges. Then > (an + by) and > a,, are convergent series. So by
Theorem 8(iii), Y [(an + bn) — ax] would also be convergent. But Y [(ar + bn) — an] = > by, a contradiction, since

> by is given to be divergent.

85. The partial sums {s, } form an increasing sequence, since s, — sn—1 = an > 0 for all n. Also, the sequence {s } is bounded
since s, < 1000 for all n. So by the Monotonic Sequence Theorem, the sequence of partial sums converges, that is, the series
> ay is convergent.

87. (a) At the first step, only the interval (%, 2) (length 3) is removed. At the second step, we remove the intervals (3, 2) and

(%, %), which have a total length of 2 - (%)2 At the third step, we remove 22 intervals, each of length (%)3 In general,
at the nth step we remove 2"~ intervals, each of length (%)n, for a length of 271 . (%)" = % (%)"71. Thus, the total

o=}
length of all removed intervals is > %(%)"71 =7 1/23 75 = 1 [geometric series with a = % andr = %} Notice that at
n=1

the nth step, the leftmost interval that is removed is ((3)", (2)"), so we never remove 0, and 0 is in the Cantor set. Also,
the rightmost interval removed is (1 — (2)",1— (3)"), so 1 is never removed. Some other numbers in the Cantor set
1 2 1 2 7

8
are 3, 5, - 5» - and 3.

¢ area removed at the first step 1s 5 at the second step, 8 - () ; at the third step, - (35) . In general, the area
(b) Th d at the first step is 3 at th dstep, 8- (%)?; at the third step, (8)* - (). In general, th

removed at the nth step is (8)" " ()" = (&)™, so the total area of all removed squares is

< 1/8\"" 1/9
“(2) =—L2 -1
29(9> - 8/9

) n 1 1 1 2 5 5 3 23
. F L = — == =4 — == = — =
B @Fr ) oo =13 2 3 123 &% 6 1234 20
23 4 119 . (n+1)!—1
2, + 2 ! T
s1= o + T 2345 120° The denominators are (n + 1)!, so a guess would be s, CE]
- 1
() Forn=1,s1 = % = %, so the formula holds for n = 1. Assume s, = % Then
oo _kDI-1 k41 (kD1 k+1 (k) - (k+2)+k+1
. (k+1)! (k+2)! (k+1)! (k+ 1Dk +2) (k+2)!
_(E+2) -1
(k+2)!
Thus, the formula is true for n = k£ 4 1. So by induction, the guess is correct.
. . o (n+1) -1 . { 1 } o n
¢) lim s, = lim ————— = lim |1— ————| =1andso — =1
( ) n— 00 n— 00 (n + 1)' n—oo (n + 1)' ngl (n + 1)'
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SECTION 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS 0O 59
11.3 The Integral Test and Estimates of Sums
1. The picture shows that az = / — dz, ’
1 ! . and 1 R S
ag—ﬁ<2x T, an soonsonzznls< ) Fm.Te
integral converges by (7.8.2) with p = 1.3 > 1, so the series converges.
0
3. The function f(z) = 1/ vz = 2~*/® is continuous, positive, and decreasing on [1, c0), so the Integral Test applies.
[P dr = Jim [l de = Jlim [% 4/5} = lim (%t4/5 - %) = 00,80 Y. 1/3/n diverges.
— 00 1 — 00 n=1
5. The function f(z) = ﬁ is continuous, positive, and decreasing on [1, 00), so the Integral Test applies.
x
=] 11 ‘ 1 1 1
de =1 dr = li -~ =1 —— = | = =.
/1 Qzr1p ™ tinélo/ (2m+1 v tE&{ 4 (2$+1)2L til?}o( TG i 36) 36
. . . . - 1 .
Since this improper integral is convergent, the series m is also convergent by the Integral Test.
n=1
7. The function f(z) = % is continuous, positive, and decreasing on [1, 00), so the Integral Test applies.
x
o5} t t
/ L dz = lim / T dr=lim |sln@®+1)| =2 lim [In( + 1) — In2] = oo. Since this improper
. 22 +1 T {500 1 2 +1 T 5% | 2 1_2tﬂoo - prop
integral is divergent, the series n27?|— 1 is also divergent by the Integral Test.
n=1
> 1
9. Z % is a p-series with p = v/2 > 1, so it converges by (1).
-1n
1 1—|— ! + L + i + —+- io: = This is a p-series with p = 3 > 1, so it converges by (1)
' 27 125 s b p= . Ees by (1)
1 1 1 1 & 1 1
Bl+-F+=-+=-+=-+---= . The functi e i
tytytrztg ™ 2 5, —7 Thefunction f(z) = 57— s
continuous, positive, and decreasing on [1, 00), so the Integral Test applies.
< 1 £ 1 t X
/1 Y dw:tlinolo i de = tlirgo [3In]2z —1]], = §tlirgo(ln(2t— 1) —0) :o<>,sotheserlean=:1 —

o 4 e} 4 & 1 x4 — L i i
TR A (% + F) =X + 30 13- 2 sy isaconvergent pseries withp = 5 > 1.

2 2
1=1 n3/ =17 n=1"T

3
Il
-
3
[ V)
3
Il
—

oo

4

Y, = =4 § — is a constant multiple of a convergent p-series with p = 2 > 1, so it converges. The sum of two
n=11

convergent series is convergent, so the original series is convergent.
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17. The function f(x) = is continuous, positive, and decreasing on [1, c0), so we can apply the Integral Test.

_1
2+ 4
- dr = lim t_1 dr = lim ltanAE t—l lim [tan™! 12 —tan~! 1
1 $2+4 _t—>oo 1 $2+4 _t—voo 2 2 1_2t—>oo 2 2
1 (1
“3[5-w(3)

—— 1
Therefore, the series n2=31 112—-1-4 converges.
> Inn X Inn . In1 . Inx . . .
19. > —~ = >  —5 since - = 0. The function f(x) = — is continuous and positive on [2, co).
n=1 T n=2 T T
3(1/z) — (1 2 2 _32%1 1— 31
f’(m):x(/x) (Ino)@3a7) 2" —327lnz _ 3T 4 & 1 3he<o o Inz >3

(13)2 26 x4

z>e/? 14,50 f is decreasing on [2, co), and the Integral Test applies.

o0 t oo
/1ﬂm—m11”d“1 FﬂfiqzmﬂQQMHﬂ+1@@wmmmZE£
2 ‘7: 1 n=2

t—oo [y t—oo 2.7,’2 4.7,’2 t—oo 4 4
converges.
) u=Inz,dv=23dr = du= (1/zx)de,v=—L272 so
(%) 2
lnx -2 1,,-2 1,.-2 1 -3 1,.-2 1
Inz— [ —i27%(1/2)dr =12 ?Ina+L [ 27 %de =32 Inz - 2272 + C.

2Int+1\u . 2/t .. 1
7) = hm gy = lim i =0

Oex): tll)rglo <_ 4¢2

1 . . . . . 1+1
21. f(z) = is continuous and positive on [2, o), and also decreasing since f'(z) = Lt < 0 for z > 2, so we can
zlnz z2(Inx)?
i o1 .
use the Integral Test. /z oy dr = 11m [In(lnz)] = 11m [In(lnt) — In(Iln 2)] = oo, so the series nZ::Z . diverges.

23. The function f(x) = e'/%/x? is continuous, positive, and decreasing on [1, 00), so the Integral Test applies.

[g(z) = €'/ is decreasing and dividing by 2 doesn’t change that fact.]

[eS) t el/z ) t 1t oo 61/n
/ f(z)dz = lim dr = lim |:76 /I} = — lim (e'/" —e) = —(1 —€) = e — 1, so the series 3
1 t—oo /g x2 t—o0 1 t—oo n=1
converges.
. 1 1 1 . . . . . .
25. The function f(z) = —— = —= — = + [by partial fractions] is continuous, positive and decreasing on [1, co),

2?24+23 22 oz x+1
so the Integral Test applies.

t

2 x z+1 t—o0

t
/ flx x—hm (i,l+ 1 )dz:lim{flflnx+ln(:n+1)

1 €z 1
= lim {flJrl ﬂ+171112}:O+0+171n2

t—oo

The integral converges, so the series Z

———= converges.
3
n=11 2+n
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SECTION 11.3 THE INTEGRAL TEST AND ESTIMATES OF SUMS [ 61

COSTTX

VT

27. The function f(z) = is neither positive nor decreasing on [1, 00), so the hypotheses of the Integral Test are not

. . X cosTn
satisfied for the series

n=1 \/ﬁ '

e}
29. We have already shown (in Exercise 21) that when p = 1 the series > ﬁ diverges, so assume that p # 1.
n=e n(lnn

flz) = m is continuous and positive on [2, o), and f'(z) = —1721)(1—’1;7?)511 < 0ifx > e™P, so that f is eventually

decreasing and we can use the Integral Test.

< 1 . (Inz)'-? . (Int)'=?  (In2)'~?
/2 w(ln$)Pd$ tLI§o|: = L [forp # 1] = lim - -

This limit exists whenever 1 —p < 0 < p > 1, so the series converges for p > 1.
31. Clearly the series cannot converge if p > f%, because then lim n(1 + n?)? # 0. So assume p < f%. Then

f(x) = 2(1 + x*)? is continuous, positive, and eventually decreasing on [1, 00), and we can use the Integral Test.

1 (14 2?)PH!

t
o 1
1+ 2*)Pdz = lim |= - = lim [(1 4 ¢3)PT — 2Pt
/1 o(1+2%) dz ti»rgo|:2 p+1 ]1 2(p—|—1)ti>nolo[( +t) }

This limit exists and is finite < p+1<0 < p < —1,so the series converges whenever p < —1.

33. Since this is a p-series with p = z, {(z) is defined when = > 1. Unless specified otherwise, the domain of a function f is the
set of real numbers x such that the expression for f(x) makes sense and defines a real number. So, in the case of a series, it’s

the set of real numbers x such that the series is convergent.

= /3\* = 81 < 1 7t o
. —_ = = 1 _——= 1 —_— = —_—
3 (a)n;(n) S8y log (90) i

n=1 F n=1T
(b)z;—i+i+l+ —Zi——zlf iJri [subtract a anda]——471—7
S (k—2)F 31 T gr T T &kt 90 14724 ! 790 16
1. .. . N 2. . .
37. (@) f(zx) = = is positive and continuous and f’(z) = = is negative for > 0, and so the Integral Test applies.
ii"’s —i+—+—+ + — ~ 1.549768
n2 00T 12 T2 T3 102~ '

< 1 -17° 11 1 ‘
Rio S/ — dx = lim {—] = lim <_? +—) = 1—O,sothe error is at most 0.1.

oo

<1 1
(b)510+/11 ;dmﬁsﬁsloﬁ—/m ﬁdw = S10+ﬁ§S§510+% =

1.549768 + 0.090909 = 1.640677 < s < 1.549768 4+ 0.1 = 1.649768, so we get s ~ 1.64522 (the average of 1.640677

and 1.649768) with error < 0.005 (the maximum of 1.649768 — 1.64522 and 1.64522 — 1.640677, rounded up).
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(c) The estimate in part (b) is s ~ 1.64522 with error < 0.005. The exact value given in Exercise 34 is 72 /6 ~ 1.644934.
The difference is less than 0.0003.

(d)Rng/ idm—— SoRn<00011f—<ﬁ & n> 1000.

39. f(x) = 1/(2x + 1)8 is continuous, positive, and decreasing on [1, 00), so the Integral Test applies. Using (3),

o -1 § 1 ‘
R, < /n 2z 4+ 1)~ Sdr = hm {10(2&0 T1)¢ } 0@n T 1) To be correct to five decimal places, we want
m < 106 & (2n+1) >20,000 & n> 5(\5/20 000—1) =~ 3.12,souse n = 4.
sS4 = i ;—i+i+—+—~0001446~000145
YT = (2n+1)6 3656 76 96

o0 o0 1
4. > p 00 = Z 60T is a convergent p-series with p = 1.001 > 1. Using (2), we get
=1

n=1

0o —0.0017% t
—1.001 . T . 1 1 1000
R, < /n T dx = tlggo [—0.001} = _1000,51320 Lgo.om} = —1000 (_no.om) = ,0-001°

e

1000 1000
We want Ry, < 0.000000005 & —55m <5x107° & n?%% > ——r=s

n > (2% 1011) 1% = 21000 5 1911000 & 7 07 % 10701 x 10M10%0 = 1,07 x 101201,

43. (a) From the figure, az + a3 + - - - 4+ an < [ f(x) dz, so with y
1
11,11 1 "1 3
f(z) 12+3+4+ +n7/1 md:r Inn
Thus, s 1+1+l+1+ +l<1+lnn
" 27371 n = ' a| al|al Tal"
(b) By part (a), s;06 < 1+1n10° &~ 14.82 < 15 and of 1 2 3 4. a ¥
s100 < 14+1n10° = 21.72 < 22.
45, p'nm = (elnb)lnn = (elnn)lnb =nt = % This is a p-series, which converges for all b such that —Inb >1 <«

n

Inb< -1 & b<e ! & b<1/e [withd> 0]

11.4 The Comparison Tests

1. (a) We cannot say anything about >_ ay,. If a,, > b,, for all n and > b, is convergent, then Y a,, could be convergent or

divergent. (See the note after Example 2.)

(b) If a,, < by, for all n, then Y a,, is convergent. [This is part (i) of the Comparison Test.]

1 . o1 .
3. # < 27# =53 < — foralln > 1, so 71221 # converges by comparison with 7;1 = which converges

because it is a p-series with p = 2 > 1.
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SECTION 11.4 THE COMPARISONTESTS O 63

ntl n foralln > 1, so Z diverges by comparison with > i, which diverges because it is a

>—7_
nvn  nvn Vn n=1nvn n=1vVn

p-series withp = § < 1.

S—SW < 19W = (%) foralln > 1. nzz:l ()" is a convergent geometric series (|r| = 3% < 1), so nZ::I 3 —310”

converges by the Comparison Test.

Ink _ 1 *

e > T forallk > 3 [sinceInk > 1 for k > 3], Z —_— dlverges by comparison with Z E which diverges because it
k=3 k=3

. . . . . x Ink . . .
is a p-series with p = 1 < 1 (the harmonic series). Thus, » & diverges since a finite number of terms doesn’t affect the
k=1

convergence or divergence of a series.

Vk Ve kY3 k. = 1
—_— = —= = forallk > 1, b i ith —_
T < N k7/6 or a SO Z g converges y comparison wi kZ:: 5

which converges because it is a p-series with p = % > 1.

arctann s s arctan T &
— < / 5 foralln > 1, s0 > ———— converges by comparison with — >
nl nt

5 — 5 which converges because it is a
n=1 n=1T

constant times a p-series with p = 1.2 > 1.

L+1>£—4 2 nforalln>1 §4 4 n—4§ 4 nisadiver ent geometric series (|r| = § > 1), so
3n—2~ 3 \3 = =5°\3) ~ 3 gen e R

n=1
fo%s) n+1
> I diverges by the Comparison Test.
n=1
. . . 1
Use the Limit Comparison Test with a,, = ———= and b,, = —
n?+1
lim = = lim ——— = lim 1 _ 1 > 0. Since the harmonic series io: 1 diverges, so does
n—oo bn n—oo n? + 1 n—oo , /1 + (1/’[’1,2) ! ne1 M 8es,
s 1
ngl TL2 + 1
Use the Limit Comparison Test with a,, = 1+4 and b, = 4—:
14 3n 3n
144"
. an . T143% .. 144" 3% 144" 30 1 B
Ay, T T S M T T T S e ) T 70
- —+1
3n n
Since the geometric series > b, = > (%) diverges, so does Z 1 _T_ 3 . Alternatively, use the Comparison Test with
n=1

113"~ 343"~ 23" 2

1+4 1+4 4 ! (%) or use the Test for Divergence.
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n+2 and b, !

21. Use the Limit Comparison Test with a,, = m n = m:

an n3?/n+2 . (02 ¥2)/(n®?Vn) . V1+2/n VIl
lim — = lim ———— = lim =lim —Y———=-""—==>0.
n—oo by, nooo 2n24+n+1 nooo (2n2+n+1)/n2 n—>002+1/n+1/n2 2 2

1 vV 2
Since Z is a convergent p-series [p 3> ] the series Z % also converges.
23. Use the Limit Comparison Test with a,, = _St2n and b, = —:
(14 n?)? n3
3 3 4 4 5
. Gn .. n(5+2n) .. 5”4 2n 1/n* = _ . x 1.
AT, T A T TP Ak gy S i 5 comvergent
. > 5+2n
p-series [p = 3 > 1], the series Z m also converges.
/4 /4 2 /4
25 Y +1 i = L = L foralln > 1, so Z —+ diverges by comparison with
nd+n? " n%2(n+1) n2*(n+1) n+1l S+n
) 1 x 1 . . .. . .
> = > —, which diverges because it is a p-series withp =1 < 1.
n=1M + 1 n=2"1

. : . 1)\ . . 1)\ .
27. Use the Limit Comparison Test with a,, = (1 + E) e "and b, = e ": lim 4 _ lim (1 + E) =1 > 0. Since

n—oo Op n—o00

2
> > 1. . . - 1 _
> e " = > — isaconvergent geometric series [|r| = L < 1], the series > ( 1+ =) e~ ™ also converges.
n=1 n=1€" ¢ n=1 n

1 x 1

29. Clearly n! = n(n —1)(n —2)---(3)(2) >2-2-2-----2.2=2""1 50 T =
n=1

> 1
series Ur\ = % < 1], SO Y, — converges by the Comparison Test.
n=1 T:

o . . . (1 1 L ..
31. Use the Limit Comparison Test with a,, = sin (ﬁ) and b, = o Then > a,, and > by, are series with positive terms and

lim 2% = gy SR/ S0
n—oo Op n— oo /n 6—0

o0
=1>0. Since Y by, is the divergent harmonic series,

n=1

>~ sin (1/n) also diverges. [Note that we could also use I’Hospital’s Rule to evaluate the limit:

n=1

. 1 (=1 /22
lim M L lim cos(l/2) ( /2 ) = lim cosl =cos0=1]
T—00 /I T—00 —1/{E2 T —00

! *i+i+i+~~+#~l24856Now#< ! *isotheerroris
Vi tl V2 VIT O VR2 V10,001 ' VREFT /A n?

e} t
RmSTmS/ id:r— lim |:—l:| = lim <—1+i> :i =0.1.

10 2 t—o0 X

3. z
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10 21 29 2 21 1 .
B 5 eostn = T TS 4 S it COEWO ~ 0.07393. Now COBS % < = so the error s
1 b 5% t 5t 5—10 1 s
<Tio < —dz =1 Tdr = 1li — =1 —— = — 4 x1 .
Hio < Tho —/10 5o do=lim | 5 dv tirilo{ ln5} tirf}o( 5 ln5) o ~ O-4x 10
dn 9 X dn
37. Since o = 10” for each n, and since Z T is a convergent geometric series (\r\ 1), 0.didads...= > o
n=1 n=1

will always converge by the Comparison Test.

39. Since Y an converges, lim a, = 0, so there exists N such that |a,, — 0| < 1foralln >N = 0<a, <1 for

n—o0

alln >N = 0<a2 <a,. Since3 an converges, so does > a2 by the Comparison Test.

41. (a) Since lim Z—" = 00, there is an integer N such that % > 1 whenever n > N. (Take M = 1 in Definition 11.1.5.)

Then a,, > b, whenever n > N and since Y b, is divergent, > a, is also divergent by the Comparison Test.

(b) (1)1fan_liandbn_—forn>2then lim 2 = lim - = lim = 2 lim - = lim 2 = co,

n—oo Op n—o00 lnn Tr—00 ln]j Tr—00 1/1 T— 00

x 1
by part — isdi t.
so by part (a), H;Q I, is divergen

@) Ifan, = lnTn and b, = l , then Z bn, 1s the divergent harmonic series and lim 9 — lim Inn = lim Inz = 00,

n=1 n—oo n n—oo &Tr— 00

so Y. an diverges by part (a).

n=1

43. lim na, = lim ——, so we apply the Limit Comparison Test with b,, = 1 . Since lim na, > 0 we know that either both
n— oo n—oo 1 / n n— oo

oo

. L 1 . . .

series converge or both series diverge, and we also know that Y — diverges [p-series with p = 1]. Therefore, Y a,, must be
n=1M

divergent.

45. Yes. Since > ay, is a convergent series with positive terms, lim a, = 0 by Theorem 11.2.6, and > b,, = > sin(ay) isa

series with positive terms (for large enough n). We have lim % = lim % =1 > 0 by Theorem 2.4.2

[ET Theorem 3.3.2]. Thus, > b, is also convergent by the Limit Comparison Test.

11.5 Alternating Series

1. (a) An alternating series is a series whose terms are alternately positive and negative.
o0

(b) An alternating series > a, = 3. (—1)""'b,, where b, = |ay|, converges if 0 < b, 41 < by, foralln and lim b, = 0.

n=1 n=1

(This is the Alternating Series Test.)

(¢) The error involved in using the partial sum s,, as an approximation to the total sum s is the remainder R,, = s — s,, and the

size of the error is smaller than by, 1; that is, | R,,| < b,,41. (This is the Alternating Series Estimation Theorem.)
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2 4 6,8 10 &, 2n 2n 2 2
3o —— = -n" .Now lim b, = li = lim —— = - . Si
576 7ts 9" 2 ()" oy Now T by = lim 2= = Hm 9= = 7 7 0- Since
hm arn 7 0 (in fact the limit does not exist), the series diverges by the Test for Divergence.
5 i an = i (-t —— 1 i (=)™ b,. Now by, = . > 0, {bn} is decreasing, and lim b, = 0, so the
=t = 2n+1 ;= " " 2n+1 P & n—oo
series converges by the Alternating Series Test.
T. n§1a = 7Lgl(—l)" gZ ;1 = ngl( 1)"by. Now hrr;o bn = nan;o Gy %Z = g # 0. Since nlijr()l() an #0

(in fact the limit does not exist), the series diverges by the Test for Divergence.

]

(=D)"e™™ = > (=1)"bn. Now b, = el > 0, {bn } is decreasing, and lim b, = 0, so the series converges

n—1 n—oo

18
18

Ap =
1 n

3
Il
—

1

by the Alternating Series Test.
T on3 44
( z? ), ~ (@®+4)(22) —2%(32%)  x(22®+8-32%)  x(8—2%)

= = fi 2. Al
P a (@° + 472 (@ 4 (@® 4 < Oforz > so,

1. b

> 0forn > 1. {b,} is decreasing for n > 2 since

oo 2
nh_)ngo bn = nlirr;o 1 _’_{3 5 = 0. Thus, the series 7LZ::I(—l)"Jrl n3n+ 7 converges by the Alternating Series Test.

OO
13. lim b, = lim e*" =¢® = 1,50 lim (—1)""!e*™ does not exist. Thus, the series > (—1)""'e?/™ diverges by the

n—o0 n—oo n—oo n=1

Test for Divergence.

15. 4. — sin(n + %)W _ (=" Now b, — _1 > 0forn > 0, {b,} is decreasing, and lim b,, = 0, so the series
T 14V 1+ Tl+vn B T
i (n + ) converges by the Alternating Series Test

n—o0

17. Z(—l)”sin(z). bn :sm( ) > 0 forn > 2andsm(7r) > sin( ul ),and lim sin(z) =sin0 = 0, so the
n=1 n n n n+1 n

series converges by the Alternating Series Test.

n" n-n- .on" . (=D)"n" . - anto
9. L = S o lim — =00 = lim does not exist. So the series > (—1)" —- diverges
n!

nl 1.-2- n—oo N! n—oo nt n=1

by the Test for Divergence.

21, ! The graph gives us an estimate for the sum of the series

% of —0.55.

>
)

bs =

% ~ 0.000 004, so

(5.}
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25.

27.

29.

31.

33.
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~ —0.8 +0.32 — 0.0853 + 0.01706 — 0.002 731 + 0.000 364 — 0.000 042 ~ —0.5507
Adding bs to s7 does not change the fourth decimal place of s7, so the sum of the series, correct to four decimal places,
is —0.5507.

(="

The series > ¢ satisfies (i) of the Alternating Series Test because 5 < ia and (ii) lim 1 0, so the
n—=1 n n n—oo M

-
(n+1) °

Lo 1 1 . .
series is convergent. Now bs = i 0.000064 > 0.00005 and bg = 5 ~ 0.00002 < 0.00005, so by the Alternating Series

Estimation Theorem, n = 5. (That is, since the 6th term is less than the desired error, we need to add the first 5 terms to get the

sum to the desired accuracy.)

1 1
107+ (n 4+ 1)! < 107 n

' and (ii) lim ! =0,

o= (=D)L . . .
The series > (=1) satisfies (i) of the Alternating Series Test because Tom ol

n=0 10™ TL'

N 1
so the series is convergent. Now b3 = —— = 0.000 167 > 0.000 005 and by =

1
- =\ 4 .
103 3! 10t 4l 0.000 004 < 0.000 005, so by

the Alternating Series Estimation Theorem, n = 4 (since the series starts with n = 0, not n = 1). (That is, since the 5th term

is less than the desired error, we need to add the first 4 terms to get the sum to the desired accuracy.)

1

bi=gi = 40,320

~ 0.000 025, so

o (—1)" )" 1 1 1
~ sy — — D~ 0459722
I T ST X ey - 2 o 0T

Me

Adding b4 to s3 does not change the fourth decimal place of s3, so by the Alternating Series Estimation Theorem, the sum of

the series, correct to four decimal places, is —0.4597.

2

7
br = 07 = 0.0000049, so

> (=1 n (_1)n71”2 4 9 16 25 36
> 10" ~ S = Zl 10™ = — 00 1 To00 — 0000 T 100,000 — 1,000,000 — 0.067614

sl-

n—1,2 6

n=1 n

Adding b7 to s¢ does not change the fourth decimal place of sg, so by the Alternating Series Estimation Theorem, the sum of

the series, correct to four decimal places, is 0.0676.

1 1 1 1 1 . . L
Z+~--+Ef%+5—lf§+~--. The 50th partial sum of this series is an

+

18
I
—

\
N =
wl =

underestimate, since

INgE:

51 52 53 54

-1t 11 11 . iy
% = 850 + ( > + (— - —> + - - -, and the terms in parentheses are all positive.
1

The result can be seen geometrically in Figure 1.

Clearly b,, = - L > is decreasing and eventually positive and lim b, = 0 for any p. So the series converges (by the

n—oo

Alternating Series Test) for any p for which every b,, is defined, that is, n + p # 0 for n > 1, or p is not a negative integer.
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S ban = 3. 1/(2n)? clearly converges (by comparison with the p-series for p = 2). So suppose that 3_ (=1)" "' b,

1

. But thi
5 — 1 But this

converges. Then by Theorem 11.2.8(ii), so does 3_ [(—=1)"'bn + bn] =2(1+ 2+ 1 +---) =23

diverges by comparison with the harmonic series, a contradiction. Therefore, > (—1)”_1 b, must diverge. The Alternating

Series Test does not apply since {b,, } is not decreasing.

11.6 Absolute Convergence and the Ratio and Root Tests

1.

1.

(a) Since lim Intll_g> 1, part (b) of the Ratio Test tells us that the series )  ay, is divergent.

n—oo | On

An+1

= 0.8 < 1, part (a) of the Ratio Test tells us that the series ) a, is absolutely convergent (and
an

(b) Since lim
therefore convergent).

(c) Since lim dntl)| 1, the Ratio Test fails and the series Y a,, might converge or it might diverge.

n—oo an

n . 1 5" . 1 1 1 .. 1+1 1 1 R .
nIEEO aa_:l - nhig, Zn% ’ % = nh};O 'g : nz ' =3 nli»n;o +1/n = 5(1) =3 < 1, so the series ng1 %m
absolutely convergent by the Ratio Test.

1 = (=D

n > 0 forn > 0, {b,} is decreasing forn > 0, and lim b, = 0, so converges by the Alternating

T hntl =0B5n+ 1

. . 1
Series Test. To determine absolute convergence, choose a, = — to get
n

7}Lr20 Z_: = nli—»néo % B nlgr;o 5“; ! =5>0,s0 nz::1 o] diverges by the Limit Comparison Test with the
harmonic series. Thus, the series > (=) is conditionally convergent.
n=0 57'L —|— 1
k+1) (2)" ! .
- Jim a(];:l = lim % = lim % (%) = ;kll)n;o (1 + %) = 2(1) = 2 < 1, so the series

o0
> k (%) is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the
n=1

same as convergence.

n+1 4 4
lim |2 = lim {% - ] — i D 4y i — = (1) i .
n4

= (L)1) =11>1,

X L™ .
so the series ) (—1)" ~—— diverges by the Ratio Test.
n

el/n

converges, and so

e 1 > 1 e
< —=e|—)and — is a convergent p-series [p = 3 > 1],
— nd <n3) nz=:1 n3 ety b ] n,zzjl n3

is absolutely convergent.
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. 0™+t (n+ 1) 42"+ ) 10 n+1 5 .= 0™
= ”7’],1_>:[“Iolo |:(n T 2) 1213 . o7 = nlLH;o 4—2 . " = g < 1, so the series n;l W

An+1
Qan

lim

n— oo

is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the same as

convergence.

(=1)" arctann w/2 . /2 w1 ® (—1)" arctann
————| < —5-,sosince == — converges (p = 2 > 1), the given series —
’ n? n? nz=:1 n? 2 z=: n? ges (p = ), the g Z:: n?

converges absolutely by the Comparison Test.

e (=" . . . . 1 1. .
> (=1) converges by the Alternating Series Test since lim —— = 0 and { — ; is decreasing. Now Inn < n, so
n=e Inn n—oo Inn Inn

|H
—

1
—, and since Z is the divergent (partial) harmonic series, Z on diverges by the Comparison Test. Thus,
n=2T n=2 n

=3
3
:

is conditionally convergent.

1 o)
M < —and Z — converges (use the Ratio Test), so the series > M

T ' converges absolutely by the
n! n! =1 n!

Comparison Test.

2 2 0
nlingo Ylan| = nan;O 27722':_11 = n]er;o ;i—% = % < 1, so the series Z ( 27;21 1) is absolutely convergent by the

Root Test.

n2 n
lim ¥/|an| = lim ¢ (1 + l) = lim (1 + l) =e > 1 [by Equation 7.4.9 (or 7.4*9) [ ET 3.6.6] ],
n— 00 n— o0 n n

n— o0

2

oo n
so the series ) (1 + l) diverges by the Root Test.
n

n=1

100 100
N . | (n+1)t%100™ " n! . 100 [n+1 . 100 1
1 =1 . =1 =1 14—
s an s (n+1)! nl00100n ey n+1 n el n+1 + n
=0-1=0<1
oo 1001
so the series Z is absolutely convergent by the Ratio Test.

Use the Ratio Test with the series

1-3 1-3-5 1-3-5-7 41-3:5-----(2n—-1) e 4,135+ (2n—1)
1— —= _ —_1)n1 = —1)r1
3 A R ) @n—1) o= 2n—1)
—1)"-1-3-5----- — — —1)!
lim 12— i (-1)*-1-3-5 2n—-1)[2(n+1) l}. (2n —1)!
n—oo Qn n— oo [2(7’L =+ 1) — 1}' (_1)77,—1 -1-3-5----- (2n — 1)

=D+ -1 1
1 = lim —=0<1
¥$M%+U®M%—U! R

so the given series is absolutely convergent and therefore convergent.
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© 0.4 G- © (2.1)-(2-2)-(2-3)---- . o 9npl o
29. 3 2:4-6 (2n) =3 2-1)-(2-2)-2-3) (2-n) =3 2t >~ 2™, which diverges by the Test for

n! n=1 n! n=1 n! n=1

Divergence since lim 2" = co.
n—oo

31. By the recursive definition, lim dntl| _ ontl = 5 > 1, so the series diverges by the Ratio Test.
n—oo | Qn n—oo |4n 4+ 3 4
) 0o (0 o) (0 ) 1
33. The series by cosmm _ > (—1)"b—", where b, > 0forn > 1 and lim b, = .
n=1 n n=1 n oo 2
. a . —1)nFipntt n . n 1 1 . bycosnm .
TLILII;O Z—:l = nlLH;O ( 7)1+ 1" . = = nh—{l;lo b"n_—l—l = 5(1) =3 < 1, so the series n; e
absolutely convergent by the Ratio Test.
3 3
35 @ tim |MOED ) " L1 Inconclusive
n—oo| 1/m n—oo (n4+1)°  n—oo (14 1/n)
1) 27 1 1 1 1 .
(b) nh_)ngo (T;:H) = nlLIr;o n—; = nll—{rc}o (5 + %) =3 Conclusive (convergent)

I
(©) nh_{rolo Jntrl (=31

. [ n . /1 . .
=3 nllrr;o e 3 nhl& m = 3. Conclusive (divergent)

T 2 2
(d) lim ntl 5 - 1tn = lim 1+ 1 1/n” +1 5 | = 1. Inconclusive
n—oo |14 (n+1) NG n—oo n 1/n2+ (1+1/n)
n+1 |
3. (a) lim % = lim h : ;in Jim | 1‘ = lz| Tim_ nJlrl =|z|-0 =0 < 1, so by the Ratio Test the
series } — converges for all z.
n—=0 T
(b) Since the series of part (a) always converges, we must have lim % = 0 by Theorem 11.2.6.
501 1 1 1 1 1 661 .
39. = — =4 -4 =4+ =4 -—=—=0. 4. Now the rat
(a) s5 n;1 o = 3 8+24+64+ 160 — 960 0.6885 ow the ratios
P 2 n2” = L form an increasing sequence, since
" e e D2 2+ 1) g sequence,
n+1 n (n+1)° —n(n+2) 1 .
il — T = — = = .Soby E 34(b), th
Tptl — T nt2)  2ntl) 2n+ 1) +2) 2(n+1)(n+2)>0 o by Exercise 34(b), the error
. . . ae 1/(6 . 26) 1
Rs < = = — = 0.00521.
MU S IS55 = T Tim ry . 1—1/2 192
. . s . n 2
(b) The error in using s, as an approximation to the sum is R,, = Intl _ We want R,, < 0.00005 <

1 n .
-1 (nti2zm

1
————— < 0.00005 < (n+1)2" > 20,000. To find such an n we can use trial and error or a graph. We calculate
(n+1)2"

11
(11 +1)2" = 24,576,50 511 = 3 % ~ 0.693109 is within 0.00005 of the actual sum.
n=1
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41. (i) Following the hint, we get that |a,| < r™ for n > N, and so since the geometric series > >, r™ converges [0 < r < 1],
the series Y - |an| converges as well by the Comparison Test, and hence so does > -, |an|, 80 > | an is absolutely
convergent.

i) If lim /[an] = is an i v/ > > N.

(i) If nlgr;o |an| = L > 1, then there is an integer N such that {/|a,| > 1 foralln > N, so |an| > 1 forn > N. Thus,
lim an # 0,50y o2, an diverges by the Test for Divergence.
n— 00

OO

. >x 1 .. 1 e . .. .
(iii) Consider > - [diverges] and ) = [converges]. For each sum, nanQO Y/|an| = 1, so the Root Test is inconclusive.

n=1 n=
43. (a) Since ) ay, is absolutely convergent, and since |aﬂ < |a,| and |a; | < |an| (because a,} and a,, each equal
either a,, or 0), we conclude by the Comparison Test that both 3" a;t and 3~ a;, must be absolutely convergent.

Or.: Use Theorem 11.2.8.

(b) We will show by contradiction that both " a;} and 3~ a;, must diverge. For suppose that >_ a;} converged. Then so
would Y (a;t — 2an) by Theorem 11.2.8. But 3 (af — 3an) =3 [3 (an + |an]) — 3an] = 3 3 |an|, which

diverges because 3 a,, is only conditionally convergent. Hence, " a;} can’t converge. Similarly, neither can 3" a;, .

45. Suppose that Y a,, is conditionally convergent.

(@) 3" n2a, is divergent: Suppose 3" n’a,, converges. Then lim nZa, = 0 by Theorem 6 in Section 11.2, so there is an

. 1
integer N > Osuchthatn > N = n?|a,| < 1. Forn > N, we have |a,| < —5,80 Y |an| converges by
n n>N

. . . 1 .
comparison with the convergent p-series > —. In other words, ) a,, converges absolutely, contradicting the
n>N T

assumption that > a., is conditionally convergent. This contradiction shows that n%a, diverges.

Remark: The same argument shows that Y n”a,, diverges for any p > 1.

[} -1 n
(b) 22 (nln)n is conditionally convergent. It converges by the Alternating Series Test, but does not converge absolutely

is continuous, positive, and decreasing on [2, co) and

. . 1
{by the Integral Test, since the function f(z) = pru Py

t—o00 nn

oo t t _1\n
/ dv_ _ lim / dv_ _ lim [ln(ln x)} = oo|. Setting a, = (1) for n > 2, we find that
5 xzlnzx t—o f, xlnzx 2 nl

& > (=1)" . .
> nan = Y Tog, COmverges by the Alternating Series Test.
n=2 n=2

: iy . . o (=t
It is easy to find conditionally convergent series Y | a,, such that > na,, diverges. Two examples are > Q and
n=1 n

fo%s) _1\n—1
> %, both of which converge by the Alternating Series Test and fail to converge absolutely because > |a.| is a
n=1 n

p-series with p < 1. In both cases, Y, na,, diverges by the Test for Divergence.
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11.7  Strategy for Testing Series

1 1 1\" s (1\". o -
e < = <§> foralln > 1. NZI:I <§> is a convergent geometric series [|r| = 3 < 1],s0 )

converges by the Comparison Test.

n . . n N . R L .
3. lim |an| = lim 5= 1,s0 lim a, = lim (—1) P does not exist. Thus, the series > (—1) P diverges by

n— oo n—oo N n—oo n— 00 n n—=1

the Test for Divergence.

1)%22"  (=5)" 20n+1)% 2 1\ 2 2 .

S i || = (’Z_Z)ZH | = i 2 = % i, (1 * ;) =5 =5 < bsotheserie

oo n2 2n—1

> converges by the Ratio Test.

n=1 (_5)
7. Let f(x) = ! . Then f is positive, continuous, and decreasing on [2, 00), so we can apply the Integral Test.

zVinz
. 1 - _
Since | ———dx u=lnz, | _ u 1/2du=2u1/2+C=2\/lnac—|—C,Weﬁnd
vVInz du = dz/x

oo t
/ du = lim / dl = lim [2\/ } hm (2 Vint —2+vIn ) = oo. Since the integral diverges, the
2 T 2 nx

Inz t—o0 t—o0

o0
given series diverges.
n=2nVInn
S o0 k:2
9. S k%P F = % s Using the Ratio Test, we get
k=1 k=1
2
e S N (o S Scal N k+1\" 1| ., 1 1 ,
klin;o |~ klingo ‘W | = leIIolo ) | = 1 ==z < 1, so the series converges.

> /1 1 " . o o
1. 7LZ=:1 (F + 3—n> 7;:1 n3 + Z ( ) . The first series converges since it is a p-series with p = 3 > 1 and the second

series converges since it is geometric with |r| = % < 1. The sum of two convergent series is convergent.

n+1 2 | 2 %) n, 2
13. lim dntl] _ lim 3 (n+1) LI lim M =3 lim ntl = 0 < 1, so the series 3'n
n—oo | Qnp n—oo (TL + 1)' 3nn?2 n—00 (TL + 1)77/2 n—oo M2 n=1 n!
converges by the Ratio Test.
ok—1gk+1 gkg—1gkgl 9.3\" ' k
15. ar = k:: = kkg 3 = g(%) . By the Root Test, kILn;o & (%) = klin;o% = 0 < 1, so the series

0o 6 k oo k 13k+1 >~ 3/6
> (E) converges. It follows from Theorem 8(i) in Section 11.2 that the given series, > k— Z .2 (—>
k=1 k=1

also converges.
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. An+1 . 1-3-5----- 2n—-1)(2n+1) -5-8-----3n—-1)| .. 2n+1

lim |——|= 1 . = lim

n—oo | Qn n—oo|[2:-5-8--... Bn-1)Bn+2) 1-3:5-----(2n—1) n—oo 3N + 2
2+1/n

3 2 3< ’

so the series Z 1-3:5.---Qn—1)

3 5.8 Gn=1) converges by the Ratio Test.

I§ 2—1 1 . .
Let f(z) = % Then f'(z) = lezx <Owhenlnz >2orz > e, 50 % is decreasing for n > 2.
, o . Inn . 1/n - Llnn
By I’'Hospital’s Rule, lim — = lim ———+—— = lim — = 0, so the series > (—1) T converges by the
n=1 n

A D) i, 7

Alternating Series Test.

lim |an| = lim |(=1)"cos(1/n®)| = lim |cos(1/n”)| = cos0 =1, so the series >_ (—1)" cos(1/n?) diverges by the
n— oo n—oo n—00 n=1

Test for Divergence.

Using the Limit Comparison Test with a,, = tan (%) and b, = %, we have

. tan(1 . tan(1 . 2(1/z) - (—1/2? . .
lim 2% = lim tan(1/n) = lim tan(1/z) L T (/) (=1/) = lim sec?(1/z) =12 =1 > 0. Since
n—o0 Op n—oo /’n Tr— 00 X T — 00 71/3’;2 xTr— 00
oo oo
> by is the divergent harmonic series, > a, is also divergent.
n=1 n=1
2 2
. . ani1| . (m+1)! e | .. (n+nl-e” . n+4+l
. Use the Ratio Test. nler;o o |= 7}Ln;o provsieakiel b nh—>n(:>lo S oTrenaig nlqrgo T =0<1,s0 7?1 nz

converges.

o | 1 1" o . S i
/ n—fd;r = lim {—ﬂ - —} [using integration by parts] L1 %0 > n_2n converges by the Integral Test, and since
s T x =in

t—oo

klnk klnk Ink ) nk
— < = —-—, the given series ——— converges by the Comparison Test.
t1)° ~ KRR & et 1) omeEsy P
e o) 1 e n . . . 3 _ .
n,;l an = nz::l(—l) P nz:: (=1)" by. Now by, = b 0, {bn} is decreasing, and Jim b, =0, so the series

converges by the Alternating Series Test.

. 1 2 2 1 .
Or: Write cosh = = < — on and ; -y is a convergent geometric series, sonz1 coshn is convergent by the
OO
Comparison Test. So > (—1)" oshn is absolutely convergent and therefore convergent.
n=1
k k k
. . 4 . . .
klin;o ar = ILH;O 3 i_ YO = [divide by 4*] h (35545—1@)_1_1 oo since klirxgo (%) = 0 and ILH;o (%) = 00.
o K
Thus, Zl T - diverges by the Test for Divergence.
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2

n“/n n

n 1 1 1 &, n
3. lim {/|an|= 1 =1l = — 7 = — < 1, so the seri
i Vil = tim () = i ey = T = < boesses £ ()

converges by the Root Test.

1 1 . . . . n .
so let b,, = — and use the Limit Comparison Test.  lim dn _ lim

35 a, = =
T opltl/n T g opl/n? n n—co by n—oo nl/m

=1>0

(o=}
[see Exercise 4.4.61], so the series > diverges by comparison with the divergent harmonic series.
n=1

1
n1+1/n

37. lim {/Jan] = lim (2" —1)=1-1=10 < 1,so the series > (/2 —1)" converges by the Root Test.

n—oo n—=1

11.8 Power Series

1. A power series is a series of the form >~ | cnz" = co + a1 + c22® + cax® 4 - - -, where z is a variable and the ¢,,’s are
constants called the coefficients of the series.
More generally, a series of the form Y °° ¢ (z — @)™ = co + c1(z — a) + c2(z — a)® + - - - is called a power series in

(z — a) or a power series centered at a or a power series about a, where a is a constant.

3. If a, = (—1)"nz", then

(_1)n+1 (TL + 1)xn+1
n— 00 (—1)" nxm

— lim |(—1)" 2

n— oo n

xT

= lim {(1 + l) \xq = |z|. By the Ratio Test, the
n

n—o0

(o=}
series Y (—1)"na™ converges when |x| < 1, so the radius of convergence R = 1. Now we’ll check the endpoints, that is,
n=1

x = 1. Both series Y (—1)"n(£1)" = > (F1)"n diverge by the Test for Divergence since lim |(F1)"n| = oo. Thus,
n=1 n—oo

n=1

the interval of convergence is I = (—1,1).

n

T .| ansr , "t 2n -1 . 2n — 1 . 2—1/n
5. Ifan = ——, then 1 =1 . =1 =1 — =|z|. B
o T e | T e 2l e A Spgr el ) = lim A\ g5 1#l) = lel- By
. - " —— 1 .
the Ratio Test, the series ) 7 converges when |z| < 1,s0 R = 1. When = 1, the series ) ] diverges by
n=1 - n=1 410 —
comparison with io: L since L > L and 1 io: 1 diverges since it is a constant multiple of the harmonic series
p 2o 1~ 2n Mg 2y dvere P '
.2 (-n” . . . .
When & = —1, the series Y ) T converges by the Alternating Series Test. Thus, the interval of convergence is [—1, 1).
n=1 <1 —
n n+1 | 1
7. Ifan, = —, then lim |22 | = lim |—— 2| = lim = |a| lim —— =|z|-0=0 < 1 for all real .
n! n—oo | Qn n—oo (n + 1)! rn n—oo [N + 1 n—oon + 1
So, by the Ratio Test, R = co and I = (—o0, 00).
2. .n
9. If ay = (~1)" "5~ then
Cann | (D2 on | a2 (el L 1] el
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s nZz"
Ratio Test, the series Y (—1)" 5n converges when $ |z| <1 < |z < 2, so the radius of convergence is R = 2.
n=1
. & TLQ(:I:?)" e 2 1 . .
When x = +2, both series ) (—1)" —on = > (F1)™n® diverge by the Test for Divergence since
n=1 n=1
lim |(F1)" n?| = co. Thus, the interval of convergence is I = (—2,2).
_3 TIV:Z,TI,
If Ap = (n+/27 then
n n 3/2 3/2
. ni1| . (—3)tigntt n/? L B n B . 1
A || T, ‘ EEyPZE ey R sl Wl B L L
— 3]a| (1) = 3a|
: R () 1 1 1 :
By the Ratio Test, the series ) NG x™ converges when 3 || < 1 < [z] < 3,50 R = 5. When = = 3, the series
n=1 y/M
> (=1)" . . 1 - . .
> 3/5 converges by the Alternating Series Test. When = —3, the series 35 182 convergent p-series
n=1 N n=1"1
(p = % > 1). Thus, the interval of convergence is [f%, %]
Ifan = (—1)" > then lim | “*L| = lim AR 0./ g R | T
" 47 Inn’ n—oo| ap | n—oo|4ntlln(n+1) 2" | 4 nocoln(n+1) 4
[by I’'Hospital’s Rule] = m By the Ratio Test, the series converges when ‘Z—' <1 <& |z|]<4,s0R=4. When
s x™ > [(=D)(—=4" x 1 . 1 1 > 1.
=—4 -1H" = L = ——. Since 1 forn > 2, — > — and — is th
T ,ngz( ) T n§2 o n;Q o ince Inn < n forn > 2, o > - an n§2 - is the
> 1
divergent harmonic series (without the n = 1 term), > on is divergent by the Comparison Test. When x = 4,
n=2
& " & 1 . . .
n;2(—1)”4nmlm = ngz(_l)nﬂ’ which converges by the Alternating Series Test. Thus, I = (—4,4].
_(z—2)" . angr| (z—2)""" P41 | . n’+1
Man = Sy then i 1= = = i e 1 ooy T e g 2 Bythe

oo} _ n
Ratio Test, the series > =2 converges when [t —2| <1 [R=1] & -1<z—-2<1 & 1<z<3. When

n=0 712 + 1

o0 e
x =1, the series >, (—1)" 1 converges by the Alternating Series Test; when z = 3, the series 2—100nverges by
n=0 n n=0"M
> 1
comparison with the p-series e} [p = 2 > 1]. Thus, the interval of convergence is [ = [1, 3].
n=1
n 4 n n+1 4 n+1
oy = S@ED" ot |2 ] = g [BE@ED VR g Y g,
\/ﬁ n—oo an n— oo vn + 1 3"(1’—’—4)" n—oo \/n + 1
: R 1 1
By the Ratio Test, the series > — converges when 3|z +4| <1 < |z+4|<1i [R=3] <«
n=1 n
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19.

21,

23.

25.

27.

29.
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e 1
—t<z+4<3: & L <r<—L Whenz =22, the series Zl(—l)” ﬁ converges by the Alternating Series
Test; wh =—1L th i wld' = 1 < 1]. Thus, the interval of is I = 13 _11
est; when © = — 4, the series Zl—n iverges [p = 2 < 1]. Thus, the interval of convergence is I = [, —41).

Ifa, = @, then lim {/|an| = lim u = 0, so the series converges for all  (by the Root Test).
n n—oo n

R =oco0and I = (—00,00).
n
an = F(m —a)”, where b > 0.

An+1
Qn

= lim

n—oo pn+1 n ‘J,‘ — a‘ n—oo

|z —qaf
b

lim
n— 00

(n+1)|x—a|”+1_ b" L 1\ |z —a] |z—d
b b

By the Ratio Test, the series converges when <1l & |z—al<b [soR=bD] & -b<z—a<b &

a—b<x<a+b When|z—al=09, hm lan| = lim n = oo, so the series diverges. Thus, I = (a — b,a + b).

n—oo

(n+1)! (22 — 1)+
n!(2z — )"

An+1
an

= lim

n— oo

If a, = n! (22 — 1)", then lim

n— oo

= lim (n+1)|22 — 1| > c0oasn — o©

forall 2 # . Since the series diverges forall z # 2, R=0and I = {1}.

Ifa, = Bz —4)"

3 , then
. An+1 . (51} — 4)n+1 n3 3 . 1 8
1 — =1 . =1 5r — 4 =1 br — 4| | ———
Ji = nLnso! T T |~ s =4l (5 ) = Jmlse =4l (

|5z — 4| -1 = |5z — 4|

& (br—4)" 74)

By the Ratio Test, Z converges when |52 —4| <1 & |z — 2| <2 —t<z-%<t &

> 1
% <z <l,soR= % When x = 1, the series 21 = is a convergent p-series (p = 3 > 1). When x = %, the series
e

[o'e) _ n
> =) converges by the Alternating Series Test. Thus, the interval of convergence is I = [%, 1} .

If a, = , th
=135 e "
n+1 1-3-5- (2n —1) ||
T | T T35 @i Dt D) o S
:Cn

the Ratio Test, the series Z converges for a/l real x and we have R = oo and I = (—o0, 00).

~1-3-5-----(2n—1)

(a) We are given that the power series > 2, c,a™ is convergent for z = 4. So by Theorem 3, it must converge for at least

—4 < x < 4. In particular, it converges when x = —2; thatis, Y ~. , cn(—2)" is convergent.
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| k
3. Ifa, = EZTL))'QC then

7
the endpoint of an interval. An example is ¢, = (—=1)"/(nd").]

(b) It does not follow that "> ¢, (—4)" is necessarily convergent. [See the comments after Theorem 3 about convergence at

lim |22 = lim [(n £ DY) (kn)! |z| = lim (n+1)" |z|
n—oo [07%% n—oo (n')k [k(n+1)}' n—oo (kn+k)(kn+kf 1)(kn+2)(km+1)
— lim {(n-l-l) (n+1) (n+1)}‘x|
n—oo | (kn+1) (kn + 2) )

(kn+k

= lim ntl lim ntl lim ntl ||
1

kn+k
k
(E) lt] <1 < |z| < k" for convergence, and the radius of convergence is R = k*.

_1\n 2041
35. (a) If @, = (=1)

of convergence, then its interval of convergence must be (—oo, 00), not [0, 00).
x

33. No. If a power series is centered at a, its interval of convergence is symmetric about a. If a power series has an infinite radius
, then
nl(n + 1)!1227+1

x2n+3

nl(n+1)! 22n+l
(n+ 1)l(n+2)! 22743
So J1(z) converges for all z and its domain is (—oo, co)

p2n+1

n—oo (TL -+ 1)(7’L + 2)
3

=0 for all z.
5

= (E)Q lim !
T2
(b), (¢) The initial terms of J1 (z) upton = 5are ap = =,
AN
16°°7 7 384770

-
:L,Q
T18432° M T 1,474,560°
11

and a5 =

T

176,947,200

So Sy Sy

The partial sums seem to
approximate J1 (z) well near the origin, but as |z| increases,

we need to take a large number of terms to get a good
approximation.

\_
37. sop—1 =1+20+22+222 +2* +22° + - - + 2272 221

S 83
=1(1+2z) +2*(1+22) +2* (1 +22) + - + 2™ (1 +22) = (1 +220) (1 + 22 +2* + - + 22" 7?)
1—x
=(1+22)——
(1+ m)l—aﬂ

-2
2n

[by (11.2.3) with r = 2?]

14 2z
—
Also s2n = San—1 + $2n —

— x2
— 12
142z

approach T

x2

asn — oo by (11.2.4), when |z| < 1.
since 2™ — 0 for |z| < 1. Therefore, s, —

2 Since s2,, and s2,,_1 both
1— 22
as n — o0o. Thus, the interval of convergence is (—1,1) and f(z)

142z
1 -2
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39. We use the Root Test on the series Y c,z™. Weneed lim V/|cp,z™| = |z] lim %/|cn| = ¢|z| < 1 for convergence, or
lz] <1/c,s0 R=1/c.

M. For2 <z < 3, cpz™ diverges and ) d,z™ converges. By Exercise 11.2.69, > (¢, + dn) «™ diverges. Since both series

converge for |z| < 2, the radius of convergence of > (cn + dn) 2™ is 2.

11.9 Representations of Functions as Power Series

1. If f(x) = 3. cnx™ has radius of convergence 10, then f'(z) = 3. nc,z™ " also has radius of convergence 10 by
n=0 n=1

Theorem 2.

. . L 1 . .
3. Our goal is to write the function in the form T , and then use Equation (1) to represent the function as a sum of a power
—r

1 1 S & .
=——=>(—z)"= > (-1)"z" with|—z| <1 < |z|<l,soR=1land]=(-1,1).
n=0

series. f(x) = 1+z 1-—(-x) =0

5 f(z) = =3 . =2 i (z)n or, equivalently, 2 5> L 2™. The series converges when ’E‘ <1
. - - 3 - 3 3 ) q ya = 3n+1 . g 3 )

n=0

that is, when |z| < 3,s0 R=3and I = (-3, 3).

xZn x2n+1

ORS ro %{1 T (2/3)2] = %{1 - {—tx/S)Q}] =35 {*(5)171 =5 S G = S

. = z\2]" x\2 ’CﬂQ! 2
The geometric series Y {—(—) } converges when —(g) ‘<1 dlro <l & |zI"<9 & |z|<3,s0

n=0 3

R=3andI = (-3,3).

1 1 =) =) =) =) =) =)
9. f(z) = 1ti:(1+x)(m) =(l+z) N a" =Y 2"+ S 2" =1+ 2"+ > a"=1+23 a"
n=0 n=0 n=0 n=1 n=1 n=1

The series converges when |z| < 1,s0 R =1and I = (—1,1).

142 —(1—-=z)+2 1 , ,
- - =—142(——)=-1+2 "=142
1—x 1—x + (l—x) T2y T2y

A second approach: f(x)

A third approach:

flz)= 1ti :(1+x)(ﬁ) =(1+2)1l+z+22+2°+--)

=14zt +2®+ )+ @+ +ad a2t ) =1+20+ 222 223+ =142 2.

n=1
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3 3 A B
11. = = = =A 1 B(x —2). L =2 A=1
f(z) P12 G-+ m—2+m+1 = 3 (z+1)+ B(z —2). Letx to get and

xr = —1toget B= —1. Thus
3 1 1 1 1 1 1 X /z\» ) n
$2—$—2_m—2_az+1_—_2(1—(:r/2))_1—(—$) __5720(5) _,,,;0(_“;)
>

-2 el g o -2

We represented f as the sum of two geometric series; the first converges for z € (—2, 2) and the second converges for (—1,1).

Thus, the sum converges for z € (—1,1) = 1.

13. (a) f(z) = i( —1 ) S [i (=" x”} [from Exercise 3]

1
(1+2)° dz\l+w dz |,=
i (=1)"*'nz"~!  [from Theorem 2(i)] = io: ()" (n+1)z™ with R = 1.
n—=1 n=0

In the last step, note that we decreased the initial value of the summation variable n by 1, and then increased each

occurrence of n in the term by 1 [also note that (—1)""2 = (—1)"].

1 1d 1 1d [, ., .
() f(z) = 0ra7 2de [m} =57 LZZDO(—U (n+1)z™| [from part (a)]
= 1S ()4 Dna "t = 1 3 (—1)"(n+ 2)(n + 1)2” with R = 1.
n=1 n=0
2 oo
© f(z) = (1%)3 Y ﬁ ey % 3 (1) (n+2)(n+ 1)a”  [from part ()]

Jr
= 3 5 (1" + D0+ Da™

n+2

To write the power series with 2™ rather than 2", we will decrease each occurrence of n in the term by 2 and increase

the initial value of the summation variable by 2. This gives us % S (=1)"(n)(n—1)z" with R = 1.

n=2
n+1 n

15. f(z) =In(5 — x) :—/5d_x$ :*%/ 1_032/5 :7%/ L:(%)n} dr =C _% 2 ?n—l—l) 721 nos"
R=

Putting z = 0, we get C' = In 5. The series converges for |x/5| <1 < |z| <5, s0

\g

1 1 x
17. We know that = = —4x)™. Differentiating, t
e know that T——— = 7— =) ngO( x)". Differentiating, we ge
—r = 3 () e = S ()" 4 Dt so
1+4z)? = = ’
T —x —4 —xr X x
— — . — 4 n+1 1 n _ 1 n4n 1 n+1
f(z) (1 + 4z)2 4 (1+4z2)? 4 ngo( ) (n+ 1z ngO( ) (n+ Dz

for|—4dz| <1 & |z[<i,soR=

FNTe
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19. By Example 5, 5 = > (n+1)z". Thus,
n=0

(1-=)
T) = 1tz _ L x S n " 3 n "t
@ =g~y T ST D

=> (n+1)z"+ > nz" [make the starting values equal]

=14+ > [(n+)+njz" =1+ > 2n+1)z" = > (2n+1)z™ with R =1.
n=0

n=1 n=1

. T T 1 & x2n_m°° n 1 5, & a1 ontl
10 = s = S (rmoemm) ~ 5 5 () SR ECY e = S0 e

The series converges when |—x2/16| <1 & 2°<16 <& |r| <4,s0R = 4. The partial sums are s; = 133_6’
z® z® z’ z°
Sg =8 ——=,S3 =35 —,84=83— —,8 =8 ——, .... Note that s; corresponds to the first term of the infinite
2 1= 1620 %8 2+ 163 % 37 110 50 4+ 165 1 p

sum, regardless of the value of the summation variable and the value of the exponent.

N
0.25 N
N s
f
Sy\e 54
—4 4
S
S 2
!
ss(7 S
/
!
55 -0.25

As n increases, s, (z) approximates f better on the interval of convergence, which is (—4,4).

:/[i(—l)%"*-niol’"] dl':/[(l—x-l-CEQ—w3+w4—~--)—|—(1—|—J;+z2+z3+x4+...)}d1

n=0
—/(2+2m2+2x4+ )da = i 20" dx = C + i 202
a B n=0 N n=0 2n + 1
oo 2n+1 o 1
But f(0) =In1 = 0,s0 C' = 0 and we have f(z) = 2 onTT with R = 1. If x = £1, then f(z) = iQn;O G

. . . . . 1
which both diverge by the Limit Comparison Test with b,, = -
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S
S3
. 2z 223 225 ’ Si

The partial sums are 57 = —, 83 = 81 + ——, 83 = S2 + —, .. .. 3 \//

1 3 5 f
As n increases, sy, (x) approximates f better on the interval of -2 2
convergence, which is (—1,1).

-3

t N t B x " t? . 1
T8 = t- T—F = th::O(t = HZ::Ot n = T dt = C+HZ=:O e The series for T s converges

when |t8| <1 <& |t| < 1,50 R =1 forthat series and also the series for t/(1 — ¢®). By Theorem 2, the series for

t
— Iso h =1.
/l_tsdtaso as R

xn+2

and

From Example 6, In(1 + z) = > (71)”_133— for |z| < 1,50 2% In(1 +z) = > (—=1)"7*
n

n=1 n=1

oo n+3
/m2 In(l+z)de=C+ . (—1)"%. R =1 for the series for In(1 + z), so R = 1 for the series representing
n=1

2?2 In(1 + ) as well. By Theorem 2, the series for /m2 In(1 + x) dx also has R = 1.

E T T L) S B
1 & 5 ) Z2°rtl

/W do= [ (-1 do = O 55 (<1 . Ths,

1= /0'2 1 de = {m - x—G + x_ll — -]O : =0.2- (02)° + (02" — - - -. The series is alternating, so if we use
o 1+ad 6 11 o 6 11 ’

the first two terms, the error is at most (0.2)*!/11 ~ 1.9 x 107°. So I = 0.2 — (0.2)5/6 = 0.199 989 to six decimal places.

We substitute 3z for « in Example 7, and find that

32n+1 x2n+3

oo 2n+1 oo 2n+1 2n+2 o
/:L" arctan(3z)dx = [z > (-1)" B)™™ dr = / > (—1)"37"T de =C+ 3 (=1)"
n=0

2n +1 = 2n+ 1 =0 2n+1)(2n +3)
0.1 323 335 35,7 3749 0.1
S tan(3z)dr = | — — _ ..
0 /0 z arctan(3z) dz {1.3 3'54—5'7 7'9+ .
_ 1 9 n 243 2187 g
T 103 5x10° ' 35x 107 63 x 109 ’
.. . . . 2187 _s
The series is alternating, so if we use three terms, the error is at most 53 < 10° ~ 3.5 x 107°. So

19 243
10°  5x10° ' 35 x 107

0.1
/ x arctan(3z) do ~ ~ 0.000 983 to six decimal places.
0
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3 5 7 3 5 7
33. By Example 7, arctanz = x — % + % — % +---,s0arctan0.2 = 0.2 — <O§) + <052) — (072) + e

7
The series is alternating, so if we use three terms, the error is at most % =~ 0.000 002.

(0.2)*  (0.2)°
3 5

~ 0.197 40.

Thus, to five decimal places, arctan 0.2 ~ 0.2 —

o (=1)" g  (—1)"2ng* ! < (=1)"2n(2n — 1)z?"~2
35. (a) Jo(z) = 7;0 BZICIER Jo(x) = n; P ZICH I and Jg'(z) = n; 22 (n1)? , 50
> , ) & (=D"2n@2n— 12" | & (=1)"2n2®" = (=1)" 2"
22 Jy () + zJo(z) + 2* Jo(z) = ngl CEE + 7;1 22 (1) + ngo Ty

oo (_1)n 2n(2n _ 1) 2n ( 1)n 277,%‘2 oo ( 1)n71 $2n

= +
nZ::I 227 (nl)? nzl 227 (nl)? nzl 22n=2 [(n, — 1)1]?

_ i (—=1)" 2n(2n — 1)z>" i (—=1)" 2nx®" N i (—1)"(=1)"122n22?"
=1 227 (nl)2 =1 227(n!)? =1 22n(nl)?
& 2n(2n — 1) +2n — 22027 ,

= -1\ n
P { 22n (n1)2 v

. i (—1)" 4n? — 2n + 2n — 4n? 22" — 0

=2 22 (nl)? -

1 1 n_2n 1 2 4 6
> (-D)"=zx x x z
b dr = ~—r | dr = 1— =+ — o )d
®) /0 Jo(w) dz /0 L:O 2z | T, 164 2304 " v
N D S (A Ll_i N B
B 3-4 5-64 7-2304 o 12320 16,128
Since m = 0.000062, it follows from The Alternating Series Estimation Theorem that, correct to three decimal places,

[ Jo(z)dz =1 — &5 + 55 ~ 0.920.

n—1 o n—1 n

@ =55 = =5 =S =S =W

n=0

3
Il
-

(b) By Theorem 9.4.2, the only solution to the differential equation df(x)/dx = f(x) is f(z) = Ke®, but f(0) = 1, so
K=1and f(z) =¢€"
Or: We could solve the equation d f (z) /dz = f(z) as a separable differential equation.

n+1 2 2
39. If a,, = —, then by the Ratio Test, lim || = lim |——— - 2| = |z| lim ( —— ) =|z| < 1for
n—oo | Qnp n— oo (n —+ 1)2 xh n—oo\ n+ 1
& > 1 S . .
convergence, so R = 1. When z = == — which is a convergent p-series (p = 2 > 1), so the interval of
= n=1M

convergence for f is [—1, 1]. By Theorem 2, the radii of convergence of f’ and f"’ are both 1, so we need only check the

endpoints. f(z) = z_: :17_2 = flz)= > ne = Z_: nﬁ_ 1,and this series diverges for x = 1 (harmonic series)
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oo n—1
and converges for x = —1 (Alternating Series Test), so the interval of convergence is [—1,1). f"(z) = > ne 1 diverges
n=1
at both 1 and —1 (Test for Divergence) since lim p—— =1 # 0, so its interval of convergence is (—1,1).
. o p2ntl
41. By Example 7, tan™ " =z = " for |z| < 1. In particular, for r = —, we
y Examp an” " x nz::O( ) 1 || particu x 7 wi
2n+1
- /1 % (1/V/3) o0 1\"'1 1
have = =tan™! —= | = LR S S () ——
ave = = tan <\/§> nZ::o( ) 1 nZ::O( ) 3 \/§2n+1’50
6 = (-1 = (<"
= — =2V3 .
"= x (2n+1)3" fn; (2n+ 1)3"
11.10 Taylor and Maclaurin Series
oo (n) (8)
1. Using Theorem 5 with > b, (z — 5)", b, = ! n'(a), so0 bg = ! 8'(5)'
n=0 . !
3. Since ™ (0) = (n + 1)!, Equation 7 gives the Maclaurin series
e} (n) [} | oo
f—(o)w" = Mm" = n + 1)z". Applying the Ratio Test with a,, = (n + 1)z" gives us
n! n!
n=0 . n=0 . n=0
n 2 n+1 2
lim aa+1 = lim % = |z| lim Z_—T—l = |z| - 1 = |z|. For convergence, we must have |x| < 1, so the
radius of convergence R = 1.
5. (1 _ l')_2 _ f(O) + fl(o)x + f”(O) 12 + f”l(o)w3 + f(4)(0).174 + ..
n f(n) (.T) f(n) (0) 2! 3! 4!
0] (-2 1 = 1422+ 52° + 3’ + Fa' + -
-3 o)
1 2(1-a) — 142 +322 442 452t 4= 3 (n+ 12"
2| 6(1—2)™* 6 n=0
3| 24(1—2)7° 24 . 9)n+1 9
- 71Lm dntl zllm % = |z| lim nt =lz|](1)=z| <1
4 | 120(1 — ) 120 =00 | Gn n—oo| (n+ 1)z n—oom + 1
for convergence, so R = 1.
1 1"
7. sinTtx = f(0 +f/0x+f—(())x2+f—(())x3
2! 3!
n| )| ™0 ' '
0 sin Tz 0 + f(j'(o) =i+ f(z(o) 4.
1 T COSTTL ™ ' '
2 . 7T3 7'l'5
2 | —m"sin7z 0 :0+7rx+075173+0+y:c5+--~
3 | —m®cosmz —73 3 s .
a_. —71-1:_71-_13_’_71._1:5_”_'%-7_’_...
4 m°sinmx 0 = 31 5l 7l
5 w0 cosmx o IS p2ntl
_ n 2n+1
_77,20( ) (2n+1)'$
2n+3 _.2n+3 2 2
. Qn+1 T T (2n+1)! . T™“x
L = ~ = lim ————r——=0<1 forallz,so R = co.
e | Tan | T oo | @n a3y mrrigmr| T Gay3)@nto) o orAmsen=oeo
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n f (;L') f (O) n=0 . n=0 :
0 2 1 hm Gnt1 B hm (ln2)n+1xn+l . n]
1| 2%(In2) In2 n—oo | an | mn—oo (n+1)! (In2)nan
2 | 2°(In2)? | (In2)? (n2)]
i z| _ _
3 9 (ln 2)3 (111 2)3 = nh_)ngo TH =0<1 forall z,so R = .
4| 2°(In2)* | (In2)*
f(")(O) { 0 ifniseven b io: p2ntl
= so sinhz = —_
n| f™ (z) f(”)(O) 1 ifnisodd n=o (2n +1)!
0 sinh z 0 2n+1
Use the Ratio Test to find R. If a,, = —, then
1 | coshzx 1 (2n +1)!
2 | sinhzx 0 it 2273 (2n + 1)! 1
lim |——| = lim . =22 lim ————
3 cosh z 1 n—oo | Ap n— oo (27'L + 3)' x2n+1 n—oo (271, + 3) (277, —+ 2)
4 | sinhz 0 =0<1 forallz,soR = oco.
f™(z) = 0forn > 5, so f has a finite series expansion about a = 1.
n] @ |10
4 2 4 2 4 f(n)(l) n
0| z*—3z"+1 -1 flz)=2" -3z +1:ZT(x—1)
n=0 .
1 4z® — 6z -2
2 _i(x_1)0+;2($_1)1+§(x_1)2
2 122 — 6 6 = I o
3 24x 24
24 3 24 4
4 24 24 tayle-Uge-l)
5 =—1-2x—-1)+3@x—-1)%+4(x—1)°*+ (z — 1)*
6 A finite series converges for all x, so R = co.
(n) (n) f(w) == Z fT'(z) (:E - 2)"
n | f() | f(2) n=0
In2 1 -1 2
0] Inz In2 =S (@ -2 4 = (-2 + o (2 -2+ == (2 —2)°
0! 112 212 312
1 1/z 1/2 A
—6 2
2 2 _9)4 —9) 4 ...
2| -1/ -1/2 + o (x—2) +5!25 (x —2)° +
3| 2/2° 2/23
_ =, n+1 (TL — 1)' n
4| —6/z* | —6/2* —ln2+n;1(_1) W(I’—Q)
5| 24/2° | 24/2° o 1
=2+ > (-D)"M— (z —2)"
n=1 n2m
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T (LIRS BT (—D)" T2 (g —2)" Tt . n2" ~ lim (=) (z —2)n ~ lim n |z — 2|
n—oo | an n—oo (n+1)2n+1 (=1)nti(z —2)» n—oco (n+1)2 n—oo \ n+ 1 2
[z —2|
=~ < 1 for convergence, so |z — 2| < 2and R = 2.
00 (n)
1. fay= e = 5 LB gy
W 10w [776) =
2 6 6 2 4e®
0| e ¢ =G @3+ T @-3)'+ T @9
1 2621 266 . :
- 6 1 6
2 22¢? 4e8 _|_8i'(w_3)3+ 6'6 (x—3)*+---
3] 2%* 8¢’ & +
4,2 6 > 2"ef
4 | 2% 16e =3 — (=3
n=0 TV
. Gnt1 . 2ntleb(y — 3)n Tt n! . 2|z -3
e i B N R R e ol Bt R
oo f(k)
19. flx)=cosz =3 / kfﬂ-) (x—m)*
[ 1@ | 1@ =
0 cosT -1 _ (17*”)27(17*77)4 (17*7T)67___
=i 2! 4! + 6!
1| —sinz 0 : : :
oS _ 2n
2 | —coszx 1 =3 (_1)n+1%
3| sinz 0 n=0 (2n)!
4 [ cosz -1 T LIS | — 7?2 (20!
n—oo | Qn n—oo (Qn + 2)' |$ _ 7_r|2n

. o —
= lim

S A E—— 1 forall = 00.
A Bt D) 2n 1 1) 0< orall z,so R = c©

2. If f(z) = sin 7z, then £+ () = 7" ! sin 7wz or 7" cos wz. In each case, ‘f("“)(w)’ < 7"+ 50 by Formula 9

n+1 ‘ﬂ_x|n+1

. n 0 n 1
witha = 0and M = 7", |R,(2)| < (CES] ||t = CESIA Thus, | R ()| — 0 as n — oo by Equation 10.

So lim R, (z) = 0 and, by Theorem 8, the series in Exercise 7 represents sin 7z for all .

n—oo

23. If f(z) = sinh z, then for all n, f Y () = cosh z or sinh 2. Since |sinh z| < |cosh x| = cosh z for all z, we have

‘f(’”'l)(x)‘ < cosh z for all n. If d is any positive number and |z| < d, then ‘f(”"'l)(x)‘ < coshz < coshd, so by

Formula 9 with @ = 0 and M = cosh d, we have |R,(z)| < coshd

St ||+, Tt follows that | R, ()| — 0 as n — oo for

|z| < d (by Equation 10). But d was an arbitrary positive number. So by Theorem 8, the series represents sinh z for all .
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%5 YT—z=[1+(-2)/" =3 (1/4> ()" =1+ 1(-z)+ 2 (2_!3) (—o)? + AT

n=0 n
Ll s )T 3T (),
=1 4x+n;2 ol T
1 237 (4n — 5)
—1— g — n
4 n;g 4n . nl

and |—z| <1 & |z|]<l,soR=1.

-3 o] — n
27. 1 = 1 3 = é(l + g) = % > ( 3) (g) . The binomial coefficient is

2+2)® 20 +2/2)]°

[=(n+2)]

n!

(—1)"-2-3-4-5---- (n+1)(n+2) _ (-

n!

(3) _(=)(4)(=5) o (<3 —nt1) _ (=3)(=4)(=5)-----

H)"(n+1)(n+2)

for’g‘<1 & x| < 2,50 R=2.

2-n! 2
1 12 (-1)"(n+1)(n+2)z" & (-1)"(n+1)(n+2)z"
Thus, ——— = = =
us, (2 T x)g 8 ngo 2 on ngo on+4
) %) n $27L+1 ) %) n (ﬂ_m)2n+1 o n 7r27z+1
29. sinz = nz::O(—].) m = f(I) = SlIl(Tf'.T) = nZ::O(—l) m = ngo(—].) m
D e o E o L R W R o
n=0 T n=0 n=0 n=0 n! =

T

33. cosx = i (=" x_' = COS(%mQ) = i (=" (533 )! = nijo(—l)" m, S0

)

3

Il

o

—~
[\
S

)

n=0 (2n :

2 = n 1 n+1
f(x) =z cos(32”) = nzz:o(—l) W$4 1 R= 0.

35. We must write the binomial in the form (14 expression), so we’ll factor out a 4.

T T z T 2\ p o>
= = = =14+ — == Z
VA+a2?  JAQ+a2/4) 2\ /1+a22/4 2 4 2

2
Cofyy 2 ERED () CHEDED)
2 27 4 2! 4 3!
x x X 1-3:5-----(2n—1) ,,
BT A Ty T
Tz X n1:3-5. (2n—1) 5. z2
=3 ngl( n- p e T and ) <l &
1 1 > (-1)"(2z)*"] 1 & (—1)"(255
37. sin’z = 2(1 cos2z) = 3 1 n;g @] =3 1-1 7;1

R =00

%<1 & |z <2,

2(1)

n=1

n+1 22n71$2n

(2n)!
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2 R = 0.

=S 2 +1m"
n=0
so R =2.
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87
16) z2" L
3. cosz ‘&2 > (=1)” T = f )
n=0 (2n) Th,=T=T,=T;
N O L S e e /
Jlr)=cos@) = 2 =G = 2 ) 15 A N 15
NS DS SIS T S N E S i W=T=T, =T,
l—ga" + 557" — 52 "+ i L,
The series for cos = converges for all x, so the same is true of the series for i “.|
L J
f(z), that is, R = oo. Notice that, as n increases, 1), (z) becomes a better 15 I,=T,=T,=T,
approximation to f(x).
o n 0o ()7 oo n
M. oW > x—',so e =3 ( m') = > (-~ w—',so 6
n—o n! n=0 N n=0 n T, T
—x s n 1 n+1
f@)=ae = ¥ (-1~ T,
n=0 n: f
=z—a’+32° — tat + o — st 4 -3 4
T,
e I’ﬂ
_ 12 T,  \T,\T,
The series for e” converges for all x, so the same is true of the series T, i
for f(z); that is, R = oco. From the graphs of f and the first few Taylor T, T, T,
polynomials, we see that T}, (x) provides a closer fit to f(x) near 0 as n increases.
oo 2n 2 4 6
o o ™ — 1 4 — —1\" z — — :B_ :1:_ — :1:_ “ee
43.5° =5 (W) = 35 radians and cos x = nzo( 1) ! 1 o + T +
T (n/36)>  (7/36)" (m/36)° (/36)>
COS%—lf o1 + 0 - ol 4+ ---.Now1l—

4
T ~0.99619 and adding (”/4—3'6) ~ 2.4 x 107
does not affect the fifth decimal place, so cos 5° ~ 0.99619 by the Alternating Series Estimation Theorem.

_1y(_3 1y 3\(_5
85. (a) 1/VT—a2 = [14 (=2*)] " =14 (=) (=) + %(_ﬁf . CDEDEY
:1+7§11'3'5'2;l~-7£2n—1) 2n
o ta [ g —cror £ g
=z+ 21 1 3(22 + 1)2(2nn'_ 1) ont1 Gincs 0 — sin—10 — O

47, cosz & > (=) a

S cos@@®) = 5 (e LR e
n=0 (2’”)' n=0 (2TL)' N n=0 (QTL)'
3 oo $6n+1 3 oo x6n+2
= > ()" - Sy ith R = .
veos(a’) = 3 (<1 Gy = /a:cos(x o = Ot 52 (-1)" Gt with R = o
29. cosz = io: (=" " = coszx—1= i (=" i = BT L i (="
' n=0 (2 )' n=1 (2”)! x n=1
st =1 oy i(—l)”i with R = oo
x o = 2n - (2n)° e

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

2) (—x2)3 I



88

51.

53.

55.

57.
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oo 2n+1 o 2n—+4
arctanz = nZ::o(_l)RQTH- T for |x| < 1, so z* arctan x = nZ::O(—l)" 1 for |z| < 1 and

x2n+5

3 . > i\
/a: arctan z dz = C-i—nZ::O( 1) (2n +1)(2n +5)

. Since 3 < 1, we have

12 - (1/2)>** 1/2° /27 1/2°  @1/2"
3 _ 1\ — _ _
/0 x arctanxdx—ngo( 1) @n+1)@n+5) 15 3.7 + 5.0 711 + . Now
5 7 9 11
(11/25) - (;/27) + (15/ 29) ~ 0.0059 and subtracting (i/ 21)1 ~ 6.3 x 107° does not affect the fourth decimal place,

so fol/ ? 2% arctan z dz ~ 0.0059 by the Alternating Series Estimation Theorem.

[e) [e%s) 4n+1
Vitat=(1+zH2 = 1/2 (z)", so/\/1+m4dx:0+ > 1/2) and hence, since 0.4 < 1,
n=0 n n=0 n 4dn + 1
we have
0.4 o 1/2 (0.4)477,-4-1
I = V 1 4 = - 7
0 e nZ::O < n dn+1
1O 3047 3D 047 L 3EHED 04 HEDEDED 047
0! 15 2! 9 3! 13 4! 17
(0.4)°  (0.4)°  (0.4)®  5(0.4)'7
=04 - —
+ 10 72 + 208 2176 +
(0.4)° 6 6 _ . o (0.4)°
Now 5 ~ 3.6 x 107" < 5 x 1077, so by the Alternating Series Estimation Theorem, I ~ 0.4 + o ~ 0.40102

(correct to five decimal places).

1,2, 1,3 _ 1.4 1.5 1.2 1,3, 1.4 _ 1.5
. x—In(l+2) o r—(r—sx*+ s —zat+ 22— ) Losrt—sxt 4zt — 2+
lim ————= = lim 2 3 4 5 = lim 2 3 4 2
x—0 1’2 x—0 1’2 z—0 J;2
<ol 1 1,2 1,3 1
=lm(z —ge+ 32" — 52"+ ) =3
since power series are continuous functions.
lim sina:fx+éx3 ~ lim (m—3,m3+5,m5—ﬁx7+ )—$+%$3
x—0 15 z—0 ;[;5
1.5 1.7 2 4
_hmﬁgﬁiﬁmJr = lim l——-i——— _l:_l
z—0 i z—0\ 5! 7! 9! 51 120
since power series are continuous functions.
. _z2 m2 14 xS ;L'2 JE4
From Equation 11, we have e =1- Tl +§ T + - -+ and we know that cosz = 1 — BNl + o from
. 22 .. .
Equation 16. Therefore, e™*" cosz = (1 — 2 + 1z — ) (1 — $2® + L2* — -+ ). Writing only the terms with
.2
degree < 4,wegete ™ cosx=1-— %$2+2—14w4—w2+%m4+%$4+--- =1- %$2+§m4+~~
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T  (15) T

i _ 1,34 1 .5 __
sin x :v +120:1:

x_%xs"_l;oms_ z
v — g’ + 1352° —
3 5
57"~ p0” +
bt e+
5
7o+
5
o+
From the long division above, snxl:c =14 t2° + g2t +-- -,
o an < (- 4)n
nm_ _ €z _ —z?
nz::O(—l) ] —nZ::O = , by (11).
n;(—l)"‘l% = n;(—l)”—1 (3/;) =In (1 + g) [from Table 1] = 1n§
n(r\2n+1
x _(=n"ertt = (=D"(F) . .
T TN = =sin I = —=, by (15).
nz::() 20t (2n+ 1) 2= (2n+1)! sin 7 V3’ y (15)
927 81 31 32 33! e

) n_ () )
If p is an nth-degree polynomial, then p* () = 0 for i > 7, so its Taylor series at a is p(z) = > b .(a) (z —a)".

=0 i!
n p(z) (a)
Putz —a=1,sothatz =a+ 1. Thenp(a+1) =3 ——.
i=0 1.
n (’)(w)
This is true for any a, so replace a by z: p(z + 1) = Z

Assume that | f"(z)| < M, so f"'(z) < M fora < az < a-+d. Now [T f"(t)dt < [FMdt =

(@)= f"(a) < M(z—a) = f"(z)<f"(a)+M(z—a). Thus, [ f"(t)dt < [*[f"(a) + M(t — a)] dt
fl(@) = f'(a) < f'(a)(@ —a) + sM(z —a)® = f'(z) < f'(a)+ f(a)(z—a)+ %M(w -a)’ =
[Fr@wydt < [T[f'(a)+ f"(a)(t —a) + $M(t — a)’] dt =

f(z) = f(a) < f(@)(x — a) + 5"(a)(x — ) + §M(z — a)*. So

f(@) = f(a) = f'(a)(z — a) = 5f"(a)(z — a)* < GM(z — a)®. But

Ro(z) = f(z) — Ta(z) = f(z) = f(a) = f'(a)(z — a) — 3f"(a)(z — a)®, s0 Rz(x) < §M(z — a)’.

A similar argument using f"(z) > —M shows that Ra(z) > —M(z — a)®. So [Ra(z2)| < :M |z — a|®.

Although we have assumed that x > a, a similar calculation shows that this inequality is also true if z < a.
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3
1078
/N
3 =
N——
3
8
3
I
vb—‘
w2
o

75. (a) g(z) = f (S)x" = g'(x)=

_ > k n > [k n Replace n withn + 1
- ngo (n + l) (n+ 12" + ngo (n) e [ in the first series

= kk—1)(k—-2)---(k—n+1)(k—n) ,, X kk—1)(k-=2)---(k—n+1)] ,
— ngo(n +1) CE] " + ng() {(n) ] T
_ Tgo (n+ 1)k(k — 1)(g<:+—12))!~~(k:—n+ 1) [(k — n) +n] 2"
MDD (e
Thus, ¢'(z) = I;gj_ﬂ?
) h(z) = (1+2) " g(z) =
R(z) = —k(1+2) " tgx)+ (1 +z) "¢ () [Product Rule]
=—k(l4+2) " g@)+ 1 +z)F T’T(“z [from part (a)]

= —k(1+2)"" " g(@) + k(1 +2)" g(z) =0
(c) From part (b) we see that h(z) must be constant for x € (—1,1), so h(z) = h(0) =1 forz € (—1,1).

Thus, h(z) =1= (1+2) "gx) < gx)=1+2)"forze (-1,1).

1111 Applications of Taylor Polynomials

1. (a)

n | ™) | F7(0) Tn(x) T,=T, 5

0 cosx 1 1 f h T,=T,

1 —sinz 0 1 /]
1,2 f

2 | —cosx -1 1-35z o / \ 5

- a A\ m

3| sinz 0 | 1-3a? \/ \/

4 coszT 1 1-— %IZ + ifl ;" \\‘

5 | —sinx 0 1-— %12 + %:}:4 - ! \ /
1,2, 1.4 1.6 Ts 2 =T

6 | —cosx —1 1— 352" + 532" — =557
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(b)

SECTION 11.11

APPLICATIONS OF TAYLOR POLYNOMIALS  OJ

T f To=T1 T, =13 Ty =15 Ts

oy 0.7071 1 0.6916 0.7074 0.7071
3 0 1 —0.2337 0.0200 —0.0009
s -1 1 —3.9348 0.1239 —1.2114

(c) As n increases, T}, () is a good approximation to f(z) on a larger and larger interval.

n| f™(@) | (2
0| 1/ 1
1| —1/2° -1
2| 2/° 1
3| —6/2* -3
3. f™(2) n
Ty(r) = 3 = (0= 2)
11 1
2 te-2+5@-27
=1-1z-2)+3(xz-2)°-
n| f™ (@) | f(r/2)
0 cosx 0
1 —sinx -1
2 | —cosz 0
3 sin x 1
3 M) (1 n
Tyw)= ¥ L0 (o g)
n=0 .
——@-§) +i-5)
n| f™ (@) | ()
0 Inx 0
1| 1/z 1
2 [ —1/2? -1
3| 2/2° 2
SEARICY
Ty(@)= 3 L —1)"
n=0 n!
=04 (e~ 1)+ 5 (2 - 1)?
=(x—-1)— %(x 1)2+ %(17, 1)3

2

f
T,
0 T
T
2
—1.1
2
T3
f
4 3
. J
—4
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YT w00
0 ze 2" 0
1| (1—2x)e™ 1
2 | 4(x—1)e™ —4
3| 4(3—2z)e™?® 12

3 f(n)

f —
n—=0 n!

Ts f

1+1x1+*4m2—|—12 2% =z — 222 + 28

11. You may be able to simply find the Taylor polynomials for

f(z) = cot  using your CAS. We will list the values of f™ (7 /4)

forn =0ton = 5.

n 0 1 3 4 5

f@@a) | 1| —2 ] 4| —16 | 80 | —512
5 n) T n

@)= > L0 ()

n=0

=1-2(x—%)+2(z—2)

Y T [ow
Nz 2
1 ;fw 1
2 4 e 7%
3 3,.—5/2
(c)  0.00002

(@—3)+ %

@ f(z)=

M
) [Ro(2)] < 57 |o—4]°

lr—4/ <02 =
on [4,4.2], we can take M =

|R2 ()] < —=—

From the graph of | R2(z)| = |/z — T»(z)|, it seems that the

(- 2) (e

Forn = 2ton =5, T,(z) is the polynomial consisting of all the terms up to and including the (:c —

3/256

Ve Th(z) =2+

(0.008) =

-2

1

1=
i

4~ L2 gy
—4) - &(z—4)?

@) = 347572 = o
0.008
ST 0.000 015 625.

error is less than 1.52 x 107> on [4, 4.2].

SO
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T,
T,
= _—
4
Ts T,
5
-3)
Z)" term.

,where | f"'(z)] < M. Now4 <z <42 =

|z — 4]* < 0.008. Since f'(x) is decreasing
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8/27

2/9
15, @ f@) =2 S Tya) =1+ 3@~ 1) - 22— 1)+ L -1y
n] 9@ [ 2 roo e
0 22/3 1 =1+5@@-1)—5@@-1)"+g-1)
2..-1/3 2
1 FamV 3 () |Rs(z)| < g\mflﬁ,where‘f(‘l)(x)‘ <M. Now08<z<12 =
9| —2,-4/3 _2 4
9 9
3 8 —7/3 8 lr =1/ <02 = |z—1|* <0.0016. Since ‘f(‘l) (w)‘ is decreasing
27 27
4 —%Iflo/?» on [0.8, 1.2], we can take M = ‘ @ (0,8)‘ = %(0.8)’10/3, so
560.8)~10/3
|Rs(z)| < 2= (0.0016) ~ 0.000 096 97.
(©) 0.00006 24
From the graph of |Rs(z)| = |2%/% — Tg(a:)‘, it seems that the
error is less than 0.000 053 3 on [0.8, 1.2].
0.8
0
17. (a) f(z) =secx ~ To(z) = 1 + 2°
n F() F(0)
0 sec T
1 secr tanx 0
2 secz (2sec’z — 1)
3 | secx tanx (6sec® z — 1)

(b) [Ro ()] < % |z|?, where ‘ f(S)(m)’ <M. Now—02<2<02 = |2/<02 = |z <(0.2)°

@ (x) is an odd function and it is increasing on [0, 0.2] since sec z and tan z are increasing on [0, 0.2],

F(0.2)
s ‘ f(3)(m)‘ < (0.2) ~ 1.085 158 892. Thus, | Ra(x)] < = (0.2)° ~ 0.001 447.
(© 0.0004
¥ =|Ry(x)] .
From the graph of | Rz(x)| = |sec x — T2(x)|, it seems that the
error is less than 0.000 339 on [—0.2,0.2].
—0.2 0.2
’ 2
19, @) fz) = e mTs(z) =1+ 5a% =1 +a?
(n) ™) (0 2!
n [ () f(0)
0 z2 1 M
¢ (b) |Ra(a)] < 77 |a|*, where ’f(‘l)(m)‘ <M. Now0<z<01 =
1] e’ (2z) 0 ’
) z* < (0.1)*, and letting 2 = 0.1 gives
2 | e (24 427) 2
001 (12 +0.48 4 0.0016
3 | e (12 + 82%) 0 |Rs(z)| < £ 12+ 24 + )(0.1)4 ~ 0.00006.
4 | e’ (12 + 4822 + 162%)
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(©)  0.00008
From the graph of |R3(x)| = e — Ts(x)|, it appears that the
error is less than 0.000 051 on [0, 0.1].
0
. 2 2 —4 4 214
21, (@) f(x)szInx%T4(m):§(;t—0) +T<I_O) =z" -5
n F() F(0) ' '
0 Tsinx 0 M
iy P (5) _
I . ®) |Ra(w)| < 21 Jal ,where'f (m)‘ <M Now-1<z<1 =
2| 2cosr—wsinx 2 |z| < 1, and a graph of f*)(z) shows that ‘ f(s)(x)‘ <5for—1<z<1.
3 | —3sinz —xcosx 0 5 1
Thus, we can take M = 5 and get | R < = .1° = — =0.0416.
4 | —4cosz+zsinz —4 W get [Fa()| < 5! 24
5 5sinx + xcosx
(©) 0.009
From the graph of | R4(x)| = | sinx — Ty ()|, it seems that the
¥ = [Ry(w)]
error is less than 0.0082 on [—1, 1].
-1 1
0
: ™ 1 w\3 M -
23. From Exercise 5, cosz = — (z — £) + % (¢ — ) + Rs(z), where |Rs(z)| < a ’x — 5| with

‘f(‘l)(w)' = [cosz| < M = 1. Now z = 80° = (90° — 10°) = (3 — %) = = radians, so the error is
|Rs ()| < (118)4 ~ 0.000 039, which means our estimate would rot be accurate to five decimal places. However,
Ts = Ty, so we canuse |Ra (%) | < 35 (1—”8)5 ~ 0.000 001. Therefore, to five decimal places,

cos80° ~ — (&) + 2 (- &)’ ~ 0.17365.

25. All derivatives of e” are e, so | Ry (z)| < w j_ i |z, where 0 < = < 0.1. Letting z = 0.1,
01
R,(0.1) < CES] (0.1)"™! < 0.00001, and by trial and error we find that n = 3 satisfies this inequality since

R3(0.1) < 0.0000046. Thus, by adding the four terms of the Maclaurin series for e” corresponding to n = 0, 1, 2, and 3,

we can estimate ¢ to within 0.00001. (In fact, this sum is 1.10516 and €' ~ 1.10517.)
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27.

29.

31.

33.

35.

SECTION 11.11  APPLICATIONS OF TAYLOR POLYNOMIALS I 95

L 1 5 1 4 . . 0.9
sinex =z — 3% + e T By the Alternating Series P \
Estimation Theorem, the error in the approximation y = sinx+0.01 1 s
=X gX‘
, 1 5. 1.
sinex =z — ?I is less than 77 < 001 &
|2®] <120(0.01) <« |z| < (1.2)"/° ~ 1.037. The curves
y=x— 223 and y = sinz — 0.01 intersect at z ~ 1.043, so y =sinx—0.01
0 0'90; : /12

the graph confirms our estimate. Since both the sine function
and the given approximation are odd functions, we need to check the estimate only for z > 0. Thus, the desired range of
values for x is —1.037 < z < 1.037.

3 5 LT
arctanz = x — 5 + = 7 + - - -. By the Alternating Series 1

Estimation Theorem, the error is less than {f%zw <0.05 < y = arctan x + 0.05 .

|7| <035 <« || < (0.35)"/7 ~ 0.8607. The curves

-1.2 1.2

y=x— %x3 + %m‘% and y = arctan z 4 0.05 intersect at

z ~ 0.9245, so the graph confirms our estimate. Since both the y = arctanx — 0.05

J

arctangent function and the given approximation are odd functions, x
we need to check the estimate only for > 0. Thus, the desired y=x—x+2x°

range of values for z is —0.86 < = < 0.86.
Let s(t) be the position function of the car, and for convenience set s(0) = 0. The velocity of the car is v(t) = s'(¢) and the
acceleration is a(t) = s (¢), so the second degree Taylor polynomial is T2 (t) = s(0) + v(0)t + @tQ =20t + t*. We

estimate the distance traveled during the next second to be s(1) ~ 72(1) = 20 + 1 = 21 m. The function 7%(t) would not be

accurate over a full minute, since the car could not possibly maintain an acceleration of 2 m/s? for that long (if it did, its final

speed would be 140 m/s = 313 mi/h!).

o9 __ 4 _ a4 ____a __al_(,4)"

D2 (D+d? D2 D2(1+d/Dp? D2 D) |’
We use the Binomial Series to expand (1 + d/D)™2:

_ 4y (o4 23 d) _2:3-40aY U AN A AN
E‘D?[l (1 2<D>+2! (D 3 \D) " =p2|’\p) 3\p) 4D

~ L oL Zgga. L
~ Dz 2(D>_2qd s

when D is much larger than d; that is, when P is far away from the dipole.

() If the water is deep, then 2wd/ L is large, and we know that tanh z — 1 as  — oo. So we can approximate

tanh(27d/L) ~ 1,and sov® ~ gL/(2r) < v~ +/gL/(27).
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(b) From the table, the first term in the Maclaurin series of

. : . . n F (x) F(0)
tanh z is «, so if the water is shallow, we can approximate
0 tanh x 0
2rd  2wd 5 gL 2nd 2
POt ~ 22 2 ~ i 1 sech” x 1
tanh T T and so v I e v gd .
2 —2sech” xtanhz 0
3 | 2sech®z (3tanh®z — 1) -2

(c) Since tanh x is an odd function, its Maclaurin series is alternating, so the error in the approximation

2rd _ 2md | (0)] (@)3 - 1(2Ld>3

tanh I Nl less than the first neglected term, which is 3 17 s\

If L > 10d, then l QLd ’ < l 2w i ’ = 7r_3 so the error in the approximation v> = gd is less
A3\ T 3 10) = 3755 PP -9

3

gL 7
han 2— - — = 0.0132¢gL.
tan2ﬂ_ 375 0.0132¢g

37. (a) L is the length of the arc subtended by the angle ,so L = R§ =
0=L/R Nowsecld =(R+C)/R = Rsec0=R+C =

C = Rsecl — R= Rsec(L/R) — R.

(b) First we’ll find a Taylor polynomial T (z) for f(z) = secx atx = 0. \/

(@) £ (0)

secx

secxrtanx
sec z(2tan’z + 1)
sec z tan (6 tan®z + 5)

sec z(24 tan*z + 28 tan’x + 5)

B W N = Oof 3
AN O R O M

Thus, f(z) = secz &~ Tu(z) = 1 + 5 (z — 0)°> + 2 (z — 0)* = 1+ 22° + Z2”. By part (a),
L (LY, 5 (LY
2\ R 24\ R

(c) Taking L = 100 km and R = 6370 km, the formula in part (a) says that

2 4 2 4
“R=R+ 3R £+ SR T~ R= o+ =

CrER mtu T o T urs

C = Rsec(L/R) — R = 6370 sec(100/6370) — 6370 ~ 0.785 009 965 44 km.

. L> 5L 100° 5-100"
The formula in part (b) says that C' =~ R + I3 — 2.6370 + 9463708 0.785009957 36 km.

The difference between these two results is only 0.000 000 008 08 km, or 0.000 008 08 m!

39. Using f(z) = Tn(z) + Rn(x) withn = 1 and z = r, we have f(r) = T1(r) + Ri(r), where T7 is the first-degree Taylor
polynomial of f at a. Because a = xn, f(r) = f(zn) + f'(xn)(r — xn) + R1(r). Butrisaroot of f,so f(r) =0

and we have 0 = f(z,) + f'(zn)(r — ) + R1(r). Taking the first two terms to the left side gives us
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f'(xn)(xn — 1) — f(xn) = Ri(r). Dividing by f'(z,), we get T, — 7 — [(an) _ Ba(r) . By the formula for Newton’s

fr(@n) (@)
Rl(T)
f'(an)

n

method, the left side of the preceding equation is 41 — 7, 80 |Zpy1 — 7| = . Taylor’s Inequality gives us

|R1(r)] < \f2_'r)\ |r — 2, |>. Combining this inequality with the facts | " ()| < M and |f’(x)| > K gives us

M
e =] < g fon — %

11 Review
CONCEPT CHECK
1. (a) See Definition 11.1.1.
(b) See Definition 11.2.2.
(c) The terms of the sequence {a, } approach 3 as n becomes large.
(d) By adding sufficiently many terms of the series, we can make the partial sums as close to 3 as we like.
2. (a) See the definition on page 721 [ET page 697].
(b) A sequence is monotonic if it is either increasing or decreasing.
(¢) By Theorem 11.1.12, every bounded, monotonic sequence is convergent.
3. (a) See (4) in Section 11.2.

=N .
(b) The p-series Y — Is convergent ifp > 1.
n

n=1

4. If > an = 3, then lim a, =0and lim s, = 3.

n—oo n—oo

. (a) Test for Divergence: If lim a, does not exist or if lim a, # O, then the series Y -, an is divergent.
n—oo n— o0

(b) Integral Test: Suppose f is a continuous, positive, decreasing function on [1, 0o) and let a, = f(n). Then the series
>0 | an is convergent if and only if the improper integral [ f(x) dz is convergent. In other words:
(@) If [ f(x) dx is convergent, then >°>7 | a,, is convergent.
(i) If [7° f(z) da is divergent, then _°° | a,, is divergent.

(c) Comparison Test: Suppose that Y a, and ) by, are series with positive terms.

(i) If Y by, is convergent and a,, < by, for all n, then ) a,, is also convergent.

(ii) If > by, is divergent and a,, > by, for all n, then ) a,, is also divergent.
(d) Limit Comparison Test: Suppose that > a,, and > by, are series with positive terms. If lim (an/bn) = ¢, where cis a
n—oo
finite number and ¢ > 0, then either both series converge or both diverge.

(e) Alternating Series Test: If the alternating series S0 | (—1)" " b, = by — bz +bg — ba + b5 — bg + -+ [by > 0]

satisfies (i) bp,+1 < b, for all n and (ii) lim b,, = 0, then the series is convergent.

n— oo
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(f) Ratio Test:

. . a R .
(1) If lim o< 1, then the series > ay, is absolutely convergent (and therefore convergent).
n— o0 an n=1
.. . a . a R ..
(i) If lim | =L > 1or lim |—F| = oo, then the series Y. ay, is divergent.
n—oo an n— oo n n=1
. a . .. . . .
i) If lim |—=*L| = 1, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or
g
n— o0 an

divergence of Y a.

(g) Root Test:
() If lim %/|an| = L < 1, then the series > . ; an is absolutely convergent (and therefore convergent).

(i) If lim {/|an] =L >1or lim %/]an| = oo, then the series > - | an is divergent.
n—oo n—oo

iii) If lim %/|a,| = 1, the Root Test is inconclusive.
Gii) I Tim  /fan]

6. (a) A series > ay, is called absolutely convergent if the series of absolute values > |a,,| is convergent.
(b) If a series Y ay, is absolutely convergent, then it is convergent.
(c) A series Y ay, is called conditionally convergent if it is convergent but not absolutely convergent.
7. (a) Use (3) in Section 11.3.
(b) See Example 5 in Section 11.4.

(c) By adding terms until you reach the desired accuracy given by the Alternating Series Estimation Theorem.
o0
8. (@) > cu(z—a)"”
n=0

oo
(b) Given the power series Y c¢n(z — a)”, the radius of convergence is:
n=0

(1) 0 if the series converges only when z = a
(ii) oo if the series converges for all z, or
(iii) a positive number R such that the series converges if |z — a| < R and diverges if |z — a| > R.
(c) The interval of convergence of a power series is the interval that consists of all values of  for which the series converges.
Corresponding to the cases in part (b), the interval of convergence is: (i) the single point {a}, (ii) all real numbers, that is,

the real number line (—o0, 00), or (iii) an interval with endpoints @ — R and a + R which can contain neither, either, or

both of the endpoints. In this case, we must test the series for convergence at each endpoint to determine the interval of

convergence.

9. (a), (b) See Theorem 11.9.2.

n (g .
10. (a) T (x) = _:zof (@) (& — ay

g

00 (n) a
oS W e-ar

n!
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N
© 5 L @ oinpan o)

(d) See Theorem 11.10.8.

(e) See Taylor’s Inequality (11.10.9).

11. (a)—(f) See Table 1 on page 786 [ ET 762].
12. See the binomial series (11.10.17) for the expansion. The radius of convergence for the binomial series is 1.
TRUE-FALSE QUIZ
1. False.  See Note 2 after Theorem 11.2.6.
3. True. If lim a, = L,thenasn — oo, 2n + 1 — 00, S0 azn+1 — L.
5. False.  For example, take ¢, = (—1)"/(n6").
3 3 3
7. False, since lim dntll _ ip % 2= lim nig ) 1/713 = lim ;3 =1
n—oo | Qn n—oo|(n+1)° 1 n—oo|(n+1)° 1/n n—oo (14 1/n)
9. False. See the note after Example 2 in Section 11.4.
11. True. See (9) in Section 11.1.
: 3 f”l(o) _ 1 111 _
13. True. By Theorem 11.10.5 the coefficient of z° is =3 & 7)) =2.
Or: Use Theorem 11.9.2 to differentiate f three times.
15. False.  For example, let a, = b, = (—1)". Then {a, } and {b,, } are divergent, but a,b, = 1, so {a,b, } is convergent.
17. True by Theorem 11.6.3. [>_ (—1)" a,, is absolutely convergent and hence convergent. |
19. True.  0.99999...= 0.9 +0.9(0.1)* +0.9(0.1)> + 0.9(0.1)* 4 - - 2 (0.9)(0.1)" ! = : 3‘% 7 = 1 by the formula
for the sum of a geometric series [S = a1/(1 — r)] with ratio r satisfying |r| < 1.
21. True. A finite number of terms doesn’t affect convergence or divergence of a series.
EXERCISES
1 M converges since lim 2+ n° = lim M _ 1
‘\1+2n° g nee 14203 niee I/m 12 2
3. lim a lim n__ lim i = 00, so the sequence diverges
.n*)OOn_’H,HOOl—"_nQ_TLHOO]_/nQ-i_l_ ’ q g ’
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nsinn n 1 . .
5. lan| = il S < .80 |an| — 0asn — oco. Thus, nan;o an = 0. The sequence {a,, } is convergent.
3 4n 3 4z
1. { <1 + E) } is convergent. Let y = (1 + E) . Then
3
. . . In(1+3/z) u .. 143/ x2 . 12
Ay = g 430 = I T ) AR T ) R Tree o
3 4an
lim y = lim (1 + —> =e'2
Tr— 00 n— oo n

9. We use induction, hypothesizing that a,,—1 < a,, < 2. Note firstthat 1 < az = % (1+4) = % < 2, so the hypothesis holds
for n = 2. Now assume that ax—1 < ax < 2. Then ar = 2(ar—1+4) < 3(ar +4) < 3(2+4) =2. Soar < ar41 < 2,
and the induction is complete. To find the limit of the sequence, we note that L = lim a, = lim an,+1 =

n—00

n—o0

L=iL+4) = L=2

n n 1 &
3 3~ 2°50 3
n3+1 n n o ns+1

. . o x 1
1. converges by the Comparison Test with the convergent p-series > e [p=2>1]

n=1

3 n 3 oo 3
13. nhi& GZZI = 7L1Ln;o {O;:—jl) . %} = nanolo (1 + %) . % = % <1,s0 n;1 ;—n converges by the Ratio Test.
1 . . . . .
15. Let f(x) = ——==. Then f is continuous, positive, and decreasing on [2, co), so the Integral Test applies.
zvVinx
[eS] t 1 1 Int 1/2 Int
/ f(z)dz = lim dx [u =Inz,du=~ da:i| = lim uw /“du= lim [2 \/17}
2 t—oo Jo x+/lnx T t—oo J1 o t—oo In2
= tlim (2 Vint — 2\/1n2) = 00,
so the series diverges.
n=2n+vVlInn
17, |an| = cos 3n < L < L _ (3 i s0 i |ar| converges by comparison with the convergent geometric
B R ) o e I ) R 15 R N R ges by comp gente
series - (2)" [r =2 < 1]. It follows that 3" a, converges (by Theorem 3 in Section 11.6).
n=1 n=1
i an+1 . 1-3-5----- 2n—-1)(2n+1) 5" n! . 2n+1 2 .
19. 1 — | =1 . =1 —— =—-<1,s0th
nivoo | Tan | oo 5 (n+ 1) 135 (2n—1) nosbntl) 5 omesnes
converges by the Ratio Test.
\/E . . . . ) n—1 n .
21. b, = ] > 0, {b, } is decreasing, and lim b, = 0, so the series > (—1) ] converges by the Alternating
n— o0 n—1

Series Test.
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23. Consider the series of absolute values: Z n~ 3 is a p-series with p = % < 1 and is therefore divergent. But if we apply the

1

7

n—1 n—1/3

o0
Alternating Series Test, we see that b, = > 0, {bn } is decreasing, and lim b, = 0, so the series > (—1)
n— oo n—1

oo
converges. Thus, 3 (—1)"~* n~1/2 is conditionally convergent.
n=1

an+1 (=)™ (n +2)3"* 22+l n+2 3 1+(2/n) 3 3 ,
25. = - = L= = NN | he R.
> e . 22n+3 13| ndl 4 T+(ijn) 1 1 = Lasn— oo sobytheRatio
Test, n§1 <_1)22+_:1)3 is absolutely convergent.
oo (73)n 1 B oo (73)77,—1 B oo (73)71,—1 _ 1 o (73)n—1 _ 1 = 3 n—l_ 1 1
n; 23n _n; 23 n; gn 8% g1 8,§1 8 ~8\1-(=3/8)
_ L 3_1
S8 11 11

29. S [tan ' (n+1) —tan"'n] = lim s,

n=1 n—o0o
= lim [(tan™'2 —tan"' 1) 4 (tan"'3 —tan™'2) +--- + (tan"(n + 1) — tan™ ' n)]
= lim [tan"'(n+1)—tan '1] =2 -2 =Z
o &, net X (=" e . -
31. 1_€+§ _§+Z _...:nZ::O(—l) pout :nZ::O = ¢ “sincee :ngomforallw.
33. coshz 5(6 +e™®) 5 (nZ::O s + nZ::O ] )
~1 1+m+m—2+x—3+x—4+ Y O N S
2 3! 20 3 4l
1 2 4 1 %) x2n 1
=-(2 2—2 ) =14 27 >1+ s2° forall
2< + 2t ) tor X Gy 2t gy forallz
o (—1)"H 1 1 1 1 1 1 1
3.0S L =1 — 4 — — - -
n; nb 32 + 243 1024 + 3125 7776 * 16,807 32,768 +
1 YN Y GV
S bs = —= 1, ~ 0.9721.
ince bs = == = = 32768 < 0.00003 n§1 n§1 0.97
37. Z 28: 0.18976224. To estimate the error, note that 1 < L so the remainder term is
2+5n 2+5 = ' ’ 2457 5’
Rg = io: L f: 1o 1/5° =64x10"" [geometric series with a = =5 and r = %]
n=92+5n = 5 —1/5 ' 59 51°
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39. Use the Limit Comparison Test. lim

n— o0

. . . 1 . .
Since > |a,| is convergent, so is > ’ (i> an |, by the Limit Comparison Test.

n

. |ant+ . |z 4 2|t n4" . n |z+2| |z + 2
4. 1 =1 . =1 = 1 2| <4,s0 R=4.
L nl_{réo[(n+1)4n+1 2| o |nrl 4 7 <1 & lp+2<dso
L& (z+2)"
lz+2/<4 & —-d<z+2<4 & 76<17<2.Ifx:76,thentheserlesZWbecomes
n=1
S ) R Gl DI : - sort - : :
> o > o the alternating harmonic series, which converges by the Alternating Series Test. When = = 2, the
n=1 n=1
x 1
series becomes the harmonic series » - which diverges. Thus, I = [—6,2).
n=1
2n+1 _ n+1 /
43, lim |2 = lim @3  VnES 3 him [P —oe o3 <1 o |z —3| < 4,
n—oo | Qn n— o0 vn+4 2"(1’ — 3) n—oo n—+4
R=1 3 1 1 3 <1 5 T F -7 th : °°2n($*3)nb
soR=35.|z-3|<3 & —-53<2-3<3 & 3<x<si Forz=4,t eserlesnglﬁ ecomes
io: L i . which diverges [P =3< 1} but for = = 3, we get i (D which is a convergent
n=0Vn+3 n=3 nt/2’ 2o 2 n=0 VN + 3’

45.
n f(")(:r) f(n)(%)
0 sinx %
1 cosT @
2 | —sinz 7%
3 | —cosx —@
4 sinx %
(Z @ (I Fo (T
ina=1()+ (D)5 + TR g T8y Le e ay
b ) R ) )]
e
1 1 o n = - z2 o9 n o ont2
N e T o, (0 = R e el <1 s = () e i R =1
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1
14—z

1 1 1
/4—xd$_1/l—x/4dw_

nd—2)=-——3 —
B = 2 )

1 00

Another solution:

n=0 n=0 4n(n + 1)
mn+1 oo mn-&-l ©
—&—C:—Zm—i—C:—zW+C.Puttingm:O,WegetC:lnéL
n=0 =1

CHAPTER11 REVIEW [

dr = —In(4 — z) + C and

1 [ jz\» 1 [ 2" 1= gt

0 n

Thus, f(z) =In(4 —z) =In4d — > 2 The series converges for [z/4| <1 & |z|<4,s0R=4.

n=

| n4n :

In(4—2)=m[4(1 —z/4)) =Ind+In(l —z/4) =In4d + In[1 4+ (—z/4)]

oow’ﬂ

a3 (0 S pom Table 1] = Ina 4 S (12 _pg o 3 2
n=1 n n=1

+1

n4n n=1 n4m ’

) B oo (_1)n$2n ) i oo (_1)n (I4)2n+1 B oo (_1)nx8n+4 )
51. sinz = ngom = sin(z®) = ngo Gt ngo Zn 1) for all «, so the radius of
convergence is 0o.
1 1 1 —1/4
53. f(z) = = = =1i(1- %2)
\4/16—I {1/16(1—.7}/16) Y16 (1_%61,)1/4 2 16
1L (L (7£)+( 1)) (71)2+ (-1) (=3 (D) (7£)3+
2 4 16 2! 16 3! 16
1 =159 (A4n—3) , 1 = 1:5:9----- (4n—3)
2 +n; 2-4n - nl. 16" 2 +n;1 26m+1
for‘f%’<1 & |z| < 16,50 R = 16.
. 0o T e 1 = " oo mn—l . xn—l 1 o n—1
55. e 7H§OH,S0;7;TL§0H—’”;O l = +n21 il —E+n;1 ] and
e oS x"
—dx = 1 .
/x x=C + n|x\+n;1n'n!
1/2 1/4
57. (a) \/E%Tg(x):1+%(x—1)—%($—1)2+33{—'8($—1)3
n| M@ | M) ' ' '
0 21/2 1 =1+i@z-1)—t@z-1)°+ L(@-1)°
1] v |
o | “1gn | 1
—5/2
3| g |
—7/2
o] g |
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M .
(b) © |Rs (@)] < Zrla = 1[*, where ‘f<4> (x)] < M with
fW(z) =822 Now09<z <11 =
—01<z-1<01 = (z—1*<(0.1)%
and letting x = 0.9 gives M = __b__ S0
gr="10¢8 = 16(0.9)772
. J |R3(z)| < __ (0.1)* =~ 0.000 005 648
0 2 SI= 76009724 V) T
~ 0.000006 = 6 x 10~°
(d) 5%x10°°
From the graph of | R3(x)| = |v/x — T3(z)|, it appears that
the error is less than 5 x 107° on [0.9, 1.1].
¥ = [Ry(x)]
0.9 L1
0
. oo " $2'n,+1 J)3 $5 :1,7 . $3 $5 :1,7
59. Sln.’B:n;O(—l) m :$—§+§—F+,SOSIH.’E—.’Z’:—§+5—F+ and
sin:vfm_iler_zix_‘lJr Thus hmsinaL’—x_li 71+x_27 z? n _ 1
x3 3! 5! 7! ’ T o T T 250 6 120 5040 6
61. f(z) = Eocn 2" = f(-2)= zocn(fx)” = 20(71)"% "
(a) If f is an odd function, then f(—xz) = —f(z) = Y (—=1)"caa™ = Y. —cpa™. The coefficients of any power series
n=0 n=0
are uniquely determined (by Theorem 11.10.5), so (—1)" ¢, = —ca.
If nis even, then (—1)" = 1,80 ¢, = —¢n = 2¢, =0 = ¢, = 0. Thus, all even coefficients are 0, that is,
co=ca=cq4=---=0.
(b) If fiseven, then f(—z) = f(z) = Y. (=1)"cha” = > chz” = (=1)"cn =cn.
n=0 n=0
Ifnisodd, then (—1)" = —1,50 —¢n = ¢cn = 2¢, =0 = ¢, = 0. Thus, all odd coefficients are 0,

thatis,c;1 =c3 =c5 = --- = 0.
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1. It would be far too much work to compute 15 derivatives of f. The key idea is to remember that £(™)(0) occurs in the

3 5

coefficient of =™ in the Maclaurin series of f. We start with the Maclaurin series for sin: sinx = x — :;—' + % — .

9 15 (15) 1
Then sin(z®) = 2® — 363—' + ;105_' — -+, and so the coefficient of z'® is / 15!(0) = Therefore,
15!
F390) = 5—‘? =6-7-8-9-10-11-12-13- 14 - 15 = 10,897,286,400.
. ‘ . 2 1 — tan?
3. (a) From Formula 14a in Appendix D, with z = y = 6, we get tan 20 = #;1920, so cot 20 = %nne@
1—tan?6 . 1 1 1
2cot 20 = Tl cot f — tan @. Replacing 6 by 5, we get 2cot z = cot 5o — tan 5z, or

tan %x = cot %i’ — 2cot x.

(b) From part (a) with 2nx71 in place of x, tan 2% = cot 2% — 2cot %, so the nth partial sum of 2% tan 2% is
n=1
6 — tan(z/2) n tan(z/4) n tan(z/8) T tan(z/2")
2 4 8 2n
_ cot(z/2) _cota| + cot(z/4)  cot(x/2) + cot(z/8)  cot(x/4)
2 4 2 8 4
on 2n—1 on )
+ cot(z/2") - cot(z/ ) = —cotzx + M [telescoping sum]
n on—1 n
Now cot(z/2") = cos(z/2") = cos(w/2")  _ /2" — 1 1= 1 as n — oo since /2" — 0
2n 27 sin(z/2™) x sin(z/2") =z x

for x # 0. Therefore, if x # 0 and = # k7 where k is any integer, then

(&)

1 1
—tauniz lim s, = lim fcota:Jr—coti
2n AL

2n

n
n=1 2 n— oo n—oo

) 1
= —cotx + —
T

If x = 0, then all terms in the series are 0, so the sum is 0.

5. (a) At each stage, each side is replaced by four shorter sides, each of length

S0 = 3 60 =1
1 . . ..
= of the side length at the preceding stage. Writing so and £ for the
3 g p g stag g So 0 s1=3-4 | 61=1/3
number of sides and the length of the side of the initial triangle, we 52 =3-42 | £y =1/3?
generate the table at right. In general, we have s,, = 3 - 4™ and s3=3-43[¢t3=1 /33
by = (%)n, so the length of the perimeter at the nth stage of construction

is Do = suln =347 (3)" = 3- (4)".

471, 4 n—1 '
(b) pn = 3T :4(5) . Since § > 1, p, — oo asn — oo.

(c) The area of each of the small triangles added at a given stage is one-ninth of the area of the triangle added at the preceding

stage. Let a be the area of the original triangle. Then the area a,, of each of the small triangles added at stage n is
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1 . . . . .
an =a- oo = 9%. Since a small triangle is added to each side at every stage, it follows that the total area A,, added to the

a 477,—1

figure at the nth stage is A, = sp—1 -a, = 3-4"" 1. o = a- T Then the total area enclosed by the snowflake
. 1 4 42 43 o
curveisA=a+ A1+ A+ A3+ =a+ta- 3 +a- 3 +a- 3 +a- 37 + - - -. After the first term, this is a
. . . .4 3 9 8 .. .
geometric series with common ratio 3750 A=a+ % =a+ % F = Ea. But the area of the original equilateral
9
. L . 1 . . 2
triangle with side 1 is a = 5 1-sin g = ? So the area enclosed by the snowflake curve is g . ? = T\/ﬁ
7. (a) Let a = arctan z and b = arctan y. Then, from Formula 14b in Appendix D,
tan(a — b) = tana —tanb _ tan(arctanz) —tan(arctany) = x —y
" 1+tanatanb 1+ tan(arctanz)tan(arctany) 1+ xy

Now arctan x — arctany = a — b = arctan(tan(a — b)) = arctan ——= since -5 <a-b< 3.

(b) From part (a) we have
120 _ 1 28,561
arctan 122 — arctan 555 = arctan —12--23% — arctan Zgzgg} =arctanl = %
L+ 115 * 339 28,441
. . T+y
(c) Replacing y by —y in the formula of part (a), we get arctan « + arctany = arctan T .
— 2y
141
4 arctan % = 2(arctan % + arctan %) = 2arctan 1 5_ T ?l = 2arctan % = arctan % + arctan %
55
— arct i2 + 1_52 — arctan 120
= arc anm = arc anm
12712
Thus, from part (b), we have 4 arctan % — arctan ﬁ = arctan % — arctan ﬁ =7
3 5 7 9 11
(d) From Example 7 in Section 11.9 we have arctanz = = — r + r_r + r_r +---,50
3 5 7 9 11
arctanl—l— L + LI + L _ ! +
5 5 3.5  5.55 7.57  9.59 11.5!1

This is an alternating series and the size of the terms decreases to 0, so by the Alternating Series Estimation Theorem,

the sum lies between s5 and sg, that is, 0.197395560 < arctan % < 0.197395562.

. 1 1 1 1 . .
(e) From the series in part (d) we get arctan 239 — 239 3.2398 + Fo39p The third term is less than

2.6 x 107!, so by the Alternating Series Estimation Theorem, we have, to nine decimal places,

arctan 2—;)9 = $2 &~ 0.004184076. Thus, 0.004184075 < arctan glg < 0.004184077.

_ 1 1
(f) From part (c) we have m = 16 arctan ¢ — 4 arctan 535, so from parts (d) and (e) we have

16(0.197395560) — 4(0.004184077) < m < 16(0.197395562) — 4(0.004184075) =
3.141592652 < 7 < 3.141592692. So, to 7 decimal places, m ~ 3.1415927.
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&, 1
9. We start with the geometric series ) 2" = T2 |z| < 1, and differentiate:
n=0 -

118

n-1l _ ") == = fi 1 n = n-l _ ___—
nx dx(§ x) dm( ) SE orjz| <1 = Y nz"=z) nz e

1 n=0 1—= n=1 n=1

3
I

for |z| < 1. Differentiate again:

& _ d x (1-2)?—z-2(1 —2)(-1) z+1 * 4z
2, n—1 - — — = 2, .n — =
P dz (1— )2 1—a) 1—a)3 PR s
i n3gn—1 _ d ?+r  (1-2)*Qr+1)— (2®+2)3(1 —2)?(-1) 2°+4z+1
P T w-ap 1) DL
e 2’ +42° +a . , . :
S nPa" = RO |z| < 1. The radius of convergence is 1 because that is the radius of convergence for the
n=1 -

geometric series we started with. If 2 = +1, the series is 3 n>(£1)™, which diverges by the Test For Divergence, so the

interval of convergence is (—1, 1).

n2

1. 1n<1— %) =1n<"2 - 1) :ln% =1In[(n + 1)(n — 1)] — Inn?

=In(n+1)+Inn—1)—2lnn=In(n—-1)—Inn—Inn+In(n+1)

n— n

n+1’

—In

=In 1—[lnn—ln(n+1)}:lnn_

k _
Lets, = > ln(l— ! ) =3 (m”nl —1nnL+1) for k > 2. Then

n=2 F n=2
1 2 2 3 k—1 k 1 k
=(lnz—-In= In= —In- 1 —In—— ) =ln= -1
Sk (n2 n3>+<n3 n4)+ +(n % nk+1> n2 nk+1,s0
iln 17i = lim s = lim lnlfln K —lnl71n1—1n171n271n1—71n2
n—=2 n2 7194»00 kikﬂoo 2 k+l - 2 B B ’
13. (a) 1 The x-intercepts of the curve occur where sinz =0 < = = nm,

n an integer. So using the formula for disks (and either a CAS or

2

0 40 sin®z = (1 — cos 2z) and Formula 99 to evaluate the integral),

the volume of the nth bead is

-1 Vi=m (T_l),, (e7*/sing)?de == f(zﬂ_l),, e /% sin® x dx

— 215(?17r (6—(71,—1)77/5 _ 6—77,71'/5)

(b) The total volume is

oo oo
0 _—x/5 2 _ _ 250x —(n=1)n/5 _ _—nm/5] _ 250w :
[ le sinzdr = ) Vi =25 Y 1[@ e | = 5% [telescoping sum].
n= n=

o]

Another method: 1f the volume in part (a) has been written as V;, = %e’””/ 5(e™/5 — 1), then we recognize 21 Va
n=

as a geometric series with @ = 2207 (1 — e="/*) and r = e~ "/".
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15. If L is the length of a side of the equilateral triangle, then the area is A = % sL- ‘/_L */_LQ andso L? = %A.
Let r be the radius of one of the circles. When there are n rows of circles, the figure shows that
L
L=V3r+r+n-2)2r)+r+vV3r=r(2n—-2+23 ,807r = —m89 —————
(n—2)(21) ( T Fe
. . n(n+1) . .
The number of circlesis1 +2+---4+n = — and so the total area of the circles is
2
A, :n(n+1)WT2:n(n+1)W L _
2 2 4(n++3-1)
_n(n+1) . 4A/\/3 _ n(n+1) 7A
2 An+v3-1)° (n+v3-1)72V3
Ay n(n+1) ™
A (n4v3-1)°2V3
1+1/n 5 asd o
asm — o0 J3ror 2r 2r r 3r

TR+ (B-y/m’2VE 2B |

|
[ L 1

17. As in Section 11.9 we have to integrate the function z® by integrating series. Writing 2° = (/" *)* = ¢*!»® and using the

. . . x ln T > " (lnx)” . .
Maclaurin series for e®, we have z° = (e!*®)® = ¢*'"® = z ( ) =3 (7') As with power series, we can
n=0 n:
1 oo 1 xn (ln x)n | 1
integrate this series term-by-term: / zdr =) —dr =3 " (Inz)" dx. We integrate by parts
0 n=0J0 n: n=0 1" Jo
n(lng)" ! "t

withu = (Inz)", dv = 2" dz, so du = dzx and v =

n+1

1 1 s 1 1
/ 2" (lnz)" dz = lim 2" (Inz)" dz = lim { 1 (In x)"j| — lim / 2" (Inz)" ' da
0 t

t—0t Jy t—0t | N ;  t—0t

n 1 1
=0-— / 2"(lnz)" " dx
n+1J,

n+1

(where I’Hospital’s Rule was used to help evaluate the first limit). Further integration by parts gives

1 1
/ " (Inz)k de = — i / 2" (Inz)* " dz and, combining these steps, we get
0 n+1 /g

ro wo,(=D"nl o (=)l
/0 2"(Inz)" de = 7(n+1)”/0 2" dr = CE=

' = 1 [ = 1 (=)"n! = (=" = (="t
T dop — - n(] " dr = - — = .
A v * nZ:zo n! /; v ( nm) ’ ngo n! (TL + 1)n+1 ngo (n + 1)n+1 n,zz:l n"
%) 2n+1 1
19. By Table 1 in Section 11.10, tan™* z = 7LZ::O(—I)"QTL 1 for |z| < 1. In particular, for x = 7 wi

~—

LWV e V1
1 oY <_) an+1

-y _ (1" S
2 @0t D3 M(”Zm +1>3n> > S G "

s 1 e
have — = tan™ ' —= | = -1
6

_6 & _ =D
3 ngo 2n+1)3n 2\/?_)”

18
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2 3 4
Let f(z) denote the left-hand side of the equation 1 + % + % + 2—' + o +---=0.Ifz >0, then f(x) > 1 and there are
22zt 2% a®
no solutions of the equation. Note that f(—2°) =1 — = 4+ =~ — — + = — ... = cos z. The solutions of cos z = 0 for

2
x < 0 are givenby x = % — 7k, where k is a positive integer. Thus, the solutions of f(z) = Oare x = — (g - 7rk:) , where
k is a positive integer.
Call the series S. We group the terms according to the number of digits in their denominators:

S= (adtotdad) 4 (bt ) (k) o

g1 g2 g3

Now in the group g, since we have 9 choices for each of the n digits in the denominator, there are 9™ terms.

Furthermore, each term in g, is less than 10,1%1 [except for the first term in g1]. So gn, < 9™ - 10%1 = 9(%)"71.

o0
Now > 9(1%)"71 is a geometric series with @ = 9 and r = % < 1. Therefore, by the Comparison Test,

n=1

§=3 g < X 9(H)" = 1= = 90.

=

n=1 n=1
_ a,:3 1,6 1,9 B :C4 $7 ZCIO _.TQ m5 mS
u = +§+a+a+"',v—$+z+ﬁ-‘rm‘i"",w—E"Fﬁ"v‘g"v‘"'-

Use the Ratio Test to show that the series for u, v, and w have positive radii of convergence (co in each case), so

Theorem 11.9.2 applies, and hence, we may differentiate each of these series:

du _ 3% 6a® 9% 2?2 2

dz 3! 6! 9! T2 5! 8! o
Similarl du_l 23 28 20 . ddw_ 2t 7 2t .
B TR T T T T T

Sou = w, v = u,and w’ = v. Now differentiate the left-hand side of the desired equation:

dim(u3 +v® 4+ w? — 3uvw) = 3ulu’ + 30%0 + 3w’ — 3(u'vw + w'w + uvw’)
= 3uw + 3v?u + 3wy — 3(vw® + vPw +w?) =0 =

u® + v® + w? — 3uvw = C. To find the value of the constant C, we put z = 0 in the last equation and get

P¥+02+0°-3(1-0-00=C = C=1,5u*+v*+w* —3uvw=1.
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12 [] VECTORS AND THE GEOMETRY OF SPACE

12.1 Three-Dimensional Coordinate Systems

1. We start at the origin, which has coordinates (0, 0, 0). First we move 4 units along the positive z-axis, affecting only the
x-coordinate, bringing us to the point (4, 0,0). We then move 3 units straight downward, in the negative z-direction. Thus

only the z-coordinate is affected, and we arrive at (4, 0, —3).

3. The distance from a point to the yz-plane is the absolute value of the x-coordinate of the point. C'(2, 4, 6) has the z-coordinate
with the smallest absolute value, so C'is the point closest to the yz-plane. A(—4, 0, —1) must lie in the xz-plane since the

distance from A to the zz-plane, given by the y-coordinate of A, is 0.

5. The equation = + y = 2 represents the set of all points in z
//// y=2-x
R?* whose - and y-coordinates have a sum of 2, or
equivalently where y = 2 — x. This is the set ) y=2-x:=0

{(z,2 —x,2) | x € R, z € R} which is a vertical plane

that intersects the xy-plane in the liney =2 — z, z = 0.

7. We can find the lengths of the sides of the triangle by using the distance formula between pairs of vertices:

IPQI =/(T—32+[0—(—2)2+[1—(-3)2=v16+4+16 =6
QR = /A -7+ (202 +(1—-12=+36+4+0=+40=210

The longest side is Q R, but the Pythagorean Theorem is not satisfied: |[PQ|* + |RP|* # |QR|?. Thus PQR is not a right

triangle. PQR is isosceles, as two sides have the same length.

9. (a) First we find the distances between points:

[AB| =/(3-2)7+(T-42+(-2-2)? = V26
[BC| = /(1 =32+B-T2+B- (2P =v4H=3V5

[AC] = VI =2+ (3-47+(3-2)* = V3

In order for the points to lie on a straight line, the sum of the two shortest distances must be equal to the longest distance.

Since v/26 + /3 #3 \/5, the three points do not lie on a straight line.
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112 O CHAPTER12 VECTORS AND THE GEOMETRY OF SPACE

(b) First we find the distances between points:

IDE| = /T =02 +[-2— (-5)P + (4 - 5)* = vII
[EF| =/B-12+4- (2P +(2-42=Vvi=2V11
IDF| =/(3=0)2+[4— (-5) +(2-5)2 =v99 =3 V11

Since |DE| 4 |EF| = | DF)|, the three points lie on a straight line.

1. An equation of the sphere with center (—3,2, 5) and radius 4 is [z — (—=3)]*> 4 (y — 2)*> 4 (z — 5)°> = 4% or
(x4 3)> + (y — 2)> + (2 — 5)* = 16. The intersection of this sphere with the yz-plane is the set of points on the sphere
whose z-coordinate is 0. Putting 2z = 0 into the equation, we have 9 + (y — 2)* + (z — 5)> = 16, z = O or

(y —2)*> 4 (2 — 5)® = 7, z = 0, which represents a circle in the yz-plane with center (0,2, 5) and radius /7.

13. The radius of the sphere is the distance between (4,3, —1) and (3,8,1): r = /(3 —4)2 + (8 — 3)2 + [1L — (—1)]? = V/30.
Thus, an equation of the sphere is (z — 3)* + (y — 8)° + (z — 1)® = 30.

15. Completing squares in the equation z® + 3% + 2% — 2z — 4y + 8z = 15 gives
(2 =20+ 1)+ (2 —dy+4)+ (2> +82+16) =15+ 1+4+16 = (z—1)>+ (y—2)>+ (2 +4)* = 36, which we
recognize as an equation of a sphere with center (1, 2, —4) and radius 6.

17. Completing squares in the equation 2z — 8z + 2y® + 222 4 24z = 1 gives
22 — 4z +4) + 2y +2(2° +122+36) =1 +8+72 = 2(x—2)°+2y°+2(2+6)>=81 =

(x —2)? +y® + (2 + 6)> = &, which we recognize as an equation of a sphere with center (2,0, —6) and

radius /& = 9/v/2.

19. (a) If the midpoint of the line segment from P (21, y1, z1) to Pa(x2,y2, 22) is Q = (1:1 T2 gty itz ) ,

2 72 72
then the distances | P1 Q| and |Q P2 | are equal, and each is half of | P; P2 |. We verify that this is the case:

|PLP2| = \/(932 —1)? + (y2 — 1) + (22 — 21)°

|PiQ| = \/[%(:Cl + x2) — :Cl}Q + [%(y1 + y2) — y1]2 + [%(21 + z2) — 21]2
=/(he2 — 201)* + (3o — 2w1)” + (B2 — 321)”

\/(%)2 (w2 — 1) + (y2 — 41)* + (22 — 21)°] = %\/(172 —21)’ 4+ (2 — 1) + (22 — 21)°

= $1Ap
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SECTION 12.1 THREE-DIMENSIONAL COORDINATE SYSTEMS 0O 113

QP = \/[122 — %(561 +$2)]2 + [yz — %(y1 +y2)]2 + [Zz — %(zl + Zz)}2

\/(%432 —101)? + (32— ty)’ + (B2 — 32)° = \/(%)2 (w2 — 21) + (y2 — 1) + (22 — 21)°]

%\/(562 —21)? + (g2 —y1)* + (2 — 21)" = § |PL Py
So @ is indeed the midpoint of Py Ps.

(b) By part (a), the midpoints of sides AB, BC and C A are Py (—3,1,4), P2(1, 3,5) and P5(2, 3,4). (Recall that a median

-2 R

of a triangle is a line segment from a vertex to the midpoint of the opposite side.) Then the lengths of the medians are:

|AP2|:\/02+(§—2)2+(5—3)2=\/§+4:\/§:g

BRI = /(342" + () + -5 = F+ 1=/ = 4vol

CPil=/(-% -4 +(1-1)* +(4—5)° =, /2 1= 1,8
. (a) Since the sphere touches the zy-plane, its radius is the distance from its center, (2, —3, 6), to the xy-plane, namely 6.
Therefore r = 6 and an equation of the sphere is (z — 2)? 4 (y + 3)*> + (2 — 6)% = 6> = 36.
(b) The radius of this sphere is the distance from its center (2, —3, 6) to the yz-plane, which is 2. Therefore, an equation is
(z—2)°+(y+3)>+(2—6)° =4.
(c) Here the radius is the distance from the center (2, —3, 6) to the xz-plane, which is 3. Therefore, an equation is

(z =2+ (y+3)*+(2-6)>=09.

. The equation x = 5 represents a plane parallel to the yz-plane and 5 units in front of it.

. The inequality y < 8 represents a half-space consisting of all points to the left of the plane y = 8.

. The inequality 0 < z < 6 represents all points on or between the horizontal planes z = 0 (the xy-plane) and z = 6.

. Because z = —1, all points in the region must lie in the horizontal plane z = —1. In addition, 2* + y* = 4, so the region
consists of all points that lie on a circle with radius 2 and center on the z-axis that is contained in the plane z = —1.

. The inequality 2 + y* + 2% < 3 is equivalent to \/22 + y2 + 22 < /3, so the region consists of those points whose distance

from the origin is at most 1/3. This is the set of all points on or inside the sphere with radius /3 and center (0, 0, 0).

. Here 2 + 2% < 9 or equivalently v/22 + 22 < 3 which describes the set of all points in R® whose distance from the y-axis is
at most 3. Thus, the inequality represents the region consisting of all points on or inside a circular cylinder of radius 3 with

axis the y-axis.
. This describes all points whose x-coordinate is between 0 and 5, that is, 0 < = < 5.

. This describes a region all of whose points have a distance to the origin which is greater than r, but smaller than R. So

inequalities describing the region are r < /22 + y2 + 22 < R,orr? < 2* + ¢y + 2® < R%
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39. (a) To find the x- and y-coordinates of the point PP, we project it onto L2 .
and project the resulting point () onto the z- and y-axes. To find the
z-coordinate, we project P onto either the xz-plane or the yz-plane
(using our knowledge of its - or y-coordinate) and then project the

resulting point onto the z-axis. (Or, we could draw a line parallel to

QO from P to the z-axis.) The coordinates of P are (2, 1,4).

(b) A is the intersection of L1 and Lo, B is directly below the

y-intercept of Lo, and C is directly above the z-intercept of Lo.

41. We need to find a set of points { P(z,y, 2) f |AP| = |BP| }.

V@G- G-3P =@ 0P T (-2 T 2P =

@+1)’+ =5+ (-3)"=@@—-6"+uy-2"+(2+2)° =

2242+ 14+ —10y+25+22—624+9=a>—1204+36+1> —4dy+4+2°+424+4 = ldoz—6y—10z=09.
Thus the set of points is a plane perpendicular to the line segment joining A and B (since this plane must contain the

perpendicular bisector of the line segment AB).

43. The sphere 2 + y? 4 2® = 4 has center (0, 0,0) and radius 2. Completing squares in 2* — 4z + y* — 4y + 2° — 4z = —11
gives (22 —dz +4) + (2 —dy+4)+ (2P —dz+4) = -11+4+4+4 = (2-2°+@y—-2>2+(=z-2)2=1,
so this is the sphere with center (2, 2, 2) and radius 1. The (shortest) distance between the spheres is measured along

the line segment connecting their centers. The distance between (0,0, 0) and (2, 2, 2) is

V(2 =0)2+ (2—0)2 + (2 — 0)2 = /12 = 2/3, and subtracting the radius of each circle, the distance between the

spheresisZ\/§—2—1:2\/§—3.

12.2 Vectors

1. (a) The cost of a theater ticket is a scalar, because it has only magnitude.

(b) The current in a river is a vector, because it has both magnitude (the speed of the current) and direction at any given
location.
(c) If we assume that the initial path is linear, the initial flight path from Houston to Dallas is a vector, because it has both

magnitude (distance) and direction.
(d) The population of the world is a scalar, because it has only magnitude.
3. Vectors are equal when they share the same length and direction (but not necessarily location). Using the symmetry of the

_— — — = = —

— —
parallelogram as a guide, we see that AB = DC, DA =CB, DE = EB,and FA = CE.
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vV+w

" ()

—wW -V
w u
v
u—w-—v

vtu+w

—
7. Because the tail of d is the midpoint of QR we have QR = 2d, and by the Triangle Law,

a+2d=b = 2d=b-a = d=3(b—a)=3b— ta Againby the Triangle Law we have c + d = b so

c:b—d:b—(%b—%a):%a+%b.
9.a=3—-(-1),2-1)=(4,1)

B(3,2)

13.a=(2-0,3—-3,—-1—1)=(2,0,-2)

17. (3,0,1) + (0,8,0) = (3+0,0+ 8,1+ 0)
= (3,8,1)

Moa=(2—(-1),2-3)=(3,-1)

y
A1, 3) ]
\B(Z, 2)
0 3 X

15. (—1,4) + (6,—2) = (—1 46,4+ (—2)) = (5,2)
y
(6,—2)

<_15 4>
(5,2)
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29
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a+b=(+(-3),-12+ (—6)) = (2,-18)

2a+ 3b = (10, —24) + (-9, —18) = (1, —42)

la| = /5% + (—12)? = V169 = 13

la—b[ = [(5— (=3),~12 = (=6))| = |(8, ~6)| = /87 + (=6)* = V100 = 10
a+b=>G0+2j-3k)+(—2i—-j+5k)=—-i+j+2k
2a+3b=2(i+2j—3k)+3(—2i—j+5k)=2i+4j—-6k—6i—3j+15k=—4i+j+9k

jal = VEFE T (3P = VI

ja—b| = [(i+2j—3k) — (~2i—j+5k)| = 31+ 3] ~ 8k = /FF 1 3 1 (D) = V&2

The vector —31i + 7 j has length |-3i+ 7j| = \/m = /58, so by Equation 4 the unit vector with the same

direction is

L (84T = it
/58 V58 /B8
The vector 81 — j + 4k has length |81 — j + 4 k| = /82 + (—1)2 + 42 = v/81 = 9, so by Equation 4 the unit vector with

the same direction is §(8i—j+4k) = §i— 3j+ 5k

J From the figure, we see that tan 6 = ? =v3 = =60
i+3j
J3
A
0 1 X
From the figure, we see that the z-component of v is Y

vy = |v|cos(m/3) =4 - 1 = 2 and the y-component is
— ; —4.3 _
vy = |v|sin(m/3) = 4 - %2 = 2+/3. Thus

vV = <’U]_,’U2> = <272\/§>

<

s
3 4
0 i X
The velocity vector v makes an angle of 40° with the horizontal and
has magnitude equal to the speed at which the football was thrown. v
From the figure, we see that the horizontal component of v is i
40° |
C

|v| cos40° = 60 cos 40° ~ 45.96 ft/s and the vertical component

is |v|sin 40° = 60sin40° =~ 38.57 ft/s.
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33. The given force vectors can be expressed in terms of their horizontal and vertical components as —300 i and

20005 60° i +200sin 60° j = 200(%) i+ 200 (4Z) j = 100+ 100 V3. The resultant force F is the sum of

these two vectors: F' = (—300 4 100) i + (0 + 100+/3) j = —2001i + 100v/3 j. Then we have

|F| ~ \/(—200)2 + (100 \/§)2 = /70,000 = 100 /7 ~ 264.6 N. Let 6 be the angle F makes with the

18%8{? = —g and the terminal point of F lies in the second quadrant, so

positive x-axis. Then tan 6 =

0 =tan~?! (—?) + 180° ~ —40.9° 4+ 180° = 139.1°.

35. With respect to the water’s surface, the woman'’s velocity is the vector sum of the velocity of the ship with respect

to the water, and the woman’s velocity with respect to the ship. If we let north be the positive y-direction, then

v =(0,22) + (—3,0) = (—3,22). The woman’s speed is |v| = /9 + 484 ~ 22.2 mi/h. The vector v makes an angle ¢

with the east, where § = tan™! (%) ~ 98°. Therefore, the woman’s direction is about N(98 — 90)°W = N8°W.

37. Let T and T'5 represent the tension vectors in each side of the

clothesline as shown in the figure. T; and T have equal vertical

components and opposite horizontal components, so we can write

Ti=—-ai+bjand T2 =ai+bj [a,b > 0]. By similar triangles, b = 0728 = a = 50b. The force due to gravity
a

acting on the shirt has magnitude 0.8g =~ (0.8)(9.8) = 7.84 N, hence we have w = —7.84 j. The resultant Ty + T2
of the tensile forces counterbalances w, so T1 + T = —w = (—ai+bj)+ (ai+bj) =784 =
(—50bi+bj) + (50bi+bj) =2bj="7.84j = b= L2 =3.92anda = 50b= 196. Thus the tensions are
Ty = —ait+bj=—196i+3.92jand T2 = ai+ bj = 1961 + 3.92j.

Alternatively, we can find the value of 6 and proceed as in Example 7.

39. (a) Set up coordinate axes so that the boatman is at the origin, the canal is y

bordered by the y-axis and the line x = 3, and the current flows in the direction

of steering
negative y-direction. The boatman wants to reach the point (3, 2). Let 6 be (3.2)
the angle, measured from the positive y-axis, in the direction he should )

true
steer. (See the figure.) course
0 3 X

In still water, the boat has velocity v, = (13sin @, 13 cos §) and the velocity of the current is v. (0, —3.5), so the true path
of the boat is determined by the velocity vector v = v, + v. = (13sin6, 13 cos @ — 3.5). Let ¢ be the time (in hours)

after the boat departs; then the position of the boat at time ¢ is given by ¢v and the boat crosses the canal when

tv = (13sin6,13cosf — 3.5)t = (3,2). Thus 13(sinf)t =3 = = 3 31110 and (13cosf — 3.5)t = 2.
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3
13sin6

Substituting gives (13 cos 6 — 3.5) =2 = 39cosf — 10.5 =26sinf (1). Squaring both sides, we have

1521 cos® @ — 819 cos § + 110.25 = 676sin” § = 676 (1 — cos® 0)

2197 cos® @ — 819 cos  — 565.75 = 0

The quadratic formula gives

819 + \/(—819)2 — 4(2197)(—565.75)
2(2197)

819 £+/5,642,572
- 4394

osf =

~ 0.72699 or — 0.35421

The acute value for 0 is approximately cos ™' (0.72699) ~ 43.4°. Thus the boatman should steer in the direction that is

43.4° from the bank, toward upstream.

Alternate solution: We could solve (1) graphically by plotting y = 39 cos @ — 10.5 and y = 26 sin # on a graphing device

and finding the appoximate intersection point (0.757,17.85). Thus § &~ 0.757 radians or equivalently 43.4°.

(b) From part (a) we know the trip is completed when ¢ = ﬁ But 6 &~ 43.4°, so the time required is approximately
3

BenBl ~ 0.336 hours or 20.2 minutes.

The slope of the tangent line to the graph of y = 2 at the point (2, 4) is

dy

29 -9
dx m

=2

=4

r=2
and a parallel vector is i 4 4 j which has length |i + 4 j| = v/12 4+ 42 = /17, so unit vectors parallel to the tangent line
are :t\/% (i+4j).

—_— = = —

—
By the Triangle Law, AB + BC AC Then AB + BC + CA = AC + CA but AC + C'A AC’ + (—AC) =0.

— — —
So AB+ BC+CA=0.

(c) From the sketch, we estimate that s ~ 1.3 and ¢ ~ 1.6.

(a), (b) y , )
sa
/a/ (dc=satth < 7=3s+2tandl =2s—t.

Solving these equations gives s = % andt = %

=
-

|r — ro| is the distance between the points (z, y, z) and (zo, Yo, 20), so the set of points is a sphere with radius 1 and

center (o, Yo, 20)-

Alternate method: v —ro| =1 & /(x—20)2+{y—y)2+(z—2)2=1 &

(x —20)*> + (y — 90)? + (2 — 20)* = 1, which is the equation of a sphere with radius 1 and center (zo, yo, 20).
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49. a+ (b +c¢) = (a1, a2) + ((b1,b2) + {c1,¢2)) = {a1,a2) + (b1 + c1,b2 + c2)

=

= (a1 + b1 +c1,a2 + b2 + c2) = ((a1 + b1) + c1, (a2 + b2) + ¢2)

= (a1 + b1, a2 + b2) + (c1,¢c2) = ({a1, a2) + (b1, b2)) + (c1, c2)

=(a+b)+c

—_— — —

51. Consider triangle ABC, where D and E are the midpoints of AB and BC. We know that AB + BC = AC (1) and
— — — — — — — — —
DB+ BE =DE (2). However, DB = %AB, and BE = %BC. Substituting these expressions for DB and BE into

—_— — —_— —_— — —_— —_—
(2) gives %AB + %BC = DE. Comparing this with (1) gives DE = %AC. Therefore AC and DE are parallel and

[pE| = 3ac,

12.3 The Dot Product

1. (a) a- b is a scalar, and the dot product is defined only for vectors, so (a - b) - ¢ has no meaning.
(b) (a- b) c is a scalar multiple of a vector, so it does have meaning.
(c) Both |a] and b - ¢ are scalars, so |a| (b - ¢) is an ordinary product of real numbers, and has meaning.
(d) Both a and b + ¢ are vectors, so the dot product a - (b + ¢) has meaning.
(e) a- bis a scalar, but c is a vector, and so the two quantities cannot be added and a - b + ¢ has no meaning.
(f) |a] is a scalar, and the dot product is defined only for vectors, so |a| - (b + ¢) has no meaning.

3.a-b=(-2,1)-(-5,12) = (-2)(-5) + (3)(12) =10+ 4 = 14

5.a-b=(4,1,1)-(6,—-3,-8) = (4)(6) + (1)(—3) + (3) (-8) =19

7.a-b=Q2i+j)- i—-j+k)=2)1)+1)(-1)+0)(1)=1

9. By Theorem 3, a- b = |a| |b| cos§ = (6)(5) cos 2 = 30 (—3) = —15.

11. u, v, and w are all unit vectors, so the triangle is an equilateral triangle. Thus the angle between u and v is 60° and
u-v = |uf|v|cos60° = (1)(1)(3) = 3. If w is moved so it has the same initial point as u, we can see that the angle

between them is 120° and we have u - w = |u| |w| cos 120° = (1)(1)(—3) = —3.

13. (a)i-j=(1,0,0)-(0,1,0) = (1)(0) + (0)(1) + (0)(0) = 0. Similarly, j - k = (0)(0) + (1)(0) + (0)(1) = 0 and
k-i=(0)(1)+ (0)(0) + (1)(0) = 0.
Another method: Because i, j, and k are mutually perpendicular, the cosine factor in each dot product (see Theorem 3)
iscos 5 = 0.
(b) By Property 1 of the dot product, i - i = |i|> = 12 = 1 since i is a unit vector. Similarly, j - j = |j|* = 1 and

k-k=k’=1
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15. |a| = V42 +32 =5, |b| = /22 + (—1)2 = v/5,and a- b = (4)(2) + (3)(~1) = 5. From Corollary 6, we have

a-b 5 1 1
cosf = = —— = —. So the angle between a and b is § = cos™* (—) ~ 63°.
lal[[b] 5.5 5 V5
17. |a| = /32 4+ (—1)2+ 52 = /35, |b| = /(—2)2+ 42+ 32 =+v/29,anda-b = (3)(—2) + (—1)(4) + (5)(3) = 5. Then
a-b 5 5
cosf = = = and the angle between a and b is 6 = cos ™! | 2= ) ~ 81°.
lalb]  +/35-v29 /1015 g (\/1015)

19. |a| = /22 + (—3)Z + 12 = V26, |b| = /22 1 02+ (—1)2 = /5, and a- b = (4)(2) + (=3)(0) + (1)(~1) = 7.

a-b 7 7 7
Then cos § = = = and 0 = cos™! (—) ~ 52°.

lal[b]  v26-v5 /130 V130

21. Let p, g, and r be the angles at vertices P, @), and R respectively. 0
— —
Then p is the angle between vectors PQ and PR, q is the angle OP OF
— —

between vectors QP and Q R, and r is the angle between vectors
— SN P i
RP and RQ. P R

PQ - PR (-2.3) (1,4)

PQ - PR —-2,3)-(1,4 —2+12 10 _1( 10 ) 0 s
Thus cosp = = = = and p = cos —— | = 48°. Similarly,

P )P.cj) ‘ﬁ‘ N(C TN e eV IV,T VT R V221 Y
QP-QR _ (2-3)-(3,1)
QP-QR 2,-3)-(3,1 6—3 3 ,1< 3 ) o
cosq = = = = S0 ¢ = cos —— | = 75° and
I QP[] ~ VATOVEET T VIBVID VIR0 ! V130

r /2 180° — (48°+ 75°) = 57°.

’Q—]:ZQ—’P—Q)Q—’P—ZéQ

>

Alternate solution: Apply the Law of Cosines three times as follows: cosp = ——
2|Pq| |PH]

— 2 — 2 — 2 — 2 — 2 — 2
PR| —|PQ| —|QR PQ| —|PR| —|QR

,and cosr =

cosq =

2|l for] 2|PA [or]

23. (@) a-b = (—5)(6) + (3)(—8) + (7)(2) = —40 # 0, so a and b are not orthogonal. Also, since a is not a scalar multiple
of b, a and b are not parallel.
(b) a-b = (4)(—3) + (6)(2) = 0, so a and b are orthogonal (and not parallel).
©a-b=(-1)3)+(2)(4) + (5)(—1) = 0, so a and b are orthogonal (and not parallel).
(d) Because a = —% b, a and b are parallel.

— — —_— — — —
25. QP =(—-1,-3,2),QR=(4,—-2,—1),and QP - QR = —4 4+ 6 — 2 = 0. Thus QP and QR are orthogonal, so the angle of

the triangle at vertex () is a right angle.
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Leta = a1 i+ a2 j + as k be a vector orthogonal to both i 4+ jandi+ k. Thena-(i+j)=0 < a1 +a2=0and
a-(i+k)=0 < ai1+as=0,50 a1 = —as = —ag. Furthermore a is to be a unit vector, so 1 = a? + a3 + a2 = 3d?

implies a1 = :I:%. Thus a = % i— %j — %kanda: —%i—i— %j + %kare two such unit vectors.

Theline2z —y =3 <&y = 2z — 3 has slope 2, so a vector parallel to the lineisa = (1,2). Theline3z +y =7 <
y = —3z + 7 has slope —3, so a vector parallel to the line is b = (1, —3). The angle between the lines is the same as the

angle 0 between the vectors. Here we have a - b = (1)(1) + (2)(—3) = -5, |a] = /12 + 22 = /5, and

a-b -5 -5 1 V2
b| = +/12 + (—=3)2 = /10, so0 cos ) = = = = ———— or ———. Thus # = 135°, and the
VR albl ~ V5 Vi w3 V32

acute angle between the lines is 180° — 135° = 45°.

3 3

The curves y = 2 and y = 2° meet whenz® =2® & 2°-22=0 & 2°(x—-1)=0 & x=0,z=1 Wehave

dizg = 2z and dixg’ = 322, so the tangent lines of both curves have slope 0 at 2 = 0. Thus the angle between the curves is
x x

:2andinc3

0° at the point (0, 0). Forz =1, a z? I

e = 3 so the tangent lines at the point (1, 1) have slopes 2 and

r=1

r=1

3. Vectors parallel to the tangent lines are (1,2) and (1, 3), and the angle 6 between them is given by

cosf = <152><1a3> 1+6 7

L2TIL3) ~ VBV/I0  5v2

7
Thus § = cos™! | —= | ~ 8.1°.
(5\/5)

Since (2, 1,2)| = v+ 1+ 4 = /9 = 3, using Equations 8 and 9 we have cosa = 2, cos 8 = %, and cosy = Z. The

direction angles are given by v = cos ™" (%) &~ 48°, 3 = cos™'(3) ~ 71°,and v = cos ™" (%) = 48°.

Since |[i—2j — 3k| = +/1T+ 4+ 9 = +/14, Equations 8 and 9 give cosa = \/%, cos B = \;—134, and cosy = *—\/1_34, while

a =cos™! (L) /2 74°, 8 = cos ™! (—L) ~ 122°,and v = cos™! (—i) ~ 143°.

V14 V14 V14
c 1
¢ ¢ )| =2+ + 2 = +/3c [since ¢ > 0], 50 cosa = cos 3 = cosy = —— = —= and
(e, .0l =V [ ] B =T

— — _ -1 1 ~ o
a= [ =v=cos (ﬁ)""%'

a-b  —5-4+12-6
la] 13

la] = 4/(—5)2 + 122 = /169 = 13. The scalar projection of b onto a is comp, b = = 4 and the

vector projection of b onto a is proj, b = (%ﬂb) 2 4. =(—5,12) = (-2 -1

la] = +/9+ 36 + 4 = 7 so the scalar projection of b onto a is compab = % =1 (3+12—6) = 2. The vector

projection of b onto a is projab = Sa _ 2.1(3,6,-2) =3 (3,6,—2) = (3,38 —18),

7l

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



122

43.

45.

41.

49,

51.

53.

55.

57.

0O CHAPTER12 VECTORS AND THE GEOMETRY OF SPACE

L . . —1+2 1 .
|a] = v/4 + 1+ 16 = +/21 so the scalar projection of b onto a is comp, b = % = OT? =5 while the vector
_ 1 a1 2i-j+4k
V2l lal V21 V21 2

projection of b onto a is proj, b

a-b . a-b

(orthab)-a= (b —proj,b)-a=b-a— (proj,b)-a=b-a—
So they are orthogonal by (7).

%:2 & a-b=2lal =2I0.Ifb = (b1, by, bs), then we need 3b; + 0by — 1b3 = 2/10.

One possible solution is obtained by taking by = 0, by = 0, b3 = —2+/10. In general, b = <s, t,3s —2+/10 >, s,t € R.

comp, b =

The displacement vector is D = (6 — 0) i+ (12 — 10) j+ (20 — 8) k = 6i + 2 j + 12k so, by Equation 12, the work done is

W=F D= (8i—6j+9k) (6i+2j+12k) =48 — 12+ 108 = 144 joules.
Here |D| = 80 ft, |F| = 30 Ib, and § = 40°. Thus
W =F -D = |F||D|cosf = (30)(80) cos 40° = 2400 cos 40° ~ 1839 ft-Ib.

First note that n = (a, b) is perpendicular to the line, because if Q1 = (a1, b1) and Q2 = (az, b2) lie on the line, then

—_—
n-Q1Q2 = aaz — aay + bby — bb1 = 0, since aaz + bba = —c = aay + bb; from the equation of the line.

Let P, = (x2,y2) lie on the line. Then the distance from P; to the line is the absolute value of the scalar projection

_n{me —mi,ye — )| fama —axi + by —bya| _ laxi +bys + ¢

£PP; PP,
o onton. comp, ( ) =
142 p 142 | Z 10 210

[(3)(=2) + (~4)(3) +5] _ 13
32 4+ (—4)2 5

since axz + by2 = —c. The required distance is

For convenience, consider the unit cube positioned so that its back left corner is at the origin, and its edges lie along the
coordinate axes. The diagonal of the cube that begins at the origin and ends at (1, 1, 1) has vector representation (1,1, 1).
The angle 6 between this vector and the vector of the edge which also begins at the origin and runs along the x-axis [that is,

e ol _ <171>1>'<17070> _L _ —1(_ 1\ ~ rro
<1,070)]1sg1venbycos€—|<171,1>H<1’0’0>‘—\/3 = 0 =cos (\/5)~55.

Consider the H— C—H combination consisting of the sole carbon atom and the two hydrogen atoms that are at (1,0, 0) and
(0,1,0) (or any H— C—H combination, for that matter). Vector representations of the line segments emanating from the

: 1 1 1 1 1 1
carbon atom and extending to these two hydrogen atoms are (1 — 3,0 — 2,0 — 3) = (3,—3,—3) and

(0-2,1—3%,0—3) =(—3,%,—1). The bond angle, 6, is therefore given by

<%7_%7_%><_%7%’_%> _%_i—'_i 1 -1 1
cos O = = =—- = 0 =cos —2) &~ 109.5°.
4 =% D% & -5 EgyE 3 =3)
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59. Leta = (a1,a27a3> and = <b1, b2,b3>.
Property 2: a-b= <a1,a2,a3> . <b1,b2,b3> = a1b1 + azbs + azbs

= biay + beaz + bzaz = (b1, b2, b3) - (a1,a2,a3) =b-a

Property 4:  (ca) - b = {(ca1, caz, cas) - (b1, b2, bs) = (ca1)bi + (caz)bs + (casz)bs
= c(a1b1 + asby + a3b3) = c(a . b) = CL1(Cb1) + az(Cbz) + ag(Cbg)

= (a1, az2,a3) - {cb1,cba,cbz) =a- (cb)
Property 5: 0-a = (0,0,0) - (a1, az,as) = (0)(a1) + (0)(az2) + (0)(asz) =0

61. |a-b| = ’ |a| [b] cosH’ = |a| |b] |cos 8]. Since |cosf| < 1, |a-b| = |a] |b||cos 0] < |a] |b].

Note: We have equality in the case of cos§ = +1, so § = 0 or § = T, thus equality when a and b are parallel.

63. (a) The Parallelogram Law states that the sum of the squares of the
lengths of the diagonals of a parallelogram equals the sum of the

squares of its (four) sides.

() |a+b>*=(a+b)-(a+b)=]al*>+2(a-b)+|b|’and|a—b|> = (a—b)-(a—b)=|a]* —2(a-b) +|b|.

Adding these two equations gives |a + b|*> 4+ |a — b|> = 2|a|* 4+ 2 |b]*.

12.4 The Cross Product

i
f.axb=|6 0 —2|=
08 0

6 —2
0 0

6 0
0 8

0 -2
i
8 0

.

k

=[0—(~16)]i— (0—0)j+ (48— 0)k = 16i + 48k

Now (a x b) -a = (16,0,48) - (6,0, —2) = 96 + 0 — 96 = 0 and (a x b) - b = (16,0,48) - (0,8,0) =0+ 0+ 0 = 0, s0

a x b is orthogonal to both a and b.

ij k
3 -2 1 -2 13
3axb=| 13 —2|= i— i+ k
0 5 -1 5 -1 0

10 5

=(15-0)i—(5—2)j+[0— (-3)]k=15i—3j+ 3k
Since (ax b)-a=(15i—3j+3k)-(i+3j—2k) =15—9—6 =0, a x b is orthogonal to a.

Since (ax b)-b=(15i—3j+3k) - (-i+5k) = —154+ 0+ 15 = 0, a X b is orthogonal to b.
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15.

.axb=|t 1 1/t|=

0 CHAPTER12 VECTORS AND THE GEOMETRY OF SPACE
i j k
-1 -1 1 -1, 1 -1
aXb:1_1_1:111_11J+11k
1 1 1 2 2 2 2
2 2

— [ (0} [ )+ - B k= di- i+ 2k
Now (axb)-a=(3i-j+3k)-(i-j—k) =3+1—3=0and
(axb)-b=(3i-j+32k)-(3i+j+3k)=1—1+3=0,s0a x bisorthogonal to both a and b.

i
t 1

t? 2

1 1/t
21

t 1/t
21

J +

2?1
=(1-t)i-(t-t)j+E - k=>1-1)i+# -tk

Since (a x b)-a=(1—1,0,t>—¢*)-(t,1,1/t) =t —t* + 0+ t* —t = 0, a x b is orthogonal to a.

Since (a x b) -b = (1 —1¢,0,¢* —*) - (¢*,1*,1) = > = t* + 0+ ¢* — t* = 0, a x b is orthogonal to b.

. According to the discussion preceding Theorem 11,i x j =k, so (i x j) x k =k x k=0 [by Example 2].

G-k xk-1)=F—-k) xk+({—k) x (-i) by Property 3 of Theorem 11
=jxk+ (k) xk+jx(-i)+ (=k) x (—i) by Property 4 of Theorem 11
=[xk +(-Dkxk)+ (-G x i)+ (-1)*(k x i) by Property 2 of Theorem 11

=i+ (-1)0+(-)(-k)+j=i+j+k by Example 2 and
the discussion preceeding Theorem 11

(a) Since b x c is a vector, the dot product a - (b X ¢) is meaningful and is a scalar.

(b) b - cisascalar, so a x (b - c) is meaningless, as the cross product is defined only for two vectors.

(c) Since b x c is a vector, the cross product a x (b X ¢) is meaningful and results in another vector.

(d) b - ¢ is a scalar, so the dot product a - (b - ¢) is meaningless, as the dot product is defined only for two vectors.
(e) Since (a - b) and (c - d) are both scalars, the cross product (a - b) x (c - d) is meaningless.

(f) a x b and ¢ x d are both vectors, so the dot product (a x b) - (¢ x d) is meaningful and is a scalar.

If we sketch u and v starting from the same initial point, we see that the

angle between them is 60°. Using Theorem 9, we have

uxv|=|ul||v|sind = (1 sin =192. — = .
iné 2)(16) sin 60° 92*2§ 96 /3

By the right-hand rule, u x v is directed into the page.
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i i k
17. axb = | 2 13 -t 23 2y (—1-6)i—(2—12)j+[4— (-4)|k = —Ti+10j+8k
.axb= — = i— j + =(-1-6)i—(2—-12)j+[4—(— =—-7i+10j+
2 1 41 J 4 2 J J
4 21
i k
b 4 21 S . b2 k=[6-(-1)]i—(12—-2)j+(-4—4)k=7i—10j—8k
xXa= = i— + =[6—(-1)]i—(12-2)j+ (-4 — =7i—10j—
-1 3 2 3 ] 2 -1 ! !
2 -1 3
Notice a X b = —b x a here, as we know is always true by Property 1 of Theorem 11.

19. By Theorem 8, the cross product of two vectors is orthogonal to both vectors. So we calculate

i j k
(3,2,1) x (—-1,1,0) 3 2 1 21 31 32k 5k
ya,1) X (—1,1,0) = = i— .—|— :_i_'+ .
1 0 -1 0 J -1 J
-1 1 0
: <_17_175> <_17_175> : 1 1 5
So two unit vectors orthogonal to both are + =+ , that is, <——,——,—>
s VIF1+25 3V3 8V37 3V373V3
1 1 5
and (317 517~ 5%5)-
21. Leta = (a1, az,as3). Then
i j k
0 O 0 0 0 0
Oxa=|0 0 0|= i— j+ k=0,
az as air as air az
al a2 as
i j k
az as ay as ai as
ax0=|a1 az a3 | = i— j+ k=0.
0 0 0 0 0 0
0 0 0

23. ax b= <CL2()3 — a3b2,a3b1 — albg,albg — agbl>
= ((=1)(b2as — bsaz) , (—1)(bsar — bras) , (—1)(braz — baar))

= — <b2a3 — b3a27b3a1 — b1a3,b1a2 — b2a1> =-bxa

25. ax (b+c) =ax (b; +ci1,b2 + c2,b3 + c3)
az(bs + c3) —az(bz + ¢2), az(bi + 1) —a1(bs + ¢3), a1 (b2 + c2) — az(br + 1))

azbs + azcs — azba — azca, agby + ager — a1bs — aics, aibe + aica — azby — azcr)

=
=
= ((a2bs — asb2) + (azcs — asc2), (asbr — a1bs) + (asc1 — aics), (a1be — az2b1) + (a1c2 — azc1))
= (azbs — asba, asby — a1bs, a1ba — a2b1) + (azc3 — ascz,azc1 — aics, a1ca — asca)

=

axb)+(axc)
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126 O CHAPTER12 VECTORS AND THE GEOMETRY OF SPACE

27. By plotting the vertices, we can see that the parallelogram is determined by the ’
— — 4B
vectors AB = (2,3) and AD = (4, —2). We know that the area of the parallelogram
determined by two vectors is equal to the length of the cross product of these vectors. 2l , C
N A
In order to compute the cross product, we consider the vector AB as the three- .
— - 0 2 4 x
dimensional vector (2, 3, 0) (and similarly for AD), and then the area of D
parallelogram ABCD is
i k
—_— —
’AB x AD| =12 3 0||=]0)i-(0)j+ (-4 —12)k| = |-16k| = 16
4 -2 0

— —
29. (a) Because the plane through P, @, and R contains the vectors P(Q) and PR, a vector orthogonal to both of these vectors

— —
(such as their cross product) is also orthogonal to the plane. Here PQ = (—3,1,2) and PR = (3,2, 4), so

—_ —_—

PQx PR=((1)(4) = (2)(2),(2)(3) = (=3)(4), (=3)(2) — (1)(3)) = (0,18, -9)
Therefore, (0, 18, —9) (or any nonzero scalar multiple thereof, such as (0, 2, —1)) is orthogonal to the plane through P, Q,
and R.

(b) Note that the area of the triangle determined by P, ), and R is equal to half of the area of the

parallelogram determined by the three points. From part (a), the area of the parallelogram is

V5.

[N

—_ -
‘PQ x PR| = [(0,18,—-9)| = +/0 + 324 + 81 = /405 = 9v/5, so the area of the triangle is § - 9v/5 =

31. (a) R)Q = (4,3,—2) and P—I% = (5,5,1), so a vector orthogonal to the plane through P, @, and R is
—_— —
PQ x PR={((3)(1) — (—=2)(5),(=2)(5) — (4)(1), (4)(5) — (3)(5)) = (13, —14,5) [or any scalar mutiple thereof].

— —
(b) The area of the parallelogram determined by PQ and PR is

—_ —
‘PQ x PR| = |(13,—14,5)| = /132 + (—14)% + 52 = /390, so the area of triangle PQR is 1+/390.

33. By Equation 14, the volume of the parallelepiped determined by a, b, and c is the magnitude of their scalar triple product,

123
12 ~1 2 11
whichisa-(bxe)=| -1 1 2/=1| | =2 | +3  |=1(4-2)-2-4-4)+3(-1-2)=9.
2 14

Thus the volume of the parallelepiped is 9 cubic units.

— — —
3.a=PQ=(4,22),b=PR=(33,—1),andc = PS = (5,5, 1).

42 2
3 -1 3 -1 33
a-(bxec)=|3 3 —1|=4 -2 + 2 =32-16+0= 16,
C e 5 1 5 01 55

so the volume of the parallelepiped is 16 cubic units.

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 12.4 THE CROSS PRODUCT I 127

1 5 -2
-1 0 3 0 3 -1
u-(vxw)=|3 -1 0|=1 — +(-2) =4+ 60 — 64 = 0, which says that the volume
5 o 4 9 —4 5 —4 5 9

of the parallelepiped determined by u, v and w is 0, and thus these three vectors are coplanar.

39. The magnitude of the torque is |7| = |r X F| = |r| |F|sin€ = (0.18 m)(60 N) sin(70 4+ 10)° = 10.8sin 80° ~ 10.6 N-m.

41. Using the notation of the text, r = (0, 0.3,0) and F has direction (0, 3, —4). The angle 6 between them can be determined by

0,03,0) 0,3, =4) = COSQZL = cosf@ =06 = 0=~53.1° Then|7|=|r||F|sinf =

€00 = 115,03, 0)1(0,3, —4)] 03)(5)

100 = 0.3|F|sin53.1° = |F|~417N.

43. From Theorem 9 we have |a X b| = |a| |b| sin 8, where 6 is the angle between a and b, and from Theorem 12.3.3 we have

a-b=|a||blcosd = |a|lb]= a2 Substituting the second equation into the first gives |a x b| = 20 gin 6, so
cos 6 cos 6
la x b| l]a x b| 3 o
——— =tanf. Here ]a x b| = [(1,2,2)| = /1 +4+4=3,s0tant = =—==+3 = 0=60°"
a-b a-b V3
45. (a) The distance between a point and a line is the length of the perpendicular

—
from the point to the line, here ’PS ‘ = d. But referring to triangle PQS,

— — —
d= ‘PS‘ = ‘QP sin @ = |b| sin #. But 0 is the angle between QP = b

' R —
a and QR = a. Thus by Theorem 9, sin ) = ‘T;r';"

Ibllaxb| _|axb]

and sod = |b|sin0 =
b [al o) al

— —
b)a=QR=(-1,—-2,—-1)and b = QP = (1,—5,—7). Then

axb=((=2)(=7) = (=1)(=5), (=D(1) = (=D)(=7), (=1)(=5) = (=2)(1)) = (9, =8, 7).

. . b
Thus the distance is d = \a‘:‘ | = % /81 +64 +49 = \/ 1%4 = %-

47. From Theorem 9 we have |a X b| = |a| |b|sin 6 so

la x b|? = |a|® |b|*sin? 0 = |a|? |b|? (1 — cos®6)

= |a|* |b|* — (la| |b| cos §)* = [af* |b|* — (a- b)*

by Theorem 12.3.3.
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4. (a—b)x(a+b)=(a—b)xa+(a—b)xb by Property 3 of Theorem 11
=axa+(—-b)xat+axb+(-b)xb by Property 4 of Theorem 11
=(axa)—(bxa)+(axb)—(bxb) by Property 2 of Theorem 11 (with ¢ = —1)

=0—-(bxa)+(axb)—0 by Example 2
=(axb)+ (axb) by Property 1 of Theorem 11
=2(axb)

5. ax (bxc)+bx(cxa)+cx(axb)
=[(a-c)b—(a-b)c]+[(b-a)c— (b-c)a] + [(c-b)a— (c-a)b] by Exercise 50
=(a-c)b—(a-b)c+(a-b)c—(b-cla+(b-c)a—(a-c)b=0
53. (a) No.Ifa-b=a-c,thena- (b —c) =0, so a is perpendicular to b — ¢, which can happen if b # c. For example,
leta=(1,1,1),b = (1,0,0) and c = (0, 1, 0).
(b) No. Ifa x b = a x cthena x (b — ¢) = 0, which implies that a is parallel to b — ¢, which of course can happen
ifb # c.

(c) Yes. Since a- ¢ = a - b, ais perpendicular to b — ¢, by part (a). From part (b), a is also parallel to b — ¢. Thus since

a # 0 but is both parallel and perpendicular to b — ¢, we haveb —c = 0,s0b = c.

12.5 Equations of Lines and Planes

1. (a) True; each of the first two lines has a direction vector parallel to the direction vector of the third line, so these vectors are
each scalar multiples of the third direction vector. Then the first two direction vectors are also scalar multiples of each

other, so these vectors, and hence the two lines, are parallel.
(b) False; for example, the x- and y-axes are both perpendicular to the z-axis, yet the x- and y-axes are not parallel.

(c) True; each of the first two planes has a normal vector parallel to the normal vector of the third plane, so these two normal

vectors are parallel to each other and the planes are parallel.
(d) False; for example, the zy- and yz-planes are not parallel, yet they are both perpendicular to the xz-plane.
(e) False; the - and y-axes are not parallel, yet they are both parallel to the plane z = 1.

(f) True; if each line is perpendicular to a plane, then the lines’ direction vectors are both parallel to a normal vector for the

plane. Thus, the direction vectors are parallel to each other and the lines are parallel.
(g) False; the planes y = 1 and z = 1 are not parallel, yet they are both parallel to the x-axis.

(h) True; if each plane is perpendicular to a line, then any normal vector for each plane is parallel to a direction vector for the

line. Thus, the normal vectors are parallel to each other and the planes are parallel.

(1) True; see Figure 9 and the accompanying discussion.
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(j) False; they can be skew, as in Example 3.

(k) True. Consider any normal vector for the plane and any direction vector for the line. If the normal vector is perpendicular
to the direction vector, the line and plane are parallel. Otherwise, the vectors meet at an angle 6, 0° < 6 < 90°, and the

line will intersect the plane at an angle 90° — 6.

. For this line, we have ro = 2i+2.4j+ 3.5k and v = 3i+ 2j — k, so a vector equation is

r=ro+tv=(2i+24j+35k)+t(3i+2j—k) = (24 3t)i+ (2.4+ 2t) j+ (3.5 — t) k and parametric equations are
T =243ty =24+2z2=35—t

. A line perpendicular to the given plane has the same direction as a normal vector to the plane, such as

n = (1,3,1). Soro =i+ 6k, and we can take v =i+ 3j + k. Then a vector equation is

r=(i+6k)+t(i+3j+k)=(1+¢t)i+ 3tj+ (6+t)k, and parametric equationsarex = 1+ ¢,y = 3¢, z = 6 + ¢.

. The vector v = (2 — 0,1 — 3, -3 — 1) = (2, 3, —4) is parallel to the line. Letting Py = (2,1, —3), parametric equations

arer =2+2t,y =1+ %t, z = —3 — 4t, while symmetric equations are z—2 = y1;21 =z +43 or
Tz —2 z+3
=2y—2= .
2 4 —1

. v=(3—-(-8),—2—1,4—4) = (11, -3,0), and letting Py = (—8, 1,4), parametric equations are x = —8 + 11¢,

_y—1
1~ -3

y =1 — 3t, z = 4 4+ 0t = 4, while symmetric equations are z , z = 4. Notice here that the direction number

z—4

¢ = 0, so rather than writing in the symmetric equation we must write the equation z = 4 separately.

The line has direction v = (1,2, 1). Letting Py = (1, —1, 1), parametric equationsare = 1 + ¢,y = —1+2t, 2z =1+

y+1_

) z—1.

and symmetric equations are z — 1 =
Direction vectors of the lines are vi = (—2 — (—4),0 — (—6),—3 — 1) = (2,6, —4) and
vy = (5—10,3 — 18,14 — 4) = (=5, —15,10), and since vy = —2v1, the direction vectors and thus the lines are parallel.

(a) The line passes through the point (1, —5, 6) and a direction vector for the line is (—1, 2, —3), so symmetric equations for

-1 y+5 2—6
-1 2 = =3

. T
the line are

-1 y+5 0-6 zx-1
1 2 3 T3 == .

(b) The line intersects the xy-plane when z = 0, so we need m

% =2 =y = —1. Thus the point of intersection with the zy-plane is (—1, —1, 0). Similarly for the yz-plane,
y+5 z2z—-6 .
weneedr =0 = 1= S =3 = y = —3, z = 3. Thus the line intersects the yz-plane at (0, —3, 3). For
z—1 5 2z-6 3 3 L
the xz-plane, weneedy =0 = T 3= 3 = x = -3,z = —3. So the line intersects the xz-plane

at (—2,0,-3%).
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From Equation 4, the line segment fromro = 2i—j+4ktor;s =4i+6j+ kis

r(t)=(1—t)ro+trs=(1—1)(2i—j+4k) +t(4i+6j+k) = (2i —j+4k) +t(2i+7j—3k),0< t < 1.

Since the direction vectors (2, —1, 3) and (4, —2, 5) are not scalar multiples of each other, the lines aren’t parallel. For the
lines to intersect, we must be able to find one value of ¢ and one value of s that produce the same point from the respective
parametric equations. Thus we need to satisfy the following three equations: 3 + 2t =1+ 4s,4 —t = 3 — 2s,

1+ 3t = 4 + 5s. Solving the last two equations we get ¢ = 1, s = 0 and checking, we see that these values don’t satisfy the

first equation. Thus the lines aren’t parallel and don’t intersect, so they must be skew lines.

Since the direction vectors (1, —2, —3) and (1,3, —7) aren’t scalar multiples of each other, the lines aren’t parallel. Parametric
equations of the linesare L1: x =2 +t,y=3—2t,z=1—3tand Lo: t =3+ s,y = —4 + 3s, 2 = 2 — 7s. Thus, for the
lines to intersect, the three equations 2 +¢ = 3 + 5,3 — 2t = —4 4 3s, and 1 — 3t = 2 — 7s must be satisfied simultaneously.
Solving the first two equations gives ¢ = 2, s = 1 and checking, we see that these values do satisfy the third equation, so the

lines intersect when ¢ = 2 and s = 1, that is, at the point (4, —1, —5).

Since the plane is perpendicular to the vector (1, —2, 5), we can take (1, —2, 5) as a normal vector to the plane.

(0,0,0) is a point on the plane, so settinga = 1,b = —2, ¢ =5 and zo = 0, yo = 0, zo = 0 in Equation 7 gives

1(x —0)+ (—2)(y — 0) + 5(z — 0) = 0 or x — 2y + 5z = 0 as an equation of the plane.

i+4j+k=(1,4,1) is a normal vector to the plane and (—1, 3, 3) is a point on the plane, so settinga = 1,b =4, c = 1,
xo = —1,y0 = %, 20 = 3 in Equation 7 gives 1[z — (—1)] + 4 (y — 3) + 1(z — 3) = 0 or @ + 4y + z = 4 as an equation of
the plane.

Since the two planes are parallel, they will have the same normal vectors. So we can take n = (5, —1, —1), and an equation of
the planeis 5(z — 1) — 1[y — (=1)] — [z = (-1)] =0orbz —y — 2 = 7.

Since the two planes are parallel, they will have the same normal vectors. So we can take n = (1, 1, 1), and an equation of the
planeis 1(z — 1) + 1 (y — %) +1(z—3%)=0o0rz+y+z=2orbx+6y+6z=11

Here the vectorsa = (1 —0,0—1,1—1) = (1,—1,0) and b= (1 — 0,1 — 1,0 — 1) = (1,0, —1) lie in the plane, so

a x b is a normal vector to the plane. Thus, we cantaken =a x b =(1—-0,0+ 1,0+ 1) = (1,1, 1). If P, is the point
(0,1,1), an equation of the plane is 1(x — 0) + 1(y — 1) + 1(z — 1) =0orz +y + 2z = 2.

Here the vectorsa = (8 — 3,2 — (—1),4 —2) = (5,3,2) and b = (-1 — 3, -2 — (—1),-3 — 2) = (-4, —1,—5) liein
the plane, so a normal vector to the planeisn = a x b = (=15 + 2, -8 + 25, —5 + 12) = (—13,17, 7) and an equation of
the plane is —13(z — 3) + 17[y — (—1)] + 7(2 — 2) = 0 or =13z + 17y + 7z = —42.

If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = (—2, 5, 4) is one vector in the plane. We can verify that the given point (6,0, —2)
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does not lie on this line, so to find another nonparallel vector b which lies in the plane, we can pick any point on the line and
find a vector connecting the points. If we put ¢ = 0, we see that (4, 3, 7) is on the line, so
b=(6-4,0-3,-2-7)=(2,-3,—9)andn=a x b =(—45+ 12,8 — 18,6 — 10) = (—33,—10, —4). Thus, an
equation of the plane is —33(z — 6) — 10(y — 0) — 4[z — (—2)] = 0 or 33z + 10y + 4z = 190.

A direction vector for the line of intersection isa = n; x ny = (1,1, —1) x (2, —1,3) = (2, —5, —3), and a is parallel to the
desired plane. Another vector parallel to the plane is the vector connecting any point on the line of intersection to the given

point (—1,2, 1) in the plane. Setting z = 0, the equations of the planes reduce to y — z = 2 and —y + 3z = 1 with

simultaneous solution y = % and z = % So a point on the line is (07 %, %) and another vector parallel to the plane is
<—l, —%, —%> Then a normal vector to the plane is n = (2, =5, —3) x <—l, —%, —%> = (—2,4, —8) and an equation of

the planeis —2(x + 1) +4(y —2) = 8(2 — 1) =0orx — 2y + 4z = —1.

If a plane is perpendicular to two other planes, its normal vector is perpendicular to the normal vectors of the other two planes.
Thus (2,1,—2) x (1,0,3) = (3—0,—2 — 6,0 — 1) = (3, —8, —1) is a normal vector to the desired plane. The point
(1,5,1) lies on the plane, so an equationis 3(z — 1) —8(y —5) — (z —1) =0or3z — 8y — z = —38.

To find the x-intercept we set y = z = 0 in the equation 2z + 5y + z = 10
and obtain 2z = 10 = x = 5 so the z-intercept is (5, 0,0). When
x=z=0wegetby =10 = y = 2, so the y-intercept is (0, 2, 0).
Setting z = y = 0 gives z = 10, so the z-intercept is (0, 0, 10) and we

graph the portion of the plane that lies in the first octant.

Setting y = z = 0 in the equation 6 — 3y + 42z = 6 gives 6z =6 =
rz=1,whenz=2z=0wehave -3y =6 = y=-2,andz=y=0
implies 4z =6 = 2z = 3, so the intercepts are (1,0, 0), (0, —2,0), and

(0,0, %) The figure shows the portion of the plane cut off by the coordinate

planes.

X

Substitute the parametric equations of the line into the equation of the plane: (3 —¢) — (24+¢) +2(5t) =9 =

8 =8 = t = 1. Therefore, the point of intersection of the line and the plane is givenbyzr =3 —-1=2,y=2+4+1=3,
and z = 5(1) = 5, that is, the point (2, 3, 5).

Parametric equations for the linearex = t,y =1+ ¢, 2z = %t and substituting into the equation of the plane gives

40— (1+t)+3(3t) =8 = 2t=9 = t=2Thusz=2y=1+2=3,2=1(2)=1and the point of
intersection is (2, 3, 1).
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49. Setting x = 0, we see that (0, 1, 0) satisfies the equations of both planes, so that they do in fact have a line of intersection.
v=mn; xng =(1,1,1) x (1,0,1) = (1,0, —1) is the direction of this line. Therefore, direction numbers of the intersecting

line are 1, 0, —1.

51. Normal vectors for the planes are ny = (1,4, —3) and ny = (—3, 6, 7), so the normals (and thus the planes) aren’t parallel.

Butn; - np = —3 + 24 — 21 = 0, so the normals (and thus the planes) are perpendicular.

53. Normal vectors for the planes are n; = (1,1,1) and na = (1, —1, 1). The normals are not parallel, so neither are the planes.
Furthermore, n; - ny =1 — 14 1 = 1 # 0, so the planes aren’t perpendicular. The angle between them is given by

n; -ns 1

1
nif n2| /33 3

cosf =

= 0= cos_l(%) ~ 70.5°.

55. The normals are n; = (1, —4,2) and n, = (2, —8,4). Since na = 2ny, the normals (and thus the planes) are parallel.

57. (a) To find a point on the line of intersection, set one of the variables equal to a constant, say z = 0. (This will fail if the line of
intersection does not cross the zy-plane; in that case, try setting = or y equal to 0.) The equations of the two planes reduce
toxz +y = 1 and = + 2y = 1. Solving these two equations gives = 1, y = 0. Thus a point on the line is (1, 0, 0).
A vector v in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so we can take
v=mni; xny=(1,1,1) x (1,2,2) = (2—2,1 — 2,2 — 1) = (0, —1, 1). By Equations 2, parametric equations for the
linearex =1,y = —t, z =t.

n; -ns _1+2+2_ 5

il e[ VBV 3B

(b) The angle between the planes satisfies cos 0 =

Therefore § = cos™! <L> ~ 15.8°.

3V3

59. Setting z = 0, the equations of the two planes become 5z — 2y = 1 and 4x + y = 6. Solving these two equations gives
x =1, y = 2 so a point on the line of intersection is (1,2, 0). A vector v in the direction of this intersecting line is
perpendicular to the normal vectors of both planes. So we canuse v =mn; x na = (5, -2, —2) x (4,1,1) = (0,—13,13) or

. . . . -2
equivalently we can take v = (0, —1, 1), and symmetric equations for the line are x = 1, y_l = % orx=1y—2=—=z.

61. The distance from a point (z,y, z) to (1,0, —2) is d1 = v/(z — 1) + y2 + (2 + 2)2 and the distance from (z, y, z) to

(3,4,0)is d2 = \/(z — 3)2 + (y — 4)% + 22. The plane consists of all points (z,y,z) where d1 =d> = df =d5 <
@1 +y"+ (242’ =@ -3+ @y -4 +2" &

2?2 =249yt + 2244z +5=a—6x+y> —8y+22+25 < 4x+ 8y+ 4z = 20 so an equation for the plane is
4z 4 8y + 4z = 20 or equivalently x + 2y + z = 5.

Alternatively, you can argue that the segment joining points (1,0, —2) and (3, 4, 0) is perpendicular to the plane and the plane

includes the midpoint of the segment.

63. The plane contains the points (a, 0, 0), (0,b,0) and (0, 0, ¢). Thus the vectors a = (—a, b,0) and b = (—a, 0, ¢) lie in the

plane, andn = a x b = (bc — 0,0 + ac, 0 4+ ab) = (bc, ac, ab) is a normal vector to the plane. The equation of the plane is
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therefore bex + acy + abz = abe + 0 + 0 or bex + acy + abz = abe. Notice that if a # 0, b # 0 and ¢ # 0 then we can

rewrite the equation as — + % + — = 1. This is a good equation to remember!
a c

Two vectors which are perpendicular to the required line are the normal of the given plane, (1,1, 1), and a direction vector for
the given line, (1, —1,2). So a direction vector for the required line is (1,1,1) x (1,—1,2) = (3, —1, —2). Thus L is given

by (z,y,2z) = (0,1,2) + ¢(3, —1, —2), or in parametric form, x = 3t,y =1 — ¢,z = 2 — 2t.

Let P; have normal vector n;. Then n; = (3,6, —3), ny = (4, —12,8), n3 = (3,—9,6), ny = (1,2, —1). Now n; = 3ng,

4

so n; and ny are parallel, and hence P, and Py are parallel; similarly P and Ps are parallel because nz = 3

ns. However, n;
and n are not parallel (so not all four planes are parallel). Notice that the point (2, 0, 0) lies on both P; and P4, so these two

planes are identical. The point (%, 0, O) lies on P> but not on Ps, so these are different planes.

Let @ = (1,3,4) and R = (2,1, 1), points on the line corresponding to ¢t = 0 and ¢ = 1. Let
— —

P=(4,1,-2). Thena = QR = (1,—2,-3), b = QP = (3, -2, —6). The distance is

Ly laxbl_[(L,-2 -3 x @ -2-6) _ [(6,-3.4 __VEF(I L Ve _ ol
vz V1o

|a‘ |<17_27 _3>| B |<17_27 _3>| B \/12+(—2)2+(—3)2 N

By Equation 9, the distance is D = |azs + bys + cz1 + d| = [3(1) +2(=2) +6(4) — 5| = 118] = §

Va2 + b2 + c? 32422 + 62 V49 7

Put y = z = 0 in the equation of the first plane to get the point (2, 0, 0) on the plane. Because the planes are parallel, the

distance D between them is the distance from (2, 0, 0) to the second plane. By Equation 9,

p_ 4@ -6+20 -3 _ 5 _ 5 5V

£+(-62+(2)?7 V56 2V 28

The distance between two parallel planes is the same as the distance between a point on one of the planes and the other plane.
Let Py = (zo, Yo, 20) be a point on the plane given by ax + by + ¢z + d1 = 0. Then axo + byo + czo + d1 = 0 and the
distance between Py and the plane given by ax + by + cz 4+ d2 = 0 is, from Equation 9,

:\awo+by0+czo+d2|_ |—di +da|  |di—d]

D = = .
VaZ+ 02+ 2 Vaz+b2+ 2 Va2 + b2+

Litz=y=2 = z=y (1). Lyz+1=y/2=2/3 = x+1=y/2 (2). Thesolution of (1) and (2) is

xz =y = —2. However,whenz = -2,z =2 = z=-2,butz+1=2/3 = 2z = —3,acontradiction. Hence the
lines do not intersect. For L1, vi = (1,1, 1), and for Lo, vo = (1,2, 3), so the lines are not parallel. Thus the lines are skew
lines. If two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew lines
would be the same as the distance between these parallel planes. The common normal vector to the planes must be

perpendicular to both (1, 1, 1) and (1, 2, 3), the direction vectors of the two lines. So set
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79.

81.

n=(1,1,1) x(1,2,3) = (3—-2,-3+1,2 — 1) = (1, -2, 1). From above, we know that (—2, —2, —2) and (—2, —2, —3)
are points of L1 and L respectively. So in the notation of Equation 8, 1(—2) — 2(—=2) +1(-2)+d1 =0 = dy =0and

1(=2) —2(=2) +1(=3) +da =0 = do=1.

. ‘ o 10— 1| 1
By Exercise 75, the distance between these two skew linesis D = ——— = —.
Y VI+4+1 V6

Alternate solution (without reference to planes): A vector which is perpendicular to both of the lines is
n=(1,1,1) x (1,2,3) = (1, —2, 1). Pick any point on each of the lines, say (—2, —2, —2) and (—2, —2, —3), and form the
vector b = (0,0, 1) connecting the two points. The distance between the two skew lines is the absolute value of the scalar

projection of b along n, thatis, D = [n - b = 1-0-2-04+1-1] = i

n| T+4+1 V6

A direction vector for L, is vi = (2,0, —1) and a direction vector for Lz is v2 = (3,2, 2). These vectors are not parallel so
neither are the lines. Parametric equations for the lines are L1: x = 2t,y =0,z = —t,and L2: x =1+ 3s,y = —1 + 2s,
z =1+ 2s. No values of ¢ and s satisfy these equations simultaneously, so the lines don’t intersect and hence are skew. We
can view the lines as lying in two parallel planes; a common normal vector to the planes isn = vi X vo = (2, —7,4). Line
L passes through the origin, so (0, 0, 0) lies on one of the planes, and (1,—1, 1) is a point on Lo and therefore on the other

plane. Equations of the planes then are 2x — 7y + 42 = 0 and 2z — 7y + 42 — 13 = 0, and by Exercise 75, the distance

between the two skew lines is D = 10— 131 = i
V4 +49 + 16 /69

Alternate solution (without reference to planes): Direction vectors of the two lines are vi = (2,0, —1) and vo = (3,2, 2).
Then n = v; X vo = (2, —7,4) is perpendicular to both lines. Pick any point on each of the lines, say (0, 0,0) and (1, —1, 1),
and form the vector b = (1, —1, 1) connecting the two points. Then the distance between the two skew lines is the absolute

In-b|  [2+7+4 _ 13
In| 1+49+16 69

value of the scalar projection of b along n, that is, D =

Ifa #0,thenaz +by+cz+d=0 = a(z+d/a)+bly—0)+ c(z—0) =0 which by (7) is the scalar equation of the
plane through the point (—d/a, 0, 0) with normal vector {(a, b, ¢). Similarly, if b # 0 (or if ¢ # 0) the equation of the plane can
be rewritten as a(xz — 0) + b(y + d/b) + ¢(z — 0) = 0 [oras a(xz — 0) + b(y — 0) + ¢(z + d/c) = 0] which by (7) is the

scalar equation of a plane through the point (0, —d/b, 0) [or the point (0,0, —d/c)] with normal vector {a, b, c).
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12.6 Cylinders and Quadric Surfaces

1. (a) In R? the equation y = z* represents a parabola.

(b) In R3, the equation y = z? doesn’t involve z, so any
horizontal plane with equation z = k intersects the graph
in a curve with equation y = x2. Thus, the surface is a
parabolic cylinder, made up of infinitely many shifted

copies of the same parabola. The rulings are parallel to

the z-axis.

(c) In R?, the equation z = y? also represents a parabolic
cylinder. Since = doesn’t appear, the graph is formed by
moving the parabola z = 32 in the direction of the z-axis.

Thus, the rulings of the cylinder are parallel to the z-axis.

3. Since y is missing from the equation, the vertical traces 5. Since z is missing, each vertical trace z = 1 — 32,
z? + 22 =1, y = k, are copies of the same circle in x = k, is a copy of the same parabola in the plane
the plane y = k. Thus the surface z° + 22 = 1isa x = k. Thus the surface z = 1 — y? is a parabolic
circular cylinder with rulings parallel to the y-axis. cylinder with rulings parallel to the z-axis.
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7. Since z is missing, each horizontal trace zy = 1,
z = k, is a copy of the same hyperbola in the plane
z = k. Thus the surface xy = 1 is a hyperbolic

cylinder with rulings parallel to the z-axis.

9. (a) The traces of z2 + y? — 22 = linx = k are 4> — 22 = 1 — k2, a family of hyperbolas. (Note that the hyperbolas are
oriented differently for —1 < k < 1 than for k < —1 or k > 1.) The traces iny = k are 22 — 2% = 1 — k?, a similar
family of hyperbolas. The traces in z = k are z° 4+ y* = 1 + k2, a family of circles. For k = 0, the trace in the
xy-plane, the circle is of radius 1. As |k| increases, so does the radius of the circle. This behavior, combined with the

hyperbolic vertical traces, gives the graph of the hyperboloid of one sheet in Table 1.

(b) The shape of the surface is unchanged, but the hyperboloid is
rotated so that its axis is the y-axis. Traces in y = k are circles,

while traces in z = k and z = k are hyperbolas.

(¢) Completing the square in y gives 22 + (y +1)® — 22 = 1. The
surface is a hyperboloid identical to the one in part (a) but shifted

one unit in the negative y-direction.

1. For z = y* + 422, the traces in = = k are y? + 42% = k. When k > 0 we

have a family of ellipses. When k£ = 0 we have just a point at the origin, and

the trace is empty for k < 0. The traces iny = k are x = 42% + k2, a

family of parabolas opening in the positive z-direction. Similarly, the traces

in z = k are © = 3 + 4k, a family of parabolas opening in the positive

x-direction. We recognize the graph as an elliptic paraboloid with axis the

x-axis and vertex the origin.
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x% = 9% + 422, The traces in = k are the ellipses y> + 422 = k2. The
traces in y = k are 2% — 422 = k2, hyperbolas for k # 0 and two
intersecting lines if £ = 0. Similarly, the traces in z = k are

x? — y* = 4k?, hyperbolas for k # 0 and two intersecting lines if k& = 0.
We recognize the graph as an elliptic cone with axis the z-axis and vertex

the origin.

—x? 4 4y? — 2? = 4. The traces in 2 = k are the hyperbolas

4y% — 2% = 4+ k2. Thetraces iny = k are 2 + 2% = 4k® — 4, a family of
circles for |k| > 1, and the traces in z = k are 4y* — 2® = 4 + k?, a family
of hyperbolas. Thus the surface is a hyperboloid of two sheets with

axis the y-axis.

3622 + 4 + 3622 = 36. The traces in x = k are y* + 3627 = 36(1 — k?),
a family of ellipses for |k| < 1. (The traces are a single point for |k| = 1

and are empty for |k| > 1.) The traces in y = k are the circles

(1,0,0)

362 +362° =36 — k> & 2®+2°=1— k% |k| <6,andthe
traces in z = k are the ellipses 362> + y* = 36(1 — k?), |k| < 1. The

graph is an ellipsoid centered at the origin with intercepts ¢ = +1, y = £6,
z ==+l

y = 2% — x°. The traces in = = k are the parabolas y = 22 — k?;

the traces in y = k are k = 2> — 2, which are hyperbolas (note the hyperbolas

are oriented differently for £ > 0 than for k < 0); and the traces in z = k are

2 2
the parabolas y = k% — 2. Thus, % = % — % is a hyperbolic paraboloid.

2 2
Yy z

This is the equation of an ellipsoid: z® + 4y + 922 = 22 +

(1/2)* * (1/3)*

and z-intercepts :I:%. So the major axis is the z-axis and the only possible graph is VII.

137

+ ——— =1, with x-intercepts +1, y-intercepts :I:%

This is the equation of a hyperboloid of one sheet, with a = b = ¢ = 1. Since the coefficient of y? is negative, the axis of the

hyperboloid is the y-axis, hence the correct graph is II.
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25. There are no real values of z and z that satisfy this equation for y < 0, so this surface does not extend to the left of the

xz-plane. The surface intersects the plane y = k£ > 0 in an ellipse. Notice that y occurs to the first power whereas = and z

occur to the second power. So the surface is an elliptic paraboloid with axis the y-axis. Its graph is VL.

27. This surface is a cylinder because the variable y is missing from the equation. The intersection of the surface and the xz-plane

is an ellipse. So the graph is VIIIL.

2

29. 4 = 2% + %zz ory? = 2% + % represents an elliptic

cone with vertex (0, 0,0) and axis the y-axis.

33. Completing squares in y and z gives
4o + (y—2)° +4(z —3)*  =4or

—92)2 S
2 + % + (2 — 3)? = 1, an ellipsoid with

center (0,2, 3).

2
2

M2 +2 —222=00r2y =222 —zlory==2 f%

represents a hyperbolic paraboloid with center (0, 0, 0).

35. Completing squares in all three variables gives
(x—22—(y+1)>+(z—-1)*>=0o0r
(y+1)? = (z — 2)® + (2 — 1)?, acircular cone with
center (2, —1,1) and axis the horizontal line z = 2,

z=1.

5

2,-L1

37. Solving the equation for z we get z = ++/1 + 4x2 + y2, so we plot separately z = /1 + 422 + y2 and

z=—/1+4x2 +y2.
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To restrict the z-range as in the second graph, we can use the option view=-4. .4 in Maple’s plot3d command, or

PlotRange -> {-4, 4} in Mathematica’s P1ot 3D command.

39. Solving the equation for z we get z = +4/422 + y2, so we plot separately z = /422 + y? and z = —/4x? + y2.

o,
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ey ey, =
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z 0 z 0
23 N
22 O
4 % 222
i, 4 —2 *2_2 INORSRD 0 —2
0 22 ¥ y0 72 x

41.

43. The surface is a paraboloid of revolution (circular paraboloid) with vertex at
the origin, axis the y-axis and opens to the right. Thus the trace in the

yz-plane is also a parabola: y = 2%, z = 0. The equation is y = = 4 22.

The parabola
y=x

45. Let P = (z, y, z) be an arbitrary point equidistant from (—1, 0, 0) and the plane = 1. Then the distance from P to

(—1,0,0) is \/(z 4+ 1)2 + y2 + 22 and the distance from P to the plane z = 1 is |z — 1| V12 = |z — 1]
(by Equation 12.5.9). So [z — 1| = /(z + 1)2+ 32 +22 & (z—1)

x272m+1:x2+2‘r+1+y2+22

=@+ 4+ +2 &

& —4x = y? + 2. Thus the collection of all such points P is a circular

paraboloid with vertex at the origin, axis the x-axis, which opens in the negative direction.

2 2 2
47. (a) An equation for an ellipsoid centered at the origin with intercepts * = +a, y = £b, and z = *c s % + ‘7;—2 + Z—2

c
Here the poles of the model intersect the z-axis at z = +6356.523 and the equator intersects the x- and y-axes at

r = +6378.137, y = +6378.137, so an equation is

2
T

Y z
=1
(6378.137)° | (6378.137)2 ' (6356.523)2

2 2

2 2

(6378.137)2 ' (6378.137)2  (

6378.137°
2 2 2 2
Tty = (6378.137) (6356.523)

. . k2
(b) Traces in z = k are the circles

6356.523)2

=
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(c) To identify the traces in y = max we substitute y = max into the equation of the ellipsoid:

z? n (ma)? n 22 _1
(6378.137)2 ' (6378.137)2 ' (6356.523)%

(14+m?)z? n 22 _1
(6378.137)2 ' (6356.523)

z? n 22 _1
(6378.137)2/(1 + m2) ' (6356.523)2

As expected, this is a family of ellipses.

49. If (a, b, c) satisfies z = y> — 2%, thenc =0? —a®. Ltz =a+t,y=b+t, 2z =c+2(b—a)t,

Lyx=a+t,y=>b—t z=c—2(b+ a)t. Substitute the parametric equations of L; into the equation

2

of the hyperbolic paraboloid in order to find the points of intersection: z = y*> — 2® =

c+2b—at=0b+t)?2—(a+t)>=b*—-a>+2(b—a)t = c=>*—a’ Asthisis true for all values of ¢,

2

Ly lies on z = y* — 2°. Performing similar operations with Lo gives: z = y> —2® =

c—2b+at=0b-t)>—(a+t)>’=0"—a®>—-2(b+a)t = c=0>b>—a’ This tells us that all of L also lies on

2=y — 2>
51. The curve of intersection looks like a bent ellipse. The projection
of this curve onto the zy-plane is the set of points (z, y, 0) which
N \“‘:“ .
221 *§3§§§§§t§ satisfy 22 + 2 =1—9%2 & 224+2%%=1 <
0 y°
R ::“ N z? + W = 1. This is an equation of an ellipse.
-1 N e 1/4/2
SIRRSSSS
y 0 “:3:““ Ox
12 Review
CONCEPT CHECK

1. A scalar is a real number, while a vector is a quantity that has both a real-valued magnitude and a direction.

2. To add two vectors geometrically, we can use either the Triangle Law or the Parallelogram Law, as illustrated in Figures 3

and 4 in Section 12.2. Algebraically, we add the corresponding components of the vectors.

3. For ¢ > 0, ca is a vector with the same direction as a and length ¢ times the length of a. If ¢ < 0, ca points in the opposite
direction as a and has length |c| times the length of a. (See Figures 7 and 15 in Section 12.2.) Algebraically, to find ca we

multiply each component of a by c.
4. See (1) in Section 12.2.

5. See Theorem 12.3.3 and Definition 12.3.1.
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. The dot product can be used to find the angle between two vectors and the scalar projection of one vector onto another. In
particular, the dot product can determine if two vectors are orthogonal. Also, the dot product can be used to determine the

work done moving an object given the force and displacement vectors.
. See the boxed equations as well as Figures 4 and 5 and the accompanying discussion on page 828 [ET 804].
. See Theorem 12.4.9 and the preceding discussion; use either (4) or (7) in Section 12.4.

. The cross product can be used to create a vector orthogonal to two given vectors as well as to determine if two vectors are
parallel. The cross product can also be used to find the area of a parallelogram determined by two vectors. In addition, the
cross product can be used to determine torque if the force and position vectors are known.

. (a) The area of the parallelogram determined by a and b is the length of the cross product: |a x b].

(b) The volume of the parallelepiped determined by a, b, and ¢ is the magnitude of their scalar triple product: |a - (b x ¢)|.

. If an equation of the plane is known, it can be written as ax + by + cz 4+ d = 0. A normal vector, which is perpendicular to the
plane, is (a, b, ¢) (or any scalar multiple of (a, b, c)). If an equation is not known, we can use points on the plane to find two

non-parallel vectors which lie in the plane. The cross product of these vectors is a vector perpendicular to the plane.

. The angle between two intersecting planes is defined as the acute angle between their normal vectors. We can find this angle

using Corollary 12.3.6.
. See (1), (2), and (3) in Section 12.5.
. See (5), (6), and (7) in Section 12.5.

. (a) Two (nonzero) vectors are parallel if and only if one is a scalar multiple of the other. In addition, two nonzero vectors are
parallel if and only if their cross product is O.
(b) Two vectors are perpendicular if and only if their dot product is 0.

(c¢) Two planes are parallel if and only if their normal vectors are parallel.

— —
. (a) Determine the vectors PQ = (a1, az2,as) and PR = (b1, be, b3). If there is a scalar ¢ such that

(a1, az2,a3) =t (b1, ba, b3), then the vectors are parallel and the points must all lie on the same line.

—_ — —_ —
Alternatively, if PQ x PR = 0, then PQ and PR are parallel, so P, @, and R are collinear.

Thirdly, an algebraic method is to determine an equation of the line joining two of the points, and then check whether or

not the third point satisfies this equation.

— — —

(b) Find the vectors PQQ = a, PR = b, PS = c. a X b is normal to the plane formed by P, ) and R, and so S lies on this
plane if a X b and c are orthogonal, that is, if (a X b) - ¢ = 0. (Or use the reasoning in Example 5 in Section 12.4.)
Alternatively, find an equation for the plane determined by three of the points and check whether or not the fourth point

satisfies this equation.
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0O CHAPTER12 VECTORS AND THE GEOMETRY OF SPACE

(a) See Exercise 12.4.45.
(b) See Example 8 in Section 12.5.

(c) See Example 10 in Section 12.5.

18. The traces of a surface are the curves of intersection of the surface with planes parallel to the coordinate planes. We can find
the trace in the plane x = k (parallel to the yz-plane) by setting + = k and determining the curve represented by the resulting
equation. Traces in the planes y = k (parallel to the zz-plane) and z = k (parallel to the xy-plane) are found similarly.

19. See Table 1 in Section 12.6.

TRUE-FALSE QuIZ

1. This is false, as the dot product of two vectors is a scalar, not a vector.

3. False. For example, ifu = iand v = jthen |u-v| = |0 = 0but |u||v| = 1-1 = 1. In fact, by Theorem 12.3.3,
lu-v|=|lul|v| cos&}.

5. True, by Theorem 12.3.2, property 2.

7. True. If 0 is the angle between u and v, then by Theorem 12.4.9, |u X v| = |u||v|sinf = |v||u|sinf = |v x u].
(Or, by Theorem 12.4.11, jlu X v| = |-v x u| = |-1||v X u| = |v X u].)

9. Theorem 12.4.11, property 2 tells us that this is true.

11. This is true by Theorem 12.4.11, property 5.

13. This is true because u X v is orthogonal to u (see Theorem 12.4.8), and the dot product of two orthogonal vectors is 0.

15. This is false. A normal vector to the plane is n = (6, —2,4). Because (3, —1,2) = %n, the vector is parallel to n and hence
perpendicular to the plane.

17. This is false. In R?, 22 + y? = 1 represents a circle, but {(m, y,2) | 2?4+ 9% = 1} represents a three-dimensional surface,
namely, a circular cylinder with axis the z-axis.

19. False. For example,i-j = 0buti 0and j # O.

21. This is true. If u and v are both nonzero, then by (7) in Section 12.3, u - v = 0 implies that u and v are orthogonal. But

u X v = 0 implies that u and v are parallel (see Corollary 12.4.10). Two nonzero vectors can’t be both parallel and

orthogonal, so at least one of u, v must be 0.
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EXERCISES

1.

13.

. (2) The radius of the sphere is the distance between the points (—1,2, 1) and (6, —2, 3), namely,

V16— (=1D]2 + (=2 — 2)2 + (3 — 1)2 = v/69. By the formula for an equation of a sphere (see page 813 [ET 789]),
an equation of the sphere with center (—1,2, 1) and radius v/69 is (z + 1) + (y — 2)° 4 (z — 1)® = 69.

(b) The intersection of this sphere with the yz-plane is the set of points on the sphere whose x-coordinate is 0. Putting x = 0
into the equation, we have (y — 2) + (2 — 1)® = 68,z = 0 which represents a circle in the yz-plane with center (0,2, 1)
and radius /68.

(c) Completing squares gives (z — 4)*> + (y + 1) + (2 + 3)> = —1 4+ 16 + 1 + 9 = 25. Thus the sphere is centered at
(4, —1,—3) and has radius 5.

[

.u-v=|u||v|cos45° = (2)(3)% =3v2. |uxv|=|u||v|sin45° = (2)(3)4 =3V2.

By the right-hand rule, u x v is directed out of the page.

. For the two vectors to be orthogonal, we need (3,2, z) - (2z,4,2) =0 < (3)(2z)+ (2)(4) + (z)(z) =0 <&

P?+6r+8=0 & (z+2)(z+4)=0 & z=-2o0rzr=—4

L@ uxv) - w=u-(vxw)=2

Gu-(wxv)=u-[-(vxw)]=—-u-(vxw)=-2
@v-(uxw)=(vxu)-w=—(uxv) w=-2

duxv)-v=u-(vxv)=u-0=0

. For simplicity, consider a unit cube positioned with its back left corner at the origin. Vector representations of the diagonals

joining the points (0,0, 0) to (1,1,1) and (1,0,0) to (0,1,1) are (1,1, 1) and (—1, 1, 1). Let 6 be the angle between these

two vectors.  (1,1,1) - (—=1,1,1) = —-1+14+1=1=[(1,1,1)| |(-1,1,1)

cosf) =3cosf = cosb = % =
0 =cos™! (%) ~ 71°.
— —
AB =(1,0,-1), AC = (0,4,3), so
—_— —

(a) a vector perpendicular to the plane is AB x AC' = (0+4,—(340),4 —0) = (4, —3,4).

— —
(b) }|4B x AC| = }VIG T+ 16 = 4.
Let F be the magnitude of the force directed 20° away from the direction of shore, and let F: be the magnitude of the other

force. Separating these forces into components parallel to the direction of the resultant force and perpendicular to it gives

sin 30°
sin 20°

into (1) gives F»(sin 30° cot 20° + cos30°) = 255 = F, &~ 114 N. Substituting this into (2) gives F1 ~ 166 N.

Fy cos20° + Fycos30° =255 (1), and F} sin20° — Fsin30°=0 = =5

(2). Substituting (2)
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15.

17.

19.

21,

23.

25.

27.

29.

0O CHAPTER12 VECTORS AND THE GEOMETRY OF SPACE

The line has direction v = (—3, 2, 3). Letting Py = (4, —1, 2), parametric equations are

r=4-3t, y=—-1+2t, z=2+ 3t.

A direction vector for the line is a normal vector for the plane, n = (2, —1, 5), and parametric equations for the line are

r=-2+42t, y=2—t z=4+ 5t

Here the vectorsa = (4 — 3,0 — (—=1),2—-1) = (1,1,1)and b = (6 — 3,3 — (—1),1 — 1) = (3,4, 0) lie in the plane,
son =a x b = (—4,3,1) is a normal vector to the plane and an equation of the plane is

—4(z—-3)+3y—(-1)+1(z—1) =00r -4z + 3y + z = —14.

Substitution of the parametric equations into the equation of the plane gives 2z —y + 2 =2(2—t) — (1 +3t) + 4t =2 =
—t+3=2 = t=1 Whent = 1, the parametric equations givex =2 — 1 =1,y = 1 + 3 = 4 and z = 4. Therefore,

the point of intersection is (1, 4,4).

Since the direction vectors (2, 3,4) and (6, —1, 2) aren’t parallel, neither are the lines. For the lines to intersect, the three
equations 1 + 2t = —1 4 6s,2 4 3t = 3 — s, 3 + 4t = —5 + 25 must be satisfied simultaneously. Solving the first two
equations gives t = %, s = % and checking we see these values don’t satisfy the third equation. Thus the lines aren’t parallel

and they don’t intersect, so they must be skew.

n; = (1,0,—1) and nz = (0, 1, 2). Setting z = 0, it is easy to see that (1, 3,0) is a point on the line of intersection of
x — z = 1and y + 2z = 3. The direction of this line is vi = n; x na = (1, —2,1). A second vector parallel to the desired
plane is vo = (1,1, —2), since it is perpendicular to « + y — 2z = 1. Therefore, the normal of the plane in question is
n=vy xvy={4—-1,1+21+2) =3(1,1,1). Taking (zo, yo, 20) = (1,3, 0), the equation we are looking for is

(z-1)+@y—-3)+2=0 & z+y+z=4

By Exercise 12.5.75, D = |2 (24)] = ﬁ

The equation = = z represents a plane perpendicular to 31. The equation 2 = 3 + 422 represents a (right elliptical)
the xz-plane and intersecting the xz-plane in the line cone with vertex at the origin and axis the x-axis.
r=2z19y=0.
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2
33. An equivalent equation is —z? + yz —22=1,a 35. Completing the square in y gives
2
hyperboloid of two sheets with axis the y-axis. For 4 +4(y—1)2 + 22 =dora® + (y—1)% + ZZ =1,
ly| > 2, traces parallel to the zz-plane are circles. an ellipsoid centered at (0, 1, 0).

z

X

0,1,2)

22 4P 22 2 22
M. 42+ =16 & T + 6= 1. The equation of the ellipsoid is T + 16 + == 1, since the horizontal trace in the
plane z = 0 must be the original ellipse. The traces of the ellipsoid in the yz-plane must be circles since the surface is obtained

2 2 2
by rotation about the z-axis. Therefore, ¢> = 16 and the equation of the ellipsoid is L + LA

TR T T A

4z + 1% + 2% = 16.
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[J PROBLEMS PLUS

1. Since three-dimensional situations are often difficult to visualize and work with, let

us first try to find an analogous problem in two dimensions. The analogue of a cube
is a square and the analogue of a sphere is a circle. Thus a similar problem in two y

dimensions is the following: if five circles with the same radius r are contained in a

square of side 1 m so that the circles touch each other and four of the circles touch

two sides of the square, find 7.

The diagonal of the square is /2. The diagonal is also 4r + 2. But x is the diagonal of a smaller square of side 7. Therefore

_ — _ _ _ _ 2
r=v2r = \/5—4r+2m—4r+2\/§r_(4+2\/§)r = 7‘_4+22\/§.

Let’s use these ideas to solve the original three-dimensional problem. The diagonal of the cube is /12 + 12 + 12 = /3.

The diagonal of the cube is also 4r 4 2z where z is the diagonal of a smaller cube with edge r. Therefore

r=Vri+r2+r2=3r = \/§=4r+2m=4r+2\/§r=(4+2\/§)T.Thusr:4+\/2§\/§:2\/§2_3.

The radius of each ball is (v/3 — 3)m.

3. (a) We find the line of intersection L as in Example 12.5.7(b). Observe that the point (—1, ¢, ¢) lies on both planes. Now since

L lies in both planes, it is perpendicular to both of the normal vectors n; and ns, and thus parallel to their cross product

i jk
nxny=|c 1 1|= <2c, 241, - 1>. So symmetric equations of L can be written as
1 —c ¢

z+1 y—c z-—c
-2 2—-1 2+1

, provided that ¢ # 0, £1.

If ¢ = 0, then the two planes are given by y + z = 0 and x = —1, so symmetric equations of L are x = —1,y = —z. If
¢ = —1, then the two planes are given by —z + y + 2 = —1 and z 4+ y + 2z = —1, and they intersect in the line z = 0,
y = —z — 1. If ¢ = 1, then the two planes are given by x + y + z = 1 and z — y + z = 1, and they intersect in the line

y=0z=1-=z2

. . . — o) (=2
(b) If we set z = ¢ in the symmetric equations and solve for « and y separately, we get x + 1 = %,
_ 2 _ _ 2 _ 2 _
y—c= %jll) = = QCt;—J(rcl 1) , Y= (c c214)rt1+ 2¢. Eliminating ¢ from these equations, we

have 2? 4+ y? =t + 1. So the curve traced out by L in the plane z = ¢ is a circle with center at (0,0, ¢) and

radius /2 + 1.
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(c) The area of a horizontal cross-section of the solid is A(z) = 7(2% +1),s0 V = fol A(z)dz =r[32° + z]é =1

5. Vs =proju, va = 2y :iv so|v\:—\v|:E
. V3 Projv, v \v1|2 1 22 1 3 22 1 5’
V4 =prOjuyvs = Y2 Y3y, = V2 252VIV* > (v V)V*5—2V = |v\*—2|v|* 5*
4 =Projvo Vs = |v2|2 2 = |v2|2 2= 50 g2 (V17 V2) V2 = opmag V2 =532 V2l =53
2
Vs =projusva = 21y _EViggv 3v) =2 (vi-va) v __5 =
5 =Projvzva = val? 3= (g)z 92 "1 T 91 g2 \V1V2) VL = 5y e Yl

3 54 55 5”72 n—2
[vs] 5132 |vi| = CERETR Similarly, |ve| = 3535 |vz| = CERETE and in general, |v,| = T g 3(3)" .
Thus
S val=vil+lve[+ 30 3(3)" T =243+ X 3(3)"
n=1 n=3 n=1
o ) 5
=5+ 2(8)" =5+ N 2 [sum of a geometric series] =5+ 15 =20
n=1 )

7. (a) When 6 = 6, the block is not moving, so the sum of the forces on the block
must be 0, thus N + F + W = 0. This relationship is illustrated 6\ N
geometrically in the figure. Since the vectors form a right triangle, we have w
F| _ pn E
tan(fs) = = = —=— = pu,.

(b) We place the block at the origin and sketch the force vectors acting on the block, including the additional horizontal force
H, with initial points at the origin. We then rotate this system so that F' lies along the positive x-axis and the inclined plane

is parallel to the z-axis. (See the following figure.)

B
[ 1
)

|F| is maximal, so |F| = p n for @ > 6. Then the vectors, in terms of components parallel and perpendicular to the

inclined plane, are

W = (—mgsinf)i+ (—mgcosf)j H = (hmin c086) i+ (—hmin sin ) j
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Equating components, we have

usn —mgsind + hmincos@ =0 = hmincosf + p.n = mgsin 6 a

n—mgcosl — hminsind =0 = hminsinf +mgcosd =n 2)

(c) Since (2) is solved for n, we substitute into (1):

hmin €080 + f1;(Amin sin @ + mgcos ) =mgsinf =

Pmin €08 0 + Rminft, sin @ = mgsinf — mgu, cosfd =

b —m sinf — u, cos@ —m tan 6 — p
min = I\ Cos 0 + u sind ) I\TF 1y tan 6
tan 0 — tan 6,

From part (a) we know p1, = tan 6, so this becomes Amin = mg (m
S

) and using a trigonometric identity,

this is mg tan(6 — ;) as desired.

Note for 6 = 65, hmin = mgtan 0 = 0, which makes sense since the block is at rest for 05, thus no additional force H
is necessary to prevent it from moving. As 6 increases, the factor tan(f — 6s), and hence the value of hmin, increases
slowly for small values of # — 6 but much more rapidly as 6 — 6, becomes significant. This seems reasonable, as the
steeper the inclined plane, the less the horizontal components of the various forces affect the movement of the block, so we
would need a much larger magnitude of horizontal force to keep the block motionless. If we allow # — 90°, corresponding
to the inclined plane being placed vertically, the value of hmin is quite large; this is to be expected, as it takes a great
amount of horizontal force to keep an object from moving vertically. In fact, without friction (so s = 0), we would have

0 — 90° = hmin — 00, and it would be impossible to keep the block from slipping.
(d) Since hmax is the largest value of h that keeps the block from slipping, the force of friction is keeping the block from
moving up the inclined plane; thus, F is directed down the plane. Our system of forces is similar to that in part (b), then,

except that we have F = —(u n) i. (Note that |F| is again maximal.) Following our procedure in parts (b) and (c), we

equate components:
—p,n —mgsing + hypaxcosd =0 = Amaxcosf — p,n =mgsinfd
n—mgcos — hmax sinf =0 =  hmaxsind +mgcos =n
Then substituting,
hmax €08 0 — i (hmax sin @ + mgcos ) = mgsinf =

Rmax €08 0 — Amaxt, sin@ = mgsin @ + mgu, cos =
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e —m sinf + u, cos@ —m tan 6 +
max = 1Y cosf — p,sinf ) g 1—pg tand

. tan 6 + tan 05
o 1 —tanfstand

) = mgtan(f + 0s)

We would expect hmax to increase as 6 increases, with similar behavior as we established for himin, but with hmax values
always larger than hmin. We can see that this is the case if we graph hmax as a function of 0, as the curve is the graph of
hmin translated 20 to the left, so the equation does seem reasonable. Notice that the equation predicts Amax — 00 as

0 — (90° — 05). In fact, as hmax increases, the normal force increases as well. When (90° — 6,) < 6 < 90°, the
horizontal force is completely counteracted by the sum of the normal and frictional forces, so no part of the horizontal

force contributes to moving the block up the plane no matter how large its magnitude.
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13.1  Vector Functions and Space Curves

1. The component functions v/4 — ¢2, ¢3¢, and In(t + 1) are all defined when4 —t* >0 = —2<t<2and

t+1>0 = t> —1,sothedomainofris(—1,2].

t2 1 1 1 1
3.lime_3t:eozl,lim,2 =lim —— = —— = s =—5=1
t—0 t—0gin“t t—0 gin“t . sin“t y sint 12
im ikl
2 =0 12 b -

and }irr(l) cos2t = cos0 = 1. Thus

. L . [ 21T -
lim (e 314 — 5—Jj+cos2tk :[hmeﬂo’t}l—l— lim — J+|:11H1C082t:|k:1+‘]+k.
t—0 sin“t t— t—0 sin“t t—0
o 1+2 (/) +1 041 . T N I SR S B
5 Jtim T = lim 1/)—1 0-1 =L lim tan™"t =3, lim ———— = lim & — -7 =0—0=0.Thus
) 1+t L, 1= .
tligolo <m,tan t,T —<*1,§7O>
7. The corresponding parametric equations for this curve are x = sint, y = t. y
We can make a table of values, or we can eliminate the parameter: t =y = <
x = siny, with y € R. By comparing different values of ¢, we find the direction in .
which ¢ increases as indicated in the graph.

9. The corresponding parametric equations are x = ¢, y = 2 — ¢, z = 2t, which are
parametric equations of a line through the point (0, 2, 0) and with direction vector

(1,-1,2).

> (0,2,0)
X y
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N

11. The corresponding parametric equations are z = 1, y = cost, z = 2sint.
Eliminating the parameter in y and z gives y? + (z/2)* = cos?t +sin?t = 1
ory? + 2% /4 = 1. Since x = 1, the curve is an ellipse centered at (1,0, 0) in

the plane x = 1. x

13. The parametric equations are = = 2, y = t*, z = 5. These are positive z
for t # 0 and 0 when ¢ = 0. So the curve lies entirely in the first octant.
The projection of the graph onto the zy-plane is y = %, y > 0, a half parabola.

Onto the zz-plane z = 3, z > 0, a half cubic, and the yz-plane, y* = 2.

15. The projection of the curve onto the zy-plane is given by r(t) = (¢,sint,0) [we use O for the z-component] whose graph
is the curve y = sin x, z = 0. Similarly, the projection onto the zz-plane is r(t) = (¢, 0, 2 cost), whose graph is the cosine
wave z = 2 cos z, y = 0, and the projection onto the yz-plane is r(t) = (0, sint, 2 cos t) whose graph is the ellipse

y2+%22:1,x20.

-2

zy-plane zz-plane yz-plane

From the projection onto the yz-plane we see that the curve lies on an elliptical
cylinder with axis the z-axis. The other two projections show that the curve
oscillates both vertically and horizontally as we move in the z-direction,

suggesting that the curve is an elliptical helix that spirals along the cylinder.

17. Taking ro = (2,0,0) and r1 = (6,2, —2), we have from Equation 12.5.4
r(t) = (1—t)ro+try = (1—£)(2,0,0)+£(6,2,—2),0 <t < 1 or r(t) = (2+4¢,2t,—2t),0 < t < 1.

Parametric equationsare t =2+ 4¢t, y =2t, z = —2¢, 0 <t < 1.
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19.

21.

23.

25.

27.

29.

3.

SECTION 13.1 VECTOR FUNCTIONS AND SPACE CURVES [0 153

r(t)=(1—t)ro+tr; = (1—1t)(0,—1,1) +¢(3,3,3),0<t <1 orr(t) = (3t,—1+35t,1—-3t),0<t < L.

Parametric equations are x = %t, y=—-1+ %t, z=1-— %t, 0<t<l1.

x=tcost, y=t, z=tsint, t > 0. Atany point (x,v,z) on the curve, 2> + 2> = t> cos* t + t*sin® t = t* = 3 so the

curve lies on the circular cone 2> + z? = y? with axis the y-axis. Also notice that y > 0; the graph is II.

x=t, y=1/(1+1t*), z=1t> Atany point on the curve we have z = 2, so the curve lies on a parabolic cylinder parallel
to the y-axis. Notice that 0 < y < 1 and z > 0. Also the curve passes through (0,1,0) whent =0and y — 0, z — oo as

t — +00, so the graph must be V.

z =cos8, y=sin8t, z=2e"% t>0. 2%+ y? = cos®8t+sin? 8t = 1, so the curve lies on a circular cylinder with
axis the z-axis. A point (x,y, z) on the curve lies directly above the point (x, y, 0), which moves counterclockwise around the
unit circle in the zy-plane as ¢ increases. The curve starts at (1,0, 1), when ¢t = 0, and z — oo (at an increasing rate) as

t — o0, so the graph is IV.

Ifx =tcost, y=tsint, 2 :t,thenacQ—i—y2 =t2cos?t +t?sin?t = t? = 22, g

so the curve lies on the cone 2% = 2 + y2. Since z = t, the curve is a spiral on

this cone.

Parametric equations for the curve are z = ¢, y = 0, z = 2t — t2. Substituting into the equation of the paraboloid
gives 2t —t> =t = 2t=2t> = t=0,1. Sincer(0) = 0and r(1) = i+ k, the points of intersection

are (0,0,0) and (1,0,1).

r(t) = (cost sin2t,sint sin 2t, cos 2t).
We include both a regular plot and a plot

showing a tube of radius 0.08 around the

curve.

-1
-1

0 1
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33. r(t) = (¢, tsint, tcost) 35. r(t) = (cos 2t, cos 3t, cos 4t)
1+ 2
10
z 07
z 0
RO ZAN
-10 £—-10 » 5 " 0 -1
10 0 -0 10 Y !
X

37. x = (14 cos16t) cost, y = (1 + cos 16t) sint, z = 1 + cos 16t. At any

point on the graph,
2?4+ 9% = (14 cos 16t)* cos® t + (1 4 cos 16t)*sin® ¢
= (1 4 cos 16t)? = 22, so the graph lies on the cone x? 4 3> = 22,

From the graph at left, we see that this curve looks like the projection of a

leaved two-dimensional curve onto a cone.
39. Ift = —1,thenz =1, y =4, z =0, so the curve passes through the point (1,4,0). Ift = 3, thenx =9, y = —8, z = 28,
so the curve passes through the point (9, —8, 28). For the point (4, 7, —6) to be on the curve, werequirey =1 -3t =7 =

t = —2.Butthen z = 1 4+ (—2)® = —7 # —6, 50 (4, 7, —6) is not on the curve.

41, Both equations are solved for z, so we can substitute to eliminate z: /22 +y2 =1+y = 2+ =14+2y+¢y> =
=142y = y= %(xz — 1). We can form parametric equations for the curve C' of intersection by choosing a
parameter # = ¢, theny = +(t* — 1) and z = 1 +y = 1+ 2(t* — 1) = 1(¢* + 1). Thus a vector function representing C
isr(t)=ti+ i@ -1j+3¢+ Dk

43, The projection of the curve C of intersection onto the zy-plane is the circle 2 4 y* = 1, z = 0, so we can write x = cost,

y =sint, 0 <t < 2r. Since C also lies on the surface z = 22 — 3%, we have z = 2% — y% = cos? ¢t — sin? ¢ or cos 2t.

Thus parametric equations for C' are © = cost, y = sint, z = cos 2t, 0 < ¢t < 27, and the corresponding vector function

isr(t) =costi+sintj+ cos2tk,0 <t < 2m.

The projection of the curve C' of intersection onto the
xy-plane is the circle 2° + y* = 4, z = 0. Then we can write
x =2cost, y=2sint, 0 <t < 2. Since C also lies on
the surface z = 2, we have z = 22 = (2cost)? = 4 cos®¢.

Then parametric equations for C' are z = 2 cost, y = 2sint,

z=4cos?t, 0 <t <2m.
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47. For the particles to collide, we require r1(¢) = ra(t) < <t2, Tt —12, t2> = (4t -3, 2,5t — 6>. Equating components
gives t? = 4t — 3, 7t — 12 = t?, and t* = 5t — 6. From the first equation, t* —4t +3 =0 < (t—3)(t—1)=0sot=1
ort = 3. t = 1 does not satisfy the other two equations, but ¢ = 3 does. The particles collide when ¢ = 3, at the

point (9,9, 9).

49. Let u(t) = (u1(t), uz2(t), us(t)) and v(t) = (v1(¢),v2(t), v3(t)). In each part of this problem the basic procedure is to use
Equation 1 and then analyze the individual component functions using the limit properties we have already developed for

real-valued functions.

(a) }En u(t) + limv(t) = <lim w1 (t), }1

t—a t—a —a

m uz(t), thlltll ug (t)> + <lim v1(t), tlim va(t), }gl(ll v3 (t)> and the limits of these

t—a —a
component functions must each exist since the vector functions both possess limits as ¢ — a. Then adding the two vectors
and using the addition property of limits for real-valued functions, we have that
}im u(t) + gim v(t) = <tlirn ui(t) + gim v1(t), gim ua(t) + tlim va(t), }im uz(t) + tlim U3 (t)>
= (i fua (1) + vr (0)], Fim i (6) + v2(0)], Jim [us (1) + v ()] )
= 7}im (u1(t) +vi(t), ua(t) + va(t), us(t) + vs(t)) [using (1) backward]

= lim [u(t) + V()

(b) }im cu(t) = tlim (cur(t), cua(t), cus(t)) = <2im cu(t), tlim cuz(t), tlim cus (t)>
= {elimu®.e fimus (e fimus(t) = e (fimw @) im wa0), im )

= Ctlgl}z (u1(t), uz2(t), us(t)) = ctlglll1 u(t)

(©) lim u(t) - lim v(t) = <lim wi (1), lim uz(2), lim us(t)> : <lim o1 (t), lim vs (), lim v (t)>

= [t 0] [t s @] + [t wa(0)] [ 0] + [fim a0 fmy (0]
= }E% up (t)v1(t) + }EI}Z ua(t)va(t) + tlgr(ll us(t)vs(t)

= lim i (60 (8) + ua(B)ea() + us(1)us (1)) = lim [u(r) - (1)
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(@) Jim () Jim v(2) = ( im s (6) Jom o), Jim s (1))l 01 (0),Jm (1), Jm s 1))
= ([t a0 [fim o] - [im (0] fimeat0)]
[t @] [t er 0] = [fimy o 0] [fim 9]

[t @] [t e20] = [fim 0] [fm 0]

= (lim [us(t)eat) — ua(t)va(®)] im fus(t)or (8) = wr (v (D)
lim fus (1) (1) — wa(t)or (1))

= lim (ua ()3 (t) — ua(t)va(t), us (8) v1(t) — ua(t)vs(t), ua (B)v2(t) — uz(t)vr(t)

= lim [u(¢) x v(?)]

t—a

51. Letr(t) = (f (t),g(t),h(¢t)) and b = (b1, bz, bs). If lim r(t) = b, then lim r(t) exists, so by (1),

t—a t—a

b = lim r(t) = <lim f(@), }im g(t), }im h(t)>. By the definition of equal vectors we have }im f(t) = b, tlim g(t) = b2

t—a t—a

and }im h(t) = bs. But these are limits of real-valued functions, so by the definition of limits, for every e > 0 there exists
01> 0,02 > 0,3 > 0sothatif 0 < |t —a| < d1 then |f(t) — b1| < &/3,if 0 < |t — a| < d2 then |g(t) — b2| < €/3, and
if 0 < |t — a| < 03 then |h(t) — bs3| < &/3. Letting § = minimum of {41, d2, ds}, then if 0 < |[¢ — a| < & we have

[F(t) — bu| + [g(t) — ba| + |A(t) — bs| < £/3 +¢/3 +¢/3 = e. But

[r(t) — bl = [(£(t) — b1, g(t) — b2, h(t) — bs)| = \/(f(t) — 1) + (g(t) — b2)? + (A(t) — bs)?
< V@) = 012+ V/[g(8) — 2] + /[R(t) — bs]2 = | f(t) = ba| + |g(t) — ba| + |h(t) — bs|

Thus for every ¢ > 0 there exists § > 0 such that if 0 < |t — a| < J then
[r(t) —b| < |f(t) — bi| + |g(t) — ba| + |h(t) — bs| < e. Conversely, suppose for every £ > 0, there exists § > 0 such

thatif 0 < |t —a| < dthen |r(t) —b| <e < [(f(t) —b1,9(t) — b2, h(t) —b3)| <e <

VIF@) = b2+ [g(t) — b2 + [h(t) —b3]2 <e < [f(t) —b1]® + [g(t) — b2]® + [h(t) — bs]® < . But each term
on the left side of the last inequality is positive, so if 0 < |t — a| < &, then [f(t) — b1]* < €2, [g(t) — b2]* < &% and
[A(t) — b3]? < &? or, taking the square root of both sides in each of the above, | f(t) — b1| < &, |g(t) — ba| < € and

|h(t) — b3| < e. And by definition of limits of real-valued functions we have lim f(t) = b1, tlim g(t) = bz and

t—a

lim A(t) = bs. Butby (1), lim r(¢) = ( lim f(¢), lim g(¢), lim A(t) ), so lim r(t) = (b1, b2,b3) = b.
t t t t t

t—a
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13.2 Derivatives and Integrals of Vector Functions

1. (a) 4 R
r(4.5) r4.5) —r4)
1T 0o
r(4.2)
r(4.2) — r(4)
P
r(4)
0 Il X
r(4.5) —r(4)

(b) 05 = 2[r(4.5) — r(4)], so we draw a vector in the same

direction but with twice the length of the vector r(4.5) — r(4).
r(4.2) —r(4)
0.2
direction but with 5 times the length of the vector r(4.2) — r(4).

= 5[r(4.2) — r(4)], so we draw a vector in the same

r(4+4+h) —r(4)
h

. T4) = r(4)

.. YAy s
(c) By Definition 1, r'(4) = }lbli'r%) ()]

(d) T(4) is a unit vector in the same direction as r’(4), that is, parallel to the

tangent line to the curve at r(4) with length 1.

r(4.2) —r4)
0.2

r4.5) —r4)

0.5

3. Since (z +2)2 =t =y—1 = (a), (©) 7

y=(z+2)%>+1,thecurveisa

parabola. =32

r'(—1) e
o] x

5.z =sint, y = 2costso (@), (c) ? <ﬁ \5)

2?4 (y/2)? = 1 and the curve is s

an ellipse. X rl(%)

(b) r'(t) = costi— 2sintj,

#(5) =1 Ve
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(b) r'(t) = 2e* i+ e,
r'(0) =2i+]

7. Since z = % = (e")? = 42, the (@), (c)
curve is part of a parabola. Note

that here x > 0,y > 0.

9. r'(t) = <% [tsint], % (], % [t cos 2t]> = (tcost +sint, 2¢,t(—sin 2t) - 2 + cos 2t)
= (tcost + sint, 2t, cos 2t — 2t sin 2t)

M. r(t) =ti+j+2vtk = r’(t):1i+0j+2(§t—1/2)k:i+ik

Vi

o t2~_- ’ o 2. 3
1B.r(t)=e i—j+mn(1+3t)k = r'(t)=2te 1+1+3t

15. r'(t) = 0 + b + 2t ¢ = b + 2¢ ¢ by Formulas 1 and 3 of Theorem 3.

17. ¢(t) = (—te " + e, 2/(1+1%),2¢") = r'(0) =(1,2,2). So [r'(0)| = vVIZ+22+22 = /9 = 3 and

T(0) = =3(1,2,2)=(3,2,2).

19. r'(t) = —sinti+3j+4cos2tk = r'(0) = 3j+4k. Thus
r'(0) 1 . . .
= V0 - Ve E (3j+4k) =1(Bj+4k)=2j+ 1k

2. r(t) = (t,t*,£%) = 1'(t) =(1,2t,3t*). Thenr'(1) = (1,2,3) and |r'(1)| = V1% + 22 + 3% = /14, s0

T(0)

T(1) = r(l) _ L (1,2,3) = <L 2 i> r’(t) = (0,2, 6t), so

[e/(1)] 14 14’ V14’ V14
i
. B ) 2t 3t% | 1367 12t
r{t) xr’(t) =1 2t 3t°| = i— j+
2 6t 0 6t 0 2
0 2 6t

= (12t> — 6t*)i— (6t — 0)j + (2 — 0) k = (6t°, —6t,2)

23. The vector equation for the curve is r(t) = (14 2/, t* —t,¢* +t), sor'(t) = (1/v/¢,3t> — 1,3t> + 1). The point
(3,0,2) corresponds to ¢ = 1, so the tangent vector there is r'(1) = (1, 2,4). Thus, the tangent line goes through the point
(3,0,2) and is parallel to the vector (1,2, 4). Parametric equations are x = 3 + ¢,y = 2t, z = 2 + 4t.

25. The vector equation for the curve is r(t) = (e " cost,e "sint, e~ "), so

r'(t) = (e *(—sint) + (cost)(—e "), e " cost + (sint)(—e "), (—e 7))
= (—e '(cost +sint),e (cost —sint), —e")
The point (1,0, 1) corresponds to ¢ = 0, so the tangent vector there is
r'(0) = (—¢e(cos 0+ sin0), e®(cos 0 — sin 0), —”) = (—1,1, —1). Thus, the tangent line is parallel to the vector

(—1,1, —1) and parametric equationsare z = 1+ (- 1)t =1—t,y=04+1-t=t, z=1+ (-1}t =1—¢.
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27. First we parametrize the curve C' of intersection. The projection of C' onto the xy-plane is contained in the circle

2 + y2 = 25, z = 0, so we can write z = 5cost, y = 5sint. C also lies on the cylinder y2 +22=20,andz >0
near the point (3, 4, 2), so we can write z = /20 — y2 = /20 — 25sin? ¢. A vector equation then for C is

r(t) = <5cost,5sint, v/20 — 25 sin? t> = r'(t) :< 5sint,5cost, (20 — 25sin®t)~ 1/2(750sintcost)>.

The point (3, 4,2) corresponds to ¢ = cos™ " (£), so the tangent vector there is

(oo™ (3)) = (-5(2).5(3) (2025 (1)) (50 (2) ) = (43,6

The tangent line is parallel to this vector and passes through (3, 4, 2), so a vector equation for the line

—1/2

isr(t) = (3—4t)i+ (4+30)j + (2 — 6b)k.

2. r(t) = (t,e "2t — %) = r'(t)=(1,—e ", 2-2t). At(0,1,0),
t = 0and r'(0) = (1, —1, 2). Thus, parametric equations of the tangent

lincarex =t,y=1—t, z = 2t.

31. r(t) = (tcost,t,tsint) = r'(t) = (cost —tsint,1,tcost + sint).
At (—m, 7, 0),t =mandr'(7) = (—1,1, —). Thus, parametric equations

of the tangent lineare x = —7 — t,y =7 + ¢, 2 = —nt.

33. The angle of intersection of the two curves is the angle between the two tangent vectors to the curves at the point of

intersection. Since r’ () = (1, 2t, 3t2> andt = 0 at (0,0, 0), r;(0) = (1,0,0) is a tangent vector to r; at (0,0,0). Similarly,

ry(t) = (cost,2cos 2t,1) and since r2(0) = (0,0, 0), ry (0) = (1,2, 1) is a tangent vector to r» at (0,0, 0). If § is the angle

between these two tangent vectors, then cos § = ﬁ (1,0,0) - (1,2,1) = % and @ = cos™! (%) ~ 66°.

S22 ()25 4 (0] &

B[y (ti— 30K de = (5 vdr)i— (f7 ar)i+ (f7 3t°dt)
[5
14-0)i—2(16—-0)j+1(64—-0)k=2i—4j+32k
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3. fOW/Q(S sin®¢ costi+ 3sint cos®tj + 2sint costk)dt

= ( OW/QBSinzt costdt) i+ ( Oﬁ/23sint cosztdt)j+ (fOW/QQSint costdt)k

724 sin? 7P k=(1-0)i+ 0+ 1j+(1-0k=i+j+k

= [sin3 t] 3/2 i+ [— cos® t]
39. [(sec’ti+t(t* +1)*j+t°Intk)dt = ([sec’tdt)i+ ([t(t> +1)*dt) j+ ([t Intdt) k
=tanti+ 3(t*+1)*j+ (3t°Int — §*)k + C,
where C is a vector constant of integration. [For the z-component, integrate by parts with u = Int, dv = t* dt.]
M) =2ti+32j+ vtk = r(@t)=t*i+£5+ §t3/2 k + C, where C is a constant vector.
Buti+j=r(1) =i+j+3k+C. Thus C = —Zkandr(t) = i+ *j + (2672 - 2) k.

For Exercises 43—48, let u(t) = (u1(t), u2(t),us(t)) and v(t) = (v1(t), v2(¢),vs(t)). In each of these exercises, the procedure is to apply
Theorem 2 so that the corresponding properties of derivatives of real-valued functions can be used.

- % (ua(t) + vi(t), ua(t) 4 v2(t), us(t) + vs(t))

= (G @)+ 01 (0] 5 [0 + (0] 5 [15(0) +05(0)] )

d
43, pr [u(t) + v(t)]

= (un(t) + vi(t), ua(t) + va(t), us(t) + vs (1))
= (ui(t),uz (1), ua(t)) + (v1(t),va(t), v3(t)) = u'(t) + v'(¢)
45. — [u(t) x v(t)] = % (ua(t)va(t) — ua(t)va(t), us(t)v1(t) — ur(t)va(t), ua (t)va(t) — ua(t)v:(t))
= (ugus(t) + u2(t)vs(t) — uz(t)va(t) — us(t)va(t),
uz(t)vi(t) +us(t)vr (t) — un(t)vs(t) — ua(t)vs(t),
un (H)v2(t) + ua (B)va(t) — up(t)vr(t) — ua(t)vi(t))
= (up(t)vs(t) — us(t)vz (£) , us(t)vr(t) — ua(t)vs(t), ur(H)va(t) — ua(t)ve(t))
+ (ua(H)vs (t) — us(t)va(t), us(t)vr (¢) — ua (B)vs (1), ua ()va(t) — u2(t)vi(t))
=u'(t) x v(t) +u(t) x v'(¢)
Alternate solution: Let r(t) = u(t) x v(t). Then
r(t+h) —r(t) = [u(t+h) x v(t+ h)] — [u(t) x v(t)]
=[u(t+h) xv(t+h)] —u@®) x v(t)] + [ult+h) x v(t)] — [u(t + k) x v(t)]
=u(t+h) x [v(t+h) = v()] + [u(t +h) —ut)] x v(?)
(Be careful of the order of the cross product.) Dividing through by A and taking the limit as A — 0 we have

(o) = tim u(t + h) x [v}(lt +h)-v(t) i [u(t + h) —hu(t)] XV _ ) v (8) 4w ) x v(t)

by Exercise 13.1.49(a) and Definition 1.
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41. % [u(®) -v(®)] =ud'(t) - v(t) + u(t) - v'(¢¥) [by Formula 4 of Theorem 3]
= (cost, —sint, 1) - (t,cost,sint) + (sint,cost,t) - (1, —sint, cost)

=tcost —cost sint + sint + sint — cost sint + tcost

= 2tcost + 2sint — 2cost sint

49. By Formula 4 of Theorem 3, f'(t) = u'(t) - v(t) + u(t) - v/(t), and v/(t) = (1,2¢,3t*), so

F(2) =u'(2) v(2) +u(2) v(2) = (3,0,4) - (2,4,8) + (1,2, —1) - (1,4,12) =6+ 0+ 32+ 1 + 8 — 12 = 35.
51. i [r(t) x ©'(t)] = ¢'(t) x ©'(t) + r(t) x " (t) by Formula 5 of Theorem 3. But r'(¢) X r'(¢) = 0 (by Example 2 in

Section 12.4). Thus, % [r(t) x r'(t)] = r(t) x r"(¢).

d d 12 1 —1/2 ' 1 /
58, — ()] = o [r(@) - x(t)] 2= 3le(t) - x(@)] 77 [20(t) - ¥ (1)) = 0l (t)-r'(t)
55. Since u(t) = r(t) - [r'(t) x ¢’ (¢)],
u'(t) =r'(t) [r'(t) x x"(t)] +x(t) - (;it [x'(t) x r"(2)]
=0+4r()-[r"@) x2"#) +1'(t) x " (t)] [since r'(¢) L r'(t) x " (t)]
=r(t)-[r'(t) x 2" (¢)] [since v’ (t) x r'’(t) = 0]

13.3 Arc Length and Curvature

161

1. r(t) = (t,3cost,3sint) = r'(t) = (1,—3sint,3cost) =

"(t)] = /12 + (—3sint)2 + (3cost)? = /1 + 9(sin? t + cos2 ) = 1/10.

Then using Formula 3,WehaveL:ff5 |t/ ()| dt = f V10dt = \/_t] = 10+/10.

r(t)=V2tit+ejte 'k = r(t)=V2it+ej-ek =

Ir'(t)| = \/(\/5)2 + ()24 (—e )2 =12+ te = /(et+et)2=¢"+e " [sincee +e* > 0]

Then L = fo [t/ (t)| dt = fol(et +e f)dt = [ef - e*t]é —e—e .

5 r(t)=i+2j+t3k = r'(t)=2tj+3Pk = |r'(t)| = VA2 + 9t =t /4 + 92 [sincet > 0].

1
Then L = [ [v/(t)|dt = [} t VE+ 92 dt = 1 - %(4+9t2)3/2]0 = £ (13%2 —43/%) = L(13%/2 —8).

.r(t) = (7,8 ¢") = r'{t)=(2t,3%,4°) = [r'(t)| = \/(27:)2 + (3t2)2 4 (413)2 = /412 + 9t% + 1615, so
L= [7[Y'(t)|dt = [ VA + 9T + 1615 dt ~ 18.6833.
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9. r(t) = (sint,cost,tant) = r'(t) = (cost,—sint,sec’t)

|t'(t)] = y/cos?t + (—sint)? + (sec2 ¢)? = /1 +secttand L = f"/4 ()| dt = fw/4 V1 + sect t dt =~ 1.2780.

2

11. The projection of the curve C onto the zy-plane is the curve > = 2y or y = %x , z = 0. Then we can choose the parameter

x=t = y=3t° Since C also lies on the surface 3z = zy, we have z = 2zy = (¢)(5¢*) = +¢°. Then parametric
equations for C'are x = t,y = %tz, z= %tS and the corresponding vector equation is r(t) = <t 121 t3> The origin

corresponds to ¢ = 0 and the point (6, 18, 36) corresponds to t = 6, so

L= [J|r'@)]dt = [} |(1,t, 1¢2)] dt = 12442 4 (32)dt = [7\/1+12 + Letdt
= [0+ )2dt = [P(1+ 1) dt = [+ét3}§:6+36:42
1B.r(t)=2ti+(1-30)j+(B+4)k = 1r'(t)=2i—-3j+4kand L = |r'(t)] = VI + 9+ 16 = v/29. Then

fo v’ (u)] du = fo V29 du = +/29t. Therefore, t = \/_s and substituting for ¢ in the original equation, we

have r(¢(s)) = \/Lz—gsi—k (1 - \/iz—gs)j + (5 + \/Lz—gs) k.

15. Here r(t) = (3sint, 4t, 3 cost), so r'(t) = (3cost, 4, —3sint) and |r'(t)| = v/9cos? t + 16 + 9sin®t = /25 = 5.
The point (0, 0, 3) corresponds to ¢ = 0, so the arc length function beginning at (0, 0, 3) and measuring in the positive
direction is given by s( fo Ir' (u)| du = fo 5du="5t. s(t)=5 = b5t=5 = t=1,thus your location after

moving 5 units along the curve is (3sin1, 4,3 cos 1).

17. (a) r(t) = (t,3cost,3sint) = r'(t) = (1,—3sint,3cost) = |r'(t)] = v/1+9sin®t+ 9cos? t = /10.

_ @l : 1 3 3
Then T(¢) = o - Vo (1,—3sint,3cost) or <\/—1—0,—\/—1—0 sint, \/—l—ocost>.

T'(t) = - (0, —3cost, —3sint) = |T'(t)] = =/0+9cos?t + 9sin® ¢ = —E=. Thus
/ /
N(t) = T,(t) = 1/V10 (0,—3cost,—3sint) = (0, — cost, —sint).
@) 3/v10
T(t)  3/V10 3
) w(t) = TOL_ 3D 3

@l Vo 10
19. @) r(t) = (V2te,e®) = r'{t)=(V2,el,—e") = [O)|=vV2+e+e 2= /(el+tel)Z=c+e".
Then

_ ) _ 1 t —t\ __
T = o = e (VB0 =

t

(V2 VZet, e *,—1) |after multiplying by % and

T'(0) = g (VEe', 26,0 >7(2t+12<fe e, 1)
1 2t t 2t 2t t 2t _ 1 e —e th €2t
:W[(e +1) (V2€,2e*,0) — 2¢** (V2e' e ’_1”_7(62%1)2 (V2e' (1—e*),2¢*, 2¢)
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SECTION 13.3 ARC LENGTH AND CURVATURE O
Then
1 1
T ()| = 2e2t(1 — 2¢2t 4t 4eAt 4eAt = 2¢2t(1 2¢2t 4t
T (2)] (62t+1)2\/6 ( et +et) + dett + 4e (62t+1)2\/6 (1 + 22t 4 e*t)
_ 1 et (11 e2t)” — VZel(l+e¥) V2
(62t + 1)2 (62t + 1)2 62t + 1
Therefore
T'(t) e 41 2t o 2t
N(t) = = (1- 2 2
0= ] = Vaa T (V2 22
1
2t 2t\ __ 2t t t
W<\/§€ 176 )2 ,26 >—62t+1<1 e, 26,\/§€>
T 3 et 1 2 et D2t D 2t
() w(t) = [TOL _ v2et o V2 VR Ve

|r’(t)] et +1 et+et e3t + et +e=t et £ 2e2t + 1 (e2t +1)2

N.rt)=j+t’k = r'(t)=3t"j+2tk, r’(t)=6tj+2k, |r'(t)] = /02 + (3t2)2 + (2t)2 = VOt? + 412,
x (1) 61> 61>
() x 1 (t) = =62, |r'(t) x r’(t)| = 6t Then k(t) = (1) = = .
e () (Vorr+4g)® (91 +4t2)3/2
23. r(t) =3ti+4sintj+4costk = r'(t) =3i+4costj—4sintk, r’(t) =—4sintj—4costk,
Ir'(t)] = V/9+16cos?t 4+ 16sin®>t = /9 + 16 =5, r'(t) x r’(t) = —16i+ 12costj — 12sintk,
1
¥ (£) % ©(£)] = /256 + 144 cos? £ + 144 sin® ¢ = /400 = 20. Then x(t) = W = ? - %.
2. r(t) = (t,t*,t*) = 1r'(t)=(1,2t,3t*). The point (1,1,1) corresponds to t = 1, and r'(1) = (1,2,3) =
(1) = VITEF0=VIL r(t) = (0,2,6f) = r’(1)=(0,2,6). r'(1)xr"(1) = (6,—6,2),s0
" xr”1)] V76 1 [19
r'(1) x r(1)] = V35 T 3674 = v/76. Then (1) = ¢ = =/
(1) /(1) =l o Vo
__ .4 / _ 3 1" _ 2 _ ‘f”(x)l ‘12I | — 12%2
21. f(x) =2, f'(x)=4z", ["(x)=122°, k(z)= T (f’(m))2]3/2 T @) PR ~ (1+ 162577
29. f(z) = ze®, f'(x) = ze® + €%, f'(z) = xe® + 2€°,
@@L vl ety
T+ (F@PF? 5 e+ e)?P7 7 (e + PP
: / " : |y”(m)| e’ 2x\—3/2
. Since y’ =y = €, the curvature is x(z) = = e e )
3. S “ th tu (z) T(14 )3/

M+ @@)P?  A+e=pP

To find the maximum curvature, we first find the critical numbers of x(z):

- . 1+ e2® — 32 1—2e*"

/ _ =z 2z\—3/2 T 3 2z\—5/2 2z __ _x _ =z

K'(z) = e (14 e“7) +e"(=2)(1+ %) (2e*") =e EEOEE =e Tx ey

K'(z) =0when 1 —2¢* = 0,50 €”* = 2 orz = —1In2. Andsince 1 — 2¢** > 0forz < —In2and 1 — 2¢** < 0
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164 [ CHAPTER13 VECTOR FUNCTIONS

for > —1 In 2, the maximum curvature is attained at the point (—% In2, e~ 2)/2) = (—% In2, L)

Since lim e®(1 + e**)™3/2 = 0, k(z) approaches 0 as  — oo.

T—00

33. (a) C appears to be changing direction more quickly at P than (), so we would expect the curvature to be greater at P.

35.

37.

39.

(b) First we sketch approximate osculating circles at P and ). Using the y
P
axes scale as a guide, we measure the radius of the osculating circle c
. . 1
at P to be approximately 0.8 units, thus p = — = N
K
11 T
K= —~ 03 ~ 1.3. Similarly, we estimate the radius of the
p .
o . 11 0 1 x
osculating circle at @) to be 1.4 units, so k = — ~ 14 ~ 0.7.
p .
y=z"2 = ¢y =-227% ¢’'=62"" and 4
v | 6
K(z) = 28/2 218/2 4 _6\3/2" ¥ = K(x)
1+ (v)7] [1+ (—2273)"] x4 (14 4276)
The appearance of the two humps in this graph is perhaps a little surprising, but it is 4 ’_A\,L’ 4
explained by the fact that yy = 22 increases asymptotically at the origin from both -1

directions, and so its graph has very little bend there. [Note that «(0) is undefined.]

r(t) = (te',e™",V2t) = 1'(t)=((t+1e",—e ", V2), r’(t)=((t+2)e’,e7",0). Then

r'(t) x1'(t) = (—vV2e 7, V2(t+ 2)e" 2t 4+ 3),  |r'(¢) x r(t)| = /26720 + 2(t + 2)2e3 + (2t + 3)2,

()] = ITIPT T e T2, and w(t) = HOXTO] _ 2> + At 1 2% + (2 + 3
’ @) [(t+ 122+ o722/

We plot the space curve and its curvature function for —5 < ¢ < 5 below.

K(1)
0.61
5
z 0
iy 0
0 500"
50 160 ! 5 o I
y

From the graph of x(t) we see that curvature is maximized for ¢ = 0, so the curve bends most sharply at the point (0, 1, 0).
The curve bends more gradually as we move away from this point, becoming almost linear. This is reflected in the curvature

graph, where () becomes nearly 0 as [¢| increases.

Notice that the curve b has two inflection points at which the graph appears almost straight. We would expect the curvature to
be 0 or nearly O at these values, but the curve a isn’t near 0 there. Thus, a must be the graph of y = f(z) rather than the graph

of curvature, and b is the graph of y = x(x).
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Using a CAS, we find (after simplifying) K(t)

w(t) = 6+v4cos2t —12cost + 13
N (17 — 12 cost)3/2

. (To compute cross

products in Maple, use the VectorCalculus or

LinearAlgebra package and the CrossProduct (a,b)

command; in Mathematica, use Cross [a, b].) Curvature is 0 27 4 6mr 1t

largest at integer multiples of 27.

=t => =2 = =2 y=t2 = y=3t> = jj=6t

ety = L =G _ G000 ~GA@| _ 12 62| e
- [a'c2 + yz]s/z - [(2t)2 + (3t2)2]3/2 - (4t2 + 9t4)3/2 - (4t2 + 9t4)3/2'
x=¢clcost = & =-¢c'(cost—sint) = & =e'(—sint—cost)+e’(cost —sint) = —2¢’sint,

y=ce'sint = ¢ =e'(cost+sint) = §j=e'(—sint+ cost)+ e’(cost+sint) = 2e’ cost. Then

(1) = |3 — v _ e’ (cost — sint)(2e’ cost) — e’ (cost + sint)(—2e’ sint)|
[22 + y2]3/2 (Jet(cost — sint)]2 + [et(cost + sin t)]2)*/2

|262t (cos®t — sint cost + sint cost + sin? t)’ |262t(1)| 2¢2% 1

[ez’f(cos2 t —2costsint + sin®t + cos2 ¢t + 2 costsint + sin? t)} 3/2 [e2t(1 + 1)}3/2 CeB(2)32 et

(1) (2t,2t2,1) (2t,2t%,1)
1,21 dstot—1. T() =28 _ ki =05 om(1) = (2,2, 1),

(1,2,1) corresponds to (t) 0] T TR (1) =(%21%)
T'(t) = —4t(2* + 1) 72 (2¢,2¢%,1) + (2t* + 1)7' (2,4t,0)  [by Formula 3 of Theorem 13.2.3]

= (27 +1)7% (=8> + 4t* + 2, —8t> + 8> + 4t, —4t) = 2(2t* + 1) (1 — 2>, 2t, —2t)
N(1) = T(t) 22t +1)72 (1 — 2t%,2t, —2t) (=22, -2t) (1 —2t%,2t,-2t)

ST 20262+ 1)-2 /(T —22)2 1 (20)% + (—20)2 V1 — 42 + 487 + 82 1+ 212
N(1) = (~5.3.-3) and B(1) = T(1) x N() = (3 = 3.~ (<§ ). +3) = (3.9,
(0,7, —2) corresponds to t = 7. r(t) = (2sin3t,¢,2cos3t) =
T(t) = r,(t> __ (6cos3t1,—6sin3) L 6081, —6sin3t).

') \/36cos23t+ 1+ 36sin3t V37

T(7) = —= (—6,1,0) is a normal vector for the normal plane, and so (—6, 1,0) is also normal. Thus an equation for the

V37
planeis —6 (z —0) + 1(y —7) +0(2 +2) =0ory — 6z = 7.

_ \/18%sin?3t + 182cos?3t 18

T'(t) = o= (—18sin3t,0, ~18cos3t) = |T'(t) NeL T =
T'(t) : 1 )
N(t) = () = (—sin3t,0, —cos 3t). So N(m) = (0,0, 1) and B(7) = —= (—6,1,0) x (0,0,1) = —==(1,6,0).

Since B(7) is a normal to the osculating plane, so is (1, 6, 0).

An equation for the plane is 1(z — 0) + 6(y — ) + 0(z + 2) = 0 or z + 6y = 6.
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53.

55.

57.

59.
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The ellipse is given by the parametric equations x = 2cost, y = 3sint, so using the result from Exercise 42,

K(t) = |ty —&y|  |[(—2sint)(—3sint) — (3cost)(—2cost)| 6
a2 g (4sin® ¢ + 9 cos? t)3/2 ~ (4sin®t + 9cos2t)3/2’

At (2,0),t = 0. Now x(0) = = = 2, so the radius of the osculating circle is - > N
1/k(0) = 2 and its center is (—3,0). Its equation is therefore (x + 2)° + y* = &L, /Cj\
At(0,3),t = Z,and k(%) = € = 2. So the radius of the osculating circle is 5 and -15 \ 2.5
its center is (O, %) Hence its equation is 2 + (y— %)2 =18

\ J

-5

The tangent vector is normal to the normal plane, and the vector (6, 6, —8) is normal to the given plane.
But T(¢) || r'(¢) and (6,6, —8) || (3,3, —4), so we need to find ¢ such that r'(¢) || (3,3, —4).

r(t) = (t*,3t,t"y = 1'(t)=(3t>,3,4t>) || (3,3, —4) when t = —1. So the planes are parallel at the point (—1, -3, 1).

First we parametrize the curve of intersection. We can choose y = ¢; then z = y? = ¢® and z = z® = t*, and the curve is
given by r(t) = (t*,t,t*). r'(t) = (2t,1,4¢>) and the point (1, 1, 1) corresponds to ¢ = 1, so r'(1) = (2,1, 4) is a normal

vector for the normal plane. Thus an equation of the normal plane is

"(t 1
20 -1 +1ly—1)+4(z—1)=00r2z+y+4z=7. T(t)= |:Et§‘ = TS PSR (2t,1,4t%) and

T'(t) = —3(48% + 1 + 16t°)7%/2(8t + 96t°) (2¢,1,4¢%) + (4> + 1 + 16t°) /2 (2,0,12¢>). A normal vector for
the osculating plane is B(1) = T(1) x N(1), but r'(1) = (2,1,4) is parallel to T(1) and

T'(1) = —3(21)7%/2(104)(2, 1,4) + (21)7*/2(2,0,12) = (—31,—26,22) is parallel to N(1) as is (—31, —26,22),

21\/_

so (2,1,4) x (—31,—-26,22) = (126, —168, —21) is normal to the osculating plane. Thus an equation for the osculating

planeis 126(z — 1) —168(y —1) —21(z —1) =0 or 6z —8y—z = —3.

dT T
_|dT| _|dT/dt|  |dT/dt] aT/dt i _dT/di _
s _’ds/dt‘_ asjar N = T ‘ ds T dsjdt bytheChamR”le
d dB dB
®BB=TxN =
dB _ d d 1 d 1 1
E_ds(TxN)—dt(TxN)—ds/dt d(T N)\’(t)| (T XN)+(TXN)]\r’(t|
T 1 TxN B
_ ’ ! _ -
= (v i)+ o = Temr = BT
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) B=TxN = T1IN,B.l TandB L N. SoB, T and N form an orthogonal set of vectors in the three-
dimensional space R®. From parts (a) and (b), dB/ds is perpendicular to both B and T, so dB/ds is parallel to N.

Therefore, dB/ds = —7(s)N, where 7(s) is a scalar.

(d) Since B=T x N, T 1 N and both T and N are unit vectors, B is a unit vector mutually perpendicular to both T' and
N. For a plane curve, T and N always lie in the plane of the curve, so that B is a constant unit vector always

perpendicular to the plane. Thus dB/ds = 0, but dB/ds = —7(s)N and N # 0, so 7(s) = 0.

6. @Qr =T = " =§"T+s5T =s"T+5 (Z—Ts' = 5" T + x(s")? N by the first Serret-Frenet formula.
s
(b) Using part (a), we have
' xr’ = (s T) x[s" T+ r(s')? N
=[(s'T) x (8" T)] + [(s'T) x (k(s")> N)] [by Property 3 of Theorem 12.4.11 ]
= (" T xT)+ k(s (TxN)=0+k(s)’>B=x(s)B
(c) Using part (a), we have
r/// — [S” T + I{(s/)2 N}l — s/// T Jr SH T/ + K_//(s/)z N Jr 2/{3/3// N + I{(S/)2 N/
a
ds
=5"T+5"s'k N+ «'(5)2 N + 2ks's”" N + 5(s')}(—« T + 7 B) [by the second formula]

dT
=" T+ s//E s+ K (s')> N + 2r8's" N + k(s')?

=[s"" — k*(s")3] T + [3rs’s” + k' (s")2]N + s7(s')* B
(d) Using parts (b) and (c) and the facts that B- T =0,B-N =0,and B - B = 1, we get

(' <"y " _ k(s")PB-{[s" — K*(s')’] T + [3ks's” + k/(s')’] N + k7(s')* B} _ k(s )3 kT (s")?

/e f? [(s")* BJ” [(s")%)*

63. r = (¢, 3¢, 31°) = ' =(L,t,t*), v’ =(0,1,2t), r'" =(0,0,2) = 1’ xr’=(1*-2t1) =

2 3
o xe)-r” (#7,-2t,1)-(0,0,2) 2
e xrr 412 4+ 1 Tttt 4241

65. For one helix, the vector equation is r(t) = (10 cost, 10sint, 34¢/(27)) (measuring in angstroms), because the radius of each
helix is 10 angstroms, and z increases by 34 angstroms for each increase of 2 in ¢. Using the arc length formula, letting ¢ go
from 0 to 2.9 x 10% x 27, we find the approximate length of each helix to be

2.9x10% x27

L= [0 ()] dp = (290007 [(10sint)? + (10cos 1) + (24 di = /100 + () t}

0

=29 x 10° x 27 1/100 + ()’ ~ 2.07 x 10*° A — more than two meters!

P
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13.4 Motion in Space: Velocity and Acceleration

1. (@) Ifr(¢t) = z(t) i+ y (t) j + 2(¢) k is the position vector of the particle at time ¢, then the average velocity over the time
interval [0, 1] is

Vave = r(li : 8(0) = (4.51+6.0j +3.0k) I (2.78+9.8] +3.7k) = 1.8i—3.8j — 0.7k. Similarly, over the other

intervals we have

r(1) —r(0.5)  (4.5i+6.0j+3.0k) — (3.51+ 7.2 + 3.3k)

05,11 Vave= == = 0F =20i—24j—06k
L2 Ve = r(2;:11~(1) _ (73i+78j+27k) = (451+605+3.0k) _oe0 g5 (3
L15]: vawem r(lf}é:;(l) _ (5.91+64j +2.8k)075(4.51+6.0g]+3.0k)  2.81408)— 04k

(b) We can estimate the velocity at t = 1 by averaging the average velocities over the time intervals [0.5,1] and [1, 1.5]:

v(l) ~ 1[(2i—2.4j— 0.6k) + (2.8i1+ 0.8j — 0.4k)] = 2.4i — 0.8j — 0.5 k. Then the speed is

Iv(1)| & \/(2.4)2 + (—0.8)2 + (—0.5)% ~ 2.58.

v(2) 4
3r(t) = (—3t°,t) = Att=2: “2.2)
v(t) = (1) = (~4,1) v(2) = (-2,1) 2
0
a(t) =1"(1) = (~1,0) a(2) = (~1,0) '
v(t)| = v+ 1
y
5. r(t) = 3costi+2sintj = Att=m/3: 0,2) \V@) (i J3)
3
v(t) = —3sinti+ 2cost]j v(%) :—#i—l—j 2 a(3> /(3,0)
3
a(t) = —3costi— 2sintj a(f)=-2i—3j v o

|v(t)] = /9sin®t + 4cos? t = \/4 + 5sin®¢

Notice that 2% /9 + y?/4 = sin® t 4 cos® t = 1, so the path is an ellipse.

T.r(t)=ti+t*j+2k = Att=1:
v(t) =14 2t] v(l) =i+2j
a(t) =2j a(l)=2j

V(1) = VI T 42

Herez =t,y =t> = y=2?and z = 2, so the path of the particle is a

parabola in the plane z = 2.
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r(t) = (8 + 6,2 —t,8%) = v(t)=r'(t) = (2t +1,2t — 1,3t*), a(t) =v/(t) = (2,2,6t),

v(t)| = (2t +1)2 + (2t — 1)% + (3t2)2 = VOt? + 812 + 2.

r(t) =V2ti+e'j+e 'k = vt)=r'(t)=v2it+ej—e'k, alt)=v(t)=c'jte 'k,

vit) =v2+et+e 2= /(et +tet)2=¢" +e "

r(t) = e'{cost,sint,t) =

v(t) = r'(t) = e'(cost,sint, t) + e’ (—sint,cost, 1) = e'{cost — sint,sint + cost,t + 1)

a(t) = v/(t) = e'(cost —sint — sint — cost,sint + cost + cost —sint,t + 1+ 1)
= e'(—2sint,2cost, t + 2)

[v(t)] = e'\/cos? t +sin®t — 2costsint + sin® ¢ + cos? t + 2sintcost + 2 + 2t + 1
=e' V2 +2t+3
ait)=i+2j = v@)=[a@)dt=[(i+2j)dt=ti+2tj+Candk=v(0)=C,
soC=kandv(t)=ti+2tj+k r(t)=[v(t)dt=[(ti+2j+k)dt=2t"i+t*j+tk+D.
Buti=r(0) =D,soD =iandr(t) = (3t° +1)i+t*j+tk
(a) a(t) =2ti+sintj+cos2tk = (b)
v(t) = [(2ti+sintj+cos2tk)dt = t*i—costj+ isin2tk + C

andi=v(0)=—-j+C,s50C=1i+]

0.6
andv(t) = (t* +1)i+ (1 —cost)j+ isin2tk. z 83
0
r(t) = [[(#*+1) i+ (1 —cost)j+ 3 sin2tk]dt : 10
200
0 y
= (3t°+t) i+ (t—sint)j— cos2tk + D x —200 10

Butj=r(0)=—3k+D,soD=j+ tkandr(t) = (3¢°+t)i+ (t —sint +1)j+ (3 — 3 cos2t) k.

r(t) = (t?,5t, 8% — 16t) = v(t) = (2t,5,2t — 16), |v(t)| = V4t + 25 + 4% — 64t + 256 = /8> — 64f + 281

and % [v(t)| = 1(8t> — 64t + 281)~'/2(16t — 64). This is zero if and only if the numerator is zero, that s,

16t — 64 = 0 or t = 4. Since % [v(t)| < 0fort < 4and % [v(t)] > 0 fort > 4, the minimum speed of v/153 is attained
at t = 4 units of time.

|F(¢)| = 20 N in the direction of the positive z-axis, so F(t) = 20k. Alsom = 4kg, r(0) = 0 and v(0) =i —j.

Since 20k = F(t) = 4a(t), a(t) = 5k. Then v(¢t) = 5tk + ¢1 where c; =i— jso v(t) =i— j+ 5tk and the

speed is |[v(t)| = VI+ 1+ 25t2 = V252 + 2. Alsor(t) =ti—tj+ 2t°k + coand 0 = r(0),s0c2 = 0

andr(t) =ti—tj+ 3t°k.
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25.

27.
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O CHAPTER13 VECTOR FUNCTIONS
|v(0)| = 200 m/s and, since the angle of elevation is 60°, a unit vector in the direction of the velocity is
(cos60°)i+ (sin60°)j = 3i+ ‘/_J Thus v(0) = 200( i+ {J) = 1001 + 100 /3 j and if we set up the axes so that the
projectile starts at the origin, then r(0) = 0. Ignoring air resistance, the only force is that due to gravity, so
F(t) = ma(t) = —mgj where g ~ 9.8 m/s?. Thus a(t) = —9.8 j and, integrating, we have v(t) = —9.8¢j + C. But
100i + 100v/3j = v(0) = C, so v(t) = 100i + (100+/3 — 9.8t) j and then (integrating again)
r(t) =100¢i + (100 V3t — 4.9t2)j + D where 0 = r(0) = D. Thus the position function of the projectile is
r(t) =100ti+ (1003t — 4.9t%)j.
(a) Parametric equations for the projectile are z:(t) = 100¢, y(t) = 100 /3t — 4.9t>. The projectile reaches the ground when
y(t) =0(andt >0) = 100v/3¢— 4.9t =1(100v/3 —4.9t) =0 = ¢ =193 x~ 3535, So the range is

m(loof ) 100(1°°f ) ~ 3535 m.

(b) The maximum height is reached when y(¢) has a critical number (or equivalently, when the vertical component

of velocity is 0): /(1) =0 = 1003 — 9.8t =0 = t =223 ~17.75. Thus the maximum height is
y(IOO\/_) _ 100\/—(100\/_) 49(100\/_) ~ 1531 m.

100\/'

(c) From part (a), impact occurs at t = s. Thus, the velocity at impact is

v(w‘)f) — 100i + [100«/‘ 98(100\/_)]3 — 100i — 100 v/3j and the speed is
v (125)| = 10,000+ 30,000 = 200 m/s.

As in Example 5, r(t) = (vo cos45°)ti+ [(vosin45°)t — 2gt°] j = 3 [vov2ti+ (vov2t — gt*) j]. The ball lands when

'UO\/§ Vo \/§
g

y=0(ndt>0 = t= T s. Now since it lands 90 m away, 90 = x = %vo V2 or v = 90g and the initial

velocity is vg = 4/90g ~ 30 m/s.
Let « be the angle of elevation. Then vg = 150 m/s and from Example 5, the horizontal distance traveled by the projectile is

2 2
V5 sin 2a Thus 1507 sin 2« —800 = sin% — 800¢g

p . p 1502 ~ 0.3484 = 2a ~ 20.4° or 180 — 20.4 = 159.6°.

d=

Two angles of elevation then are o /&~ 10.2° and « =~ 79.8°.

Place the catapult at the origin and assume the catapult is 100 meters from the city, so the city lies between (100, 0)

and (600, 0). The initial speed is vo = 80 m/s and let 6 be the angle the catapult is set at. As in Example 5, the trajectory of

the catapulted rock is given by r () = (80 cos )t i + [(80sin 6)t — 4.9¢*] j. The top of the near city wall is at (100, 15),

and (80sin0)t — 4.9t> =15 =

which the rock will hit when (80 cosf)t =100 = t= 5
4cosf
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2
80sing - —>— —4.9( > =15 = 100tan@ — 7.65625sec?® § = 15. Replacing sec? § with tan? 6 + 1 gives
4 cos b 4 cos 6

7.65625 tan? 6 — 100 tan § + 22.65625 = 0. Using the quadratic formula, we have tan 6 ~ 0.230635, 12.8306 =
0 ~ 13.0°, 85.5°. So for 13.0° < 0 < 85.5°, the rock will land beyond the near city wall. The base of the far wall is

located at (600, 0) which the rock hits if (80 cos §)t = 600 = ¢ = and (80sinf)t —4.9> =0 =

2cosf

2
SOSiné’-i—4.9 15 =0 = 600tand — 275.625sec?0 =0 =
2cosf 2cosf

275.625 tan? § — 600 tan 0 + 275.625 = 0. Solutions are tan 6 ~ 0.658678, 1.51819 = 6 = 33.4°, 56.6°. Thus the
rock lands beyond the enclosed city ground for 33.4° < € < 56.6°, and the angles that allow the rock to land on city ground

are 13.0° < 0 < 33.4°, 56.6° < 0 < 85.5°. If you consider that the rock can hit the far wall and bounce back into the city, we

calculate the angles that cause the rock to hit the top of the wall at (600, 15): (80cos6)t =600 = ¢ = 15 and

" 2cosf

(80sin@)t —4.9t> =15 = 600tanfd — 275.625sec® 0 =15 = 275.625tan? 6 — 600 tan 6 + 290.625 = 0.
Solutions are tan f =~ 0.727506, 1.44936 = 6 = 36.0°, 55.4°, so the catapult should be set with angle § where
13.0° < 6 < 36.0°,55.4° < 0 < 85.5°.

3. Herea(t) = —4j — 32ksov(t) = —4tj — 32tk + vo = —4tj — 32tk + 501 + 80k = 50i — 4t j + (80 — 32¢) k and
r(t) = 50ti — 2t> j + (80t — 16t%) k (note that ro = 0). The ball lands when the z-component of r(t) is zero
andt > 0: 80t — 16t = 16t(5 —t) =0 = t = 5. The position of the ball then is

r(5) = 50(5)i— 2(5)j + [80(5) — 16(5)%] k = 2501 — 50 j or equivalently the point (250, —50, 0). This is a distance of

/2502 + (—50)2 + 0% = /65,000 ~ 255 ft from the origin at an angle of tan™" (£%) ~ 11.3° from the eastern direction

toward the south. The speed of the ball is |v(5)| = [50i — 20j — 80 k| = /502 + (—20)2 + (—80)2 = /9300 ~ 96.4 fi/s.

33. (a) After ¢ seconds, the boat will be 5¢ meters west of point A. The velocity 20

of the water at that location is 73 (5¢)(40 — 5t) j. The velocity of the

boat in still water is 5 i, so the resultant velocity of the boat is

v(t) =5i+ 25(5t)(40 — 5t) j = 5i + (£t — 2¢%) j. Integrating, we obtain 0

J40

r(t) =5ti+ (3¢* — &%) j + C. If we place the origin at A (and consider j —4
to coincide with the northern direction) thenr(0) =0 = C = 0and we have r(t) = 5ti+ (3t — %) j. The boat
reaches the east bank after 8 s, and it is located at r(8) = 5(8)i + (2(8)* — % (8)®) j = 40i + 16 j. Thus the boat is 16 m
downstream.

(b) Let « be the angle north of east that the boat heads. Then the velocity of the boat in still water is given by

5(cosa) i+ 5(sin «) j. At ¢ seconds, the boat is 5(cos a)t meters from the west bank, at which point the velocity

of the water is 525 [5(cos a)t][40 — 5(cos a)t] j. The resultant velocity of the boat is given by
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41.
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v(t) =5(cos )i+ [5sina + 535 (5t cosa)(40 — Bt cos )] j = (5cosa) i+ (5sina + £t cos o — Zt% cos® o) j.
Integrating, r(t) = (5tcos )i+ (5tsina + 3¢ cosa — $5t% cos® @) j (where we have again placed

.. . 4
the origin at A). The boat will reach the east bank when 5t cosa =40 = t= 0 = 8 .
dcosa  cosa

In order to land at point B(40, 0) we need 5t sin o + £t° cosa — =t’ cos’a =0 =

8\ . s 8 Y 8 Y 1 .
5 sina + 3§ cosa— 15| —— ) cos"a=0 = (40sinav +48 —32) =0 =
cosa cosa cos o cosa

40sina+16=0 = sina=—2. Thusa =sin~'(—2) ~ —23.6°, so the boat should head 23.6° south of

5
east (upstream). The path does seem realistic. The boat initially heads 12

upstream to counteract the effect of the current. Near the center of the river,

the current is stronger and the boat is pushed downstream. When the boat 0 40
nears the eastern bank, the current is slower and the boat is able to progress

upstream to arrive at point B. s

If r'(¢t) = ¢ x r(t) then r'(t) is perpendicular to both c and r(t). Remember that r’(¢) points in the direction of motion, so if
r’(t) is always perpendicular to ¢, the path of the particle must lie in a plane perpendicular to c. But r’(¢) is also perpendicular
to the position vector r(t) which confines the path to a sphere centered at the origin. Considering both restrictions, the path
must be contained in a circle that lies in a plane perpendicular to c, and the circle is centered on a line through the origin in the

direction of c.

r(t) = 3t —t3)i+3t?] = r'(t) = (3-3t})i+6tj,

It'(t)] = /(3 —3t2)2 + (6t)2 = /9 + 18¢2 + 9t* = /(3 — 3t2)2 = 3 + 3¢,

r’(t) = —6ti+ 6], r'(t) x r’(t) = (18 + 18*) k. Then Equation 9 gives

() - (t)  (3—3t)(—6t) + (6t)(6) 18t 4 18>  18t(1+¢t°) [ .
ar = O 3732 = T3332 3L+ =6t |or by Equation 8§,
/ " 2 2
ar =v' = 4 [3 + 3t2] = 6t| and Equation 10 gives any = [P x ()] _ 18+ 187 18(1+1) _

dt e/ (2)] TOo3432 7 3(1+t2)

r(t) =costi+sintj+tk = r'(t)=—sinti+costj+k, |r'(t)|=+/sin?t+cos?t+1=+/2,

r’(t) = —costi—sintj, r'(t) x r”(t) =sinti—costj+k.

r'(t)-r"(t)  sint cost —sint cost [r'(t) xr”"(t)]  /sin®t+cos2t+1 ﬁ _

=0andayxy =

HO 3 (0] 3 N

Then ar =

rt)=e'i+V2tj+e 'k = r({t)=€i+V2j—e 'k |rt))=Vet2+e 2= /(er+e )2 =¢"+e",

2t

-2t t o —t\(pt _ =t

r/(t) = i+ ek Thenar = S0 = (e e +)(:_t € ) _ ¢t et — 2sinht
dan — [V2e'i—2j—v2e'k|  \/2(e=2t + 2+ €%) 7\/§6t+€7t — 3

anday = et + et - et + et - ettet V&
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43. The tangential component of a is the length of the projection of a onto T, so we sketch y )
the scalar projection of a in the tangential direction to the curve and estimate its length to /4\ a
be 4.5 (using the fact that a has length 10 as a guide). Similarly, the normal component of aN a?\
a is the length of the projection of a onto N, so we sketch the scalar projection of a in the A\
normal direction to the curve and estimate its length to be 9.0. Thus ar ~ 4.5 cm/s? and 0 !

an =~ 9.0 cm/s%.

45. If the engines are turned off at time ¢, then the spacecraft will continue to travel in the direction of v(t), so we need a ¢ such

I 8t
that for some scalar s > 0, r(t) + sv(t) = (6,4,9). v(t)=r'(t) =i+ 7 + (] k =
r(t)+sv(t)=(3+t+s 2+lnt+§7fi+£ = 34+t+s=6 = s=3-1
N ’ t 241 (2 +1)2 N n ’
4 8(3 —t)t 24t — 12t* — 4 4 9
— = _——— =2 t t° — 12t =0.
so7 t2+1+(t2+1)2 9 & GESIE < +38 +3=0

. . . . . -1 . . .
It is easily seen that ¢ = 1 is a root of this polynomial. Also 2 4+ 1In1 + ?’T =4, sot = 11is the desired solution.

13 Review
CONCEPT CHECK

1. A vector function is a function whose domain is a set of real numbers and whose range is a set of vectors. To find the derivative

or integral, we can differentiate or integrate each component of the vector function.
2. The tip of the moving vector r(t) of a continuous vector function traces out a space curve.

3. The tangent vector to a smooth curve at a point P with position vector r(¢) is the vector r’(¢). The tangent line at P is the line

/

through P parallel to the tangent vector r'(t). The unit tangent vector is T(t) = |i /Ei;‘ .
4. (a) (a)—(f) See Theorem 13.2.3.
5. Use Formula 13.3.2, or equivalently, 13.3.3.

. dT . .
6. (a) The curvature of a curve is k = T where T is the unit tangent vector.
T'(t) e () x x"'(t)] /" ()]
(b)ﬁt:‘ (c) k(t) = (d) k(x) = y
0] =P @) = T ()P
. T’ (t) .

7. (a) The unit normal vector: N(t) = Ok The binormal vector: B(t) = T(t) x N(t).

(b) See the discussion preceding Example 7 in Section 13.3.

s

8. (a) If r(¢) is the position vector of the particle on the space curve, the velocity v(¢) = r’(t), the speed is given by |v(t)

and the acceleration a(t) = v'(t) = r’'(¢).
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(b) a = arT + ayN where ar = v’ and anx = v

. See the statement of Kepler’s Laws on page 892 [ET 868].

TRUE-FALSE QUIZ

1.

13.

. True. If we reparametrize the curve by replacing u = t*, we have r(u) = ui + 2uj + 3uk, which is a line through the origin

with direction vectori 4+ 2 j + 3 k.

. False. The vector function represents a line, but the line does not pass through the origin; the z-component is 0 only for ¢ = 0

which corresponds to the point (0, 3,0) not (0,0, 0).

. False. By Formula 5 of Theorem 13.2.3, 4 [u(t) x v(t)] = u'(t) x v(t) + u(t) x v'().

dt

. False. x is the magnitude of the rate of change of the unit tangent vector T with respect to arc length s, not with respect to ¢.

. True. At an inflection point where f is twice continuously differentiable we must have f”/(z) = 0, and by Equation 13.3.11,

the curvature is O there.

False. If r(t) is the position of a moving particle at time ¢ and |r(¢)| = 1 then the particle lies on the unit circle or the unit
sphere, but this does not mean that the speed |r’(t)| must be constant. As a counterexample, let r(t) = (t,+/1 — %), then
r'(t) =(1,—t/VT—t2)and [r(t)| = VIZ+ 1 — £2 = L but [v'(t)| = \/1 +t2/(1 — ¢2) = 1/+/T — {2 which is not
constant.

True. See the discussion preceding Example 7 in Section 13.3.

EXERCISES

. (a) The corresponding parametric equations for the curve are x = ¢, z

y = cos 7t, z = sin 7t. Since > + 2> = 1, the curve is contained in a

circular cylinder with axis the x-axis. Since = = t, the curve is a helix.

(b) r(t) =ti+cos mtj+sin rtk =

r'(t)=i—nwsinntj+ mcos itk =

v’ (t) = —m?cos mtj — ¥ sin wtk

. The projection of the curve C of intersection onto the zy-plane is the circle 2> + y? = 16, z = 0. So we can write

x =4cost, y =4sint, 0 <t < 27. From the equation of the plane, we have z = 5 — z = 5 — 4 cos t, so parametric
equations for C' are x = 4cost, y = 4sint, z =5 —4cost, 0 < t < 27, and the corresponding vector function is

r(t) =4costi+4sintj+ (5 —4cost) k,0 <t < 2m.
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5. [ (t*i+tcos mtj +sin ntk)dt = (fol t2dt) i+ (foltcos mfdt)j + (fol sin 7rtdt) k
= [%t?’]; i+ (%sin m‘}(l) - fol %sin m‘dt)j + [—% cos Wt](l) k

i+[12COSTrt] J+2k 1——2J+2k

Wl

where we integrated by parts in the y-component.

7.r(t) = (P, ¢%t4) = r'(t)=(2t,3t,46°) = |r'(t)| = VA2 + 9t* + 165 and
L= fog |t'(¢)| dt = f03 VA4t? + 9t* + 16t dt. Using Simpson’s Rule with f(t) = v/4t2 4+ 9t* + 16t and n = 6 we

have At = 3_30 = % and

D 8 [10) +47(3) +200) + 47(3) +272) +45(3) + SO
LIVOT0F0+4-/4(3) +9(2) +16()° +2- ADZ + 017 + 16()°

4 43P +9(3) + 16(3) + 2. ARP T 92 T 00T

+4-/4(5) +9(3) +16(3)° + ABZ T 9(3)1 + 1603

~ 86.631

9. The angle of intersection of the two curves, 6, is the angle between their respective tangents at the point of intersection.
For both curves the point (1,0, 0) occurs when ¢ = 0.

ri(t) = —sinti4+costj+k = ri(0)=j+kandrh(t)= i+2tj+3t2k = rh(0) =i

/

r1(0) -r5(0) = (j+ k) -i=0. Therefore, the curves intersect in a right angle, that is, § = Z..

@) (1) (#1)
N @OTO= o T @a) - VEr e

(b) T/(t) = =3 (t* + 2 + 1) 73/2(4¢® + 2¢) (1,4, 1) + (¢* + £* +1)7V/2(2¢,1,0)

—2t3 — ¢

= w<t27t71>+

1
(LA +12 + 1)1/ 2, 1,0

(=2t° =17, =2t" — %, =26° — ) + (2° + 26> +- 20,4 +1° +1,0)  (¢® + 24, —t" +1,-2t° — 1)
(11 + 12 +1)3/2 - (11 + 12 4+ 1)3/2

T (1)) = VTR A2 15 — 2R F 11 46 + A + 12 \/t8+5t6 + 6t +512+1
(t4 + 2 4+ 1)3/2 (t4 + 2 4+ 1)3/2

(t* + 26,1 —t*,—2t> — t)

VI8 1516+ 6t2 562 + 1

© H(t) _ ‘T/(t)| o \/tg + 5t6 +6t2 + 52 +1 or Vit +4t2 4+ 1
= |I‘,(t)| - (t4 + 12 + 1)2 (t4 + 12 + 1)3/2

N(t) =

1 2
I T 2 _ ly"| _ |12$| _ 12
13. y' =42°, y" = 122° and k(x) = TrG)Pe - 0+ 163:6)3/2’50 k(1) = 1737
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r(t) = (sin2t,t,cos2t) = r'(t) = (2cos2t,1,-2sin2t) = T(t) = = (2cos2t,1,-2sin2t) =

75
T'(t) = % (—4sin2¢,0,—4cos2t) = N(t) = (—sin2t,0,—cos2t). So N = N(7) = (0,0,—1) and
B=TxN-= % (—1,2,0). So a normal to the osculating plane is (—1, 2, 0) and an equation is
—1(x—0)+2(y —7) +0(z—1)=00rz — 2y + 2w = 0.

r(t) =tlnti+tj+e 'k, v(t)=r'(t)=1+Int)i+j—e 'k,

|v(t)| = \/(1 +1Int)2 +12 + (—et)2 = \/2 +2Int+ (Int)2 +e~2, a(t)=v'(t) = %i—l—e_tk

We set up the axes so that the shot leaves the athlete’s hand 7 ft above the origin. Then we are given r(0) = 7j,

|v(0)| = 43 ft/s, and v(0) has direction given by a 45° angle of elevation. Then a unit vector in the direction of v(0) is
%(i +j) = v(0)= % (i+ j). Assuming air resistance is negligible, the only external force is due to gravity, so as in
Example 13.4.5 we have a = —g j where here g ~ 32 ft/s®. Since v'(t) = a(t), we integrate, giving v(t) = —gtj + C

where C = v(0) = 4—\/35(i +j) = v@)= % i+ (% — gt) J. Since r'(t) = v(t) we integrate again, so

r(t) = ti+ (%t - 19%)j+D.BuUD =r(0) =7j = r(t)=Gti+ (Lt Lo +7)]

(a) At 2 seconds, the shot is at r(2) = 2%(2)i+ (%(2) —19(2° + 7)j ~ 60.81+ 3.8 j, so the shot is about 3.8 ft above

the ground, at a horizontal distance of 60.8 ft from the athlete.
(b) The shot reaches its maximum height when the vertical component of velocity is 0: % —gt=0 =

4 . L .
t 43 ~ 0.95 s. Then r(0.95) &~ 28.9i + 21.4 j, so the maximum height is approximately 21.4 ft.

" Vg

(c) The shot hits the ground when the vertical component of r(¢) is 0, so %t — %gt2 +7=0 =
—16t* + %t +7=0 = t=211s. r(2.11) = 64.2i — 0.08 j, thus the shot lands approximately 64.2 ft from the
athlete.

(a) Instead of proceeding directly, we use Formula 3 of Theorem 13.2.3: r(¢t) = tR(t) =
v=r'(t) =R(t)+tR'(t) = coswti+sinwtj+tva.

(b) Using the same method as in part (a) and starting with v = R(t) + ¢t R/ (t), we have
a=v' =R'(t) +R'(t) +tR"(t) =2R'(t) +tR"(t) = 2vq + taq.

(c) Here we have r(t) = e ‘coswti+ e 'sinwtj = e " R(t). So, as in parts (a) and (b),
v=r'(t)=e 'R'(t) —e "R(t) = e '[R'(t) - R(t)] =
a=v = '[R'(t) —-R'(t)] — e '[R/(t) — R(t)] = e *[R"(t) — 2R/ () + R(t)]

=etag—2e¢tvyg+e 'R

Thus, the Coriolis acceleration (the sum of the “extra” terms not involving a,) is —2¢ " vy + e * R.
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23. (@) r(t) = Rcoswti+ Rsinwtj = v=r'(t)=—wRsinwti+wRcoswtj,sor = R(coswti+ sinwtj) and

v = wR(—sinwti+ coswtj). v -r = wR*(— coswt sinwt + sinwt coswt) = 0,50 v | r. Since r points along a

radius of the circle, and v L r, v is tangent to the circle. Because it is a velocity vector, v points in the direction of motion.

(b) In (a), we wrote v in the form wR u, where u is the unit vector —sinwt i + coswt j. Clearly |v| = wR |u| = wR. At

. . . L 2rR 2
speed wR, the particle completes one revolution, a distance 27 R, in time T = W—R = _7r.
w w
dV 2 . 2 . . 2 . . . 2 . . .
(c)a= v Rcoswti— wRsinwtj = —w”R(coswt i+ sinwt j), so a = —w=r. This shows that a is proportional

to r and points in the opposite direction (toward the origin). Also, |a] = w? |r| = w?R.

m(wR)®  m|v]?

R R

(d) By Newton’s Second Law (see Section 13.4), F = ma, so |[F| = m|a] = mRw? =
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[J PROBLEMS PLUS

1. (a) The projectile reaches maximum height when 0 = (;—Zz = % [(vo sin )t — % gt?] = wosin o — gt; that is, when

. . 1 . 2 2 2 o _ ) )
t =208 y = (vosin ) (UO St a) —3 (UO S a) _ s21n % This is the maximum height attained when
g g g

the projectile is fired with an angle of elevation a. This maximum height is largest when @ = 7. In that case, sina = 1

2
and the maximum height is ;}—O.
g

(o) Let R = v / g. We are asked to consider the parabola z? + 2Ry — R? = 0 which can be rewritten as y = 3R % + g

The points on or inside this parabola are those for which —R <z < Rand 0 <y < ;—é z% 4 % When the projectile is

fired at angle of elevation «, the points (z,y) along its path satisfy the relations x = (vg cosa) ¢t and

y = (vosina)t — 2gt*, where 0 < t < (2vosina)/g (as in Example 13.4.5). Thus

200 sin
vocosa | ———
g

2 2
|z < 2 gin2a| < |2 = |R|. This shows that —R < z < R.

. . 2vyg si
For ¢ in the specified range, we also have y = ¢(vosina — $gt) = $gt (M - t) > 0and
g

2
; T g T g 2 1 2
— -2 = (t — = — t . Th
y = (vosina) vocosa 2 (vo cosa) (tana) 202 cos? a’ Rcos2ar + (tana) . Thus

- ix2+§ —7—1x2+ix2+(tano¢)x—5
Y=\3r 2 ) T 2Rcos?a oR 2

2 2 2 2
x 1 R  z°(1—sec®a)+ 2R (tana)z — R
= (1- —— t - ==
2R< cosZa) + (tana)z 2 2R
_ —(tan’a)a® + 2R (tana)x — R?  —[(tana)x — R]® <0
N 2R B 2R -
. L o 1 5 R
We have shown that every target that can be hit by the projectile lies on or inside the parabola y = 55 % + >
. . 1 5 R 1 , R
Now let (a, b) be any point on or inside the parabola y = 3R z° 4+ 5 Then —-R<a < Rand0<b < 3R a® + 5

We seek an angle « such that (a, b) lies in the path of the projectile; that is, we wish to find an angle « such that

1

b= " 2Rcos? a

. -1 . . .
a® + (tan ) a or equivalently b = SR (tan® a + 1)a® 4 (tan «) a. Rearranging this equation we get
a? a?
SR tan® o — atan o + (ﬁ + b> =0ora’(tana)® — 2aR(tan o) + (a® + 2bR) = 0 (%) . This quadratic equation

for tan o has real solutions exactly when the discriminant is nonnegative. Now B2 —4AC >0 <«

179
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(—2aR)? —4a*(a®* +2bR) >0 < 4a*(R*>—a*—20R) >0 & —a®> -20R+R*>0 &

b< %% (R?—d%) & b< 2_—; a® + % This condition is satisfied since (a, b) is on or inside the parabola

1 5 R L L . .
y=-3p" + o5 It follows that (a, b) lies in the path of the projectile when tan « satisfies (x), that is, when

2aR + \/4a?(R?> —a? —2bR) R+ +/R? — 2bR — a?
tana = = .
2a? a
(c) If the gun is pointed at a target with height h at a distance D downrange, then
Y tan o = h/D. When the projectile reaches a distance D downrange (remember
- we are assuming that it doesn’t hit the ground first), we have D = z = (vo cos a)t,
D 2
D . ) gD
sot= P andy = (vosina)t — 59t° = Dtana — TRooa’

Meanwhile, the target, whose x-coordinate is also D, has fallen from height A to height

gD?

h—%gt? = Dtana — ———
29 20¢ cos? a

. Thus the projectile hits the target.

3(@a=-gj = v=vo—gtj=2i—gtj = s=so+2i—1gt?j=35j+2ti—1gt’j =
s=2ti+ (3.5 - %th) j. Therefore y = 0 when ¢ = 1/7/g seconds. At that instant, the ball is 2 1/7/g = 0.94 ft to the

right of the table top. Its coordinates (relative to an origin on the floor directly under the table’s edge) are (0.94,0). At

impact, the velocity is v = 2i — 1/7g j, so the speed is |v| = /4 + 7g = 15 ft/s.

(b) The slope of the curve when t = 7 is dy = dy_/dt = —gt A 7/9 = 79. Thus cot 0 = Vg
g dzr dx/dt 2 2 2 2

and 6 =~ 7.6°.
(c) From (a), |v| = v/4+ Tg. So the ball rebounds with speed 0.8 /4 + Tg ~ 12.08 ft/s at angle of inclination

v sin 2a

90° — 6 ~ 82.3886°. By Example 13.4.5, the horizontal distance traveled between bounces is d = , where

vo A~ 12.08 ft/s and o & 82.3886°. Therefore, d ~ 1.197 ft. So the ball strikes the floor at about

24/7/g+ 1.197 ~ 2.13 ft to the right of the table’s edge.

5. The trajectory of the projectile is given by r(t) = (vcosa)ti+ [(vsina)t — %gtﬂ j» so

v(t) =r'(t) =vcosai+ (vsina — gt) jand

2
[v(t)| = y/(vcos@)? + (vsina — gt)2 = \/v2 — (2ugsina)t + g2t2 = \/g2 <t2 — Q’Tv (sina) t + ;—2)

v, 72 v2.2 v 72 5
=g t—gsma —|—g—2—g—251n a=g t—;sma —|—g—zcosa
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The projectile hits the ground when (v sin «)t — % g’ =0 = t= 27” sin a, so the distance traveled by the projectile is

(2v/g)sina (2v/g)sina v 2 ’U2
L(a)= [v(t)| dt = g t——sina | + — cos?adt
0 0 g g2
. 2 2
_g|i=Wesina T v o) 4 (L eosa
2 g g
2 2 2
L wlgyeosal 1w (t,esma) +()
2 g g g

[using Formula 21 in the Table of Integrals]

glv . (O 2 v 2 v 2 v . (U 2 v 2
== |—-sln«o —sina )] +(—cosa)] +(—cosa ] In| —sina + —sina | + | —cosa
219 g g g g g g
2 2 2 2 2
[ [ v v v . v . v
+ —sina (— sma) -+ (— Cosoz> — (— cosa) In| ——sina + (— sma) -+ (— cosa>
g \/ g g g9 g g9 g9

glv . v v? 2 (U v v o, v 2 2 v, v
= —51na-—+—2008 aln| —sina + — —l——sma-———2605 aln| ——sina + —
219 g g g g g g g g 9

(2v/g)sina

2 2 . 2 2 .
:v—sina—i—v—cosQaln (v/g)su.wc—l—v/g :U—sina—i—v—cosQaln w
g 2g —(v/g)sina+v/g g 2g 1—sina

We want to maximize L(«) for 0 < o < 7/2.

2 2 o .
L'(a)= U—cosa+”— cos® a - 1 STna . 2cosa 5 —2cosa sina In Hﬂ
g 2g 1+ sinao (1 —sina) 1 —sino
2 2 .
zv—cosa+v—[0052a~ 2 — 2cosa sinaln(M)}
g 2g cos 1 —sina
v? v? . 1+ sina v? . 14+ sina
= —cosa+ —cosa |l —sina In| ——— = —cosa |2 —sinaIn| —
g g 1 —sina g 1 —sina

1 + sina

L(«) has critical points for 0 < o < 7/2when L' (a) =0 = 2-— sinaln( ) =0 [since cos « # 0].

1 — sina
Solving by graphing (or using a CAS) gives a ~ 0.9855. Compare values at the critical point and the endpoints:

L(0) = 0, L(r/2) = v?/g, and L(0.9855) ~ 1.20v?/g. Thus the distance traveled by the projectile is maximized
for v = 0.9855 or = 56°.

. We can write the vector equation as r(t) = at? + bt + ¢ where a = (a1, a2, a3), b = (b1, b2, b3), and ¢ = (c1, ¢z, c3).
Then r’(t) = 2t a + b which says that each tangent vector is the sum of a scalar multiple of a and the vector b. Thus the
tangent vectors are all parallel to the plane determined by a and b so the curve must be parallel to this plane. [Here we assume

that a and b are nonparallel. Otherwise the tangent vectors are all parallel and the curve lies along a single line.] A normal
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vector for the plane is a X b = (azbs — asba, asb1 — a1bs, a1ba — azby). The point (c1, ¢z, c3) lies on the plane (when
t = 0), so an equation of the plane is

(a2b3 — a3b2)(1' — Cl) -+ ((Igbl — albg)(y — CQ) -+ (albz — agbl)(z — 63) =0
or

(a2bs — agba)x + (asbi — a1bs)y + (ai1bzs — a2b1)z = azbsc1 — asbaci + asbica — arbsca + a1bacs — asbics
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141 Functions of Several Variables

1. (a) From Table 1, f(—15,40) = —27, which means that if the temperature is —15°C and the wind speed is 40 km/h, then the

air would feel equivalent to approximately —27°C without wind.

(b) The question is asking: when the temperature is —20°C, what wind speed gives a wind-chill index of —30°C? From

Table 1, the speed is 20 km/h.

(c) The question is asking: when the wind speed is 20 km/h, what temperature gives a wind-chill index of —49°C? From

Table 1, the temperature is —35°C.

(d) The function W = f(—5,v) means that we fix 7" at —5 and allow v to vary, resulting in a function of one variable. In
other words, the function gives wind-chill index values for different wind speeds when the temperature is —5°C. From
Table 1 (look at the row corresponding to 7" = —5), the function decreases and appears to approach a constant value as v
increases.

(e) The function W = f(T, 50) means that we fix v at 50 and allow 7" to vary, again giving a function of one variable. In
other words, the function gives wind-chill index values for different temperatures when the wind speed is 50 km/h . From

Table 1 (look at the column corresponding to v = 50), the function increases almost linearly as 7" increases.

3. P(120,20) = 1.47(120)°%(20)%® a 94.2, so when the manufacturer invests $20 million in capital and 120,000 hours of

labor are completed yearly, the monetary value of the production is about $94.2 million.

5. (a) (160, 70) = 0.1091(160)%*2%(70)%72® ~ 20.5, which means that the surface area of a person 70 inches (5 feet 10

inches) tall who weighs 160 pounds is approximately 20.5 square feet.

(b) Answers will vary depending on the height and weight of the reader.

7. (a) According to Table 4, f(40,15) = 25, which means that if a 40-knot wind has been blowing in the open sea for 15 hours,

it will create waves with estimated heights of 25 feet.

(b) h = f(30,t) means we fix v at 30 and allow ¢ to vary, resulting in a function of one variable. Thus here, h = f(30,t)
gives the wave heights produced by 30-knot winds blowing for ¢ hours. From the table (look at the row corresponding to
v = 30), the function increases but at a declining rate as ¢ increases. In fact, the function values appear to be approaching a

limiting value of approximately 19, which suggests that 30-knot winds cannot produce waves higher than about 19 feet.

(¢) h = f(v,30) means we fix ¢ at 30, again giving a function of one variable. So, h = f(v, 30) gives the wave heights
produced by winds of speed v blowing for 30 hours. From the table (look at the column corresponding to ¢ = 30), the
function appears to increase at an increasing rate, with no apparent limiting value. This suggests that faster winds (lasting

30 hours) always create higher waves.
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9. (a) g(2,—1) = cos(2+ 2(—1)) = cos(0) =1
(b) x + 2y is defined for all choices of values for = and y and the cosine function is defined for all input values, so the domain
of g is R%
(c) The range of the cosine function is [—1, 1] and « + 2y generates all possible input values for the cosine function, so the

range of cos(z + 2y) is [—1, 1].

M @ f(1,1,1)=vVI+vVI+vVI+n4—-12-12-12)=3+In1=3
(b) vz, \/y, /7 are defined only when = > 0,y > 0, z > 0, and In(4 — 2? — y? — 2?) is defined when
4—2*—9y*—22 >0 & 2°+9®+ 2% < 4, thus the domain is
{(z,y,2) | 2y +22<4,2>0,y>0, 2> 0}, the portion of the interior of a sphere of radius 2, centered at the

origin, that is in the first octant.

13. /2x — y is defined only when 2z — y > 0, 0r y < 2. 15. In(9 — 2® — 9y?) is defined only when
So the domain of f is {(z,y) | y < 2z}. 9 —2® — 9y® > 0, 0or $2° + y*> < 1. So the domain of f
y is {(z,y) | £2® 4+ y* < 1}, the interior of an ellipse.
y
0 x gxltyt=
y=2x :/ —————————— \s\
NN 0 X
17. /1T — 22 is defined only when 1 — z > 0, or 19. \/y — 22 is defined only when y — 2% > 0, or y > z2.
22 <1 & —1<z<1,and /1 — y2 is defined In addition, f is not defined if 1 — 2> =0 <
onlywhenl —y? > 0,0ry> <1 < —-1<y<l. 2 = +1. Thus the domain of f is
Thus the domain of f is {(z,y) |y > 2?, ©#+1}.
y
y=x!
1
-1 0 1 X —:1 0 =1 x
-1
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21. Weneed1 — 22 — ¢y — 22 >0o0rz? + 92 + 22 < 1, 23. z = 1 + y, a plane which intersects the yz-plane in the

soD = {(a:, Y, 2) | 22 4+yP 422 < 1} (the points inside line z = 1 4 y, x = 0. The portion of this plane for

or on the sphere of radius 1, center the origin). x >0,z > 0is shown.

\\\\\ (0,71)
0
0,-1,0)
X y

25. z = 10 — 4z — by or 4z + 5y + z = 10, a plane with 27. z = y? + 1, a parabolic cylinder

intercepts 2.5, 2, and 10. z

z

=

29, z =9 — 22 — 9y, an elliptic paraboloid opening Mz=\/4—422 —y2soda’ +y°> + 22 =4dor
downward with vertex at (0,0, 9). . Yy 2P
x4+ T +Z = 1and z > 0, the top half of an
ellipsoid.

(3,0,0)

(1,0,0)

33. The point (—3, 3) lies between the level curves with z-values 50 and 60. Since the point is a little closer to the level curve with
z = 60, we estimate that f(—3,3) ~ 56. The point (3, —2) appears to be just about halfway between the level curves with

z-values 30 and 40, so we estimate f(3, —2) ~ 35. The graph rises as we approach the origin, gradually from above, steeply

from below.
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35. The point (160, 10), corresponding to day 160 and a depth of 10 m, lies between the isothermals with temperature values

of 8 and 12°C. Since the point appears to be located about three-fourths the distance from the 8°C isothermal to the 12°C

isothermal, we estimate the temperature at that point to be approximately 11°C. The point (180, 5) lies between the 16 and

20°C isothermals, very close to the 20°C level curve, so we estimate the temperature there to be about 19.5°C.

37. Near A, the level curves are very close together, indicating that the terrain is quite steep. At B, the level curves are much

farther apart, so we would expect the terrain to be much less steep than near A, perhaps almost flat.

39. :

43. The level curves are (y — 2x)° = kory = 2z &+ V&,
k > 0, a family of pairs of parallel lines.

y

4321 0 1234

47. The level curves are ye” = k or y = ke~ ", a family of

exponential curves.

41.

45. The level curves are /T +y = kory = —/T + k,a
family of vertical translations of the graph of the root
function y = —+/z.

y

49, The level curves are \/y? — 22 = k or y* — 2% = k?,
k > 0. When k = 0 the level curve is the pair of lines
y = =£z. For k > 0, the level curves are hyperbolas

with axis the y-axis.
%

=
2
0
O X
1
2
\

y
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51. The contour map consists of the level curves k = = 4 932, a family of

ellipses with major axis the x-axis. (Or, if £ = 0, the origin.)

The graph of f(z,y) is the surface z = x® + 9y?, an elliptic paraboloid.

y

—

%
NN

i

\

=4

If we visualize lifting each ellipse & = = + 9y of the contour map to the plane

z = k, we have horizontal traces that indicate the shape of the graph of f.

53. The isothermals are given by k = 100/(1 + 2° + 2y?) or

22 + 2y* = (100 — k) /k [0 < k < 100], a family of ellipses.

85. f(,y) = xy® —2®

7
il
AN
/4403’{/,{{:::::::.:.‘ “
K

:‘33‘:“
N
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A
- Y
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The traces parallel to the yz-plane (such as the left-front trace in the graph above) are parabolas; those parallel to the xz-plane

(such as the right-front trace) are cubic curves. The surface is called a monkey saddle because a monkey sitting on the surface

near the origin has places for both legs and tail to rest.

57. f(z,y) = e (" HV)/3 (sin(z?) + cos

—~

y?))
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59.

O CHAPTER14 PARTIAL DERIVATIVES

z = sin(zy) (@C (b) I1
Reasons: This function is periodic in both x and y, and the function is the same when z is interchanged with y, so its graph is

symmetric about the plane y = . In addition, the function is 0 along the x- and y-axes. These conditions are satisfied only by

Cand II.
61. z =sin(z — y) (@) F (b) 1
Reasons: This function is periodic in both = and y but is constant along the lines y = x + k, a condition satisfied only
by F and 1.
6. 2=(1-2)1-9*) (@B (b)VI
Reasons: This function is 0 along the lines x = 4+1 and y = +1. The only contour map in which this could occur is VI. Also
note that the trace in the x2-plane is the parabola z = 1 — 2 and the trace in the yz-plane is the parabola z = 1 — 2, so the
graph is B.
65. k = x + 3y + 5z is a family of parallel planes with normal vector (1, 3, 5).
67. Equations for the level surfaces are k = 3> + z2. For k > 0, we have a family of circular cylinders with axis the z-axis and
radius v/k. When k = 0 the level surface is the z-axis. (There are no level surfaces for k < 0.)
69. (a) The graph of g is the graph of f shifted upward 2 units.
(b) The graph of g is the graph of f stretched vertically by a factor of 2.
(c) The graph of g is the graph of f reflected about the zy-plane.
(d) The graph of g(z,y) = — f(z,y) + 2 is the graph of f reflected about the zy-plane and then shifted upward 2 units.
. f(z,y) =3z — z* — 49> — 10zy

n'

““
W‘
WW

Three-dimensional view Front view

It does appear that the function has a maximum value, at the higher of the two “hilltops.” From the front view graph, the
maximum value appears to be approximately 15. Both hilltops could be considered local maximum points, as the values of f
there are larger than at the neighboring points. There does not appear to be any local minimum point; although the valley shape

between the two peaks looks like a minimum of some kind, some neighboring points have lower function values.
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xr+y
72 yz'

As both x and y become large, the function values

[z, y) =
appear to approach 0, regardless of which direction is considered. As
(z,y) approaches the origin, the graph exhibits asymptotic behavior.
From some directions, f(z,y) — oo, while in others f(z,y) — —oc.
(These are the vertical spikes visible in the graph.) If the graph is
examined carefully, however, one can see that f(z,y) approaches 0

along the liney = —x.

7. f(z,y) = ecm’ v’ First, if ¢ = 0, the graph is the cylindrical surface

y
Nk

2 . .
z = e¥ (whose level curves are parallel lines). When ¢ > 0, the vertical trace 4

above the y-axis remains fixed while the sides of the surface in the x-direction

“curl” upward, giving the graph a shape resembling an elliptic paraboloid. The

level curves of the surface are ellipses centered at the origin.

-1

\ ~°~~"}' 4/// // 12
LN : .

¢ = 0.5 (level curves in increments of 1)

For ¢ = 1 the level curves are circles centered at the origin.

|
—_
S}

¢ = 1 (level curves in increments of 1)

[continued]
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When ¢ > 1, the level curves are ellipses with major axis the y-axis, and the eccentricity increases as c increases.

1.2

¢ = 2 (level curves in increments of 4)
For values of ¢ < 0, the sides of the surface in the z-direction curl downward and approach the xy-plane (while the vertical
trace x = 0 remains fixed), giving a saddle-shaped appearance to the graph near the point (0,0, 1). The level curves consist of
a family of hyperbolas. As c decreases, the surface becomes flatter in the z-direction and the surface’s approach to the curve in

the trace z = 0 becomes steeper, as the graphs demonstrate.

Y
7=

N
=

I /77 77
- 7
i

0 A 2y y o
77
s,

¢ = —2 (level curves in increments of 0.25)

77. z = 2% + y? + cxy. When ¢ < —2, the surface intersects the plane z = k # 0 in a hyperbola. (See the following graph.)
It intersects the plane = = y in the parabola z = (2 4 c)z?, and the plane x = —y in the parabola z = (2 — c)z>. These
parabolas open in opposite directions, so the surface is a hyperbolic paraboloid.
When ¢ = —2 the surface is z = 2% + y* — 2oy = (z — y)Q. So the surface is constant along each line z — y = k. That
is, the surface is a cylinder with axis ¢ — y = 0, z = 0. The shape of the cylinder is determined by its intersection with the

plane 2 + y = 0, where z = 422, and hence the cylinder is parabolic with minima of 0 on the line y = x.
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c=—-5,z=2
When —2 < ¢ < 0, z > 0 for all z and y. If x and y have the same sign, then
22 + % + cxy > 2% +y? — 22y = (x — y)® > 0. If they have opposite signs, then czy > 0. The intersection with the
surface and the plane z = k > 0 is an ellipse (see graph below). The intersection with the surface and the planes x = 0 and

y = 0 are parabolas z = 3? and z = x? respectively, so the surface is an elliptic paraboloid.

When ¢ > 0 the graphs have the same shape, but are reflected in the plane x = 0, because
22 + % + coy = (—x)° + y? + (—c)(—x)y. That is, the value of z is the same for c at (z, y) as it is for —c at (—z, ).

2

A

-2

c=—-1,2z=2

So the surface is an elliptic paraboloid for 0 < ¢ < 2, a parabolic cylinder for ¢ = 2, and a hyperbolic paraboloid for ¢ > 2.

_ arrl—a £_ [ Pte B_ £O‘ B— £a
79. (a) P = bL°K =5 Z=OETY s p=b(g) = mp=h(b( =

lng zlnb—l—aln(%)

(b) We list the values for In(L/K) and In(P/K) for the years 1899—1922. (Historically, these values were rounded to

2 decimal places.)

Year |  =In(L/K) | y =In(P/K) Year | x =In(L/K) | y =In(P/K)
1899 0 0 1911 —0.38 —0.34
1900 —0.02 —0.06 1912 —0.38 —0.24
1901 —0.04 —0.02 1913 —0.41 —0.25
1902 —0.04 0 1914 —0.47 —0.37
1903 —0.07 —0.05 1915 —0.53 —0.34
1904 —-0.13 —0.12 1916 —0.49 —0.28
1905 —0.18 —0.04 1917 —0.53 —0.39
1906 —0.20 —0.07 1918 —0.60 —0.50
1907 —0.23 —0.15 1919 —0.68 —0.57
1908 —0.41 —0.38 1920 —0.74 —0.57
1909 —0.33 —0.24 1921 —1.05 —0.85
1910 —0.35 —0.27 1922 —0.98 —0.59
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After entering the (x, y) pairs into a calculator or CAS, the resulting least squares regression line through the points is

approximately y = 0.751362 + 0.01053, which we round to y = 0.75x + 0.01.
(c) Comparing the regression line from part (b) to the equation y = Inb + ax with x = In(L/K) and y = In(P/K), we have
a=0.75andInb =001 = b=e%% = 1.01. Thus, the Cobb-Douglas production function is

P=bLK'"® = 1.01L* ™ K%%,

14.2 Limits and Continuity

1. In general, we can’t say anything about f(3,1)! f(x,y) = 6 means that the values of f(x,y) approach 6 as

lim
(z,y)—(3,1)

(z,y) approaches, but is not equal to, (3, 1). If f is continuous, we know that ( %un( » flz,y) = f(a,b), so
x,y)—\a,

lim  f(z,y) = f(3,1) =6.

(z,y)—(3,1)
3. We make a table of values of A y| —02 | =01 | —005 0 0.05 0.1 02
2,3 3,2
f($7y)zwforaset —02 | -2551| —2.525 | —2.513 | —2.500 | —2.488 | —2.475 [ —2.451

2—xy

—0.1 | —2.525 | —=2.513 | —=2.506 | —2.500 | —2.494 | —2.488 | —2.475

of (z,y) points near the origin.
—0.05 [ —2.513 | —2.506 | —2.503 | —2.500 | —2.497 | —2.494 [ —2.488

0 —2.500 | —2.500 | —2.500 —2.500 | —2.500 | —2.500

0.05 | —2.488 [ —2.494 | —2.497 | —2.500 | —2.503 | —2.506 | —2.513

0.1 | —2.475 | —2.488 | —2.494 | —2.500 | —2.506 | —2.513 | —2.525

02 | —2451 | —2.475 | —2.488 | —2.500 | —2.513 | —2.525 | —2.551

As the table shows, the values of f(z,y) seem to approach —2.5 as (z, y) approaches the origin from a variety of different

directions. This suggests that( %ml( ) f(z,y) = —2.5. Since f is a rational function, it is continuous on its domain. f is
z,y)—(0,0
: - . . 00 +0°0* — 5 5
defined at (0, 0), so we can use direct substitution to establish that ~ lim  f(z,y) = —————— = — =, verifying
(2,y)—(0,0) 2—-0-0 2

our guess.

5. f(x,y) = 52® — x®y? is a polynomial, and hence continuous, so  lim  f(x,y) = f(1,2) = 5(1)3 - (1)2(2)2 =1.

(z,y)—(1,2)
4—zy . . . . . .
7. f(z,y) = ———== is arational function and hence continuous on its domain.
2 + 3y2
(2,1) is in the domain of f, so f is continuous thereand  lim  f(z,y) = f(2,1) = A-@0) 2
’ ’ oy Y TSV T aEn e T T

9. f(z,y) = (z* — 4y?)/(z* + 2y?). First approach (0, 0) along the z-axis. Then f(z,0) = 2*/2? = 2? for 2 # 0, so
f(z,y) — 0. Now approach (0, 0) along the y-axis. Fory # 0, f(0,y) = —4y*/2y*> = —2, so f(x,y) — —2. Since f has

two different limits along two different lines, the limit does not exist.
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f(z,y) = (*sin®z)/(z* + y*). On the z-axis, f(z,0) = 0 for x # 0, so f(z,y) — 0as (z,y) — (0,0) along the

22 . 2 .
. . . 1
x-axis. Approaching (0, 0) along the line y = z, f(z,z) = T T2 (smm

2
) for z # 0 and

xt+t T 222 2
lir% sn;x =1,s0 f(z,y) — % Since f has two different limits along two different lines, the limit does not exist.
flz,y) = —2Y . We can see that the limit along any line through (0, 0) is 0, as well as along other paths through

(0,0) such as = y* and y = . So we suspect that the limit exists and equals 0; we use the Squeeze Theorem to prove our

Yy

assertion. 0 < < |z| since |y| < y/2? +y?, and |z| — O as (z,y) — (0,0). So  lim  f(z,y) =0.

(#,9)—(0,0)

2, .Y
Let f(z,y) = meyZyQ' Then f(x,0) = 0 for x # 0, so f(z,y) — Oas (z,y) — (0,0) along the xz-axis. Approaching
22z ™ zher® &
(0,0) along the y-axis or the line y = « also gives a limit of 0. But f(z,z%) = A T B 5 for z # 0, so

f(z,y) — €°/5 =1 as (z,y) — (0,0) along the parabola y = z*. Thus the limit doesn’t exist.

: 2’ + . a® + ¢ 2?4y +1+1
lim ————--—= lim .
(y)—=00,0) /2 +9y2+1—-1 (@»—=00) /2 +y2+1-1 Jx2+y2+1+1

N 0 | VR B, (V@ Tie1) =2

(z,4)—(0,0) 22 +y? (z,4)—(0,0)

e¥" is a composition of continuous functions and hence continuous. zz is a continuous function and tan ¢ is continuous for

t # & + nm (n an integer), so the composition tan(xz) is continuous for xz # % + nm. Thus the product
2 . . .
f(x,y,z) = € tan(zz) is a continuous function for zz # £ + n7. Ifz = wand z = % then 2z # Z + nm, so

f(z,y,2) = f(m,0,1/3) = e tan(w - 1/3) = 1 - tan(7/3) = /3.

(z,y,2 )H(7r 0,1/3)

Y + y22 + z2?

Er T A Then f(x,0,0) = 0/x* = 0 for 2 # 0, so as (x,y, z) — (0, 0,0) along the z-axis,

fz,y,2) =

f(z,y,2) — 0. But f(z,z,0) = 2*/(22%) = 1 forz # 0, so as (z,y, 2) — (0,0, 0) along the liney = z, 2 = 0,

f(x,y,2) — 3. Thus the limit doesn’t exist.

From the ridges on the graph, we see that as (x,y) — (0, 0) along the
lines under the two ridges, f(x,y) approaches different values. So the

limit does not exist.
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25. h(z,y) = g(f(x,y)) = (22 + 3y — 6)> + \/2x + 3y — 6. Since f is a polynomial, it is continuous on R? and g is
continuous on its domain {¢ | ¢ > 0}. Thus A is continuous on its domain.

D ={(z,y) | 20+ 3y —6 > 0} = {(z,y) | y > —2x + 2}, which consists of all points on or above the line y = — 2z + 2.

From the graph, it appears that f is discontinuous along the line y = z.

If we consider f(z,y) = e'/(®™¥) as a composition of functions,

g(z,y) = 1/(xz — y) is a rational function and therefore continuous except
wherex —y =0 =y = . Since the function h(t) = €’ is continuous

everywhere, the composition 2 (g(z,y)) = e/ @~ = f(z,y) is

continuous except along the line y = x, as we suspected.

Ty . .
— s continuous

29. The functions zy and 1 + e®~¥ are continuous everywhere, and 1 + e~ is never zero, so F(z,y) = =
e.’L‘

on its domain R2.

1422 44
1—a22—y?

{(,y) | 1—2® —y® #0} ={(z,y) | 2® + y* # 1}.

M. F(z,y) = is a rational function and thus is continuous on its domain

33. G(z,y) = In(x® +y* — 4) = g(f(x,y)) where f(z,y) = 2% + y* — 4, continuous on R?, and g(t) = Int, continuous on its
domain {¢ | t > 0}. Thus G is continuous on its domain {(z,y) | 2° +y* —4 > 0} = {(z,y) | 2° +y* > 4}, the exterior

of the circle z + y? = 4.

35. f(z,y,2) = h(g(z,vy, 2)) where g(z,y, 2) = 2> + y*> + 22, a polynomial that is continuous
everywhere, and h(t) = arcsin ¢, continuous on [—1, 1]. Thus f is continuous on its domain
{(z,y,2)| -1 < 2 +y2 + 22 < l} = {(Ly,z) | 2% + % + 2% < 1}, so f is continuous on the unit ball.
2,3
x .
g i @y) #(0,0) . o .
3. f(z,y) =1 22> +vy The first piece of f is a rational function defined everywhere except at the
1 if (z,y) = (0,0)

origin, so f is continuous on R? except possibly at the origin. Since z? < 22 + y2, we have |w2y3/(2:132 + y2)| < {y?”. We

22
know that |¢®| — 0 0,0). So, by the S Th li = I —Z =0
now tha |y | — 0as (z,y) — (0,0). So, by the Squeeze Theorem, (m,y)lin(o,o)f(m’ Y) (x’y)lin(o,o) 222 + o2

But f(0,0) = 1, so f is discontinuous at (0, 0). Therefore, f is continuous on the set {(z,y) | (z,y) # (0,0)}.

3, .3 3 .3
39.  lim m2 Ty lim (rcos)” + (rsinf) = lim (rcos® 6 +rsin®0) =0

(z,9)—(0,0) 2 +y2  r_o+ r2 r—0+

2 2 2 2
. e T TV —1 e T =1 . e T (=2r) . .

41. 1 ——=1 —— =1 _— I’Hospital’s Rul

(z,y)lin(o,o) 2 492 o T 12 o 2r [using I"Hospital’s Rule]

= lim e =—¢’ =—1
r—0t
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sin(zy) .
feg) =1z f (z,y) # (0,0)
1 if (z,y) = (0,0)

From the graph, it appears that f is continuous everywhere. We know

xy is continuous on R? and sin ¢ is continuous everywhere, so

. . . sin(zy) . .
sin(zy) is continuous on R? and sin(zy) is continuous on R?
Ty

except possibly where xy = 0. To show that f is continuous at those points, consider any point (a, b) in R? where ab = 0.

Because zy is continuous, zy — ab = 0 as (z,y) — (a,b). If we let t = zy, then t — 0 as (z,y) — (a, b) and

sin(zy) . sin(t) . . . .
1 = lim = 1 by Equation 2.4.2 [ET 3.3.2]. Thus  lim z,y) = f(a,b) and f is continuous
(zy)—(ab)  TY t—0 1 v [ ] (z,y)—(a,b) f(@y) = J(a.b) f

on R%,
Since |x — a|® = |x|* + |a]® — 2|x]|a| cos 6 > |x|* + |a|* — 2 x| |a] = (|x| — |a])?, we have |[x| —|a|| <|x —al. Let

€ > 0 be given and set 6 = €. Then if 0 < |x — a|] < 4,

x| — |a|| < |x —a|] < § = e. Hence limy s |x| = |a| and

f (x) = |x] is continuous on R™.

14.3 Partial Derivatives

1.

3. (a) By Definition 4, fr(—15,30) = }lir%

(a) 9T/ Ox represents the rate of change of 7' when we fix y and ¢ and consider 7" as a function of the single variable 2, which
describes how quickly the temperature changes when longitude changes but latitude and time are constant. 97'/dy
represents the rate of change of 1" when we fix « and ¢ and consider 7" as a function of y, which describes how quickly the
temperature changes when latitude changes but longitude and time are constant. 97"/t represents the rate of change of T’
when we fix x and y and consider 7" as a function of ¢, which describes how quickly the temperature changes over time for

a constant longitude and latitude.

(b) f»(158,21,9) represents the rate of change of temperature at longitude 158°W, latitude 21°N at 9:00 am when only
longitude varies. Since the air is warmer to the west than to the east, increasing longitude results in an increased air
temperature, so we would expect f (158,21, 9) to be positive. f, (158,21, 9) represents the rate of change of temperature
at the same time and location when only latitude varies. Since the air is warmer to the south and cooler to the north,
increasing latitude results in a decreased air temperature, so we would expect f, (158,21, 9) to be negative. f;(158,21,9)
represents the rate of change of temperature at the same time and location when only time varies. Since typically air
temperature increases from the morning to the afternoon as the sun warms it, we would expect f;(158,21,9) to be

positive.

F(=15 + h, 30) — f(—15,30)

h , which we can approximate by considering h = 5

and h = —5 and using the values given in the table:
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fr(15.30) ~ £(Z10:30) — F(Z15,30) _ 20— (=26) _6 _,,
5 5 5
fr(—15,30) ~ F(=20, 30)__5f(_15’ 30) _ —33 :2_26) = :—; = 1.4. Averaging these values, we estimate

fr(—15,30) to be approximately 1.3. Thus, when the actual temperature is —15°C and the wind speed is 30 km/h, the
apparent temperature rises by about 1.3°C for every degree that the actual temperature rises.

-1 h) — f(—1 . . D
7(=15,30 + ) — f(~15,30) which we can approximate by considering h = 10

Similarly, f,(—15,30) = }lbir%

h
. _ " f(—15,40) — f(—15,30)  —27 —(—26) -1 _
and h = —10: f,(—15,30) ~ s = o =15 = 0L
fu(—15,30) =~ f(715’20)_71({(715’30) = 724:1(0726) = —il() = —0.2. Averaging these values, we estimate

fu(—15,30) to be approximately —0.15. Thus, when the actual temperature is —15°C and the wind speed is 30 km/h, the

apparent temperature decreases by about 0.15°C for every km/h that the wind speed increases.

(b) For a fixed wind speed v, the values of the wind-chill index W increase as temperature 7" increases (look at a column of

oW . .. . .
the table), so T is positive. For a fixed temperature 7", the values of W decrease (or remain constant) as v increases

(look at a row of the table), so 88—‘1/ is negative (or perhaps 0).

(c) For fixed values of T, the function values f(T’,v) appear to become constant (or nearly constant) as v increases, so the

corresponding rate of change is 0 or near 0 as v increases. This suggests that lim (OW/dv) = 0.

. (a) If we start at (1, 2) and move in the positive z-direction, the graph of f increases. Thus f. (1, 2) is positive.

(b) If we start at (1, 2) and move in the positive y-direction, the graph of f decreases. Thus f, (1, 2) is negative.

. @) fox = %( fz), 80 fza is the rate of change of f, in the z-direction. f, is negative at (—1,2) and if we move in the

positive z-direction, the surface becomes less steep. Thus the values of f, are increasing and f..(—1, 2) is positive.

(b) fyy is the rate of change of f, in the y-direction. f, is negative at (—1, 2) and if we move in the positive y-direction, the

surface becomes steeper. Thus the values of f, are decreasing, and f,,(—1, 2) is negative.

First of all, if we start at the point (3, —3) and move in the positive y-direction, we see that both b and ¢ decrease, while a
increases. Both b and ¢ have a low point at about (3, —1.5), while a is 0 at this point. So a is definitely the graph of f,, and
one of b and c is the graph of f. To see which is which, we start at the point (—3, —1.5) and move in the positive z-direction.
b traces out a line with negative slope, while c traces out a parabola opening downward. This tells us that b is the z-derivative

of c. So c is the graph of f, b is the graph of f.., and a is the graph of f,.
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flz,y) =16 —42® —¢y* = fo(z,y) = —8zand f,(z,y) = 2y = f.(1,2) = —8and f,(1,2) = —4. The graph

of f is the paraboloid z = 16 — 422 — 2 and the vertical plane y = 2 intersects it in the parabola z = 12 — 422, y = 2

(the curve C in the first figure). The slope of the tangent line
to this parabola at (1,2, 8) is f»(1,2) = —8. Similarly the
plane = = 1 intersects the paraboloid in the parabola

z =12 — y?, = = 1 (the curve C» in the second figure) and

the slope of the tangent line at (1,2, 8) is f,(1,2) = —4.

f(,y) =2y = fo=2xy° [, =32

Note that traces of f in planes parallel to the xz-plane are parabolas which open downward for y < 0 and upward for y > 0,

and the traces of f,, in these planes are straight lines, which have negative slopes for y < 0 and positive slopes for y > 0. The

traces of f in planes parallel to the yz-plane are cubic curves, and the traces of f, in these planes are parabolas.

flxy)=9y® =3zy = fo(z,y) =0—3y = -3y, fy(z,y) =5y* — 3z

Fa,t)=eteosmr = fo(z,t) = et (—sinmz) (1) = —me ' sinmz, fi(z,t) = e (—1)cosmz = —e "t cos T
z=(2x+3y)"° = % =10(2x + 3y)° - 2 = 20(2z + 3y)°, g—z =10(2z + 3y)? - 3 = 30(2z + 3y)°
fay)=a/y=ay™" = folz,y) =y ' =1/y, fu(x,y) = —ay? = —a/y?

fay) =2 sz = fa(wy) = EF dy@; ;;)w +by)(e) _ Ezj; Zy))y

e
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5

g(u,v) = (WPv —v*)° = gu(u,v) = 5uiv — v¥)* - 2uv = 10uv(uv — v*)*,

go(u,v) = 5(uv — v*)*(u? — 3v?) = 5(u? — 30?)(v?v — v3)*
2

1+ (pg?)? 1+ p2q?’

R(p,q) =tan""'(pq®) = Rp(p,q) Ry(p.q) =

1+ (pg?)?
F(x,y) = / cos(e)dt = Fy(z,y) = 81 / cos(e') dt = cos(e”) by the Fundamental Theorem of Calculus, Part 1;
y Tty

T Yy Yy
Fy(z,y) = gy/ cos(e') dt = 82 [—/ cos(e") dt} = _%/ cos(e') dt = —cos(e”).
Yy x T

4

f(@,y,2) =22 —52%y°2" = fa(z,y,2) =2 —102y°2", fy(z,y,2) = —152°y>2", f(2,y,2) =z — 202°y°2°

w=In(x+2y+32) = ow__ 1 Ow_ 2 ow_ 3
- Y Or  x+2y+32" 0y ax+2y+32 0z x+2y+32

u=zysin"'(yz) = _(9u = ysin™*(yz) _8u =zy- __ (2) +sin"!(yz)-x = _MYE +xsin~! (yz)
0w " Oy V1= (yz)? V1 —y22? ’
ou

1 zy?
e G- =
7 = G (y) e
h(z,y, z,t) = 2%y cos(z/t) = ha(x,y,2,t) = 2xycos(z/t), hy(z,y,z,t) = 2 cos(z/t),

he(z,y, 2,t) = —2®ysin(z/t)(1/t) = (—x2y/t) sin(z/t), h(x,y, 2, t) = —xysin(z/t)(—2t™?) = (x2yz/t?) sin(z/t)

= 5 — _ 1 2 2 2\—1/2 _ xT;
u=+/x?+a3+---+a2. Foreachi=1,..,n us, =3 (27 +a5+---+a}) (2$i)7\/x§+x§+---+x%.

f(amy):ln(m—&— x2+y2) =

1 1 T
2 (2,) = ——————= |1+ 1(a® +4*)7/%(22) | = 1+ ,
fo(2,3) x4+ m2+y2[ () )} x4 \/x? +y? Vaz+y?
1 3
so fz(3,4) = 1+ =1(143)=1
f( ) 3+\/32+42< \/32+42) 8( 5) 5
Yy _l@ty+2)—yl)  xtz
f(x’y’z)_m—i—y—i—z = fy(x,y,z)— (m+y+z)2 _(x+y+z)2’
24 (1) 1

so fy(2,1,—-1) = m =7

flay) =ay® — 2%y =

. h,y) — f(=, : hy? = (z + h)%y — (xy? — o
fz(m’y):%%f(wr yf)L f(ﬂry):}}%(ﬁ )y (w+h)y (zy” — =%y)

. h(y* — 32%y — 3zyh — yh?)

= lim 7 = lim (y* — 32y — Bayh — yh?) = y* — 327y
o Sy h) = fley) L xy+h)? =2y +h) - (ey® —a’y) . h(2ey 4 xh —a®)
fue0) = jim g i z L R T

= }lbin%)(?xy +zh — 2%) = 22y — 2°
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2x+0+6z%:0 = 62%2—2x =
Ox Ox

9z _“2x_ x4 9 202 3.9 9z _ 9z _ _
% 6 3Z,anday(ac +2y —|—3z)—8y(1) = 0+4y+626y—0 = Gzay— vy =
Oz _ Ay _ %y
oy 6z 3z
. _ 9 ey 2 202 _ (9%, 202 0%
49. " =ayz = %(e)— (zyz) = e 3 —y(zam—i—z 1) = e 9 Yo, = VF =
z _ % _Zi Yyz
(e aL’y)&C—yz,so8 = e
3(ez)—g(m z) = ez%—m %Jrz-l = ez%fx %—xz = (ezfx)%—xzso
gy ¢ T By WY oy \Y oz o Yoy T Yy =%
9z =
Oy e —uxy’
0z , dz
Mo@z=f@)+ely) = =@, 5 =W

Letu:ery.Then%*dfau df

®) z= f(x+y). 9~ dude — du

0z _ df du _ df

5 = dn g = 3 W =Fw=Fty).

83. f(x,y) = 2°y° + 22"y

=) =[f'(u) =f(z+y)

= fo(z,y) = 3225 + 823y, f,(x,y) = bz®y* + 22*. Then fo.(z,y) = 62y® + 242>y,

foy(x,y) = 152°y* + 82°, fyu(z,y) = 1627y 4 82%, and fy, (z,y) = 202°y°.

u

585. w=+vuZ + 12 = w, =30+ 2u=

VR —u gl +02)712(2u)

Wy = %(UZ + ’1)2)_1/2 20 =

(%

Voo hen

VuZ + 02 —u?/Vu2 02w +o? - v?

Wyu = =

(VuZ +0%)°

W = u (-3) (0 +0?) 2 (20) = -

(u? +v2)3/2°

_lvur 4t —w. L(w? +0?) 72 (2v)

u? + v?

Wy =V (—%) (u2 + v2)73/2 (2u) = —

- (u2 +v2)3/2 - (u2 +v2)3/2’

uv
(u? +0v2)3/2°

Vi 02 — 0¥V F02 0 w4 0? —o? u?

Wov (V@& T ) - u? + 2 S W) (w4 e?)P
57. z = arctan Tty =
1—2xy
1 WA —zy) —(z+y)(~y) _ 1+y° L+y°

Zx: 3 . —
© 1—xy)?

1+ 92 1
(1+a2)(1+y2)  1+a?

(=22 +@+y)? 1+ +y° +a7y?
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i 1 (WA —=2y) — (= +y)(—=z) _ 1422 _ 1422 __1
g (f_—gyyf (1 —ay)? (A —zy)?+(z+y)? (+22)1+y%) 149>
2z 2y

Then 2, = —(1 4+ 2%)"2 - 220 = — Zay =0, 2y2 = 0, 24y = —(14+9%)72 -2y =

59, u =z —y! = wu, =425, Ugy = 12z3y? and Uy = 3azty? — 493, Uyg = 122392
Thus Uy = Uya.-

61. u = cos(z?y) = wu, = —sin(z?y) - 22y = —2wysin(z?y),
Ugy = —2wy - cos(x?y) - 22 + sin(z?y) - (—2z) = —22%y cos(x®y) — 2x sin(x?y) and

2

uy = —sin(z?y) - 2? = —z?sin(z?y), Uy = —a?

-cos(z?y) - 2y +sin(z?y) - (—22) = —223y cos(x?y) — 22 sin(z?y).
Thus Ugy = Uy

63. f(z,y) =2y’ — 2%y = fo=42%% — 32y, fur = 122%y% — 62y, free = 24xy® — 6y and
foy = 823y — 322, frys = 242y — 6.

65. f(z,y,2) = e’ = fo= v’ cyz? = yzzezyzz, Foy = y22 - v’ (x2%) + e % = (xyz* + zz)ezyzz,

Joye = (zyzt 4+ 22) - v’ (2zyz) + eV . (4zy2® + 22) = (22%y*2° 4 6ayz® + 2z)ezy22.

67. u = e"?sind = % =" cosf +sinf- e (r) = e (cos O + rsin6),
82” 0 (o1 : 60 0 (L3 :
500~ © (sin®) + (cos@ + rsinf)e™ (9) = €™ (sinf + O cosf + rfsinb),
aSu 0 : : : 0 6 : :
5708~ © (fsinf) 4 (sinf + O cosf + rfsinf) - e™ (0) = fe" (2sin 6 + 0 cos @ + rfsin ).
-
6. w=— = z(y+22)7t = gw _ (y+22)7* i =—(y+22)7%(1) = —(y +22)7?
y+ 22 Ox > Oy ox ’
Pw 376y _3 4 ow o,y o
P2oy0z —(=2)(y+22)7°(2) =4y +22)° = CESDH and i z(—1)(y +22)"°(1) = —2(y +22) ",
0w L, OPw
Oz Oy =-y+2)7 0x2 dy =0

71. Assuming that the third partial derivatives of f are continuous (easily verified), we can write f., = fyz.. Then

fz,y,2) = xy?2® + arcsin(am/g) = f, =20y +0, fyo = 2y2°%, and fyo. = 6y2® = fouy.

F(3+h,2)— f(3,2)

73. By Definition 4, f(3,2) = }lbin%) which we can approximate by considering h = 0.5 and h = —0.5:

h
(35,2 = f(3,2)  224-175 _ _f(25,2) = f(3,2)  102-175 _ .
f=(3,2) = 0E = 05 =9.8, f2(3,2) ~ ~ 0% == = 14.6. Averaging
F(3+h,2.2) — £(3,2.2)

which

these values, we estimate f, (3, 2) to be approximately 12.2. Similarly, f.(3,2.2) = }llin%) -
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we can approximate by considering h = 0.5 and h = —0.5: £,(3,2.2) =~ 1(35, 223; 1(3,22) _ 26'10_515'9 =204,

£(25,22) — £(3,2.2) _ 9.3—15.9

f=(3,2.2) = ~ 0% 05 — = 13.2. Averaging these values, we have f5(3,2.2) =~ 16.8.

To estimate f5,(3,2), we first need an estimate for f;(3,1.8):

_ f(35,1.8) — f(3,1.8) 200181 _ _ f(25,1.8) — f(3,1.8) 125181 _
f2(3,1.8) ~ 0F = =G5 =38L318)~ o == =112

Averaging these values, we get f(3,1.8) = 7.5. Now foy(z,y) = 8%/ [fe(z,y)] and f.(z,y) is itself a function of two

variables, so Definition 4 says that f,,(z,y) = 82 [folz,v)] = lim fe(z,y+ hi)z — fal(2:9) =
y —
feu(3,2) = }lLin%) f=(3,2+ h}z —f:(3:2) . We can estimate this value using our previous work with h = 0.2 and h = —0.2:
o f2(3,2.2) — f2(3,2) 168122 L J2(3,1.8) — f2(3,2)  75-122
fey(3,2) = 02 = 05 =23, f24(3,2) ~ ~02 =92 = 23.5.

Averaging these values, we estimate fxy(3,2) to be approximately 23.25.

2,2 2,2 2,2 2,2
u=e"“*lginkr = wuy==ke “ *tcoskr, ups = —kZe”* ¥ tsinkx, and uy = —a?k?e™ * tsin ka.
Thus o?ugs = us.

1 - —
U= —F———— = Uz = (_%)(~T2 + y2 + 22) 3/2(2$) = —x(xQ =+ y2 + 2;2) 3/2 and

/$2+y2+22

2 2 2\—3/2 3)(..2 2 2\—5/2 —2962 -2
Ugw = —(2° +y° + 27) —x(=3) (@ +y* +2) 7% (2) = (22 1 32 1 22)52
2y? — 2% — 22 222 — 2 — ¢

By symmetry, wyy = o ey and vz = (@2 + 42 +22)5/2

2% —y? — 24P —a? =242y’

0.
(IQ + y2 + 22)5/2

Thus Ugpr + Uyy + Uz =

Letv=x+at, w=x—at. Thenu; = 6[f(v)€; g(w)] = d];(;) % + dil(;u) %—1: =

af'(v) — ag'(w) and

_ 9l (v) — ag'(w)]
ot

gz = f'(v) + ¢ (w) and uze = £ (v) + g’ (w). Thus usr = a*uye.

= alaf” (v) + ag” (w)] = a*[f" (v) + ¢" (w)]. Similarly, by using the Chain Rule we have

Ut

0z € 0z e? 0z 0z € e  e"4e¥

=In(e"+e€Y) = —= = 80 o = =
= In(e" +e) or e*+eY an oy e +ev Soax Jy e$+ey+em+ey er 4 ey

& _ef(e" +e¥) —e(e) erty 0?2 0—eY(e") I and
0z (e +ev)? T (em+ev)2’ 9z0y (e ev)2 T (e® +ev)?’

2 Y (T Y\ _ LY (oY z+y

Q:e(e +eY) e(e): e Thus

o7 GETDe GEEDE

8%z 9%z ( 9%z >2 B sty sty ety 2 B (e¥ty)? (e¥t¥)?
-~ ( 2]

@8_312 B Oz Oy ev + ev)? ’ (e +ev)? N 7(6” +e¥ ev + ev)4 B (e® 4 ev)*
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By the Chain Rule, taking the partial derivative of both sides with respect to R; gives

OR"' OR _ 0[(1/Ry) + (1/Ra) + (1/Rs)) o OR
OR OR: OR:1 OR;

OR R?

= —R;% Thus =—— = —.
1SSk T R

If we fix K = Ko, P(L, Ko) is a function of a single variable L, and % =« % is a separable differential equation. Then

dP

- = a% = /% = /a % = In|P|=aln|L|+ C (Ko), where C(Kp) can depend on Ky. Then

|P| = e~ Il +C(K0) and since P > 0 and L > 0, we have P = !0 LeCK0) — (CKo)n L™ — ¢ (Ko )L where

Cl (Ko) = €C(KO).

(P+ %)(anb) =nRT = T= %(P+%)(V—nb),so g—g = %(1)(1/7%) = V;R"b.

We can also write P + % = Vniﬂ;b = P= anjib - % =nRT(V —nb)™* —n?aV 2 s0

g—‘]j = —nRT(V — nb)~2(1) + 2n2aV 3 = 2323“ - (V”_be)z.

By Exercise 88, PV =mRI = P = mTRT, SO 2_5 = mTR Also, PV =mRT = V = mT{ET and g—; = mTF
Since T' = %,WehaveTg—{; g—; = % . mTR . msz =mR.

g—i = %vQ, %—I; = mu, %20[2{ = m. Thus g—i . 662@[2{ = %vzm =K.

fel,y)=z+4y = foy(x,y)=4and fy(z,y) =3z —y = fya(x,y) = 3. Since f;, and f,, are continuous
everywhere but foy(z,y) # fy=(,y), Clairaut’s Theorem implies that such a function f(z, y) does not exist.

By the geometry of partial derivatives, the slope of the tangent line is f» (1, 2). By implicit differentiation of

4a? + 2% + 22 = 16, we get 8x + 22 (02/0x) =0 = 0z/0x = —4x/z, so when z = 1 and z = 2 we have
0z/0x = —2. So the slope is fz(1,2) = —2. Thus the tangent line is given by z — 2 = —2(x — 1), y = 2. Taking the

parameter to be t = x — 1, we can write parametric equations for this line: x = 1+¢, y =2, 2 =2 — 2t.
By Clairaut’s Theorem, fayy = (ny)y = (fyz)y = fyay = (fy)my = (fy)yx = fyya-

Let g(z) = f(x,0) = z(2®)~3/2e® = x || ~>. But we are using the point (1, 0), so near (1,0), g(z) = 2~2. Then

g'(x) = =223 and ¢’ (1) = —2, so using (1) we have f,(1,0) = ¢'(1) = —2.

@ (b) For (z,y) # (0,0),
322y — ®) (22 + 42 — (23 — 2u®)(2
fola,y) = BTy =y (m2y+>y2)<;y ) (22)
e (m2+y2)2

x® — dxdy? — ay?

and by symmetry fy(z,y) = EEwE

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
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— 2 —
© £.0,0) = jim L0 =TO0 _ (0420

203
h K—0 h = 0and /,(0,0) = fimy h =0
_Ofe _ o fo(0,h) = f2(0,0) L (=R°—0)/RY
(d) By 3), foy(0,0) = By }lbl_% h = }llli% h = —1 while by (2),
_%_ . fy(hvo)ify(ovo) 1 hs/h4 _
i
(e) For (z,y) # (0,0), we use a CAS to compute
28 4+ 9xty? — 927yt — 48 ‘ m‘w‘"‘ i
facy (‘T’y) = 2 2\3 7 ‘\‘ ”m“ %‘:‘:‘.
(=% +y?) : . mmm il
SR iy
Now as (z,y) — (0, 0) along the z-axis, fzy(x,y) — 1 while as l ‘M’I"""’m oy
(z,y) — (0,0) along the y-axis, fzy(z,y) — —1. Thus fy, isn’t

L] M,

&)

i
/

continuous at (0, 0) and Clairaut’s Theorem doesn’t apply, so there is

no contradiction. The graphs of f,, and f,. are identical except at the

origin, where we observe the discontinuity.

14.4 Tangent Planes and Linear Approximations

1. z= f($7y) = 3y2 - 23:2 +x = fx(1’7y) = _4$+ 1’ fy(xvy) = 6y, MY f$(27 _1) - _7’ fy(27 _1) = —6.

By Equation 2, an equation of the tangent plane is z — (—3) = f2(2, —1)(z — 2) + f,(2, —1)[y — (—1)]

=
z243=-T(x—2)—6(y+1) or z=—Tz — 6y +5.

Se=flay) =Vay = foly) =569y =5Vy/e fley) = 3@y 2= 5V/xfy,s0 f2(1,1) = 3
and f,(1,1) = 1. Thus an equation of the tangent plane is z — 1 = fo(1,1)(z — 1) + f,(1,1)(y — 1) =

z—1=2(@-1)+3(y—Dorz+y—2z=0.
5. 2 = f(v,y) = wsin(z + y)

= fao(z,y) =z -cos(x +y) +sin(z +y) - 1 = xcos(z + y) + sin(z + y),
fy(z,y) = xcos(xz + ), s0 fo(—1,1) = (=1)cos0 +sin0 = —1, f,(—1,1) = (—1) cos0 = —1 and an equation of the
tangent planeis z — 0 = (=1)(z + 1)+ (-1)(y — 1) orz +y + 2z = 0.

T.z=floy) =2 +ay+3y°.s0 fu(z,y) =20 +y = fo(1,1) =3, fy(v,y) =x+6y = fy(1,1)=Tandan

equation of the tangent planeis z — 5 = 3(x — 1) + 7(y — 1) or z = 3z + Ty — 5. After zooming in, the surface and the
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tangent plane become almost indistinguishable. (Here, the tangent plane is below the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

N
R -

“0 R ey
4 _—.
577 0 S
9299577 4

ST
2955777,
¥R 277774

224

K
K&K

. B . . B 7 902y s B
flz,y) = w A CAS gives f.(z,y) = ysin (z — y) +21Uy C‘;S (z —y) _ 2x7ysin (z y2) and
1+a?+y 1+z2+y (14 22 4 42)
. _ _ _ 9 2 . _
Jy(z,y) = zsin (2 —y) —aycos (v — y) _ 21y s (@ y2) We use the CAS to evaluate these at (1, 1), and then

1422 + 42 1+ 22+ y?)

Ly — Ly, The surface and tangent

substitute the results into Equation 2 to compute an equation of the tangent plane: z = 3 3

plane are shown in the first graph below. After zooming in, the surface and the tangent plane become almost indistinguishable,
as shown in the second graph. (Here, the tangent plane is shown with fewer traces than the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

f(z,y) = 1+zIn(xy —5). The partial derivatives are f(x,y) = = xylf 5 (y) +In(zy —5)-1 = m:g 5 +In(zy —5)
1 z? . .
and fy(z,y) =z - P (z) = prp— s0 fz(2,3) =6 and f,(2,3) = 4. Both f, and f, are continuous functions for

xy > b, so by Theorem 8, f is differentiable at (2, 3). By Equation 3, the linearization of f at (2, 3) is given by

L(z,y) = f(2,3) + fo(2,3)(x — 2) + fy(2,3)(y — 3) = 1 +6(x — 2) + 4(y — 3) = 6z + 4y — 23.

fy) = ——. Yo ty) —=(1) = Y ;)f(l)

pry =y/(z +y)® and

The partial derivatives are fz(z,y) =

fy(@,y) =x(-1)(x+y) > - 1=—z/(x+y)> s0 f-(2,1) = § and f,(2,1) = —2. Both f, and f, are continuous
functions for y # —uz, so f is differentiable at (2, 1) by Theorem 8. The linearization of f at (2,1) is given by

Lxy) =20+ 20)@-2)+ QDY -1)=3+5-2) -3 -1 =50-3y+}
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f(z,y) = e " cosy. The partial derivatives are f,(z,y) = e”"Y(—y) cosy = —ye™*¥ cosy and

fu(z,y) = e ¥ (—siny) + (cosy)e™ ™Y (—z) = —e~"¥(siny + x cos y), so fz(7,0) = 0and f,(7,0) = —.
Both f, and f, are continuous functions, so f is differentiable at (7, 0), and the linearization of f at (7, 0) is
L(z,y) = f(m,0) + fa(m,0)(x — ) + fy(m,0)(y = 0) =14+ 0(z —7) —7(y —0) =1 — my.

Then f,(z,y) = 43}—%’_1 and f, (z,y) = 2z +3)(-1)(4y +1)73(4) = % Both f, and f,

2x+ 3
dy+1°

Let f(x,y) =

are continuous functions for y # — %, so by Theorem 8, f is differentiable at (0, 0). We have f(0,0) = 2, f,(0,0) = —12

and the linear approximation of f at (0,0) is f(z,y) =~ f(0,0) + f=(0,0)(x — 0) + f,(0,0)(y — 0) = 3 + 2z — 12y.

We can estimate f(2.2,4.9) using a linear approximation of f at (2, 5), given by
[l y) = f(2,5) + f2(2,5)(x = 2) + f4(2,5)(y = 5) =6+ 1(z — 2) + (=1)(y — 5) = v —y + 9. Thus

£(2.2,4.9) ~ 2.2 —4.9+9=6.3.

x Y
T,Y, 2 =24+ y2+22 = z(T,Y,2) = —/—/—/—/—, T,Y,z :—aand
f(@,y,2) Y fo(y,2) Va2 £y 22 Jo(@,y,2) Va2 +y? + 22

i .50 f2(3,2,6) = 2, f,(3,2,6) = 2, f.(3,2,6) = £. Then the linear approximation of f

Ja(w,y,2) = \/ﬁ
at (3,2, 6) is given by
f(xayaz) ~ f(37276) + fz(37276)($ - 3) + fy(?’a 276)(y - 2) + fz(372,6)(2 - 6)

=T+2(@-3)+2(y—2)+L%(z—6)=2a+2y+ 3z

Thus /(3.02)2 + (1.97)2 + (5.99)2 = £(3.02,1.97,5.99) ~ £(3.02) + 2(1.97) + £(5.99) ~ 6.9914.

From the table, f(94,80) = 127. To estimate f7(94,80) and fx (94, 80) we follow the procedure used in Section 14.3. Since

£(94 + h,80) — f(94, 80)
h

fr(94,80) = }lbinh , we approximate this quantity with A = +2 and use the values given in the
table:

£(96,80) — f(94,80) 135 —127
2 -T2

£(92,80) — £(94,80) _ 119 —127 _

4
—2 —2

Fr(94,80) ~ 4, fr(94,80) ~

£(94,80 + k) — £(94,80)

h ,soweuse h = +5:

Averaging these values gives fr(94, 80) ~ 4. Similarly, fz (94, 80) = }lLin%)

04,85) — f(94,80) _ 132127
5 -5

£(94,75) — £(94,80) 122 —127
-5 o -5 -

1

fr(94,80) ~ K fr(94,80) ~

Averaging these values gives fr (94, 80) & 1. The linear approximation, then, is

F(T,H) ~ £(94,80) + fr(94,80)(T — 94) + fr (94, 80)(H — 80)
~ 127+ 4(T —94) + 1(H — 80)  [or 4T + H — 329]
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Thus when 7" = 95 and H = 78, f(95,78) ~ 127 + 4(95 — 94) + 1(78 — 80) = 129, so we estimate the heat index to be

approximately 129°F.

25. z = e P cos 2t =

dz = %dw + %dt = e72%(=2) cos 2nt dx + e~ (— sin 27t) (27) dt = —2e 7" cos 27t dx — 2me™ %" sin 27t dt
5 3 om om 4.3 5 2
2. m=p°¢° = dm=——dp+ ——dq=>5p°q°dp+ 3p°q~ dq
op dq
2. R=af%cosy = dR= g—f da + g—]; dp + Z—]j dy = % cosyda + 208 cosydB — af®sinydy

31. do = Az = 0.05, dy = Ay = 0.1, z = 52% + 42, 2, = 10z, 2, = 2y. Thus whenz = 1 and y = 2,
dz = z:(1,2) dx + 2z,(1,2) dy = (10)(0.05) + (4)(0.1) = 0.9 while

Az = f(1.05,2.1) — f(1,2) = 5(1.05)> + (2.1)*> — 5 — 4 = 0.9225.

33 dA = Z—A dx + Z_A dy = ydz + xdy and |Az| < 0.1, |Ay| < 0.1. We use dz = 0.1, dy = 0.1 with x = 30, y = 24; then
€T Y

the maximum error in the area is about dA = 24(0.1) + 30(0.1) = 5.4 cm®.

35. The volume of a canis V = 7r?h and AV ~ dV is an estimate of the amount of tin. Here dV = 27wrh dr + 7r? dh, so put
dr = 0.04, dh = 0.08 (0.04 on top, 0.04 on bottom) and then AV =~ dV = 27(48)(0.04) + 7(16)(0.08) ~ 16.08 cm®.

Thus the amount of tin is about 16 cm?>.

. mgR . . .
3. T = 0+ R so the differential of 1" is
_oT or . (2r* + R?)(mg) — mgR(2R) (2r? + R%)(0) — mgR(4r)
dl'= ﬁdR—é—Edr— @2 1 )2 dR + @2 + )2 dr
2 p2
_ mg(2r° — R )dR— 4mgRr dr
(2r2 + R?)? (2r2 + R?)?

Here we have AR = 0.1 and Ar = 0.1, so we take dR = 0.1, dr = 0.1 with R = 3, r = 0.7. Then the change in the

tension 7 is approximately

mg[2(0.7)* — (3)”]
2(0.7)% + (3)%]?

4mg(3)(0.7)

= (072 + (3)2]

(0.1) — (0.1)

0.802mg  0.84mg _ 1.642

(0.08)2 ~ (9.98)2 99.6004 "

g ~ —0.0165mg

Because the change is negative, tension decreases.
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39. First we find % implicitly by taking partial derivatives of both sides with respect to R;:
1

o (1 A[(1/R1) + (1/R2) + (1/R3)] _, OR s OR R?
— ) = —R?2— =—-R = Then b t
OR: ( ) OR: = OR, 1 GR, _ Rp e vy symmetry,
2 2
881];2 = %’ 88—12 = % When Ry = 25, R2 = 40 and R3 = 50, % = % < R =22 Q. Since the possible error
for each R; is 0.5%, the maximum error of R is attained by setting AR; = 0.005R;. So
OR OR OR 1 1
AR~ dR = A A — A ) 2 =+ =+ = =1 20.059 Q.
R R Ok, Ry + R, Ra + ORs R3 = (0.005)R (R1 + o + R3) (0.005)R = 17 ~ 0.059
Aw Ah . .
41, The errors in measurement are at most 2%, so " < 0.02 and 5 < 0.02. The relative error in the calculated surface
area is
AS dS  0.1091(0.425w°**~ )R 725 duw + 0.1091w° 425 (0.725h%- 725~ 1) dh dw dh
s T s 0.109140-425 0725 = 04257 7+ 0.72557
. . . dw
To estimate the maximum relative error, we use — = =0.02 nd —_— = =0.02 =
w “w
ds . . .
< = 0.425 (0.02) + 0.725 (0.02) = 0.023. Thus the maximum percentage error is approximately 2.3%.

43. Az = fla+ Az, b+ Ay) — f(a,b) = (a + Ax)* + (b+ Ay)? — (a® +b?)
=a®+2a Az + (Az)® + 1% + 20 Ay + (Ay)? — a® — b* = 20 Az + (Az)? +2b Ay + (Ay)?
But f»(a,b) = 2a and f,(a,b) = 2band so Az = f,(a,b) Az + f,(a,b) Ay + Az Az + Ay Ay, which is Definition 7

with €1 = Az and €2 = Ay. Hence f is differentiable.

45. To show that f is continuous at (a, b) we need to show that ( %Hn( b f(z,y) = f(a,b) or
z,y)—(a,

equivalently N 4\} o) fla+ Az, b+ Ay) = f(a,b). Since f is differentiable at (a, b),
¥)—

fla+ Az, b+ Ay) — f(a,b) = Az = fo(a,b) Az + fy(a,b) Ay + €1 Az + €2 Ay, where €; and ez — 0 as
(Az, Ay) — (0,0). Thus f(a + Az, b+ Ay) = f(a,b) + fz(a,b) Az + fy,(a,b) Ay + &1 Az + €2 Ay. Taking the limit of
both sides as (Az, Ay) — (0, 0) gives lim fla+ Az,b+ Ay) = f(a,b). Thus f is continuous at (a, b).

(Az,Ay)—(0,0)

14,5 The Chain Rule

. d 0z d 0z dy
1 z=2+y’ 4oy, v =sint, y=e' = dj_&z df—i—a—zdt = (2z +y)cost + (2y + x)e

.z=4/1+22+9y2 x=Int, y=cost =

dz  Ozdr  Ozdy 2, av—1/2 1, 2, 2v—1/2 o 1 . '
G ondi Toga — 2T T @) g (et 4y T (2y) (- sint) = ﬁmuy?(t ysint)
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5 w=xze¥?, x =12, y=1—t, z=1+2t =

dw _Odwdr Owdy OJwdz v/ 1 y T 2zy
= — = =¥/ 2t v/z( =) . (~1 viE(—Z) . 2=ev* (2t — = - 22
dt Bz dt oy By dt + oz dt +e z (1) + e ( 22) € z 2

7. z:x2y3, r =scost, y =ssint =

0z Oz0x  0z0y 3 2 2 .

5% — 92 9s + _(9y s = 2xy° cost + 3r "y  sint
0z 0z 0x Bzay 2 2 _ 3 2 2
Fril + = By n = (2zy®)(—ssint) + (32%y*)(scost) = —2swy®sint + 3sx?y® cost

9. z=sinfcos¢, 6 =st>, ¢p=s*t =

0: _ 9200 , 029
0s 00 0s 8(;58

9z _0:00 0209
ot~ 00 ot ' 0¢ ot

= (cos 0 cos ¢)(t?) + (—sin @ sin ¢)(2st) = t* cos O cos ¢ — 2stsin f sin ¢
= (cos 0 cos ¢)(2st) + (—sin § sin ¢)(s%) = 2st cos O cos ¢ — s> sin § sin ¢

M. z=¢€"cosh, r=st, 0 =+s2+12 =

% = %% %% =e"cosf-t+e (—sinb)- 1(s” +t2)7V/2(25) = te” cos — e sinf - \/32;?
=e" <tc0597 ﬁsinQ)
% = %% %% =e"cosl-s+e (—sind) - L(s® +¢2)71/2(2t) = se" cosf — €"sinf - \/S%W

. t
=e"| scos) — ——=sinb
( Vs + ¢ )
13. When ¢ = 3,z = g(3) = 2 and y = h(3) = 7. By the Chain Rule (2),

dz _ Of dz  Ofdy

=Rt SR = LRI+ LRTNE) = 6)6) + (-5)(-4) = 62

15. g(u,v) = f(z(u,v),y(u,v)) where z = e" +sinv, y =€* +cosv =

Or _ pu Or _ % _ o Oy _ dg _0fdx  9fdy
6u_e , aD—cosv, 8u_e - sin v. By the Chain Rule (3), P 8m8u+6y8 . Then

gu<010) = fz(I(0,0),y(0,0)) Iu(07 O) + fy(aZ(0,0),y(O, O)) yu(07 O) = fm(la 2)(60) + fy(1,2)(€ ) = 2(1) + 5(1) =T

9g 0fox  Of 9y
v Brov By hem

94(0,0) = f2((0,0),4(0,0)) z,(0,0) + f,(2(0,0),(0,0)) y:(0,0) = fu(1,2)(cos 0) + fy(1,2)(—sin0)
=2(1) +5(0) =2

Similarly, —=

17. u u= f(z,y), © =x(r,s,t), y=y(r s, t) =

x/ \y Ou _Oudr Oudy Ou _ Oudx Judy

or oz or (‘3y or’ 9s 0Oz 0s 8y 0s’

Ju Oudxr  Oudy

ot oz ot oy ot
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w w= f(r,s,t), r=r(z,y), s=s(z,y), t =t(z,y) =
/ \ dw  Owdr Owds dwdt Ow dwdr  Owds  Owdt
r t ..

AAA ‘

dr — Ordr  dsdx Ot oxr dy Ordy 9dsdy Ot dy
z=at+ 2%y, x=s+2t—u, y=stu® =

0z 0z 0x 49 0z 9y
s Oz 0s dy Bs

0z _0z0xz 9z 0y
ot Oz ot ' oy ot

0z _ 020z  0z0y
ou Oz ou 63/ du

Whens=4,t =2,andu =1wehavex = 7andy = 8,

0 % — (1484)(1) + (49)(2) = 1582, % _ (1484) (2) + (49)(4) = 3164, ? — (1484)(=1) + (49)(16) = —700.

= (42® + 22y)(1) + (%) (tu?),
= (42 + 22y)(2) + (%) (su”),

= (4a® + 22y)(—1) + (z?)(2stu).

w=ay+yz+zx, x=rcosb, y=rsinb, z=r =
Ow _Owdx Owdy  Owdz
dr Oz or | dyor 9z or

Ow Owldxr Owdy  Owdz .
50 = 5290 + = 3y 89+ 5% 50 = (y+ 2)(—rsinf) + (x + 2)(rcos ) + (y + x)(r).

= (Y + 2)(cos0) + (z + 2)(sin 0) + (y + ) (0),

Whenr =2and § = 7/2 we have x = 0,y = 2, and z = 7, so g—l: =2+m(0)+ (0+m)(1)+ (2+0)(7/2) = 27 and

g—z — (24 m)(=2) + (04 m)(0) + (24 0)(2) = —2r.
25. N:p—l—q’ p=u+t+vw, g=v+uw, r=w+uw =

p+r
ON _ONOp A ONJq  ON Or
ou (‘3p du dq Ou Or ou

_ @) = (p+a@) p+r1)—-@+9O . P+1)0) - (P+eQ1)
B T ) E N ROk
_(r—g+@t+trw—(p+qv

(p+7)? ’

(v)

ON _ONOp ONOg ONOr _ r—g . PFr qy, —0+9 \_ =gutpt+r)-(p+qu
Bv  Op v | dq v | or dv (p+r)? (p+r)? (p+r)? (p+r)? ’

ON _ONOp  ONOg  ONOr _ r—q . . PEr —(p+q)(1):(r—q)v+(p+ rju—(p+aq)

dw  9p Ow ' Oq dw ' Or ow (p+7r)? (p+71)? (p+r)? (p+r)?

ON _ —1+ (04 - (25)3) _ 20 _ 5
Whenu = 2,v =3, and w = 4 we have p = 14, ¢ = 11, and r = 10, so E (24)? =576 = 141’
ON _ (=1)(4) +24 - (25)(2) -30_ 5 and ON _ (=1D)@B)+(24(2)—-25 20 5
ov (24)2 576 96° ow (24)2 T576 0 144
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27. ycosx = 2* + ¢, so let F(z,y) = ycosx — 2> — y*> = 0. Then by Equation 6

dy I = —ysinz—2z 2z+ysing

dr  F, cosx — 2y cosx — 2y

29. tan~'(2%y) = = + xy?, so let F(x,y) = tan™*(zy) — x — 2y® = 0. Then

2zy 20y — (1L +y*)(1 + 2"

F, =—— (2 — 1= 1y =

($7 y) 1+ (zgy)g ( i’y) Y 1 +-T4y2 Y 1 +£L'4y2 ’

1 x? 2?2 — 2zy(1 + xy?)
F, = (2 -2y = ———— — 2y =
y<$7y) 1 + (1‘2y)2 (‘T ) ry 1+x4y2 Yy 1 +x4y2
i dy _ Fo_ [Poy—(L+yA)(+a'?))/0+a'y?) (04930 +o'y?) — 2uy

= F, T @ tmy(tag) /A ap) 2 —2ay(l+aty)

C1taty? g+t —2my
o x2 — 2zy — 2x5y3

3. 2 +2y% +32% = 1,50 let F(x,y, z) = 2 + 2y*> + 32% — 1 = 0. Then by Equations 7

92 _ Ko 20_ = 02 B _ 4y _ %
or  F. 6z 3z oy  F. 6z 3z
F, —
33. ez:myz,soletF(m,y,z):ez—wyz:O.Then%:——:— vz _ _YZ2 and
oz F. er —xy e* —axy

0z  F, —xz xz

dy  F. ez—xy:ez—:vy'

dI' 0T dx 0T dy
dt Oz dt + Oy dt’ After

de 1 1
dt 21+t 2143
dT dx d

Then = T:(2,3) pris T,(2,3) d—?z =4(%) +3(3) = 2. Thus the temperature is rising at a rate of 2°C/s.

35. Since x and y are each functions of ¢, T'(z, y) is a function of ¢, so by the Chain Rule,

1 d 1
Z,and—y:—

3seconds,z =v1+t=+/1+3=2,y=2+3t=2+3(3) =3, =3

37. C = 1449.2 + 4.6T — 0.055T'2 + 0.000297°2 + 0.016 D, so 9 _ 4.6 — 0.117 4 0.000877"2 and 9C _ 0.016.

oT oD

According to the graph, the diver is experiencing a temperature of approximately 12.5°C at ¢ = 20 minutes, so

g—? = 4.6 —0.11(12.5) + 0.00087(12.5)% = 3.36. By sketching tangent lines at t = 20 to the graphs given, we estimate
aD 1 ar 1 . acoCcdr  o0CdD _ 1 1
o ~ 5 and — ~ —=%. Then, by the Chain Rule, = = =5 —- + o= —= ~ (3.36)(—15) + (0.016)(3) ~ —0.33.

Thus the speed of sound experienced by the diver is decreasing at a rate of approximately 0.33 m/s per minute.

39. (a) V = fwh, so by the Chain Rule,

dv._ovdl oVdw  OVdh _ dat dw dh _ 3
E—Waﬁ‘a—w%"F%E—whEﬁ-fhEﬁ-wa—Q 2:241-2-241-2 ( 3)—6m/s.
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(b) S = 2(fw + £h + wh), so by the Chain Rule,

dS 9Sdt 9Sdw 9Sdh de dw dh
— e == =2 —+2 — 42 —
@@ T owa Tonar - AW g AR G 24w
=2(2+2)2+2(1+2)2+2(1+2)(=3) = 10m?/s
©L?=F+w*+h* = 2L ab _ p,dt + 2w dw +2h dh _ 2(1)(2) +2(2)(2) +2(2)(-3) =0 =
dt dt dt dt
dL/dt =0m/s.
dP dr T . dV  831dT T dP
41, yie 0.05, v 0.15,V = 8.31; and T T 8.31EE. Thus when P = 20 and T' = 320,
v 0.15  (0.05)(320)] _
o =831 55 100 ~ —0.27L/s.

43. Let x be the length of the first side of the triangle and y the length of the second side. The area A of the triangle is given by

A= %any sin 6 where 6 is the angle between the two sides. Thus A is a function of , y, and 6, and z, y, and @ are each in turn

functions of time ¢. We are given that % =3, % = —2, and because A is constant, % = 0. By the Chain Rule,
dA_@Ad_;z’ 8Ad_y 0A df dA

44 _ 04 o4 9Ads _ dA dy
dt ~— Ox dt Oy dt 00 dt dt

I + %wycos&-%. When z = 20, y = 30,

= %ysin@- (fi—f + %xsin9~
and 6 = /6 we have

0= 1(30) (sin Z)(3) + £(20) (sin £ ) (~2) + £(20)(30) (cos £) 22

dt
V3 do do
=45.1 _90.1 L2 =
=45-3 203 +300- - — 2+150\/§dt
. o . do  —25/2 1 S .
Solving for I gives & 150 B 12/ so the angle between the sides is decreasing at a rate of
1/(12v/3) &~ 0.048 rad/s.
. 0z 0Oz 0z 0z 0z . 0z
45, (a) By the Chain Rule, = o cosf + BN sin 6, %= 52 (—rsin@) + BN rcosf.
02\ 02\ 9 0z 0z . 8z2,2
(b) (E) = <%> cos 6+2%8_y cosf sin 0 + (8_y) sin” 6,
2 2 2
(%) = (%) r?sin?6 — 2 %g—; 7% cos @ sinf + (g—;) % cos® §. Thus
0z\ 1 [0zY 02\ 0z Y 2 .9 02\ 02\
(%) +5(%) = [(%) +(5) |eotoranto = (52) + (5)
0z dzOou dz 0z dz 0z 0z
47. Letu_m—yThen%—%%—%an Fy—%(—l)ThUS%-Fa—y =0.
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49. Letu =z +at, v=x — at. Then z = f(u) + g(v), s0 9z/0u = f'(u) and z/0v = ¢'(v).

0z 0z0u  0z0v , ,
Thus TRl T %a—af (u) — ag’(v) and
0’z _ / / _ df,(u) du dg( )81) _ 2.0n 2
o e -] = o GG BEIE) 2 1 g 0)
. 0z , , &z " " 8%z 5 0%2
Slmllarly%ff(u)Jrg(v)andWff (u) + ¢" (v). Thuswfa Yok
0z 0z 0z
e _ 0 (02, 0 (0,
Ords  Or\ Ox or \ Oy
0%z Ox 0 [0z (‘3y 0z 0 0%z Oy 0 [0z Ox 0z
A P il 929 9054 C2W g (2N g P29
922 Or S+8y<8 >8r Storar 2T o or Bw(ay ar 1oy
0%z 0%z 0%z Pz, 0z
—4Tsw+8y8 45> —|—0+4r582 8m6y4r +28—y
8z 8%z 8z 8z 0z
By the continuity of the partials, D15 =4rs Tz +4rsﬁ+(4r + 4s )am(‘3 +28—y.
0z 0z 0z 0z 0z 0z
53. = %coseﬁ— aysm@and% —%rsm9+ ayrcos@ Then
&z 9%z Pz . . 0%z 9%z
m-cos@(a 5 cosf + By 0x sm0) —l—sm@(a 5 sin 6 + 920y cos@)
&z &z 9%z
_ 2902 . 290 2
= cos 98352 + 2cos 0 smeaw(9 + si Gayz
and
9z 0z . 8%z . 8%z
i —TCOSG% + (—rsinb) (@ (—rsind) + mrcos@)
. 0z &z 8z .
_rsméa—y—i—rcos@(a 5 7 cosf + 6$8y( TsmH))
_ 0z ., 0z 5 . 2, 0%2 2 . 22 s o, 0%2
= rcos@ax rsm@ay—i—r sin Gan 27 cos 0 Sln08x8y+T cos 98y2
Thus
&z i&—&—l%—(c0529—&—511120)8——!—(sm 0 4 cos® (9)i
orz  r290*>  ror Oz oy?
1 0z 1 ; 0z 1 0z 0z
—;CO 98—*; 98—+ (059%+ Ga—y)
62z &z
=92 + — 97 as desired.

55. (a) Since f is a polynomial, it has continuous second-order partial derivatives, and

f(tz, ty)

Thus, f is homogeneous of degree 3.

= (tx)*(ty) + 2(tz) (ty)* + 5(ty)* = t*2°y + 26°zy” + 5t°y° = t*(ay + 22y” + 5y°) = £ f (2, ).
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(b) Differentiating both sides of f(tx, ty) = t" f(x,y) with respect to ¢ using the Chain Rule, we get

0 0
a f(t$7 ty) = E [tnf<$7y)] g

iy Pt ) 2o b s ) - 25 — s ke )+ y g () = e f )

. .0 9 _
Setting t = 1: a:%f(m,y) +ya—y f(@,y) =nf(z,y).

57. Differentiating both sides of f(tz,ty) = t" f(x, y) with respect to = using the Chain Rule, we get

D Jltmty) = o [ ()] &

0] o (tx) 7] o (ty) 7]
— f(tz, ty) - — fltz, ty)  —LL =" — tho(tz, ty) = " fo(z, y).
30i2) fltz,ty) - =2 o Jltz,ty) - =2 o [ @y & (e ty) =t"fa(z,y)
Thus f,(tz, ty) = t" ' fu(z, ).
. . L . . dy F,
59. Given a function defined implicitly by F'(x,y) = 0, where F is differentiable and F, # 0, we know that il e Let
Y
F, dy . - . . . . .
G(z,y) = — S0 = G(z,y). Differentiating both sides with respect to  and using the Chain Rule gives
Y
Py _0Gde  0Gdy OG0 (B RFu—FF 06 _ 0 ((FY\ _ - FFy
dz?  Ox dx y dx ox Oz F, F? oy Oy F, F? '
Thus
@_ _F!!FGCOC_FOL‘FW (1)+ _Fnyy_Fway _&
dz? ™ F? F2 F,
_ FooFy — FyoFoFy — FoyFyFy + Fyy F7
L
But F" has continuous second derivatives, so by Clauraut’s Theorem, Fy, = Fy, and we have

d? FouF?2 —2F, FoFy + F,, F? ,
cl_:v?; — _ Ty w;; vt Ty as desired.
Yy

14.6 Directional Derivatives and the Gradient Vector

1. We can approximate the directional derivative of the pressure function at K in the direction of S by the average rate of change
of pressure between the points where the red line intersects the contour lines closest to K (extend the red line slightly at the
left). In the direction of S, the pressure changes from 1000 millibars to 996 millibars and we estimate the distance between

these two points to be approximately 50 km (using the fact that the distance from K to S is 300 km). Then the rate of change of

pressure in the direction given is approximately w = —0.08 millibar/km.

3. Dy £(—20,30) = V£ (—20,30) - u = fr(—20, 30)(%) n fi,(—zo,so)(%).

fr(—20,30) = lim f(=20 + h,30) — £(=20,30)

lim W , S0 we can approximate fr(—20,30) by considering h = +5 and
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f(=15,30) — f(—20,30)  —26 — (—33)
5 - 5

using the values given in the table: fr(—20,30) ~ =14,

fr(—20.30) ~ £(525:30) ~ (=20,30) _ 39— (=33)

= 1.2. Averaging these values gives fr(—20,30) ~ 1.3.

-5 B -5
Similarly, f,(—20,30) = , f( 20,30+ h})l £(=20,30) , S0 we can approximate f,(—20, 30) with h = £+10:
_ f(=20,40) — f(—20,30)  —34—(—33) _
fv(—20,30) ~ 10 = 0 =—0.1,
fu(—20,30) ~ F(=20, 20)_710f(720’ 30) il :1(0733) = —0.3. Averaging these values gives f,(—20, 30) ~ —0.2.

Then D f(—20,30) ~ 1.3(%) +(~0.2) (%) ~ 0.778.
5 f(z,y) =ye™® = fo(x,y) = —ye " and f,(z,y) = e~ . If uis a unit vector in the direction of § = 27 /3, then
from Equation 6, Dy f(0,4) = £,(0,4) cos(2&) + £,(0,4)sin(Z) = —4- (-1) +1- 2 =24 L.
7. f(z,y) = sin(2z + 3y)
of . of . . . .
@ Vf(z,y) = —1—|— 8_‘] = [cos(2z + 3y) - 2] i + [cos(2z + 3y) - 3] j = 2cos (2 + 3y) i + 3cos (2z + 3y) j
(b) Vf(—6,4) = (2cos0)i+ (3cos0)j=2i+3]
(c) By Equation 9, Dy f(—6,4) = Vf(—6,4) -u=(2i+3j) - 3(V3i—j)=3(2v3-3)=v3-%.
9 f(z,y,2) = 2’yz — ayz’
(a) vf('ray7 Z) = <ft(x7ya Z)v fy(xv Y, Z): fz(xvya Z)) = <2£B’y2’ - y237 mZZ - 58237 l'2y - 3£Cy22>
b)Y VSf(2,-1,1)=(—4+1,4—-2,—-4+6)=(-3,2,2)

(¢) By Equation 14, Dy f(2,-1,1) = Vf(2,-1,1) -u=(-3,2,2) - (0,2, -2) =0+ § - ¢ = 2.

M. f(z,y) =e"siny = Vf(z,y) = (e"siny,e” cosy), Vf(0,7/3) =

P

@ %> and a

unit vector in the direction of v is u = ————(—6,8) = & (—6,8) = (=2, 3),s0

Du f(0,7/3) = VF(O,7/3) u= (1) (-3,4) = -3 + & = 138,

13. g(p,q) =p* =’ = Valp,q) = (4° — 2p¢*) i+ (—3p¢%) j. Vg(2,1) = 281 — 12, and a unit

vector in the direction of v is u = W( i+3j) = \/11—0(i +3j), so
Dag(2,1) = Vg(2,1) - u= (281 —12j) - (i +3j) = k= (28 — 36) = — & or 410,

15. f(z,y,2) = ze¥ +ye® +ze® = Vf(z,y,z) = (e + ze®, xe¥ 4+ €*,ye* + e%), V(0,0,0) = (1,1, 1), and a unit

5,1,—2) = == (5,1,-2), so

vector in the direction of v is u =

_ 1
*\/m<

Dy £(0,0,0) = V£(0,0,0) - u=(1,1,1) - = (5,1,-2) = .
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h(r,s,t) =In(3r +6s+9t) = Vh(r,s,t) = (3/(3r 4+ 6s+9t),6/(3r + 6s + 9t),9/(3r + 65 + 9¢)),
Vh(1,1,1) = <%, %, %>, and a unit vector in the direction of v =41+ 12j 4+ 6k
iSU= ot (4i+12j+6k) = 2i+ £j+ 2k, s0

Dk LY =VHL L) u= (33, 0)- (8 = k43 f =%

T

fay) =Vay = Vf(m,y)=<%(xy)1/2(11),%(:81/)I/Q(w)>=< )

WD xy>,so Vf(2,8)=(1,1).
The unit vector in the direction ofP.Cj =(-24-8)=(3,—4)isu=(2,-%),s0

Dy f(2,8) =Vf(2,8)-u=(1,3)-(2,-%)=2.

fay)=dy/a = Vi@y) =4y 372 4/7) = (29/v/7,4V7),

Vf(4,1) = (1, 8) is the direction of maximum rate of change, and the maximum rate is |V f(4,1)| = v/1 + 64 = +/65.

fz,y) =sin(zy) = Vf(z,y) = (ycos(zy),zcos(zy)), Vf(1,0) = (0,1). Thus the maximum rate of change is

|V £(1,0)| = 1 in the direction (0, 1).

fle,y,2) = v +y2 +22 =

Vi(z,y,2)= <%(w2 +y2 +2%) 7220, (2 + P 4 22) T2 2y, L (2 4y + %) -2z>

. T y z
<\/m2+y2+z2,\/x2+y2+227 \/x2+y2+22>’

V£(3,6,—2) = <\/%, =, _—429> = (2,5, —2). Thus the maximum rate of change is

|Vf(3,6,—2)| = \/(%)2 + (8 +(-2)* = \/% = 1 in the direction (£, &, —2) or equivalently (3,6, —2).

—

8
7

o

(a) As in the proof of Theorem 15, Dy, f = |V f| cos 6. Since the minimum value of cos 6 is —1 occurring when § = =, the
minimum value of Dy, f is — |V f| occurring when 6 = m, that is when u is in the opposite direction of V f
(assuming V f # 0).

() f(z,y) =a'y —2%y® = Vf(z,y) = (42°y — 22y® 2" — 32%y?), so f decreases fastest at the point (2, —3) in the
direction —V f(2, -3) = — (12, —92) = (—12,92).

The direction of fastest change is V f(z, y) = (2o — 2) i+ (2y — 4) j, so we need to find all points (z,y) where V f(z,y) is

paralleltoi+j < (22—2)i+Q2y—-4)j=k(i+j) & k=2x—2andk=2y—4 Then2zx —-2=2y—4 =

y = x + 1, so the direction of fastest change is i + j at all points on the line y = = + 1.
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k k
T=—ou=l  and120 =T(1,2,2) = = so k = 360.
Va2 4 y? + 22 3
<1: _171>
au=-——~-"-+,
@ Ve
—3/2
DuT(1,2,2) = VT(1,2,2)-u = [—360(352 +y° +2%) z>] oy ~2901,2,2) 2(1,-1,1) = —5%

(b) From (a), VT = —360(a® + ¢° + 22)73/2<J), y, 2), and since (z,y, z) is the position vector of the point (z, y, z), the

vector — (z, y, z), and thus V7', always points toward the origin.
VV(x,y,z) = (10x — 3y + yz,xz — 3z, zy), VV(3,4,5) = (38,6,12)

(@) Dy V(3,4,5) = (38,6,12) - =

%(15 17 _1> =

32
V3
(b) VV(3,4,5) = (38, 6,12), or equivalently, (19, 3, 6).

(©) |[VV(3,4,5)| = /382 + 62 + 122 = /1624 = 2/406

— —
A unit vector in the direction of AB is i and a unit vector in the direction of AC is j. Thus Dﬁ f(1,3) = f(1,3) =3 and
D,R: f(1,3) = fy(1,3) = 26. Therefore V f(1,3) = (f=(1,3), fy(1,3)) = (3,26), and by definition,
D— f(1,3) = Vf - u where u is a unit vector in the direction of AD which is (%, 12 ). Therefore,
AD

13 13

(a)V(au+bv):<8(au+bv)78<au+bv)>:<a@+ba_ija@+b%>— <8_u @>+b<@ @>

D—f(1,3) = (3,26) - (&,12) =3- F +26- 12 = 2.

Ox Oy Ox 3] 0 Oy ox’ Oy ox’ Oy
=aVu+bVu
ov  Ou ov Ou Ou Oov Ov
(b) V(uv) = <v—+ e va—y+u8—y> <8w oy >+u<%,a—y>vau+qu
ou v v ou Ou @ el
830 u—x Yoy T Yoy dx’ Ay dz’ By vVu —uVu
(C)V 2 = 2 = 2
v v v
_ 8 un _ nfl@ nfl@ _ n—1
d) Vv —< 6x , ay >—<nu ax,nu ay>—nu Vu
flx,y) =2 +52°y +y° =
Duf(z,y) = Vf(z,y) u—<3$ + 10y, 522 —|—3y> <% §>:5x + 62y + 4a” + Ly = 22 + 6zy + 2¢°. Then
Dlzlf(zvy):DU[DUf(xvy)]:V[Duf(wvy)}u <%l’+6y,61+ y> 5a5>

_ 174 18 24 294 186
=32t 3yt 3 ;r—|—25y BT+ 35 Y

and D f(2,1) = 22(2) + £8(1) = 2.
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4. Let F(z,y,2) = 2(x — 2)° + (y — 1)> + (2 — 3)%. Then 2(z — 2)* + (y — 1)®> + (2 — 3)? = 10 is a level surface of F.
Fp(z,y,2) =4(x —2) = F,(3,3,5) =4, Fy(z,y,2) =2(y—1) = Fy(3,3,5) =4,and
F.(z,y,2) =2(z—3) = F.(3,3,5) =4.
(a) Equation 19 gives an equation of the tangent plane at (3,3,5) as4(z —3) + 4(y —3) +4(2 —5) =0 <
4z 4+ 4y + 4z = 44 or equivalently x + y + z = 11.

(b) By Equation 20, the normal line has symmetric equations z ; 3 ~¥ ; 3 =z ; > or equivalently

x — 3 =y — 3 =z — 5. Corresponding parametric equationsare t =3 +¢,y =3+, 2 =5+1t.

43. Let F(z,y,2) = xyz>. Then xyz* = 6 is a level surface of F and VF(z,y,2) = <yzQ7 x>, 2myz>.
(a) VF(3,2,1) = (2, 3,12) is a normal vector for the tangent plane at (3,2, 1), so an equation of the tangent plane
is2(x—3)+3(y—2)+12(z— 1) =0o0r 2z + 3y + 12z = 24.
(b) The normal line has direction (2, 3, 12), so parametric equations are x = 3 4 2t, y =2+ 3¢, z = 1 + 12¢, and

smrnetriceuationsarex_g—'y_Q—Z_1
Y d 2~ 3 12

45. Let F(z,y,2) =2 +y+ z — e”?. Then z + y + z = €®¥7 is the level surface F(z,y,z) = 0,
and VF(z,y,z) = (1 — yze™?* 1 — x2e"7%,1 — xye®™*).
(a) VF(0,0,1) = (1,1, 1) is a normal vector for the tangent plane at (0, 0, 1), so an equation of the tangent plane
isl(z—0)+1(y—0)+1(z—1)=00rz+y+2z=1.
(b) The normal line has direction (1, 1, 1), so parametric equations are x = ¢, y = t, z = 1 + ¢, and symmetric equations are

r=y=z—1.

47. F(z,y,2) =axy+yz + 2z, VF(z,y,2) = (y+ 2,z + z,y + z), VF(1,1,1) = (2,2, 2), so an equation of the tangent
plane is 2z 4+ 2y 4+ 2z = 6 or  + y + z = 3, and the normal line is givenby z — 1 =y — 1 =2z — 1l orx = y = z. To graph

3—xy

the surface we solve for z: z = .
r+y
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flay)=ay = Viry) = (y,2),V/(3,2) =(23). V/(3,2) '
is perpendicular to the tangent line, so the tangent line has equation \
Vf3,2)-(z—3,y—2)=0 = (2,3)-(z—-3,z—2)=0 =
2x+ 3y=12—
2(x —3)+3(y—2) =00r2z+ 3y =12.
0 X

2 2 2 . .
VF(xo,Y0,20) = <%7 %, % > Thus an equation of the tangent plane at (xo, Yo, 20) is

2 2 2 5w % . . : .
% z+ % y+ g z = 2(% + 'Z—g + i—g) = 2(1) = 2 since (xo, Yo, 20) is a point on the ellipsoid. Hence

x—g T+ ¥ Y+ 2, —1isan equation of the tangent plane.
a b2 c?
270 2yo —1 _ 2 2 1 275 2y5
VF(zo,Y0,20) = ﬂ, ﬂ, — ), so an equation of the tangent plane is 20y + % y——z= i} + Zh 2
a?’ b ¢ a? b? c a? b2 c

2z 2 z x3 2 2 2 z3 2 . .
or—0x+ﬂy:—+2 —O+y—0 f—O.But—O:—0+y—o,sotheequatloncanbewrlttenas
a c c c a2 b2

The hyperboloid 22 — y? — 2? = 1is a level surface of F(x,y, 2) = 2> — y* — 2% and VF (z,y, 2) = (2x, —2y, —2z) isa
normal vector to the surface and hence a normal vector for the tangent plane at (z, y, z). The tangent plane is parallel to the
plane z = 4+ y or x + y — z = 0 if and only if the corresponding normal vectors are parallel, so we need a point (xo, Yo, 20)
on the hyperboloid where (2zq, —2y0, —220) = ¢(1,1, —1) or equivalently (zo, —yo, —2z0) = k (1,1, —1) for some k # 0.
Then we must have zo = k, yo = —k, 20 = k and substituting into the equation of the hyperboloid gives

kE* —(=k)>—k*=1 < —k* =1, an impossibility. Thus there is no such point on the hyperboloid.

Let (o, yo, 20) be a point on the cone [other than (0,0, 0)]. The cone is a level surface of F(z,vy, z) = 2* + y* — 2% and
VE(z,y,z) = (2x,2y, —2z),so VF(zo, yo, z0) = {20, 2yo, —220) is a normal vector to the cone at this point and an
2

equation of the tangent plane there is 220 (x — o) + 2yo (y — Yo) — 220 (2 — 20) = 0 or Tox + Yoy — 202 = 2+ 2 — 22,

But 22 + 32 = 22 so the tangent plane is given by zox + yoy — z0z = 0, a plane which always contains the origin.

Let F(z,vy, z) = 2 + y* — 2. Then the paraboloid is the level surface F(z,vy, z) = 0 and VF(z,y, 2) = (2z,2y, —1), s0
VF(1,1,2) = (2,2, —1) is a normal vector to the surface. Thus the normal line at (1, 1,2) is given by x = 1 + 2,
y = 1+2t, 2 = 2 — t. Substitution into the equation of the paraboloid z = x? +y? gives 2 —t = (1 +2t)> + (1+2t)*> <«
2 t=24+8t+8> & 824+9=0 < (8t +9) = 0. Thus the line intersects the paraboloid when ¢ = 0,

5 28),

corresponding to the given point (1,1, 2), or when ¢t = f%, corresponding to the point (f%, - %
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Let (zo, Yo, z0) be a point on the surface. Then an equation of the tangent plane at the point is

T z \/_-I-\/y_o-l-\/_
s o v

. But \/Zo + /%0 + +/zo = /¢, so the equation is

x
= \/c. The z-, y-, and z-intercepts are /cZo, 1/cyo and +/czq respectively. (The z-intercept is found by
Vo iV yO \/

setting y = z = 0 and solving the resulting equation for x, and the y- and z-intercepts are found similarly.) So the sum of the
intercepts is \/¢(1/To + /Yo + 1/Z0 ) = ¢, a constant.

If f(z,y,2) = 2 — 2> — y? and g(=,y, 2) = 42® + 3* + 22, then the tangent line is perpendicular to both V f and Vg
at (—1,1,2). The vector v = V f x Vg will therefore be parallel to the tangent line.

We have Vf(z,y,2) = (—2z,—2y,1) = Vf(-1,1,2) =(2,-2,1),and Vy(z,y, z) = (8z,2y,2z) =

i jk
Vg(—1,1,2) = (—8,2,4). Hence v=Vf x Vg=| 2 -2 1|=-10i—16j— 12k
-8 2 4

Parametric equations are: x = —1 — 10t, y =1 — 16¢, z =2 — 12¢.

(a) The direction of the normal line of F' is given by VF', and that of G by VG. Assuming that
VF # 0 # VG, the two normal lines are perpendicular at Pif VF - VG =0at P <

(0F/0x,0F /0y, 0F [0z) - (0G/dx,0G/dy,0G/dz) =0at P < F,G,+ F,Gy+ F.G,=0atP.

(b)Here F =2 4+¢y®> —22and G = 22 + > + 22 —r?, 50
VF-VG = (2x,2y, —22) - (2x,2y, 22) = 422 + 49> — 42% = 4F = 0, since the point (x, 3, 2) lies on the graph of
F = 0. To see that this is true without using calculus, note that G = 0 is the equation of a sphere centered at the origin and
F' = 0 is the equation of a right circular cone with vertex at the origin (which is generated by lines through the origin). At
any point of intersection, the sphere’s normal line (which passes through the origin) lies on the cone, and thus is

perpendicular to the cone’s normal line. So the surfaces with equations ' = 0 and G = 0 are everywhere orthogonal.

Let u = (a,b) and v = (¢, d). Then we know that at the given point, Dy f = Vf-u = af, + bf, and
D, f =V f-v =cfs + dfy,. Butthese are just two linear equations in the two unknowns f; and f,, and since u and v are

not parallel, we can solve the equations to find V f = (fz, fy) at the given point. In fact,

vf_ (4Dsf =bDuf aDyf—cDuf
o ad — be ’ ad — be ’
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14.7 Maximum and Minimum Values

1. (a) First we compute D(1,1) = fu2(1,1) fyy(1,1) — [foy (1, 1)) = (4)(2) — (1)* = 7. Since D(1,1) > 0 and
fzx(1,1) > 0, f has alocal minimum at (1, 1) by the Second Derivatives Test.

(1) D(1,1) = fax(1,1) fyy(1,1) — [fuy (1, 1)]? = (4)(2) — (3)* = —1. Since D(1,1) < 0, f has a saddle point at (1, 1) by

the Second Derivatives Test.

3. In the figure, a point at approximately (1, 1) is enclosed by level curves which are oval in shape and indicate that as we move
away from the point in any direction the values of f are increasing. Hence we would expect a local minimum at or near (1, 1).
The level curves near (0, 0) resemble hyperbolas, and as we move away from the origin, the values of f increase in some
directions and decrease in others, so we would expect to find a saddle point there.

To verify our predictions, we have f(z,y) = 4 +2® + ¢y —3xy = f.(z,y) = 32% — 3y, f,(z,y) = 3y* — 3z. We
have critical points where these partial derivatives are equal to 0: 322 — 3y = 0, 3y? — 3z = 0. Substituting y = 2 from the
first equation into the second equation gives 3(z?)> =32 =0 = 3z(2® —1)=0 = =z =0orz = 1. Then we have
two critical points, (0,0) and (1,1). The second partial derivatives are fz.(z,y) = 6z, foy(z,y) = —3, and fyy(z,y) = 6y,
50 D(2,y) = fau(,9) fuy(2,y) = [foy(2,9)]* = (62)(6y) — (~3)* = 362y — 9. Then D(0,0) = 36(0)(0) — 9 = -9,
and D(1,1) = 36(1)(1) — 9 = 27. Since D(0,0) < 0, f has a saddle point at (0, 0) by the Second Derivatives Test. Since

D(1,1) > 0 and fz5(1,1) > 0, f has a local minimum at (1, 1).

5 flz,y) =2 +ay+vi+y = fe=224y, fu=x+20+1, fox =2, foy =1, fyy, = 2. Then f, = 0 implies

y = —2, and substitutioninto f, =2+ 2y +1=0 gives 2 +2(—22) +1=0 = -3z=-1 = z=1.

AR
NG t:‘::“‘““:‘:“‘" Wl
1)

Then y = —2 and the only critical point is (5, —2).

D(.IL', y) = factfyy - (fmy)Z - (2)(2) - (1)2 = 3, and since

D(3,—2)=3>0and for(5,—3) =2>0, f(5,—3) = —3 isalocal

XN
XY
AT
\\WA

minimum by the Second Derivatives Test.

1 fla,y) =@-y(l—ay) =z —y—a’y+ay® = fo=1-22y+y° f,=-1-2"+2zy, foo =2y,
foy = =2z + 2y, fyy = 2z. Then f, = 0 implies 1 — 2zy + y> = 0 and f, = 0 implies —1 — x? 4 22y = 0. Adding the
2

two equations gives 1 + 1> —1—2> =0 = y>=22 = y =4z butify= —x then f, = 0 implies
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142z +22=0 = 322 = —1 which has no real solution. If y = x
then substitution into f, =0 gives 1 — 22> + 22 =0 = 2°=1 = ol N
— 1t 1 z > \\"’s’.’”’:“
x = =1, so the critical points are (1,1) and (=1, —1). Now ';/'/,, \;“‘\“‘;’:’;’:’;’:’3;‘2
D(1,1) = (~2)(2) — 0> = —4 < O and \“&’Q’“"
AOOOANNY——=
D(—1,-1) = (2)(-2) — 0> = =4 < 0,50 (1,1) and (—1, —1) are —,2 - y

X

saddle points.

Cflzy) =9y +32%y — 62 —6y2 +2 = f. =6xy— 12z, f, = 3y* +32% — 12y, fux = 6y — 12, f., = 6,

fyy = 6y — 12. Then f, = 0 implies 62(y —2) =0, so x = 0 or y = 2. If x = 0 then substitution into f, = 0 gives

3y? —12y =0 = 3yly—4)=0 = 1y =0ory = 4,so we have critical points (0,0) and (0,4). Ify = 2,

substitution into f, = 0 gives 12 +32°> —24=0 = 2*=4 = 500

x = £2, so we have critical points (42, 2). i
e g

D(0,0) = (—12)(—12) — 0% = 144 > 0 and f..(0,0) = —12 < 0, so

—500
£(0,0) = 2is a local maximum. D(0,4) = (12)(12) — 0> =144 >0
-5
and fzz(0,4) =12 > 0, so f(0,4) = —30 is a local minimum. x m
-5 0 5
D(#£2,2) = (0)(0) — (£12)* = —144 < 0, so (£2, 2) are saddle points. Y

flz,y) =2 — 120y + 8y® = f, =32 — 12y, fy = — 122 + 249°, foo = 62, fo, = —12, fy, = 48y. Then f, = 0
implies 2% = 4y and f,, = 0 implies = = 2y, Substituting the second equation into the first gives (2y°)? = 4y =

4t =4y = 4y@r*-1)=0 = y=0ory=1 1Ify=0then
200

z = 0and ify = 1 then x = 2, so the critical points are (0,0) and (2, 1).

D(0,0) = (0)(0) — (—12)? = —144 < 0, so (0, 0) is a saddle point. ';? =
'llh.'!"lh!ll.ln

D(2,1) = (12)(48) — (—12)? = 432 > 0 and f,.(2,1) = 12> 00 —200

f(2,1) = —8 is alocal minimum.

f(z,y) =e"cosy = fr=e"cosy, fy =—e"siny.
Now f; = 0 implies cosy = 0 ory = 5 + nm for n an integer.

But sin(% + nm) # 0, so there are no critical points.
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Jy) =@ +y)e " =
fo=(*+ y2)ey2_’”2(72m) +2zeV " = 2xey2_“’2(1 —z? —y?),
Jo = (@ +y)er 7 (2y) +2yer T = 2y T (12 1),

ww = Qmeyz_xQ(me) +(1—2%—y?) (293(723:&2_’”2) + 2ey2_m2) = 2ey2_’”2((1 — 2% — ) (1 —22?) — 22?),
Joy = 20"~ (=2) + 20(2y)e” 7 (1= 0? — ) = —daye’” (@ + 1),

_ y2—12 2 2 yz—zz y2—:02 _ yz—zz 2 2 2 2

foy = 2ye (2y) + (1 + 27 +y7)( 2y( 2ye +2e =2e" 7" (142" +y7)(1+2y7) +2¢°).
fy = 0 implies y = 0, and substituting into f, = 0 gives
2ze™ (1—2%)=0 = =x=0orz = 1. Thus the critical points are
(0,0) and (1, 0). Now D(0,0) = (2)(2) — 0 > 0 and f,(0,0) = 2 > 0,

so £(0,0) = 0 is a local minimum. D(#+1,0) = (—4e ™ !)(4e™*) =0 < 0

so (%1, 0) are saddle points.

f(z,y) =vy*> —2ycosz = f,=2ysinz, f, =2y — 2cosx,

6 gy PTTT
dat WA
. . s w\\'\‘\"Q\\\\\\“;‘A’.Wt‘.“‘\‘.\
fea = 2ycosx, foy = 2sinx, fyy = 2. Then f, = 0 implies y = 0 or "‘“!\\\\\‘\\\\\\,‘,A!,iﬂlgﬂgw.“.“",.‘ii’v;f
2 WS TN /
. i . SR\ e NN
sint =0 = =0, or2r for —1 <z < 7. Substituting y = 0 into 0 I“‘\\.:'."’I,’ //,:l”,’,’,','.lﬁg&\\ss:"”/
AN\
—4 iy s 5
fy=0givescosz =0 = ax=Z or 3L, substitutingz = 0 orz = 27 N R

into f, = 0 gives y = 1, and substituting x = 7 into f, = 0 gives y = —1. 6 x
Thus the critical points are (0,1), (3,0), (7, —1), (3£,0), and (2, 1).
D(%,0) =D (3,0) = -4 < 0so0 (5,0) and (2F,0) are saddle points. D(0,1) = D(w, —1) = D(27,1) =4 > 0 and

J2x(0,1) = fou(m, —1) = fou(2m,1) =2 > 0,50 f(0,1) = f(7,—1) = f(2m,1) = —1 are local minima.

flr,y) =2 + 4y —day +2 = f.=2x—4y, fy =8y — 4, fozx = 2, foy = —4, fyy, = 8. Then f, =0

and f, = 0 each implies y = %x, so all points of the form (;ro, %azo) are critical points and for each of these we have

D(zo, z0) = (2)(8) — (—4)* = 0. The Second Derivatives Test gives no information, but

f(z,y) = 2° +4y” — dzy + 2 = (z — 2y)*> + 2 > 2 with equality if and only if y = 2. Thus f(zo, 220) = 2 are all local

(and absolute) minima.
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A, flz,y) =2 +y* +a27%y?

N
w

AW —
/A N W Y

From the graphs, there appear to be local minima of about f(1,+1) = f(—1,+1) ~ 3 (and no local maxima or saddle
points). fr =2z — 203y 2, f, = 2y — 2072y 73, fow = 24+ 627y 72, fu, = 4273y 73, £y, = 24 6272y~ Then
fx = 0 implies 22y — 2 = 0 or 2*y? = 1 or 4> = 2~*. Note that neither x nor y can be zero. Now f, = 0 implies
22%y* — 2 = 0, and with 4> = = this implies 2276 —2=0o0raz% = 1. Thusz = +1and ifx = 1,y = +1; ifx = —1,
y = %1. So the critical points are (1,1), (1, —1),(—1,1) and (—1,—1). Now D(1,£1) = D(—1,4+1) =64 — 16 > 0 and
faez > 0always, so f(1,+1) = f(—1,+1) = 3 are local minima.

23. f(z,y) =sinz +siny +sin(z +y), 0<z<2m, 0 <y <2

2

g)-
©

A

From the graphs it appears that f has a local maximum at about (1, 1) with value approximately 2.6, a local minimum

at about (5, 5) with value approximately —2.6, and a saddle point at about (3, 3).

fe =cosz +cos(z+y), fy =cosy+cos(x+Yy), foe = —sinz —sin(z +vy), fyy = —siny —sin(z + ),

fey = —sin(z + y). Setting f, = 0 and f, = 0 and subtracting gives cosxz — cosy = 0 or cosz = cosy. Thusz =y
orx =21 —y. Ifz =y, f» = 0 becomes cos x 4 cos 2z = 0 or 2 cos” x + cos x — 1 = 0, a quadratic in cos z. Thus

, 5, 0r %’T, giving the critical points (7, ), (%, %) and (%’r, ‘%’r) Similarly if

cosx = —1 or% andz =7
x =21 — vy, f» = 0 becomes (cosz) + 1 = 0 and the resulting critical point is (7, 7). Now
D(z,y) =sinz siny + sinz sin(x + y) + siny sin(z + y). So D(7, 7) = 0 and the Second Derivatives Test doesn’t apply.

However, along the line y = = we have f(z,2) = 2sinx + sin 2z = 2sinx + 2sinz cosx = 2sinz(1 + cos z), and
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f(z,z) > 0for0 < x < w while f(z,z) < 0 form < x < 27. Thus every disk with center (7, 7) contains points where f is

positive as well as points where f is negative, so the graph crosses its tangent plane (z = 0) there and (7, 7) is a saddle point.
D(%,5)=9>0and foz(3,5) <0so f(3,5) = 3‘/_ is a local maximum while D (%%, 35) = 9 > 0 and

foa (35, 25) > 0,50 f(3E,38) = 3‘/_1sa10ca1m1n1mum

flz,y) =2 +y* — 42y +2y =  folz,y) = 42> — Sxyand fy(z,y) = 4° —42* +2. f, =0 =

4a(2® — 2y) = 0,50 & = 0 or 2° = 2y. If z = O then substitution into f, = 0 gives 4y* = -2 = y= —%, SO

(O, _3%/5) is a critical point. Substituting > = 2y into f, = 0 gives 43> — 8y 4 2 = 0. Using a graph, solutions are
approximately y = —1.526, 0.259, and 1.267. (Alternatively, we could have used a calculator or a CAS to find these roots.)
We have 2 = 2y = x = £+/2y, s0y = —1.526 gives no real-valued solution for , but

y=0259 = 2~x~=£0.7T20andy =1.267 = x ~ £1.592. Thus to three decimal places, the critical points are

(o, —%ﬁ) ~ (0, —0.794), (40.720, 0.259), and (+1.592, 1.267). Now since fur = 122° — 8y, fuy = —8, fyy = 129>,

and D = (122° — 8y)(12y?) — 6422, we have D(0, —0.794) > 0, f..(0,—0.794) > 0, D(£0.720,0.259) < 0,
D(£1.592,1.267) > 0, and fr,(£1.592,1.267) > 0. Therefore f(0, —0.794) ~ —1.191 and f(£1.592,1.267) ~ —1.310
are local minima, and (£0.720, 0.259) are saddle points. There is no highest point on the graph, but the lowest points are

approximately (+£1.592,1.267, —1.310).
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flz,y) =z +9° 322+ +2-2y+1 = fo(z,y) =42® — 62+ 1and f,(z,y) = 3y® + 2y — 2. From the
graphs, we see that to three decimal places, f, = 0 when x ~ —1.301, 0.170, or 1.131, and f, = 0 when y ~ —1.215 or
0.549. (Alternatively, we could have used a calculator or a CAS to find these roots. We could also use the quadratic formula to
find the solutions of f, = 0.) So, to three decimal places, f has critical points at (—1.301, —1.215), (—1.301, 0.549),
(0.170, —1.215), (0.170, 0.549), (1.131, —1.215), and (1.131, 0.549). Now since fyz = 122% — 6, foy = 0, fyy = 6y + 2,
and D = (122 — 6)(6y + 2), we have D(—1.301, —1.215) < 0, D(—1.301,0.549) > 0, f..(—1.301,0.549) > 0,
D(0.170,—1.215) > 0, f2.(0.170,—1.215) < 0, D(0.170,0.549) < 0, D(1.131,—1.215) < 0, D(1.131,0.549) > 0, and

S22(1.131,0.549) > 0. Therefore, to three decimal places, f(—1.301,0.549) ~ —3.145 and f(1.131,0.549) ~ —0.701 are
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local minima, f(0.170,—1.215) a 3.197 is a local maximum, and (—1.301, —1.215), (0.170,0.549), and (1.131, —1.215)

are saddle points. There is no highest or lowest point on the graph.

5 3

—1.6 ﬂ\ 1.6 -

/ N

) ‘ l ““\\\ “"“”fllll;"/l
;o “‘ \“}‘\\\{Qg\\“"'/%ll‘gflll

1.5

29. Since f is a polynomial it is continuous on D, so an absolute maximum and minimum exist. Here f, = 22 — 2, f, = 2y, and

setting f» = fy, = 0 gives (1, 0) as the only critical point (which is inside D), where f(1,0) = —1. Along L,: = 0 and

£(0,4) = y? for —2 < y < 2, a quadratic function which attains its minimum at y = 0, where f(0, 0) = 0, and its maximum

aty = 2, where f(0,£2) = 4. Along Lo: y:x72for0§x§2,andf(x,at72):2x276x+4:2(x7%)zf%,

a quadratic which attains its minimum at z = 2, where f (3, —1) = —1, and its maximum at = = 0, where f(0, —2) = 4.
Along Ls: y=2—x for0 < x < 2,and Y
0,2)

f(@,2—2)=22> -6z +4=2(z— %)2 — 1, a quadratic which attains

S . . L
its minimum at @ = 2, where f(2, 1) = —2, and its maximum at z = 0, !

and the absolute minimum is f(1,0) = —1.

L
(
b 2 >
where f(0,2) = 4. Thus the absolute maximum of f on D is f(0,+2) =4 /
y

3. fo(z,y) = 22 + 22y, f,(x,y) = 2y + 2>, and setting f, = f, = 0

gives (0, 0) as the only critical point in D, with f(0,0) = 4. =11

On Ly: y= -1, f(z,—1) = 5, a constant.

On Lo =1, f(1,y) = ¥* +y + 5, a quadratic in y which attains its 1, —1)
maximum at (1,1), f(1,1) = 7 and its minimum at (1, 1), f(1,-1) = L.
On Ls: f(z,1) = 22® 4 5 which attains its maximum at (—1,1) and (1, 1)

with f(£1,1) = 7 and its minimum at (0, 1), f(0,1) = 5.
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On Ly f(—1,y) = y* 4+ y + 5 with maximum at (—1, 1), f(—1,1) = 7 and minimum at (-1, —%), f(—l, -4 =1
Thus the absolute maximum is attained at both (£1, 1) with f(£1,1) = 7 and the absolute minimum on D is attained at

(0,0) with £(0,0) = 4.

f(z,y) = x* +y* — 4xy + 2 is a polynomial and hence continuous on D, so ¥

it has an absolute maximum and minimum on D. f,(x,y) = 42® — 4y and 0,2) L, (3.2)

fy(2,y) = 4y® — 4x; then f, = 0 implies y = 2*, and substitution into . .
4 2

fy=0 = z=y’gives2® —2=0 = z2(2®*-1)=0 = z=0

or z = +1. Thus the critical points are (0, 0), (1,1), and (—1, —1), but only (0,0) L, (3,00 «x

(1,1) with f(1,1) = Oisinside D. On Li: y = 0, f(z,0) = z* + 2,

0 < z < 3, a polynomial in = which attains its maximum at z = 3, f(3,0) = 83, and its minimum at z = 0, f(0,0) = 2.

On Loz =3, f(3,y) = v — 12y + 83,0 < y < 2, a polynomial in y which attains its minimum at y = /3,

£(3,V/3) =83 —9 /3~ 70.0, and its maximum at y = 0, £(3,0) = 83.

OnLs:y=2, f(z,2) = z* — 8z 4 18,0 < z < 3, a polynomial in  which attains its minimum at z = ¥/2,

]‘(\3/57 2) =18 — 6 v/2 ~ 10.4, and its maximum at x = 3, £(3,2) =75.0nLs: 2 =0, f(0,y) = 3* +2,0<y < 2,2
polynomial in y which attains its maximum at y = 2, f(0,2) = 18, and its minimum at y = 0, f(0,0) = 2. Thus the absolute

maximum of f on D is f(3,0) = 83 and the absolute minimum is f(1,1) = 0.

fo(z,y) = 622 and f,(z,y) = 4y>. And so f, = 0 and f, = 0 only occur when = = y = 0. Hence, the only critical point
inside the disk is at z = y = 0 where £(0,0) = 0. Now on the circle z® + y* = 1, y*> = 1 — 2 so let

g@) = flz,y) =203 + (1 —2?)? =2 +22% — 22> + 1,1 <2 < 1. Theng'(z) =42 + 62> — 42 =0 = =0,
—2,0r 1. f(0,£1) =g (0) =1, f(%, :I:@) =g(3) = 1. and (—2, —3) is not in D. Checking the endpoints, we get
f(—=1,0) = g(—1) = —2 and f(1,0) = g(1) = 2. Thus the absolute maximum and minimum of f on D are f(1,0) = 2 and
f(=1,0) = —2.

Another method: On the boundary 22 + y? = 1 we can write £ = cos 6, y = sin 6, so f(cos#, sin ) = 2 cos® § 4 sin* 0,

0<6<L2m.

flz,y) = —(:1:2 — 1)2 — (m2y —x— 1)2 =  fo(z,y) = —2(1’2 —1)(2x) — 2(m2y —x—1)(2zy — 1) and

fy(x,y) = —2(z*y — x — 1)a®. Setting f,(z,y) = O gives eitherx = 0 or 2®y — 2 — 1 = 0.

. . . 1
There are no critical points for = 0, since f,,(0,y) = —2,sowesetz’y —x —1=0 & y= x;; [z # 0],
LN o2 1) (2m) — 2 22 21 1) (2255 — 1) = _4a(2? — 1), Theref
S0 fr T — ) == (2 —=1)(2z) — 2| = o r— 1) =~ x(z* — 1). Therefore

fa(z,y) = fy(z,y) = 0 at the points (1, 2) and (—1, 0). To classify these critical points, we calculate
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foz(z,y) = —122% — 122%9° + 120y + 4y + 2, fyy(2,y) = —22°,

and fuy (2,y) = —82%y + 622 + 4z. In order to use the Second Derivatives
Test we calculate

D(=1,0) = fax(=1,0) fyy(~1,0) = [fay(~1,0)]* = 16 > 0,
fea(=1,0) = =10 < 0, D(1,2) =16 > 0, and f»(1,2) = —26 < 0, so

both (—1,0) and (1, 2) give local maxima.

Let d be the distance from (2,0, —3) to any point (z,y, z) onthe planex + y + z = 1, s0d = y/(z — 2)% + 2 + (2 + 3)2
where z = 1 — 2 — y, and we minimize d®> = f(z,y) = (x — 2)®> + 4> + (4 — 2 — y)%. Then

fo(myy) =2(x —2) + 24—z —y)(—1) =4z + 2y — 12, fy(z,y) =2y + 2(4 — v — y)(—1) = 2z + 4y — 8. Solving
4x + 2y — 12 = 0 and 2z + 4y — 8 = 0 simultaneously gives z = 3, y = 2, so the only critical point is (2, ). An absolute

minimum exists (since there is a minimum distance from the point to the plane) and it must occur at a critical point, so the

2
P=Vi=%

Let d be the distance from the point (4, 2,0) to any point (z, y, z) on the cone, so d = /(z — 4)% + (y — 2)2 + 22 where

shortest distance occurs for x = %, y = % for which d = \/(% - 2)2 + (%)2 + (4 —

wloo
Wi

22 = 2% + ¢, and we minimize d> = (z — 4)* + (y — 2)> + 22 + y% = f(x,y). Then

fe(z,y) =2(x —4) + 22 =42 — 8, fy(z,y) = 2 (y — 2) + 2y = 4y — 4, and the critical points occur when

fe=0 = x=2, f,=0 =y = 1. Thus the only critical point is (2, 1). An absolute minimum exists (since there is a
minimum distance from the cone to the point) which must occur at a critical point, so the points on the cone closest

to (4,2,0) are (2,1,£5).

x 4y + z = 100, so maximize f(z,y) = zy(100 —x — y). fr = 100y — 22y — v, f, = 100z — 2> — 2xy,
foe = =2y, fyy = =22, foy = 100 — 22 — 2y. Then f, = 0 implies y = 0 or y = 100 — 2z. Substituting y = 0 into

fy = 0 gives z = 0 or z = 100 and substituting y = 100 — 2z into f, = 0 gives 32> — 100z = 0soz = 0 or %.
Thus the critical points are (0,0), (100, 0), (0, 100) and (132, 132).
D(0,0) = D(100,0) = D(0,100) = —10,000 while D (152, 132) = 18900 anq f,, (132, 132) = — 232 < 0. Thus (0,0),

100

(100, 0) and (0, 100) are saddle points whereas f(32,432) is a local maximum. Thus the numbers are z = y = z = 132,

3 3

Center the sphere at the origin so that its equation is 2 + 3 + 2% = r2, and orient the inscribed rectangular box so that its
edges are parallel to the coordinate axes. Any vertex of the box satisfies 2 + y? 4 2% = 12, so take (x, y, 2) to be the vertex

in the first octant. Then the box has length 2z, width 2y, and height 2z = 2 /72 — 22 — y? with volume given by

V(m,y):(Zm)(Qy)(Q rz—xz—y2):8xy\/r2—x2—y2f0r0<x<r,0<y<r.Then
2 _ 92 _ 2 2_ 2 9,2
V, = (S2y) - 10 —a? —y?)"2(<22) + /P =P =2 -8y = W22 V) gy, = B2l 2 )
P2 g2 g2 "2 g2 — 42

Setting V, = 0 gives y = 0 or 22 + 3® = 72, but y > 0 so only the latter solution applies. Similarly, V;, = 0 with > 0
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implies z? + 2y = r2. Substituting, we have 22° + > =22 +2y> = 2’=9y®> = y==xz Thenz®’+ 2%’ =1> =
3z =r® = a=./r?/3=r/v3=y. Thus the only critical point is (r/v/3,/+/3). There must be a maximum

volume and here it must occur at a critical point, so the maximum volume occurs when ¢ = y = r/ v/3 and the maximum

volume is V(%7 %) = 8(%) (%) \/ 2 _ (%)2 _ (%)2 _ S;f/gr?

Maximize f(z,y) = % (6 — 2 — 2y), then the maximum volume is V' = xyz.

fo =326y — 22y — y*) = 2y(6 — 2o — 2y) and f, = +2 (6 — x — 4y). Setting f, = 0 and f, = 0 gives the critical point
(2,1) which geometrically must give a maximum. Thus the volume of the largest such box is V' = (2)(1)(2) = 3.

Let the dimensions be x, y, and z; then 4x 4+ 4y + 4z = c and the volume is

szyzz;ry(%c—x—y) = icmy—xzy—xy2,$>0,y > 0. Then V,, = icy—?xy—yzandV = %cm’—xz—Qa:y,
soVy,=0=1V, when2z +y = icandm—i—Zy = ic. Solving, we get x = %c,y = %candz = %c—x—y = 1—12c. From
the geometrical nature of the problem, this critical point must give an absolute maximum. Thus the box is a cube with edge

length %c.

Let the dimensions be x, y and z, then minimize zy + 2(zz + y2) if zyz = 32,000 cm®. Then

f(x,y) = xy + [64,000(x + y)/zy] = zy + 64,000(z +y '), fo =y — 64,000272, f, =z — 64,000y 2.
And f, = 0 implies y = 64,000/27; substituting into f, = 0 implies > = 64,000 or x = 40 and then y = 40. Now
D(x,y) = [(2)(64,000)]2273y~* — 1 > 0 for (40, 40) and f,(40,40) > 0 so this is indeed a minimum. Thus the

dimensions of the box are x = y = 40 cm, z = 20 cm.

Let z, y, z be the dimensions of the rectangular box. Then the volume of the box is xyz and

L=ya2+12+22 = L[?=x24+y°+22 = z=./L%—x2—2

Substituting, we have volume V' (z,y) = 2y /L? — 22 —y? (x,y > 0).

2
— oy L([2 2 2120 PR R 22 _2__ rTY
Vemay: 3(17 =2t =) 20 4y VP = 0P P =y I =0 -y - e
my2 : : 2 2 2 2 2 2 2
Vy=z/L?—2?—y? - ——————=. Vo =0impliesy(L* —z* —y*) =2y = y(L*—-22°—-y*)=0 =

I —a2 — 2
2% +y? = L? (since y > 0), and V,, = 0 implies 2(L? — 2® —¢*) = xy® = 2(I?>-2*—-2°) =0 =
x? 4+ 2y* = L? (since = > 0). Substituting y*> = L? — 222 into 2® + 2y = L? gives 2® + 2L? — 42®> = [* =
32 = L* = x=L/v3(sincex > 0)andtheny = \/L? — 2(L/v3) = L/v/3.

So the only critical point is (L //3,L/ \/5) which, from the geometrical nature of the problem, must give an absolute

maximum. Thus the maximum volume is V' (L/v/3,L/V/3) = (L/\/§)2 \/L2 - (L/\/§)2 - (L/\/§)2 =L?/(3V3)

cubic units.
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55. Note that here the variables are m and b, and f(m,b) = Z [yi — (ma; +b)]°. Then fr, = > —2[y; — (mai +b)] =0
i=1

1=

implies > (ziyi —mai —bai) =0o0r Y ziyi=m > i +b > wiand fy = Y —2[y; — (ma; + b)] = 0 implies

i=1 i=1 i=1 i=1 i=1

Sy=md >+ > b= m( > xl> + nb. Thus we have the two desired equations.

i=1 i=1 =1 i=1

n

NoW frm = 3. 223, foio = >, 2=2nand frp = >, 2x;. And fim(m,b) > 0 always and

=1 i=1 i=1

D(m,b) = 4n< > xf) - 4( > ml) =4 {n ( > xf) — ( > ;u) ] > 0 always so the solutions of these two
i=1 i=1

i=1 i=1

n
equations do indeed minimize 3 d?.
i=1

14.8 Lagrange Multipliers

1. At the extreme values of f, the level curves of f just touch the curve g(z,y) = 8 with a common tangent line. (See Figure 1
and the accompanying discussion.) We can observe several such occurrences on the contour map, but the level curve
f(x,y) = c with the largest value of ¢ which still intersects the curve g(z, y) = 8 is approximately ¢ = 59, and the smallest
value of ¢ corresponding to a level curve which intersects g(z, y) = 8 appears to be ¢ = 30. Thus we estimate the maximum

value of f subject to the constraint g(x,y) = 8 to be about 59 and the minimum to be 30.

3. flz,y) =2+ 9% g(z,y) =xy=Land Vf = AVg = (22,2y) = (\y, \z), s0 2z = Ay, 2y = Az, and zy = 1.
From the last equation, z # 0 and y # 0,s0 22 = Ay = X = 2z/y. Substituting, we have 2y = (2z/y)x =
y? =2> = y=4x Butay =1,s02 =y = £1 and the possible points for the extreme values of f are (1, 1) and

(=1, —1). Here there is no maximum value, since the constraint xy = 1 allows x or y to become arbitrarily large, and hence
f(z,y) = £® 4 4 can be made arbitrarily large. The minimum value is f(1,1) = f(—1,-1) = 2.

5 f(z,y)=y"—2% g(z,y) =312+ =1L, and Vf =AVg = (—2z,2y) = (1 Az,2)y), s0o —2z = 1)z, 2y = 2\y,
and 2% + y* = 1. From the first equation we have (4 +A) =0 =z =0or A = —4. Ifz = 0 then the third equation
gives y = £1. If A = —4 then the second equation gives 2y = —8y = y = 0, and substituting into the third equation,
we have 2z = +2. Thus the possible extreme values of f occur at the points (0, £1) and (42, 0). Evaluating f at these points,
we see that the maximum value is f(0, 1) = 1 and the minimum is f(+2,0) = —4.

7. flz,y,2) =22+ 2y + 2, gla,y,2) =2+ + 22 =9, and Vf = A\Vg = (2,2,1) = (2)z,2)y, 2)z), 50 2\ = 2,

20y = 2,2z = 1, and 2® + y? + 22 = 9. The first three equations imply = = %, Y= %, and z = % But substitution into

2 2 2
the fourth equation gives <§> + (%) + (%) =9 = & =9 = A= :t%, so f has possible extreme values at
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the points (2,2, 1) and (—2, —2, —1). The maximum value of f on z + 3® 4+ 2% = 9is £(2,2,1) = 9, and the minimum is

f(=2,-2,—1) = —9.

Cf(z,y,2) = zyz, gla,y,2) =2+ 22 +322=6. Vf =AVg = (yz,zz,2y) = A (22,4y, 62). Ifany of z, y, or z is

zero then & = y = 2 = 0 which contradicts 2% 4 2y* + 322 = 6. Then A = (y2)/(2z) = (x2)/(4y) = (zy)/(62) or

z? =2¢y% and 2% = %yz. Thus 22 + 2y® + 322 = 6 implies 6y> = 6 or y = £1. Then the possible points are

(\/5, +1, \/g), (\/5, +1, —\/g), (—\/57 +1, \/g), (—\/5, +1, —\/g) The maximum value of f on the ellipsoid is

%, occurring when all coordinates are positive or exactly two are negative and the minimum is — % occurring when 1 or 3 of

the coordinates are negative.

flxy,2) =2 + 2 + 22, glz,y,2) =2 +y* +2' =1 = Vf=(2z,2y,22),\Vg= <4/\x3,4)\y3,4/\z3>.
Case 1: Ifx #0,y # 0and z # 0, then Vf = AVg implies A = 1/(22%) = 1/(2y?) = 1/(22*) or 2? = y* = 2% and
3zt =1lorz = :I:%\/g giving the points (:I:A%\/§7 L L), (:I:? _4%/3’ 4%/3), ( ? —%), (:I:%
all with an f-value of v/3.

Case 2: If one of the variables equals zero and the other two are not zero, then the squares of the two nonzero coordinates are
equal with common value —= and corresponding f value of /2.

Case 3: If exactly two of the variables are zero, then the third variable has value 1 with the corresponding f value of 1. Thus

on z* + y* + z* = 1, the maximum value of f is v/3 and the minimum value is 1.

fx,y,z,t) =z +y+z+t gla,y,z,t) =2+ + 22 +12 =1 = (1,1,1,1) = (2\x, 2)y, 2)z, 2)t), s0

A=1/(22) =1/(2y) =1/(22) = 1/(2t) and v = y = z = t. But 2® + y® + 2> +t®> = 1, so the possible points are
1

(i%, i%, i%, i%) Thus the maximum value of f is f(%, %, 5 é) = 2 and the minimum value is

flayz) =a+2y, g(z.y,2) =z +y+z=1 hz,y,2) =y* +2° =4 = Vf=(1,2,0),AVg= (AN
and uVh = (0,2uy,2pz). Then1 =X\, 2 =X+ 2uyand 0 = A+ 2uzsopy = 3 = —pzory = 1/(2u), 2 = —1/(2p).

Thus = + y 4+ z = 1 implies 2 = 1 and 3? + 22 = 4 implies = +-2= \/_ Then the possible points are (1 +v/2, JF\/_)

and the maximum value is f (1,v/2, —v/2) = 1 + 2v/2 and the minimum value is f (1, —v/2,v2) =1 —2V/2.

f(x,y,2) =yz +ay, g(z,y,2) =2y =1, h(z,y,2) =y* +2° =1 = Vf=(y,z+2zy),\Vg = (\y,\z,0),
uVh =(0,2uy,2uz). Theny = Ay implies A = 1 [y # O since g(x,y,2) = 1], 2 + z = Az + 2uy and y = 2uz. Thus

w=z/(2y) = y/(2y) ory*® = 2%, and so y*> + 2% = 1 implies y = :i:%, z= :I:%. Then zy = 1 implies © = ++/2 and
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the possible points are (:I:\/§7 :I:%, %) , (:I:\/§7 :I:%, - %) . Hence the maximum of f subject to the constraints is

f(:tﬁ, :I:ﬁ7 :t%) = 2 and the minimum is f(:tﬁ, :I:ﬁ7 :F%) = 1.

Note: Since zy = 1 is one of the constraints we could have solved the problem by solving f(y, z) = yz + 1 subject to

y2 +22=1.

f(z,y) = 22 + 4* + 4a — 4y. For the interior of the region, we find the critical points: f, = 2z + 4, f, = 2y — 4, so the
only critical point is (—2, 2) (which is inside the region) and f(—2,2) = —8. For the boundary, we use Lagrange multipliers.
gz, y) =2 +1y* =9,50Vf =AVg = (20+4,2y—4) = (2\x,2\y). Thus 22 + 4 = 2\z and 2y — 4 = 2\y.
Adding the two equations gives 2z + 2y =2 Az +2\y = z4+y=ANz+y) = (z+y)(A—1)=0,s0
z+y=0 = y=-zorA—1=0 = A=1. But\=1leadstoa contradition in 2z + 4 = 2Az, so y = —z and
2 +y® = 9implies2y® =9 = y =+ Wehave f (% —%) — 94 12v3 ~ 25.97 and

f (—%7 %) =9 —12/2 & —7.97, so the maximum value of f on the disk 22 + ¢* < 9is f (%, —%) =9+12V2

and the minimum is f(—2,2) = —8.

f(x,y) = e~ ®Y. For the interior of the region, we find the critical points: f, = —ye™ %Y, f, = —ze™"Y, so the only
critical point is (0, 0), and f(0,0) = 1. For the boundary, we use Lagrange multipliers. g(z,y) = 2* +4y* =1 =
AVg = (2Az, 8)y), so setting V f = AVg we get —ye™ ¥ = 2 x and —ze™"¥ = 8\y. The first of these gives

e~™¥ = —2\x/y, and then the second gives —z(—2A\z/y) = 8\y = x? = 4y>. Solving this last equation with the

constraint 22 4 43> = 1 gives = :I:% and y = :|:2—\1/§. Now f(:t%,qiﬁ) = e'/* ~ 1.284 and
f (:I:%, iz%/i) = ¢ /% ~ 0.779. The former are the maxima on the region and the latter are the minima.

@) flz.y) =2 glz,y)=y*+2*—2°=0 = Vf=(1,0)=AVg=\(42® — 32, 2y). Then
1= /\(4a73 = 3m2) (1) and 0 = 2\y (2). We have A # 0 from (1), so (2) gives y = 0. Then, from the constraint equation,
z*—2*=0 = 2%2-1)=0 = z=0o0rz=1.Butz = 0 contradicts (1), so the only possible extreme value

subject to the constraint is f(1,0) = 1. (The question remains whether this is indeed the minimum of f.)

3

(b) The constraintis y? + z* — 23 =0 <«  3? = a® — 2*. The left side is non-negative, so we must have z> — z* > 0

which is true only for 0 < x < 1. Therefore the minimum possible value for f(z,y) = x is 0 which occurs for x = y = 0.

However, AVg(0,0) = A (0 — 0,0) = (0,0) and V £(0,0) = (1,0), so Vf(0,0) # AVg(0,0) for all values of \.

(c) Here Vg(0,0) = 0 but the method of Lagrange multipliers requires that Vg # 0 everywhere on the constraint curve.
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P(L,K)=bL*K'"®, g(L,K)=mL+nK =p = VP={(abL® 'K'"* (1-a)bL®K~*), A\Vg = (Am, An).
Then ab(K/L)' ™ = Mmand (1 — a)b(L/K)* = dnand mL + nK = p, so ab(K/L)*~*/m = (1 — a)b(L/K)*/n or
na/[m(l — a)] = (L/K)*(L/K)"™* or L = Kna/[m(1 — «)]. Substituting into mL + nK = p gives K = (1 — a)p/n
and L = ap/m for the maximum production.

Let the sides of the rectangle be x and y. Then f(z,y) = zy, g(x,y) =2z + 2y =p = Vf(z,y) = (y,x),

AVg = (2X,2)). Then A = %y = %;r implies = y and the rectangle with maximum area is a square with side length ip.

The distance from (2, 0, —3) to a point (z, y, z) on the plane is d = /(z — 2)2 + y2 + (z + 3)2, so we seek to minimize
d? = f(z,y,2) = (x — 2)> + y*> + (2 + 3)? subject to the constraint that (z,y, z) lies on the plane x 4 y + z = 1, that is,
that g(z,y,2) =x+y+2z=1. ThenVf=AVg = (2(z—2),2y,2(z+3)) = M\ A),s0z=(A+4)/2,

4+%+¥:1 = 3\-2=2 =

y = A/2, z = (A — 6)/2. Substituting into the constraint equation gives A —2’_

A= %, sor = %, y= %, and z = fg. This must correspond to a minimum, so the shortest distance is

=GP+ @+ (5+9°= 1= &

Let f(z,y,2) = d* = (x — 4)° 4+ (y — 2)® + 2% Then we want to minimize f subject to the constraint

glr,y,2) =2+ —22=0. Vf=AVg = (2(x—4),2(y—2),22) = (2\z,2\y, —2)z2),s0 z — 4 = Az,

y — 2 = Ay, and z = —\z. From the last equation we have z + Az =0 = 2z (1+ A) =0, soeither z =0o0r A = —1.
But from the constraint equation we have z =0 = 2> +¢y*=0 = a =y = 0 which is not possible from the first
two equations. So A\ = —landz —4=X Xz = z=2,y—2=X)y = y=DLandz’+¢y*—22=0 =
44+1-22=0 = 2z ==4+/5. This must correspond to a minimum, so the points on the cone closest to (4, 2, 0)

are (2,1,£5).

flz,y,2) =zyz, g(z,y,2) =x+y+2=100 = Vf=(yz,zz,2y) =AVg=(\\A). Then A = yz = zz = zy

100

impliesz =y =2z = =3

If the dimensions are 2z, 2y, and 2z, then maximize f(z,y, 2) = (22)(2y)(2z) = 8zyz subject to
g(x,y,2) =2> +y* + 22 =72 (@ >0,y >0,2>0). Then Vf = \Vg = (8yz,8zz,8zy) = \(2z,2y,22) =

8yz = 2Ax, 8xz = 2\y, and 8zy = 2Az,s0 A = % = 4iyz = 4% This gives 2%z = y?2 = 2 = y? (since z # 0)

2 2 2

andzy? = 222 = 22 =y sox? =y? =22 = =y = z and substituting into the constraint

2

equation gives 322 = 72 = 1« =r/+/3 = y = 2. Thus the largest volume of such a box is

() =5 () (5) (5) = 5057
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flzyy,z) =zyz, g(z,y,2) =z +2y+32=6 = Vf= (yz,zz,zy) = AVg = (\,2),3)).
Then A = yz = %mz = %azy implies z = 2y, z = %y. But2y+2y+2y=6soy=1,zr=2,z= % and the volume
isV = %.
flz,y,2) =zyz, g(z,y,2) =4(x+y+2)=c = Vf=(yz zz xy), \Vg = (4X,4X\,4)\). Thus
1

A\ =yz =xz =Yyorx =y = 2z = j5care the dimensions giving the maximum volume.

If the dimensions of the box are given by z, y, and z, then we need to find the maximum value of f(z,y, z) = xyz

[z, v,z > 0] subject to the constraint I = /22 + 32 + 22 or g(,y,2) = 2> +9y*> + 22 = L% Vf=\Vg =

(yz,zz,2y) = A\(2x,2y,22),s0yz =2 z = A= ﬁ,xz:Q)\y = A= %,andxy:%\z = A=
2x 2y 2z
Thus}‘:%:% = z?=9> [sincez#0] = x:yandA:%:% = x =2z [sincey # 0].

Substituting into the constraint equation gives z° + 2% + 22 = L? = 2?=1?/3 = z=L/V3=y=zandthe

maximum volume is (L/+/3) = L?/(33).

We need to find the extreme values of f(z,y,2) = 2* + y* + 22 subject to the two constraints g(z,y,2) = 2 +y + 2z = 2
and h(x,y,2) =2 +9y*> —2=0. Vf=(2z,2y,22), \Vg = (\ \,2)\) and uVh = (2ux, 21y, —u). Thus we need

20 =A+2ux (1), 2y=A+2uy 2), 22=22—p @3), z+y+22=2 @,andz> +y*> —2=0 (5).

From (1) and (2), 2(z — y) = 2u(z — y), so if @ # y, p = 1. Puting this in (3) gives 2z = 2A — 1 or A = z + 1, but putting
1 = 1into (1) says A = 0. Hence z + % =0orz= —%. Then (4) and (5) become « + y — 3 = 0 and 22 + y2 + % = 0. The
last equation cannot be true, so this case gives no solution. So we must have x = y. Then (4) and (5) become 2z + 2z = 2 and

22®> — z = 0 whichimply z = 1 —zand z = 22°. Thus 22° =1 —zor22° + 2 —1= 2z — 1)(z+1) =0soz = S or

@ = —1. The two points to check are (%, 3,1) and (—1,—1,2): f(3,%,3) = 2 and f(—1,—1,2) = 6. Thus (3, 3,3) is

the point on the ellipse nearest the origin and (—1, —1, 2) is the one farthest from the origin.

flz,y, 2) =ye" %, g(x,y,2) = 922 + 4y® + 362% = 36, h(z,y,2) =axy+yz=1. Vf=AVg+uVh =
(ye™ %,e" 7%, —ye® %) = M18x, 8y, 722) 4+ p(y, x + z,y), so ye™ = = 18Xz + py, e”~* = 8 y + pu(z + 2),
—ye® 77 = T2z + py, 9% + 4y* + 362> = 36, 2y + yz = 1. Using a CAS to solve these 5 equations simultaneously for x,

Y, 2, A, and p (in Maple, use the allvalues command), we get 4 real-valued solutions:

z ~ 0.222444, y~ —2.157012, =z~ —0.686049, X~ —0.200401, p =~ 2.108584
T~ —1.951921, y~ —0.545867, =z~ 0.119973, A~ 0.003141, p~ —0.076238
x =~ 0.155142, y ~ 0.904622, z ~ 0.950293, A~ —0.012447, p~ 0.489938
r ~ 1.138731, y ~ 1.768057, z ~ —0.573138, A ~0.317141, p o~ 1.862675

Substituting these values into f gives f(0.222444, —2.157012, —0.686049) ~ —5.3506,
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f(—1.951921, —0.545867,0.119973) ~ —0.0688, f(0.155142,0.904622, 0.950293) ~ 0.4084,

£(1.138731,1.768057, —0.573138) ~ 9.7938. Thus the maximum is approximately 9.7938, and the minimum is

approximately —5.3506.

47. (a) We wish to maximize f(z1,2, ..., Zn) = ¥/T1Z2 - - - T, subject to

g(x1,22, ..., 2n) =21 + 22+ -+, =cand z; > 0.
1

1 L _
%(.’BI.TQ i 'Jz‘n)n 1(-7:1 t 'x'n,—l)>

i_ 1_
Vf= <%($1$2"'$n)" Yoo an), 2(v1za - zn) ™ (@123 T0) s -,
and AVg = (A, A\, ..., A), so we need to solve the system of equations

1
1 +—1 1/n_1/n 1/n
“(r1xe - wn)™ T (T2 xn) = A > m @y x T =nAn

1

%(wlxg _ xn)ﬁfl(mlxg eTp) =N = m}/nxé/n . L/n

ez = ndxs

1
1 +—1 1/n_1/n 1/n
(@12 x0)™ (1 Tp—1) =N =z "z oz =nda,

This implies nAz1 = nAx2 = - - = nAx,. Note A # 0, otherwise we can’t have all ; > 0. Thus 1y = 22 = -+ - = xn.
c .
Butzi +22+---+2z,=¢c = nx1i=c¢c = &1 =— =22 =2T3="---= 2Ty Then the only point where f can
n
. [(C ¢ c .
have an extreme value is (—, — e, —). Since we can choose values for (21, za, ..., z,) that make f as close to
n’'n n

zero (but not equal) as we like, f has no minimum value. Thus the maximum value is

f(c c C)_ [c ¢ c _c
n'n’ ' n n n n n

. But

Slo

(b) From part (a), Z is the maximum value of f. Thus f(z1, 22, ..., Tn) = YT1Z2 - Tn <
n

T1+ X2+ -+ xTn =¢ 80 Yr1T2 T < 1+ %2t + ™ . These two means are equal when f attains its
n

. c . . c c c .
maximum value —, but this can occur only at the point ( — = s —) we found in part (a). So the means are equal only
n n’'n

C
n

whenxy =xo =23 =+ =2, =

14 Review
CONCEPT CHECK

1. (a) A function f of two variables is a rule that assigns to each ordered pair (x, y) of real numbers in its domain a unique real

number denoted by f(z, y).
(b) One way to visualize a function of two variables is by graphing it, resulting in the surface z = f(z,y). Another method for
visualizing a function of two variables is a contour map. The contour map consists of level curves of the function which are

horizontal traces of the graph of the function projected onto the xy-plane. Also, we can use an arrow diagram such as

Figure 1 in Section 14.1.
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. A function f of three variables is a rule that assigns to each ordered triple (x, y, z) in its domain a unique real number

f(x,y, z). We can visualize a function of three variables by examining its level surfaces f(x,y, z) = k, where k is a constant.
f(z,y) = L means the values of f(x,y) approach the number L as the point (z, y) approaches the point (a, b)

along any path that is within the domain of f. We can show that a limit at a point does not exist by finding two different paths

approaching the point along which f(z, y) has different limits.

. (a) See Definition 14.2.4.

(b) If f is continuous on R?, its graph will appear as a surface without holes or breaks.

. (a) See (2) and (3) in Section 14.3.

(b) See “Interpretations of Partial Derivatives” on page 927 [ET 903].

(c) To find f,, regard y as a constant and differentiate f(x, y) with respect to . To find f, regard z as a constant and

differentiate f(x,y) with respect to y.

. See the statement of Clairaut’s Theorem on page 931 [ET 907].

. (a) See (2) in Section 14.4.

(b) See (19) and the preceding discussion in Section 14.6.

. See (3) and (4) and the accompanying discussion in Section 14.4. We can interpret the linearization of f at (a,b) geometrically

as the linear function whose graph is the tangent plane to the graph of f at (a, b). Thus it is the linear function which best

approximates f near (a, b).

. (a) See Definition 14.4.7.

(b) Use Theorem 14.4.8.

See (10) and the associated discussion in Section 14.4.
See (2) and (3) in Section 14.5.

See (7) and the preceding discussion in Section 14.5.

(a) See Definition 14.6.2. We can interpret it as the rate of change of f at (zo, yo) in the direction of u. Geometrically, if P is
the point (xo, Yo, f(Zo,yo)) on the graph of f and C' is the curve of intersection of the graph of f with the vertical plane
that passes through P in the direction u, the directional derivative of f at (xo, yo) in the direction of u is the slope of the

tangent line to C at P. (See Figure 5 in Section 14.6.)
(b) See Theorem 14.6.3.
(a) See (8) and (13) in Section 14.6.

(®) Duf(x,y) :Vf(x,y) ~uorDuf(x,y,z) :Vf(r,y,z) ‘u
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(c) The gradient vector of a function points in the direction of maximum rate of increase of the function. On a graph of the

function, the gradient points in the direction of steepest ascent.

15. (a) f has a local maximum at (a, ) if f(z,y) < f(a,b) when (z,y) is near (a, b).
(b) f has an absolute maximum at (a, b) if f(x,y) < f(a,b) for all points (z,y) in the domain of f.
(c) f has a local minimum at (a, b) if f(z,y) > f(a,b) when (z,y) is near (a, b).
(d) f has an absolute minimum at (a, b) if f(z,y) > f(a,b) for all points (z, y) in the domain of f.
(e) f has a saddle point at (a, b) if f(a,b) is a local maximum in one direction but a local minimum in another.
16. (a) By Theorem 14.7.2, if f has a local maximum at (a, b) and the first-order partial derivatives of f exist there, then
fz(a,b) =0and fy(a,b) = 0.
(b) A critical point of f is a point (a, b) such that f(a,b) = 0 and f,(a,b) = 0 or one of these partial derivatives does
not exist.
17. See (3) in Section 14.7.
18. (a) See Figure 11 and the accompanying discussion in Section 14.7.
(b) See Theorem 14.7.8.
(c) See the procedure outlined in (9) in Section 14.7.
19. See the discussion beginning on page 981 [ET 957]; see “Two Constraints” on page 985 [ET 961].
TRUE-FALSE QUIZ
1. True. fy(a,b) = }lLin}) flab+ h})L — f(a.b) from Equation 14.3.3. Let h = y — b. As h — 0, y — b. Then by substituting,
f(a, fla,b
we get fy(a,b) = hg}) %
0 f
3. False. fzy = ———.
alse. foy By oz
5. False. See Example 14.2.3.
7. True. If f has a local minimum and f is differentiable at (a, b) then by Theorem 14.7.2, f(a,b) = 0 and f,(a,b) = 0, so
Vf(a,b) = (fz(a,b), fy(a,b)) =(0,0) = 0.
9. False. Vf(z,y) = (0,1/y).
11. True. Vf = (cosx,cosy), so |V f| = \/cos2 x + cos? y. But |cos 0] < 1, s0 |V f| < v/2. Now

Dy f(x,y) = Vf-u = |Vf||u|cosb, but u is a unit vector, so | Du f(z,9)| <V2-1-1=+/2.
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EXERCISES
A y
1. In(z +y+1)isdefinedonly whenz +y+1>0 & y>-—x—1, N
so the domain of f is {(z,y) | y > —x — 1}, all those points above the S
-1 X
liney = —z — 1. oy
y=—x— I\\
3. z = f(z,y) = 1 — y?, a parabolic cylinder 5. The level curves are /422 + 2 = k or 422 4+ 3* = k2,

, k > 0, a family of ellipses.

=

= 7

y 9. f is a rational function, so it is continuous on its domain.

Since f is defined at (1, 1), we use direct substitution to

o ) 2y 2(1)(1) 2
luate the limit: 1 = -3
@ @ cvaluate thelimit: Wy, 97 ~ T 207 3

T(6+ h,4) — T(6,4)
h

, S0 we can approximate 7% (6, 4) by considering h = £+2 and

T(8,4) —T(6,4) 86—80

using the values given in the table: T;,(6,4) ~ 5 5

37
T(4,4) —T(6,4) 72—80
-2 =)

T(6,4 + h) — T(6,4)
h

T.(6,4) = = 4. Averaging these values, we estimate 7 (6, 4) to be approximately

3.5°C/m. Similarly, T}, (6,4) = }lbirr%) , which we can approximate with h = £2:

7(6,6) —T(6,4) 75—80
2 -2 T

T(6,2) — T(6,4) 87 —80

T, (6,4) ~ — =

—2.5,T,(6,4) ~

values, we estimate 7T}, (6, 4) to be approximately —3.0°C/m.
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(b) Here u = <\/— \/—> so by Equation 14.6.9, D, T'(6,4) = VT'(6,4) - u = T, (6,4) % + Ty(6,4) % Using our
estimates from part (a), we have Dy, T'(6,4) ~ (3. 5) +(-3.0) 2 7= 2\/— ~ 0.35. This means that as we move

through the point (6, 4) in the direction of u, the temperature increases at a rate of approximately 0.35°C/m.

(6+h At hd) = T(6,4)
Alternatively, we can use Definition 14.6.2: D, T'(6,4) = ,llin}) - ,
T(8,6) — T(6,4) 80— 80

which we can estimate with b = +2+/2. Then D, T(6,4) ~ =
(6,4) WG We

=0,

T(4,2) —T(6,4) 74—80

D, T(6,4) =~ = = —=. Averaging these values, we have D, T'(6,4) ~ === ~ 1.1°C/m.
~2V2 -2v2 f i~
©) Toy(x,y) = [T (z,9)] = Jim Le(z,y + h})L Le(z,9) ,50 Tyyy (6,4) = Jim L(64+ h})L —1:(6,4) which we can

estimate with i = £2. We have T3, (6,4) ~ 3.5 from part (a), but we will also need values for T;,(6, 6) and T3,(6, 2). If we

use h = £2 and the values given in the table, we have

T,(6,6) ~ T(8,6) —T(6,6) _80 -7 _ 2.5, T4 (6,6) ~ T(4,6) —T(6,6) _68-75 _ 35

2 2 —2 —2
Averaging these values, we estimate 17 (6, 6) ~ 3.0. Similarly,
7,(6,2) ~ T(8,2) — T»(6,2) _ 90 - 87 _ 15, T2 (6,2) ~ T(4,2) —T(6,2) _ 74— 87 6.5,

2 2 -2 —2
Averaging these values, we estimate 77, (6, 2) = 4.0. Finally, we estimate 7%, (6,4):

T,(6,6) —T,(6,4 .0 — 3. T.(6,2) —T:(6,4 4.0 — 3.

Ty(6,4) OO TOA) 30235 95 7, (6,40 HODTOA 20235 55

Averaging these values, we have T, (6,4) ~ —0.25.

13 f(z,y) = (5y° +22%y)° = fo = 8(5y° + 22%y)" (dzy) = 322y(5y° + 22%y)",

fy = 8(5y% + 22%y)" (1592 + 222) = (1622 4 120y%) (5y° + 22%y)”

3
15. F(a,8) = *In(a® + B%) = F,=a>- #62 (2) + In(a? + %) - 2a = %62 +2aln(a® + 52),
1 202
Fs=a? —— _(28) = =—F~_
B « a2+ﬁ2( /3) a2—|—ﬁ2
1 uy/w

17. S(u,v,w) = vwarctan(vy/w) = S, = arctan(v/w), Sy =u- ——— (Vw) = ———,

(u,0,10) (v/) (o) o VD = T

Su=u- 1 uv

1+ (vy/w)? (v 30 = 2vw (1 + v2w)

19. f(z,y) =42’ —ay® = fo=120" — ¢ fy = 22y, foo = 24x, fyy = —20, fay = fra =2y
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f(q;,y, z) :xkylzm = fac _ ka:k 1 l m f _ l.Tk -1 m fz mxkylzm 1 fmx _ k(k:— 1)$k72ylzms
fyy - l(l - 1) g l : 2" fzz - m( - l)xkylzm—2’ fmy = fyoc = klmk’lylﬂz’”, fmz = fzx = km$k71y12m717

fyz — fzy — lml‘kyl7127’L71

2=y +xe¥/” = %:y—gey/z—i—ey/z,%:x—é—ey/zand
92 9z Youlz y/x y/z y/z y/x y/z y/z
x%era—y :x(yfge +e )+y(x+e ):xyfye +xe?' " +axy+ye =zy+xyt+xe =zYy+=z.

(@ zs =6x4+2 = 2,(1,-2)=8andz, = -2y = 2z,(1,—2) =4, so an equation of the tangent plane is
z—1=8(z—-1)+4(y+2)orz=8x+4y+ 1.

(b) A normal vector to the tangent plane (and the surface) at (1, —2,1) is (8,4, —1). Then parametric equations for the normal

xfl_y+2_zfl

line there are x = 1 + 8¢, y = —2 + 4t, z = 1 — ¢, and symmetric equations are s = 1 = T

(a) Let F(z,y,2) = 2 + 2y*> — 32%. Then F,, = 2z, Fy = 4y, F, = —62,50 F;(2,—1,1) = 4, F(2,-1,1) = —4,
F.(2,—-1,1) = —6. From Equation 14.6.19, an equation of the tangent plane is 4(z — 2) —4(y +1) —6(z —1) =0
or, equivalently, 2z — 2y — 3z = 3.

. . . . -2 1 —1
(b) From Equations 14.6.20, symmetric equations for the normal line are z Y y_—|—4 = Z_ 6

(a) Let F(x,y,2) = x + 2y + 3z — sin(zyz). Then F, = 1 — yz cos(zyz), Fy = 2 — xz cos(zyz), F> = 3 — zy cos(zyz),
so F(2,—-1,0) =1, Fy(2,—-1,0) = 2, F.(2,—1,0) = 5. From Equation 14.6.19, an equation of the tangent plane is

1(x—2)+2(y+1)+5(z—0)=00rx+2y+5z=0.

(b) From Equations 14.6.20, symmetric equations for the normal line are T

Parametric equations are x = 2 4 ¢,y = —1 4 2¢, z = 5t.

The hyperboloid is a level surface of the function F(z, vy, z) = 2* + 4y® — 22, so a normal vector to the surface at (20,0, 20)
is VF(zo,y0, 20) = (220, 8yo, —220). A normal vector for the plane 2z 4+ 2y + z = 5 is (2, 2, 1). For the planes to be
parallel, we need the normal vectors to be parallel, so (2xo, 8yo, —220) = k (2,2,1),0rz0 =k, yo = %k, and zo = —1k.

2

Butag +4y; —20 =4 = k*+3k°—1k°=4 = k’=4 = k= +2. So thereare two such points:

(2,3,—1) and (—2,—3,1).

3 3
— 3 [2 2 = 322, /42 2 -y L —
l’, 7Z =T +Z $x7 ,Z _3'7; +Z, .ZL', ,Z - s Zw? aZ - s
fl@,y,2) = 2°Vy = fo(z,y,2) VY + 22 fy(2,y,2) e fo(x,y,2) e

s0 £(2,3,4) = 8(5) = 40, f2(2,3,4) = 3(4) V25 = 60, f,(2,3,4) = 251 = 24 and [.(2,3,4) = 47k = 2. Then the
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37.

39.

41.
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linear approximation of f at (2, 3,4) is
[y, 2) = f(2,3,4) + f2(2,3,4)(x — 2) + f,4(2,3,4)(y = 3) + [2(2,3,4)(z — 4)
=40+60(z —2) + 2 (y —3) + £(2 —4) =60z + Ly + 22— 120
Then (1.98)%./(3.01)2 + (3.97)2 = f(1.98,3.01,3.97) ~ 60(1.98) + 22(3.01) + 32(3.97) — 120 = 38.656.

du _Oudr  Oudy  Oudz 3 2 o 3 .
+ 2822 o1+ 6p) + PyeP)+4 +
clp " oz dp By dp  Ozdp 2y 6p) + 327y"(pe” +¢7) #(posp +sinp)

0z _ 020z  0z0y _ _ _ _
By the Chain Rule, 25 = 9295 + = Dy 05’ .Whens=1andt =2,z =g(1,2) =3 andy = h(1,2) = 6, s0

0z o _ oy 0z 0z 0z 8283/
gz = 12(3,6)9:(1,2) + £, (3,6) 1o (1,2) = (1)(=1) + (8)(=5) = ~47. Similarly, 57 = 5275 + 5250,
0
8—’: = f(3,6)9:(1,2) + fy (3,6) he(1,2) = (7)(4) + (8)(10) = 108.
% _ ! 2 _ 2 % _ _ !/ 2 _ 2 ! __ d—f
Fr 2z f'(z° — y*), oy 1—2yf'(z* —y°) |where f' = A =59 . Then
0z 0z 122y
Ygs T ay—%yf(ﬂﬁ y?) + = 2zyf' (2 —y?) =
0z 0z —&—%—and
or 8u ov x
Pz _ 0 (92 290z —y I _z_yg+ Pz Pz -y vl Pzoy Oz
Ox? 7y8m ou 3 ov 22 O T 23 Ov y 8u2y Ov Ou x2 o2 22 8u8vy
_ 0z 207 2y 0%y O
T 3 0v y ou? 22 Qudv  x* Ov?

0z 0z 10z
AISO a—y % + —% Ild

Fo_ 0 (02\ 10 (92\_ (0% e 1\ (@1, oz N _ L0, e 10
oy2 T oy \ Ou x0y \Ov) ~\ou? Ovdu x x\Oviz Oudv T ou? Ooudv  x2 Jv?

Thus

Y R R S R Y R ST
Ox? 0y? x Ov ou? oudv  x2 ov? ou? oudv  x2 Ov?
2y 0z , %2 0z 9z
Tz Ov 1y Oudv 20 v duv Ou Ov

. o w 2
since y = xv = — or y* = uv.
Y

Foy2) =22 = Vf = (fo, fy, £2) = (20er 0er 22 e ) = (200 0?2200 2utyeer)
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45. f(z,y) =a’e? = Vf={2ze ¥, —z’c?), Vf(—2,0) = (—4,—4). The direction is given by (4, —3), so

47.

49.

51.

53.

55.

u=——L—(4,-3) = 1(4,-3) and Dy f(—2,0) = Vf(—=2,0) - u = (—4,—4) - 1(4,-3) = (16 + 12) = — 3.

V424 (=3)2

Vf={2xy,2*+1/(2/¥)), IVf(2,1)] =|(4,%)|. Thus the maximum rate of change of f at (2, 1) is @ in the

direction (4, 2).

First we draw a line passing through Homestead and the eye of the hurricane. We can approximate the directional derivative at

Homestead in the direction of the eye of the hurricane by the average rate of change of wind speed between the points where

this line intersects the contour lines closest to Homestead. In the direction of the eye of the hurricane, the wind speed changes

from 45 to 50 knots. We estimate the distance between these two points to be approximately 8 miles, so the rate of change of

wind speed in the direction given is approximately % = % = 0.625 knot/mi.

fley) =2 —ay+1y> +92—6y+10 = fo=22—y+9,
fy=—2+2y—6, fou =2= fyy, foy = —1. Then f; = 0and f, = 0 imply
y = 1, x = —4. Thus the only critical point is (—4, 1) and frz(—4,1) > 0,

D(—4,1) =3 > 0,s0 f(—4,1) = —11 is a local minimum.

fle,y) =3ay —a®y —xy® = fo=3y—2zy—y°, f, =3z —2* -2y,
foz = =2y, fyy = =22, foy =3 — 22 — 2y. Then f, = 0 implies

y(3—2z —y) =0soy = 0ory =3 — 2x. Substituting into f, = 0 implies
z(3 —x) =0 or 3z(—1 + ) = 0. Hence the critical points are (0,0), (3,0),
(0,3) and (1, 1). D(0,0) = D(3,0) = D(0,3) = —9 < 050 (0,0), (3,0), and
(0, 3) are saddle points. D(1,1) =3 > 0and f,(1,1) = -2 < 0, so

f(1,1) =1 is a local maximum.

First solve inside D. Here f, = 4y* — 2xy® — 43, f, = 8zy — 222y — 3xy°.
Then f, = 0 impliesy = 0 ory = 4 — 2z, but y = 0 isn’t inside D. Substituting
y=4—2xinto f, =0impliesz =0,z =2orz = 1, but x = 0 isn’t inside D,
and when x = 2, y = 0 but (2, 0) isn’t inside D. Thus the only critical point inside
Dis (1,2) and f(1,2) = 4. Secondly we consider the boundary of D.

On Li: f(z,0) =0andso f =0on Ly. On Ly: x = —y + 6 and

f(—y +6,y) = 4%(6 — y)(—2) = —2(6y> — y*) which has critical points

\
\\\\\ I’l’/l
\ I
\\:} Sssagarssi’ '1//’// 7

N\

NN &

N
NN

T
N\ H ]
LA
1LHIA Y,
N7/

0.6)

Ly

0.0

L,

L, x

aty = 0 and y = 4. Then f(6,0) = 0 while f(2,4) = —64. On L3: f(0,y) =0, so f = 0 on Ls. Thus on D the absolute

maximum of f is f(1,2) = 4 while the absolute minimum is f(2,4) = —64.
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From the graphs, it appears that f has a local maximum f(—1,0) ~ 2, local minima f(1,+1) ~ —3, and saddle points at
(=1,+£1) and (1,0).
To find the exact quantities, we calculate f, =322 —3=0 < z=Z4landf, =4y°> —4y=0 <
y = 0, £1, giving the critical points estimated above. Also frz = 62, fzy = 0, fyy = 12> — 4, so using the Second
Derivatives Test, D(—1,0) = 24 > 0 and f»-(—1,0) = —6 < 0 indicating a local maximum f(—1,0) = 2;
D(1,4£1) = 48 > 0 and f,(1,£1) = 6 > 0 indicating local minima f(1,£1) = —3; and D(—1,+1) = —48 and

D(1,0) = —24, indicating saddle points.

flz,y) =22y, glz,y) =2>+y* =1 = Vf= <231:y7 a:2> = AVg = (2\x, 2)\y). Then 2zy = 2z implies z = 0 or
y = A If z = 0 then 2? 4 y* = 1 gives y = 1 and we have possible points (0, £1) where f (0, £1) = 0. If y = X then

z? = 2)\y implies z* = 2y® and substitution into 2> +y*> = 1 gives 3y’ =1 = y= i% and x = i\/g. The

corresponding possible points are (:t 2, :t%) The absolute maximum is f (:I: 2, %) = 3—3/5 while the absolute

ini ; 2 1\ _ __2
minimum is f(:l: 5,—%) =3
f(ayy,z) = xyYz, g(I7yaz) =22+ y2 + 22 =3. Vf=AVg = <yz,:];z,my> = )\<2;);,2y,2z>. If any of z, y, or z is

zero, then & = y = z = 0 which contradicts 2 4 4* + 2% = 3. Then A\ = 32/_z = ;C—Z = ;_y = 2Pz=2"%2 =
x y z

2 = 22, Substituting into the constraint equation gives 2* + z? + 22 =3 =

y? = 22, and similarly 2y2> = 22%y = 2z
2? =1 = y® = 2°. Thus the possible points are (1,1, £1), (1, —1,£1), (1,1, £1), (=1, —1, £1). The absolute maximum
is f(1,1,1) = f(1,-1,-1) = f(-1,1,—1) = f(—=1,—1,1) = 1 and the absolute

minimum is f(1,1,-1) = f(1,-1,1) = f(-1,1,1) = f(-1,-1,-1) = —1.

flx,y,2) =2 +y? 4+ 22, g(z,y,2) = 2?2 =2 = Vf=(22,2y,22) = \Vg = <)\g/2237 2\zyz>, 3/\$y222>.

Since 2422 =2, 2 #0,y # 0and z # 0,50 2z = M2 (1), 1= Az2® (2), 2=3X\zy?z (3). Then (2) and (3) imply

1 2

2 2 2 1
E*Ty% 5 or3x” =z soa:fi%z.But

ory? = §z2 soy = £z \/g Similarly (1) and (3) imply 2z = —
Y223 3zy?z
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xy%2% = 2 50 x and z must have the same sign, that is, z = %z Thus g(z,y, z) = 2 implies %z(%zZ)z?’ =2or

z = £3'/4 and the possible points are (£371/%,371/4/2, +31/4) (£371/4 —371/4,/2 £3'/4). However at each of these
points f takes on the same value, 2 v/3. But (2, 1, 1) also satisfies g(z,y, 2) = 2 and f(2,1,1) = 6 > 21/3. Thus f has an

absolute minimum value of 2 v/3 and no absolute maximum subject to the constraint zy?z> = 2.
: 2,3 e 2 2 P 2 2 2
Alternate solution: g(x,y, ) = zy°z° = 2 implies y° = —, so minimize f(z,2) = 2° + —5 + 2°. Then
xz Tz

2 6 4 24

6 S
fx:2xfm,fz:fy+2z,f$x:2+m,fzz:EJr?andfm:W.Nowfx:01mphes

22%2% — 2 = 0 or z = 1/x. Substituting into f, = 0 implies —62° + 2z~ = 0 or x = =L, so the two critical points are

ﬁl"’
W]

(:I:%,:I:%). ThenD(:I:é,:l:%) = (2+4)(2—|— %) - (%)2 > Oandfm(:t%\/g,:t{‘/g) =6 > 0, so each point

is a minimum. Finally, y*> = poet so the four points closest to the origin are (:i:%\/g, 4£\/2§, +/3 ) s (:I:%\/37 —%/25, + {‘/5) .

The area of the triangle is %ca sin 0 and the area of the rectangle is bc. Thus,

the area of the whole object is f(a, b, ¢) = casin 6 + be. The perimeter of

the object is g(a, b, ¢) = 2a + 2b+ ¢ = P. To simplify sin 0 in terms of a, b,

. . . 1
b and ¢ notice that a2 sin® 6 + (%0)2 =a2 = sinf= % V4a? — 2.
a

Thus f(a,b,c) = 2 V4a? — 2 + be. (Instead of using 0, we could just have

used the Pythagorean Theorem.) As a result, by Lagrange’s method, we must find a, b, ¢, and A by solving V f = AV g which
gives the following equations: ca(4a® — c¢?)™1/2 =2\ (1), c¢=2\ (2), 1(4a® —c*)Y? - L% (4a® — )72+ b=\
(3),and 2a + 2b + ¢ = P (4). From (2), A = icand so (1) produces ca(4a® —c*) /2 =¢c = (4a®> —cH)"?*=a =

1/2

2
4> =P =a®> = c=+/3a (5. Similarly, since (4a® — ¢*)"/* = a and A = ¢, (3) gives % - Z— th= g so from
a

(5),27%“}:‘/25“ = fgf‘/g‘l:fb = b=5(1+3) (6). Substiuting (5) and (6) into (4) we g
P 2v3-3
2a+a(l++vV3)++vV3a=P = 3a+2vV3a=P = a= = P and thus
(L+V3)+ V3 V3 3+2v3 3

b=

(2V3-3)(+V3) ), 3’6‘/§Pandc: (2-V3)P.

6
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[J PROBLEMS PLUS

1. The areas of the smaller rectangles are A1 = zy, A> = (L — )y, | L |
As=(L—2)(W —y),Aa=2z(W —y). For0 <z < L,0 <y <W,let Y T
flz,y) = AT + A3 + A3 + Af W=y 1‘/
=a2y* + (L —2)*y" + (L —2)*(W —y)* +2° (W —y)? ¥ L—x

= [2* + (L —2)’][y* + (W —y)?]
Then we need to find the maximum and minimum values of f(z, y). Here
folz,y) =22 —2(L —2)][y* + (W —y)’] =0 = 4a—2L=0orz =1L, and
fo(,y) = [2® + (L —2)*]2y —2(W — )] =0 = 4y —2W =0ory = W/2. Also
Foo = Ay + (W = )%, fy = 42® + (L — )], and fu, = (4 — 2L)(4y — 2IW). Then
D =16[y* + (W —y)*][2* + (L — z)?] — (4z — 2L)*(4y — 2W)>. Thus whenz = 1 Landy = 2W, D > O and
fzz = 2W? > 0. Thus a minimum of f occurs at (3L, W) and this minimum value is f (3L, sW) = ; L*W>.
There are no other critical points, so the maximum must occur on the boundary. Now along the width of the rectangle let
9(y) = f(0,y) = f(L,y) = L’[y* + (W —9)*,0 <y < W. Then g'(y) = L*[2y —2(W —y)| =0 & y=;W.
And g(3) = 3 L*W?. Checking the endpoints, we get g(0) = g(W) = L*W?. Along the length of the rectangle let
h(z) = f(z,0) = f(z,W) = W?[2® + (L — 2)?],0 < o < L. By symmetry '(z) =0 < = 3Land
h(%L) = £ L>W?. At the endpoints we have h(0) = h(L) = L*W?. Therefore L*W? is the maximum value of f.

This maximum value of f occurs when the “cutting” lines correspond to sides of the rectangle.

3. (a) The area of a trapezoid is %h(bl + b2), where h is the height (the distance between the two parallel sides) and b1, b are
the lengths of the bases (the parallel sides). From the figure in the text, we see that h = xsinf, by = w — 2x, and
b2 = w — 2z + 2x cos 6. Therefore the cross-sectional area of the rain gutter is
A(z,0) = 2zsin6 [(w — 22) 4+ (w — 2z + 2z cos 0)] = (zsin)(w — 2z + x cos f)
= wzxsing — 2z%sinf + 2% sinf cosh, 0 < z < %w, 0<6< 3
We look for the critical points of A: 9A/0x = wsin @ — 4z sin 6 + 2z sin 6 cos 6 and
DA/00 = wx cos O — 227 cos O + 2% (cos? § — sin® ), 50 A/0xr =0 & sinf (w —4x +2rcosh) =0 &

dr —w

6 =
cos or

-2 21 (0<0<Z = sin6>0).If inaddition, 9A/06 = 0, then
X

0 = wx cos § — 222 cos O + x*(2cos? § — 1)

e )2 ) ol )’

2
|:8_4?w+w__]_:| :—wm+3x2:l’(3l’—1U)

= 2wz — tw? — 42% + wx + 22
222

2
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Since x > 0, we must have x = %w, in which case cos 0 = %, sofl = Z,sinf = @, k= %w, by = %w, by = %w,
and A = %w? As in Example 14.7.6, we can argue from the physical nature of this problem that we have found a local
maximum of A. Now checking the boundary of A, let
9(0) = A(w/2,0) = sw?sin — Jw’sinf + 2w’ sinfcosf = zw’sin26,0 < 6 < 3. Clearly g is maximized when
sin26 = 1 in which case A = w?®. Alsoalong the line§ = Z,leth(z) = A(z, %) =wz —22%, 0 <z < fw =
WE)=w—-4r=0 & z=jwandh(jw)=w(zw) - 2(%w)2 = Lw? Since Lw? < ¥3 w?, we conclude that
the local maximum found earlier was an absolute maximum.
2 2
(b) If the metal were bent into a semi-circular gutter of radius r, we would have w = 7wr and A = %71’1"2 = %ﬂ' (E) = ;U—
™ 7
w?  Buw? . . . .
Since o > o it would be better to bend the metal into a gutter with a semicircular cross-section.
s
Letg(z,y) = af (L) Then ga(e,9) = £(L) + 27 (L) (-25) = #(£) - L 1(£) and
x x x z x x x
1 .
gy(z,y) =z f’ (%) (;) =f (%) Thus the tangent plane at (2o, yo, 20) on the surface has equation
s—aof(2) = [1(22) = westr ()| -+ 7 (2)w-w) =
xo xo xo xo
Yo —10( Yo 7 { Yo _ s -
{f (m_) —yozgy f <:c_>] T+ [f (:c_)} y — z = 0. But any plane whose equation is of the form ax + by + cz =0
0 0 0
passes through the origin. Thus the origin is the common point of intersection.
. Since we are minimizing the area of the ellipse, and the circle lies above the z-axis, Y b
the ellipse will intersect the circle for only one value of y. This y-value must
satisfy both the equation of the circle and the equation of the ellipse. Now ty=2y
0 a X
TS a, 2 T .
po) + 7z 1 = 2= =l (b —y ) Substituting into the equation of the
. _a?,, 2 9 b2 —a?\ , 9
c1rcleg1vesb—2(b -y )4y —2y=0 = — )Y —2y+a*=0.
b? — a?
In order for there to be only one solution to this quadratic equation, the discriminant must be 0, so 4 — 4a? R 0 =

b® — a®b® 4 a* = 0. The area of the ellipse is A(a, b) = mab, and we minimize this function subject to the constraint

g(a,b) =b* —a?b® +a* = 0.

— _ 3 2 _ 2 o b
Now VA= AVg & 7b= A(4a®—2ab’), 7a = A(2b—2ba®) = A D) @,
ma b Ta
_ 2. b2 — a2b? 4 _ ) ing (1 2) oi =
A —2b(1 — ) 2),b" —a’b"+a 0 (3). Comparing (1) and (2) gives e — 17~ 2(1 =) =
omb? = 4dnat* o a® = % b. Substitute this into (3) to get b = % = a=,/3
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15.1 Double Integrals over Rectangles

1. (a) The subrectangles are shown in the figure. y
The surface is the graph of f(z,y) = xy and AA = 4, so we estimate N
2

Vi Z E f@i,y;) AA

=f(2,2) AA+ f(2,4) AA+ f(4,2) AA+ f(4,4) AA+ f(6,2) AA+ f(6,4) AA
=4(4) + 8(4) + 8(4) + 16(4) + 12(4) + 24(4) = 288

BV z F@7;) AA = f(1,1) AA+ f(1,3) AA + f(3,1) AA+ f(3,3) AA + f(5,1) AA + f(5,3) AA

i=135=1

= 1(4) + 3(4) + 3(4) + 9(4) + 5(4) + 15(4) = 144

3. (a) The subrectangles are shown in the figure. Since AA=1- % = %, we estimate

[z dA~ 3 3 f(aiyuiy) A y
3 Jj= 1
=f(1,3) AA+ f(1,1) AA+ f(2,3) AA+ f(2,1) AA 1
2
=e2(3) 4+ 6’1(%) +2e71(3) +2¢7°(3) ~ 0.990 .
1 2 x
2 2 y
®) [[, ve™™VdA = 21 Z f(@:,7;) AA .
=1 j=1 1
=f(3:3) AA+(5:3) DA+ [(3,3) A+ f(5,3) AA il i
2
St O R O RS SO R O PR B I N
X
5. (a) Each subrectangle and its midpoint are shown in the figure. i’
The area of each subrectangle is AA = 2, so we evaluate f 3 ’ ’
at each midpoint and estimate 2 : :

Jfr f(z,y)dA =~ Z Z f(@:,7;) AA
Zf(172.5)AA+f(173.5)AA 0 3 T
+ f(3,2.5) AA+ f(3,3.5)AA
==2(2) + (=1)(2) +2(2) +3(2) =
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(b) The subrectangles are shown in the figure. Z
In each subrectangle, the sample point closest to the origin 3
is the lower left corner, and the area of each subrectangle is AA = % 2
Thus we estimate
4 4 ‘ ‘ ‘ ‘
Jp f@,y) dA~ 3 3 f(a3,u5) AA of 1 2 3 4

i=1j=1

= £(0,2) AA+ f(0,2.5) AA+ £(0,3) AA+ £(0,3.5) AA
+£(1,2) AA+ £(1,2.5) AA+ f(1,3) AA + f(1,3.5) AA
+F(2,2) AA+ £(2,2.5) AA+ f(2,3) AA+ £(2,3.5) AA
+£(3,2) AA+ £(3,2.5) AA + f(3, 3)AA+f(3 3.5)A
==3(3) +(=5)(3) + (=6)(3) + (=) (3) + (=D(3) + (=2)(3) + ( )(3) +(=1)(3)
+1(3) +0(3) + (=D(3) + 1(z) +2(3) +2(3) + 1(3) +3(3)

=8

7. The values of f(z,y) = /52 — 22 — y? get smaller as we move farther from the origin, so on any of the subrectangles in the
problem, the function will have its largest value at the lower left corner of the subrectangle and its smallest value at the upper
right corner, and any other value will lie between these two. So using these subrectangles we have U < V' < L. (Note that this

is true no matter how R is divided into subrectangles.)

9. (a) With m = n = 2, we have AA = 4. Using the contour map to estimate the value of f at the center of each subrectangle,

we have

JJr f(z,y) dA~ 22: 22: f(@7;) AA = AA[f(1,1) + f(1,3) + f(3,1) + f(3,3)] ® 4(27T + 4 + 14 + 17) = 248

i=1j=1
(b) fave - ﬁ ffR f(l’, y) dA ~ 1_16(248) =15.5

11. z = 3 > 0, so we can interpret the integral as the volume of the solid S that lies below the plane z = 3 and above the

rectangle [—2, 2] x [1,6]. S is a rectangular solid, thus [ [, 3dA =4-5-3 = 60.

13. z = f(z,y) =4 — 2y > 0 for 0 < y < 1. Thus the integral represents the volume of that
part of the rectangular solid [0, 1] x [0, 1] x [0, 4] which lies below the plane z = 4 — 2y.
So

Sl =2y)dA = (1)(1)(2) + 3(D(1)(2) =3
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15. To calculate the estimates using a programmable calculator, we can use an algorithm

similar to that of Exercise 4.1.9 [ET 5.1.9]. In Maple, we can define the function n estimate
f(z,y) = V1 + xe¥ (calling it ), load the student package, and then use the 1| 1.141606
command 4 | 1.143191
middlesum (middlesum (f,x=0..1,m), 16 | 1.143535

y=0..1,m); 64 | 1.143617

to get the estimate with n = m? squares of equal size. Mathematica has no special 256 | 1.143637
Riemann sum command, but we can define £ and then use nested Sum commands to 1024 | 1.143642

calculate the estimates.

17. If we divide R into mn subrectangles, [[, kdA ~ z Z [ (3, yi;) AA for any choice of sample points (75, ¥5;).

i=17=

But f(};,y;;) = kalwaysand Z AA =area of R = (b — a)(d — ¢). Thus, no matter how we choose the sample

i=1j5=1
points, Z Z [z, 95) AA:k% i AA =k(b—a)(d— c)and so
i=1j5=1 i=1375=1

[ kdA= lm 3 > f(aisuiy) AA= | lim kS S AA= lim k(b—a)(d—c) = k(b —a)(d — o).

m,n—o0 ' ST m,n—oo ;S 2 m,n— oo

15.2 lIterated Integrals

3 x=>5
1. [0 120%y° dx = {12 ‘% y?’} = 4x3y3]z:g = 4(5)3y® — 4(0)® ® = 500y,

=0
4qy=1

fo 1222y> dy = {1%2 y4 ] = 32° 4]-:; ; = 32%(1)* — 32%(0)* = 322
y=0

3 [ [ (62y —2w) dyd = [} [32°y? — 229" "0 dw = [}(120” — 4z) du = [42® — 22°]] = (256 —32) — (4—2) = 222

4
5. [2 [y dyde = [} e dz [ y>dy [asin Example 5] = [1621]2 [ly‘l}o =1(e* —1)(64 - 0) =32(e* — 1)

1
2

~

L IT P P cosa) dedy = [°, [wy +yPsina] P20 dy
= [ Gy+v)dy =[50 + 3%

— [ +9- (% -9)] =18

R 4 11,2 4 3
9./ / (——I——) dydx:/ [mln|y|—|——-—y] da;:/ <xln2—|——> dx—[ T 1n2—|—31n\x|]
1 \y =z 1 z 2 y=1 1 2z

=8In2+ 24— 1n2=21m2+3n4"/2 = 271112

fol [%U(u—‘r’uz)ﬂ w=0 =3 f() [ 1+’U (0+U2)5] dv
5[0[ 1+ v ]dv = 3[5- (1 +0%)° _1_121’12]3

[substitute t = 1 +v? = dt = 2vdv in the first term]

=4[ -1)-1-0]=%®3-1) =2

1. fol fol v(u+ v?*)* dudv
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13. [ [T rsin?0d0dr = [ rdr [sin?0df [asinExample5] = [Zrdr [T (1 — cos20)do
=13 2] [9——51n29] =(2-0)-3[(7m— 3sin27) — (0 — 3 sin0)]

2

2 3[(r—0) - (0-0)] =

15. [[sin(z —y)dA = foﬂ/z foﬂ/z sin(z — y) dydx = foﬂ/z [cos(z — y)]y =5 T2 gy = fﬁ/Q [cos(x — §) — cosz] dx
/2
= [Sin(:p - 5)— sinm} =sin0 — sin § — [sin(—%) — sin0]
0
—0-1-(-1-0)=0

2 1,3 2 1 3 1 3
xry Ty z 2 1 2 1,3
17. A: = = (=1 1 ES
//Rzzﬂd /0 /,3x2+1dyd”" /0 x2+1dx/,3y dy [2 n(@” + )}0 [3y}73

=3(n2—1Inl)- (27 +27) =9In2

19. fw/6f7r/3msin(x+y)dydx

= 071'/6 [~ cos(x +y)]zzg/3 dx = Ow/ﬁ [zcosz — xcos(z + %] dw
=x[sinz —sin(z + )] g/ o Oﬂ/ % [sinz —sin(z + )] dz  [by integrating by parts separately for each term]
:%g—u—kmm+w$ﬁ§mﬁz—%—k§+o—eueﬂ:@#—%

A, [[pye™™ dA = f03 f02 ye " drdy = fog (- ﬂw] fo e +1)dy = [3e7 + y}g

=243 (340)=3e°+2

2. 2= f(z,y) =4—x—2y>0for0 <z <1land0 < y < 1. So the solid Z
is the region in the first octant which lies below the plane z = 4 — x — 2y
and above [0, 1] x [0, 1].
of Ji
i

25. The solid lies under the plane 4z + 6y — 22 + 15 =0or 2 = 2z 4 3y + % so
V = [[,(2z + 3y + L)dA = fil ffl(%c +3y+ ) dady = fjl [w2 + 3zy + %xrﬁ dy

rz=—1

= [1 [(19+6y) — (=8 —3y)] dy = [, (B +9y)dy = [Zy + $?]", =30 - (—21) =51

7.V = [ f (1= e = 4 dedy =4 2} (1 da? -

=4[ [r— Lo — Lyl dy =4[] (B -3 dy =4[y - £y]; =4 - £ =10

©l=
N

29. Here we need the volume of the solid lying under the surface z = x sec? y and above the rectangle R = [0, 2] x [0, 7/4] in

the zy-plane.

V= f02f07r/4 zsec® ydydr = f02 z dx fow/4 sec’ ydy = [3 ] [tan y} /4

=(2—-0)(tan & —tan0) =2(1 -0) =2
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31. The solid lies below the surface z = 2 + 22 + (y — 2)2 and above the plane z = 1 for —1 < x < 1,0 < y < 4. The volume
of the solid is the difference in volumes between the solid that lies under z = 2 + 2® + (y — 2)? over the rectangle

R =[-1,1] x [0,4] and the solid that lies under z = 1 over R.
V:f04f_11[2+12+(y 2)?) da dy — fof dmdy—fo [2z + 3z +x(y—2)2]izl_l dy—f_lldm f04dy
=l [@+5+ -2~ (-2-3 - —-2")]dy—[2]L,
= Jo [5+20 -2 dy—[1 - (D)4 - 0] = [y + 3(y—2)°], — ((4)
=[FE+3)-0-9)]-8=F-8=F%
33. In Maple, we can calculate the integral by defining the integrand as £
and then using the command int (int (£,x=0..1),y=0..1) ;.

In Mathematica, we can use the command

Integrate[f, {x,0,1},{y,0,1}]

We find that [, 2°y®e™ dA = 21e — 57 ~ 0.0839. We can use plot3d

(in Maple) or P1ot 3D (in Mathematica) to graph the function.
35. R is the rectangle [-1,1] x [0,5]. Thus, A(R) = 2-5 = 10 and

c=1 5
fave: ffR z,y)dA = 10f0f 1T *ydrdy = 5 10 fo [E ] =_1 dy:% 05 %ydyzl_lo[%yz]o:%'

1 1
zy - . oz
37. //R1+m4 / / 1+ 7 d —/ 1+x4 dm/o ydy [by Equation 5] butf(x)—mlsanodd

1
function so / f(z) dz = 0 by (6) in Section 4.5 [ET (7) in Section 5.5]. Thus // ry 7dA=0- / ydy = 0.
0

xr-y
(z+y)*

To explain the seeming violation of Fubini’s Theorem, note that f has an infinite discontinuity at (0, 0) and thus does not

39. Let f(z,y) = Then a CAS gives folfol f(z,y)dydz = % and folfol f(z,y)dedy = —3.

satisfy the conditions of Fubini’s Theorem. In fact, both iterated integrals involve improper integrals which diverge at their

lower limits of integration.

15.3 Double Integrals over General Regions

Ly T P dedy = [ (322?72  dy = [} 3P1(V)? — 0%dy = L [P dy = L[1y*], = (64— 0) = 32

NI

3 [ [RA+2y)dyde = [ [y+y? [ jon Yydr= [} [z +2% —2® — (2?)%] do

= Jo (o —a")de = [32° = 32°] =

5. [ fo cos(s®) dtds = [} [tcos(s )] “ds=[1s % cos(s?) ds = %sin(s?’)](l) =2 (sinl —sin0) = 4 sinl
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T [fpyrdA = [ [0 yytdedy = [1 (2207 sdy=[1 v ly— (—y —2)]dy

1 1
=L@ )y =[5y + 39 = -5 E=

ol

sin _ [ y=sinx _ . integrate by parts
xdydr = fo [xy]yzo de = fo rsinz dr withu — 2, dv = sin © do

9. ffDdi:fo7T 0
= [—mcosm—i—sinx]g = —mcosm+sinTt+0—sin0 =7

11. (a) At the right we sketch an example of a region D that can be described as lying
between the graphs of two continuous functions of x (a type I region) but not as

lying between graphs of two continuous functions of y (a type II region). The

regions shown in Figures 6 and 8 in the text are additional examples.
0 X

(b) Now we sketch an example of a region D that can be described as lying between
the graphs of two continuous functions of y but not as lying between graphs of two

continuous functions of x. The first region shown in Figure 7 is another example.

As a type I region, D lies between the lower boundary y = 0 and the upper
boundary y =z for0 <z <1,s0 D ={(z,y) |0< 2 <1,0<y <z} Ifwe
describe D as a type Il region, D lies between the left boundary = = y and the

right boundary z = 1for0 <y < 1,s0 D ={(z,y) |0 <y <1,y <z <1}

0 y=0 (1,0) X

1
0=§(l—0):%or

ThusffDdizfolfomxdyda;: fol [my]Zigdmzfoledaz: %a:?’]
[(1=35)—0] =3

ffDdi: folfylxdxdy: fol [%$2]§z;dﬁ!= %fol(l —y2)dy= %[y_ %ys}(l) =

=

15. 7 . The curves y = ¢ — 2 or x = y + 2 and « = y® intersect when y + 2 = ¢*> &
x=y
yzoirﬁ ) V¥ -y—-2=0 & (y—-2)(y+1)=0 < y=—1,y=2, so thepoints of
D intersection are (1, —1) and (4, 2). If we describe D as a type I region, the upper
0 ::‘?; z x boundary curve is y = /7 but the lower boundary curve consists of two parts,
< y=—/zfor0<z<landy=z—2forl <z <4

Thus D = {(z,y) |0<2 <1, — vz <y<yz}U{(z,y)|1<z<4,zx-2<y<,/r}and

[[pydA= fol f_‘/\i— ydy dr + fffzg y dy dx. If we describe D as a type Il region, D is enclosed by the left boundary
x = y” and the right boundary z = y + 2 for -1 <y < 2,50 D = {(z,y) | -1 <y <2,y* <z < y+2} and
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If pydA = J - fyy2+2 y dzx dy. In either case, the resulting iterated integrals are not difficult to evaluate but the region D is

more simply described as a type II region, giving one iterated integral rather than a sum of two, so we evaluate the latter

integral:
dA= 2 (Y720 do dy — TEuk2 g2 P udy = [ (2 — ) d
JpydA= [2 [P ydedy = [?) [ay]; 0 dy = 2, (y +2 =" ydy = >, (> + 2y —v°) dy
[ R = G - (1 d) =
17. folfomga:cosydydac:fo1 [:rsiny]ziz2 danzfolxsiandm: —%cosmﬂ(l) 1(1 —cosl)

s ) 2 T3y I
19. fny dAz/ / y dxdy:/ [wy} _ dy
(L,2) 1 Jy—1 1

r=y—1
x=y—1 x=7—3y
2
& =~ = [71(7=3y) = (y = D]y’ dy = [7(8y* — 4y”) dy
i ' 2
; x R
21. ! 4— z2
? / / 2z —y) dy dx
y= A= e
2 e
/ D :/ [Zx —%yﬂy dx
_2 Yy 4—22
) 0 2 x )
= [, [2eVi-—a?-i(4—2®) +20VA—-2®+ 3(4—2%)] da
y=—V4—x* 2
= 2 e VI= P de = ~4 (41— =0
—2
[Or, note that 4x /4 — 22 is an odd function, so fi 4z /4 — z2dx =0.]
g2
23. y V= [l 0 - a2y dyde = [ [y —ay+y? )V 0 da
e 1
_ /O [((1 —a?) —a(l-a®) + (1-2°)?)
— ((1 —z)—z(l—2)+(1 —9[:)2)} dx
:fol [(z* +2° — 32> —2+2) — (22° — 4z +2)] d
= fol (z* +2° —52% 4+ 32) dov = [22° + 32" — 32° + 3172]0
—i+i-§ei-g
r=T7-—3
2. Y V= f12f17 xydwdy—fl [ z y]z—l Y dy

Dx+3y=7 =1 [2(48y — 42¢% + 9y°) dy

[24y? — 1457 + 34°)° =
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3
27. 0; \% =f02f0_§x(6—3x—2y)dydm
(0,3)
=3_ 32
= f02 [Gy — 3zy —yz]zzo 27 dx
3x+2y=6
2
b =/, [63 — 32)—32(3 — $x)— (3 — %x)*] dx
= 2 (82® — 9z +9) du = [32® — $2? + 92]. =6 - 0=6
0 (2,00 «x
(=2,4) (2,4) V= ffz f;Q 22 dy dx
D 2 =4 2
y=x =/, 22 [y]Z:z2 dr = f_2(4:v2 — ) dx
; S LT S
X
31 y
1 py/1—22 L1y y=1/1-a2
0,1) s V:/ / ydydanz/ {—] dx
x*+y* =1 o Jo 0 2 y=0
= '1-2? 1 311 _ 1
:A ) dw:?[xi_x}o:§
0 (1,0) x
33. 3 From the graph, it appears that the two curves intersect at x = 0 and
at z &~ 1.213. Thus the desired integral is
z — 22 y =3z —a?
J[pzdA= f1213 34 zdydr = [ 1213 [my}y:x4 dx
—0.1 = 713 = 01‘213(3$2 —a® —a°)de = [2° — 12" — %mG];'mS
~ 0.713

35. The two bounding curves y = 1 — 2 and y = 2 — 1 intersect at (£1,0) with 1 — 2 > 2® — 1 on [—1, 1]. Within this
region, the plane z = 2x + 2y + 10 is above the plane z = 2 — x — y, so
V= f f 2x+2y+10)dydxff f 27x7 y) dy dz

—f_ 2 2 2m+2y+10 2—z—y))dydz

ylz

= LS B+ By + 8) dyda = [ [3my+ 2+8y] d

z2—1
= [1 [Be(1—2?) + 21— 2®)? + 8(1 — 2?) — 3x(2? — 1) — (2% — 1)? — 8(2% — 1)] dx
= [, (~62® — 162® + 6z + 16) dz = [~ 32" — 02 + 322 + 162" |

_ 3 16 3 16 __ 64
——5—?4‘34-164—5—?—34-16—?
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37. The solid lies below the plane z =1 —x — y

39.

41.

43.

45.

47.

49.

SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS U

or z +y + z = 1 and above the region (O’Iy)
D={(z,y)|0<s<1,0<y<1-a} =1
in the xy-plane. The solid is a tetrahedron. D

0 (1,0) X

x

255

The two bounding curves y = x> — 2 and y = 2 + x intersect at the origin and at x = 2, with 2% + 2 > z* — 2 on (0, 2).

Using a CAS, we find that the volume is

V_/z/x2+x2d dm_/z/x2+m(x3 44 zy?) dyde = 13,984,735,616
o Yar=f s Y T e = T 9 535

3—a

The two surfaces intersect in the circle 22 + 3> = 1, z = 0 and the region of integration is the disk D: z? + y* < 1.

1 pa/1-22 -
Using a CAS, the volume is // (1—a2*—y*)dA = / / (11— —y*)dyde = ~.
D —1J-y/1=22 2

Because the region of integration is

D={(z,9)|0<2<y,0<y <1} ={(z,9) [z <y<1,0<x <1}

we have fol foy fe,y)dedy = [[, f(z,y)dA = fol fxl f(z,y) dy dz.

Because the region of integration is
or D={(z,9)|0<y<cosz,0 <z <7/2}
={(zy) |0<z<cos 'y, 0<y<1}

we have

ST [ [z, y) dyda = [[, f(z,y)dA= [} (fosily f(x,y) dz dy.

0 127-\ X

y=Inx or x=e” Because the region of integration is

D={(z,y) |0<y<Inz,1<z<2}={(z,y) | ey <2<2,0<y<In2}

we have

2 plnzx In2 p2
A s [ [ rewayar= [[ sewan= [ [ gy
1 Jo D 0o Jev
' 1 3 5 3 rxz/3 5 3 2 y=z/3
) // e’ d:rdy:// e’ dydx:/ [ez y} dx
0 J3y 0 Jo 0 y=0
3

9
x=3y 3.1 :/ (E)eIQ d.ﬁ[}:%ezg}s: e —1
D 0 3 0 6
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51, y )

4 1 2 py? 1
——dydr = ———dxd
/()/ﬁy3+1 vaer /0/0 R

2 2 2
1 o=y? Y
/0 yP+1 Leleca v /0 1

=+(In9—1Inl)=$In9

2
= ymfy’ +1] |

1 pnw/2
53. y y=sinx or / / cosx \/1+ cos?xdrdy
0 Ja

| x=arcsiny resiny

= 0“/2 Osmxcosxx/lJrcosQ:cdydx
= 077/2cosgv\/1—|—c0529t[y]yzsmgC dx

y=0

_rm/2 \/72 . Letu = cosz,du = —sinz dz,
= J, ' “cosz+/1+cos®xsinzdx { i — du(— sinz)

S
(STE
=

:flo —uv1I+u2du= _%(1+u2)3/2}?
;(V8-1)=3(2v2-1)

5. D={(z,y) |0<z<], —z+1<y<1}U{(z,y) | -1<z<0,z+1<y<1}

U{(z,y) [0<2<1, —1<y<a—13U{(z,y) [ -1<2<0, —1<y<—o—1}, alltypel.

11 S 1 pz—1 0 p—z—1
// :v2dA:// m2dyd:1:—|—/ / m2dydx+// wzdyd:v—l—/ / m2dydx
D 0 Ji-= “1Jo+1 0o J-1 —1J-1

1,1
=4 / / 2 dy dz [by symmetry of the regions and because f(z,y) = 2> > 0]
0 1—x

:4f01:v3dx:4[%:134](1) =1

57. Here @ = {(w,9) | #* +3” < 3,2 >0,y > 0},and 0 < (2* +3°)° < ()° = —f5 <—(2+17)> <0s0

e~ /16 < ¢=(@*+v™)? < 0 _ | gince ¢! is an increasing function. We have AQ)=im (%)2 = 7, 50 by Property 11,

2)2

e~1/16 A(Q) < fo e @4 < 1. AQ) = %6*1/16 < fo e~ @+ g4 < £ or we can say

0.1844 < [, 0 e~ (@)’ A < 0.1964. (We have rounded the lower bound down and the upper bound up to preserve the

inequalities.)

59. The average value of a function f of two variables defined on a rectangle R was

defined in Section 15.1 as fae = ﬁ [/ f(x,y)dA. Extending this definition 3

to general regions D, we have faye = ﬁ [ fz,y)dA.

Here D = {(z,y) | 0 <2 < 1,0 <y < 3z},s0 A(D) = $(1)(3) = £ and b
Jave = A(ID) S fz,y)dA = ﬁ fol 0390 xy dy dx

=2 ) o) e = 4 [ e = 30ty = 3 e o

0
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SECTION 15.3 DOUBLE INTEGRALS OVER GENERAL REGIONS [0 257
Sincem < f(z,y) < M, [f, mdA < [[, f(x,y)dA < [[, MdAby(8) =
m [[, 1dA < [[, f(z,y)dA< M [[,1dAby (7) = mA(D) < [, f(z,y)dA < MA(D) by (10).
J First we can write [ [ (z +2)dA = [[, 2 dA+ [[, 2dA. But f(z,y) =z is

an odd function with respect to z [that is, f(—z,y) = —f(z,y)] and D is

symmetric with respect to . Consequently, the volume above D and below the

graph of f is the same as the volume below D and above the graph of f, so
[f,zdA=0.Also, [[,2dA=2-A(D) =2 37(3)*> = 9 since D is a half

disk of radius 3. Thus [[,(x +2) dA = 04 97 = 9.

We can write [, (22 + 3y) dA = [[,2zdA+ [[, 3ydA. [[,, 2z dA represents the volume of the solid lying under the
plane z = 2x and above the rectangle D. This solid region is a triangular cylinder with length b and whose cross-section is a

triangle with width a and height 2a. (See the first figure.)

(a, 0, 2a)

N

(0, b, 3b)

(a, b, 2a)

Thus its volume is % -a-2a-b=ab. Similarly, I p 3y dA represents the volume of a triangular cylinder with length a,

triangular cross-section with width b and height 3b, and volume % -b-3b-a= %abz. (See the second figure.) Thus
[/, 2z +3y) dA = a®b + $ab

[fp (az® +by® + Va2 —2? ) dA = [[,az® dA+ [[, by* dA + [[, Va® — 22 dA. Now az® is odd with respect
to = and by® is odd with respect to , and the region of integration is symmetric with respect to both z and y,

so [[,az®dA = [[,by*dA=0.

If D Va2 — 22 d A represents the volume of the solid region under the

graph of z = v/a? — x? and above the rectangle D, namely a half circular
cylinder with radius a and length 2b (see the figure) whose volume is

1. 7r®h = Lna®(2b) = ma®b. Thus

[f5 (az® +by® + Va2 — 22 ) dA = 0+ 0 + ma’b = ma’h.
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258 [ CHAPTER15 MULTIPLE INTEGRALS

15.4 Double Integrals in Polar Coordinates

1. The region R is more easily described by polar coordinates: R = {(r,0) |0 <r <4,0<60 < 32}

Thus [, f(z,y)dA = fgﬂ/zfo f(rcos@,rsin0)rdrdf.

3. The region R is more easily described by rectangular coordinates: R = {(m, Y| -1<zx<1,0<y< ém + %}

Thus [[, f(z,y) dA = f_ (IH)/Q f(z,y) dydz.

5. The integral f sr/4 /. 12 r dr df represents the area of the region

R={(r,0) |1 <r <2,m/4 <6< 3m/4}, the top quarter portion of a

ring (annulus).

f374/4f1 rdrdf= (f377/4 d@) (ff rclr)

= [0 i = (-9 34-D=3-3=%

7. The half disk D can be described in polar coordinates as D = {(r,0) | 0 < r < 5,0 <0 < 7}. Then
[f, 2®ydA = [T fos (rcos0)?(rsin®) rdrdf = (f; cos®fsin6 db) ( r dr)

= [ eos? 0] [40°]5 = ~4(~1 - 1) 625 = 120

9. [[,sin(z® +y?) fﬂ/2 f1 sin(r?) rdr df = (fon/z d@) (fls rsin(r?) dr)
= [0]3/2 -3 cos(TZ)]i’
= (%) [~3(cos9 — cos1)] = Z(cos1 — cos9)

N [y e dA = [, (e rdrdo = [7/5,d0 [ re™ dr

= (072 [4e ] = m et - = 5

13. R is the region shown in the figure, and can be described y y=x
by R={(r,0)|0< 60 <m/4,1 <r < 2}. Thus , i
[ arctan(y/z) dA = fﬁ/4 flz arctan(tan ) r dr df since y/z = tan 0. yr=1 R crre
Also, arctan(tan §) = 6 for 0 < § < 7/4, so the integral becomes /‘ 1 2 x
Jot Rordrds = [/ 0d0 [Frdr =367 (3% = 5 - & = &nt.

15. One loop is given by the region
D={(r,0)|-n/6 <0 <7/6,0 <r < cos30},so the area is P

/6 cos 36 /6 r=cos 36 s
/ / dA = / / rdrdf = / {-ﬁ] do
/6 —x6 L2 1o

/6 /6 Y
= / 1 cos?30d = 2/ 1 (HC—OSM) do Tl -
62 A o=-7
/6
1 1 s
= =0+ =i -
3 { + 8 sm66’]0 D

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



17.

19.

21.

23.

25.

27.

SECTION 15.4 DOUBLE INTEGRALS IN POLAR COORDINATES U 259

In polar coordinates the circle (z — 1) 4+ 4> =1 & 24+ y> =22 is > =2rcos = r =2cosb,
and the circle 22 + 4> = 1 is r = 1. The curves intersect in the first quadrant when
2cosf =1 = cosf= % = 0 = 7/3, so the portion of the region in the first quadrant is given by

D={(r,0)|1<r<2cos6,0 <6 <m/2}. Bysymmetry, the total area 6= /3

is twice the area of D: r=1 i r=2cos 6

D) :2ffD dA_2f7T/3 2cos drd@—wa/S [1 2}7‘:2c050d9

r=1

_ Oﬂ/s (4cos29—1)d9_ rr/s[ .%(1—0—::0520)—1] do \

= 0"/3(1+2c0s29)d6': [0 +sin20]7/° = Z + @

A
&

V=l ca VIR F Y AA= [T [0V rdrdd = [77d0 [7o*dr = [0]07 [5r°]0 = 2m(3) =
The hyperboloid of two sheets —2? — y* + 2* = 1 intersects the plane z = 2 when —2? — y* +4 = 1 or 2® +y* = 3. So the
solid region lies above the surface z = /1 + 22 + y2 and below the plane z = 2 for 22 4 3* < 3, and its volume is

27
// 1+a:2+y dA = / / 1+r2)rdrd9

22 4+y2<3
= OZﬂdG f0\/§ (2r —rvI+7r2)dr = [0](2)7r [7"2— %(14—7"2)3/2};/5
—2n(3-§-0+4) = 4r

By symmetry,

27 a 27 a
V=2 // \/a2—x2—y2dA=2/ / \/a2—r2rdrd9=2/ d9/ rv/a? —r2dr
o Jo 0 0

22 +y2 <a?

=2[0]" [_%(az _7«2)3/2}; = 2(27)(0 + 1a®) = 424?

2
The cone z = +/x2 + y2 intersects the sphere 2 + % + 2% = 1 when z° + 2 + (\/xz + y2) =lorz®+¢% = % So

V= // (\/l—aL’2—yz—\/aL’2—|—y2)clA:/027r Ol/ﬁ(m—r)rdrdH
22+ y2<1/2
= J2d [N (T ) e = [0)27 [—2 1 -ty - 2] S a4 (4 1) = 32~ V)
0 3 3" ], 3\ V2 3

The given solid is the region inside the cylinder z> + y? = 4 between the surfaces z = /64 — 422 — 4y2

and z = —/64 — 422 — 4y2. So
// [\/64—4x2—4y2—(—\/64—4x2—4y2)]dA: /[ 2/64 — 422 — 42 dA

22 +y2<4 224y <4
:4f fo 167r2rdrd9—4f defo «/167r2dr—4[ ]7’[7%(1677,2)3/2}2

0
— 8 (—1)(12%/2 — 16*/3) = 87 (64 — 24 V/3)
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260 [ CHAPTER15 MULTIPLE INTEGRALS

y 3 Vv 9—a? s 3
29. 3 24 .2 / / Sin(mz + yQ)dy dr = / / sin (’I"2) rdrdf
x°+y =9 0 o o

= [ do f03 rsin (r?) dr = [0]] [—3 cos (7‘2)](3)

=7(—3%) (cos9—1) =75 (1 —cos9)

2

D

3. foﬁ/4f0 (rcos@+rsin®)rdrdd = [ /4 (cos 0 + sin 0) do
3

NG
”“%wf

[f vz 0+1} 1 (2y2-0) =22

= [sinf — cos 6]

33.D={(r,0) |0<r<1,0<6<27},s0
(3/,2_,'_ 2)2 27 1 (7‘2)2 27 1 T‘4 1 ’r4 . .
[fp e &V dA= [T [) e rdrdd = [;7d6 [;re” dr =2 [, re" dr. Using a calculator, we estimate
1 4
2w [ re" dr ~ 4.5951.

35. The surface of the water in the pool is a circular disk D with radius 20 ft. If we place D on coordinate axes with the origin at
the center of D and define f(z,y) to be the depth of the water at (x, y), then the volume of water in the pool is the volume of
the solid that lies above D = {(z,y) | ° + y* < 400} and below the graph of f(x,y). We can associate north with the
positive y-direction, so we are given that the depth is constant in the z-direction and the depth increases linearly in the

y-direction from f(0, —20) = 2 to £(0,20) = 7. The trace in the yz-plane is a line segment from (0, —20, 2) to (0, 20, 7).

1

The slope of this line is ﬁ = 1, soan equation of the lineis 2 — 7 = £(y —20) = =z = 2y + 5. Since f(z,y) is

independent of z, f(x,y) = 2y + 2. Thus the volume is given by | Jp, f(x,y) dA, which is most conveniently evaluated
using polar coordinates. Then D = {(r,0) | 0 <r < 20,0 < 6 < 27} and substituting x = r cos 6, y = r sin § the integral
becomes

2T (Srsing+ ) rdrd = 77 [ArPsing + $r2]7 220 do = [ (1920 sin ¢ + 900) dO

= [—2%% cos 6 + 9006 Oﬂ = 18007

Thus the pool contains 18007 ~ 5655 ft> of water.

37. As in Exercise 15.3.59, fae = ﬁ [ f(z,y)dA. Here D = {(r,0) | a <7 < b,0 < 0 < 27},

s0 A(D) = mb? — ma® = 7(b* — a?) and

f“e:A(lp)//D\/leTysz:w( ) /%/ \/_rdrdé'— = _a2 /QﬂdG/dr

1 2 [0 1 2(b — a) 2

e AN A e U e e e e
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SECTION 15.5  APPLICATIONS OF DOUBLE INTEGRALS  UJ

39. / / xydydac—l—/ / ;z’ydydx—i—/ / ;z’ydyd;t y y=x
1MV2 1712
/4 /4[4 r=2 :
/ / T cos@sm@drd@-/ [Zcosesnw] do ( r=2
r=1 1 i

sin? 9} /4

o 2

15 =1\
A :

~ 16

/4
sinf cos 6 df = E{
4 0

712

41, (a) We integrate by parts with u = z and dv = ze~"" dz. Then du = dz and v = —%e , SO

t
0

= t—o00
= tlingo (—%te*ﬁ) +3 7 e dr=0+1 s e = 4
=3/ e dz
=17  [by Exercise 40(c)]

(b) Letu = /z. Thenu? =z = dr=2udu =

Ji e e = i [

[by I’Hospital’s Rule]

_1;2

[since e is an even function]

—x 3 Vi —u? Sl —u?
e *dr = tlggo I Yue " 2udu = 2 [ ute ™ du=2(3y/7) [by part(a)]

15.5 Applications of Double Integrals

261

= 3V

1. Q :ffD

= [ (102 + 50 — 4o — 8) dz = [} (6x + 42) dz = [32® + 422]) = 75+ 210 = 285 C

o(z,y)dA = fos f25 (2 +4y) dy dx = f05 [Qxy + 2y2]ziz dx

4

3. m= ffD p(z,y)dA = f13 f14 ky® dy dx = kf13 dzx 14?-/2 dy = k[:c]? [%y?’]l = k(2)(21) = 42k,
= % ffD zp(z,y)dA = ﬁff f14 kwa dy dz = éffxdw f14y2dy = ﬁ [éxﬂf [%yﬂ? = 4_12(4)(21) =2,
4
_ffD yp(z,y) dA = 5 K f1 fl ky® dy do = 12 f1 dx de_ 12 [I]l [i ]1 =1(2) (%5) = g_g

Hence m = 42k, (,7) = (2 85)

? 28

8|

s.m= [0 [0, @y dyde = [ vy + 59°]) 70 7 de = [ [2(3— 32) + (B~ 2)* — §a’] da
= J7 (-82° +§) do = [-§(32°) + §a]; = 6,
My, = f02f13/_2

My = 227 G+ o) dyda = [ [ha® + 307207 do= [2 (9 — 3o) do =9,
o my o (Mo M) (33
Hencem—6,(az,y)_(m7m>_<4,2>,

7.om = [ [ kydyde =k (1, 352707 do = Lk 1 (1 - 2?)2da = 1k [} (1 - 222 + 2%) do

0 y=0

=3-z _ (279 9,.3 _9
yayz dv =[5 (37— 32°)dv =3,

T —|—$y)dydx—f0 [;z’ y+ a:y}

— ko 3+ o]l = R (- 3+ 134 ) = Ak
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262 [ CHAPTER15 MULTIPLE INTEGRALS
My = [* [ kaydyde =k [1| [Lay N dr =Sk [t e (1 -2 de =1k [
R TR RTC R T C I SRS i P
_ 1 p1-a? 1, 31y=1-=2 _1 1 243 _1 1
M, = [, [, ky? dydm—kf [3y ]y:() de =4k [ (1—a?)Pde=3k [ (1
= 3hlz—2"+ 1’5_%1’7}7 =sk(1-1+%-3+1-14+2%-3) =k
Hence m = %k, (T,7) = (0, 3::;125) =(0,2).

9. Note that sin(wz/L) > 0for0 < z < L.

m = fOL fosin(wac/L) ydy do = fOL %SiHZ (’/T.Z’/L) da

. L
= % [%x — ﬁ sm(th/L)]O = iL,

— 322 + 32" — 25) dx

integrate by parts with ]

sin(7x /L L .
My:fo (wa/ )x-ydydI:%fO mSan(ﬂ'm/L)dI |:u:m}d'u:sin2(7ra:/lz)dz
=3z z(3e—- £ sin(27rm/L))]§ - %fOL [32 — & sin(2nz/L)] da
172 _1 [1I2+L_2COS(QM/L)]L — 172 _ 1 (1L2+L_2 _ L_Z) _ 172
4 2[4 472 0 4 2\ 4 4n?2 4n2 ) T ’
M, = fo snlme/L) gy dy da = fOL 2 sin®(ra/L) do = % fOL [1— cos®(mz/L)] sin(rz/L) da

[substitute v = cos (mz/L)]
*(ra/L)]y
Hencem—g (Z,9) = (L /8 —4L/(97T)) = (£ E)

= %(—A) [Cos(mv/L) — § cos

L/4’ L4 2’ o

M. p(z,y) = ky = krsinf, m = fﬂ/QfO kr?sin6drdf = lkfﬁ/Qsmé?dG = k[ COS@]‘”/z =

Myffﬂ/zfo k‘TssiDQCOSQdT‘dGZlkfﬂ/ZSIIleCOSQde:ék[ cos29]w/2: k,

1
8
M, = [7/2[F kr®sin? 9drdf = Lk [7/%sin?9d6 = Lk[0 +sin26]7/% = k.

16
(5. %5)-

13. J

Hence (Z,7) =

p(z,y) = k/2? +y? = kr,
m= [[, p(z,y)dA = foﬂff kr - rdrd0

=k [ do [ dr = k(r) [1r®]

My = [[,zp(z,y)dA = foﬂff(r cos ) (kr)rdrdf =k [ cost do ff 3 dr

=k [sin0] k() (£) =0

function are symmetric about the y-axis]
M. = [[,yp(z,y)dA = foﬂff(r sin @) (kr)rdrdf =k [ sin6df ff 2 dr
(3] =K1+ 1) (¥) =

Hence (7,7) = (0, 42642) = (0. £2).

15 k.

2

=k [fcosﬂg

—E(1+3-14d) =&

= du= —TIsin(rz/L)]

L.

k',

1
3

7
gﬂ'k',

[this is to be expected as the region and density
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SECTION 15.5  APPLICATIONS OF DOUBLE INTEGRALS  UJ

Placing the vertex opposite the hypotenuse at (0, 0), p(z,y) = k(2® + y*). Then

m= [ 5 "k(@®+y)dydz =k [ [amz—mg-i-l(a—x) | de = k[zax —Zx4——(a—x)4]g:%ka4.

3
By symmetry,
My =M, = [ [~ “ky(@® +y*) dydz =k [ [3(a —2)°2® + 1(a — 2)*] d=

2
=k[ta’s® — Jaz® +—x5—2l0(a—x)5};:%ka5

Hence (Z,7) = (%a, 2a).

=1—z2
L = [f, v?p(z,y)dA = [*, [27 4 kydyds =k [*, [Ly N de =tk 1 (1 - 2% de

:%k:f_ll(ws—4x6+6m4—4m2+1)d$:%k:[lxg——a’ + 82 — —a:3+a:]171= Sk,

9 315
I, = [[, 2*p(z,y) dA = f f =% a? ydydr = kf (3 2y2}Zi(1)_$2da:: %kf_llxz(l—xzf dx

8
105 k’

= Lk 1 @ 20t 0% do = 3k [0 - 220+ £a7)" | =
andIo = I + I, = 2tk + 1=k = stk

As in Exercise 15, we place the vertex opposite the hypotenuse at (0, 0) and the equal sides along the positive axes.

L= [l[ Ty k(x? —‘,—y)dydm—kfo y2+y4)dyda::k:f0[éx2y3+5y]yazd:r
= kfoa[%mZ(af z)® + %(a — x)ﬂ der = [é (éa?’x?’ ia2m4 + 2 ax5 — %x6) — %(af m)6]g = l—gokaﬁ,
y—fo Qkx —l—y)dydac—kfo (z +xy)dydx:kf0[xy+1x2y3]yazdm
=k[ [ (a —z)+ 1x2 (a —x) ] dr =k [éaxf’ — —x + = (1a3$3 3a%2t + %aa;5 — %xG)]g = FTOkaf",
and Ip = I, + I, = 5ka®.
L= [[,v’p(@,y)dA = [} [ py? dudy = p [y dw [} y*dy = p[x], [30°]; = pb(3h°) = Lpbh?,
I, = [[, 2*p(x,y)dA = [)' [} pa® dudy = p [} 2 dz [, dy = p[ 32°]; [y]§ = $pb°h,
—s I 1ob®h B2 _
and m = p(area of rectangle) = pbh since the lamina is homogeneous. Hencez" = L =3—— = - = 7
m pbh 3
=2_I_x_%pbh3_h_2 =_i
andy—m— oh 3 = y—\/g.
In polar coordinates, the region is D = {(7"7 0)|0<r<a,0<6< %}, )
L= [[,y’pdA = fﬁ/2f0 p(rsin®)? rdrdf = /)fTr/251n2 de foar3 dr
— p[36— £sin260)5'7 (4415 = p (3) (3a%) = pa',
L= [[,2*pdA = fﬁ/QfO (rcos@)?rdrdd = ,0f7r/zc:os2 do [ r*dr
— p[36-+ £sin26]5’7 (41715 = p (3) (%) = pat,
—2 —2 LpCL47T a2 — —
andm = p - A(D) = p - 17a? since the lamina is homogeneous. Hence T~ =%~ = 1fpa27r =7 = T=V=
1
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25. The right loop of the curve is given by D = {(r,0) | 0 < r < cos26, — /4 < 0 < w/4}. Using a CAS, we

/4 cos 26
findm = [, p(z,y)dA = [[,(2° +y°)dA = fn/4 5 2rdrd0—a Then

/4 cos 26 /4 cos 20
:_// zp(z,y)d / /0 (Tcos9)r2rdrcl9— /ﬁ/4/0 r4c059drd9:%§5\fand

/4

1 /4 cos 26 /4 cos 26
_:—// yp(z,y) dA / / (rsin@)r2rdrd0— / / rtsin@drdf =0, so
m JJp w/4J0 w/4J0

%7) = (%4*/5 0).

—
8

103957 ’

The moments of inertia are

_ 2 o cos 260 T/ C0529 5 o 51 4
L= [[,yp(z,y)dA = [T ,r/4f (rsin@)?r rdrde—f ) sin? 0 dr df = 381~ 105
L, = [[,2*p(z,y)dA = f”ﬂ/4fcoszg (rcos@)?r rdrdQ—f"/ COS207“5cos Odrdf = 3587; + 35 and
51
IO*Ix +Iy7@

27. (a) f(x,y) is a joint density function, so we know [ [0, f(z,y)dA = 1. Since f(x,y) = 0 outside the
rectangle [0, 1] x [0, 2], we can say
ffsz(m,y )dA = f_ f_ z,y dydw—fofo Cz(1+y)dydx
:C’fo [y+2y ]y 2d:v—C’fO 4z dr = C[22° ]0:20
Then2C =1 = C’:%

GPX<LY <) =['"_[' flxy)dyde= [, [+Iz(1+y)dyda
= Jo 3oy + 397, 2 do = fol 3u(3) dv = §[32°] = § or 0.375
© P(X+Y <1)=P((X,Y) € D) where D is the triangular region shown in M
the figure. Thus
P(X+Y <1)= [[, f(z,y)dA= fo T (1 +y) dyda
=Jo 3 [y+2y] = Jo 32(30° — 22+ 3) do

1
il (m3,4x2+3x)dm:%[%,4%+3§]0

5 ~
= 2 ~0.1042

29. (a) f(x,y) > 0,0 fis a joint density function if [[. f(z,y) dA = 1. Here, f(z,y) = 0 outside the first quadrant, so
ffRz f(.l’, y) dA = fooo fooo 0.16—(0.5x+0.2y) dy dr =0.1 fowfooo 6—0.5m€—0.2y dy dr =0.1 fooo 6—0.535 dx fooo 6—0.2y dy

.t 05w .t _o. . —0.52 —0.2y7t
:0'11513%10]06 05 g tlirgofoe O2ydy:0.1tlggo [—2e 05} lim [—5e~ 2]

0 +Soo 0

t—oo

=0.1 lim [—2(e7*% = 1)] lim [-5(e”®** —1)] = (0.1)- (-2)(0—1) - (=5)(0—1) =1

Thus f(z,y) is a joint density function.
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(b) (i) No restriction is placed on X, so
P(Y >1)= [% [ f(z,y)dyde = [7 [ 0.1e7O57+02) dy da
=01/~ e % dr [Fe "M dy =10.1 tEIrQlQ fot e 05 dg tli)lg flt e 02 dy

. —0.5z1t 7 —0.2y7t . —o. . —o. —o.
= 0.1 lim [-2e7%*7] " lim [-5e7%*/] = 0.1 lim [-2(e™*®" —1)] lim [-5(e™"*" —e™"%)]
. C(— _ (= —e —=e 0.
(0.1) - (=2)(0 — 1) - (=5)(0 02 02 ~0.8187
(i) P(X <2,Y <4) = [2_ [* flz,y)dyde = [2[}0.1e7 052502 gy dy
=0.1 f02 e 05 dg f(;l e O dy =0.1 [—2670'5I]§ [—5670‘231]3
=(0.1) - (=2)(e™" = 1) - (=5)(e™** 1)
= —1(e"®=1)=14e " —e "° —e " x0.3481
(e~ )(e 0 — 1) 1.8 0.8 1 4
(c) The expected value of X is given by
) = ff]Rz 2 f(z,y) dA = fOOOfOoo x[0.167(0.5z+0.2y)} dy dx

=0.1 f0°° ze 95 dx fooo e 0 dy = 0.1tlim fot ze~ 05 dp tlim fot e=029 gy

To evaluate the first integral, we integrate by parts with . = = and dv = ¢~ %5 dx (or we can use Formula 96
in the Table of Integrals): [ we %% dz = —2ze™ %" — [ —2e7 95" dx = —22e 0% — 4e7 %" = —2(z + 2)e 05",

Thus
t

uy =0.1 tlililo [*2@ + 2)6_0'53”]fJ lim [—56_0-29}0

t—oo

=01 Jim (-2)[(+ 27 = 2] Jim (-5)[e""¥ — 1

—0.1(~2) ( lim L2

oo @05t

— 2> (=5)(-1) =2 [by ’'Hospital’s Rule]

The expected value of Y is given by

M2 = ffRQ ) f(xa y) dA - foooIOoo y[0.1€7(0'5+0'2y):| dy da’;

=0.1 fooo e 057 dg; fooo ye %% dy = 0.1 tlim fot e 957 dy tlim fot ye 02 dy
— 00 — 00

To evaluate the second integral, we integrate by parts with v = y and dv = e~ °-?¥ dy (or again we can use Formula 96 in
the Table of Integrals) which gives [ye *2¥ dy = —5ye™ "% 4 [5e~92?¥ dy = —5(y + 5)e?Y. Then
_ : —0.527t s —0.2y7t
e =0.1 tlggo [—2e lo tlinolo [—5(y +5)e” 2]

— o [_o(p—0.5t _ . 0.2t _
=0.1 lim [—2(e )] Jim (=5[(t +5)e 5])
=0.1(-2)(-1) - (=5) (tlim ozt 5) =5 [by I'Hospital’s Rule]

31. (a) The random variables X and Y are normally distributed with j1; = 45, py = 20, 01 = 0.5, and 02 = 0.1.

1 2
The individual density functions for X and Y, then, are f1(z) = e~ (#=45)7/0:5 an4
ot W) = 55 ax
1 —(y—20)%/0.02 q: . .. . . .
2 (y) = e . ) y fu u
f2 () 01vor Y <. Since X and Y are independent, the joint density function is the product
. s
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1 2 1 2 2 2
—(z—45)2/0.5 —(y—20)%/0.02 __ 10 ,—2(x—45)%—50(y—20)
z,y) = fi(z — e - - — 10, )
f@,y) = hi@)fa(y) 0.5v27 0.127 4

Then P(40 < X < 50,20 <Y < 25) = 4500 25 f(z,y)dydz = ; 4500 2205 ¢~ 2(2—15)?=50(y—20) dy dzx.

Using a CAS or calculator to evaluate the integral, we get P(40 < X < 50,20 <Y < 25) ~ 0.500.

(b) P(4(X —45)* +100(Y —20)> <2) = [[, %6’2(1’45)2’50(9’20)2 dA, where D is the region enclosed by the ellipse
4(z — 45)* +100(y — 20)* = 2. Solving for y gives y = 20 + = /2 — 4(z — 45)2, the upper and lower halves of the
ellipse, and these two halves meet where yy = 20 [since the ellipse is centered at (45,20)] = 4(z —45)* =2 =

r =45 i . Thus

L — 4(x—45)2
// %672(36745)2,50(%20)2 A — % /45+1/\/§ /20+ /2 — 4(z—45) 672(%45)2750(%20)2 iy
D 45-1/v/2  J20—15+/2 — 4(z—45)2
Using a CAS or calculator to evaluate the integral, we get P(4(X — 45)2 + 100(Y — 20)? < 2) ~ 0.632.

33. (a) If f(P, A) is the probability that an individual at A will be infected by an individual at P, and k d A is the number of
infected individuals in an element of area dA, then f(P, A)k dA is the number of infections that should result from
exposure of the individual at A to infected people in the element of area dA. Integration over D gives the number of
infections of the person at A due to all the infected people in D. In rectangular coordinates (with the origin at the city’s

center), the exposure of a person at A is

E://Dkf(P,A)dA:k//DQLO[20—d(P,A)}dA:k//D[l—zo\/x—xo v — yo)]dA

(b) If A = (0,0), then

E= k// 1—— acz—l—y}dA m
.
27 10 10 [
—k// 1— &7) rdrdd = 2nk[4r® — &7°] U
= 27k(50 — 3) = Brk ~ 209k

For A at the edge of the city, it is convenient to use a polar coordinate system centered at A. Then the polar equation for

r=20cos 0

the circular boundary of the city becomes r = 20 cos 6 instead of » = 10, and the distance from A to a point P in the city
is again r (see the figure). So
B- k/"/Q /QOCOSQ (1 ) rdrdo = k/"/Q (L2 3]0 g
x/2J0 —r/2
= kf"/2 (200 cos® § — 20 cos® §) df = 200k f’r/Q [ + 3 cos20 — 2 (1 — sin® 0) cos ] df
=200k[ 0+ 4s1n267— 25inf+ 2 2. sm 0]77/2 —200.’6[ +0-— % —&-%4—% —&-0—%4—%]
= 200k(% — 3) ~ 136k

Therefore the risk of infection is much lower at the edge of the city than in the middle, so it is better to live at the edge.
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15.6 Surface Area

1. Here z = f(x,y) = 2+ 3z + 4y and D is the rectangle [0, 5] x [1, 4], so by Formula 2 the area of the surface is

= [ V@ )P+ fy(z, )2 + 1dA = [[, 32+ 42+ 1dA = /26 [, dA
:\/_A( ):f<5>(3):15¢%

3. z = f(z,y) = 6 — 3z — 2y which intersects the zy-plane in the line 3z 4 2y = 6, so D is the triangular region given by

{(z,y) |0<2<2,0<y<3— 3z} Thus

= [fp V(3?2 + (22 + 1dA = V14 [[,dA = VIAA(D) = V14 (5 -2-3) =314
5.92422=9 = 2=9—2 fo=0,f,=—y(O—-y>)"? =

A(S) // Vo [0 — )72 —l—lclydx_//

y1v
// \/_dydxfB/O [sm 1§i|y=0 dm:?)[(sm (5))x}0—12sm 1(%)
7. 2 = f(z,y) = v*> — 2% with 1 < 2® + y? < 4. Then
ffD\/1+4:r2+4y dA = \/1+4r2rdrd0— 27rd9 f127'\/1+47‘2dr
=[]y [é(1+4r2>3/2]1 = F(17VIT-515)

+1dydx

9. 2= f(z,y) =aywitha’ +y* < L,so fu =y, fy =0 =
r=1
A(S) = [Jo P+ F1dA = [7 [ V7 F Trdrdo = [§7 502 +1)*%| _ do
_ 027\'%(2\/571)d9:2?ﬂ'(2\/§71)

M oz=+/a2 —22 — 2, 2, = —x(a® — 2% — )"V, 2, = —y(a® — 2? —y?)71/2,
1’2 +y2
A(S) = ——= — +1dA
=[], 7
/2 acos 6 r2 [ =acosd
/ / 5 5 +1rdrdf
—x/2Jo as —=r a
/2 acos 6 0
:/ / — & drdf U
—=2Jo Va2 —r2

—m/2 r=0
/2 /2
:/ —a(\/az—a2c0529—a)d9:2a2/ (1—\/1—60829)d9
—7/2 0

/2

/2 /2 /
:2(12/ d972a2/ Vsin? 0 df :CL27T*2CL2/ sinfdf = a®(7 — 2)
0 0 0
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z=f(z,y) = e fa = —2ge™" Y, fu= —2y€_x2_y2. Then

AS) = [[ V(—2we==*v*)2 4 (=2ye=2*v*)2 + 1dA = [[ /4(z%+y2)e2@"+v) + 1dA.
w2 +y2<4 z24y2<4

Converting to polar coordinates we have

= 027r f02 Viar2e=2r* 4 1rdrdf = 0% do f02 r\/4r2e=2r* 4 1dr

=27 foz r/4r2e=2"% 4+ 1dr ~ 13.9783 using a calculator.

[

), (2,2).and (2,3). Here f(z,y) = 2° + 3, so the Midpoint Rule

)

PN

(a) The midpoints of the four squares are (3, 1), (

gives

A(S) = [[p V@ 9 + [y (2, )+ 1dA = [[, /(22)2 + (2y)* + 1dA
H(VROP AT +1+ RO + OF +1

+ AT + RG] +1+¢ 2P + @) +1)
L5 +2/5+ /) ~ 18279

(b) A CAS estimates the integral to be A(S) = [[,1/1+ (22)2 + (2y)2 dA = folfol /14422 + 492 dy dx ~ 1.8616.

%

This agrees with the Midpoint estimate only in the first decimal place.

z =142z + 3y + 492, so

02\> 02\? 4l 4t
(S)Z// 14 (—> + (—> dA:/ / \/1+4+(3+8y)2dyda:=/ / v/ 14 + 48y + 64y? dy dx.
D ox ay 1 0 1 0

Using a CAS, wehavef1 fo \/14 + 48y + 6442 dydx—45\/_+15ln(11\/_+3\/_\/_) (3\/_+\/_\/_)

15, 11V5+3V70
or VI R S e

flz,y) =14+2%? = f. =229° f, = 22%y. We use a CAS (with precision reduced to five significant digits, to speed

up the calculation) to estimate the integral

1 1-22 1 py/1-22 \/
= V24 [+ 1dyde = / / 422y* + 42*y? 4+ 1 dy dx, and find that A(S) ~ 3.3213.
/,1 /417—2 ! 112 :

Here z = f(z,y) = az + by + ¢, f=(z,y) = a, fy(z,y) = b, s0
e [ V@ TR T TdA= V@ TP T1f[, dA= V@ TP TTAD

If we project the surface onto the zz-plane, then the surface lies “above” the disk x> + z? < 25 in the z2-plane.

We have y = f(x, z) = 2 4 2* and, adapting Formula 2, the area of the surface is

AS)= [ VI@2P+ U@ P +1dA=  [[ Viz® 142+ 1dA

x2+z2§25 x2+z2§25
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Converting to polar coordinates x = 7 cos ), z = r sin  we have

AWS) = [77 [§VETF Irdrdd = [77d0 [5r(4r® +1)2dr = [0]" [AZ(M + 1)3/2] = Z(101v/101 — 1)
0

0

15.7 Triple Integrals

269

1. fffB;tyz dV = fo fo f TYz dydzdx—fo fo [% Ezil dzd;tzfof 3222 dzdx

:fol [% ] d = 127$dx—%3;2](1):%

3. fo fo y “(2z — )dwdydzszQfoz [;z’ —;z’y]i g zdydz—fOQfozz [(y—z)Q—(y—z)y} dydz

2 _22
= [ Jo (% —yz)dydz= [] [y=* — 3y°=] 5 dz =[] (" - $2°) d=

=" -5, =% -5 =1
5. fl lnxxe_y dydxdz = ff OZZ [fxe_y}yigmdxdz = ff OZZ (—we™ Inz + 2¢®) dx dz
—fl 1+x)dxdz—f1 [~z + lmQ]x > dx
:f12 (=22 +22%)dz = [722+§z3}1 =—44¥41-2=%
T f72 [YJ cos(a +y + 2)dzdady = [ [Y [sin(z +y +2)] ¢ dudy
”/2 I3 [sin(2z 4 y) — sin(x + y)] dz dy
= 0’”"’ [~ cos(2z + y) + cos(z + y)] 2} dy
= Oﬂ/z [—3 cos 3y + cos2y + & cosy — cosy] dy
= [gsimay-+ Juin2y— Juina] % = - = -3

. [ff, yaV = [3 [T [ ydzdyde = 3 7 [y ) 20 dyde = 2 [ 207 dy e

=J5 3y ]yOx ) 3¢ 3d$—%4]3=%=2—27

1. drdzdy = —tan”'=|  dzd
=t N WA S I

= i [} [tan™"(1) — tan~1(0)] dzdy = [{' [} (5 —0)dzdy =% [{' [s] 12} dy
=24y dy=2[dy— 12 =2(16-8-4+1)=2
13. Here £ = {(2,9,2) |0<2<1,0<y <+z,0<z<1+4+x+y} so
[ SzydV = Jy J5 Jy ™ 6oy dzdyde = 3 /7 [6wy2) 27 dyd

:folfoﬁ 6xy(1+l’+y)dydgj:f0 [3l'y + 3222 + 22y }y \/_dx

= Jo (3% +32° + 2072) do = [0 + 32" + 4a 7/2}02%
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HereT:{(UC,%Z)\OSJCS170§y§1—$,0§2§1—$—y},so
[[f; «*dV = fo 1 = y:rzdzdydx—fo 21—z —y)dydx
1,2 2]y 1- z 4

_fo T2 -2 - y)dydx—fo [x y—a’y — 1%y y—o dz

—fo[z(l—w —x(l—x)—%xQ(l )Q]dac

= fol (32* — 2 + 12%) do = [52° — 12 + %x?’]é

17. z The projection of E on the yz-plane is the disk y* + 22 < 1. Using polar

coordinates y = r cos§ and z = rsin 0, we get

IfswdV = [fy [fap anwde] dA = 3 [, [42 = (497 +42%)%] a4

=8f fo (1—r") rdrd9—8f d@fol(r—r5)dr

= 8(2m)[4r7 — 4]} = 12z

19. The plane 2z + y + z = 4 intersects the xy-plane when
2c4+y+0=4 = y=4-2z,50

E={(2,,2)|0<2<20<y<4—-22,0<2<4—2z—y}and

V= fo f04 2zfo4 ey dzdydx_fo 4 2I(4—2m—y)dydm

= fOQ [4y — 2y — %y2]yi4—2x e

y=0

= [7[4(4 - 22) — 22(4 — 22) — $(4 — 22)?] da

= [2(22® — 8z +8) da = [22® — 42® + 8z] ) = 1

21. The plane y + z = 1 intersects the xy-plane in the line y = 1, so

Ez{(:c,y,z)|—1§:c§1,:c2§y§1,0§z§1—y}and
V= [[[pdV =[5 [ dedyde = [1 [5(1—y)dyda
=S5 =597 e de = 1 (5 - 0% 4 gat) de

—fi,_1.3, 1,51 _1_ 1, 1 _ —
—[2$ 3$+10$L1—2 3Tt

_|_

=
wl=
S~
Sl
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23. (a) The wedge can be described as the region
D:{(I,y,z)\gf—l-zz <L,0<z<1,0<y<z}

={(@9.2)0<2<1,0<y<p0<2< T2}

So the integral expressing the volume of the wedge is z

Jffpdv = f01f01 o 1w dz dy dzx.

(b) A CAS gives [ [ [V 7V dzdyde =T — 1.

(Or use Formulas 30 and 87 from the Table of Integrals.)

s
Il
—
.
Il
—
e
Il
=

Il
ool
—

~
—
Al
ol

1 1 3 9 3
=3 [cosa +cosa+c0364+cosa+cosa+cos

21. E={(z,y,2) | 0<2<1,0<2<1—2,0<y<2—2z},
the solid bounded by the three coordinate planes and the planes

z=1—2,y=2—2z.

29.

/:
.

If D1, D2, D3 are the projections of E on the xy-, yz-, and xz-planes, then
Di={(z,y)| 2<2<20<y<4—-2"}={(z,y) |0<y<4, —VI—y<z</I—y}
Dy={(y,2) |0<y<4, —3/T—y<2<i/I—y}={(y,2) | -1<2<1,0<y<4-47%}

Ds={(z,2) | 2 + 42% < 4}
[continued]
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Therefore

E:{(fﬂ,yyz)|*2§x§2,0§y§47w2,fé 47r27y§z§é\/47x2*y}
~{@y)l0<y<d —VI—y<a<yi—y -4/A-a? —y<z<iVI-a? oy}
:{(@y,z)|—1§z§1,0§y§4—4z2,—\/4—y—422§$§\/4—y—4z2}
=3(z,y,2) | 0<y<4, — L /T—y<z2<i/T—y —/A—y—422<a<./4—y—4z22

Yy Y 3 Y 3 Y ]
:{(x,y,z)|72§x§2,f%\/47172§z§%\/47m2,0§y§471727422}
z{($7y,z)|—1§z§1,—\/4—4,22SIS\/4—422,O§y§4—m2—4z2}

Then
_r2 4—22 pyf4—ax2—y/2 Sz =i Va—z2—y/2
fffEf(xay:Z)dv_f_z 0 fi\/m/zf(xayvz)d*’;dydm—fo f—\/ﬁf,mmf(%%z)d“lmdy
_rl p4—42? p/f4—y—422 4 ATy/2 pA/A—y—4z?
_f—l 0 fﬁmf(m,y,z)dmdydz—fo f_\/mmfi\/mf(w’yyz)ddedy
2 pA/4—22/2 4—22-422 1 pa/d—422  pd—z2_452
=f72 f_\/m/z o f(z,y,2) dydzd;z’zfilf_\/mfo flz,y,z)dydzdz
31. y
4
D,
(—2,4,0 y:xz
-2 0 2 x
2,4,0)
2
2 —9_1
y+2z=4 z=2-5x
D, D,
0 4 y ;2 0 2 X

If D1, D5, and Dj3 are the projections of E on the zy-, yz-, and xz-planes, then

Di={@y|-2<e<22?<y<a}={@y|0<y<s-Vy<o< Vil

Dzz{(y,z)|0§y§4,OSZS2—%y}={(.%Z)|0§2§2,0§y§4—22}7and

Dgz{(x,z)\—2§w§2,0§z§2—%:r2}:{(w,z)|0§z§2,—\/4—22§x§\/4—22}
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Then

33. ’
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(3,9.2) | -2<2<22° <y<4,0<z<2- 1y}

(3,32 |0<y <4, —\/y <o < Vi 0<2 <2 Ly}

(2.9,2) [0Sy <4022y —Vy <o <y}

(2,5,2) [0 22,0y <4—22 —Vy <o <V}

T,Y, 2 —2§$§2,0§z§2—lx2,$2§y§4—2z
2

(z,y,2) ] 0< 2 <2, —\/4—22§:13§\/4—22,z2§y§4—22}

I
—~ N N N N

Jffg f(x,y,2)dV = f f f2 y/Qf(m,y, )dzdydm—fo f 2 y/2f(:v,y,z)dzdxdy

—fo 2= y/zf f T,Y, 2 dxdzdy—fo 4= ZZf f(:c y,z)drdydz

712 z z z
= [P 2T fay ) dydzda = [ [V 2[5 (e, 2) dy da dz

The diagrams show the projections
iz 11__ﬁ§zor of E on the xy-, yz-, and zz-planes.

Therefore

35.

Jo I35 1

folf\l/ifol_yf(l'vyvz) dZdyd$:f01f0y2fol_yf (z,y,2) ddedy:fol fo (z,y,2)dxdydz
_fO fol yf() T, Y,z dmdzdy—fo fol \/_f x,Y, 2 dydzdx

= folfo(l_Z) f * flz,y,2)dydx dz

(1,1,0)

(x,y,2)dzdxdy = [[[, f(x,y,2)dV where E = {(z,y,2) [0 < 2 <y, y <o <1,0<y <1}

If D1, D2, and D3 are the projections of E on the xy-, yz- and xz-planes then

Di={(z,9) |0<y<Ly<z<1}={(z,9) [0<z<1,0<y <z},
Dy ={(y,2)|0<y<1,0<2<y} ={(y,2) [0<2<1,2<y< 1}, and

Ds={(z,2) |0<2<1,0<2<z} ={(z,2) | 0<2<1,z2<z <1}

[continued]
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Thus we also have
E={(z,y,2) [0<2<1L0<y<2z0<z<yt={(2,4,2) | 0<y<1,0<z<yy<z<1}
={(z,9,2) |0<2<1,2<y<Ly<z<1}={(z,y,2) | 0<2<1,0< 2 <z,2 <y <z}
={(z,9,2) |0<2<1,z2<z<1,z<y<z}.
Then
fo f IS flay, 2) dz de dy = folfozfoy flz,y,2)dzdydx = folfoyfyl flx,y,2)dedzdy
= follefl fz,y,z)dedydz = folfoxf; flz,y,z)dydzdz
fof fm z,y,z)dydx dz
37. The region C'is the solid bounded by a circular cylinder of radius 2 with axis the z-axis for —2 < z < 2. We can write
[[[(4+52%yz?)dV = [[[,4dV + [[[,5a’yz* dV, but f(z,y,z) = bz’yz> is an odd function with
respect to y. Since C' is symmetrical about the zz-plane, we have [[ [, 52*y2> dV = 0. Thus

[f[ (4 +52%y2*)dV = [[[,4dV =4-V(E) =4-7(2)*(4) = 64r.
39.m = [[[, p(amy,z)dV:fo1 fo\/_fl+z+y2dzdyda:: fol f0ﬁ2(1+x+y)dydx
1
= Jo 2y + 20y + 47 dw = [y (23 +20% + o) do = [32%7 + 4072 + %ﬂo =%

My. = [[[, xp(x,y,z)dV = fol foﬁ f01+m+y 2z dzdydx = fol foﬂ 2e(1+ 2 +y)dyde

1
—fo [2my—|—2m y—i—xy]y \/_cl:v*f (2:03/2—1—2265/2—1—:1: )dx = [4 5/2—1—4 7/2—1—%:133}0:%

M. = [[[5 yp(z,y,2)dV = fol fo\/_ f1+x+y 2ydzdydz = fo f 2y(1+z+y)dyde
1
=Jo " +2v” + 35°1, 55 Ve = [y (I"H”Q + %xg/z) dv = [512 +32° + %JES/Q]O =1
May = [[fp 20wy 2)dV = [ [ [377 22dzdydo = [ 7 (P15 dydo = [ 7 0+ o+ y) dy da
= [l (2w 2y 4 2wy o ) dyda = [ [y + 20y +oP oy oy + 3]0 de

_fo (\/—+7 3/2 | o4 2 +m5/2)dm [2 3/2+14 5/2 4 1 $+ $+2 7/2}0:%

553’79’ 553

My,. M, Mmy _ (358 33 571
m m m - ’

Thus the mass 1s 2 and the center of mass is (Z,7,%) = (—, ,

M. m= fofofo(x + 42 —I—z)d;tdydz—fofo[ x> 4 xy? +xz] Odydz—fofo( a® + ay? +az)dydz

r=

=[5 [3a°y + 3ay +ayz]y odz = [ (3a" 4+ a”2%) dz = [2 az+éa223]0f%a5+%a5:a5

M,. :foafoafoa [m3+x(y2+z )] dandydz—fo fo [1a4+ 1a2(y +z )] dy dz

=y (1a5 + 1a® 4 2a®2%) dz = 1a® + 14 = Sa® = M,. = M., by symmetry of E and p(z,y, 2)
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8. I = [ [V [V k(y? + 22 dedyde =k [, [ (Ly? + 3L°) dydz = k [ 20* dz = 2kL°.

By symmetry, [, = I, = I. = 2kL°.

4. I. = [[[,(2® +y?) p(z,y,2)dV = [[ [foh k(z® +y?) dz} dA= [[ k(z®+y*)hdA
22+y2<a? 224y2?<a?

:khf NG rdrd@—khf%de far3dr—kh (2m) |37 ]g:2ﬂkh~ia4=%ﬂ"kha4

47. (a) m = f_ll f112 folfy Va2 +y2dzdydx

©) (7,57) where T = £ [1, [ [ & /T g dedyde, = & 1, [ [ y /T F o de dy o, and
z= %f—l fmz foiy zy/x? +y?dzdydx.

(c)Iz:fjlflefOl_ (2 + %) \/mdzdydx—f f f 22 + 9232 dz dy dx
49. (ay m = [ O\/Jfoy(1+x+y+z)dzdydx:§—g+%
®) @7,z ( m=t [ \/ﬁfo (1+x+y+2)dzdydx,
mflfo mfo y(1+z+y+ 2)dzdyde,

m_lfo vi- tfo 1+m+y+z)dzdydm)

_ 28 30w + 128 457 + 208
~ \ 97 + 44’ 457 + 220 1357 + 660

© L _// / N1 4atyt2)dedyde = %

51. (a) f(z,y, 2) is a joint density function, so we know [[[.5 f(z,y,2) dV = 1. Here we have
oo F@yy,2)dv= [%2 [72 [%2, f(x,y,2) dzdyde = [§ [ [ Cayz dz dy du
= s [2ydy [ s = O[3 (1) (3222 = 50
Then we musthave 8C =1 = C =%
G PX<LY<1,z<1)=['_[' [' flx,y,2z)dedydz=[] [ [} tzyzdzdydx
= 4 fy e Yy ) 2= 130 (B0 B - ) - &

) P(X+Y +Z<1)=P((X,Y,Z) € E) where FE is the solid region in the first octant bounded by the coordinate planes
and the plane x + y + z = 1. The plane = + y + z = 1 meets the xy-plane in the line z + y = 1, so we have

P(X+Y+Z§1):fffEf(:r,y, )dV = fo 01 v 1 v ylwyzdzdydx
= sfo zy[32 2]; (1] Y dydm:%fol Ol_wxy(lf:cfy)Qdydx
=5 Jo Jo Tl@® =227 + )y + (207 - 20)y* + 2y’ dy da
:%fol [(z® — 22° + 2)5y% + (22" — 22)1¢° + (34" )}y ' g

:ﬁfol(z—‘llz-l-&va—4x4+x5)dm:—(i) -1

1
192 130 5760
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5. V(E)=L* = favc:LS/// myzdazdydz— a:da: ydy/ zdz

1 FWTW— SRR

T2, 12,12, P2 272 8

0 0

55. (a) The triple integral will attain its maximum when the integrand 1 — 2% — 23> — 322 is positive in the region F and negative
everywhere else. For if F/ contains some region F' where the integrand is negative, the integral could be increased by

excluding F' from E, and if F fails to contain some part G of the region where the integrand is positive, the integral could
be increased by including G in E. So we require that 2> + 2y + 32> < 1. This describes the region bounded by the
ellipsoid x2 4 2% + 32% = 1.

(b) The maximum value of [[f, (1 —2* — 2y* — 32%) dV occurs when E is the solid region bounded by the ellipsoid

x? + 2y + 322 = 1. The projection of E on the zy-plane is the planar region bounded by the ellipse 2 + 2y = 1, so

E:{(ac,%z) |-1<2<1,—/2(1-2%) <y< \/%(1—J)2),—\/%(1—1’2—2y2) <z %(1—3;2—23/ )}

and
1 1 z2— 2y
/// (1—9?2—2312—322)61‘/:/ / 1—x2—2y2—322)dzdydm:4—\/67r
E (1 2 \/ 1—z2— 2y 45
using a CAS.

15.8 Triple Integrals in Cylindrical Coordinates

1. (a) : From Equations 1,17:1"c056’:400$E :4-% =2,
0 y:rsin0:4sinz:4~§:2\/3,2:72,s0thepointis
BN 3
s sS4
3 \L: Y (2, 2V/3, 72) in rectangular coordinates.
21
x :
He52)
(b) : x—2c0s(f—) =0, y—2sm(75) = -2,
(2.-%.1)
' 7 and z = 1, so the point is (0, —2, 1) in rectangular coordinates.
1
2
-z 0
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3. (a) From Equations 2 we have r* = (—1)® + 1> = 2so7 = v/2; tan = = = —1 and the point (—1, 1) is in the second
quadrant of the zy-plane, so 6 = 2% + 2nm; z = 1. Thus, one set of cylindrical coordinates is (v/2, 2, 1).

(b) 7% = (~2)* + (2v/3)? = 16 50 = 4; tan§ = 22 = —/3 and the point (—2,2v/3) is in the second quadrant of the

xy-plane, s0 0 = 2F + 2n7; z = 3. Thus, one set of cylindrical coordinates is (4, 2£, 3).

5. Since @ = 7 but r and z may vary, the surface is a vertical half-plane including the 2-axis and intersecting the xy-plane in the

half-line y = z, x > 0.

7.2=4—712=4— (2® + y?) or 4 — 2% — ¢, so the surface is a circular paraboloid with vertex (0, 0, 4), axis the z-axis, and

opening downward.

9. (a) Substituting 2 + 3*> = r? and = = r cos 8, the equation z> — x + y* + 2% = 1 becomes 7> — rcosf + 2% =1 or
22 =14rcosf —r>.
(b) Substituting z = r cos @ and y = rsin 6, the equation z = x> — 3> becomes

z = (rcosf)? — (rsinf)? = r?(cos® 6 — sin® ) or z = r? cos 20.

1. E 0 <r<2and0 < z <1 describe a solid circular cylinder with
radius 2, axis the z-axis, and height 1, but —7/2 < 6 < 7 /2 restricts
the solid to the first and fourth quadrants of the xy-plane, so we have

a half-cylinder.

13. We can position the cylindrical shell vertically so that its axis coincides with the z-axis and its base lies in the xy-plane. If we
use centimeters as the unit of measurement, then cylindrical coordinates conveniently describe the shellas 6 < r < 7,

0<6<2m0<z<20.

15. z The region of integration is given in cylindrical coordinates by

E = {(T,G,z) | —7/2<60<7/2,0<r<20<2z< T2}. This
represents the solid region above quadrants I and IV of the xy-plane enclosed
by the circular cylinder » = 2, bounded above by the circular paraboloid

z =12 (z = 2% + y?), and bounded below by the zy-plane (z = 0).

/2 f02 forz rdzdrdd = fﬂ/z foz [rz]izrz drdf = fﬂ/Q 23 dr do

—7/2 —7/2 0 —m/2J0
/2 2 /2 2
= f—w/z do fo r¥dr = [0]7:#/2 [%Tﬂo

=7m(4—-0)=4n
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17. In cylindrical coordinates, E is given by {(r,0,2) | 0 <0 < 27,0 <r <4,-5 <z <4}. So
[f[a Va2 +y2dv = [27 [ (' VrZrdedrd) = [7dO [ r2dr [, dz
= [9]? [37°]5 [#]5 = (2m) (%) (9) = 384r
19. The paraboloid z = 4 — 2? — y* = 4 — r? intersects the zy-plane in the circle 2> + y> =4orr> =4 = r=2s0in
cylindrical coordinates, E is given by {(r,0,2) [0 < 6 <7/2,0<r <2,0< 2z <4 —r>}. Thus

[[fy(@+y+2)dV = f’r/ZfO - (rcos® +rsind + 2)rdzdrd = W/Qfo [r?(cos 6 + sin )z + 37z ]:4 " drdo

0
= 0"/2 f02 [(41"2 —7%)(cos O +sin6) + %r(4 - 1"2)2] dr dé
= 0"/2 [(37° — £7°) (cosf +sinf) — 5 (4 — 7"2)3]::3 do
= fo’r/z [%2(cos O +sin0) + 2] df = [$2(sinf — cos ) + 160]77/2
=81-0+8 - 2-%0-1)-0=54r+128

21. In cylindrical coordinates, E is bounded by the cylinder » = 1, the plane z = 0, and the cone z = 2r. So

E={(r0,2)|0<0<2m,0<r<1,0<z<2r}and
[ffza*dV = fozﬂfol OZT r?cos® O rdzdrdf = o%fol [r3 cos® 0 2] zzir drdf = OZﬂfol 2r* cos® 0 dr df
= 02" [27° cos® 6’]:2; do = 2 0277 cos? 0df = 2” 2 (1+cos20)df=1[0+ 3 sin26’}(2)7r =Z

23. In cylindrical coordinates, F is bounded below by the cone z = r and above by the sphere 7% + 22 = 2 or z = v/2 — 2. The
cone and the sphere intersect when 2r> =2 = r=1,s0 F = {(7",9,2) [0<0<2m,0<r<1,r<z< W}
and the volume is

[y dV = [27 (Y2 rdedrd = [ M 22V drdo = [ (r/Z =12 — ) drdf
= [27d0 [} (rv/2—12 —1?)dr =2 [,%(2 — 232 %7'3}
=2r(-3)(1+1-2%) =27 (2-2v2) = 2r (vV2-1)

1

0

25, (a) The paraboloids intersect when 22 + y? = 36 — 322 — 3y> = 2% 4+ y® = 9, so the region of integration
is D = {(z,y) | 2° +y> < 9}. Then, in cylindrical coordinates,
E={(r0,2)|r"<z<36—-3r0<r<3,0<6<2r}and

Vo= 2R dadrde = 27 f2 (367 — 4r®) drdf = [27 [18r% — 472 do = [27 81d0 = 162

(b) For constant density K, m = KV = 1627 K from part (a). Since the region is homogeneous and symmetric,
My, = M. =0and
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fo 326 3r (zK)rdzdrdf = Kfoz7r f03 r[%zﬂizig_?’rz dr df

= % 2T 3 0((36 — 3r2) — 1Y) drdo = K [27 dg [2(8r° — 216r° + 1296r) dr

= K (2m)[Er® — 2654 4 1206,2)% — [ (2430) = 24307 K

Thus (Z,7,%Z) = (M—QM—””%) (0,0, 2297K) — (0,0, 15).

m m m 7 1627 K

27. The paraboloid z = 42* + 4y? intersects the plane z = @ when a = 42 + 4y or 2% + y? = %a. So, in cylindrical

coordinates, £ = {(r,0,2) |0 <r < 1,/a,0 <6 < 2r,4r* < z < a}. Thus

27 rva/2 pra 27 pya/2
m:/ / KrdzdrdQ:K/ / (ar — 4r%) dr do
0o Jo 4r2 o Jo
27 r=/a/2 27
= K/ [Lar® — '] ZYV""do = K/ La’df = La’nK
0 0

Since the region is homogeneous and symmetric, M, . = M,. = 0 and

27 pa/2 2 \/_/2
Mmy—/ / Krzdzdrd@—K/ / ar— 5)drd9
4r2
T —a 2w
= K/o [ia2r2 — %rﬁ]:;(\)/_m do = K/o 2—14a3 df = 1—12a37rK
Hence (7,7,%) = (0,0, 2a).

29. The region of integration is the region above the cone z = /x2 + y2, or z = r, and below the plane z = 2. Also, we have

—2 <y < 2with —y/4 — y?2 <z < /4 — y? which describes a circle of radius 2 in the zy-plane centered at (0, 0). Thus,

27 27
/ / / aczdzdxdy—/ // (r cosf) zrdzdrd@-/ // (cos @) zdzdrdb
Va2ty?

= Ozﬂ 021"2 (cos@)[ ] d d9—§ 0 027"2 (cos ) (4_T2) dr do
= ; 5 cos@d@fo (4r® —r*) dr = % [sin@}(z)7r [4r° — lrs]i =0

31. (a) The mountain comprises a solid conical region C'. The work done in lifting a small volume of material AV with density

g(P) to a height h(P) above sea level is h(P)g(P) AV. Summing over the whole mountain we get
W= [[Jo h(P)g(P)dV
(b) Here C is a solid right circular cone with radius R = 62,000 ft, height H = 12,400 ft,

and density g(P) = 200 Ib/ft* at all points P in C. We use cylindrical coordinates:

H—z
W:f fo R(1-z/H) 200rdrdzd0—27rfo 2002[1 2]r:é%(1 /1) 4,
-
H 2 " ) 5
R Z\? 2 2z z
:4007r/0 27(17ﬁ) ds = 20071 | (277+ﬁ)d'z .
R
2 3 4 1 H 9 5 )
:200wR2{Z__QL+ z } —2007rR2<H 2H +i) PoHee s
2 3H 4H? o 2 3 1 - . z

= 27rR*H? = (62,000)*(12,400)* ~ 3.1 x 10" fi-Ib
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15.9 Triple Integrals in Spherical Coordinates

1. (a) From Equations 1, z = psin¢cosf = 6sinFcos T =6-3-3 =3,
y = psingsinf = 6singsing =6- % . 73 = 3—‘2/§,and
z=pcosp=6cosE =6- @ = 3+/3, so the point is (%7 BT‘/E,3\/§) in
rectangular coordinates.
(b) x=3sinTcosT =3.¥2.0=0,
y=3sinsinZ :3~§-1:¥,and
: Y z:3cos%”=3(—72) :—3—‘2/§,sothepointis (0,%,—3—\2@) in
i rectangular coordinates.
\(.2.22)
3. (a) From Equations 1 and 2, p = /22 + 42 + 22 = /02 + (—2)2 + 02 = 2, cos ¢ = Z= g =0 = ¢= %, and
p
cosf = psfn 3 = QSin(()Tf 72) =0 = 0= 37” [since y < 0]. Thus spherical coordinates are <27 377(, g)
—V2
(b)p:\/1+1+2:2,c0s¢:%:7\/_ = ¢= ?%,and
T -1 -1 1

= =—— = 0= 3m [since y > 0]. Thus spherical coordinates

psing 2sin(37/4) 2 (v2/2) V2 4
3m 3w
are (2, i I)

5. Since ¢ = %, the surface is the top half of the right circular cone with vertex at the origin and axis the positive z-axis.

cosf =

7. p=sinfsing = p®>=psinfsing < 2°+¢y>+22=y & 172+y27y+%+z2:% &

z® 4+ (y — 3)> + 2> = 1. Therefore, the surface is a sphere of radius 1 centered at (0, 1, 0).

9. (a) x = psin¢gcosh, y = psin¢siné, and z = pcos ¢, so the equation 2% = z? + y? becomes
(pcos @) = (psin pcos0)® + (psin ¢sinh)? or p? cos® ¢ = p*sin? . If p # 0, this becomes cos® ¢ = sin? ¢. (p = 0
corresponds to the origin which is included in the surface.) There are many equivalent equations in spherical coordinates,

such as tan® ¢ = 1, 2cos® ¢ = 1, cos 2¢ = 0, or even ¢ = 0= ‘%”.

bz +22=9 < (psingcosh)® + (pcosp)’> =9 < p?sin® pcos? + p?cos?d = 9 or

P> (sin2 ¢ cos® 0 + cos? d)) =9
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11. 2 < p < 4 represents the solid region between and including the spheres of
radii 2 and 4, centered at the origin. 0 < ¢ < 7 restricts the solid to that
portion on or above the cone ¢ = %, and 0 < 6 < 7 further restricts the

solid to that portion on or to the right of the xz-plane.

13. p < 1 represents the solid sphere of radius 1 centered at the origin.

3% < ¢ < 7 restricts the solid to that portion on or below the cone ¢ = 2.

15. 2 > /2 + y?2 because the solid lies above the cone. Squaring both sides of this inequality gives 2* > 2* + 9> =
22> v+ 22 =p* = 22=p’cos’o> %pz = cos?¢ > % The cone opens upward so that the inequality is
cos ¢ > %, or equivalently 0 < ¢ < 7. In spherical coordinates the sphere z = 22+ + 22 ispcosp =p° =
p =cos¢. 0 < p < cos ¢ because the solid lies below the sphere. The solid can therefore be described as the region in

spherical coordinates satisfying 0 < p < cos ¢, 0 < ¢ < 7.

17. z The region of integration is given in spherical coordinates by
E={(p,0,0)|0<p<3,0<0<7/2,0<¢<7/6}. This represents the solid
region in the first octant bounded above by the sphere p = 3 and below by the cone
¢ = /6.
JT8 [T 2 P singdpdfdy = [TCsingds [T/ d6 [P p*dp
= [~coso]s® [615" [36°];

-(1-9) 30 -Ze-vi)

2 4

a3y

X

19. The solid E is most conveniently described if we use cylindrical coordinates:

E={(r0,2)]0<0<%,0<r<3,0<z<2}. Then

fffE fz,y,2)dV = foﬁ/2f03f02 f(rcos@,rsinb, z) rdzdrdf.
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21. In spherical coordinates, B is represented by {(p,0,¢) |0 < p < 5,0 <6 < 27,0 < ¢ < 7 }. Thus
[f[5@* + 2+ 22)2dV = [T [27 [2(p*)?p?sinddpdd dp = [T singde [Z7do [y p®dp
T 2m 5
= [-cose]g [0]," [707], = 2)(2m)(2F%2)
= 325007 ~ 140,249.7
23. In spherical coordinates, F is represented by {(p,6,¢) |2 < p<3,0<6 <2m,0< ¢ <} and
z? +y? = p?sin® ¢ cos® @ + p® sin? psin® f = p?sin® ¢ (Cos2 6 + sin? 9) = p?sin? ¢. Thus
[[[s@*+y?)av = [T 027r f;’(p2 sin® ¢) p® sin g dp df d¢ = [ sin® ¢ d¢p f27r do f; ptdp

= [7(1—cos® ¢) singdep [0] ”[ } = [7COS¢+%C053¢>}; (2m) - £(243 — 32)
(- 31 ) (2) - s

25. In spherical coordinates, FE is represented by {(p7 0,9) |O <p<1L0<0< 35,0593 } Thus
I/ ze® TV g fﬁ/Q /2 f (psin ¢ cos 9)6” p2singdpdddp = fﬂ/2 sin? ¢ d¢ foﬂ/Q cos 0 df fol p36p2 dp
= 0“/2 1(1 — cos 2¢) do fﬂ/Z cos 0 df (%pZepQ}: - fol pe”2 dp)
[integrate by parts with u = p?, dv = pe'”2 clp]

1
= [4¢ — Lsin2¢])/? [sing];/? [%p%p? - %e;ﬂ]o =(3-0)(1-0)(0+3)=3%

27. The solid region is given by E = {(p,0,¢) | 0< p<a,0 <0 <27, F < ¢ < T} and its volume is

V= [[fgdV = [T [ Js p*singdpdbde = [T/3singde [37d0 [ p*dp

= [~eosdl7j2 0 [36°]5 = (—3+£) (2m) (3a*) = rtma?
29. (a) Since p = 4 cos ¢ implies p> = 4p cos ¢, the equation is that of a sphere of radius 2 with center at (0, 0, 2). Thus

_ 7r/3 04cos</> P singdpdéds = [T Ow/?» [%PS]Z §C°S¢ singdgdd = [ O”/3 (& cos®@) sin ¢ dop dO

= 2 [~ cos*¢) /% do = 2”713—6(%4)@:59}2”:1%
0

(b) By the symmetry of the problem M. = M,. = 0. Then

Myy = 0% 077/3 04 cos ¢ p3 cos ¢sin g dp dp df = 27 W/3 cos ¢ sin ¢ (64 cos (;5) do do

= Jom64 [~ L cosPo] 0" do = [77 L do = 21x

Hence (7,7,%z) = (0,0,2.1).
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31. (a) By the symmetry of the region, M,. = 0 and M., = 0. Assuming constant density X,

m= [[[, KdV =K [[[, dV = ZK (from Example 4). Then

Moy = [[fy 2 KdV = K [T

77/4 COS(i)(pcosgzb)p smd)dpdd)d&—Kf Tr/4sm¢>cos¢[% ]pzcosd)dqbde

0 =0

= le 7r/4 sin ¢ cos ¢ (cos* @) dpdf = 1K f027r do foﬁ/4 cos® ¢ sin ¢ de

1
1

K

017 [~ cost oy = i) (-3) | () —1| =~ (-B) = B

m’ m’  m TK/8

Thus the centroid is (T, ¥, Z) = (%, Mzz, sz) = (0,0, w) = (0,0, 35).

(b) As in Exercise 23, 2* 4+ y* = p? sin® ¢ and

L= [[[,(®+y*) KdV

Kf ﬂ/4 Ocow(p sin? ¢) p? smqﬁdpdgzﬁd@-Kf Tr/4sm3¢>[1 5]p COsd)d¢>d0

le 7r/451n3<;5cos ¢dpdl = lezde fﬂ/4cos5¢(1—cosz¢) sin ¢ do

%K[@](Q)W [—%cos6<b+ cos ¢]7T/4

6 8
s |4 (B) 4 (£) +4- 4] - 5 G -

33. (a) The density function is p(z,y, z) = K, a constant, and by the symmetry of the problem M,. = M,. = 0. Then

Myy = . W/Qfo Kp®sing cospdpdepdf = —7rKa4 sin¢> cospdp = échﬁ. But the mass is K (volume of

the hemisphere) = 27K a, so the centroid is (0,0, £a).

(b) Place the center of the base at (0, 0, 0); the density function is p(z, y, z) = K. By symmetry, the moments of inertia about

any two such diameters will be equal, so we just need to find /,;:

L= " W/Zfo (K p? sin ¢) p? (sin? ¢ sin® 0 + cos® ¢) dp do df

:Kf02 7r/2(51n d)sm 0 + sin ¢ cos ¢))(1 5) dédo

= 1Ka5 . [sin29(—cos¢+%cos3¢) (—%cos ¢)]¢ /2 g = 1K 5 2” [gsin29+%] do

= 1Ka®[3

(80— }sin20) + 30)27 = LKa® [3(r —0) + (27~ 0)] = & Ka'n

35. In spherical coordinates z = /22 + y2 becomes cos ¢ = sin¢ or ¢ = 7. Then

Vo= 2T 2 singdpdgdd = [7T d6 f”/4s1n¢d¢f01p2dp:27r( f+1)(§):§7r(2—\/§),

Mgy = |, 27 7r/4f0 p s1n¢cos¢dpd¢d9—27r[f—cos2¢>r/4 (i) = g and by symmetry My, = M., = 0.

— = 3
Hence (.’E, Y, Z) = (0,0, m) .

37. In cylindrical coordinates the paraboloid is given by z = 2 and the plane by z = 2r sin @ and they intersect in the circle

r=2sind. Then [[[,zdV = [T [25"¢ (7% 12 d2drdf = 3= [using a CAS].
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39. The region E of integration is the region above the cone z = /2 + y2 and below the sphere 22 + y* + 2% = 2 in the first

octant. Because F is in the first octant we have 0 < 6 < 7. The cone has equation ¢ = 7 (as in Example 4), 500 < ¢ <

and 0 < p < /2. So the integral becomes

fﬂ/4 Tr/zfo (psin ¢ cos ) (psin ¢sin 0) p* sin ¢ dp df) dg

—fﬁ/4sm3¢>d¢> fﬂ/2sm0cosed9 f‘/_p dp = (fOTrM (1 — cos® ¢) sm¢>d¢>) [3 sin Q]ﬂ/Q [%ps]f

— [feos’ o —cosd]] 13 (V) = [ - L - (1 -1)] 2 = 1l

#1. The region of integration is the solid sphere 2* + 3 + (z — 2)? < 4 or equivalently

p’sin? ¢+ (pcosp —2)° =p® —4dpcosp+4<4 = p<4cosp,500<60<2m0<¢< Z,and

0 < p <4cosp. Also (z% + 32 + 2%)3/2 = (p?)*/? = p, so the integral becomes

[T R s (%) pPsingdpdf dp = [T [T sing [1 P°)0” S dgde = L [T/7 [27 sin ¢ (4096 cos® ¢) df dp

= £(4096) Tr/zcos ¢sin ¢ do fzw do = 20348 [—1 cos ¢]ﬂ/2 [9]277

7 0
_ 2048 __ 4096
=73 (7) (2m) = 525

43. In cylindrical coordinates, the equation of the cylinderisr = 3,0 < z < 10.

The hemisphere is the upper part of the sphere radius 3, center (0, 0, 10), equation

T

LAY

72 + (2 — 10)® = 32, z > 10. In Maple, we can use the coords=cylindrical option

in a regular plot3d command. In Mathematica, we can use ParametricPlot3D.

I
ILRLNAN

T
|
|
1

45, If F is the solid enclosed by the surface p = 1 + % sin 660 sin 5¢, it can be described in spherical coordinates as
E={(p,0,0)|0<p<1+ £sin60sin5¢p,0<6 <2m,0< ¢ < n}. Its volume is given by
= [[f, dV = [ [27 [T EmO0ImEN/E 2600 $dpdf dp = 1367 [using a CAS].
47. (a) From the diagram, z = r cot ¢, to z = VaZ =12 r=0 .

to r = asin ¢, (oruse a® — r* = r® cot® ¢). Thus

\ruzz =a
Vo= [ fesindo (VT g dr df s

cot ¢ H

z=rcot ¢yl b, /a

=2 [0 90 (1 AT 7% — 2 cot ) dr

asin ¢ 0 y

= %’T [—(a2 —r2)3/2 _ 3 cot qﬁo}o

=2z [— (a® — a* sin® ¢0)3/2 — a®sin® ¢, cot ¢y + a3]

= 2ma [1 - (cos ¢o + sin? ¢, cos bo)] = %Wa?’(l —cos @)
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(b) The wedge in question is the shaded area rotated from 6 = 61 to 0 = 0. z
Letting
Vi; = volume of the region bounded by the sphere of radius p; 3
P2
and the cone with angle ¢, (6 = 01 to 02) ] b,
and letting V' be the volume of the wedge, we have o 5 y

V = (Vag — Va1) — (Viz — V1)
(92— 02) [3(1 = cos ) — p3(1 — cos ) — (1 — co ) + (1 — 08 6,)]
(62 = 01)[(p5 — p) (1 —cosdy) — (p5 — pi) (1 —cos dy)] = 3(02 — 01)[(p3 — ) (cos B, — cos ¢,)]

1
3
1
3

02 pposings  prcot gy
Or: Show that V' = / / / rdzdrdf.
6 P r

1 sin ¢q cot ¢y

(c) By the Mean Value Theorem with f(p) = p* there exists some p with p;, < p < p, such that

F(p2) = (1) = F'(3)(ps — p1) ot p — p = 3% Ap. Similarly there exists ¢ with ¢, < & < ¢,
such that cos ¢, — cos ¢p; = (— sin 55) A¢. Substituting into the result from (b) gives

AV = (p* Ap)(B2 — 61)(sin @) Ap = p?sin Ap Ap Af.

15.10 Change of Variables in Multiple Integrals

1.2 =5u—wv, y=u+ 3v.
5 —1
1 3

Ox/0u Oz /dv

dy/du dy/dv =5(3) — (=1)(1) = 16.

The Jacobian is O(x =

A(u,v)

. z=e"sinb, y =e"cosh.
Ox/0r 0Ox/00
dy/or Oy/00

—e "sinf e " cosf N o N ) o 9
= = =e "e"sin“f — e "e" cos” § = sin“ § — cos® 6 or — cos 20

e"cosf —e"sinf

5 z=u/v, y=v/w, z=w/u.

Ox/Ou Ox/Ov Ox/Oow /v —u/v? 0
M: Ay/Ou dy/dv dy/ow | = 0 /w —v/w?
A(u,v,w)

0z/0u 0z/Ov Oz/Ow —w/u2 0 1/u

1| 1/w —v/w? ( u) 0 —v/w? 0 1/w

vl o0 1/u v —w/u? 1/u —w/u® 0

1/ 1

(= o +E(O—L)+0=L— L _y

v\ uw v2 u2w uwow  uvw

7. The transformation maps the boundary of S to the boundary of the image R, so we first look at side S; in the uv-plane. S; is

describedby v = 0,0 < u < 3,50z = 2u + 3v = 2u and y = u — v = u. Eliminating u, we have z = 2y, 0 < x < 6. Sy is
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the line segmentu = 3,0 < v <2,sox=6+3vandy=3—v. Thenv=3—-y = z=6+33—y)=15-—3y,
6 <z <12 Szisthelinesegmentv =2,0 <u<3,sox =2u+6andy =u—2,givingu=y+2 = x=2y+ 10,
6 < x < 12. Finally, Sy is the segmentu = 0,0 < v < 2,sox =3vandy = —v = x = —3y,0 <z < 6. The image of

set S is the region R shown in the xy-plane, a parallelogram bounded by these four segments.

v y
S;
0,2) (3.2) 6.3)
T
M S S, —_
R (12,1)
0 Sl (3,0) u 0 X
(6.-2)

. S is the line segment u = v,0 < u < 1,50y = v = wand z = u? = y>. Since 0 < u < 1, the image is the portion of the

parabola x = y2,0 <y <1. 85, isthe segmentv = 1,0 <u <1, thusy=v=1andz = w2500 <z <1. The image is
the line segment y = 1,0 <z < 1. Sz is the segment u = 0,0 < v < ILsor=u?=0andy=v = 0<gy<1 The
image is the segment z = 0, 0 < y < 1. Thus, the image of S is the region R in the first quadrant bounded by the parabola

x = y?, the y-axis, and the line y = 1.

v y
S,
0. 1) (L1 0, 1) (L1
R
S
S, I,
M
0 u 0 X

R is a parallelogram enclosed by the parallel lines y = 2x — 1, y = 2x + 1 and the parallel linesy =1 — z,y = 3 — x. The
first pair of equations can be written as y — 2z = —1, y — 2o = 1. If we let uw = y — 2z then these lines are mapped to the
vertical lines v = —1, v = 1 in the uv-plane. Similarly, the second pair of equations can be writtenasx +y =1,z +y = 3,
and setting v = x + y maps these lines to the horizontal lines v = 1, v = 3 in the uv-plane. Boundary curves are mapped to
boundary curves under a transformation, so here the equations u = y — 2z, v = & + y define a transformation 7! that
maps R in the zy-plane to the square S enclosed by the lines v = —1,w = 1, v = 1, v = 3 in the uv-plane. To find the
transformation 7 that maps S to R we solve u = y — 2z, v = x + y for x, y: Subtracting the first equation from the second
givesv—u=3x = = %(v — u) and adding twice the second equation to the first gives u 4+ 2v = 3y =

1

y = 3 (u + 2v). Thus one possible transformation 7" (there are many) is given by = = 3 (v — u), y = 3 (u + 2v).
v y

3] v=3
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13. R is a portion of an annular region (see the figure) that is easily described in polar coordinates as
R= {(r, 0)|1<r< V2,0<0<7 / 2}. If we converted a double integral over R to polar coordinates the resulting region
of integration is a rectangle (in the rf-plane), so we can create a transformation 7" here by letting u play the role of r and v the
role of 0. Thus T is defined by x = u cos v, y = usinv and T maps the rectangle S = {(u7 v)|[1<u< V2,0< v < 7r/2}

in the uv-plane to R in the zy-plane.

v y
%4,
§ _r,
0 1 V2 u X
21
15. gg’ z; =1 =3andz — 3y = (2u + v) — 3(u + 2v) = —u — 5v. To find the region S in the uv-plane that

corresponds to R we first find the corresponding boundary under the given transformation. The line through (0, 0) and (2, 1) is
y = 22 which is the image of u + 2v = $(2u+v) = v = 0; the line through (2, 1) and (1,2) is « + y = 3 which is the
image of (2u +v) + (u+2v) =3 = wu+ v = 1; the line through (0, 0) and (1, 2) is y = 2z which is the image of

u+2v=22u+v) = wu=0.ThusS is the triangle 0 < v <1 —u, 0 < u < 1 in the uv-plane and

[ (@—=3y)dA = [} [+7" (—u—50)[3| dvdu = -3 [ [uv + %vz]”:k“ du

v=0

1 1
= —Sfo (u—u2 + %(1 —u)z) du = —3[%112 — %u?’ — %(1 —u)3]0 = —3(% — % + %) =_3
d(z,y) 20 2 2 . 2 2 : : : 2 2
17. a(wv) o3| 6, 2° = 4u” and the planar ellipse 92° + 4y* < 36 is the image of the disk u* + v* < 1. Thus
[[na?dA= ] f{ (4u?)(6) dudv = [ [}(2412 cos? 0) rdr df = 24 [ cos® 0df [, > dr
u?+4v2<1
=24[La + 1sin2z])7 [1r]) = 24(m) (3) = 6
1/v —u/v?
19. O(z,y) = / / = l, xy = u, y = x is the image of the parabola v> = u, y = 3 is the image of the parabola
9(u,v) 0 1 v

v? = 3u, and the hyperbolas xy = 1, 2y = 3 are the images of the lines u = 1 and u = 3 respectively. Thus

3 pV3u 1 3
// a:ydA:// u(—) dwdu:/ u(lnv?)ufln\/ﬂ) du:flsuln\/gdu:4ln\/§:2ln3.
R 1 Jva v 1

a 00
21. (a) M =1|0 b 0| = abcandsince u = f’ v= Q’ w = Z the solid enclosed by the ellipsoid is the image of the
O(u,v,w) a b c
00 c

ball u? + v? + w? <1.So

[ffsdV =" [f[  abcdudvdw = (abc)(volume of the ball) = 3mabc

u24v24w2 <1
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2 22

(b) If we approximate the surface of the earth by the ellipsoid 5 37 =715 3y7 P + 63562 — 1, then we can estimate

the volume of the earth by finding the volume of the solid £ enclosed by the ellipsoid. From part (a), this is

[[[dV = 47 (6378)(6378)(6356) ~ 1.083 x 102 km®.

(c) The moment of intertia about the z-axis is I, = 22 4+ 9 p(x,y, z) dV, where E is the solid enclosed by
E

2 2 2

— + b_2 + — = 1. As in part (a), we use the transformation x = au, y = bv, z = cw, 0

o(z,y,2)

W = abc and

L=[f[,(@+y)kdV = [f[  k(a®u®+b*v?)(abc) dudvdw

u24v24w2 <1
= abck [ 0% fol (a?p? sin? ¢ cos? 0 + b?p? sin? ¢ sin® ) p? sin ¢ dp df d
= abck [az N OQW fol (p?sin? ¢ cos® 0) p® sin pdp df dgp + b* [ 0277 fol (p? sin® ¢ sin? 0) p? sin ¢ dp df dqﬁ}
= a®bck [ sin® ¢ dop f% cos® 0 do fl p* dp + ab’ck [ sin® ¢ d¢p fzw sin” 6 df fl ptdp
= a®bck [ cos® ¢ — COS(;S] [ 0+ —sm20] [ p ] + ab3ck [ cos ¢>—cos¢] [%0 — isin?@}iﬂ [

= a®bck (%) () (%) + ab3ck (%) (m) (%) = 1%77 (a2 + bz) abck

—-1/5 2/5
23. Lettingu = ¢ — 2y and v = 3z — y, we have x = %(21} —u)andy = %(v — 3u). Then = ‘ /52

—-3/5 1/5

and R is the image of the rectangle enclosed by the lines w = 0, w = 4, v = 1, and v = 8. Thus

// e dA:/;/f '%

25, Lettingu =y —x,v =y + a, we have y = 1 (u +v), = 3 (v — u). Then

SHES

4 8
dv du:%/o udu/1 %dv:%[%uQ]é[ln|v|]?:§ln8.

B(x,y): -1/2 1/2
1/2 1/2

image of the trapezoidal region with vertices (—1, 1), (—2,2), (2,2), and (1,1). Thus

i [ ] i}

2. Letu=z+yandv=—x+y Thenu+v=2y = y=1i(utv)andu—v=22 = z=3i(u—v).

u=v 2
dudv—l/ [vsin%} dv:%/ 2vusin(1)dv = 3sin1
1

u=—-v

o(z,y) /2 -1/2 1
’ ==.Now|ul=lz+yl<l|z|+|y <1 = —-1<u<l,and

g = 1n 1se| =3 Nl =l <l 1y

y
o] =|—z+y| <|z|+]y] <1 = —1<wv <1 Ristheimage of the square 1

—x=1 xty=1

region with vertices (1,1), (1, —1), (—1,—1),and (-1, 1). v ® <
SoffRe“'ydA:%filfjle“dudU:%[e“]l_l[v}l_lzefe_l. 0 b
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15 Review
CONCEPT CHECK

1. (a) A double Riemann sum of f is Z Z f (255, y5;) AA, where AA is the area of each subrectangle and (75, y;;) is a
t=1j=1

sample point in each subrectangle. If f(z,y) > 0, this sum represents an approximation to the volume of the solid that lies

above the rectangle R and below the graph of f.
(b) ffR z y dA_mhlm Z Z f( ljvym) AA

© If f(z,y) >0, [[ f g f(z,y) dA represents the volume of the solid that lies above the rectangle R and below the surface
z = f(x,y). If f takes on both positive and negative values, [[, f(z,y) dA is the difference of the volume above R but

below the surface z = f(z,y) and the volume below R but above the surface z = f(z, y).
(d) We usually evaluate [, r f(z,y) dA as an iterated integral according to Fubini’s Theorem (see Theorem 15.2.4).

(e) The Midpoint Rule for Double Integrals says that we approximate the double integral | r f(x,y) dA by the double

Riemannsum Y > f(T:,7;) AA where the sample points (T;,7,) are the centers of the subrectangles.
i=15=1

) fave = ﬁ / . f(z,y) dA where A (R) is the area of R.

2. (a) See (1) and (2) and the accompanying discussion in Section 15.3.
(b) See (3) and the accompanying discussion in Section 15.3.
(c) See (5) and the preceding discussion in Section 15.3.
(d) See (6)—(11) in Section 15.3.
3. We may want to change from rectangular to polar coordinates in a double integral if the region R of integration is more easily

described in polar coordinates. To accomplish this, we use [ [, f(z,y) dA = [ f fab f(rcos@,rsin®)rdrdf where R is

givenby0 <a<r<ba<f<p.

4. @ m= [[, p(z,y)dA
(b) My = [[, yp(x,y) dA, My = [[, zp(x,y) dA

. M, M,
(c) The center of mass is (%, y) where T = Wy andj = ﬁ

@) L = [[, v’ p(z,y) dA, I, = [[, 2*p(z,y) dA, To = [[, («* +y*)p(x,y) dA
5. (@) Pla< X <bc<Y <d)= [’ [ fla,y)dyda
(b) f(z,y) > 0and [[p; f(z,y)dA = 1.
(c) The expected value of X is yu; = [ [0 2 f(x,y) dA; the expected value of Y is iy = [ [0 yf (2, ) dA
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= [ V1fe(@, 9)2 + [fy(z,y)]2 + 1dA

7. (@) fffB (2,9, 2 V:l lim Z Z Z (Ijkvy:jkvz;jk)AV

man—o0 ' {2 g
(b) We usually evaluate [’ fB f(x,y, z)dV as an iterated integral according to Fubini’s Theorem for Triple Integrals
(see Theorem 15.7.4).
(c) See the paragraph following Example 15.7.1.
(d) See (5) and (6) and the accompanying discussion in Section 15.7.
(e) See (10) and the accompanying discussion in Section 15.7.

(f) See (11) and the preceding discussion in Section 15.7.

(b) Myz = fffE xp(:ﬂ,y,z) dVa M. = fffE yp(m,y, Z) dV’ Mty = fffE Zp(x,y, Z) av.

(c) The center of mass is (%, y,Z) where T = —=, 7 = M. ,andZ = sz.
m m
@ L = [[[o(* + 2*)p(z,y,2)dV, I, = [[[,(«? 2,y,2)dV, L = [[[,(@* +y*)p(z,y, z) dV.

9. (a) See Formula 15.8.4 and the accompanying discussion.
(b) See Formula 15.9.3 and the accompanying discussion.

(c) We may want to change from rectangular to cylindrical or spherical coordinates in a triple integral if the region £ of
integration is more easily described in cylindrical or spherical coordinates or if the triple integral is easier to evaluate using

cylindrical or spherical coordinates.

dx/Ou Ox/0v
Ay/Ou dy/dv

Ox dy Ox Oy

d(zy) _
T Oudv  Ovou

10. (a) Twv) =

(b) See (9) and the accompanying discussion in Section 15.10.

(c) See (13) and the accompanying discussion in Section 15.10.

TRUE-FALSE QuUIZ

1. This is true by Fubini’s Theorem.

3. True by Equation 15.2.5.
5. True. By Equation 15.2.5 we can write fol fol f(@) fy) dydx = fol ) dx fo y) dy. But fo y)dy = fo x) dz so

2
this becomes fol ) dx fo x)dr = [fo x] .

7. True: ffD /4 — 22 — y2 dA = the volume under the surface x> + y? 4 22 = 4 and above the zy-plane

187

= 1 (the volume of the sphere 2° + 3 + 2> = 4) = 1 - 57(2)® = &

3
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9. The volume enclosed by the cone z = /22 + y? and the plane z = 2 is, in cylindrical coordinates,

= f fo f rdzdrdf # f fOfo dz dr df, so the assertion is false.

EXERCISES

1. As shown in the contour map, we divide R into 9 equally sized subsquares, each with area AA = 1. Then we approximate

Ifaf r f(2,9) dA by a Riemann sum with m = n = 3 and the sample points the upper right corners of each square, so

ffR z,y) dA = Z Z fzi,y;) AA

i=1 j =
=AA[f(LY) + f(1,2) + f(1,3) + f(2,1) + (2,2) +f(2,3) + f(3,1) + f(3,2) + [(3,3)]
Using the contour lines to estimate the function values, we have

ffR z,y)dA = 1[2.7+4.7+80+4.7+6.7+10.0+6.7+ 8.6 + 11.9] ~ 64.0

w

fl fo y+2xey)clgr:dyff1 [:chJr:): ey] cly—f1 (2y +4e¥) dy = [ 2+4ey]i

=4+4+4e> —1—4e=4e®> —4e+3

o

cos(x?) dy dx = cos(z®)y]"=" do = [ zcos(a®)dz = Lsin(z?®)]! = Lsinl
o Jo 0 y=0 0 3 0= 2

7. fo fo fo ysmmdzdyd:r _fo fo [ysinw)z]iio” 1-y? dyda::fo7r foly 1 —y2sinzdydx
-1
= [ [f% (1—y )3/23inx}zzodm:fowésinmdx: —3cosz] =2

9. The region R is more easily described by polar coordinates: R = {(r,0) | 2 <r <4,0 < 0 < «}. Thus

[ f(z,y)dA = foﬂf; f(rcos@,rsin0)rdrdf.

1. The region whose area is given by fﬂ/Z S 20 0 dr do is
r=sin26 {(r, 0)]0<0<5,0<r<sin 29}, which is the region contained in the

loop in the first quadrant of the four-leaved rose r» = sin 26.

13. Y fo f cos(y dydx—fo I cos(y %) dx dy
i 11

= [} cos(y®)[2] 20 dy = [ ycos(y®) dy

=1 sin(yQ)](l) = $sinl

15, [fuert dA = 3 [2 yev dudy = [ )7 dy = [3(e — 1)dy = [2e% —y]S = b0 ~3 -} = 45 —
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" ’ . y Lopve Y |
1 A= dydx = 1
! (1,1) //DlJr:c? /0/0 1422 W /0 1422 (39
y=vx
1
=1 _ 1 _J1 2\ 1
x _5/0 1—|—x2d$ [3In(l+= )}O—Zln2
0 1 X
y 2 8—y?
19. s (4,2) ffD ydA—fo 2 ydzx dy
r=y x=8—y°
= [yl dy = 7y - yP)d
ONX o
2
= [o By —2°)dy = [4° — 3y"], =8
21. Y 3 7w/3 3
; /2
; (%Vzﬂ) //D (m2+ ) dA = / /(r2)3/2rdrcl9
21y=9
=3x 7r/3 513
y X b / d9/ r dr— [ }0
0 3 * _m3 _ 8lr
35 5
23.

Hlg wydv =[5 5 5 aydzdyde = [§ [§ay []2207" dyde = [ [ wy(e +y) dy de

_fo fo T ergL'y )dydm*fo [

N

1$2y2+ Loy }

dm—fo(er x)dx
5
6

2tde = [%xs]g = % =40.5

- \/1
%5, [[[,y°2dV = f fmfl Y y2z2d:cdzdyff f\/_y (1—9y?—2%)dzdy
Wfo (r? cos® 0)(rzsin20)(1—r2)rdrd9— f 1sin®20(r® —r") dr do
02‘n' L (1—cos40)[2r® — éﬁ]::) d = 510 - %sin%’}o" — 2 x
27. ffnyde:f fV4 @ I yzdzdydx—f fo dma? 3dydx—f0 1r%(sin® ) r dr df
=18 ["sin® 0df = L2 [—cos O + § cos® 0] = &
2.V = [2f! @+ 42 dyde = [} [o%y + 4y°]'7) doe = [7 (327 + 84) dw = 176
31. z
V= fOQnyfO(%y)/z dzdxdy = f02f0 (1 — —y) dz dy
©,0, 1) y+2:=2
2
0 (0,2,0) :fo ( - %92) dy:%
y
x=y —y=2
X (2,2,0)
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33. Using the wedge above the plane z = 0 and below the plane z = max and noting that we have the same volume for m < 0 as

for m > 0 (so use m > 0), we have
2fa/3fva —9y? m;z’d:(:dy—Qfa/3 1 — 9y dy =m [a y— 3y ]a/g m(%a3— %a3) = %ma?’.
B @m=[) 0 ydudy = [} (y—y*)dy=% -1 =1
_ 2 1
(b) My = [g fy " aydedy =[5 5y(1 = ") dy = —55(1-9°)°]; = 5.

2
Mgc:folfo1 Uyt dedy = [ (y* —y*)dy = Z. Hence (7,7) = (3, ).

_ _ :27 1/127 = _ :27 1/247 = _
IO—IZ-’-I—%,y —m—% = y—%,and:r —m—é = I—%
37. (a) The equation of the cone with the suggested orientation is ( \ /22 +y2,0<z<h.ThenV = —7Ta2h is the
volume of one frustum of a cone; by symmetry M,. = M,, = 0; and
h—(h/a)\/x2+y2 27 pra p(h/a)(a—r) a h2 R
// / zdsz:/ // rzdzdrd@zw/ r—(a—r)"dr
0 o Jo Jo o @
224y?<a?
Th? [, , 9 3 wh? (a*  2a* a* wh2a?
=z [, a2k dr = (5 -t T ) T g

Hence the centroid is (Z,7,%) = (0,0, 3h).

27 pa p(h/a)(a—7) a 5 5 4
(b)Izz/ // TSdzdrd9:27r/ B —ptyap = 2 (e @) _mah
o Jo Jo 0o @ a 4 5 10

39. Let D represent the given triangle; then D can be described as the area enclosed by the x- and y-axes and the line y = 2 — 2z,

or equivalently D = {(z,y) |0 <2 < 1,0 <y < 2 — 2z}. We want to find the surface area of the part of the graph of

z = x? + y that lies over D, so using Equation 15.6.3 we have

2 2 1 p2—2¢
S):// ¢1+(%> +(%> dA:// x/1+(2x)2+(1)2dA:// V2 + 422 dy de
D Ox dy D o Jo
—fo 2+4m2[ ]zzz 2o *fo (2 —22) \/2+4m2dm—f0 2\/2+4x2d177f0 2x /2 + 422 dx

Using Formula 21 in the Table of Integrals with a = V2, u = 2z, and du = 2 dz, we have

J2vV2+4a2de =zv2+ 422+ 1n (Zm + V2 + 422 ) If we substitute u = 2 + 4z in the second integral, then

du=8zxdrand [2zv2+422dr =3 [Judu =1 2u¥? = 1(2 + 42%)*/2. Thus
A(S) = [m\/2+4x2+ln(2w+\/2+412) - %(2—1—4:1:2)3/2
=V6+In(24V6) — 3(6)*2 —In V2 + 2 =In 240 4 &2

=In(v2++v3) + L2 ~ 1.6176
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41. Y 9— xQ 3 ry/9—22
3 / / 2 + xy®) dy do :/ / z(z® +y?) dy dx
V99— ac2 0 J—4/9-=2
0 3 = fﬂﬁQ f03 (rcos0)(r?) r dr df
_3 = [0, cos0d0 [ r*dr
= [sin0] ™2 [£r°]5 = 2+ £(243) = 48 = 97.2
43. From the graph, it appears that 1 — z? = e” at z ~ —0.71 and at 1.25

x =0, with 1 — 2% > e® on (—0.71,0). So the desired integral is
2 ~ [0 1—22 2
[IpvdAr [Zoq0 Jo ™ v dyda
= % f30.71[(1 —2%)? — e da

_1f,._,3_,3,5_ 1.7 _ 13270 ~
=gz —a® + 82 — 27 — %] =~ 0.0512

45. (a) f(x,y) is a joint density function, so we know that [ [, f(x,y)dA = 1. Since f(z,y) = 0 outside the rectangle
[0, 3] x [0, 2], we can say
Jfea Fy)dA = [, %, f(x.y)dyde = [J[7 Oz +y) dy dz
=C [ [sy+ 37" do = C [ (22 + 2) dz = C[2? + 22]; = 15C

Then15C =1 = C = 4.

2

b)) P(X <2,Y>1) f fl mydydm—fofl 15xy)dyd:):— f2[xy+2y]y dz
=55 Jo (x4 8) de = f5[30% + 3a]g =3

(¢c) P(X+Y <1)=P((X,Y) € D) where D is the triangular region shown in y

the figure. Thus
P(X+Y <1)= [[, f(z,y)dA= [} [} L(z+y)dydz
=1 fol [w +30°],5 " de
=% [y [tQ—2)+ 31— 2)") da

1
:%fol(l_xz)dw:%[x_%xg]ozr%

47. ‘ f_ll ftlz fol_y f(z,y,2) dzdydx:fol f f(m y,z)dx dydz

y=1—z
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49. Sinceu =z —yandv=x+y,z=1(u+v)andy = (v —u).

51.

53.

o(z,y) 172 1/2
Thus Buv) ‘ “12 12

_ 4 0 4
:land//x ydA:// U guaw=— [ - o
2 RT+Y 2 Jo2 v \2 2 U

Letu=y—zandv=y+asor=y—u=(@v-—2)—u = z=1(v—-u)andy=v—1(v—u)=31(v+u).

’ A(z,y) 2
a(u,v)

|0z 0y Ox Oy

T |Oudv  Ovdou

=|-%(3) — 3(3)| =|-3%| = 3. Ris the image under this transformation of the square

with vertices (u,v) = (0, 0), (—2,0), (0,2), and (—2,2). So

20002 4?2 /1 1027 2 1 37u=0 1 02 2 8 172,3 _ 8,72
Lovdd= [ g Jdudv =5 fo [V - gut]y dv =g fy (207 - 5) dv = §[50° — 5o]p =0

This result could have been anticipated by symmetry, since the integrand is an odd function of y and R is symmetric about

the z-axis.

For each r such that D,. lies within the domain, A(D,.) = 772, and by the Mean Value Theorem for Double Integrals there

exists (zr, yr) in D, such that f (z,,y,) = # / f(z,y)dA. But lirn+ (zr,yr) = (a,b),
D, r—0

so lim —— / / f(@,y)dA = Tim f(zs,y,) = f(a,b) by the continuity of f.
D, r—0

r—0t T2
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[J PROBLEMS PLUS

1. 7 Let R = |J’_, Ri, where
37 R
al R45 Ri={(z,y) |z+y>i+2,2+y<i+31<2<32<y<5}
R3
3 R 5 5 .
1 2 J[ple+y)dA = 121 ff& [z +y]dA = 2[[17 + ] fle dA, since
W x+y=5 )
[z + y] = constant = i + 2 for (z,y) € R;. Therefore
et Sl +yldA =520, (4 2) [A(R)]
= 3A(R1) +4A(R2) + 5A(R3) + 6A(R4) + TA(Rs)
=3(3) +4(3) +5(2) +6(3) +7(3) =30
1p 1 ) X
3. fave - 1 — 0 |:/z COS(t )dt:| dx
= fol fxl COS(tz) dtdx = fol f(f COS(tQ) dx dt [changing the order of integration] =1
:foltcos(t2) dt = %sin(tQ)]é =1isinl 0] o
5. Since |zy| < 1, except at (1, 1), the formula for the sum of a geometric series gives T = > (zy)
- n=0

1f01 nio(:ry)” dx dy = nio folfol (zy)" dxdy = nZO [fol " cl:v] [ 01 y" dy}

1,1
fOfO 11

:7;::0#-1'714—1_2(714—1) =wtetmt =1l
7. () Since |xyz| < 1 except at (1,1, 1), the formula for the sum of a geometric series gives [—— = Zo(wyz)”, )
R
/// dz:dydzf// Z TYz) dxdydsz/// zyz)" drdydz
0oJoJo I—x 0 n=0
[t 1 1 1
= 3 oo de][Jg o an] [ 7 = =] =
go[fom TiJo ¥ @Y fz z n;0n+1 n+1 n+1
& 1 1 x 1
LT wTEtEt Tl
(b) Since |—zyz| < 1, except at (1,1, 1), the formula for the sum of a geometric series gives [ = ZO(—xyz)n’ S0
S N B 11 opl oo
d:rdydzz/ / —xyz)" dedydz = / / / —xyz)" dr dy dz
AA/)1+$yZ OOOn: y Z
e X 1 1 1
_ n di|[1n i||:1ndi|: 1) . .
n:O [fa: x| |J fOZ “ ngo( ) n+1l n+l1l n+1
= (=" 1 1 1 & (="t
= 27:___4___...: 27
n=o (n+1)3 13 2% 33 n=o n° [continued)]
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. . 1 1 1 1 1 .
To evaluate this sum, we first write out a few terms: s = 1 — > + FEE + =E ~ 0.8998. Notice that

ar = =5 < 0.003. By the Alternating Series Estimation Theorem from Section 11.5, we have |s — sg| < a7 < 0.003

This error of 0.003 will not affect the second decimal place, so we have s =~ 0.90

_ . _ @_auam [ Buaz_au du .
9. (@) x =7rcosl, y=rsinf, z =2 Then o 91 O 8y 5 v = 5 cosf + y sin 6 and

oy or | Fu 0z
Oy2 Or  Oxdy Or  0z0y Or

or? ox?2 Or ~ OyOx Or + 0z 0x Or

0u 0%u Oz 0%u Oy &u 82] . [62u Oy Pu Oz
=cosl | === == né | —

2

0°u &*u o%u .
—aTcos 9+Wsm 9+23 amcosé’ sin 6

2

Similarly % = —g—z rsin 4 g—: rcosf and

2u2.2 82U2 82

v r2sin9(:os€—8—urcos€—@rsinﬁ. So

T ox

Cu 10w LS Fu Ou o Py O Dueesd | dusing
oz " ror 292 | 922 0a2 " Oy? sin® Oy Ox cosd sin ox r Oy r

2 2

o“u . o o“u 4 o“u
- - —92
+ — sin® 0 + " cos~ 0 ; Ism& cos @

2

_Oucos  Ousind @

or r oy 022
P o
T ox2  Oy? | 022

(b) x = psingcosf, y = psingsinb, z = pcos¢. Then
Ou _Oudzr  Oudy  Oudz _ Ou

ou ou
8p_%8p a_ya_p Ea_p am&n(bcosﬁ—&—a sm¢sm9+a—cos¢ and

o
op?

=sin¢cos &% O %—I— Fu 9z
o 0x2 dp Oyodxdp 0z0x dp

2 2 2
+ sin¢sin@ {M@ + 07u @ Ou 8z}

oy dp ' dzdydp  0z0ydp

+ eosg [P0z | Pu 0 | O 0y
0z20p 0xdz0p 0Oydzdp

2 2

u .2 . a u .
28y6w sin® ¢ sin 6 cos9+28 Ep sin ¢ cos ¢ cosf + 2
2

0“u 0*u 0*u
+a—s1n2<bcos 0+Fsm2¢sm 0+ ER 2cos 20

2

0w .
3,0: sin ¢ cos ¢ sin @

- Oou Ou ou . ou
Similarly 6_¢ =5 pcosocost + 8_y pcos¢sinf — % psin ¢, and
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0u Pu 5 o, . Pu 5 .
@—2wp cos” ¢ sin 0 (:05(9—28 EP p~sin ¢ cos ¢ cos b
-2 i 2sin ¢ cos ¢ 81n0+8 cos? ¢ cos? 9—1—8 cos® ¢ sin® @
oy oz " oz ” oy Erld
Pu 4 . 4 ou . ou . . ou
+@p sin ¢>7%psm¢ cosﬂfa—ypsmgb sm97$pcos¢>
ou ou . . ou . .
An d% —%ps,ln(bsm@—l—a—ypsmcbcos@,whlle
0%u 8%u

2 .. 92 . aZU 2 .. 92 .2
= ¢ cosf sinf + — p”sin” ¢ sin” 0

W__2 8y8mp st ox
2
—l—a—p sin? ¢ cos? 9—8—psm¢ cos@—a—psmgb sin

Oy? Ox oy
Therefore
Qu 20u cotgdu 10w, 1 _0Du
> pdp  p? 0p  p29d> | p?sin® ¢ 96>
Pu 2 2 2 2 . 2
=37 [(sin® ¢ cos® 0) + (cos® ¢ cos? 0) + sin® ]
x
+ Pu [(sin® ¢ sin® 0) + (cos” ¢ sin® 0) + cos® 0] + Pu [cos® ¢ + sin® ]
oy? 922
n @ 25in? ¢ cos @ + cos® ¢ cos — sin® ¢ cosf — cos b
Ox psin ¢
% 2sin? ¢ sin @ + cos? ¢ sinf — sin® ¢ sin — sin @
Oy psin ¢

But 2sin? ¢ cos 0 4 cos® ¢ cos § — sin® pcos @ — cos @ = (sin® ¢ + cos® ¢ — 1) cos @ = 0 and similarly the coefficient of
Ou/0y is 0. Also sin” ¢ cos® 0 + cos® ¢ cos® 0 + sin”® 6 = cos” 0 (sin® ¢ 4 cos® @) + sin® = 1, and similarly the

coefficient of 9?u/0y? is 1. So Laplace’s Equation in spherical coordinates is as stated.

" 5[0 5 f@) dtdzdy = [ff, f(t)dV, where
E={(tzy)]|0<t<20<2<y,0<y <z}
If we let D be the projection of E on the yt-plane then

D={(y,t)|0<t<uzt<y<z} Andwe see from the diagram

that E = {(t,2,y) |t <z <yt <y<z,0<t<z} So
Jo Io' Js f@®)dtdzdy= [ [T [ F(t) dzdydt = [ [[;(y (t) dy] dt
= e (G0 =) )]V 5 de =[5 [3a® — tw — 362 + 1% f(t) dt
= [T [sa® —to+ 2] f(t)dt = [ (5a° — 2tw + 1) f(t) dt

=3 [T =0 F(1) e
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13. The volume is V = [[[ r dV where R is the solid region given. From Exercise 15.10.21(a), the transformation z = au,

y = bv, z = cw maps the unit ball u? + v? + w? < 1 to the solid ellipsoid w
trtw=1
2 2 ¥
. 0(z,y, .
— + y_ + zZ < 1 with M = abc. The same transformation maps the n=r=w
a?  b% 2 A(u, v, w)

y

plane u +v +w = 1to z + 3 + Z- 1. Thus the region R in xyz-space
a c

corresponds to the region S' in uvw-space consisting of the smaller piece of the
unit ball cut off by the plane u + v 4+ w = 1, a “cap of a sphere” (see the figure).
We will need to compute the volume of S, but first consider the general case

where a horizontal plane slices the upper portion of a sphere of radius 7 to produce W \

a cap of height h. We use spherical coordinates. From the figure, a line through the
origin at angle ¢ from the z-axis intersects the plane when cos ¢ = (r — h)/a =
a = (r — h)/ cos ¢, and the line passes through the outer rim of the cap when

a=r = cos¢=(r—h)/r = ¢=cos *((r—h)/r). Thus the cap

TN
:
\\J?
|

is described by {(p,0,9) | (r —h)/cos¢d < p <7,0<60 <2m,0< ¢ <cos™' ((r—h)/r)} and its volume is
x peosTL((r— L4 T .
V= [ [y T s PPN G dpde do

_ 27 “H((r=h)/7)
—Jo f(;:os e [ P Sln(ﬂp (r—h)/cos ¢ d¢d0

= /277/ e {r sin ¢ — ( hy? smd)} d¢ do
3 ¢

2 d=cos™ 1 ((r—h)/r)
=1/ [-r®cos¢— 1(r — h)®cos™? cﬂq& SOS do

_ %/02“ {_ﬁ (r;h) B %(r—h)B (¥>_2+T3 +%(rh)3:| do

27
=3 [J7(Ern® — 30®) d6 = 3 (&rh® — 3h°)(27) = wh?(r — 3h)

(This volume can also be computed by treating the cap as a solid of revolution and using the single variable disk method;

see Exercise 5.2.49 [ET 6.2.49].)

To determine the height h of the cap cut from the unit ball by the plane A line u=v=w
u + v + w = 1, note that the line u = v = w passes through the origin with P o
direction vector (1,1, 1) which is perpendicular to the plane. Therefore this line \\ (? e ﬁ)
coincides with a radius of the sphere that passes through the center of the cap and \ )Q% % %)
h is measured along this line. The line intersects the plane at (3, 1, ) and the plane i+ v+ w =1

sphere at (%, %, %) (See the figure.)
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2
The distance between these points is b = 4/ 3 (% - %) =3 (% - %) =1- % Thus the volume of R is

xy,
O(u, v, w)

= abc - wh*(r — 1h) :abc-ﬂ(l— %) [1— s (1— ﬁ)}

= abem (% — %) (% + 3—\1/§) = abem (% — 7) ~ 0.482abc

dV

dV = abe // dV = abcV(S)

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.






16 [1 VECTOR CALCULUS

16.1

Vector Fields

1. F(z,y) =03i—04}j

All vectors in this field are identical, with length 0.5 and

parallel to (3, —4).

3. F(z,y) =—3i+(y—2)j

The length of the vector —3 i + (y — ) j is

horizontal with length 3.

1+ (y — )2, Vectors along the line y = x are

yi+zxj

 F(z,y) = 22
(z,y) e

The length of the vector

All vectors in this field are parallel to the z-axis and have

: F(xasz) = k
length 1.
. F(z,y,2) =zk

At each point (z,y, z), F(z,y, z) is a vector of length |z|.
For z > 0, all point in the direction of the positive z-axis,
while for < 0, all are in the direction of the negative

z-axis. In each plane x = k, all the vectors are identical.

© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.

yi+zj

1

is 1.

e
/ .
P
AN

_,
~
N\

\
llll"\

) L
s

303



304 0 CHAPTER16 VECTOR CALCULUS

1. F(z,y) = (x, —y) corresponds to graph IV. In the first quadrant all the vectors have positive z-components and negative
y-components, in the second quadrant all vectors have negative x- and y-components, in the third quadrant all vectors have
negative z-components and positive y-components, and in the fourth quadrant all vectors have positive z- and y-components.

In addition, the vectors get shorter as we approach the origin.

13. F(z,y) = (y,y + 2) corresponds to graph I. As in Exercise 12, all vectors in quadrants I and II have positive z-components
while all vectors in quadrants III and IV have negative z-components.Vectors along the line y = —2 are horizontal, and the

vectors are independent of x (vectors along horizontal lines are identical).
15. F(z,y,2) =i+ 2j + 3k corresponds to graph IV, since all vectors have identical length and direction.

17. F(z,y,2) = i+ yj + 3k corresponds to graph III; the projection of each vector onto the zy-plane is = i + y j, which points

away from the origin, and the vectors point generally upward because their z-components are all 3.

19. 45
(} 1’ :‘ X o :\ The vector field seems to have very short vectors near the line y = 2z.
} : : : j For F(z,y) = (0,0) we must have y*> — 2zy = 0 and 3zy — 62> = 0.
—45 i : : i 4.5 The first equation holds if y = 0 or y = 2z, and the second holds if
f o o : t z = 0 ory = 2z. So both equations hold [and thus F(z,y) = 0] along
i 0 . DR YR .
U NENEN i} the line y = 2z.
—45

2. f(z,y) =ze™ =
VI (r9) = fo@ )i+ fy (5,9) 3 = (@6 -y + V)i + (e - 2)j = (ay + De™ i + 26 ]

y . z

x
= i+ + k
/:C2+y2+22 \/x2+y2+22J \/m2+y2+z2

8. Vf(z,y,2) = fulz,y,2) i+ fy(z,y,2) ] + fo(2,y,2) k

=

5. f(x,y)=a"—y = Vf(x,y)=2zi-].

The length of V f(z, y) is v422 + 1. When x # 0, the vectors point away

!
7

|
=)
|

i
/) 7/

from the y-axis in a slightly downward direction with length that increases

(=1
X;\
=

as the distance from the y-axis increases.

~

27. We graph V f(z,y) =

2z it 4y j along with
1+ 22 + 2y 1+x2+2y2'] &

Y
o\ -
>

a contour map of f.

The graph shows that the gradient vectors are perpendicular to the —4

level curves. Also, the gradient vectors point in the direction in

which f is increasing and are longer where the level curves are closer

<
<

|
IS

together.
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29. f(x,y) =2 +3*> = Vf(z,y) = 2xi+ 2yj. Thus, each vector V f(z,y) has the same direction and twice the length of
the position vector of the point (, y), so the vectors all point directly away from the origin and their lengths increase as we

move away from the origin. Hence, V f is graph III.

M. f(z,y) = (x+y)® = Vf(z,y)=2(x+y)i+2(z+y)j The z-and y-components of each vector are equal, so all
vectors are parallel to the line y = x. The vectors are 0 along the line y = —x and their length increases as the distance from

this line increases. Thus, V f is graph IL.

33. Att = 3 the particle is at (2, 1) so its velocity is V(2,1) = (4, 3). After 0.01 units of time, the particle’s change in
location should be approximately 0.01 V(2,1) = 0.01 (4, 3) = (0.04, 0.03), so the particle should be approximately at the
point (2.04,1.03).

35. (a) We sketch the vector field F(z, y) = i — y j along with
several approximate flow lines. The flow lines appear to

be hyperbolas with shape similar to the graph of

y = £1/x, so we might guess that the flow lines have

equations y = C'/x.

(b) If z = 2(t) and y = y(t) are parametric equations of a flow line, then the velocity vector of the flow line at the
point (z,y) is ' (t) i + v’ (¢) j. Since the velocity vectors coincide with the vectors in the vector field, we have
dWi+yt)j=zi—yj = dz/dt ==z, dy/dt = —y. To solve these differential equations, we know
de/dt =2 = dr/r=dt = Ihl|z|=t+C = x=+e' "9 = Ae' for some constant A, and
dy/dt = —y = dy/y=—dt = Inly|=—-t+K = y==2e *T5 = Be™" for some constant B. Therefore
xy = Ae'Be™" = AB = constant. If the flow line passes through (1,1) then (1) (1) = constant =1 = zy=1 =
y=1/z,z > 0.

16.2 Line Integrals

1.z=1t3 andy =1¢,0 <t < 2,s0by Formula 3

2 2 2 2 2
/y3ds=/ t? (@> + (d—y) dt:/ tS\/(3t2)2+(1)2dt:/ 2 \/9t4 + 1dt
o 0 dt dt 0 0

2
— 1

= 553 (0 + 1)) = (145" — 1) or & (145 V145 — 1)

3. Parametric equations for C' are x = 4 cost, y = 4sint, 7% <t< % Then

Jozy'ds= f:{% (4cost)(4sint)*y/(—4sint)? + (4cost)2 dt = f:{% 4° cost sin* t 1/16(sin? t + cos2 t) dt

=47 [7/7, (sin* tcos t) (4) dt = (4)°[Lsin®¢] 72 = 24 = 1638.4
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5. If we choose x as the parameter, parametric equations for C are x =z, y = Vzforl <z <4and

Jo (;t2y3—\/5)dy=f14 [352(\/5)3 \/_]2\/— —2f1 (¢ —1) do

[t -]l = (e ) =2

y —
1. o C=C+0Cy
G G, OnCl:xzm,yZ%x = dy:%dm, 0<z <2
0‘ (3,00 x OnCy: z=z,y=3—2 = dy=—dz, 2<z<3.
Then

fc(:c+2y)dx+x2dy:fcl(x+2y)dm+x2dy+fcg(x+2y)dm+x2dy
+a? (3)]de + [y [2 4203 - 2) + 2% (-1)] do

) ]
= 02 (2x+%x)dx+f23 (G—x—x) T
+

9. x =2sint, y=t, z= —2cost, 0 <t <. Thenby Formula9,

fc zyzds = fow(2sint)(t)(f2 cost)\/(‘fi—f)2 + (%)2 + (%)Z dt

= [J —Atsint cost/(2cost)® + (1)2 + (2sint)2dt = [ —2tsin 2t \/4(cos? ¢ + sin® t) + 1 dt

integrate by parts with

=25 [ tsin2tdt = —2/5 [~4tcos 2t + §sin2t]] {“:t o = sin 92t di

e SURE
11. Parametric equations for C'are x = ¢, y = 2t, z = 3t, 0 <t < 1. Then

1
Jowe?*ds = fol tePVBY 12 1221324t = /14 fol te8 dt = /14 [1—1266t2]0 = g(e6 —1).

1
13. [, zye?* dy = fol(t)(tQ)e(t2)(t3) <2t dt = f otte!” dt = 3e! ]0 =2 - =2(e-1)

15. Parametric equations for Carex =1+ 3t, y=1t, z=2t, 0 <t < 1. Then
[o Pde+a?dy+y?dz= [} (2t)? - 3dt+ (1+3t)2dt +t*-2dt = [ (23> + 6t + 1) dt
=[ZBP 43+, =L +3+1=3

17. (a) Along the line z = —3, the vectors of F' have positive y-components, so since the path goes upward, the integrand F' - T is

always positive. Therefore |, o, Fdr= /. ¢, F - Tds is positive.
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(b) All of the (nonzero) field vectors along the circle with radius 3 are pointed in the clockwise direction, that is, opposite the

direction to the path. So F - T is negative, and therefore |, Oy F.dr= [ Os F - T ds is negative.

19. v(t) = 11t*i + 13§, s0 F(r(t)) = (11¢4)(t3) i+ 3(t*)% j = 11¢7 i + 3t° j and v/ (¢) = 4443 i + 3t% j. Then

[ Fodr= [ F(x(t)) r'(t)dt = [; (1167 - 44> + 35 - 3t2) dt = [} (484¢1° + 9t%) dt = [44t"" +1°] = 45.

A [ F-dr = fol (sint®, cos(—t?),t*) - (3¢, —2t,1) dt

= [ (3t*sint® — 2t cost® +t*) dt = [~ cost® — sint? + %tﬂé =% —cosl—sinl

23. F(r(t)) = (et)(e_tz) i+ sin (e_t2>j =t iy sin(e‘tQ) hrt)=e'i- 2te_t2j. Then

[rar= [Tre@yvwa= [ () (o)
= /2 [th*tZ — 2teit sm( )} dt ~ 1.9633

25. x =2, y =13, z=1t*sobyFormula9,

Jowsin(y +z)ds =[5 (%) sin(t® + 1) /(20)2 + (3t2)2 + (4t3)2 dt
= [7¢*sin(t> + t*) VA2 + 9tF + 16t0 dt ~ 15.0074

27. We graph F(z,y) = (z — y) i + xy j and the curve C. We see that most of the vectors starting on C' point in roughly the same
direction as C, so for these portions of C' the tangential component F - T is positive. Although some vectors in the third
quadrant which start on C' point in roughly the opposite direction, and hence give negative tangential components, it seems
reasonable that the effect of these portions of C' is outweighed by the positive tangential components. Thus, we would expect
Jo F-dr = [, F.Tds to be positive.

To verify, we evaluate fc F - dr. The curve C' can be represented by r(t) = 2costi+ 2sintj, 0<t < 37”,
so F(r(t)) = (2cost — 2sint)i+ 4costsintjand r’(t) = —2sinti+ 2costj. Then

JoF-dr= [TPF(e(t)) -v'(t) dt

3ﬂ/2

[-2sint(2cost — 2sint) + 2 cost(4 costsint)] dt

= 4f37r/2 sin?t — sint cost + 2sint cos® t) dt

=31+ % [using a CAS]

-

1
2. (@) [ Fdr= [y (7 67)  (20.3%) de = [y (2t 487 )dt = [+ 2] =R —1/e
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33.

35.
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(b) r(0) = 0, F(r(0)) = (e~",0);
(%) = (5:72) F(:(%))

r(1) = (1,1), F(r(1)) = (1,1).

In order to generate the graph with Maple, we use the 1ine command in

-1/2 _1_\.
<e ’4 2>7

the plottools package to define each of the vectors. For example,

v1l:=line([0,0], [exp(-1),0]):

generates the vector from the vector field at the point (0, 0) (but without an arrowhead) and gives it the name v1. To show
everything on the same screen, we use the display command. In Mathematica, we use ListPlot (with the

PlotJoined - > True option) to generate the vectors, and then Show to show everything on the same screen.

x=etcosdt, y=e'sindt, z=e", 0<t< 2.

dx

Then T e '(—sin4t)(4) — e ' cosdt = —e ' (4sin4dt + cos4t),
dy —t —t . —t . dz —t
gk (cos4t)(4) — e 'sindt = —e™*(—4 cos4t + sin4t), and 7

dz\? dy 2 dz\? — - -

— ) +(=) + (=) =+(—e")2[(4sindt + cos4t)2 + (—4 cos 4t + sin 4t)2 + 1]

dt dt dt

= e " \/16(sin? 4t + cos? 4t) + sin® 4t + cos2 4t + 1 = 3v/2¢e” "

Therefore Jo2?yPzds = fozn (e tcosdt)® (e tsindt)?(e™!) (3v2e7Y) dt

27 -7t 3 202 172,704 —14w
= [;73v2e " cos® dtsin® 4t dt = sasarosV2(l—e )

We use the parametrization x = 2cost, y = 2sint, —3 <t < 7. Then

ds = (Z—f)z + (%})th = /(—2sint)? + (2cost)?dt = 2dt,som = [, kds =2k f:{% dt = 2k(r),

— o /2 _ . /2 —_— o /2 . o
T =57 [ozkds = 5= f_ﬂ/Q(Zcost)th = %[4smt]_ﬂ/2 =2.7=5 [oykds = %f_ﬂ/Q(Zsmt)th =0.

1 1 1
[ ds .7 = — ds. 7 = — d h = ds.
@ /Cfﬂp(%y,Z) 5,7y /Cyp(fﬂvy,Z) 5,2 /CZP(vay,Z) s where m = [, p(z,y,z) ds

b)m = [ kds =k [;"\/Asin®t + dcos?t + 9 dt = k13 [} dt = 21k /13,

1 27 1 2
T=— 2k\/13sintdt:0,_:7/ 2k /13 costdt = 0,
27k /13 /0 Y 27k /13 Jo
yo 1 /QW (k \/13)(375) dt = i(27{") = 3. Hence (Z,7,%) = (0,0, 3).
2wk vV 13 0 2
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37. From Example 3, p(z,y) = k(1 —y), = =cost, y=sint,andds =dt, 0 <t <7 =
L= [ y’p(z,y)ds = [ sin® t [k(1 —sint)|dt = k [ (sin®t — sin® t) dt

Letu = cost,du = —sintdt
in the second integral

=3k [ (1 —cos2t)dt — k [ (1 — cos® t)sint dt
=k[F+ 70wt du] = k(3 - 3)
Iy= [, 2®p(x,y)ds =k [ cos® t (1 —sint)dt = & ["(1 4 cos2t)dt — k [ cos® tsint dt
= k(% — 2), using the same substitution as above.
9. W= [ F-dr= 0% (t —sint,3 — cost) - (1 — cost,sint) dt
= O%(t —tcost —sint +sintcost + 3sint — sint cost) dt
= OQW(t —tcost +2sint) dt = [5t° — (tsint + cost) — 2cost] (z)ﬂ Lﬁlzir:z:gdp;ﬁ]
= 272
M.r(t)=(2t,t,1—-1t), 0<t <1
W= [,F-dr=[ (2t—t*t—(1—-t)%1—t—(2t)%) (2,1, -1)dt

= @t —2 Ft—1 42— — 1+t + 4t dt = [} (12 +8t —2)dt =[5> + 4> —2t] ) =]

43. @rlt)=a?i+bt’] = v(t)=r'(t)=2ati+3bt>] = a(t) =v/'(t) = 2ai+ 6btj, and force is mass times
acceleration: F(t) = ma(t) = 2mai+ 6mbt j.
(b) W = [, F-dr = [)(2mai+ 6mbtj)- (2ati+ 3bt*j)dt = [ (4ma’t + 18mb*¢*) dt
= [2ma2t2 + gmbztﬂé =2ma® + %mb2
45. Let F = 185 k. To parametrize the staircase, let x = 20 cost, y = 20sint, z = g—gt = %t, 0<t<obmr =
W= [ F-dr=['"(0,0,185) - (—20sint,20cost, 12) dt = (185)L> [°7 dt = (185)(90) ~ 1.67 x 10" fi-Ib
47. (a) r(t) = {cost,sint), 0 <t < 2x,andlet F ={(a,b). Then
W=[,F-dr= o% (a,b) - (—sint,cost) dt = fO%(—asint +bceost)dt = [acost + bsint]?)7r
=a+0—-a+0=0
(b) Yes. F (z,y) = kx = (kz, ky) and
W=[,F-dr= 0% (kcost, ksint) - (—sint, cost) dt = O%(—ksint cost + ksint cost)dt = 02” 0dt =0.
49. Letr(t) = (z(t), y(t), z(t)) and v = (v1,v2,v3). Then
Jovedr = [7(v1,v2,08) - (2'(£),4/ (£), 2/ (1)) dt = [ [or 2/ (t) + v2 ¢/ (£) + vs 2/ ()] dt
= [v1a(t) + v2 y(t) +vs ()], = [v1 2(b) + v2y(b) + v3 2(b)] — [v1 2(a) + v2 y(a) + vs 2(a)]
= o1 [z(b) — z(a)] + v2 [y(b) — y(a)] + v3 [2(b) — 2(a)]
= (v1,v2,v3) - (2(b) — 2(a), y(b) — y(a), 2(b) — 2(a))

= (v1,02,03) - [(2(b), y(b), 2(b)) — (x(a), y(a), 2(a))] = v - [r(b) — r(a)]
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The work done in moving the object is |, cF-dr= J o F - T'ds. We can approximate this integral by dividing C' into
7 segments of equal length As = 2 and approximating F' - T, that is, the tangential component of force, at a point (z;,y; ) on
each segment. Since C' is composed of straight line segments, F - T is the scalar projection of each force vector onto C'.

If we choose (z7,y;) to be the point on the segment closest to the origin, then the work done is

7
JoF-Tds~ Y [F(z},y]) - T(x7,y)] As = [24+2+ 2+ 2+ 14 1 + 1](2) = 22. Thus, we estimate the work done to

i=1

be approximately 22 J.

16.3 The Fundamental Theorem for Line Integrals

1.

1.

C appears to be a smooth curve, and since V f is continuous, we know f is differentiable. Then Theorem 2 says that the value
of [, o V[ - dr is simply the difference of the values of f at the terminal and initial points of C'. From the graph, this is

50 — 10 = 40.

. 9(2x — 3y) /0y = —3 = O(—3x + 4y — 8) /I and the domain of F is R? which is open and simply-connected, so by

Theorem 6 F is conservative. Thus, there exists a function f such that V f = F, that is, f.(x,y) = 2z — 3y and
fy(z,y) = =3z + 4y — 8. But f..(z,y) = 2z — 3y implies f(x,y) = x? — 3zy + g(y) and differentiating both sides of this
equation with respect to y gives fy,(x,y) = —3z + ¢'(y). Thus =3z + 4y — 8 = —3x + ¢'(y) so ¢’ (y) = 4y — 8 and

g(y) = 2y* — 8y + K where K is a constant. Hence f(x,y) = x® — 3zy + 2y*> — 8y + K is a potential function for F.

. 0(e” cosy)/Jy = —e” siny, d(e” siny)/Jz = e” siny. Since these are not equal, F is not conservative.

. O(ye” +siny) /0y = €® + cosy = I(e” + x cosy)/Oz and the domain of F is R2. Hence F is conservative so there

exists a function f such that Vf = F. Then f,(z,y) = ye® + siny implies f(z,y) = ye® + x siny + g(y) and
fu(z,y) = €* +xcosy + g'(y). But fy(z,y) = e® +xcosysog(y) = K and f(z,y) = ye* + xsiny + K is a potential

function for F.

. O(Iny + 2xy?) /0y = 1/y + 62y® = 0(32%y* + z/y)/Ox and the domain of F is {(z,y) | y > 0} which is open and simply

connected. Hence F is conservative so there exists a function f such that Vf = F. Then f.(x,y) = Iny + 2xy> implies
fz,y) = xlny +2®y® + g(y) and fy(z,y) = a/y + 32°y* + ¢'(y). But fy(z,y) = 32°y* + z/ysog'(y) =0 =

g(y) = K and f(x,y) = zIny + 2%y® + K is a potential function for F.

(a) F has continuous first-order partial derivatives and 8ﬁ 2y =22 = i () on R?, which is open and simply-connected.
Y

ox

Thus, F is conservative by Theorem 6. Then we know that the line integral of F is independent of path; in particular, the
value of [ ¢ F - dr depends only on the endpoints of C. Since all three curves have the same initial and terminal points,

f c F - dr will have the same value for each curve.
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(b) We first find a potential function f, so that Vf = F. We know f.(x,y) = 2xy and f,(x,y) = =*. Integrating
fa(,y) with respect to x, we have f(z,y) = x®y + g(y). Differentiating both sides with respect to y gives
fu(®,y) = 22 + ¢'(y), so we must have 2° + ¢'(y) = 2> = ¢'(y) =0 = g(y) = K, aconstant.
Thus f(z,y) = 2%y + K. All three curves start at (1,2) and end at (3, 2), so by Theorem 2,

Jo F-dr= f(3,2) — f(1,2) = 18 — 2 = 16 for each curve.

(@) fz(z,y) = zy” implies f(x,y) = 32%y> + g(y) and f,(z,y) = 2>y + ¢'(y). But fy(z,y) = 2’ysog'(y) =0 =

g(y) = K, a constant. We can take K = 0, so f(z,y) = 22%y°.

(b) The initial point of C'is r(0) = (0, 1) and the terminal point is r(1) = (2, 1), so
[, F-dr=f(2,1)— f(0,1)=2-0=2.

(a) f$(x,y7 Z) =Yz 1mp11es f(x,?% Z) = TYz + g(y7 Z) and so fy<$ﬂ Y, Z) =xz+ g’!!(y, Z) But fy(ﬂ?,y, Z) = Tz 80
9w(y,2) =0 = g(y,2) = h(2). Thus f(z,y,2) = xyz + h(2) and fz(z,y,2) = zy + I'(2). But
Fe(m,y,2) =y + 22,50 W' (2) =22 = h(z) = 2* + K. Hence f(x,y, 2) = zyz + 2° (taking K = 0).

(®) [, F-dr = f(4,6,3) — f(1,0,—2) =81 —4 = 77.

@) fo(z,y,2) = yze™ implies f(z,y, z) = ye™ + g(y, z) and so fy(z,y,z) = €** + gy(y, z). But fy(x,y,z) = " so
9y(y,2) =0 = g(y,2) = h(2). Thus f(z,y,2) = ye™ + h(z) and f.(z,y, 2) = zye™ + h'(z). But
folz,y,2) = zye®*,s0 W' (2) =0 = h(z) = K. Hence f(z,y, z) = ye** (taking K = 0).

(b) r(0) = (1,—1,0),r(2) = (5,3,0) so [, F-dr = f(5,3,0) — f(1,—1,0) = 3e° + ¢’ = 4.
The functions 2ze™¥ and 2y — z2e Y have continuous first-order derivatives on R? and

9 (Zwe’y) = 2ze Y = (% (2y — xZe’y), so F(z,y) =2ze ™ Vi+ (2y — xQe’y)j is a conservative vector field by

dy

Theorem 6 and hence the line integral is independent of path. Thus a potential function f exists, and fo(x,y) = 2ze™Y
implies f(z,y) = z%e™¥ + g(y) and f,(x,y) = —x?e™Y + ¢'(y). But fy(x,y) = 2y — z?e™¥ so

dW) =2y = g(y) =y*+ K. Wecantake K = 0, s0 f(z,y) = 2°¢"¥ 4 ¢>. Then

Jo 2ze ™V da + 2y —a’e V) dy = f(2,1) — f(1,0) =4e” " +1—1=4/e.

If F is conservative, then [, ¢ F - dr is independent of path. This means that the work done along all piecewise-smooth curves

that have the described initial and terminal points is the same. Your reply: It doesn’t matter which curve is chosen.

F(z,y) = 2y%%i+32\/yj, W = Jo F - dr. Since d(2y/?) /0y = 3 VI =03z \V/y )/, there exists a function f
such that Vf = F. In fact, fo(z,y) = 202 = f(z,y) =222 +g9(y) = f,(z,y) =3zyY?+ ¢ (y). But
fy(x,y) =3z /ysog'(y) =0o0rg(y) = K. Wecantake K =0 = f(z,y) = 224%/2. Thus

W = fCF-dr = f(2,4) — f(1,1) = 2(2)(8) — 2(1) = 30.
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25. We know that if the vector field (call it F) is conservative, then around any closed path C, . o F - dr = 0. But take C' to be a

circle centered at the origin, oriented counterclockwise. All of the field vectors that start on C' are roughly in the direction of

motion along C, so the integral around C will be positive. Therefore the field is not conservative.

2 . . . .
27. T T T T From the graph, it appears that F is conservative, since around all closed

PR NN [N T U S |

} } AR N paths, the number and size of the field vectors pointing in directions similar
tt ot vy b

; : S A : r T T to that of the path seem to be roughly the same as the number and size of the
Vo At

-2 2 e . . . .
Ff NN N ! ‘ T 7 vectors pointing in the opposite direction. To check, we calculate

IBREEE e P

rrree s — (siny) = cosy = =— (1 + x cosy). Thus F is conservative, by

NI O y ox

TR 1ttty

—27 Theorem 6.

29. Since F is conservative, there exists a function f such that F = V f, thatis, P = f,, Q = f, ,and R = f.. Since P,
@, and R have continuous first order partial derivatives, Clairaut’s Theorem says that 0P/0y = fzy = fyz = 0Q/0x,
OP/0z = fz. = foo = OR/0x,and 0Q/0z = fy» = f.y = OR/Dy.

31. D ={(z,y) | 0 < y < 3} consists of those points between, but not J
on, the horizontal lines y = 0 and y = 3. 3
(a) Since D does not include any of its boundary points, it is open. More
formally, at any point in D there is a disk centered at that point that

lies entirelyin D.  mmmmmmeeeeeosheeoeooooe -

(b) Any two points chosen in D can always be joined by a path that lies
entirely in D, so D is connected. (D consists of just one “piece.”)

(c¢) D is connected and it has no holes, so it’s simply-connected. (Every simple closed curve in D encloses only points that are
inD.)

33. D = {(z,y) | 1 <2” +y* <4, y > 0} is the semiannular region ’
in the upper half-plane between circles centered at the origin of radii
1 and 2 (including all boundary points).
(a) D includes boundary points, so it is not open. [Note that at any / -\

-2 -1 0 1 2 x

boundary point, (1, 0) for instance, any disk centered there cannot lie
entirely in D.]
(b) The region consists of one piece, so it’s connected.

(c) D is connected and has no holes, so it’s simply-connected.

y oP y? — 22 T 0Q y? — 2? 8_P_8_Q

35. P=—-—Y— —=—"———adQ=——, < = . Th = .
(@) P By @ 1) and Q) Py 0 (2 1) e

(b) C1: z =cost,y =sint,0 <t <7, Cy: x =cost,y =sint, t = 27w tot = 7. Then

/ F~dr:/ (e Bo ) s e ) dt:/ dt:mnd/ F~dr:/ dt = —r
c 0 cos“ ¢ +sin“t 0 Cs 2

™
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Since these aren’t equal, the line integral of F isn’t independent of path. (Or notice that [, Os F.dr= 027r dt = 27 where

Cj is the circle 2 4 2 = 1, and apply the contrapositive of Theorem 3.) This doesn’t contradict Theorem 6, since the

domain of F', which is R? except the origin, isn’t simply-connected.

16.4 Green's Theorem

1. (a) Parametric equations for C' are ¢ = 2cost, y = 2sint, 0 <t < 27 Then

$o(z—y)de+ (x+y)dy = [Z7[(2cost — 2sint)(—2sint) + (2cost + 2sint)(2cost)] dt
= 02” (4sin®t 4 4 cos? t) dt = 02” 4dt = 4t] 3“ =8
(b) Note that C' as given in part (a) is a positively oriented, smooth, simple closed curve. Then by Green’s Theorem,
$ol@—y)do+ @ +y)dy= [, [& @+y)— & @—y]dAd= [[,[1 - (-1)]dA =2 [[, dA
=2A(D) = 27(2)* = 8r

3. (a) y w2 Ciix=t = de=dt, y=0 = dy=0dt, 0<t<1.

Coyz=1 = de=0dt, y=t = dy=dt, 0<t<2.

C, Cs:x=1—-t = de=—-dt, y=2—-2t = dy=-2dt, 0<t <1

G
D
of ¢ wo ¥
Thus b wy da + 2y dy = $ zy dx + 2*y® dy

C1+C2+C3
= [10dt+ [Z3dt+ [ [-(1—t)(2—2t) —2(1 —)*(2 - 2t)*] dt

=0+ [§#1)o+ B0 -0"+30 -0 =4 =3
(b)fca:ydx—l—a: dy—ffD [az acy)——(;z’y)]dA fo *(2xy® — 2) dy dx

= Jy [bay* —ay] ') do = [} (82° —22%)dw =4 — 2 = 2

5. y The region D enclosed by C'is given by {(z,y) | 0 < z < 2,2 <y < 2z}, so
4 (2,4)
fcavy dm+2mydy—ffD[ 2$y)——(a:y )}dA
y=2x ¢ = fo fw (4zy — 2zy) dy dx
b 2,2) = f02 [myQ]zzim dx
= [232% do = 22%]) =12
y=x = Jp 3% do = 32 =
0 > g

T. fc(y—i—e )dx+(2x+cosy dy—ffD[aw (22 + cos y?) — (y+e )]dA

= [ [P @-Ddedy = [} (" —y*)dy =}
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9. [y’ de—a®dy = [[, [%(—xﬂ }dA [f, (=32 = 3y%) Azf fo ) rdrdo
= -3 [27do [Zr3dr = —3(2m)(4) = —24n
M. F(z,y) = (ycosz — xysinx, zy + x cos ) and the region D enclosed by C is given by
{(z,y) | 0 <z <2,0<y<4—2z}. Cistraversed clockwise, so —C gives the positive orientation.
JoF-dr=—[  (ycosx —wysinz)dr+ (zy +xcosz)dy = — [[, [ (xy + wcosz) — = (ycos;r - xysmx)} dA
=—[[,(y —xsinz + cosz — cosx + xsinz) dA = —fo 4720 dy d
=42z 2
:7f02[%y2]z:0 dr = — 02 1(4—22)d ffo (8 — 8z + 2% dx = — [8x74x2+§m3]0

—(16—-16+1 —0)=-%

13. F(z,y) = (y — cosy, zsiny) and the region D enclosed by C is the disk with radius 2 centered at (3, —4).
C'is traversed clockwise, so —C' gives the positive orientation.
JoF-dr=—[ _(y—cosy)dz+ (zsiny)dy = — [[, [% (zsiny) — a% (y — cosy)} dA

=— [[,(siny —1—siny)dA = [[, dA =areaof D = n(2)* = 4r

15. Here C = C1 + C5 where Y
C can be parametrizedasx =t, y=1, —1 <t <1, and C,
C5 is given by x = —t, y=2—-1t%, —1<t<1. D
Then the line integral is LD G (L1

$ yPe"dr+ 2e? dy=f71 [1~et+t26-0} dt
C14+Co t +
+ 112 = 3)2%e 7 (1) + (—t)%e* " (—21)] dt -1 0 1w

= [Nt = (2= 2)%e — 263> ] dt = —8e 4 48¢ ™!

according to a CAS. The double integral is

1 2—x
// (% — _y) dA = / / (2ze? — 2ye”) dy dz = —8e + 48¢ ™, verifying Green’s Theorem in this case.
-1

17. By Green’s Theorem, W = [, F - dr = [, x(z + y) dz + zy* dy = [[,,(y* — 2) dA where C'is the path described in the

question and D is the triangle bounded by C. So
W = fo “(y —x)dydx—fo [ —;ty]z o d;t—fo (% 1—1’) (l—x))dw
SO0 g 1) = () - () =%
19. Let C1 be the arch of the cycloid from (0, 0) to (27, 0), which corresponds to 0 < ¢ < 2, and let C> be the segment from

(27,0) to (0,0), so Cz is given by x = 2w — ¢,y = 0,0 < t < 27r. Then C' = C; U (4 is traversed clockwise, so —C' is

oriented positively. Thus —C' encloses the area under one arch of the cycloid and from (5) we have
A=—§¢ o yde= [, ydo+ [, ydo= J27(1 — cost)(1 — cost) dt + [T 0 (—dt)

= 71— 2cost +cos?t)dt +0 = [t —2sint + 1t + isin?t]?)7T =3
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21. (a) Using Equation 16.2.8, we write parametric equations of the line segment as x = (1 — t)z1 + tz2, y = (1 — )y1 + tyo,
0<t<1 Thendz = (z2 — x1)dt and dy = (y2 — y1) dt, so
Jowdy —ydz= [ [(1— )z + twa](y2 — y1) dt + [(1 — t)y1 + tyo] (22 — x1) dt
= [ (@1(y2 — 1) — ya(2 — x1) + t{(y2 — y1)(z2 — 21) — (22 — 21)(y2 — v1)]) dlt
= fol (x1y2 — @21 ) dt = T1Y2 — T2
(b) We apply Green’s Theorem to the path C' = C; U C2 U - - - U Cy,, where C; is the line segment that joins (z;, y:) to
(it1,yi+1) fori =1,2,...,n — 1, and C,, is the line segment that joins (zn, y») to (21, y1). From (5),
3 Joxdy —ydx = [f,, dA, where D is the polygon bounded by C'. Therefore
area of polygon = A(D) = [, dA =3 [, zdy —ydx
= %(fcl rdy —ydx + sz rdy —ydr+---+ fcn71 rdy —ydx + an xdy —ydw)
To evaluate these integrals we use the formula from (a) to get
A(D) = 3l(z1y2 — x21) + (22y3 — T3y2) + - + (Tn—1Yn — TuYn—1) + (Tay1 — T1yn)]-
©A=21[01-2-00+(2-3-1-1)+(1-2-0-3)+(0-1—(=1)-2) +(=1-0—0-1)]

=30+5+2+2)=32

23. We orient the quarter-circular region as shown in the figure. Y
1 1 a
12 = 2 - _ 2
A—ZTF(I SOI—W%CJ] dyandy——mjfcy dx. C2
C
HereC =C1 +Cy+Cswhere Ci:z=t, y=0, 0<t<a; } D
C2: x =acost, y=asint, 0 <t < Z;and |
0 C a X

Cs:x=0,y=a—1t0<t < a. Then

$oa” dy = fCl ;r2dy+fc2 z? dy—l—fc3 22 dy = foa()dt+f0”/2(acost)2(acost) dt+ [} 0dt
/2
=Jo

_ 1 5 4a

= — dy = —.

SOT —y j{cx Y=
$oyde= [, y?de+ [,y do+ [y do = [FOdt Jo*(asint)?(~asint)dt + [ 0dt

/2
—Jo

/2
0

3

a®cos® tdt = a® Oﬁ/Q(l —sin’t) costdt = a® [sint — %sin3 t] = %a

3

/2 2
=—3a’,

(—a®sin®t) dt = —a® 7r/2(1 —cos’t)sintdt = —a® |4 cos® t — cos t]o

0

_ 1 2 4a _ 4aq 4a
S0y wa2 /2 ﬁy de 3n e @7) <37r7 371)

25. By Green’s Theorem, —3p¢,y° dz = —3p [[,(=3y*)dA = [[,y°pdA = I, and

%p§0x3 dy = %pffD(?)xQ)dA =[5 2?pdA = 1I,.

27. As in Example 5, let C’ be a counterclockwise-oriented circle with center the origin and radius a, where a is chosen to

be small enough so that C” lies inside C, and D the region bounded by C and C’. Here

p_ 2zy oP  2z(2® +y°)% —2zy-2(2® +4°) -2y 2% — 6y’ d
— 72 v o 2 214 - > o3 an
(22 +y?) y (=% +y?) (22 +y?)
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2 2 2, 242 2 2 2, .2 3 2
oy -z 0Q  —2zx(x®+y°)" —(y° —2%)-2(x*+y°) - 20 22° — 6wy .
Q= (22 + y?)? ox (22 + y2)4 = @2+ Thus, as in the example,

/de+Qdy+ Pda:—l—Qdy:// (@_O_P>dA://0dA:o
c —c’ p \ O dy D

and [, F-dr = [, F-dr. We parametrize C" as r(t) = acosti+ asintj, 0 <t < 27. Then

27 9 (acost) (asint)i+ (a?sin®t — a® cos?t) j
/F~dr:/ F-dr:/ ( ) ) ( 5 )J~(—asinti+acostj)dt
c cr 0 (a2 cos? t + a2 sin? t)

2m 27
:l/ (fcostsinztfcosst) dtzl/ (fcostsin2t7cost(1fsinzt))dt
@ Jo a Jo

27 27
,l/ costdt = flsint} =0
ajo a o

29. Since C is a simple closed path which doesn’t pass through or enclose the origin, there exists an open region that doesn’t
contain the origin but does contain D. Thus P = —y/(2® 4 4®) and Q = x/(2* + y*) have continuous partial derivatives on
this open region containing D and we can apply Green’s Theorem. But by Exercise 16.3.35(a), 9P/0y = 0Q/dz, so
$F-dr= [[,0dA =0.

31. Using the first part of (5), we have that [[,, devdy = A(R) = [, xdy. Butz = g(u,v), and dy = % du + % dv,
u v

and we orient 0SS by taking the positive direction to be that which corresponds, under the mapping, to the positive direction

along OR, so

Oh oh Oh Oh
/(aRxdy—/(asg(u,v)(%du—l—%dv) —/asg(u,v)%du—l—g(u,v)%dv

==+ [fs [£ (9(u,v) 2) — & (g(u,v) Z&)]dA  [using Green’s Theorem in the uv-plane]

=+ [[o (822 + glu,v) b — 2228 — g(u,v) 24 ) dA [using the Chain Rule]

=+ [, (&3 —2224)dA [by the equality of mixed partials] = % [ gEZi; du dv

The sign is chosen to be positive if the orientation that we gave to S corresponds to the usual positive orientation, and it is

negative otherwise. In either case, since A(R) is positive, the sign chosen must be the same as the sign of M

A(u,v)’
Therefore A(R) = //R drdy = //g

16.5 Curl and Divergence

du dv.

O(z, y)
O(u,v)

i j k
1. @culF =V xF=|9/0x 0/0y 0/0z
r+yYz y+xz z2+aY

= %(z—l—:ry) - %(y—&-xz)} i— {%(2 +xy) — %(m—l—yz)] J+ {%(y—i—xz) - (%(x—&—yz) k
0

=(@-2)i-(y-yj+(z-—2k=
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(b)divF:V~F:g(x—l-yz)—i-g(y—&-xz)—&-g(z—&-xy)=1+1+1:3
Ox dy 0z

i j k

@ curlF =V xF=1|9/0x 0/0y 0/0z|=(ze” —0)i— (yze® —aye®)j+ (0 —ze*) k

z

Tye 0 yze

T

= ze" i+ (vye® —yze®)j— ze*k

. 0 o) )
(b)divF =V F = 9z (zye”) + oy (0) + 9 (yze®) = ye* + 0+ ye® = y(e* + €%)
i j k
. (@ curlF=V xF = 9/0x 0/0y 0/0z
x Y z

\/x2+y2+22 \/x2+y2+z2 \/x2+y2+z2

1 . .
S TR [(—yz+yz)i— (-zz+a2)j+ (-ay +2y) k] =0

OdvFev P2 (2 ), 9(__ v \ 9(___ =2
i\ ) T\ ) e\ e

_wz+y2+zz—x2+zz+y2+zz—y2+m2+y2+z2—22 B 2x2—|—2y2+2z2 B 2
= (m2+y2+z2)3/2 ($2+y2+22)3/2 ($2+y2+zz)3/2 - (m2+y2+z2)3/2 - \/m

i j k

@ curlF =VxF=| 9/0x 09/0y 9/0z |=(0—eYcosz)i— (¢“cosz—0)j+ (0—e"cosy)k

e’siny eYsinz e*sinzx

= (—€Y cos z, —e” cos x, —e” cos y)

(b)divF =V -F = % (e"siny) + (%(eysinz)—ﬁ- % (e*sinz) = e’ siny + e¥sinz + e*sinx

. Ifthe vector field is F = Pi+ @ j + Rk, then we know R = 0. In addition, the x-component of each vector of F is 0, so

or _op _ B_P = 8_R = 8_R = OR = 0. @ decreases as y increases, so @ < 0, but @ doesn’t change

P:0,hence%:8—yf e 5 o = o
in the z- or z-directions, SO@ = @ =0
ox 0z
wpo 0P 0@ oR _ . 0@
(a)dIVF_8m+8y+6z_O+8y+0<0
_(OR _0QN,, (0P LORY . (0Q P\, oo
(b)curlF—(ay 8z)l+<6z 8x)J+(8x ay)k—(O 0)i+(0-0)j+(0—-0)k=0

If the vector field is F = Pi+ @Q j + Rk, then we know R = 0. In addition, the y-component of each vector of F is 0, so

_ 90Q_0Q _9Q _OR_OR_OR
@ =0, hence dr ~ Oy 0z Ox 0Oy Oz
the z- or z-directions, so 8_P _or

9r 0z

. . oP .
= 0. P increases as y increases, so — > 0, but P doesn’t change in

dy

(a)divF:g—i+%+%:o+o+o:0
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_(OR _0QN; ., (0P OR\. (0Q 9P\, _ g oiro-0)i+ (0P k= 2P
(b)curlF-(ay 8z)l+<az 817)J+(8m 6y>k_(0 0)i+ (0 0)J+<0 8y>k_ 6yk

. 0P oP, . S . N
Since — > 0, — ——Xk is a vector pointing in the negative z-direction.

oy oy
i j k
3. cwrlF=VxF=19/0z 9/dy 8/0z |= (6zyz® —6ayz?)i— (3y°2% —3y°2?)j+ (2y2® — 2yz*) k=0

22 2wy 3ay?2?

and F is defined on all of R® with component functions which have continuous partial derivatives, so by Theorem 4,
F is conservative. Thus, there exists a function f such that F = V f. Then f.(z,y, z) = y*2* implies
F(@,y,2) = a2 + g(y, 2) and f, (2,9, =) = 205" + g, (y, 2). But £, (w,y, 2) = 20y2*, 50 g(y, ) = h(z) and
f(z,y,2) = zy®2> + h(2). Thus f.(z,y,2) = 3zy®2 + h/(2) but f. (=, y, 2) = 3zy*2? so h(z) = K, a constant.
Hence a potential function for F is f(x,y, z) = zy?2® + K.
i j k
15. curlF =V xF=| 9/0x 9/0y 0/0z
3xy?2? 22%yz® 3x2y?2?
= (6x2y2? — 62%y2?) i — (6ay®2® — 62y°2) j + (doyz® — 6xy2®) k
=62y?2(1 — 2)j + 22yz®(22 —3)k # 0

so F' is not conservative.

i j k
17. curlF =V xF = |9/0x 0/0y 0/0z
eY®  xzeY® xyeY*

= [zyze?* + ze¥* — (zyze¥® + ze??)]|i— (ye¥* — ye¥?)j+ (ze¥* — ze¥*) k=0
F is defined on all of R?, and the partial derivatives of the component functions are continuous, so F' is conservative. Thus
there exists a function f such that V f = F. Then f,(z,y, z) = e¥* implies f(z,y,z) = ze’* + g(y,2) =
fy(xv Y, Z) = l.zeyz + gy(y7 Z) But fy(l', Y, Z) = ‘,Ezeyz’ SO g(y7 Z) = h(Z) and f(xay7 Z) = meyz + h(Z)
Thus f.(z,y, z) = zye¥” + h'(z) but f.(x,y, z) = zye?” so h(z) = K and a potential function for F is

f(@,y,2) = we”” + K.

19. No. Assume there is such a G. Then div(curl G) = % (zsiny) + 6%; (cosy) + % (z —xy) =siny —siny + 1 # 0,

which contradicts Theorem 11.
i j k
2. curlF = |9/0z 8/0y 9/0z| =(0—-0)i+ (0—0)j+ (0—0)k=0.Hence F = f(z)i+ g(y)j+ h(z)k
f(@) gly) h(z)

is irrotational.
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For Exercises 2329, let F(x,y,2) = PLi+ Q1j+ Rikand G(z,y,2) = P2i+ Q2j+ Rz k
OPL+P)  0(Q1+Q2) , O(R1+ R2)
+ +
oz dy 0z

_oh 0P 0Q1  0Q2  ORi  OR: _ (0P  OQ1 , R Py | 0Q2 | OR:
oz "o "oy "oy Tz Ta: \ar "oy Ta: )T\ Tay T e

=div(P1, Q1, R1) + div(P2,Q2, R2) = divF + divG

23. le(F + G) = diV<P1 + P, Ql + Qz, Ry + R2> =

25. div(fF) = div(f (P1,Q1, R1)) = div(fP1, fQ1, fR1) = 8((];51) 8(2;21) (g]jl)

(f@w?gf) (fan-i-Q f) (f%—&—R ‘;f)
ya

_ (0P 0Q1  OR: /Of Of f\ _ . .. .
_f(ax + Dy + 8Z>+<P17Q17R1> <8$’8y’8z>_deF+F Vf

9/0x 0/dy 90/0z

Q1 R b PRy o P @
217. diV(FXG):V-(FXG)Z Py Q1 Ry |=— - — —_—
Q: R:| 9% |P, Ry| 9%2|P Qo
P Q2 Ry
Q1 OR: Qs OR» op, OR: OPs
[Ql SR Qe — ax]_{ﬂ oy Ty g, ay}
% an apl an apz}

(2 0N, o (2R ORI (900 om
- ln(G ) (T - a) (T - )]

[ (22 0Qa\ (0P ORs\, . (0Q: 0P
{P<8y 82)+Q1(8z 6x)+R1(6x dy )}

=G-curlF —F.curl G
i j k
29. curl(curl F) =V x (VX F) = 0/0x 0/0y 0/0z
6R1/6y—8Q1/8z 6P1/82—831/81’ 8Q1/6$—8P1/8y

oyox oy? 0z? + 0z0x

_(P*Q1 *P 0*°P | O°Ry ; O’R1  0*°Qh 62Q1+62P1 ]
o 020y 0z ox? 0xdy

- - +

N O°P PR OPRa | Qi)
0xdz  Ox? oy? Yoz

Now let’s consider grad(div F') — V>F and compare with the above.
(Note that V2F is defined on page 1119 [ET 1095].)
[continued]
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i 0’P | 9’°Q1 | O°Ry o’Py  0°Qy | O’Ry o’P  9°Q1 | O’Ry
— 2 — M .
grad(divF) — V°F {( 0x? + 0x0y + 81’82) 't (83/81: + 0y? + 8y82> I+ (Bzax + 020y + 022 ) k}

2 2 2 2 2 2
7{(51’1 5P1+3P1)H_<3Q1+3Q1 8Q1)j

0x? + 0y? 072 O0x? 0y? + 022

O’Ry | O’R1 | O°Ry
+<812 + 0y? + 022 )k}

Ozxdy + 0x0z  Oy? 0z2

_(PQ PR PP PR, (PP PR Q1 9PQu)
o Oydr  Oyoz Ox? 922 )Y

O*P, 9’1 "R °Ra\
0z0x 020y ox? oy?

Then applying Clairaut’s Theorem to reverse the order of differentiation in the second partial derivatives as needed and

comparing, we have curl curl F = grad div F — V?F as desired.

M (@) Vr=Vy/Z T2 2 = z i+ Y i+ z k- tityitezk
\/$2+y2+z2 \/x2+y2+z2 \/:r2+y2+22 /x2+y2+z2 r

i
9 9 22 O nlic LDl 12— D k=
O xe=| 2 00 ~ |5 O w)|it |5 @5 @i+ |3 0) -5 @] k=0
Yy z
(C)V<l>: I
r /$2+y2+z2
1 1 1
— (2 S S— R S—
2 x2+y2+z2($)__2 x2+y2+z2(y),_2\/m(Z)k
- x2+y2+22 1 x2+y2+22 ‘] $2+y2+22

ri+yj+zk r

_(3;2 +y2+22)3/2 )

(@ Vinr = Vin(a® +y° + 292 = 1VIn(a® + 3 + 22)
z : Y . z zi+yj+zk r
= k: = —
.’E2+y2+221+$2+y2+22‘]+l’2+y2+22 $2+y2+22 7.2

33. By (13), ., f(Vg) -nds = [[, div(fVg)dA = [[,[f div(Vg) + Vg - V f] dA by Exercise 25. But div(Vg) = V?g.
Hence [[, fV?gdA = ¢, f(Vg) -nds— [[,Vg-VfdA.

35. Let f(z,y) = 1. Then Vf = 0 and Green’s first identity (see Exercise 33) says
[, V?9dA=§,(Vg) - nds— [[,0-VgdA = [[,V?’gdA=§,Vg- nds. Butg is harmonic on D, so
V’9=0 = ¢,Vg-nds=0and ¢, Dngds=§.(Vg-n)ds=0.

37. (a) We know that w = v/d, and from the diagramsinf = d/r = v = dw = (sinf)rw = |w X r|. But v is perpendicular

tobothwand r, sothatv =w X r.
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ijk
(b) From(a),v=wxr={0 0 w|=(0-z—wy)i+(wz—0-2)j+(0-y—z-0k=—-wyitwz]j
Ty z
i j Kk
©) curlv=Vxv=|09/0x 9/0y 0/0z

—wy wx 0
~ |5 0 g o) i+ | 5 (o) = 3 O] i+ |5 ) = £ ()]
= [w_ (—w)]k: 2wk = 2w

39. For any continuous function f on R?, define a vector field G(x,y, z) = (g(z, y, 2), 0, 0) where g(x,y, z) = Jo f(t,y,2)dt.

o~ 0 0 0 _ 0 _
Then div G = o (9(x,y,2)) + y (0) + % (0) = o Jo f(t,y,2)dt = f(z,y, z) by the Fundamental Theorem of

Calculus. Thus every continuous function f on R? is the divergence of some vector field.

16.6 Parametric Surfaces and Their Areas

1. P(7,10,4) lies on the parametric surface r(u,v) = (2u + 3v,1 + 5u — v, 2 + u + v) if and only if there are values for u
and v where 2u + 3v = 7,1 + bu — v = 10, and 2 + u + v = 4. But solving the first two equations simultaneously gives
u = 2, v = 1 and these values do not satisfy the third equation, so P does not lie on the surface.
Q(5,22,5) lies on the surface if 2u + 3v = 5,1 + 5u — v = 22, and 2 + u + v = 5 for some values of v and v. Solving the

first two equations simultaneously gives u = 4, v = —1 and these values satisfy the third equation, so @ lies on the surface.

r(u,v)=(u4v)i+(B3—-v)j+(1+4u+5v)k=1(0,3,1) + u(1,0,4) + v (1,—1,5). From Example 3, we recognize

this as a vector equation of a plane through the point (0, 3, 1) and containing vectors a = (1,0,4) and b = (1, —1, 5). If we

i jk
wish to find a more conventional equation for the plane, a normal vector to the planeisaxb=|1 0 4|=4i—j— k
1-1 5

and an equation of the plane is 4(z — 0) — (y —3) — (r — 1) =0ordz —y — z = —4.

5. r(s,t) = <s, t,t? — 52>, so the corresponding parametric equations for the surface are x = s, y =t, z = t* — 5. For any

point (z,y, 2) on the surface, we have z = y* — x>, With no restrictions on the parameters, the surface is z = y*> — x2, which

we recognize as a hyperbolic paraboloid.
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r(u,v) = <u2,v2,u+v>, —-1<u<1, —-1<v<1.

The surface has parametric equations z = u?, y = v%, z =u+v, -1 <u <1, -1<v <1

In Maple, the surface can be graphed by entering
plot3d([u”2,v"2,ut+v],u=-1..1,v=-1..1);.

In Mathematica we use the ParametricPlot3D command.
If we keep u constant at ug, z = uZ, a constant, so the
corresponding grid curves must be the curves parallel to the
yz-plane. If v is constant, we have y = v2, a constant, so these

grid curves are the curves parallel to the zz-plane.

. r(u,v) = <ucosv,usinv,u5>.

The surface has parametric equations * = ucosv, y = usinwv,
z=u’, —1<u<1, 0<wv< 27 Note that if u = ug is constant
then z = ug is constant and z = ug cos v, y = uo sin v describe a
circle in z, y of radius |ug|, so the corresponding grid curves are
circles parallel to the xy-plane. If v = vo, a constant, the parametric
equations become = = w cos vo, ¥ = usinvg, z = u°. Then

y = (tanwvo)z, so these are the grid curves we see that lie in vertical

planes y = kx through the z-axis.

x =sinv, y =cosusindv, z =sin2usindv, 0 <u <27, —F <w

Note that if v = vg is constant, then x = sin vg is constant, so the
corresponding grid curves must be parallel to the yz-plane. These
are the vertically oriented grid curves we see, each shaped like a
“figure-eight.” When u = wuy is held constant, the parametric
equations become x = sin v, y = cos ug sin 4v,

z = sin 2ug sin 4v. Since z is a constant multiple of y, the
corresponding grid curves are the curves contained in planes

z = ky that pass through the z-axis.

v constant

IA

[NMIE]

u constant

u constant

U constant

AR
W
\

AN
RO
A

Wi

\
\\\ﬁ )
2

r(u,v) = ucosvi+ usinvj—+ vk. The parametric equations for the surface are z = u cosv, y = usinv, z = v. We look at

the grid curves first; if we fix v, then = and y parametrize a straight line in the plane z = v which intersects the z-axis. If v is

held constant, the projection onto the xy-plane is circular; with z = v, each grid curve is a helix. The surface is a spiraling

ramp, graph IV.
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r(u,v) = sinvi+ cosu sin2v j + sinu sin 2v k. Parametric equations for the surface are = sinv, y = cosu sin 2v,

z = sinw sin 2v. If v = v is fixed, then = = sin vy is constant, and y = (sin 2vg) cos u and z = (sin 2v¢) sin u describe a
circle of radius [sin 2vg|, so each corresponding grid curve is a circle contained in the vertical plane x = sin vg parallel to the
yz-plane. The only possible surface is graph II. The grid curves we see running lengthwise along the surface correspond to
holding u constant, in which case y = (cosug) sin2v, z = (sinug)sin2v = 2z = (tanwuo)y, so each grid curve lies in a

plane z = ky that includes the z-axis.

z = cos® u cos® v, y = sin® u cos® v, z = sin® v. If v = vy is held constant then z = sin® vg is constant, so the
corresponding grid curve lies in a horizontal plane. Several of the graphs exhibit horizontal grid curves, but the curves for this

surface are neither circles nor straight lines, so graph III is the only possibility. (In fact, the horizontal grid curves here are

members of the family z = a cos® u, y = asin® u and are called astroids.) The vertical grid curves we see on the surface

3 3

correspond to u = wup held constant, as then we have = = cos® ug cos® v, y = sin® up cos® v so the corresponding grid curve

lies in the vertical plane y = (tan® ug )z through the z-axis.

From Example 3, parametric equations for the plane through the point (0, 0, 0) that contains the vectors a = (1, —1,0) and

b=(0,1,-1)arex =0+ u(l) +v(0) =u, y=0+u(—-1) +v(l) =v—wu, 2=0+u(0) +v(-1) = —v.

Solving the equation for  gives 2% = 1 + y* + izQ = x=4/14+y2+ %22. (We choose the positive root since we want

the part of the hyperboloid that corresponds to > 0.) If we let y and z be the parameters, parametric equations are y = v,

z=z, z=/1+y%+ 122

Since the cone intersects the sphere in the circle 22 4 y* = 2, z = /2 and we want the portion of the sphere above this, we
can parametrize the surfaceaszc =z, y =y, 2 = m where 2% + % < 2.

Alternate solution: Using spherical coordinates, z = 2sin ¢ cos 0, y = 2sin ¢ sinf, z = 2 cos ¢ where 0 < ¢ < 7 and
0<6<2m.

Parametric equations are x = x, y = 4cosf, z =4sinh,0 <z <5,0< 0 < 27.

The surface appears to be a portion of a circular cylinder of radius 3 with axis the z-axis. An equation of the cylinder is

y? 4+ 2% = 9, and we can impose the restrictions 0 < z < 5,7 < 0 to obtain the portion shown. To graph the surface on a
CAS, we can use parametric equations x = u, y = 3cos v, z = 3sin v with the parameter domain 0 <u <5, 5 <v < 37”
Alternatively, we can regard  and z as parameters. Then parametric equations are z = x, z = z, y = —/9 — 22, where

0<z<b5and -3<z<3.

Using Equations 3, we have the parametrization x =z, y = e~ “ cosf,

z=e ¥sinf, 0<z<3, 0<60<2m.
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31. (a) Replacing cos u by sin u and sin u by cos u gives parametric equations
x = (24 sinv)sinu, y = (2 + sinv) cosu, 2 = u + cos v. From the graph, it
appears that the direction of the spiral is reversed. We can verify this observation by
noting that the projection of the spiral grid curves onto the xy-plane, given by
x = (24 sinv)sinu, y = (2 + sinv) cos u, z = 0, draws a circle in the clockwise -
direction for each value of v. The original equations, on the other hand, give circular

projections drawn in the counterclockwise direction. The equation for z is identical in

both surfaces, so as z increases, these grid curves spiral up in opposite directions for

the two surfaces.

(b) Replacing cos u by cos 2u and sin u by sin 2u gives parametric equations
x = (2 +sinv) cos2u, y = (2 + sinwv) sin 2u, z = u + cos v. From the graph, it
appears that the number of coils in the surface doubles within the same parametric
domain. We can verify this observation by noting that the projection of the spiral grid
curves onto the zy-plane, given by x = (2 + sinv) cos 2u, y = (2 + sinv) sin 2u,
z = 0 (where v is constant), complete circular revolutions for 0 < v < 7 while the

original surface requires 0 < u < 27 for a complete revolution. Thus, the new

surface winds around twice as fast as the original surface, and since the equation for z

is identical in both surfaces, we observe twice as many circular coils in the same
z-interval.
33 r(u,v) = (u+v)i+3u?j+ (u—v)k
r,=i+6uj+kandr, =i—k,sor, xr, = —6ui+ 2j— 6uk. Since the point (2, 3,0) correspondstou =1,v =1, a
normal vector to the surface at (2, 3,0) is —61i + 2 j — 6 k, and an equation of the tangent plane is —6x + 2y — 6z = —6 or
3z —y+3z=3.

35. r(u,v) =ucosvi+usinvj+vk = r(l,%)= (%,@,%)
r, =cosvi+sinvjandr, = —usinvi+ ucosvj+ k, so a normal vector to the surface at the point (%7 @, %) is

ro(1,3) xr,(1,5) = (%i—l— @J) X (—@i—&— %j—&—k) = @i— 1 j + k. Thus an equation of the tangent plane at
(345) s L@ -5(y-F)+1(-5) =00 Fo-fy+z=15.

37. r(u,v) = w?i+2usinvj+ucosvk = r(1,0)=(1,0,1).
r, =2ui+2sinvj+cosvkandr, =2ucosvj— usinvk,
so a normal vector to the surface at the point (1,0, 1) is
ry(1,0) xry(1,0) = (2i+ k) x (2j) = —2i+4k.

Thus an equation of the tangent plane at (1,0, 1) is

—2(x—1)4+0(y —0)+4(z—1)=00r —x + 2z = 1.
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The surface S is given by z = f(z,y) = 6 — 3z — 2y which intersects the zy-plane in the line 3z + 2y = 6, so D is the

triangular region given by {(z,y) |0 < 2 < 2,0 <y < 3 — 3z}. By Formula 9, the surface area of 5 is

= [ )+ (5) o

= [IpV1+ (=37 +(-2)?dA = V14 [[,dA = VITA(D) = V11 (3 -2 3) = 3VI4.

Here we can write z = f(z,y) = % - % - —y and D is the disk 22 + y? < 3, so by Formula 9 the area of the surface is

s o () + (2 = [ e on— o

—‘/_A ):£ ﬂ(\/§)2=\/ﬁ7r

z= f(z,y) = 2(x3/2+y3/2)andD={(m,y)|0§m§l,Ogygl}. Then f, = 2'/2, f, = y*/? and

2
)= [fp\/1+ (V3 + (V§) dA = [ [y VTFa T ydyda
=1
- fo [3 Ty 1)3/2} do = %fol [(734‘2)3/2 —(z+ 1)3/2] dz
y=0
1
- §[§($+2)5/2 — 3@+ 1)5/2}0 =372 2%/ 252 4 1) = L (372 —27/2 1)
2= flw,y) =aywiha’ + > <Lso fo =y, fy =2 =
r=1
T+ +a2dA= [ [ Vi +Trdrdd = [77 [ +1)%2]  do
ffD Y L
r=0
2771(2\/5—1)d0—2_7"(2\/§_1)
A parametric representation of the surfaceis x = z,y = 4o + 2%, z = zwith0 < 2 < 1,0 < z < 1.

Hencer, xr. = (1+4j) x (2zj+k)=4i—j+2zk.

2 2
Note: In general, if y = f(x, z) thenr, X r, = of i—j+ gkandA(S) = // \/1 + (%) + (g) dA. Then
D

ox 0z 0z
= [y VIT+ 422 dedz = [ VIT + 422 dz
= %( \/17+4z2+17ln|22+\/422+1 m = +T7[ln(2+\/_) ln\/_]

ry = (2u,v,0), r, = (0,u,v),and vy, x v, = (v?, —2uv,2u?). Then
S)=[[, |ru x1y|dA = f01f02 v*+ 4uv? + dut dvdu = f01f02 (v2 + 2u2)2 dv du
= folfoz (v +2u?) dvdu = fol [%US + QUZU}Z;Z) du = fol (% + 4u?) du = [%u + %u‘n’](l) =4
From Equation 9 we have A(S) = [[, /14 (f2)? + (f,)? dA. Butif | fz| < Land |f,| < 1then0 < (f2)*
0<(f,)?<1 = 1<1+(fo)?+(f,)2<3 = 1< 1+ (f2)2+ (f)? < /3. By Property 153.11,

JIp1dA < [[ 1+ ()P + (f)?dA < [[,V3dA = A(D) < A(S) <VBADD) =
TR? < A(S) < V37R%
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53. z = f(z,y) = e~ Y with 22 + y? <4

A(S) = ffD \/1 + (—2;36*”2*?/2)2 + (—2ye*”2*92)2 dA = ffD \/1 +4(22 + y2)e—2@+v%) dA

= 0% f02 1+ 4r2e=27% rdrdf = 0277 do f02 ry/1+4r2e=2m dr = 2 f02 r/ 1+ 4r2e—27% dr a~ 13.9783

55, (a)A(S)z//D\/H(% ’ <62> dA = /[ \/ (l‘f WfZ) dy dz.

. S . . 42° + 49° . .
Using the Midpoint Rule with f(z,y) = \/1 + Ty m = 3,n = 2 we have
3 2
AS)~ Y S f(20,7,) AA=4[f(L,1) + f(1,3) + F(3,1) + £(3,3) + f(5,1) + [(5,3)] ~ 24.2055
i=1j=1
4x? —|-4y . . . .
(b) Using a CAS we have A(S ( 1522 1 478 dy dx =~ 24.2476. This agrees with the estimate in part (a)

to the first decimal place.

57. z =1+ 2z + 3y + 4y, so

92 \? AN 4t 4t
:// 1+(=—=) + (= dA:// \/1+4+(3+8y)2dydm=// v/ 14 + 48y + 64y? dy dx.
D Oz 9y 1 Jo 1 Jo
Using a CAS, we have
S /1A + 48y + 64y? dydzr = 22 V14 + L 1n(11vV5+3vVI4V5) — L In(3V5 + V14 V5)

or—\/_+15ln11‘/_+3‘/_

35+ /70
59. (a) x = asinucosv, y = bsinusinv, z = ccosu = (b)
Z—z + 'Z—j + i_j (sinu cosv)? + (sinusinv)? + (cosu)? ’ A\
=sinu+4cos’u=1 z 07 =
and since the ranges of v and v are sufficient to generate the entire graph, 1 .
the parametric equations represent an ellipsoid.
-2 T
(c) From the parametric equations (witha = 1, b = 2, and ¢ = 3), J ’ 21 O 1
we calculate r,, = cosucosvi—+ 2cosusinvj — 3sinuk and
r, = —sinusinvi+ 2sinucosvj. Sor, x r, = 6sin? ucosvi+ 3sin® usinv j + 2sinu cos u k, and the surface

area is given by A(S) = o%foﬁ |ry X ry| dudv= 02Trf0ﬁ V/36sin* u cos? v 4 9sin usin® v + 4 cos? usin® u du dv

61. To find the region D: z = 2> + y? implies z + 2? = 4z or 2> — 32 = 0. Thus z = 0 or z = 3 are the planes where the
surfaces intersect. But 2% 4 y® 4 22 = 4z implies 2* + y* + (2 — 2)? = 4, so z = 3 intersects the upper hemisphere.

Thus (z —2)? =4 —2® —y? or 2 = 2+ /4 — 22 — y2. Therefore D is the region inside the circle 2> + 4> 4 (3 — 2)* =
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thatis, D = {(,y) | 2* +y* < 3}.

= //D \/1 +[(—z)(4 — 22 — y2)—1/2}2 +[(-y)(4 — 22 - yz)_1/2]2 dA

V3 27 _
/1 _ 2rdr _ Coia 2v1/2 r=v3
/ / rdr df = / / \/——1“2 df = ; [ 24 —1r7) L:o dé

= [IT(—2+4)do = 20]27 = 4x

63. Let A(S1) be the surface area of that portion of the surface which lies above the plane z = 0. Then A(S) = 2A(S1).

Following Example 10, a parametric representation of Sq is * = asin ¢ cos 8, y = asin ¢sin 6,
z=acos¢and|ry X rg| = a®sin¢. For D, 0 < ¢ < 5 and for each fixed ¢, (x - —a) +92 < (% )2 or

[asin ¢ cosb — 3a] ? 4 a%sin® ¢sin® 0 < (a/2)? implies a® sin® ¢ — a® sin pcosf < 0 or

sin¢ (sing —cosf) < 0. But0 < ¢ < Z,s0cosf > sing orsin(% —|—9) >singorg— 3 <0< 5 —¢.
Hence D = {(¢,0) |0< ¢ < 5,¢—F <0< % —¢}. Then
/2 /2 . /2 .
A(Sy) = [72 [T a? sing O dg = a? 2 (x — 26) sin ¢ dp
= a® [(—m cos ¢) — 2(—¢ cos ¢ + sin (b)}”/z a*(r —2)
Thus A(S) = 2a*(7 — 2).
Alternate solution: Working on S1 we could parametrize the portion of the sphereby z =z, y = y, z = y/a? — 2 — y2.
2 2
- T y _ a
Then |ry X ry| = \/1+a2—x2—y2 +a2—x2—y2 Y/ and
a /2 acos 6
A(S1) = / rdrd@
v il Va2
0< (z—(a/2))2 + 42 < (a/2)?
/2 r=acosf /2
=72, —a(a® —r2)1/2]7_:0 do = [/, a®[1 — (1 cos® 0)/*] df

_fﬂ'-n—/Z l_‘Slnel)d0—2a2 ﬂ/2(1_sin9)d9:2a2(z _1)

Thus A(S) = 4a® (3 — 1) = 2a°(7 — 2).
Notes:

(1) Perhaps working in spherical coordinates is the most obvious approach here. However, you must be careful

in setting up D.

(2) In the alternate solution, you can avoid having to use |sin 8| by working in the first octant and then

multiplying by 4. However, if you set up S as above and arrived at A(S;) = a®7, you now see your error.
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16.7 Surface Integrals

1. The faces of the box in the planes = 0 and = 2 have surface area 24 and centers (0, 2, 3), (2,2, 3). The faces in y = 0 and
y = 4 have surface area 12 and centers (1,0, 3), (1, 4, 3), and the faces in z = 0 and z = 6 have area 8 and centers (1, 2, 0),
(1,2,6). For each face we take the point P; to be the center of the face and f(x,y, z) = e~ 01 (=+y+2) g6 by Definition 1,

JIs f(@,y,2)dS =~ [£(0,2,3)](24) + [£(2,2,3)](24) + [f(1,0,3)](12)
+ [f(1,4,3)](12) + [f(1,2,0)](8) + [f(1,2,6)(8)

— 24(670.5 + 670.7) + 12(670.4 70 8) + 8( —0.3 + 670.9) ~ 49.09
3. We can use the xz- and yz-planes to divide H into four patches of equal size, each with surface area equal to % the surface

area of a sphere with radius v/50, so AS = £(4)7(v/50 )2 = 257. Then (+3, £4, 5) are sample points in the four patches,

and using a Riemann sum as in Definition 1, we have
[y f(@,y,2)dS ~ f(3,4,5) AS + f(3,—4,5) AS + f(—3,4,5) AS + f(—3,—4,5) AS
= (7+ 8+ 9+ 12)(257) = 9007 ~ 2827
5. r(u,v) = (u+v)i+(u—v)j+(1+2u+v)k0<u<20<v<1and
ryxry,={+j+2k)x(i—j+k)=3i+j—2k = |ruxr,|=+/32+12+ (—2)2 = v/14. Then by Formula 2,
[lsx+y+2)dS= [[j(ut+v+u—v+1+2u+v) |ty X1, dA:f01f02(4u+v+1)-\/14dudv
= V14 [; [2u® + uv +u]'", dv = V14 [; (2v +10) dv = V14 [v? + 10v], = 111/14

7. r(u,v) = (ucosv,usinv,v),0 <u <1,0 <v < 7and

ry X ry = (cosv,sinv,0) X (—usinv,ucosv,1) = (sinv, —cosv,u) =

ry X Tyl = \/sin2v+cos2v+u2 = +v/u? + 1. Then
[[sydS= [[,(usinv) |r, x r,| dAsz1 fow(usinv)w/uQ—l—ldvdu:folux/uz—l—ldu Jo sinvdv

= [32 +1)7?]

, [ cosulg = 12%2 -1 .2=2(2v2-1)

9. z—1+2x+3ysoa—:2and8

B 8_ = 3. Then by Formula 4,

2
[s2?yzdS = //l'yZ\/ %) +1dA= [ [Fa?y(1+ 22+ 3y) VAT 9+ Ldyde

:\/14f0 f0(12y+2x3y+31 N dydx = /1 fo [$2°y® + 2%y° —|—:13y] d:v
= V14 [}(102? + 42%) do = 14 [L2® + 2]} = 171 V14

11. An equation of the plane through the points (1, 0, 0), (0, —2,0), and (0, 0,4) is 4= — 2y + z = 4, so S is the region in the
plane z = 4 — 4z + 2y over D = {(z,y) | 0 <z < 1,2z — 2 < y < 0}. Thus by Formula 4,

JIs wds = [f, o /(T + @F +TdA= V2L [ [,_, wdyde = V21 [ [o]}=5, , da
:\/ﬁfol(—2x2+2x)dx:\/ﬁ[—gavs—l—af]é:\/ﬁ(—%—i—l) 2@
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13. S is the portion of the cone 22 = z? + 3% for 1 < z < 3, or equivalently, S is the part of the surface z = /22 + y2 over the

region D = {(z,y) | 1 < 2* +y* < 9}. Thus

//Szzz2d5://Dm2(m2+y2) <\/";Ty2>2+<\/$%y2>2+1d14

22 2 [T+ 202, 2 o 2, 2
://x (z° +y°) ﬁJrldA:// V222 (2® 4y )dA:\/ﬁ/ /(rcose) (r*)rdrde
D Tty D o J1

364 /2
3 v

_\/_f27rcos 0d9f rPdr =2 [9+4sm20] (% 6]3:\/§(W)-%(36—1):

1

15. Using x and z as parameters, we have r(z, z) = i+ (2 + 2%)j + 2k, 2 + 2% < 4. Then

rp Xr, = (i+22j) x (22j+k)=22i—j+2zkand |r; x r.| = V422 + 1+ 422 = \/1 + 4(22 + 22). Thus

[fsydS = [[ (@*+2)\/1+4@Z+22)dA= " [2r2VI+42rdrdd= ["d0 [} r*VI+4rZrdr

x2422<4
= 27rf2r2\mrdr letu=1+4r> = 7> =21(u—1)and tdu=rdr]
—27Tf171u—1\/_ édu_faﬂ (3/2 ul/?) du
= Jor[20? — 207" = Ex[207)%2 - 20772 - 2 4+-3] = Z(301vIT +1)
17. Using spherical coordinates and Example 16.6.10 we have r(¢, ) = 2sin ¢ cos i+ 2sin ¢sin j + 2 cos ¢ k and
Ity X ro| = 4sin¢. Then [ [, (2?2 + y?2) dS = f ”/2 (4sin? $)(2 cos $)(4sin ¢) dep df = 16 sin* cﬂg/Q = 16m.
19. S is given by r(u,v) = ui+ cosvj+sinvk, 0 < u < 3,0 < v < 7/2. Then
ry Xr, =1ix (—sinvj+cosvk)=—cosvj—sinvkand |r, X r,| = Vcos2 v +sin v = 1, so
[[s(z+2%y)dS = ﬁ/QfO (sinv + u? cosv)(1) dudv = 7T/2(3s1nv—&—9(:051))dv
= [—3cosv+9sinv}g/2 =0+9+3-0=12

21. From Exercise 5, r(u,v) = (u+v)i+ (u —v)j+ (1+2u+v)k,0<u<2,0<v<1l,andr, xr, =3i+j—2k.
Then
F(r(u,v)) = (1 + 2u+ v)e @5 — 3(1 4 2u 4 v)e =) § 4 (4 + ) (u — v) k

=(1+2u+v)e Wy 3(142u —|—v)eu27’”2j + (u? — vk
Because the z-component of r,, X r,, is negative we use —(r,, X r,) in Formula 9 for the upward orientation:

[[¢F-dS= [[, F-(—(ry xr,))dA= fofo[ (14 2u+wv)e u? - +3(1 4+ 2u+wv)e" 7“2+2(u2—v2)} du dv

= f01f02 2(u® = v*) dudv = 2]01 [%ug —uv ] =0 2f0 (% - ) v
—2fgo- 3l =23 =4
23. F(x,y,2) =xyi+yzj+z2zk, 2z = g(x,y) =4 — x? — 32, and D is the square [0, 1] x [0, 1], so by Equation 10
[ F-dS = [[,[—xy(—2x) — yz(—2y) + zz] dA = fo fO[Zm y+2074—2® — )+ x4 —2® — )] dyde

:L@ﬁ+%ww%%@w:%%
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25. F(z,y,2z) =zi—zj+yk, z = g(z,y) = \/4 — 22 — y? and D is the quarter disk

{(z,y) | 0<2<2,0<y<v4— 22 } S has downward orientation, so by Formula 10,
ST -dS = = [, [~ 34— a? )2 (-22) — (2) H(4—&® —y?) 2 (-29) 4] dA

4—x —y 4—22—y

=—[f,a* @ +y?)) V2 dA = — [T% [2(rcos0)2(4 — r2) V2 1 dr df

:—fﬂ/zcos 0d9f2 (4 —r?) "2 dr letu=4—r" = r>=4—uand —3du=rdr]

= - fOW/Q (% + %cos 29) do f40 7%(4 _ u)(u)—1/2 du

== 30+ dsin20])]? (4)[8vi - 307 = —5(-4) (-16+ ) =~

27. Let S; be the paraboloid y = 22 + 22,0 < yy < 1 and S, the disk 22 4+ 2?2 < 1,y = 1. Since S is a closed
surface, we use the outward orientation.

On Si: F(r(z,2)) = (x? + 2%)j— zkand ry x r, = 2zi— j + 22 k (since the j-component must be negative on S1). Then

[[s, F-dS= [[ [~(a®+2")—22%|dA =~ [J7 [§(r* + 2r*sin® 0) r dr df

12+z2§1

1 27'r 1
= 0 (14 2sin*0)drdf = — [[7(1+ 1 —cos20)df [, r°dr
=—[20— Lsin20)2" [1r1]) = ~4m- L = -

On Sz: F(r(z,2)) =j—zkandr. xr, =j. Thenffs F-dS= [[ (1)dA=m.

2 422<1

Hence [[(F-dS = —m 47 =0.

29. Here S consists of the six faces of the cube as labeled in the figure. On Sy:
F=i+2yj+3zkr, xr.=iand [[; F-dS= [ [1 dydz=4;
Sp:F=zi+2j+32kr. xr, =jand [[; F-dS= [l [! 2dvdz=8;
Ss: F=zi+2yj+3kr, xr,=kand [[; F-dS =[] [! 3dedy=12;
S4:F:—i—|—2yj+3zk,rzxry:—iandffS4F-dS:4;

Sg,:F::cif2j+32k,rzsz:fjandffSrF-dS:S;
Se: F =wi+2yj—3kr, xr, = —kand [[; F-dS= [ [! 3dedy=12

6
Hence [[(F-dS =3 [[, F-dS =48.
i=1 "

31. Here S consists of four surfaces: S, the top surface (a portion of the circular cylinder y* + 2? = 1); Ss, the bottom surface

(a portion of the xy-plane); Ss, the front half-disk in the plane x = 2, and S4, the back half-disk in the plane z = 0.
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35.

37.
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On S1: The surface is z = /1 — y? for 0 < z < 2, —1 < y < 1 with upward orientation, so

//SlF.ds:/;/ll{—xz(o)—y"’(—\/_)ﬂ dyda:_// ( +1_y2>dydm

y=1
—fo[ A1)y — ly?’}

— _ 8
y:_ldw—fo Edl’—g

On S5: The surface is z = 0 with downward orientation, so
2 1 2 1
[Is, F-dS= [y [, (—2*)dyde= [ [°, (0)dydx =0
On S3: The surfaceis x = 2 for —1 <y < 1,0 < z < /1 — y?, oriented in the positive z-direction. Regarding y and z as

parameters, we haver, X r, =1iand

[fs, F-ds=[1, fo fadzdy = [1) f0m4dz dy = 4A(Ss) = 2
On Sy4: The surfaceisx =0for —1 <y <1,0< 2 < W , oriented in the negative z-direction. Regarding y and z as
parameters, we use — (ry X r,) = —iand

[ FodS =Y [V a2 dzdy = [*, (Y7 (0) dzdy =0

Thus [[(F-dS=5+0+21+0=2r+ 3.
z=uwxe = 0z/0x = €Y, 0z/0y = xe’, so by Formula 4, a CAS gives
[[s@* +y? +2%)dS = folfol(a:2 + %+ 22e®) VeV + 22 + 1da dy ~ 4.5822.
We use Formula 4 with z = 3 — 222 —¢®> = 0z/0x = —4x, 0z/0y = —2y. The boundaries of the region

3—2x2 —y? > 0are f\/g <z< \/g and —/3 — 222 < y < /3 — 222, so we use a CAS (with precision reduced to

seven or fewer digits; otherwise the calculation may take a long time) to calculate

3—2102

2 2 2 2 2 2 22
x7y“z°dS = / 7y (3 —2z" —y”)"/162% + 4y? + 1dy dz ~ 3.4895
// —4/3 — 222
If S is given by y = h(z, z), then S is also the level surface f(z,y,2) =y — h(z,2) = 0.
—hgi+j—h:k . . . .
n= Vi@y,2) = L) and —n is the unit normal that points to the left. Now we proceed as in the

Vi(@y2)  VRE+T+RZ°
derivation of (10), using Formula 4 to evaluate

Oh, . Oh

as— [[Fonas— [ (Piso; AR e ﬂ@)
//_;F ds_//sF nds_/D(Pl+QJ+Rk) oh\? o\ V \o% o
(&) +1+(5)

where D is the projection of .S onto the xz-plane. Therefore / / F-dS= / / (P ? -Q+R g};) dA.
s D

o>
(8_) iA
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39.

41.

43.

45.

41.

49.
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m = [y KdS = K - 4w (3a®) = 2ra®K; by symmetry M,. = M,. = 0, and
My = [[¢2KdS = Kf 7r/2 (acos ¢)(a®sin @) dp df = 2w Ka® [ficos%zb]g/z =nKa3.

Hence (Z,7,%) = (0,0, 3a).
@ I. = [[s(=* +y*)p(x,y, 2) dS
(b)IZ:ffs(xz—l—yZ)(lO—\/$2+y2)d5’: If (x2+y2)(10—«/x2+y2)\/§dz4

1<a?4+y2<16

TANV2 (1007 — ) drdf = 22w (B2) = 82,/

The rate of flow through the cylinder is the flux [[ pv -ndS = [[, pv - dS. We use the parametric representation
r(u,v) =2cosui+ 2sinuj+ vk for S, where 0 < u <27, 0<v<1,sor, =—2sinui+ 2cosuj, r, =k, and the

outward orientation is given by r,, X r, = 2cosu i+ 2sinwj. Then
[fspv-dS= pf027r fol (vi+4sin®uj+4cos®uk) - (2cosui+ 2sinuj) dvdu
= pf027r fol (2vcosu + 8sin® u) dv du = pf027r (cosu + 8sin® u) du

= p[sinu +8(—3)(2 + sin® u) cosu] =0kg/s

S consists of the hemisphere S; given by z = \/m and the disk So given by 0 < 2® + 3% < a?, 2z =0.
On Si: E = asing cosfi+ asing sinfj + 2acos gk,
Ty x Tg = a®sin? ¢ cos @i+ a? sin? ¢ sin 0 j + a? sin ¢ cos ¢ k. Thus
ffle.dS f 7r/2a sin® ¢ + 2a® sin ¢ cos® ¢) d¢ df
= 077 0”/2((1 sin ¢ 4 a® sin ¢ cos® ¢) dpdf = (2m)a® (1 + %) = §ma®

OnSy: E=zi+yj,andry X ry = fksoffSQE‘dS = 0. Hence the total charge is ¢ = &0 [[(E - dS = Sra’eo.

KVu = 6.5(4yj + 4z k). S is given by r(z,0) = i+ /6 cosf j + /6 sin 0 k and since we want the inward heat flow, we
user; X rg = ,\/g cosfj— \/6 sin @ k. Then the rate of heat flow inward is given by

[fs (K Vu)-dS = [27 [ —(6.5)(—24) da df = (27)(156)(4) = 1248.

Let S be a sphere of radius a centered at the origin. Then |r| = @ and F(r) = cr/ |r|* = (c/a®) (zi+yj+2k). A
parametric representation for S is r(¢,0) = asin¢ cosfi+ asing sinfj+ acospk, 0 < ¢ <7, 0 < 6 < 27. Then
ro =acos¢ cosf@i+acosgsinfj—asingk,ro = —asing sinfi-+ asin ¢ cosf j, and the outward orientation is given
byry x re = a’sin® ¢ cos i+ a®sin® ¢ sin 6 j + a® sin ¢ cos ¢ k. The flux of F across S is
JIgF-ds= [ [, e (asquC0591+a51n¢51n93+ac05¢k)
. (a2 sin? ¢ cosfi+ a?sin® ¢ sinfj+ a’sing cosd)k) df d¢
= % foﬂ 02” a® (sin3 ¢ + sin ¢ cos> (b) dfdo = cfo7r 02” sin ¢ df d¢ = 4nc

Thus the flux does not depend on the radius a.
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16.8 Stokes' Theorem

1. Both H and P are oriented piecewise-smooth surfaces that are bounded by the simple, closed, smooth curve z2 + y2 = 4,

z = 0 (which we can take to be oriented positively for both surfaces). Then H and P satisfy the hypotheses of Stokes’

Theorem, so by (3) we know [ [, curl F - dS = [, F -dr = [, curl F - dS (where C' is the boundary curve).

3. The paraboloid z = z + 3 intersects the cylinder 2> + y? = 4 in the circle 2? 4 y* = 4, z = 4. This boundary curve C
should be oriented in the counterclockwise direction when viewed from above, so a vector equation of C' is
r(t) =2costi+2sintj+4k,0 <t < 2w Thenr'(t) = —2sinti+ 2cost}],
F(r(t)) = (4cos?t)(16) i+ (4sin?t)(16)j 4 (2cost)(2sint)(4) k = 64 cos® ti+ 64sintj + 16sint costk,
and by Stokes’ Theorem,
[[scurlF-dS= [ F-dr= [7"F(r(t) r'(t)dt = [7"(~128cos® t sint + 128sin® t cost + 0) dt
= 128[% cos®t + % sin® 15]§7r =0
5. C is the square in the plane z = —1. Rather than evaluating a line integral around C we can use Equation 3:
IS s, curlF - dS = $oF-dr =[], s, curl F - dS where Sy is the original cube without the bottom and S is the bottom face
of the cube. curl F = z22i 4 (xy — 22yz) j + (y — 22) k. For Sz, we choose n = k so that C' has the same orientation for
both surfaces. Then curl F - n = y — 2z = x + y on Sa, where z = —1. Thus ffsz curlF - dS = fil fil(a; +y)dzdy =0
so [[g, curl F - dS =0.
7. curl F = —221i — 22 j — 2y k and we take the surface .S to be the planar region enclosed by C, so S is the portion of the plane

z4+y+z=1loverD={(z,y) |0<x<1,0<y<1-—z}. Since C is oriented counterclockwise, we orient S upward.

Using Equation 16.7.10, we have z = g(z,y) =1 —x —y, P = —22,Q = —2z, R = —2y, and

JoFde = [fgculF-dS = [f, [-(~22)(~1) — (~22)(~1) + (~2y)] dA

= fol 01—z(_2) dydz = —2 fol(l —z)der =—1

9. curl F = (ze” — 22)i — (ye®™ —y)j + (22 — 2) k and we take S to be the disk 22 + y* < 16, z = 5. Since C is oriented

counterclockwise (from above), we orient S upward. Then n = k and curl F - n = 2z — z on S, where z = 5. Thus

$F - dr = [[ curlF - ndS= [[, (22 — z) dS = [[4(10 — 5) dS = 5(area of S) = 5(r - 4>) = 80w

11. (a) The curve of intersection is an ellipse in the plane x + y + z = 1 with unit normal n = % i+j+k),

curlF =22 j+ 3’ k,and curl F - n = %(aﬂ +4?). Then

$oFdr = [[s 5 (0 +97) dS = [fay o oo (27 +97) dody = [77 [ r* drd9 = 2n (%) = 557
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13.

15.

17.

19.

(b) (c) One possible parametrization is x = 3 cost, y = 3sint,

z=1—3cost —3sint, 0 <t < 2.

[

The boundary curve C is the circle z? + y? = 16, z = 4 oriented in the clockwise direction as viewed from above (since S is
oriented downward). We can parametrize C by r(t) = 4costi—4sintj+ 4k, 0 < t < 27, and then
r'(t) = —4sinti—4costj. Thus F(r(t)) = 4sinti+4costj— 2k, F(r(t)) - r'(t) = —16sin®*t — 16 cos®> t = —16, and
$F-dr= [TTF(r(t)) -r'(t)dt = [77(~16)dt = —16 (21) = —327

Now curl F = 2k, and the projection D of S on the zy-plane is the disk 2> + y* < 16, so by Equation 16.7.10 with
z=g(x,y) = \/m [and multiplying by —1 for the downward orientation] we have

[fgcurlF-dS=— [[ (-0 —0+2)dA=—-2-A(D) = -2 -n(4®) = —327
The boundary curve C is the circle z2 + 2% = 1, y = 0 oriented in the counterclockwise direction as viewed from the positive
y-axis. Then C' can be described by r(t) = costi—sintk,0 <t < 2w, andr'(¢t) = —sinti— cost k. Thus
F(r(t)) = —sintj+ costk, F(r(t)) -1’ (t) = —cos’t,and §, F - dr = fOZW(f cos’t)dt = —3t — 1 sin 2t] i” =—.
Now curl F = —i — j — k, and S can be parametrized (see Example 16.6.10) by
r(¢,0) =sing cosfi+sing sinfj+ cosopk, 0 <0 < 7,0 < ¢ < 7. Then

ry X rg = sin® ¢ cos i+ sin® ¢ sin@j + sin ¢ cos pk and

[[gcurlF-dS=[[ curlF~(r¢><rg)dAzfoﬂfow(—sinqucos@—sin2¢sin9—sin¢coscb)d@dqﬁ

x2422<1
= [ (=2sin® ¢ — wsin ¢ cos ¢) dp = [5sin2¢p — ¢ — 5 sin’ (]5]3 =7
It is easier to use Stokes’ Theorem than to compute the work directly. Let .S be the planar region enclosed by the path of the
particle, so S is the portion of the plane z = %y for0 <z <1,0 <y < 2, with upward orientation.
curl F =8yi+22j+4 2ykand
$F-dr= [[;curlF-dS = [[, [-8y(0) — 2z (1) +2y] dA = [} [Z (2y — Ly) dydx

= fol foz %ydydm = fol [%ﬂii dr = fol 3dr =3

Assume S is centered at the origin with radius a and let H; and H> be the upper and lower hemispheres, respectively, of S.

Then [[g curlF -dS = [f, curlF-dS + [[, curlF-dS = §, F-dr+ § F - drby Stokes’ Theorem. But C1 is the

circle 2 + y? = a? oriented in the counterclockwise direction while Cy is the same circle oriented in the clockwise direction.

Hence fczF sdr = —fCIF ~dr so [[scurl F - dS = 0 as desired.
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16.9 The Divergence Theorem

1.

1.

divF =3+ 2+ 2x =3+ 3z, s0
v = T + T dy dz = 5 (notice the triple integral 1s
L divEdV = [ [ (32 + 3) dz dy dz = 3 (notice the triple integral i
three times the volume of the cube plus three times ).

To compute [, F - dS, on

Si:n=iF=3i+yj+2:kand [[, F-dS = [[, 3dS=3;

Sa: F:3mi—|—:cj+2mzk,n:jandff52F~dS:ffs2a:d5’:é;
Ss: F:3:vi+ﬂcyj+2mk,n:kandff53F-dS:ffs32:rdS:1;
Sy F:O,ffS4F-dS:O;S5: F:3sci+2mk,n:—jandffSSF-dS:ffSSOdS:O;

Se: F=3zci+ayjn=—kand [, F-dS= [[; 0dS =0.Thus [[(F-dS =3

LdivF=0+140=1,s0 [[[,divFdV = [[[,1dV = V(E) = 3m- 4% = 2587 S is a sphere of radius 4 centered at

the origin which can be parametrized by r(¢, 0) = (4sin ¢ cos0,4sin ¢sinf,4cos¢),0 < ¢ <, 0 < 0 < 27 (similar to
Example 16.6.10). Then
ry X v = (4dcosdcosh, 4cos psinf, —4sin ¢) x (—4sin ¢psin b, 4sin ¢ cos 6, 0)
= <16 sin? ¢ cos 6, 16 sin? ¢ sin 6, 16 cos ¢ sin ¢>>
and F(r(¢,0)) = (4cos ¢, 4sin ¢sin 0, 4sin ¢ cos 0). Thus
F - (rg x rg) = 64 cos ¢sin? ¢ cos § + 64sin® ¢psin® O + 64 cos ¢ sin? ¢ cos § = 128 cos ¢ sin? ¢ cos § 4 64 sin® ¢ sin® 0

and
[[sF-dS = [[,F-(rs xre)dA = [ [T (128 cos ¢sin® ¢ cosd + 64sin® ¢ sin? 0) dep df
2w

= [T [8 sin® ¢ cos @ + 64 (—3 (2 + sin® ¢) cos ¢) sin® 0] izg de

= 0277 226 sin QdG—TG[ 9——811129} %77

. divF = 6%(myez) + a%(mgfz:‘) + %(—yez) = ye® + 2xyz® — ye® = 2zy2>, so by the Divergence Theorem,

[[F-dS= [[[ divEdV = [ [? [*2azyz*dedyde =2 [} xdz [T ydy [, 2°dz

=2[32°], [39°] [i#1,=2(3) @ () =3

. div F = 3y? 4+ 0 + 322, so using cylindrical coordinates with y = 7 cos 6, z = rsin, = = we have

[[sF-dS= [[[,(B8y*+32")dV = f f_ 3r2 cos® 0 + 32 sin® 0) r dx dr df

= 3]27r do fol rPdr [ de=3027)(3)3) =%

. divF = 2zsiny — xsiny — xsiny = 0, so by the Divergence Theorem, [[(F -dS =[[[,.0dV = 0.

divF =92 4+0+22 =22 +19%s0
[[sF-dS = [[[,(=*+y>)aV = [ [2 [Lr? - rdedrd) = [7 [ r° %) drdo

= 0“ do fo (4r37r5)dr:27r[r47%r6](2): 2q
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18. F(z,y,2) =o/22 + 32 + 22i+y/a2 + 92 + 22 j+ 2y/22 + 92 + 22k, s0
divF=2-3(2% +9> +2°)72220) + (22 +4° + 22 +y - 3(a® + 3>+ 22) 72 (2y) + (2 + y? + 22)/?
+Z'%(IQ+y2+z2)71/2(22)+(m2+y2+z2)1/2

:($2+y2+22)_1/2 [m2+(172+y2+z2)+y2+(962 +y2+22)+22+(l’2+y2+22)]

2 2 2
e i 20 NNy}
/$2 +y2 +Z2

Then

/2 2w pl
//F-dS :///4\/x2+y2+22dV2/ / / 4/ p? - p*sinpdpd de
s E 0 o Jo

= [ singdg [57do [ 4p> dp = [—cos ¢lg/* [0 [p*], = (1) (27) (1) = 27
5. [[sFdS = [[f ,V3=a?av = [* [1 f7 T Y VB P dzdyde = 3 V3 + Shsin! (3F)

17. For S1 wehaven = —k,soF -n=F - (k) = —z2z — y? = —y? (since z = 0 on S1). So if D is the unit disk, we get
[fs, F-dS= ffsl F-ndS=[[,(—y°)dA=— 02Trf01 % (sin® @) r dr d9 = —Lm. Now since S is closed, we can use

the Divergence Theorem. Since divF = a% (2%z) + % (3y° + tanz) + % (2?2 4+ y?) = 2* + y* + 2%, we use spherical

coordinates to get ffsz F-dS = [[[,divFdV = f02 ﬁ/QfO p* - p*singdpdedd = 2. Finally
fst'dSZIISQF'dS_ffle'dSZ%W_(_%”):%W'

19. The vectors that end near P; are longer than the vectors that start near P, so the net flow is inward near P; and div F(Py) is
negative. The vectors that end near P are shorter than the vectors that start near P, so the net flow is outward near P and

div F(P») is positive.

21, — 15f . From the graph it appears that for points above the z-axis, vectors starting near a
NN
R I particular point are longer than vectors ending there, so divergence is positive.
-~ <~ 8 |t o
""" o The opposite is true at points below the x-axis, where divergence is negative.
=5 5
‘‘‘‘‘ . F(z,y) = (zy,x +y°) = divF=Z (zy) + & (¢ +¢°) =y +2y = 3y.
A O IR TR SR N N N
A IR S FEE SN ThusdivF > 0 fory > 0,anddivF < 0 fory < 0.
S AN
=5
. x  wit+yj+zk 0 x @y ) =3 .
23. Since W = W and 7 TR ) T @t A with similar expressions

for ﬁ S and 2 S — we have
oy \ (22 + y% + 22)3/2 02\ (22 + y2 + 22)32 )

d1v< > 3@+’ +2%) =32 +y° +27%)
Ej @ i+ )

= 0, except at (0, 0, 0) where it is undefined.

2. [[;a-ndS = [[[,divadV = 0sincediva = 0.
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21. [[ycurlF - dS = [[[, div(curl F) dV = 0 by Theorem 16.5.11.
2. [[((fVg)-ndS = [[[,div(fVg)dV = [[[,(fV?g+ Vg-Vf)dV by Exercise 16.5.25.
3. If c = c1i+ c2j + c3 k is an arbitrary constant vector, we define F = fc = fci1i+ feaj + fes k. Then
of  of  of .
divF = div fc = 31 + o co + 5,6 = Vf - ¢ and the Divergence Theorem says [[(F -dS = [[[ divFdV =
JIsF-ndS = [[[,Vf-cdV.Inparticular, ifc = ithen [[ fi-ndS = [[[, Vf-idV =

// fni1dS = // 8f dV (where n = nj i+ n2 j + ns k). Similarly, if ¢ = j we have // fnadS = // 8f dv,
. of
and ¢ = k gives fnsdS = ——dV. Then
s p 0z

[/s fndS = (ffsfm ds)i+ (ffsfn?ds)j+ (ffsf”3ds)k

(I aa) s (g3 (L gt I (e o 5w o

= [[[zVfdV as desired.

16 Review
CONCEPT CHECK

1. See Definitions 1 and 2 in Section 16.1. A vector field can represent, for example, the wind velocity at any location in space,

the speed and direction of the ocean current at any location, or the force vectors of Earth’s gravitational field at a location in

space.
2. (a) A conservative vector field F' is a vector field which is the gradient of some scalar function f.
(b) The function f in part (a) is called a potential function for F', that is, F = V f.

3. (a) See Definition 16.2.2.

(b) We normally evaluate the line integral using Formula 16.2.3.
(c) The mass is m = [, p (x,y) ds, and the center of mass is (Z,7) where T = = [ xp (2,y) ds, 7= < [, yp (z,y) ds.

(d) See (5) and (6) in Section 16.2 for plane curves; we have similar definitions when C'is a space curve

[see the equation preceding (10) in Section 16.2].

(e) For plane curves, see Equations 16.2.7. We have similar results for space curves

[see the equation preceding (10) in Section 16.2].
4. (a) See Definition 16.2.13.

(b) If F is a force field, [ o F - dr represents the work done by F in moving a particle along the curve C.
) [(F-dr= [,Pdr+Qdy+ Rdz

5. See Theorem 16.3.2.
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6.

10.

1.

12,

13.

14.

15.

16.
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@ [, ¢ F - dr is independent of path if the line integral has the same value for any two curves that have the same initial and
terminal points.

(b) See Theorem 16.3.4.

. See the statement of Green’s Theorem on page 1108 [ET 1084].

. See Equations 16.4.5.

.(a)curle(a—R @)i+(a—P7@)j+(@,a_P)k:VXF

dy 0z 0z Oz or Oy
. 0P  0Q  OR _
(b)dIVF_8x+8y+8z_VF

(c) For curl F, see the discussion accompanying Figure 1 on page 1118 [ET 1094] as well as Figure 6 and the accompanying
discussion on page 1150 [ET 1126]. For div F, see the discussion following Example 5 on page 1119 [ET 1095] as well as
the discussion preceding (8) on page 1157 [ET 1133].

See Theorem 16.3.6; see Theorem 16.5.4.

(a) See (1) and (2) and the accompanying discussion in Section 16.6; See Figure 4 and the accompanying discussion on

page 1124 [ET 1100].
(b) See Definition 16.6.6.
(c) See Equation 16.6.9.
(a) See (1) in Section 16.7.
(b) We normally evaluate the surface integral using Formula 16.7.2.
(c) See Formula 16.7.4.
(d) The mass is m = [, p(z,y, z) dS and the center of mass is (Z,7,z) where T = + [[ zp(x,y, z) dS,

=21 [foyp(z,y,2)dS,z= L [[,zp(z,y,z)dS.

(a) See Figures 6 and 7 and the accompanying discussion in Section 16.7. A Mgbius strip is a nonorientable surface; see

Figures 4 and 5 and the accompanying discussion on page 1139 [ET 1115].
(b) See Definition 16.7.8.
(c) See Formula 16.7.9.

(d) See Formula 16.7.10.
See the statement of Stokes” Theorem on page 1146 [ET 1122].
See the statement of the Divergence Theorem on page 1153 [ET 1129].

In each theorem, we have an integral of a “derivative” over a region on the left side, while the right side involves the values of

the original function only on the boundary of the region.
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. False; div F is a scalar field.

. True, by Theorem 16.5.3 and the fact that div 0 = 0.

5. False. See Exercise 16.3.35. (But the assertion is true if D is simply-connected; see Theorem 16.3.6.)
7. False. For example, div(yi) = 0 = div(z j) but yi # zj.
9. True. See Exercise 16.5.24.
11. True. Apply the Divergence Theorem and use the fact that div F = 0.
EXERCISES
1. (a) Vectors starting on C' point in roughly the direction opposite to C, so the tangential component F - T is negative.
Thus [, F -dr = [, F - Tds is negative.
(b) The vectors that end near P are shorter than the vectors that start near P, so the net flow is outward near P and
div F(P) is positive.

3. [,yzcoszds = [ (3cost) (3sint)cost /(1) + (—3sint)? + (3cost)? dt = [, (9cos’ ¢ sint)v/10 dt

= 910 (—3 cos®t)] 7 = —3V10(—2) =610
5. [oytde+atdy = [1 [y°(=2y) + (1 —y*)*]dy = [1,(—y" — 20" + 1) dy

1
L A e R e R B

1.C.2=142t = de=2dt,y=4 = dy=4dt,z=-1+3t = dz=3dt,0<t<1.

Joayda+ 7 dy+yzdz = [M(1+20)(46)(2) + (4)°(4) + (46)(—1 + 36)(3)] dt

1 1
= [, (116> — 4t) dt = [18¢% —2¢%] = 18 —2 =110
9. F(r(t)) = e ti+ 2 (—t)j+ (P +t3)k,r'(t) = 2ti+ 3t j — kand
JoFodr= [5(2te™ = 3t° — (12 + %)) dt = [~2te™ —2e7" — 10 — 147 — L4f] =L 4,

1. 2 [(1+ 2y)e™] = 2ze™ + a?ye™ = £ [e¥ + 2?e™¥] and the domain of F is R?, so F is conservative. Thus there
exists a function f such that F = V f. Then f,(z,y) = eV 4 z?e™ implies f(x,y) = eV + ze™ + g(z) and then
fa(z,y) = zye™ + €™ + ¢'(x) = (1 + ay)e™ + ¢'(x). But fo(z,y) = (1 +ay)e™,s0 g (x) =0 = g(z) =K.
Thus f(z,y) = e¥ + ze” + K is a potential function for F.

13. Since % (4x3y® — 2zy3) = 823y — 629° = % (2z%y — 32%y® + 4y°) and the domain of F is R?, F is conservative.

Furthermore f(z,y) = 2*y* — 22y 4 y* is a potential function for F. ¢ = 0 corresponds to the point (0,1) and ¢t = 1
corresponds to (1,1),s0 [, F-dr = f(1,1) — f(0,1) =1 —-1=0.
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15. Crir(t) =ti+ 2§, -1 <t < 1; y
C
Cor(t)=—ti+j-1<t<1. L1 2 1,1
Then D C,
Jo zy?de — 2ydy = f_ll(if5 - 2755)d15—l—f_11 tdt = -

=[] +[3%], =0

Using Green’s Theorem, we have

11
/ zyde — 2Py dy = // L,% (—z?y) — 32 (my2)] dA = // (—2zy — 2zy) dA = / / —4xy dydx
c D Y D —1Ja2

:f71 [—2zy }y 22 da:—f71 (22° — 2x) dx = [éxﬁ—xz]il =0

17. [, P’yde —zy’dy = [f [a_az (—xy®) — a% (ny)] dA= [[ (—y*—2*)dA= 0 7"3 drdf = —

z2 +y2 <4 z2 +y2 <4

19. If we assume there is such a vector field G, then div(curl G) = 2 + 3z — 2z2. But div(curl F) = 0 for all vector fields F.

Thus such a G cannot exist.

21. For any piecewise-smooth simple closed plane curve C' bounding a region D, we can apply Green’s Theorem to

F(o,y) = f(@)i+g()jt0eet [ f(z)de+g() dy = [[, |2 9(y) = & f(2)] dA = [[,0d4=0.

23. V2 f = 0 means that g— + 8_f = 0. Now if F = f, i — f,jand C is any closed path in D, then applying Green’s

Theorem, we get
JoFrdr=[o fydo— fody = [[, [& (~1:) = & (£,)] dA
= _ffD(fzz +fyy)dA = _ffDOdA =0
Therefore the line integral is independent of path, by Theorem 16.3.3.

25 2= f(z,y) =2> +2ywith0 < 2 < 1,0 < y < 2x. Thus
S)=[[,VI+aZ+4ddA= [} [2*\/E+dZdyde = [} 225+ da?dz = (5 + 4a? )3/2] =1(27-55).

27. 2 = f(z,y) =2® +y? with0 < 2% +y®> <4sor, x ry = —2xi— 2yj + k (using upward orientation). Then

[[szdS=[[ (2®+4?) /422 + 42 + 1dA

2 +y2<4

VI +4r2drdf = £ (39117 +1)

(Substitute © = 1 + 472 and use tables.)

29. Since the sphere bounds a simple solid region, the Divergence Theorem applies and
[JsFdS= [[f ,divRaV = [[],(z ~2)aV = [[f,zdV —2[[] ,aV

-0 |:oddfunctioninz :| —2~V(E):—2'%7F(2)3:—%7r

and E is symmetric 3
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Alternate solution: F(r(¢,0)) = 4sin¢ cosf cos¢pi—4sin¢ sinfj + 6sin ¢ cos b k,
rg X rg = 4sin’ ¢ cosfi+ 4sin’ ¢ sin@j + 4sin ¢ cos ¢ k, and
F . (ry x r9) = 165sin® ¢ cos® 6 cos ¢ — 16sin® ¢ sin® @ + 24 sin® ¢ cos ¢ cos 6. Then
J[¢F-ds= fo%foﬂ(16 sin® ¢ cos ¢ cos® § — 16 sin® ¢ sin® O + 24 sin® ¢ cos ¢ cos 0) do df

= [27 4(-165in%0) do = —Lrr

Since curl F = 0, [[ (curl F) - dS = 0. We parametrize C: r(t) = costi+sintj, 0 <t < 27 and

$F - dr = O%(— cos’ t sint +sin® ¢t cost)dt = % cos® ¢t + 3 sin’¢] iﬂ =0.

The surface is givenbyz +y+2=1lorz=1—-2—y,0<2<1,0<y<1l—zandr, xr, =i+ j+ k. Then

$F-dr= [[scurlF-dS = [[ (—yi—zj—zk) - (i+j+k)dA= [[,(—1)dA = —(area of D) = —3.

Jf[ g divFadV = Iff 3dV = 3(volume of sphere) = 4x. Then

22 +y2+22<1
F(r(¢,0)) - (ry x rg) = sin® ¢ cos? @ + sin® ¢ sin® 6 + sin ¢ cos? ¢ = sin ¢ and
[fF-dS = [ [Tsin¢dpdl = (2m)(2) = 4.

Because curl F = 0, F is conservative, so there exists a function f such that V f = F. Then f,(z,y, z) = 3x2yz — 3y

implies f(xvyv Z) = ‘rgyz - 3l’y + g(y7 Z) = fy(‘rv Y, Z) = 132 — 3z + gy(y7 Z) But fy(‘rv Y, Z) = Z3Z - 3m’ SO
9(y, 2) = h(z) and f(z,y, 2) = 2®yz — 3wy + h(2). Then f.(x,y, 2) = 2’y + h'(z) but f.(z,y,2) = 2°y + 2z,
s0 h(z) = 2® 4+ K and a potential function for F is f(z, v, z) = x>yz — 3zy + 2°. Hence

JoFde= [,V dr=f(0,3,0)— f(0,0,2) =0—4=—4.
By the Divergence Theorem, [[,F -ndS = [[[ . divFdV = 3(volume of E) = 3(8 — 1) = 21.

LetF =a xr = {(a1,a2,a3) X (2,9, 2) = (a2z — azy, asx — a1z, a1y — asz). Then curl F = (2a4, 2a2, 2a3) = 2a,

and [[;2a-dS = [[;curlF-dS = [, F-dr = [,(axr)-drby Stokes’ Theorem.
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1. Let S be the portion of ©(S) between S(a) and S, and let 95 be its boundary. Also let S, be the lateral surface of Sy [that

is, the surface of S1 except S and S(a)]. Applying the Divergence Theorem we have / / T Ras= / / V- r% v
2S5, S1

But o r_[2 9 9\, @ y 2
r8 o N\OE Ay 02/ \ (a2 +y2 + 22)Y (a2 + 42 + 22)°2 (a2 42 + 22)°

B (m2+y2+z2—3$2)+(I2+y2+22—3y2)+(m2+y2+z2—3,22) 0
- (xz +92 + 22)5/2 -

= / / 2 4s = / / / 0dV = 0. On the other hand, notice that for the surfaces of 9.5 other than S(a) and S,
o, T° 51
rn=0 =

o_// L 2as= //r“ds+// —dS+// r';‘ds:/ // LRdas =
25, r3 S(a) r3 s, T S(a) r3
//—dS— // r_dS Notice that on S(a),r =a = n:—%:—gandrr:rz:az,so
S S(a)
ta— [ ZRas— [[ Ifas- // -=/ as = ZLT) _ g,
S S @ wa 7@ s a?
Therefore |Q2(S)| = / / T Bas.

3. The given line integral 3 [, (bz — cy) dx + (cx — az) dy + (ay — bx) dz can be expressed as [, F - dr if we define the vector

field F by F(z,y,2) = Pi+ Qj+ Rk = 3(bz — cy) i + 3(cx — az) j + 3 (ay — bx) k. Then define S to be the planar
interior of C, so S is an oriented, smooth surface. Stokes” Theorem says [, F -dr = [[; curl F -dS = [[, curl F - ndS.

Now

_(OR 9Q\. OP OR oQ or
CurlFi(@y 8z)l+(3z 8x)‘]+<3x 8y>k

=(3a+3a)i+ (3b+3b)j+ (3¢+30)k=ai+bj+ck=n
socurl F-n=n-n= |n|* =1, hence [[, curl F - ndS = [, dS which is simply the surface area of S. Thus,

JoF-dr =3 [ (bz — cy) dx + (cx — az) dy + (ay — bx) dz is the plane area enclosed by C.

5.(F~V)G:( 8-1—@1 +R18>(P2i+Q2j+R2k)

' 9z 1o}
OP: 0P 0P\ . 0 1o 0 .
= P1—2+Q1 +R1—2 i+ ( A——— Q2 + Q1 Q2+R1 Q> J
ox Jy oz 0z
(P18R2 +Q1 +R18£ )k

=F -VP)i+(F-VQ2)j+ (F-VRy)k
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Similarly, (G- V)F = (G -VP1)i+(G-VQ1)j+ (G- VR1)k. Then

i J k
F xcurlG = Py Q1 R
8R2/8y—8Q2/8z 8P2/62—8R2/8$ 8Q2/8I—8P2/6y
29,00 28, U0 OBy 0Qs  ,0Qs |, 0P
(Ql Q1 R1a +R18 ) (R1 By R 52 P E + P 8y)‘]
OP: OR OR 0
—|—<P16—2— Z =@ 2+Q1 Q2>
z
and
. 0Q1 B % _ @ OR1 . OR: _ 0Q1 _ 0Q1 oP .
G X curl F = (QQ O Qz R2 92 —|—R2 O >1—|— (R2 6y R2 92 P2 O +P2 8y J
oP 0
+(P2 81 Q2 + Q2 Ql)
Then
(F-V)G+F xcurlG= ( OF, +Q1%+318R2)i+( oP; +Q1%+R18R2)‘
or oy
(A2 1% )k
0z 0z
and
OP, 0 R\ . OP, 0 Ri\ .
(G~V)F—|—G><curlF:< 1+Q2 Q1+R2 m)‘*( 1+Q2 Q1+R2 8y>‘]
OP; 0 R
+( 1+Q2 Q1+R28Z>k.

Hence

(F-V)G+F xcurlG +(G-V)F+ G x curl F

|:<P16P2 +P28P1> (Q16Q2+Q 3Q1>+<R13R2+R23R )]1

0 ox 0. ox
OP: OP; 0 0 OR OR
+|(AZE + == Q1—5— Q2 +Q2 Q1 + (Ri==+ R )|
dy dy dy dy
P P,
(A2 R ) (@22 008 )+ (2 4 ) |k
0z oz oz oz

= V(PP +Q1Q2 + RiR:) = V(F - G).
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17 [1 SECOND-ORDER DIFFERENTIAL EQUATIONS

17.1 Second-Order Linear Equations

1.

1.

13.

15.

17.

19.

The auxiliary equationis 7> —r —6 =0 = (r—3)(r4+2)=0 = r=3,7 = —2. Then by (8) the general solution

sy = c1€3® + coe™ %",

. The auxiliary equation is 7> + 16 = 0 = r = =44. Then by (11) the general solution is

y = e°"(c1 cos 4a + c2 sin4x) = c1 cos 4x + ¢z sin 4.

. The auxiliary equationis 9r> — 12r +4=0 = (3r—2)>=0 = r = 2. Then by (10), the general solution is

2 2
y = c1®*/3 4 cpwe®/3,

. The auxiliary equationis 2r* —r =r(2r —1) =0 = r=0,7=1,s0y =c1e” + 2™/ = ¢1 + e/,

. The auxiliary equationis r> —4r +13 =0 = r= Hf\/_—% =24 3i,50y = €**(c1 cos 3z + c2 sin 37).
The auxiliary equationis 2r> +2r —1 =0 = r = #\/ﬁ = f% + ?, S0
y = 016(71/2+\/§/2)t + 626(71/27\/5/2%.
The auxiliary equation is 100r2 +200r +101 =0 = r= %B/TOO = -1+ %i, SO
P=et [cl Ccos (%t) + ¢o sin (%t)]
The auxiliary equation is 57> —2r —3 = (5r +3)(r—1) =0 = r=—% 10

Q

—3x/5

r = 1, so the general solution is y = c1e + c2e”. We graph the basic

—3x/5
>

solutions f(z) =e g(x) = e® as well as y = e732/5 4 2¢2,

y=e 3/ _¢% andy = —2e3%/5 —

e”. Each solution consists of a single

continuous curve that approaches either 0 or 00 as z — Foco0. -10

r? —6r +8 = (r —4)(r —2) =0,s0r = 4, 7 = 2 and the general solution is y = c1e** + coe**. Then
y =4c1e*® +2ce*,50y(0) =2 = c1+ce=2andy’(0) =2 = 4c1 +2c2 =2, givinge; = —landcy = 3.

Thus the solution to the initial-value problem is y = 3¢** — ¢**,

9 +12r+4=(3r+2)>=0 = r = —2 and the general solution is y = cre” /% 4 cowe™"/3 Theny(0) =1 =
c1 = land, sincey’ = —Zc1e™%"/3 + ¢y (1—32z) e 23 4y (0)=0 = —Zc1+c2=0,50co = 2 and the solution to

the initial-value problem is y = e~2%/3 + %me‘hm.
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21.72 —6r+10=0 = r =3+ and the general solution is y = ¢**(c1 cosx + c2 sinz). Then 2 = y(0) = ¢1 and

3=1%(0)=ca+3ci = ca=—3and the solution to the initial-value problem is y = ¢3¥(2 cos x — 3sin ).

2.7 —r—12=(r—4)(r+3)=0 = r =4, = —3 and the general solution is y = c1€*” 4 coe™>. Then

—4

0=y(1) =cie’ + cze”®and 1 = y/(1) = dcre* — 3cze * so c1 = Le7*, ¢ = —2€® and the solution to the initial-value

1
7

—4 4z %e3e_3z e

problem is y = %e e dg—4 %63_31.

1
7
25 r>4+4=0 = r=42iand the general solution is y = c1 cos 2z + c2 sin 2x. Then 5 = y(0) = c1 and 3 = y(7/4) = c2,

so the solution of the boundary-value problem is y = 5 cos 2z + 3 sin 2.

2. r* +4r+4=(r+22=0 = r=—2and the general solution is y = c1e™2" + cze™ 2. Then 2 = y(0) = ¢; and
0=1y(1) = cie™2 + cae? 50 ¢ = —2, and the solution of the boundary-value problem is y = 2¢™2* — 2ze™ 27,

2.7 —r=r(r—1)=0 = r=0,r =1 and the general solution is y = c1 + c2e®. Then 1 = y(0) = ¢1 + c2

—2 1 . . -2 z
and2 =y(1) = c1 +cees0c1 = ZTI’ 2= ——7- The solution of the boundary-value problem is y = Z—_l + ee_ T

3. 7 +4r4+20=0 = 7= —2 4iand the general solution is y = e~>*(c; cos 4x + ¢ sin 4z). But 1 = y(0) = ¢; and
2 =y(r) =cie™?™ = c¢1 = 2€°7, so there is no solution.
33. (@) Case I (A =0): y" + Ay =0 = 3"’ = 0which has an auxiliary equation7> =0 = r=0 = y=c +cox
where y(0) = 0and y(L) = 0. Thus,0 = y(0) =c1and0 =y(L) = 2L = ¢1 =c2 =0. Thusy =0.
Case 2 (A < 0): ¢y + Ay = 0 has auxiliary equation 7> = —\ = 7 = 4+/—\ [distinct and real since A < 0] =
y = c1e¥ + coe”V"2* where y(0) = 0 and y(L) = 0. Thus 0 = y(0) = ¢1 + ¢z (%) and
0=y(L) = cieV = 4 cpe VAL M.
Multiplying () by eV~ and subtracting (1) gives c2 (emL - e_‘/__”“) =0 = c2 = 0and thus ¢c; = 0 from (x).
Thus y = 0 for the cases A = 0 and X < 0.
() y"" + Ay = 0 has an auxiliary equation 7> + A\ =0 = r=+ivVA = y=cicosVAz+ casinv\z where
y(0) = 0 and y(L) = 0. Thus, 0 = y(0) = ¢1 and 0 = y(L) = c2 sin /AL since c1 = 0. Since we cannot have a trivial
solution, ¢z # O and thus sin VAL =0 = /AL = nr where n is an integer = \ = n*n?/L? and
y = ca sin(nmz/L) where n is an integer.
3. (@r?—2r+2=0 = r=17and the general solution is y = € (¢1 cos = + c2sinx). If y(a) = c and y(b) = d then
e*(cicosa+casina) =c¢ = cicosa+ casina = ce”® and e’ (c1cosb+ casind) =d =

c1cosb+ casinb = de™°. This gives a linear system in ¢; and ¢z which has a unique solution if the lines are not parallel.

If the lines are not vertical or horizontal, we have parallel lines if cos a = k cos b and sin a = k sin b for some nonzero
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cosa sina sina sinb
constant k or =k =— =
cosb sinb cosa cosb

= tana=tanb = b —a = nm, nany integer. (Note that

none of cos a, cos b, sin a, sin b are zero.) If the lines are both horizontal then cosa = cosb=0 = b—a = nm,and

similarly vertical lines means sina =sinb =0 =- b — a = nm. Thus the system has a unique solution if b — a # n.

(b) The linear system has no solution if the lines are parallel but not identical. From part (a) the lines are parallel if

b — a = nr. If the lines are not horizontal, they are identical if ce™® = kde™® =

€ _ ,a-b008a

(If d = 0 then ¢ = 0 also.) If they are horizontal then cosb = 0, but k = 2% also (and sin b # 0) so

d cosh’
.. cC _psina L c _pcosa .
we require — = e*~®>——. Thus the system has no solution if b — @ = n and = # e*~° unless cosb = 0, in
d sinb d 0s b

which case 2 # e

(c) The linear system has infinitely many solution if the lines are identical (and necessarily parallel). From part (b) this occurs

c _,cosa . . c
when b — @ = nr and = = e* = unless cos b = 0, in which case = = e* >,
d cosb d sin b

17.2 Nonhomogeneous Linear Equations

1. The auxiliary equationis 7> — 2r —3 = (r —3)(r +1) =0 = r =3, = —1, so the complementary solution is
ye(x) = c1€>™ + coe™™. We try the particular solution y,(z) = A cos 2z + Bsin 2z, so
yp = —2Asin 2z + 2B cos 2z and y,, = —4A cos 2z — 4B sin 2z. Substitution into the differential equation gives
(—4Acos2z — 4Bsin 2z) — 2(—2Asin 2z 4+ 2B cos 2z) — 3(Acos 2z + Bsin2z) = cos2zx =
(=7TA — 4B)cos2x + (4A — TB)sin2z = cos2z. Then -7TA —4B =1and4A—-7B=0 = A= —L and

B = — 4. Thus the general solution is y(z) = ye(z) + yp(z) = c1€®” + cae™® — &= cos 2z — 4 sin 2a.

3. The auxiliary equation is 72 + 9 = 0 with roots 7 = 431, so the complementary solution is y.(x) = ¢1 cos 3x 4 ¢z sin 3z.
Try the particular solution y,(z) = Ae ", s0 y), = —2Ae " and y;) = 4Ae™>". Substitution into the differential equation
gives 4Ae™>* + 9(Ae™*") = e " or134e " = e **. Thus 134 =1 = A = 3 and the general solution is

y(z) = ye(x) + yp(x) = 1083z + c2sin 3z + e >

5. The auxiliary equation is 7 — 47 + 5 = 0 with roots 7 = 2 + i, so the complementary solution is
Ye(z) = €**(c1cosx + cosinz). Try yp (z) = Ae™ ", s0y), = —Ae " and y)) = Ae™ ™. Substitution gives
Ae™" —4(—Ae” ") +5(Ae ") =e* = 10Ae* =e* = A= {5. Thus the general solution is

—x

y(z) = 62””(01 cosz + czsinz) + —se

L
10
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The auxiliary equation is 72 + 1 = 0 with roots = =4, so the complementary solution is y.(x) = c1 cosz + c2 sin .

x

Fory” +y = €” try yp, () = Ae”. Then y), = y,, = Ae” and substitution gives Ae” + Ae” =e” = A=1,
S0 Yp, () = 2e”. Fory” +y = 2° try yp, (z) = A2® + Bz® + Cx + D. Then y,, = 3Az* 4+ 2Bz + C and
Yy, = 6Az + 2B. Substituting, we have 6Az + 2B + Az® + B2®* + Cx + D = 2%, 50 A=1, B =0,
6A+C=0 = C=-6,and2B+D =0 = D =0. Thus yp,(r) = 2 — 6z and the general solution is
Y(@) = Ye(®) + Yp, () + Ypo (x) = crcosz + cosinz + 2 +2° — 6. But2=y(0) =c1 + 2 =
c1=3%2and0=y'(0) =ca+ % —6 = cz =4 Thus the solution to the initial-value problem is

3

y(z) = $cosz + L sinz + Je* + 2® — 6a.

. The auxiliary equation is 72 — 7 = 0 with roots 7 = 0, 7 = 1 so the complementary solution is y.(x) = ¢1 + cze®.

Try yp(x) = z(Az + B)e” so that no term in y,, is a solution of the complementary equation. Then

y, = (Az® + (2A + B)z + B)e” and y)) = (Az® + (4A + B)z + (2A + 2B))e”. Substitution into the differential equation
gives (Az? + (4A+ B)x + (2A + 2B))e” — (Az? + 24+ B)x + B)e® = v = (2Ax + (2A+ B))e® = ze® =
A=1,B=—1 Thus yp(x) = (32° — x)e” and the general solution is y(z) = c1 + c2e” + (32° — z)e”. But
2=y(0)=c1+cxand1 =y'(0) = c2 — 1,50 c2 = 2 and ¢; = 0. The solution to the initial-value problem is

y(x) = 26" + (32° —x)e” = e (307 — o +2).

The auxiliary equation is 7 + 3r +2 = (r +1)(r +2) = 0,507 = —1,7 = —2 and y.(z) = c1e™" + c2e” ",

Try yp = Acosz + Bsinz = y, = —Asinz + Bcosz, y, = —Acosz — Bsinz. Substituting into the differential

equation gives (—A cosz — Bsinxz) + 3(—Asinz 4+ Bceosz) + 2(Acosx + Bsinz) = cosx or

(A+3B)cosz + (—3A + B)sinx = cos z. Then solving the equations 3

A+3B=1,-3A+ B=0gives A = 1—10, B= 1—30 and the general

solution is y(z) = c1e™* + c2e” > + & cosx + 35 sinz. The graph )
P

shows y, and several other solutions. Notice that all solutions are

asymptotic to y, as z — oo. Except for yp, all solutions approach either co
Or —0o as & — —oo.
Here y.(x) = c1€>” + c2e™ ", and a trial solution is y, (x) = (Az + B)e® cosz + (Cx + D)e” sin .

Here y.(z) = c1€®® 4 coe”. Fory” — 3y’ 4 2y = €” try yp, (x) = Axe” (since y = Ae” is a solution of the complementary
equation) and for 4" — 3y’ + 2y = sinx try y,, (z) = Bcosx + Csinz. Thus a trial solution is

Yp(T) = yp, (T) + yp, (x) = Aze® + Beosz + C'sinz.

Since y. () = e~ "(c1 cos 3z + c2 sin 3x) we try y,(z) = x(Az® + Bz + C)e " cos 3z + x(Dz? + Ex + F)e “sin 3z

(so that no term of y,, is a solution of the complementary equation).
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Note: Solving Equations (7) and (9) in The Method of Variation of Parameters gives
Gy2
/

G
U = — and uh = L

a(y1ys — y2y1) a(y1y5 — y2y1)
We will use these equations rather than resolving the system in each of the remaining exercises in this section.

19. (@) Here 4> +1=0 = r= i%i and y.(x) = 1 cos(%x) +c2 sin(%x). We try a particular solution of the form
yp(z) = Acosz + Bsinz = vy, = —Asinz + Bcosz andy, = —Acosz — Bsinz. Then the equation
4y" + y = cosx becomes 4(—Acosx — Bsinx) + (Acosz + Bsinz) = cosz or

—3Acosz —3Bsinx =cosz = A= f%, B = 0. Thus, yp(z) = f% cos x and the general solution is

y(@) = ye(x) + yp(z) = c1cos(2x) + cosin(iz) — 1 cosz.

(b) From (a) we know that y.(x) = c1 cos § + casin . Setting y1 = cos §, y2 = sin &, we have

T
COS X SIn 3 1

! = Lleog?22 4 lgipn2z =1 P _ 7772 1 .Z)gin& =_1 2z _ inZ
Y1Ya — Y2y1 = 5 cos” 3 + 5sin” § = 5. Thusu; = Yo = 2c:os(2 2)51112— 2(2cos 5 )sm2
2
x
COS T COS &
- 2 1 z z —1(]_94in%22 z
and uy = 11 —QCOS<2 2)(:052*2(1 2sin 2)cos,Q.Then
2
— lanz _ 2z gin & — o 2 3z
ui(z) = [ (4sin% —cos® £ sin %) doz = —cos % + 2 cos” £ and

uz(w) = [ (3 cos £ —sin® £ cos £) de =sin £ — 2 sin® £. Thus

z 2 3z z 2 3z _ 2x _ n2zx 2 4z 4z
(fcos§+§cos 5)c055+(sm57531n 5)sm = (cos 5 sin 2)+3(cos > sin 2)

N
S
—~
8]
—
I

z
2
—— .z 2 2z in2 & z _ T — _ 2 —_1
= —cos (2 %)+ 2 (cos® £ +sin” £) (cos® £ n’%) = —cosx+ 2cosx = —3 cosx
. . _ _ x T 1
and the general solution is y(x) = y.(x) + yp(2z) = c1cos § + c2sin § — 3 cos .

2. (@) —2r+1=(r—1)2*=0 = r =1, so the complementary solution is y.(z) = c1e” + cawe”. A particular solution
is of the form y, (z) = Ae®”. Thus 4A4e*” — 44> + Ae® = e** = Ae* =€ = A=1 = yy(z)=¢€*
So a general solution is y(z) = ye(z) + yp(z) = c1e” + caxe™ + €>®
(b) From (a), ye(z) = c1e” + caxe”, so set y1 = €°, ya = xe”. Then, y1yh — y2yi = **(1 4 ) — xe®*” = €>” and so
up = —ze® = wui(x)=— [ze®dr=—(x—1)e” [byparts] anduj =e” = wuz(z)= [e” dz =e". Hence
yp (1) = (1 — 2)e® 4 ze** = €2® and the general solution is y(2) = ye(x) + yp(z) = c1€” + cowe™ + €2®

23. As in Example 5, y.(z) = c1sinz + ca2 cos z, so set y1 = sinx, y» = cosz. Then Y1Ys — YoUys = — sinx — cos’z = -1,
2
sec” x cosT

=) =secx = ui(z)= [secxdr =In(secz+tanz)for0 <z < %,

sou) = —

sec? z sinx

T = —secx tanxz = u2(z) = —secz. Hence

and uh =

yp(z) = In(secx + tanz) - sinx — secz - cosz = sinz In(sec z + tan ) — 1 and the general solution is

y(z) = cisinx + ca cosz + sinzx In(secx + tanz) — 1.
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; 2 ’ ’ 3 ’ e e "
y1=e",y2 = e and y1ys — Y2y = €*. Souj = Atenedr  1tev and
e " Y , e® e®
w(@) = /_ l+e® dv=In(l+e™). wz = (1t e2)ede e 42 0

ua(x) = /ﬁ do = ln(e ej"_ ) —e " =In(l4+e ") — e ". Hence

yp(x) = e"In(1 + e7%) + **[In(1 + e~ ) — e~] and the general solution is

y(@) = [e1 +In(14+e7®)]e” 4 [c2 — e 4+ In(1 4 e77)]e?™.

r?—2r+1=>r—-1)>%=0 = r=1s0y(x) =cie” + coxe”. Thusy1 = €, yo = ze” and

T e /(1 2
Y195 — Yoyt = €% (x + 1)e” — ze®e” = e*”. Souj = _zxe 66/2(1 +27) =7 —fxz
x 1 2 e” e /(1 +27) 1 1
u1=—/1+x2dx:—§ln(1+$),u'2= o2 :1+x2 = Uz = 1+m2dm=tan x and
yp(z) = —3€" In(1 + 2%) + xe” tan~ ' . Hence the general solution is y(z) = €” [c1 + coz — 3 In(1 + 2°) + ztan™" z].

17.3 Applications of Second-Order Differential Equations

. By Hooke’s Law £(0.25) = 25 so k = 100 is the spring constant and the differential equation is 5z” + 100x = 0.

The auxiliary equation is 512 + 100 = 0 with roots 7 = 42 V51, so the general solution to the differential equation is
z(t) = c1cos(2+/5t) + casin(2v/5¢). We are given that 2(0) = 0.35 = ¢; =0.35and2'(0) =0 =

2v6e; =0 = ¢z =0, so the position of the mass after ¢ seconds is () = 0.35cos(2/5t).

. k(0.5) = 6 or k = 12 is the spring constant, so the initial-value problem is 2z” + 14z’ + 12z = 0, z(0) = 1, z'(0) = 0.

The general solution is (t) = c1e™% 4 coe™". But 1 = 2(0) = ¢1 + c2 and 0 = 2’(0) = —6¢1 — c2. Thus the position is

given by x(t) = —2e™% + e,

. For critical damping we need ¢® — 4mk = 0 orm = ¢*/(4k) = 14 /(4 - 12) = 2 kg.

. We are given m = 1, k = 100, x(0) = —0.1 and z(0) = 0. From (3), the differential equation is CjT;E +c Z—f + 100z =0
with auxiliary equation 72 + ¢r + 100 = 0.
If ¢ = 10, we have two complex roots r = —5 & 5 v/3 4, so the motion is underdamped and the solution is
z=e " [c1cos(5v3t) + casin(5v/3¢)]. Then —0.1 = z(0) = c1 and 0 = 2'(0) =5v3c2 —5c1 = 2 = — TOVED

sox =e 0 [70.1 cos(5 \/gt) - 101—\/5 sin(5 \/§t)}
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If ¢ = 15, we again have underdamping since the auxiliary equation has roots r = —?5 +32 ‘/_z The general solution is
x = e 15t/2 [01 COS(STﬁt) +c2 Sin(sT‘ﬁt)},so —0.1=2z(0)=c1and0 =2'(0) = 57\/752 -8y = o= —%ﬁ.

__—15t/2 57 3 s (5T
Thus z = e~ 1%/ [70.1cos(Tt)f loﬁsm(Tt)]

For ¢ = 20, we have equal roots r1 = ro = —10, so the oscillation is critically damped and the solution is

x = (c1+ cat)e 1% Then —0.1 = 2(0) = c1 and 0 = 2'(0) = —10c1 +c2 = c2 = —1,s0x = (—0.1 —t)e '

If ¢ = 25 the auxiliary equation has roots 71 = —5, ro = —20, so we have overdamping and the solution is
z=cre” + e ?” . Then —0.1 = 2(0) = c1 + c2and 0 = 2/ (0) = —5¢1 —20c2 = 1 = —= and ¢z = o5,
sox=—2e o 4 e 20

If c = 30 we have roots r = —15+ 5 \/5, so the motion is /c =10

0.02 c=15
overdamped and the solution is = cye("12T5V5)t | pye(-15-5VE)t, N )

0 e 1.4
Then —0.1 = z(0) = ¢1 + ¢2 and ,/\:\»&‘C =20

2 Ne =125
0=2'(0)=(—15+55 ~15-5/5 = i
¥(0) = (<1545 VE) e1 + (15— 5V5) e [
= =2 1_03\/_ and ¢z = _51"0‘3\/5, s0 f
_ (=5-3V5 15+ 5V5)t =5+35 15— 55)t b S/

x—( 100 )( )+( 100 )( . -0.11

. The differential equation is ma"” + kx = Fp coswot and wo # w = /k /m. Here the auxiliary equation is mri+k=0

with roots +/k/mi = twi so x.(t) = c1 coswt + ¢z sinwt. Since wo # w, try 2, (t) = A coswot + B sinwot.
Then we need (m) (—w3 ) (A coswot + Bsinwot) 4 k(A coswot + Bsinwot) = Fy coswot or A(k — mw3) = Fp and

B(k‘ - mw%) =0.Hence B=0and A = o 5 = 5 0 5+ since w? = ﬁ Thus the motion of the mass is given
k—mwd m(w? —wj) m

by z(t) = ¢1 coswt + ¢z sinwt + cos wot.

m(w? — w?)

From Equation 6, z(t) = f(t) + g(t) where f(t) = ¢1 coswt + c2 sinwt and g(t) = >~ coswot. Then f

mw? — i)
is periodic, with period ,and if w # wo, g is periodic with period == s . If =% is a rational number, then we can say
==% = a= Z—‘“O where a and b are non-zero integers. Then

ptta-Z) = f(t+a-2) bg(t+a-Z) =[O +g(t+22-2) = f(0) +g(t+b-2) = J(1) +9(t) = 2()
so z(t) is periodic.

Here the initial-value problem for the charge is Q" + 20Q’ + 500Q = 12, Q(0) = Q'(0) = 0. Then

Qc(t) = e '%(c1 cos 20t + c2sin20t) and try @ () = A = 5004 =120r A = ;3.

The general solution is Q(t) = e~ "**(c1 cos 20t + ¢z sin 20t) 4+ 13=. But 0 = Q(0) = ¢1 + 73z and
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Q'(t) = I(t) = e ' [(—10c1 + 20c2) cos 20t + (—10c2 — 20c1 ) sin 20¢] but 0 = Q'(0) = —10c1 + 20co. Thus the charge

is Q(t) = 1 €719 (6 cos 20t + 3sin 20t) +

555¢ 3 and the current is I(t) = e~ '**(£) sin 20¢.

125

15. As in Exercise 13, Q.(t) = e~ '%(c1 cos 20t + c2 sin 20¢) but F(t) = 12sin 10¢ so try
Qp(t) = Acos 10t + Bsin 10¢. Substituting into the differential equation gives
(—100A + 200B + 500A) cos 10t 4+ (—100B — 200A + 500B) sin 10t = 12sin 10t =

400A + 200B = 0 and 400B — 200A = 12. Thus A = B = and the general solution is

250 > 125

Q(t) = 7% (c1 cos 20t + ¢2 8in 20t) — 535 cos 10t + o= sin 10t. But 0 = Q(0) = ¢1 — 525 0 ¢1 = 525

3
250 50°
Also Q'(t) = £ sin10t + = cos 10t + e~ ***[(=10c1 + 20c2) cos 20t + (—10cz — 20c1) sin 20t] and
0=Q'(0) = 2£ 10c1 + 20c¢2 s0 co = 500 Hence the charge is given by

Q(t) = e 1% [525 cos 20t — =25 sin 20t] — 525 cos 10t + 3= sin 10¢.

17. z(t) = Acos(wt +6) < z(t) = A[coswtcosd —sinwtsind] < z(t) = A(Z coswt + — 1 smwt) where

cosd =ci1/Aandsind = —c2/A & x(t) = c1 coswt + casinwt. [Notethatcos?§ +sin®6 =1 = ¢f +c3 = A%]

17.4 Series Solutions

18

o=}
1. Lety(x) = z™. Then y'(x) = 3 nc,z™ * and the given equation, y’ — y = 0, becomes
n=1

3
Il
<

o0 OO OO OO
S nenx™ !t — 3 cuz™ = 0. Replacing n by n + 1 in the first sum gives S (n + 1)cpp12™ — 3. cnz™ = 0, s0

n=1 n=0 n=0 n=0

18

[(n 4 1)cny1 — cn]z™ = 0. Equating coefficients gives (n + 1)¢n4+1 — ¢, = 0, so the recursion relation is

n=0
Cn, 1 Co 1 1 Co 1 Co
Cn+1 = n—H,n_O,l,Q,.... Thencl —60,62—501 = E,C3—§Cz— § 500—5,(34 ZCS E,and
co [} [} co [} x"l
in general, ¢, = —. Thus, the solution is y(z) = }_ cna™ = " =co Y, — =coe”.
n: n=0 n=0 TV n=0 T

3. Assuming y(z) = Z cnx™, we have v/ (z) = 3 nepx™ ' = 3 (04 1)eat1z™ and

n= n=1 n=0

—xly = — io: Cnz" T = — io: cn_2x™. Hence, the equation 3/ = x?y becomes i (n+ Depprz™ — i Cn—22" =0
n=0 n=2 n=0 n=2

orci + 2cox + nizz[(n + 1)ent1 — en—2] 2™ = 0. Equating coefficients gives ¢1 = ¢2 = 0 and ¢p41 = ;7:21

forn =2,3,.... Butci = 0,50 csa =0 and ¢; = 0 and in general c3,,4+1 = 0. Similarly c2 = 0 so ¢3,4+2 = 0. Finally

c3 = C_O, g = %3 = % = 32602', = %6 =3 'Cg' 3 33603', ..,and c3p, = ﬁ Thus, the solution

isy(x) = nio cnx” = nZO Canx’" = nio 3ncf)n' =co Zo 37:' Z ( 3/3) . _ 60613/3

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 17.4 SERIES SOLUTIONS [ 353

nepz™ tandy” (2) = Y (n+ 2)(n + 1)cnq2x™. The differential equation
1 n=0

8

OO
5 Lety(z) = > cnz” = ¢ (x)=
n=0

n

becomes > (n+2)(n+ Dentoz™ +2 3 nepz™ 4+ Y caz™ =0o0r 3 [(n+2)(n + 1)cnt2 +ncn +cn]z™ =0

n=0 n=1 n=0 n=0

since Y ne,z™ = Y ne,a™|. Equating coefficients gives (n + 2)(n + 1)cnt2 + (n + 1)e, = 0, thus the
n=1 n=0
—(n+1e, _
n+2)(n+1) n+2’

recursion relation is ¢, 42 = n =20,1,2,.... Then the even

coefficients are given by co = —%0, cqy = —%2 = %, cg = —%4 =3 ‘C:' 6’ and in general,
con = (=1)" = = (—1)"c0. The odd coefficients are c3 = —C—l, 5= -2 = & ,Cr = s _a ,
2-4----- 2n 27 n! 3 5 -5 7 3-5-7
. —2)"n! .
and in general, c2,41 = (—1)" = ) M L The solution is

3:5-7----- (2n+1) (2n+1)!

= (71)’“ $2n+c i (72)nn[ l,2n+1.

x)=c
y(@) =co X2 S L Cn 1)
o0 e} (o=} o0
ety (z) = > cnz™ = Yy (2) = Y neaz™ = 3 (n 4 Depriz™ and y” () = S (n + 2)(n + 1)cnpaz™. Then
n=0 n=1 n=0 n=0
o=} 1 o0 o=} o0
(2= 1)y (@) = 3 (n+2)(n+ Densoz™ = 3 (n+2) (n+ Densar™ = 35 n(n+ensia™— 35 (n+2)(n+1)ensoa”.
n=0 n=0 n=1 n=0
e} e}
Since Y n(n+ 1)cnt12™ = > n(n + 1)cay12”, the differential equation becomes
n=1 n=0
o=} o0 o=}
Snn+1)enr1z™ — D>, (n+2)(n+ 1)epgez™ + > (n+ 112" =0 =
n=0 n=0 n=0

118

O[n(n + Dentr — (m+2)(n+ 1)cnye + (n+ 1)ens1]z™ =0 or io[(n + 1)2cn+1 —(n+2)(n+ 1)cpg2]z™ =0.

3
I

Equating coefficients gives (n + 1)%cn+1 — (n 4+ 2)(n + 1)cat2 = 0 forn = 0,1,2, . ... Then the recursion relation is
Cnyo = = _('_712-)1-(713_2’_ 0 Cnt1 = ZiZC"H’ s0 given co and c1, we have ca = %cl, c3 = %cz = %01, cq4 = %Cs = %01, and
in general ¢, = %, n=1,2,3,.... Thus the solution is y(z) = co + c1 il % Note that the solution can be expressed as
n=
co —c1In(1 — z) for |z| < 1.
. Lety(z) = io cnz”. Then —xy'(z) = —x il nepx™ = — il nepz” = — io ne,z”,

o0
y'(x) = Y (n+2)(n + 1)cnt22", and the equation y” — 2y’ — y = 0 becomes
n=0

o0
> [(n+2)(n+ 1)cnt2 — nen — cn]z™ = 0. Thus, the recursion relation is
n=20
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nen + Cn Cn(n"‘l) Cn . .. .

Cnt2 = = = forn =0,1,2,.... One of the given conditions is (0) = 1. But
2T r2ntl) mi2)n+l) ni2 o & v(0)
(0)—§c(0)"'—c +0+0+---=c soc—lHencec—C—O—lc—c_Q—_1 P 1

Yy —n:On = Co = Co, o = 1. ’2_2_2’4_4_2-4’6_6_2-4-6’.“’

1 . e &,
Can = G The other given condition is 3’ (0) = 0. But 4'(0) = Y nc,(0)" ' =c1 +0+0+--- =c1,50 1 = 0.
. n=1

By the recursion relation, cz = %1 =0,c5 =0,...,cony1 =0forn =0,1,2,.... Thus, the solution to the initial-value
blemis y(1) = 52 et = 52 eana® = S0 Ao _ $2 @YD" g
roblem is y(x) = cnx™ = ConT-" = = —— =c .

proble Y n=0 n=0 2 n:02nn! n=0 n!

o0 o0 o0 o0 o0
Assuming that y(z) = Y cox”, wehavezy =2 3 coz™ = Y cux™ 2%y =22 Y neaz™ = Y nepa™t,
n=0 n=0 n=0 n=1 n=0

(=]

y'(@)= 3 nn—Depz™ 2= 3 (n+3)(n+2)cngpaz™ [replace n with n + 3]

n=2 n=-—1

=2c2+ Y (n+3)(n+2)cnpaz™

n=0

and the equation y”" + x2y’ + 2y = 0 becomes 2¢ca + > [(n + 3)(n + 2)cnts + ncn + cu] 2" = 0. So c2 = 0 and the

n=0
recursion relation is ¢, 45 = — o " — _ (n+ Den n=0,1,2 But co = y(0) = 0 = c3 and by the
T 3 (nt+2)  (n+3)(nt2 T oS PR T YR = R T 2 andhy
. . ’ 201 2
recursion relation, ¢z, = cgpy2 =0forn =0,1,2,.... Also,c1 =y (0) = 1,50 ca = 13 = I3
_ 5eq » 2:5 »2°5° _ 02257 (3n —1)? o
Cr = 7% = (71) m = (71) T, ce.y, C3n4+1 = (71) (3n T 1)' . Thus, the solution is
o oo 2252 . (37’L _ 1)2$3n,+1
— - n _ —1)"
y(x) nz::Oc T x+nzz:1 (-1) G+ 1)
Review
CONCEPT CHECK

—_

2.

. (@) ay” + by’ + cy = 0 where a, b, and c are constants.

(b) ar® +br+c=0

1T 1 coe””. If the roots are real and

(c) If the auxiliary equation has two distinct real roots 1 and r2, the solution is y = ci1e
equal, the solution is y = c1e™® + coxe”™ where r is the common root. If the roots are complex, we can write r1 = « + i3

and r2 = o — (3, and the solution is y = e**(c1 cos Sz + c2 sin Bz).

(a) An initial-value problem consists of finding a solution y of a second-order differential equation that also satisfies given

conditions y(zo) = yo and ¥’ (zo0) = y1, where yo and y; are constants.
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(b) A boundary-value problem consists of finding a solution y of a second-order differential equation that also satisfies given
boundary conditions y(xo) = yo and y(x1) = y1.
. (@) ay” + by’ + cy = G(x) where a, b, and c are constants and G is a continuous function.

(b) The complementary equation is the related homogeneous equation ay” + by’ + cy = 0. If we find the general solution y.
of the complementary equation and y,, is any particular solution of the original differential equation, then the general

solution of the original differential equation is y(x) = yp(z) + ye ().
(c) See Examples 1-5 and the associated discussion in Section 17.2.

(d) See the discussion on pages 1177-1179 [ET 1153-1155].

. Second-order linear differential equations can be used to describe the motion of a vibrating spring or to analyze an electric

circuit; see the discussion in Section 17.3.

. See Example 1 and the preceding discussion in Section 17.4.

TRUE-FALSE QuIZ

. True. See Theorem 17.1.3.

. True. coshx and sinh x are linearly independent solutions of this linear homogeneous equation.

EXERCISES

. The auxiliary equationis 4r> =1 =0 = (2r+1)(2r —1) =0 = r = ++. Then the general solution

z/2 —z/2

isy =cie + coe

. The auxiliary equationis 7> + 3 =0 = = £+/34. Then the general solution is y = ¢, COS(\/g z) + 2 sin(x/g ).

P —4r+5=0 = r=2+is0y.(r) =e*(cicosz + cosinz). Try y, (z) = Ae*® =y, = 24>
and y;) = 4Ae**. Substitution into the differential equation gives 4Ae** — 8Ae** + 5A4e** = €** = A =1land

the general solution is y(z) = €**(c1 cos + c2 sinz) 4 7.

2 —2r+1=0 = r=1andyc(x) = cie” + cawe®. Try yp(z) = (Az + B) cosz + (Cx + D)sinz =
yp = (C — Az — B)sinz + (A+ Cx + D) cosz and y, = (2C' — B — Ax) cosx + (—2A — D — Cz) sin z. Substitution
gives (—2Cw + 2C — 2A — 2D) cosz + (2Ax — 2A+ 2B — 2C)sinz =wcosz = A=0,B=C=D=—1.

The general solution is y(z) = c1e” + caze” — 3 cosz — 3(z + 1) sinz.

—2x

P —r—6=0 = r=-2,r=3andy.(z) = cie” > + 2. Fory” —y' — 6y = 1, try yp, (x) = A. Then

Yy, (¥) = yp, (x) = 0 and substitution into the differential equation gives A = —%. Fory” —y' — 6y = e >* try
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1.

13.

15.

17.

19.

21.

O CHAPTER17 SECOND-ORDER DIFFERENTIAL EQUATIONS

Yp, (z) = Bre " [since y = Be *” satisfies the complementary equation]. Then y,,, = (B — 2Bx)e”>* and

Ypy = (4Bx — 4B)e™ 2", and substitution gives —5Be™** = e ** = B = f%. The general solution then is
y(z) = cre” " 4 2€®" + yp, (@) + Ypo () = 172" + c26*" — & — Lze?".

The auxiliary equation is % 4+ 6r = 0 and the general solution is y(z) = ¢1 4 coe™ 5% = k; + koe 5@~ But

3=y(1) = k1 + k2 and 12 = /(1) = —6k>. Thus k2 = —2, k1 = 5 and the solution is y(z) = 5 — 2e~5(=~1),

The auxiliary equation is 72 — 5r + 4 = 0 and the general solution is y(x) = c1e® 4 c2¢*®. But 0 = y(0) = ¢1 + 2

and 1 = 3/(0) = c1 + 4cz, so the solution is y(z) = £ (e** — €”).

r? 4 4r+29=0 = r = —2+ 5 and the general solution is y = ¢~ 2*(c1 cos 5 + c2 sin 5z). But 1 = y(0) = ¢; and

27

—1=y(r) = —cie” = ¢ = €2, so there is no solution.

o0
n(n —1)eaz™ 2 = 3 (n 4 2)(n + 1)catoz™ and the differential equation
0 n=0

18

e}
Lety(z) = > cnz™. Theny” (z) =
n=0

n

o0
becomes Y [(n + 2)(n + 1)cnt2 + (n 4 1)cy]z™ = 0. Thus the recursion relation is ¢p42 = —cn/(n + 2)
n=0

12

forn:O,1,2,....Butco:y(O):0,5002n:0forn:0,1,2,....Alsocl:y’(O):l,soch,:—%,%:(3%,
—_1)3 —1)39331 _ 1\ o |

07:3('51?7:( 1)7!2 3',...,02n+1:%forn:0,1,2,....Thusthesolutiontotheinitial-valueproblem

n _ i (=1)" 2" n! p2n L

isy(x) = CnT
v(@) n;O n=o (2n+1)!

Here the initial-value problem is 2Q" + 40Q’ + 400Q = 12, @ (0) = 0.01, Q'(0) = 0. Then
Qc(t) = 7% (c1 cos 10t + co sin 10t) and we try @, (t) = A. Thus the general solution is

Q(t) = e 1% (c1 cos 10t + c2 8in 10t) + 2=, But 0.01 = Q'(0) = ¢1 + 0.03 and 0 = Q" (0) = —10c; + 10ca,

100

s0 ¢1 = —0.02 = co. Hence the charge is given by Q(t) = —0.02¢™ % (cos 10t + sin 10¢) + 0.03.

(a) Since we are assuming that the earth is a solid sphere of uniform density, we can calculate the density p as follows:

mass of earth M

5 If V;. is the volume of the portion of the earth which lies within a distance 7 of the

~ Volume of carth %WR
M3 M, M
center, then V. = %m“?’ and M, = pV, = Rg . Thus F. = 7G 2 m_ fGRSmT.

(b) The particle is acted upon by a varying gravitational force during its motion. By Newton’s Second Law of Motion,

GMm
R2

d? GMm GM
m Eg =F, = — g ¥ %0 y"(t) = —k*y (t) where k* = R At the surface, —mg = Fr = —
g= C;—Aj Therefore k? = %

, SO
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(c) The differential equation 3" + k%y = 0 has auxiliary equation > + k% = 0. (This is the r of Section 17.1,
not the » measuring distance from the earth’s center.) The roots of the auxiliary equation are £k, so by (11) in
Section 17.1, the general solution of our differential equation for ¢ is y(t) = c¢1 cos kt 4 ¢z sin kt. It follows that
y'(t) = —c1ksinkt + c2k cos kt. Now y (0) = Rand y'(0) = 0, s0 ¢c1 = R and c2k = 0. Thus y(t) = R cos kt and
y'(t) = —kRsin kt. This is simple harmonic motion (see Section 17.3) with amplitude R, frequency k, and phase angle 0.
The period is T' = 27 /k. R ~ 3960 mi = 3960 - 5280 ftand g = 32 ft/s%, so k = \/g/R ~ 1.24 x 107 s~ ! and
T =27 /k =~ 5079 s ~ 85 min.

(A y(t)=0 & coskt=0 <& kt=7%+mnforsomeintegern = y'(t) = —kR sin(% + mn) = +kR. Thus the

particle passes through the center of the earth with speed kR ~ 4.899 mi/s ~ 17,600 mi/h.
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[] APPENDIX

Appendix H Complex Numbers

1.

13.

15.

17.

19.

21,

23.

25.

27.

29

(5 —60)+ (34+2i) = (5+3)+ (—6+2)i =8+ (—4)i =8 — 4

(24 50) (4 — i) = 2(4) + 2(—i) + (50)(4) + (5i)(—i) = 8 — 2i + 20i — 5i> = 8 + 18i — 5(—1)

=8+4+18i+5=13+18

24T =127

1+4 1+4 3-2 3-2+12i—8(-1) _1+10i 11 10,

"3+42 3+2 3-2 32 4 22 1313 13
1 _ 1 1l—i_ 1-di _1-i_1 1,

144 144 1—-4 1—-(-1) 2 2 2

B =i i=(=1)i=—i

V=25 =+/25i = 5i

12— 5i = 12 + 15i and |12 — 15i| = 1/12% + (—5)2 = /144 + 25 = /169 = 13

—4i=0—4i=0+4i=4iand |—4i| = /02 + (—4)2 = /16 = 4

1 49=0 & 4P=-9 & PF=-% & s=%/-F=1/ti=sd

By the quadratic formula, 2> + 22 +5=0 < == =—1+2i.

—2+.,/22—4()(5) —2+/=16 —2+4i
2(1) - 2 T2

~1+ /12 -41)) _ —1j:\/—_7:71i£.

2(1) 2 2 “

By the quadratic formula, 2> + 2 +2=0 < 2=

Forz =—3+3i,r =/(-3)>+32=3v2andtand = £ = -1 = 0 = 3= (since z lies in the second quadrant).

Therefore, —3 + 3i = 3v/2 (cos %Tﬁ +isin %Tﬂ)

Forz =3+ 4i,r =+v32+42 =5and tanf = % = 0 =tan"* (%) (since z lies in the first quadrant). Therefore,

3+4i= 5[c0s(tan_1 3+ z'sin(tam_1 %)]

Forz=+3+i,r= (\/5)2—&—12:23ndtan6?:L3 = 0

ol

= z:2(cos%+isin%).
Forw=1++/3i,7r = 2and tanf = v/3 = 0=% = w:2(cos%+isin§).

Therefore, zw = 2 - 2[cos(% + %) + isin(% + %)} = 4(cos 5 +isin %),
z/w = 3[cos(5 — %) +isin(F — 5)] =cos(—%) +isin(—%),and 1 =1+ 0i = 1(cos0 +isin0) =
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1/z = 3[cos(0— %) +isin(0 — Z)] = 2 [cos(—%) + isin(—%)]. For 1/z, we could also use the formula that precedes

Example 5 to obtain l/z:%(cos%—isin%).
. 2 _ x
31. Forz = 23— 2i,7 =/ (2V3) +(=2)? —4andtan0——\/_—f% = O0=—-% =
z:4[cos(—%)+isin(—%)}.Forw:—1+i,r:\/§,tan9:}1:—1 = 9:‘%” =

w= \/i(cos%7T + isin 3T). Therefore, zw —4\/_[ s(—F+28) +isin(—% + 3F)] = \/_(cos— +isin 13,
2/ = 5 cos(—F — %) + isin(—F — %)] = <5 [cos(~ ) + isin(~ )] = 23 (cos BF +isin 1), and
1/z = g[cos(=F) —isin(=§)] = g(cos § +isin ).
3. Forz=1+ir=+v2andtanf=1=1 = ¢=2 = z=+/2(cosF +isinZ). Soby De Moivre’s Theorem,
(1+4)% = [V2 (cos T +isin T)]* = (21/2)2 (cos 2% + isin 2%T) = 2!°(cos 5 + i sin 5)

=2"[-1+i(0)] = —2'" = —1024

3. Forz = 23+ 2i,7 =/ (2v3)" + 22 = VI =dandtant = ;2= = o = 0=

ol

= z= 4(cos % T isin %)
So by De Moivre’s Theorem,

(2v3+2i) = [4(cos § +isinF)]* = 47(cos 5 +isin ) = 1024[—F + 1i] = —512/3 + 512i.

37.1 =1+ 0i = 1(cos0 + isin0). Using Equation 3 with 7 = 1, n = 8, and § = 0, we have

e = 11/8 {COS(M) +isin(M)] :COS%T +isin]iTﬂ-,wherek:0,1,2,...,7.

8 8

. o2 s s T 1 1 - Im
wo = 1(cos 0+ isin0) = 1, w1 = 1(cos T + isin Z) =7+ b ;
’LU2:1(COS% +iSin%):7;,'U_)3:1(COS—+ZSIH%T7T):7%4*%% ) *
w4:1(cos7r+z'sin7r):—1,w5:l(cos—+zs1n5—”):—%—%z’, 0 1 Re
wszl(cos——l—zsm?’—”)——z w7—1(cos +181n7f)=%—%i ® *

39.¢:=0+17= 1(cos—+zsm ) Using Equation 3 withr = 1,n = 3,and § = % we have
Z + 2km Z + 2km Im
e =113 {cos(%) —l—isin(zT)},where k=0,1,2.
L] L ]
wo = (cos% +isin%) = §+ 7
0 Re

1
2
w1 = (cos—+231n5—”):f£+

5 7

wl»—'

Wo = (cos— + 7 sin 9?”) = —

#1. Using Euler’s formula (6) with y = 7, we have €™/ = cos 7 tising =0+ 1i =4

(© 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



APPENDIXH COMPLEXNUMBERS [ 361

43. Using Euler’s formula (6) with y = g, we have ¢/™/% = cos g + ¢sin g = % + g i.
45. Using Equation 7 with z = 2 and y = 7, we have 7™ = ¢?¢'™ = ¢*(cos 7 + isin7) = *(—1 + 0) = —€.

47. Take r = 1 and n = 3 in De Moivre’s Theorem to get
[1(cos @ + isin 0)]* = 1%(cos 30 + i sin 30)

(cos O + isin)* = cos 30 + isin 30

)" =
cos® 6 + 3(cos? 0) (i sin 0) + 3(cos #) (i sin 8)? + (i sin 0)® = cos 30 + isin 30
cos® 0 + (3 cos? 0 sin@)i — 3 cos  sin? @ — (sin® 0)i = cos 30 + i sin 30

(cos® @ — 3sin? @ cos 0) + (3sin @ cos® § — sin® 0)i = cos 30 + i sin 30

Equating real and imaginary parts gives cos 30 = cos® § — 3sin® 6 cos and sin36 = 3siné cos?f — sin® 4.
49. F(z) = '™ = elatbi)z — gaatbei _ 0a%(cog g + jsinbr) = e*® cos b + i(e2 sinbz) =
F'(z) = (e* cosbx)’ + i(e*” sinbzx)’
= (ae® cosbx — be®® sinbx) + i(ae®® sinbx + be*® cos bx)
= ale® (cos bz + isinbzx)] + b[e®” (— sin bz + i cos bx)]
= ae™ + be®” (i* sin bx + i cos br)]

= ae™ + bi[e®"(cosbx + isinbx)] = ae™ + bie™” = (a + bi)e" =re’”
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