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This Student Solutions Manual contains detailed solutions to selected exercises in the text
Multivariable Calculus, Seventh Edition (Chapters 10–17 of Calculus, Seventh Edition, and
Calculus: Early Transcendentals, Seventh Edition) by James Stewart. Specifically, it includes solu-
tions to the odd-numbered exercises in each chapter section, review section, True-False Quiz, and
Problems Plus section. Also included are all solutions to the Concept Check questions.

Because of differences between the regular version and the Early Transcendentals version of the
text, some references are given in a dual format. In these cases, readers of the Early Transcendentals
text should use the references denoted by “ET.” 

Each solution is presented in the context of the corresponding section of the text. In general,
solutions to the initial exercises involving a new concept illustrate that concept in more detail; this
knowledge is then utilized in subsequent solutions. Thus, while the intermediate steps of a solution
are given, you may need to refer back to earlier exercises in the section or prior sections for addition-
al explanation of the concepts involved. Note that, in many cases, different routes to an answer may
exist which are equally valid; also, answers can be expressed in different but equivalent forms. Thus,
the goal of this manual is not to give the definitive solution to each exercise, but rather to assist you
as a student in understanding the concepts of the text and learning how to apply them to the chal-
lenge of solving a problem.

We would like to thank James Stewart for entrusting us with the writing of this manual and offer-
ing suggestions and Kathi Townes of TECH-arts for typesetting and producing this manual as well as
creating the illustrations. We also thank Richard Stratton, Liz Covello, and Elizabeth Neustaetter of
Brooks/Cole, Cengage Learning, for their trust, assistance, and patience.
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Palomar College
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CD concave downward

CU concave upward

D the domain of f

FDT First Derivative Test

HA horizontal asymptote(s)

I interval of convergence

IP inflection point(s)

R radius of convergence

VA vertical asymptote(s)
CAS
= indicates the use of a computer algebra system.
H
= indicates the use of l’Hospital’s Rule.
j
= indicates the use of Formula j in the Table of Integrals in the back endpapers.
s
= indicates the use of the substitution {u = sinx, du = cosxdx}.
c
= indicates the use of the substitution {u = cosx, du = − sinxdx}.

I/D Increasing/Decreasing Test
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10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

10.1 Curves Defined by Parametric Equations

1.  = 2 + ,  = 2 − , −2 ≤  ≤ 2

 −2 −1 0 1 2

 2 0 0 2 6

 6 2 0 0 2

3.  = cos2 ,  = 1− sin , 0 ≤  ≤ 2

 0 6 3 2

 1 34 14 0

 1 12 1−
√
3
2
≈ 013 0

5.  = 3− 4,  = 2− 3

(a)
 −1 0 1 2

 7 3 −1 −5
 5 2 −1 −4

(b)  = 3− 4 ⇒ 4 = −+ 3 ⇒  = −1
4
+ 3

4
, so

 = 2− 3 = 2− 3− 1
4
+ 3

4


= 2 + 3

4
− 9

4
⇒  = 3

4
− 1

4

7.  = 1− 2,  = − 2, −2 ≤  ≤ 2

(a)
 −2 −1 0 1 2

 −3 0 1 0 −3
 −4 −3 −2 −1 0

(b)  = − 2 ⇒  =  + 2, so  = 1− 2 = 1− ( + 2)2 ⇒
 = −( + 2)2 + 1, or  = −2 − 4 − 3, with −4 ≤  ≤ 0
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2 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

9.  =
√
,  = 1− 

(a)
 0 1 2 3 4

 0 1 1414 1732 2

 1 0 −1 −2 −3

(b)  =
√
 ⇒  = 2 ⇒  = 1−  = 1− 2. Since  ≥ 0,  ≥ 0.

So the curve is the right half of the parabola  = 1− 2.

11. (a)  = sin 1
2
,  = cos 1

2
, − ≤  ≤ .

2 + 2 = sin2 1
2
 + cos2 1

2
 = 1. For − ≤  ≤ 0, we have

−1 ≤  ≤ 0 and 0 ≤  ≤ 1. For 0   ≤ , we have 0   ≤ 1
and 1   ≥ 0. The graph is a semicircle.

(b)

13. (a)  = sin   = csc , 0    
2
.  = csc  =

1

sin 
=
1


.

For 0    
2
, we have 0    1 and   1. Thus, the curve is the

portion of the hyperbola  = 1 with   1.

(b)

15. (a)  = 2 ⇒ 2 = ln ⇒  = 1
2
ln.

 = + 1 = 1
2
ln+ 1.

(b)

17. (a)  = sinh ,  = cosh  ⇒ 2 − 2 = cosh2 − sinh2  = 1. Since
 = cosh  ≥ 1, we have the upper branch of the hyperbola 2 − 2 = 1.

(b)

19.  = 3 + 2 cos ,  = 1 + 2 sin , 2 ≤  ≤ 32. By Example 4 with  = 2,  = 3, and  = 1, the motion of the particle

takes place on a circle centered at (3 1) with a radius of 2. As  goes from 
2
to 3

2
, the particle starts at the point (3 3) and

moves counterclockwise along the circle (− 3)2 + ( − 1)2 = 4 to (3−1) [one-half of a circle].

21.  = 5 sin ,  = 2cos  ⇒ sin  =


5
, cos  =



2
. sin2 + cos2  = 1 ⇒


5

2
+

2

2
= 1. The motion of the

particle takes place on an ellipse centered at (0 0). As  goes from− to 5, the particle starts at the point (0−2) and moves
clockwise around the ellipse 3 times.

23. We must have 1 ≤  ≤ 4 and 2 ≤  ≤ 3. So the graph of the curve must be contained in the rectangle [1 4] by [2 3].
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 3

25. When  = −1, ( ) = (0−1). As  increases to 0,  decreases to −1 and 
increases to 0. As  increases from 0 to 1,  increases to 0 and  increases to 1.

As  increases beyond 1, both  and  increase. For   −1,  is positive and
decreasing and  is negative and increasing. We could achieve greater accuracy

by estimating - and -values for selected values of  from the given graphs and

plotting the corresponding points.

27. When  = 0 we see that  = 0 and  = 0, so the curve starts at the origin. As 

increases from 0 to 1
2
, the graphs show that  increases from 0 to 1 while 

increases from 0 to 1, decreases to 0 and to −1, then increases back to 0, so we
arrive at the point (0 1). Similarly, as  increases from 1

2
to 1,  decreases from 1

to 0 while  repeats its pattern, and we arrive back at the origin. We could achieve greater accuracy by estimating - and

-values for selected values of  from the given graphs and plotting the corresponding points.

29. Use  =  and  = − 2 sin with a -interval of [− ].

31. (a)  = 1 + (2 − 1),  = 1 + (2 − 1), 0 ≤  ≤ 1. Clearly the curve passes through 1(1 1) when  = 0 and
through 2(2 2) when  = 1. For 0    1,  is strictly between 1 and 2 and  is strictly between 1 and 2. For

every value of ,  and  satisfy the relation  − 1 =
2 − 1

2 − 1
(− 1), which is the equation of the line through

1(1 1) and 2(2 2).

Finally, any point ( ) on that line satisfies
 − 1

2 − 1
=

− 1

2 − 1
; if we call that common value , then the given

parametric equations yield the point ( ); and any ( ) on the line between 1(1 1) and 2(2 2) yields a value of

 in [0 1]. So the given parametric equations exactly specify the line segment from 1(1 1) to 2(2 2).

(b)  = −2 + [3− (−2)] = −2 + 5 and  = 7 + (−1− 7) = 7− 8 for 0 ≤  ≤ 1.

33. The circle 2 + ( − 1)2 = 4 has center (0 1) and radius 2, so by Example 4 it can be represented by  = 2cos ,
 = 1 + 2 sin , 0 ≤  ≤ 2. This representation gives us the circle with a counterclockwise orientation starting at (2 1).

(a) To get a clockwise orientation, we could change the equations to  = 2cos ,  = 1− 2 sin , 0 ≤  ≤ 2.
(b) To get three times around in the counterclockwise direction, we use the original equations  = 2 cos ,  = 1+ 2 sin  with

the domain expanded to 0 ≤  ≤ 6.
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4 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(c) To start at (0 3) using the original equations, we must have 1 = 0; that is, 2 cos  = 0. Hence,  = 
2
. So we use

 = 2cos ,  = 1 + 2 sin , 
2
≤  ≤ 3

2
.

Alternatively, if we want  to start at 0, we could change the equations of the curve. For example, we could use

 = −2 sin ,  = 1 + 2 cos , 0 ≤  ≤ .

35. Big circle: It’s centered at (2 2) with a radius of 2, so by Example 4, parametric equations are

 = 2 + 2 cos   = 2 + 2 sin  0 ≤  ≤ 2

Small circles: They are centered at (1 3) and (3 3) with a radius of 01. By Example 4, parametric equations are

(left)  = 1+ 01 cos   = 3+ 01 sin  0 ≤  ≤ 2
and (right)  = 3+ 01 cos   = 3+ 01 sin  0 ≤  ≤ 2

Semicircle: It’s the lower half of a circle centered at (2 2) with radius 1. By Example 4, parametric equations are

 = 2 + 1 cos   = 2 + 1 sin   ≤  ≤ 2
To get all four graphs on the same screen with a typical graphing calculator, we need to change the last -interval to[0 2] in

order to match the others. We can do this by changing  to 05. This change gives us the upper half. There are several ways to

get the lower half—one is to change the “+” to a “−” in the -assignment, giving us
 = 2 + 1 cos(05)  = 2− 1 sin(05) 0 ≤  ≤ 2

37. (a)  = 3 ⇒  = 13, so  = 2 = 23.

We get the entire curve  = 23 traversed in a left to

right direction.

(b)  = 6 ⇒  = 16, so  = 4 = 46 = 23.

Since  = 6 ≥ 0, we only get the right half of the

curve  = 23.

(c)  = −3 = (−)3 [so − = 13],

 = −2 = (−)2 = (13)2 = 23.

If   0, then  and  are both larger than 1. If   0, then  and 

are between 0 and 1. Since   0 and   0, the curve never quite

reaches the origin.

39. The case 
2
    is illustrated.  has coordinates ( ) as in Example 7,

and has coordinates (  +  cos( − )) = ( (1− cos ))
[since cos( − ) = cos cos+ sin sin = − cos], so  has
coordinates ( −  sin( − ) (1− cos )) = (( − sin ) (1− cos ))
[since sin( − ) = sin cos− cos sin = sin]. Again we have the
parametric equations  = ( − sin ),  = (1− cos ).
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SECTION 10.1 CURVES DEFINED BY PARAMETRIC EQUATIONS ¤ 5

41. It is apparent that  = || and  = | | = | |. From the diagram,
 = || =  cos  and  = | | =  sin . Thus, the parametric equations are

 =  cos  and  =  sin . To eliminate  we rearrange: sin  =  ⇒

sin2  = ()
2 and cos  =  ⇒ cos2  = ()

2. Adding the two

equations: sin2  + cos2  = 1 = 22 + 22. Thus, we have an ellipse.

43.  = (2 cot  2), so the -coordinate of  is  = 2 cot . Let  = (0 2).

Then ∠ is a right angle and ∠ = , so || = 2 sin  and
 = ((2 sin ) cos  (2 sin ) sin ). Thus, the -coordinate of 

is  = 2 sin2 .

45. (a) There are 2 points of intersection:

(−3 0) and approximately (−21 14).

(b) A collision point occurs when 1 = 2 and 1 = 2 for the same . So solve the equations:

3 sin  = −3 + cos  (1)

2 cos  = 1 + sin  (2)

From (2), sin  = 2cos − 1. Substituting into (1), we get 3(2 cos − 1) = −3 + cos  ⇒ 5 cos  = 0 () ⇒
cos  = 0 ⇒  = 

2
or 3

2
. We check that  = 3

2
satisfies (1) and (2) but  = 

2
does not. So the only collision point

occurs when  = 3
2
, and this gives the point (−3 0). [We could check our work by graphing 1 and 2 together as

functions of  and, on another plot, 1 and 2 as functions of . If we do so, we see that the only value of  for which both

pairs of graphs intersect is  = 3
2
.]

(c) The circle is centered at (3 1) instead of (−3 1). There are still 2 intersection points: (3 0) and (21 14), but there are
no collision points, since () in part (b) becomes 5 cos  = 6 ⇒ cos  = 6

5
 1.

47.  = 2  = 3 − . We use a graphing device to produce the graphs for various values of  with − ≤  ≤ . Note that all

the members of the family are symmetric about the -axis. For   0, the graph does not cross itself, but for  = 0 it has a

cusp at (0 0) and for   0 the graph crosses itself at  = , so the loop grows larger as  increases.
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6 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

49.  = +  cos   = +  sin    0. From the first figure, we see that

curves roughly follow the line  = , and they start having loops when 

is between 14 and 16. The loops increase in size as  increases.

While not required, the following is a solution to determine the exact values for which the curve has a loop,

that is, we seek the values of  for which there exist parameter values  and  such that    and

(+  cos  +  sin ) = (+  cos +  sin).

In the diagram at the left,  denotes the point ( ),  the point ( ),

and  the point (+  cos  +  sin ) = (+  cos +  sin).

Since  =  = , the triangle  is isosceles. Therefore its base

angles,  = ∠ and  = ∠ are equal. Since  = − 
4
and

 = 2 − 3
4
−  = 5

4
− , the relation  =  implies that

+  = 3
2
(1).

Since  = distance(( ) ( )) =

2(− )2 =

√
2 (− ), we see that

cos =
1
2



=
(− )

√
2


, so −  =

√
2  cos, that is,

−  =
√
2  cos


− 

4


(2). Now cos


− 

4


= sin



2
− − 

4


= sin


3
4
− 

,

so we can rewrite (2) as −  =
√
2  sin


3
4
− 

(20). Subtracting (20) from (1) and

dividing by 2, we obtain  = 3
4
−
√
2
2
 sin


3
4
− 

, or 3

4
−  = √

2
sin

3
4
− 

(3).

Since   0 and   , it follows from (20) that sin

3
4
− 

 0. Thus from (3) we see that   3

4
. [We have

implicitly assumed that 0     by the way we drew our diagram, but we lost no generality by doing so since replacing 

by + 2 merely increases  and  by 2. The curve’s basic shape repeats every time we change  by 2.] Solving for  in

(3), we get  =

√
2

3
4
− 


sin

3
4
− 
 . Write  = 3

4
− . Then  =

√
2 

sin 
, where   0. Now sin    for   0, so  

√
2.


As  → 0+, that is, as → 

3
4

−
, →√

2

.

51. Note that all the Lissajous figures are symmetric about the -axis. The parameters  and  simply stretch the graph in the

- and -directions respectively. For  =  =  = 1 the graph is simply a circle with radius 1. For  = 2 the graph crosses
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 7

itself at the origin and there are loops above and below the -axis. In general, the figures have − 1 points of intersection,
all of which are on the -axis, and a total of  closed loops.

 =  = 1  = 2  = 3

10.2 Calculus with Parametric Curves

1.  =  sin ,  = 2 +  ⇒ 


= 2+ 1,




=  cos + sin , and




=




=

2+ 1

 cos + sin 
.

3.  = 1 + 4− 2,  = 2− 3;  = 1.



= −32, 


= 4− 2, and 


=




=
−32
4− 2 . When  = 1,

( ) = (4 1) and  = −3
2
, so an equation of the tangent to the curve at the point corresponding to  = 1 is

 − 1 = − 3
2
(− 4), or  = − 3

2
+ 7.

5.  =  cos ,  =  sin ;  = .



=  cos + sin ,




= (− sin ) + cos , and 


=




=

 cos + sin 

− sin + cos  .

When  = , ( ) = (− 0) and  = −(−1) = , so an equation of the tangent to the curve at the point

corresponding to  =  is  − 0 = [− (−)], or  = + 2.

7. (a)  = 1 + ln ,  = 2 + 2; (1 3).



= 2




=
1


 and




=




=
2

1
= 22. At (1 3),

 = 1 + ln  = 1 ⇒ ln  = 0 ⇒  = 1 and



= 2, so an equation of the tangent is  − 3 = 2(− 1),

or  = 2+ 1.

(b)  = 1 + ln  ⇒ ln  = − 1 ⇒  = −1, so  = 2 + 2 = (−1)2 + 2 = 2−2 + 2, and 0 = 2−2 · 2.

At (1 3), 0 = 2(1)−2 · 2 = 2, so an equation of the tangent is  − 3 = 2(− 1), or  = 2+ 1.

9.  = 6 sin ,  = 2 + ; (0 0).




=




=
2+ 1

6 cos 
. The point (0 0) corresponds to  = 0, so the

slope of the tangent at that point is 1
6
. An equation of the tangent is therefore

 − 0 = 1
6
(− 0), or  = 1

6
.
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8 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

11.  = 2 + 1,  = 2 +  ⇒ 


=




=
2+ 1

2
= 1 +

1

2
⇒ 2

2
=













=
−1(22)

2
= − 1

43
.

The curve is CU when
2

2
 0, that is, when   0.

13.  = ,  = − ⇒ 


=




=
−− + −


=

−(1− )


= −2(1 − ) ⇒

2

2
=













=
−2(−1) + (1− )(−2−2)


=

−2(−1− 2 + 2)


= −3(2− 3). The curve is CU when

2

2
 0, that is, when   3

2
.

15.  = 2 sin ,  = 3cos , 0    2.




=




=
−3 sin 
2 cos 

= −3
2
tan , so

2

2
=













=
− 3
2
sec2 

2 cos 
= −3

4
sec3 .

The curve is CU when sec3   0 ⇒ sec   0 ⇒ cos   0 ⇒ 
2
   3

2
.

17.  = 3 − 3,  = 2 − 3. 


= 2, so




= 0 ⇔  = 0 ⇔

( ) = (0−3). 


= 32 − 3 = 3(+ 1)(− 1), so 


= 0 ⇔

 = −1 or 1 ⇔ ( ) = (2−2) or (−2−2). The curve has a horizontal
tangent at (0−3) and vertical tangents at (2−2) and (−2−2).

19.  = cos ,  = cos 3. The whole curve is traced out for 0 ≤  ≤ .




= −3 sin 3, so 


= 0 ⇔ sin 3 = 0 ⇔ 3 = 0, , 2, or 3 ⇔

 = 0, 
3
, 2
3
, or  ⇔ ( ) = (1 1),


1
2
−1, − 1

2
 1

, or (−1−1).




= − sin , so 


= 0 ⇔ sin  = 0 ⇔  = 0 or  ⇔

( ) = (1 1) or (−1−1). Both 

and




equal 0 when  = 0 and .

 

To find the slope when  = 0, we find lim
→0




= lim

→0

−3 sin 3
− sin 

H
= lim

→0

−9 cos 3
− cos  = 9, which is the same slope when  = .

Thus, the curve has horizontal tangents at

1
2
−1 and − 1

2
 1

, and there are no vertical tangents.
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 9

21. From the graph, it appears that the rightmost point on the curve  = − 6,  = 

is about (06 2). To find the exact coordinates, we find the value of  for which the

graph has a vertical tangent, that is, 0 =  = 1− 65 ⇔  = 1
5
√
6.

Hence, the rightmost point is
1

5
√
6− 1 6 5

√
6

 1

5√
6

=

5 · 6−65 6−15


≈ (058 201).

23. We graph the curve  = 4 − 23 − 22,  = 3 −  in the viewing rectangle [−2 11] by [−05 05]. This rectangle

corresponds approximately to  ∈ [−1 08].

We estimate that the curve has horizontal tangents at about (−1−04) and (−017 039) and vertical tangents at

about (0 0) and (−019 037). We calculate 


=



=

32 − 1
43 − 62 − 4 . The horizontal tangents occur when

 = 32 − 1 = 0 ⇔  = ± 1√
3
, so both horizontal tangents are shown in our graph. The vertical tangents occur when

 = 2(22− 3− 2) = 0 ⇔ 2(2+1)(− 2) = 0 ⇔  = 0,− 1
2
or 2. It seems that we have missed one vertical

tangent, and indeed if we plot the curve on the -interval [−12 22] we see that there is another vertical tangent at (−8 6).

25.  = cos ,  = sin  cos .  = − sin ,  = − sin2 + cos2  = cos 2.
( ) = (0 0) ⇔ cos  = 0 ⇔  is an odd multiple of 

2
. When  = 

2
,

 = −1 and  = −1, so  = 1. When  = 3
2
,  = 1 and

 = −1. So  = −1. Thus,  =  and  = − are both tangent to the
curve at (0 0).

27.  =  −  sin ,  =  −  cos .

(a)



=  −  cos ,




=  sin , so




=

 sin 

 −  cos 
.

(b) If 0    , then | cos | ≤   , so  −  cos  ≥  −   0. This shows that  never vanishes,

so the trochoid can have no vertical tangent if   .

29.  = 23,  = 1 + 4− 2 ⇒ 


=




=
4− 2
62

. Now solve



= 1 ⇔ 4− 2

62
= 1 ⇔

62 + 2− 4 = 0 ⇔ 2(3− 2)(+ 1) = 0 ⇔  = 2
3
or  = −1. If  = 2

3
, the point is


16
27
 29
9


, and if  = −1,

the point is (−2−4).
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10 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

31. By symmetry of the ellipse about the - and -axes,

= 4
 
0
  = 4

 0
2

 sin  (− sin )  = 4  2
0

sin2   = 4
 2
0

1
2
(1− cos 2) 

= 2

 − 1

2
sin 2

2
0

= 2


2


= 

33. The curve  = 1 + ,  = − 2 = (1− ) intersects the -axis when  = 0,

that is, when  = 0 and  = 1. The corresponding values of  are 2 and 1 + .

The shaded area is given by =1+

=2

( − ) =

 =1

=0

[()− 0]0()  =  1
0
(− 2) 

=
 1
0
 −  1

0
2  =

 1
0
 − 21

0
+ 2

 1
0
  [Formula 97 or parts]

= 3
 1
0
 − (− 0) = 3 (− 1)1

0
−  [Formula 96 or parts]

= 3[0− (−1)]−  = 3− 

35.  =  −  sin ,  =  −  cos .

 =
 2
0

  =
 2
0
( −  cos )( −  cos )  =

 2
0
(2 − 2 cos  + 2 cos2 ) 

=

2 − 2 sin  + 1

2
2

 + 1

2
sin 2

2
0
= 22 + 2

37.  = + −,  =  − −, 0 ≤  ≤ 2.  = 1 − − and  = 1 + −, so

()2 + ()2 = (1− −)2 + (1 + −)2 = 1− 2− + −2 + 1 + 2− + −2 = 2 + 2−2.

Thus,  =
 



()2 + ()2  =

 2
0

√
2 + 2−2  ≈ 31416.

39.  = − 2 sin ,  = 1 − 2 cos , 0 ≤  ≤ 4.  = 1− 2 cos  and  = 2 sin , so

()2 + ()2 = (1− 2 cos )2 + (2 sin )2 = 1− 4 cos + 4cos2 + 4 sin2  = 5− 4 cos .

Thus,  =
 



()2 + ()2  =

 4
0

√
5− 4 cos   ≈ 267298.

41.  = 1 + 32,  = 4 + 23, 0 ≤  ≤ 1.  = 6 and  = 62, so ()2 + ()2 = 362 + 364

Thus,  =

 1

0


362 + 364  =

 1

0

6

1 + 2  = 6

 2

1

√


1
2


[ = 1 + 2,  = 2 ]

= 3

2
3
32

2
1
= 2(232 − 1) = 22√2− 1

43.  =  sin ,  =  cos , 0 ≤  ≤ 1. 


=  cos + sin  and




= − sin + cos , so





2
+






2
= 2 cos2 + 2 sin  cos + sin2 + 2 sin2 − 2 sin  cos + cos2 

= 2(cos2 + sin2 ) + sin2 + cos2  = 2 + 1.

Thus,  =
 1
0

√
2 + 1 

21
=

1
2

√
2 + 1 + 1

2
ln

+

√
2 + 1

1
0
= 1

2

√
2 + 1

2
ln

1 +

√
2

.
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SECTION 10.2 CALCULUS WITH PARAMETRIC CURVES ¤ 11

45.  =  cos ,  =  sin , 0 ≤  ≤ .



2
+





2
= [(cos − sin )]2 + [(sin + cos )]2

= ()2(cos2 − 2 cos  sin + sin2 )
+ ()2(sin2 + 2 sin  cos + cos2 

= 2(2 cos2 + 2 sin2 ) = 22

Thus,  =
 
0

√
22  =

 
0

√
2   =

√
2



0
=
√
2 ( − 1).

47. The figure shows the curve  = sin + sin 15,  = cos  for 0 ≤  ≤ 4.
 = cos + 15 cos 15 and  = − sin , so
()2 + ()2 = cos2 + 3cos  cos 15+ 225 cos2 15+ sin2 .

Thus,  =
 4
0

√
1 + 3 cos  cos 15+ 225 cos2 15  ≈ 167102.

49.  =  − ,  =  + , −6 ≤  ≤ 6.



2
+





2
= (1− )2 + (1 + )2 = (1− 2 + 2) + (1 + 2 + 2) = 2 + 22, so  =

 6
−6
√
2 + 22 .

Set () =
√
2 + 22. Then by Simpson’s Rule with  = 6 and ∆ =

6−(−6)
6

= 2, we get

 ≈ 2
3
[(−6) + 4(−4) + 2(−2) + 4(0) + 2(2) + 4(4) + (6)] ≈ 6123053.

51.  = sin2 ,  = cos2 , 0 ≤  ≤ 3.

()2 + ()2 = (2 sin  cos )2 + (−2 cos  sin )2 = 8 sin2  cos2  = 2 sin2 2 ⇒

Distance =
 3
0

√
2 |sin 2|  = 6√2  2

0
sin 2  [by symmetry] = −3√2


cos 2

2
0

= −3√2 (−1− 1) = 6√2.

The full curve is traversed as  goes from 0 to 
2
, because the curve is the segment of +  = 1 that lies in the first quadrant

(since ,  ≥ 0), and this segment is completely traversed as  goes from 0 to 
2
. Thus,  =

 2
0

sin 2  =
√
2, as above.

53.  =  sin ,  =  cos , 0 ≤  ≤ 2.



2
+





2
= ( cos )2 + (− sin )2 = 2 cos2  + 2 sin2  = 2(1− sin2 ) + 2 sin2 

= 2 − (2 − 2) sin2  = 2 − 2 sin2  = 2

1− 2

2
sin2 


= 2(1− 2 sin2 )

So  = 4
 2
0


2

1− 2 sin2 


 [by symmetry] = 4

 2
0


1− 2 sin2  .

55. (a)  = 11 cos − 4 cos(112),  = 11 sin − 4 sin(112).
Notice that 0 ≤  ≤ 2 does not give the complete curve because
(0) 6= (2). In fact, we must take  ∈ [0 4] in order to obtain the
complete curve, since the first term in each of the parametric equations has

period 2 and the second has period 2
112

= 4
11
, and the least common

integer multiple of these two numbers is 4.
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12 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(b) We use the CAS to find the derivatives  and , and then use Theorem 6 to find the arc length. Recent versions

of Maple express the integral
 4
0


()2 + ()2  as 88


2
√
2 

, where () is the elliptic integral 1

0

√
1− 22√
1− 2

 and  is the imaginary number
√−1.

Some earlier versions of Maple (as well as Mathematica) cannot do the integral exactly, so we use the command

evalf(Int(sqrt(diff(x,t)̂ 2+diff(y,t)̂ 2),t=0..4*Pi)); to estimate the length, and find that the arc

length is approximately 29403. Derive’s Para_arc_length function in the utility file Int_apps simplifies the

integral to 11
 4
0


−4 cos  cos 11

2

− 4 sin  sin 11
2


+ 5 .

57.  =  sin ,  =  cos , 0 ≤  ≤ 2.  =  cos + sin  and  = − sin + cos , so
()2 + ()2 = 2 cos2 + 2 sin  cos + sin2 + 2 sin2 − 2 sin  cos + cos2 

= 2(cos2 + sin2 ) + sin2 + cos2  = 2 + 1

 =

2  =

 2
0

2 cos 
√
2 + 1  ≈ 47394.

59.  = 1 + ,  = (2 + 1), 0 ≤  ≤ 1.



2
+





2
= ( + )2 + [(2 + 1) + (2)]2 = [(+ 1)]2 + [(2 + 2+ 1)]2

= 2(+ 1)2 + 2(+ 1)4 = 2(+ 1)2[1 + (+ 1)2], so

 =

2  =

 1
0
2(2 + 1)


2(+ 1)2(2 + 2+ 2)  =

 1
0
2(2 + 1)2(+ 1)

√
2 + 2+ 2  ≈ 1035999

61.  = 3,  = 2, 0 ≤  ≤ 1. 



2
+





2
=

32
2
+ (2)

2
= 94 + 42.

 =

 1

0

2





2
+





2
 =

 1

0

2
2

94 + 42  = 2

 1

0


2

2(92 + 4) 

= 2

 13

4


− 4
9

√


1
18

 

 = 92 + 4, 2 = (− 4)9,
 = 18 , so   = 1

18



=

2

9 · 18
 13

4

(
32 − 412) 

= 
81


2
5
52 − 8

3
32

13
4
= 

81
· 2
15


352 − 2032

13
4

= 2
1215


3 · 132√13− 20 · 13√13 − (3 · 32− 20 · 8) = 2

1215


247

√
13 + 64


63.  =  cos3 ,  =  sin3 , 0 ≤  ≤ 

2
.




2
+





2
= (−3 cos2  sin )2 + (3 sin2  cos )2 = 92 sin2  cos2 .

 =
 2
0

2 ·  sin3  · 3 sin  cos   = 62  2
0

sin4  cos   = 6
5
2


sin5 

2
0

= 6
5
2

65.  = 32,  = 23, 0 ≤  ≤ 5 ⇒ 



2
+





2
= (6)2 + (62)2 = 362(1 + 2) ⇒

 =
 5
0
2


()2 + ()2  =

 5
0
2(32)6

√
1 + 2  = 18

 5
0
2
√
1 + 2 2 

= 18
 26
1
(− 1)√


 = 1 + 2

 = 2 


= 18

 26
1
(32 − 12)  = 18


2
5
52 − 2

3
32

26
1

= 18


2
5
· 676√26− 2

3
· 26√26 −  2

5
− 2

3


= 24

5


949

√
26 + 1
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SECTION 10.3 POLAR COORDINATES ¤ 13

67. If  0 is continuous and  0() 6= 0 for  ≤  ≤ , then either  0()  0 for all  in [ ] or  0()  0 for all  in [ ]. Thus, 

is monotonic (in fact, strictly increasing or strictly decreasing) on [ ]. It follows that  has an inverse. Set  =  ◦ −1,
that is, define  by  () = (−1()). Then  = () ⇒ −1() = , so  = () = (−1()) =  ().

69. (a)  = tan−1






⇒ 


=




tan−1







=

1

1 + ()2












. But




=




=

̇

̇
⇒











=






̇

̇


=

̈̇− ̈̇

̇2
⇒ 


=

1

1 + (̇̇)2


̈̇− ̈̇

̇2


=

̇̈ − ̈̇

̇2 + ̇2
. Using the Chain Rule, and the

fact that  =
 

0





2
+





2
 ⇒ 


=





2
+





2
=

̇2 + ̇2

12
, we have that




=




=


̇̈ − ̈̇

̇2 + ̇2


1

(̇2 + ̇2)12
=

̇̈ − ̈̇

(̇2 + ̇2)32
. So  =


 =  ̇̈ − ̈̇

(̇2 + ̇2)32

 = |̇̈ − ̈̇|
(̇2 + ̇2)32

.

(b)  =  and  = () ⇒ ̇ = 1, ̈ = 0 and ̇ =



, ̈ =

2

2
.

So  =

1 · (22)− 0 · ()
[1 + ()2]32

=

22
[1 + ()2]32

.

71.  =  − sin  ⇒ ̇ = 1− cos  ⇒ ̈ = sin , and  = 1− cos  ⇒ ̇ = sin  ⇒ ̈ = cos . Therefore,

 =

cos  − cos2  − sin2 
[(1− cos )2 + sin2 ]32 =

cos  − (cos2  + sin2 )
(1− 2 cos  + cos2  + sin2 )32 =

|cos  − 1|
(2− 2 cos )32 . The top of the arch is

characterized by a horizontal tangent, and from Example 2(b) in Section 10.2, the tangent is horizontal when  = (2− 1),

so take  = 1 and substitute  =  into the expression for :  =
|cos − 1|

(2− 2 cos)32 =
|−1− 1|

[2− 2(−1)]32 =
1

4
.

73. The coordinates of  are ( cos   sin ). Since  was unwound from

arc ,  has length . Also ∠ = ∠− ∠ = 1
2
 − ,

so  has coordinates  =  cos  +  cos

1
2
 − 


= (cos  +  sin ),

 =  sin  −  sin

1
2
 − 


= (sin  −  cos ).

10.3 Polar Coordinates

1. (a)

2 

3


By adding 2 to 

3
, we obtain the point


2 7

3


. The direction

opposite 
3
is 4

3
, so

−2 4
3


is a point that satisfies the   0

requirement.
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14 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

(b)

1− 3

4


  0:


1− 3

4
+ 2


=

1 5

4


  0:

−1−3
4
+ 


=
−1 

4



(c)
−1 

2


  0:

−(−1) 
2
+ 


=

1 3

2


  0:

−1 
2
+ 2


=
−1 5

2



3. (a)  = 1cos = 1(−1) = −1 and
 = 1 sin = 1(0) = 0 give us

the Cartesian coordinates (−1 0).

(b)  = 2cos
−2

3


= 2

− 1
2


= −1 and

 = 2 sin
−2

3


= 2


−
√
3
2


= −√3

give us
−1−√3 .

(c)  = −2 cos 3
4
= −2


−
√
2
2


=
√
2 and

 = −2 sin 3
4
= −2

√
2
2


= −√2

gives us
√
2−√2 .

5. (a)  = 2 and  = −2 ⇒  =

22 + (−2)2 = 2√2 and  = tan−1−2

2


= −

4
. Since (2−2) is in the fourth

quadrant, the polar coordinates are (i)

2
√
2 7

4


and (ii)

−2√2 3
4


.

(b)  = −1 and  = √3 ⇒  =


(−1)2 + √3 2 = 2 and  = tan−1√3−1 = 2

3
. Since

−1√3  is in the second
quadrant, the polar coordinates are (i)


2 2

3


and (ii)

−2 5
3


.
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SECTION 10.3 POLAR COORDINATES ¤ 15

7.  ≥ 1. The curve  = 1 represents a circle with center

 and radius 1. So  ≥ 1 represents the region on or
outside the circle. Note that  can take on any value.

9.  ≥ 0, 4 ≤  ≤ 34.
 =  represents a line through .

11. 2    3, 5
3
≤  ≤ 7

3

13. Converting the polar coordinates (2 3) and (4 23) to Cartesian coordinates gives us

2 cos 

3
 2 sin 

3


=

1
√
3

and

4 cos 2
3
 4 sin 2

3


=
−2 2√3 . Now use the distance formula.

 =


(2 − 1)

2
+ (2 − 1)

2
=


(−2− 1)2 + 2√3−√3 2 = √9 + 3 = √12 = 2√3

15. 2 = 5 ⇔ 2 + 2 = 5, a circle of radius
√
5 centered at the origin.

17.  = 2 cos  ⇒ 2 = 2 cos  ⇔ 2 + 2 = 2 ⇔ 2 − 2+ 1 + 2 = 1 ⇔ (− 1)2 + 2 = 1, a circle of

radius 1 centered at (1 0). The first two equations are actually equivalent since 2 = 2 cos  ⇒ ( − 2 cos ) = 0 ⇒
 = 0 or  = 2cos . But  = 2cos  gives the point  = 0 (the pole) when  = 0. Thus, the equation  = 2 cos  is

equivalent to the compound condition ( = 0 or  = 2 cos ).

19. 2 cos 2 = 1 ⇔ 2(cos2  − sin2 ) = 1 ⇔ ( cos )2 − ( sin )2 = 1 ⇔ 2 − 2 = 1, a hyperbola centered at

the origin with foci on the -axis.

21.  = 2 ⇔  sin  = 2 ⇔  =
2

sin 
⇔  = 2csc 

23.  = 1 + 3 ⇔  sin  = 1 + 3 cos  ⇔  sin  − 3 cos  = 1 ⇔ (sin  − 3 cos ) = 1 ⇔

 =
1

sin  − 3 cos 

25. 2 + 2 = 2 ⇔ 2 = 2 cos  ⇔ 2 − 2 cos  = 0 ⇔ ( − 2 cos ) = 0 ⇔  = 0 or  = 2 cos .

 = 0 is included in  = 2 cos  when  = 
2
+ , so the curve is represented by the single equation  = 2 cos 
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16 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

27. (a) The description leads immediately to the polar equation  = 
6
, and the Cartesian equation  = tan



6


 = 1√

3
 is

slightly more difficult to derive.

(b) The easier description here is the Cartesian equation  = 3.

29.  = −2 sin 

31.  = 2(1 + cos )

33.  = ,  ≥ 0

35.  = 4 sin 3

 

37.  = 2 cos 4
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SECTION 10.3 POLAR COORDINATES ¤ 17

39.  = 1− 2 sin 

41. 2 = 9 sin 2

43.  = 2 + sin 3

45.  = 1 + 2 cos 2

47. For  = 0, , and 2,  has its minimum value of about 05. For  = 
2
and 3

2
,  attains its maximum value of 2.

We see that the graph has a similar shape for 0 ≤  ≤  and  ≤  ≤ 2.
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18 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

49.  =  cos  = (4 + 2 sec ) cos  = 4 cos  + 2. Now, →∞ ⇒

(4 + 2 sec )→∞ ⇒ → 

2

−
or → 

3
2

+
[since we need only

consider 0 ≤   2], so lim
→∞

 = lim
→2−

(4 cos  + 2) = 2. Also,

→ −∞ ⇒ (4 + 2 sec )→−∞ ⇒ → 

2

+
or → 

3
2

−
, so

lim
→−∞

 = lim
→2+

(4 cos  + 2) = 2. Therefore, lim
→±∞

 = 2 ⇒  = 2 is a vertical asymptote.

51. To show that  = 1 is an asymptote we must prove lim
→±∞

 = 1.

 = () cos  = (sin  tan ) cos  = sin2 . Now, →∞ ⇒ sin  tan →∞ ⇒

→ 

2

−
, so lim

→∞
 = lim

→2−
sin2  = 1. Also, →−∞ ⇒ sin  tan →−∞ ⇒

→ 

2

+
, so lim

→−∞
 = lim

→2+
sin2  = 1. Therefore, lim

→±∞
 = 1 ⇒  = 1 is

a vertical asymptote. Also notice that  = sin2  ≥ 0 for all , and  = sin2  ≤ 1 for all . And  6= 1, since the curve is not
defined at odd multiples of 

2
. Therefore, the curve lies entirely within the vertical strip 0 ≤   1.

53. (a) We see that the curve  = 1 +  sin  crosses itself at the origin, where  = 0 (in fact the inner loop corresponds to

negative -values,) so we solve the equation of the limaçon for  = 0 ⇔  sin  = −1 ⇔ sin  = −1. Now if
||  1, then this equation has no solution and hence there is no inner loop. But if   −1, then on the interval (0 2)
the equation has the two solutions  = sin−1(−1) and  =  − sin−1(−1), and if   1, the solutions are

 =  + sin−1(1) and  = 2 − sin−1(1). In each case,   0 for  between the two solutions, indicating a loop.

(b) For 0    1, the dimple (if it exists) is characterized by the fact that  has a local maximum at  = 3
2
. So we

determine for what -values
2

2
is negative at  = 3

2
, since by the Second Derivative Test this indicates a maximum:

 =  sin  = sin  +  sin2  ⇒ 


= cos  + 2 sin  cos  = cos  +  sin 2 ⇒ 2

2
= − sin  + 2 cos 2.

At  = 3
2
, this is equal to −(−1) + 2(−1) = 1− 2, which is negative only for   1

2
. A similar argument shows that

for −1    0,  only has a local minimum at  = 
2
(indicating a dimple) for   −1

2
.

55.  = 2 sin  ⇒  =  cos  = 2 sin  cos  = sin 2,  =  sin  = 2 sin2  ⇒




=




=
2 · 2 sin  cos 
cos 2 · 2 =

sin 2

cos 2
= tan 2

When  =


6
,



= tan


2 · 
6


= tan



3
=
√
3. [Another method: Use Equation 3.]

57.  = 1 ⇒  =  cos  = (cos ),  =  sin  = (sin ) ⇒




=




=
sin (−12) + (1) cos 
cos (−12)− (1) sin  ·

2

2
=
− sin  +  cos 

− cos  −  sin 

When  = ,



=

−0 + (−1)
−(−1)− (0)

=
−
1
= −.
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SECTION 10.3 POLAR COORDINATES ¤ 19

59.  = cos 2 ⇒  =  cos  = cos 2 cos ,  =  sin  = cos 2 sin  ⇒



=




=

cos 2 cos  + sin  (−2 sin 2)
cos 2 (− sin ) + cos  (−2 sin 2)

When  =


4
,



=

0
√
22

+
√
22

(−2)

0
−√22+ √22(−2) = −√2

−√2 = 1.

61.  = 3 cos  ⇒  =  cos  = 3cos  cos ,  =  sin  = 3 cos  sin  ⇒



= −3 sin2  + 3 cos2  = 3 cos 2 = 0 ⇒ 2 = 

2
or 3

2
⇔  = 

4
or 3

4
.

So the tangent is horizontal at


3√
2
 
4


and


− 3√

2
 3
4

 
same as


3√
2
−

4


.



= −6 sin  cos  = −3 sin 2 = 0 ⇒ 2 = 0 or  ⇔  = 0 or 

2
. So the tangent is vertical at (3 0) and


0 

2


.

63.  = 1 + cos  ⇒  =  cos  = cos  (1 + cos ),  =  sin  = sin  (1 + cos ) ⇒



= (1 + cos ) cos  − sin2  = 2cos2  + cos  − 1 = (2 cos  − 1)(cos  + 1) = 0 ⇒ cos  = 1

2
or −1 ⇒

 = 
3
, , or 5

3
⇒ horizontal tangent at


3
2
 
3


, (0 ), and


3
2
 5
3


.



= −(1 + cos ) sin  − cos  sin  = − sin  (1 + 2 cos ) = 0 ⇒ sin  = 0 or cos  = −1

2
⇒

 = 0, , 2
3
, or 4

3
⇒ vertical tangent at (2 0),


1
2
 2
3


, and


1
2
 4
3


.

Note that the tangent is horizontal, not vertical when  = , since lim
→




= 0.

65.  =  sin  +  cos  ⇒ 2 =  sin  +  cos  ⇒ 2 + 2 =  +  ⇒
2 − +


1
2

2
+ 2 −  +


1
2

2
=

1
2

2
+

1
2

2 ⇒ 

− 1
2

2
+

 − 1

2

2
= 1

4
(2 + 2), and this is a circle

with center

1
2
 1

2


and radius 1

2

√
2 + 2.

67.  = 1 + 2 sin(2). The parameter interval is [0 4]. 69.  = sin  − 2 cos(4).

The parameter interval is [0 2].

71.  = 1 + cos999 . The parameter interval is [0 2].
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20 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

73. It appears that the graph of  = 1 + sin

 − 

6


is the same shape as

the graph of  = 1 + sin , but rotated counterclockwise about the

origin by 
6
. Similarly, the graph of  = 1 + sin


 − 

3


is rotated by


3
. In general, the graph of  = ( − ) is the same shape as that of

 = (), but rotated counterclockwise through  about the origin.

That is, for any point (0 0) on the curve  = (), the point

(0 0 + ) is on the curve  = ( − ), since 0 = (0) = ((0 + )− ).

75. Consider curves with polar equation  = 1 +  cos , where  is a real number. If  = 0, we get a circle of radius 1 centered at

the pole. For 0   ≤ 05, the curve gets slightly larger, moves right, and flattens out a bit on the left side. For 05    1,

the left side has a dimple shape. For  = 1, the dimple becomes a cusp. For   1, there is an internal loop. For  ≥ 0, the
rightmost point on the curve is (1 +  0). For   0, the curves are reflections through the vertical axis of the curves

with   0.

 = 025  = 075  = 1  = 2

77. tan = tan(− ) =
tan− tan 
1 + tan tan 

=




− tan 

1 +



tan 

=




− tan 

1 +



tan 

=




− 


tan 




+




tan 

=





sin  +  cos 


− tan 





cos  −  sin 






cos  −  sin 


+ tan 





sin  +  cos 

 =
 cos  +  · sin

2 

cos 



cos  +




· sin

2 

cos 

=
 cos2  +  sin2 




cos2  +




sin2 

=




10.4 Areas and Lengths in Polar Coordinates

1.  = −4, 2 ≤  ≤ .

 =

 

2

1
2

2
 =

 

2

1
2
(
−4

)
2
 =

 

2

1
2

−2

 = 1
2


−2−2


2

= −1(−2 − 
−4

) = 
−4 − 

−2
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES ¤ 21

3. 2 = 9 sin 2,  ≥ 0, 0 ≤  ≤ 2.

 =

 2

0

1
2

2
 =

 2

0

1
2
(9 sin 2)  = 9

2

− 1
2
cos 2

2
0

= −9
4
(−1− 1) = 9

2

5.  =
√
, 0 ≤  ≤ 2.  =

 2

0

1
2

2
 =

 2

0

1
2

√

2

 =

 2

0

1
2
  =


1
4

2
2
0
= 

2

7.  = 4 + 3 sin , −
2
≤  ≤ 

2
.

=

 2

−2
1
2
((4 + 3 sin )

2
 = 1

2

 2

−2
(16 + 24 sin  + 9 sin

2
) 

= 1
2

 2

−2
(16 + 9 sin

2
)  [by Theorem 4.5.6(b) [ET 5.5.7(b)]]

= 1
2
· 2
 2

0


16 + 9 · 1

2
(1− cos 2)  [by Theorem 4.5.6(a) [ET 5.5.7(a)]]

=

 2

0


41
2
− 9

2
cos 2


 =


41
2
 − 9

4
sin 2

2
0

=

41
4
− 0− (0− 0) = 41

4

9. The area is bounded by  = 2 sin  for  = 0 to  = .

=

 

0

1
2

2
 = 1

2

 

0

(2 sin )
2
 = 1

2

 

0

4 sin
2
 

= 2

 

0

1
2
(1− cos 2) =


 − 1

2
sin 2


0
= 

Also, note that this is a circle with radius 1, so its area is (1)2 = .

11. =

 2

0

1
2

2
 =

 2

0

1
2
(3 + 2 cos )

2
 = 1

2

 2

0

(9 + 12 cos  + 4cos
2
) 

= 1
2

 2

0


9 + 12 cos  + 4 · 1

2
(1 + cos 2)




= 1
2

 2

0

(11 + 12 cos  + 2cos 2)  = 1
2


11 + 12 sin  + sin 2

2
0

= 1
2
(22) = 11

13. =

 2

0

1
2

2
 =

 2

0

1
2
(2 + sin 4)

2
 = 1

2

 2

0

(4 + 4 sin 4 + sin
2
4) 

= 1
2

 2

0


4 + 4 sin 4 + 1

2
(1− cos 8) 

= 1
2

 2

0


9
2
+ 4 sin 4 − 1

2
cos 8


 = 1

2


9
2
 − cos 4 − 1

16
sin 8

2
0

= 1
2
[(9 − 1)− (−1)] = 9

2
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22 ¤ CHAPTER 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES

15. =

 2

0

1
2

2
 =

 2

0

1
2


1 + cos2 5

2


= 1
2

 2

0

(1 + cos
2
5)  = 1

2

 2

0


1 + 1

2
(1 + cos 10)




= 1
2


3
2
 + 1

20
sin 10

2
0
= 1

2
(3) = 3

2


17. The curve passes through the pole when  = 0 ⇒ 4 cos 3 = 0 ⇒ cos 3 = 0 ⇒ 3 = 
2
+  ⇒

 = 
6
+ 

3
. The part of the shaded loop above the polar axis is traced out for

 = 0 to  = 6, so we’ll use −6 and 6 as our limits of integration.

=

 6

−6
1
2
(4 cos 3)

2
 = 2

 6

0

1
2
(16 cos

2
3) 

= 16

 6

0

1
2
(1 + cos 6)  = 8


 + 1

6
sin 6

6
0

= 8


6


= 4

3


19.  = 0 ⇒ sin 4 = 0 ⇒ 4 =  ⇒  = 
4
.

=

 4

0

1
2
(sin 4)

2
 = 1

2

 4

0

sin
2
4  = 1

2

 4

0

1
2
(1− cos 8) 

= 1
4


 − 1

8
sin 8

4
0

= 1
4



4


= 1

16


21. This is a limaçon, with inner loop traced

out between  = 7
6
and 11

6
[found by

solving  = 0].

= 2

 32

76

1
2
(1 + 2 sin )

2
 =

 32

76


1 + 4 sin  + 4 sin

2


 =

 32

76


1 + 4 sin  + 4 · 1

2
(1− cos 2) 

=

 − 4 cos  + 2 − sin 232

76
=

9
2

−  7
2
+ 2

√
3−

√
3
2


=  − 3

√
3

2

23. 2 cos  = 1 ⇒ cos  = 1
2
⇒  = 

3
or 5

3
.

= 2
 3
0

1
2
[(2 cos )2 − 12]  =  3

0
(4 cos2  − 1) 

=
 3
0


4

1
2
(1 + cos 2)

− 1  =  3
0

(1 + 2 cos 2) 

=

 + sin 2

3
0

= 
3
+
√
3
2
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SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES ¤ 23

25. To find the area inside the leminiscate 2 = 8 cos 2 and outside the circle  = 2,

we first note that the two curves intersect when 2 = 8 cos 2 and  = 2,

that is, when cos 2 = 1
2
. For −   ≤ , cos 2 = 1

2
⇔ 2 = ±3

or ±53 ⇔  = ±6 or ±56. The figure shows that the desired area is
4 times the area between the curves from 0 to 6. Thus,

= 4
 6
0


1
2
(8 cos 2)− 1

2
(2)2


 = 8

 6
0

(2 cos 2 − 1) 

= 8

sin 2 − 

6
0

= 8
√
32− 6


= 4

√
3− 43

27. 3 cos  = 1 + cos  ⇔ cos  = 1
2
⇒  = 

3
or −

3
.

= 2
 3
0

1
2
[(3 cos )2 − (1 + cos )2] 

=
 3
0

(8 cos2  − 2 cos  − 1)  =  3
0

[4(1 + cos 2)− 2 cos  − 1] 

=
 3
0

(3 + 4 cos 2 − 2 cos )  = 3 + 2 sin 2 − 2 sin 3
0

=  +
√
3−√3 = 

29.
√
3 cos  = sin  ⇒ √

3 =
sin 

cos 
⇒ tan  =

√
3 ⇒  = 

3
.

=
 3
0

1
2
(sin )2  +

 2
3

1
2

√
3 cos 

2


=
 3
0

1
2
· 1
2
(1− cos 2)  +  2

3
1
2
· 3 · 1

2
(1 + cos 2) 

= 1
4


 − 1

2
sin 2

3
0

+ 3
4


 + 1

2
sin 2

2
3

= 1
4



3
−
√
3
4


− 0

+ 3

4



2
+ 0
− 

3
+
√
3
4


= 

12
−
√
3

16
+ 

8
− 3

√
3

16
= 5

24
−
√
3
4

31. sin 2 = cos 2 ⇒ sin 2

cos 2
= 1 ⇒ tan 2 = 1 ⇒ 2 = 

4
⇒

 = 
8
⇒

= 8 · 2  8
0

1
2
sin 22  = 8

 8
0

1
2
(1− cos 4) 

= 4

 − 1

4
sin 4

8
0

= 4


8
− 1

4
· 1 = 

2
− 1

33. sin 2 = cos 2 ⇒ tan 2 = 1 ⇒ 2 = 
4
⇒  = 

8

= 4
 8
0

1
2
sin 2  [since 2 = sin 2]

=
 8
0

2 sin 2  =
− cos 28

0

= −1
2

√
2− (−1) = 1− 1

2

√
2
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35. The darker shaded region (from  = 0 to  = 23) represents 1
2
of the desired area plus 1

2
of the area of the inner loop.

From this area, we’ll subtract 1
2
of the area of the inner loop (the lighter shaded region from  = 23 to  = ), and then

double that difference to obtain the desired area.

 = 2
 23
0

1
2


1
2
+ cos 

2
 −  

23

1
2


1
2
+ cos 

2



=
 23
0


1
4
+ cos  + cos2 


 −  

23


1
4
+ cos  + cos2 




=
 23
0


1
4
+ cos  + 1

2
(1 + cos 2)




−  
23


1
4
+ cos  + 1

2
(1 + cos 2)




=




4
+ sin  +



2
+
sin 2

4

23
0

−



4
+ sin  +



2
+
sin 2

4


23

=


6
+
√
3
2
+ 

3
−
√
3
8


− 

4
+ 

2


+


6
+
√
3
2
+ 

3
−
√
3
8


= 

4
+ 3

4

√
3 = 1

4


 + 3

√
3


37. The pole is a point of intersection.

1 + sin  = 3 sin  ⇒ 1 = 2 sin  ⇒ sin  = 1
2
⇒

 = 
6
or 5

6
.

The other two points of intersection are

3
2
 
6


and


3
2
 5
6


.

39. 2 sin 2 = 1 ⇒ sin 2 = 1
2
⇒ 2 = 

6
, 5
6
, 13

6
, or 17

6
.

By symmetry, the eight points of intersection are given by

(1 ), where  = 
12
, 5
12
, 13
12
, and 17

12
, and

(−1 ), where  = 7
12
, 11
12
, 19
12
, and 23

12
.

[There are many ways to describe these points.]

41. The pole is a point of intersection. sin  = sin 2 = 2 sin  cos  ⇔
sin  (1− 2 cos ) = 0 ⇔ sin  = 0 or cos  = 1

2
⇒

 = 0, , 
3
, or −

3
⇒ the other intersection points are

√
3
2
 
3


and

√
3
2
 2
3


[by symmetry].

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 10.4 AREAS AND LENGTHS IN POLAR COORDINATES ¤ 25

43.

From the first graph, we see that the pole is one point of intersection. By zooming in or using the cursor, we find the -values

of the intersection points to be  ≈ 088786 ≈ 089 and  −  ≈ 225. (The first of these values may be more easily
estimated by plotting  = 1 + sin and  = 2 in rectangular coordinates; see the second graph.) By symmetry, the total

area contained is twice the area contained in the first quadrant, that is,

= 2

 

0

1
2
(2)

2
 + 2

 2



1
2
(1 + sin )

2
 =

 

0

4
2
 +

 2




1 + 2 sin  + 1

2
(1− cos 2) 

=

4
3
3

0
+

 − 2 cos  +  1

2
 − 1

4
sin 2

2


= 4
3
3 +



2
+ 

4

− − 2 cos+ 1
2
− 1

4
sin 2

 ≈ 34645
45. =

 




2 + ()2  =

 

0


(2 cos )2 + (−2 sin )2 

=

 

0


4(cos2  + sin2 )  =

 

0

√
4  =


2

0
= 2

As a check, note that the curve is a circle of radius 1, so its circumference is 2(1) = 2.

47.  =

 




2 + ()2  =

 2

0


(2)2 + (2)2  =

 2

0


4 + 42 

=

 2

0


2(2 + 4)  =

 2

0



2 + 4 

Now let  = 2 + 4, so that  = 2 

  = 1

2


and

 2

0



2 + 4  =

 42+4

4

1
2

√
 = 1

2
· 2
3



32
4(2+1)
4

= 1
3
[4
32
(

2
+ 1)

32 − 432] = 8
3
[(

2
+ 1)

32 − 1]

49. The curve  = cos4(4) is completely traced with 0 ≤  ≤ 4.

2 + ()2 = [cos4(4)]2 +

4 cos3(4) · (− sin(4)) · 1

4

2
= cos8(4) + cos6(4) sin2(4)

= cos6(4)[cos2(4) + sin2(4)] = cos6(4)

 =
 4
0


cos6(4)  =

 4
0

cos3(4) 
= 2

 2
0
cos3(4)  [since cos3(4) ≥ 0 for 0 ≤  ≤ 2] = 8

 2
0

cos3 

 = 1

4



= 8
 2
0

(1− sin2 ) cos = 8  1
0
(1− 2) 


 = sin

 = cos


= 8


− 1

3
3
1
0
= 8


1− 1

3


= 16

3
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51. One loop of the curve  = cos 2 is traced with −4 ≤  ≤ 4.

2 +






2
= cos2 2+ (−2 sin 2)2 = cos2 2+4 sin2 2 = 1+3 sin2 2 ⇒ 

 4

−4


1 + 3 sin2 2  ≈ 24221.

53. The curve  = sin(6 sin ) is completely traced with 0 ≤  ≤ .  = sin(6 sin ) ⇒ 


= cos(6 sin ) · 6 cos , so

2 +






2
= sin2(6 sin ) + 36 cos2  cos2(6 sin ) ⇒ 

 

0


sin2(6 sin ) + 36 cos2  cos2(6 sin )  ≈ 80091.

55. (a) From (10.2.6),

 =
 

2


()2 + ()2 

=
 

2


2 + ()2  [from the derivation of Equation 10.4.5]

=
 

2 sin 


2 + ()

2


(b) The curve 2 = cos 2 goes through the pole when cos 2 = 0 ⇒
2 = 

2
⇒  = 

4
. We’ll rotate the curve from  = 0 to  = 

4
and double

this value to obtain the total surface area generated.

2 = cos 2 ⇒ 2



= −2 sin 2 ⇒






2
=
sin2 2

2
=
sin2 2

cos 2
.

 = 2

 4

0

2
√
cos 2 sin 


cos 2 +


sin2 2


cos 2  = 4

 4

0

√
cos 2 sin 


cos2 2 + sin2 2

cos 2


= 4

 4

0

√
cos 2 sin 

1√
cos 2

 = 4

 4

0

sin   = 4
− cos 4

0
= −4

√
2
2
− 1

= 2


2−

√
2


10.5 Conic Sections

1. 2 = 6 and 2 = 4 ⇒ 4 = 6 ⇒  = 3
2
.

The vertex is (0 0), the focus is

0 3

2


, and the directrix

is  = − 3
2
.

3. 2 = −2 ⇒ 2 = −2. 4 = −2 ⇒  = − 1
2
.

The vertex is (0 0), the focus is
− 1

2
 0

, and the

directrix is  = 1
2
.
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5. (+ 2)2 = 8 ( − 3). 4 = 8, so  = 2. The vertex is
(−2 3), the focus is (−2 5), and the directrix is  = 1.

7. 2 + 2 + 12+ 25 = 0 ⇒
2 + 2 + 1 = −12− 24 ⇒
( + 1)2 = −12(+ 2). 4 = −12, so  = −3.
The vertex is (−2−1), the focus is (−5−1), and the
directrix is  = 1.

9. The equation has the form 2 = 4, where   0. Since the parabola passes through (−1 1), we have 12 = 4(−1), so
4 = −1 and an equation is 2 = − or  = −2. 4 = −1, so  = − 1

4
and the focus is

− 1
4
 0

while the directrix

is  = 1
4
.

11.
2

2
+

2

4
= 1 ⇒  =

√
4 = 2,  =

√
2,  =

√
2 − 2 =

√
4− 2 = √2. The

ellipse is centered at (0 0), with vertices at (0±2). The foci are 0±√2 .

13. 2 +92 = 9 ⇔ 2

9
+

2

1
= 1 ⇒  =

√
9 = 3,

 =
√
1 = 1,  =

√
2 − 2 =

√
9− 1 = √8 = 2√2.

The ellipse is centered at (0 0), with vertices (±3 0).
The foci are (±2√2 0).

15. 92 − 18+ 42 = 27 ⇔
9(2 − 2+ 1) + 42 = 27 + 9 ⇔

9(− 1)2 + 42 = 36 ⇔ (− 1)2
4

+
2

9
= 1 ⇒

 = 3,  = 2,  =
√
5 ⇒ center (1 0),

vertices (1±3), foci 1±√5 

17. The center is (0 0),  = 3, and  = 2, so an equation is
2

4
+

2

9
= 1.  =

√
2 − 2 =

√
5, so the foci are


0±√5.
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19.
2

25
− 2

9
= 1 ⇒  = 5,  = 3,  =

√
25 + 9 =

√
34 ⇒

center (0 0), vertices (0±5), foci 0±√34 , asymptotes  = ± 5
3
.

Note: It is helpful to draw a 2-by-2 rectangle whose center is the center of

the hyperbola. The asymptotes are the extended diagonals of the rectangle.

21. 2 − 2 = 100 ⇔ 2

100
− 2

100
= 1 ⇒  =  = 10,

 =
√
100 + 100 = 10

√
2 ⇒ center (0 0), vertices (±10 0),

foci
±10√2 0, asymptotes  = ± 10

10
 = ±   

23. 42 − 2 − 24− 4 + 28 = 0 ⇔
4(2 − 6+ 9)− (2 + 4 + 4) = −28 + 36− 4 ⇔

4(− 3)2 − ( + 2)2 = 4 ⇔ (− 3)2
1

− ( + 2)2

4
= 1 ⇒

 =
√
1 = 1,  =

√
4 = 2,  =

√
1 + 4 =

√
5 ⇒

center (3−2), vertices (4−2) and (2−2), foci 3±√5−2,
asymptotes  + 2 = ±2(− 3).

25. 2 =  + 1 ⇔ 2 = 1( + 1). This is an equation of a parabola with 4 = 1, so  = 1
4
. The vertex is (0−1) and the

focus is

0− 3

4


.

27. 2 = 4 − 22 ⇔ 2 + 22 − 4 = 0 ⇔ 2 + 2(2 − 2 + 1) = 2 ⇔ 2 + 2( − 1)2 = 2 ⇔
2

2
+
( − 1)2

1
= 1. This is an equation of an ellipse with vertices at

±√2 1. The foci are at ±√2− 1 1 = (±1 1).
29. 2 +2 = 42 +3 ⇔ 2 +2+1 = 42 +4 ⇔ (+1)2 − 42 = 4 ⇔ ( + 1)2

4
− 2 = 1. This is an equation

of a hyperbola with vertices (0−1± 2) = (0 1) and (0−3). The foci are at 0−1±√4 + 1 = 0−1±√5.
31. The parabola with vertex (0 0) and focus (1 0) opens to the right and has  = 1, so its equation is 2 = 4, or 2 = 4.

33. The distance from the focus (−4 0) to the directrix  = 2 is 2− (−4) = 6, so the distance from the focus to the vertex is
1
2
(6) = 3 and the vertex is (−1 0). Since the focus is to the left of the vertex,  = −3. An equation is 2 = 4(+ 1) ⇒

2 = −12(+ 1).
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35. A parabola with vertical axis and vertex (2 3) has equation  − 3 = (− 2)2. Since it passes through (1 5), we have
5− 3 = (1− 2)2 ⇒  = 2, so an equation is  − 3 = 2(− 2)2.

37. The ellipse with foci (±2 0) and vertices (±5 0) has center (0 0) and a horizontal major axis, with  = 5 and  = 2,

so 2 = 2 − 2 = 25− 4 = 21. An equation is 
2

25
+

2

21
= 1.

39. Since the vertices are (0 0) and (0 8), the ellipse has center (0 4) with a vertical axis and  = 4. The foci at (0 2) and (0 6)

are 2 units from the center, so  = 2 and  =
√
2 − 2 =

√
42 − 22 = √12. An equation is (− 0)

2

2
+
( − 4)2

2
= 1 ⇒

2

12
+
( − 4)2
16

= 1.

41. An equation of an ellipse with center (−1 4) and vertex (−1 0) is (+ 1)
2

2
+
( − 4)2
42

= 1. The focus (−1 6) is 2 units

from the center, so  = 2. Thus, 2 + 22 = 42 ⇒ 2 = 12, and the equation is
(+ 1)2

12
+
( − 4)2
16

= 1.

43. An equation of a hyperbola with vertices (±3 0) is 
2

32
− 2

2
= 1. Foci (±5 0) ⇒  = 5 and 32 + 2 = 52 ⇒

2 = 25− 9 = 16, so the equation is 
2

9
− 2

16
= 1.

45. The center of a hyperbola with vertices (−3−4) and (−3 6) is (−3 1), so  = 5 and an equation is
( − 1)2
52

− (+ 3)2

2
= 1. Foci (−3−7) and (−3 9) ⇒  = 8, so 52 + 2 = 82 ⇒ 2 = 64− 25 = 39 and the

equation is
( − 1)2
25

− (+ 3)2

39
= 1.

47. The center of a hyperbola with vertices (±3 0) is (0 0), so  = 3 and an equation is 
2

32
− 2

2
= 1.

Asymptotes  = ±2 ⇒ 


= 2 ⇒  = 2(3) = 6 and the equation is

2

9
− 2

36
= 1.

49. In Figure 8, we see that the point on the ellipse closest to a focus is the closer vertex (which is a distance

−  from it) while the farthest point is the other vertex (at a distance of + ). So for this lunar orbit,

(− ) + (+ ) = 2 = (1728 + 110) + (1728 + 314), or  = 1940; and (+ )− (− ) = 2 = 314− 110,

or  = 102. Thus, 2 = 2 − 2 = 3,753,196, and the equation is
2

3,763,600
+

2

3,753,196
= 1.

51. (a) Set up the coordinate system so that  is (−200 0) and  is (200 0).

||− || = (1200)(980) = 1,176,000 ft = 2450
11

mi = 2 ⇒  = 1225
11
, and  = 200 so

2 = 2 − 2 =
3,339,375
121

⇒ 1212

1,500,625
− 1212

3,339,375
= 1.
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(b) Due north of  ⇒  = 200 ⇒ (121)(200)2

1,500,625
− 1212

3,339,375
= 1 ⇒  =

133,575
539

≈ 248 mi

53. The function whose graph is the upper branch of this hyperbola is concave upward. The function is

 = () = 


1 +

2

2
=





√
2 + 2, so 0 =




(2 + 2)−12 and

00 =





(2 + 2)−12 − 2(2 + 2)−32


= (2 + 2)−32  0 for all , and so  is concave upward.

55. (a) If   16, then  − 16  0, and 
2


+

2

 − 16 = 1 is an ellipse since it is the sum of two squares on the left side.

(b) If 0    16, then  − 16  0, and
2


+

2

 − 16 = 1 is a hyperbola since it is the difference of two squares on the

left side.

(c) If   0, then  − 16  0, and there is no curve since the left side is the sum of two negative terms, which cannot equal 1.

(d) In case (a), 2 = , 2 =  − 16, and 2 = 2 − 2 = 16, so the foci are at (±4 0). In case (b),  − 16  0, so 2 = ,

2 = 16− , and 2 = 2 + 2 = 16, and so again the foci are at (±4 0).

57. 2 = 4 ⇒ 2 = 40 ⇒ 0 =


2
, so the tangent line at (0 0) is

 − 20
4
=

0

2
(− 0). This line passes through the point (−) on the

directrix, so −− 20
4
=

0

2
(− 0) ⇒ −42 − 20 = 20 − 220 ⇔

20 − 20 − 42 = 0 ⇔ 20 − 20 + 2 = 2 + 42 ⇔

(0 − )2 = 2 + 42 ⇔ 0 = ±

2 + 42. The slopes of the tangent lines at  = ±


2 + 42

are
±


2 + 42

2
, so the product of the two slopes is

+

2 + 42

2
· −


2 + 42

2
=

2 − (2 + 42)
42

=
−42
42

= −1,

showing that the tangent lines are perpendicular.

59. 92 + 42 = 36 ⇔ 2

4
+

2

9
= 1. We use the parametrization  = 2 cos ,  = 3 sin , 0 ≤  ≤ 2. The circumference

is given by

=
 2
0


()2 + ()2  =

 2
0


(−2 sin )2 + (3 cos )2  =  2

0


4 sin2 + 9cos2  

=
 2
0

√
4 + 5 cos2  

Now use Simpson’s Rule with  = 8,∆ =
2 − 0
8

=


4
, and () =

√
4 + 5 cos2  to get

 ≈ 8 =
4

3


(0) + 4



4


+ 2



2


+ 4


3
4


+ 2() + 4


5
4


+ 2


3
2


+ 4


7
4


+ (2)

 ≈ 159.
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61.
2

2
− 2

2
= 1 ⇒ 2

2
=

2 − 2

2
⇒  = ± 



√
2 − 2.

= 2

 








2 − 2 

39
=
2






2


2 − 2 − 2

2
ln
+2 − 2

 


=






√
2 − 2 − 2 ln

+√2 − 2
+ 2 ln || 

Since 2 + 2 = 2 2 − 2 = 2, and
√
2 − 2 = .

=





− 2 ln(+ ) + 2 ln 


=






+ 2(ln − ln(+ ))


= 2+  ln[(+ )], where 2 = 2 + 2.

63. 92 +42 = 36 ⇔ 2

4
+

2

9
= 1 ⇒  = 3,  = 2. By symmetry,  = 0. By Example 2 in Section 7.3, the area of the

top half of the ellipse is 1
2
() = 3. Solve 92 + 42 = 36 for  to get an equation for the top half of the ellipse:

92 + 42 = 36 ⇔ 42 = 36− 92 ⇔ 2 = 9
4
(4− 2) ⇒  = 3

2

√
4− 2. Now

 =
1



 



1

2
[()]

2
 =

1

3

 2

−2

1

2


3

2


4− 2

2
 =

3

8

 2

−2
(4− 

2
) 

=
3

8
· 2
 2

0

(4− 
2
)  =

3

4


4− 1

3

3

2
0

=
3

4


16

3


=
4



so the centroid is (0 4).

65. Differentiating implicitly,
2

2
+

2

2
= 1 ⇒ 2

2
+
20

2
= 0 ⇒ 0 = − 2

2
[ 6= 0]. Thus, the slope of the tangent

line at  is − 21

21
. The slope of 1 is

1

1 + 
and of 2 is

1

1 − 
. By the formula from Problems Plus, we have

tan=

1

1 + 
+

21

21

1− 211

21(1 + )

=
221 + 21(1 + )

21(1 + )− 211
=

22 + 21

211 + 21


using 221 + 221 = 22,

and 2 − 2 = 2



=
2

1 + 2


1(1 + 2)

=
2

1

and

tan =

− 21

21
− 1

1 − 

1− 211

21(1 − )

=
−221 − 21(1 − )

21 (1 − )− 211
=
−22 + 21

211 − 21
=

2

1 − 2


1(1 − 2)

=
2

1

Thus,  = .
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10.6 Conic Sections in Polar Coordinates

1. The directrix  = 4 is to the right of the focus at the origin, so we use the form with “+  cos ” in the denominator.

(See Theorem 6 and Figure 2.) An equation is  =


1 +  cos 
=

1
2
· 4

1 + 1
2
cos 

=
4

2 + cos 
.

3. The directrix  = 2 is above the focus at the origin, so we use the form with “+  sin ” in the denominator. An equation is

 =


1 +  sin 
=

15(2)

1 + 15 sin 
=

6

2 + 3 sin 
.

5. The vertex (4 32) is 4 units below the focus at the origin, so the directrix is 8 units below the focus ( = 8), and we

use the form with “−  sin  ” in the denominator.  = 1 for a parabola, so an equation is

 =


1−  sin 
=

1(8)

1− 1 sin  =
8

1− sin  .

7. The directrix  = 4 sec  (equivalent to  cos  = 4 or  = 4) is to the right of the focus at the origin, so we will use the form

with “+  cos ” in the denominator. The distance from the focus to the directrix is  = 4, so an equation is

 =


1 +  cos 
=

1
2
(4)

1 + 1
2
cos 

· 2
2
=

4

2 + cos 
.

9.  =
4

5− 4 sin  ·
15

15
=

45

1− 4
5
sin 

, where  = 4
5
and  = 4

5
⇒  = 1.

(a) Eccentricity=  = 4
5

(b) Since  = 4
5
 1, the conic is an ellipse.

(c) Since “−  sin ” appears in the denominator, the directrix is below the focus

at the origin,  = || = 1, so an equation of the directrix is  = −1.

(d) The vertices are

4 

2


and


4
9
 3
2


.

11.  =
2

3 + 3 sin 
· 13
13

=
23

1 + 1 sin 
, where  = 1 and  = 2

3
⇒  = 2

3
.

(a) Eccentricity=  = 1

(b) Since  = 1, the conic is a parabola.

(c) Since “+  sin ” appears in the denominator, the directrix is above the focus

at the origin.  = || = 2
3
, so an equation of the directrix is  = 2

3
.

(d) The vertex is at

1
3
 
2


, midway between the focus and directrix.
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13.  =
9

6 + 2 cos 
· 16
16

=
32

1 + 1
3
cos 

, where  = 1
3
and  = 3

2
⇒  = 9

2
.

(a) Eccentricity=  = 1
3

(b) Since  = 1
3
 1, the conic is an ellipse.

(c) Since “+ cos  ” appears in the denominator, the directrix is to the right of

the focus at the origin.  = || = 9
2
, so an equation of the directrix is

 = 9
2
.

(d) The vertices are

9
8
 0

and


9
4
 

, so the center is midway between them,

that is,

9
16
 

.

15.  =
3

4− 8 cos  ·
14

14
=

34

1− 2 cos  , where  = 2 and  =
3
4
⇒  = 3

8
.

(a) Eccentricity=  = 2

(b) Since  = 2  1, the conic is a hyperbola.

(c) Since “− cos  ” appears in the denominator, the directrix is to the left of
the focus at the origin.  = || = 3

8
, so an equation of the directrix is

 = −3
8
.

(d) The vertices are
−3

4
 0

and


1
4
 

, so the center is midway between them,

that is,

1
2
 

.

17. (a)  =
1

1− 2 sin  , where  = 2 and  = 1 ⇒  = 1
2
. The eccentricity

 = 2  1, so the conic is a hyperbola. Since “− sin  ” appears in the
denominator, the directrix is below the focus at the origin.  = || = 1

2
,

so an equation of the directrix is  = − 1
2
. The vertices are

−1 
2


and

1
3
 3
2


, so the center is midway between them, that is,


2
3
 3
2


.

(b) By the discussion that precedes Example 4, the equation

is  =
1

1− 2 sin − 3
4

 .
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19. For   1 the curve is an ellipse. It is nearly circular when  is close to 0. As 

increases, the graph is stretched out to the right, and grows larger (that is, its

right-hand focus moves to the right while its left-hand focus remains at the

origin.) At  = 1, the curve becomes a parabola with focus at the origin.

21. | | =  || ⇒  = [−  cos( − )] = (+  cos ) ⇒

(1−  cos ) =  ⇒  =


1−  cos 

23. | | =  || ⇒  = [−  sin( − )] = (+  sin ) ⇒

(1−  sin ) =  ⇒  =


1−  sin 

25. We are given  = 0093 and  = 228× 108. By (7), we have

 =
(1− 2)

1 +  cos 
=
228× 108[1− (0093)2]

1 + 0093 cos 
≈ 226× 108
1 + 0093 cos 

27. Here 2 = length of major axis = 3618 AU ⇒  = 1809 AU and  = 097. By (7), the equation of the orbit is

 =
1809[1− (097)2]
1 + 097 cos 

≈ 107

1 + 097 cos 
. By (8), the maximum distance from the comet to the sun is

1809(1 + 097) ≈ 3564 AU or about 3314 billion miles.

29. The minimum distance is at perihelion, where 46× 107 =  = (1− ) = (1− 0206) = (0794) ⇒

 = 46 × 1070794. So the maximum distance, which is at aphelion, is

 = (1 + ) =

46× 1070794(1206) ≈ 70× 107 km.

31. From Exercise 29, we have  = 0206 and (1− ) = 46× 107 km. Thus,  = 46× 1070794. From (7), we can write the

equation of Mercury’s orbit as  = 
1− 2

1 +  cos 
. So since




=

(1− 2) sin 

(1 +  cos )2
⇒

2 +






2
=

2(1− 2)2

(1 +  cos )2
+

2(1− 2)2 2 sin2 

(1 +  cos )4
=

2(1− 2)2

(1 +  cos )4
(1 + 2 cos  + 2)
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the length of the orbit is

 =

 2

0


2 + ()2  = (1− 

2
)

 2

0

√
1 + 2 + 2 cos 

(1 +  cos )2
 ≈ 36× 108 km

This seems reasonable, since Mercury’s orbit is nearly circular, and the circumference of a circle of radius 

is 2 ≈ 36× 108 km.

10 Review

1. (a) A parametric curve is a set of points of the form ( ) = (() ()), where  and  are continuous functions of a

variable .

(b) Sketching a parametric curve, like sketching the graph of a function, is difficult to do in general. We can plot points on the

curve by finding () and () for various values of , either by hand or with a calculator or computer. Sometimes, when

 and  are given by formulas, we can eliminate  from the equations  = () and  = () to get a Cartesian equation

relating  and . It may be easier to graph that equation than to work with the original formulas for  and  in terms of .

2. (a) You can find



as a function of  by calculating




=




[if  6= 0].

(b) Calculate the area as
 

  =

 

()  0() [or

 

()  0() if the leftmost point is (() ()) rather

than (() ())].

3. (a)  =
 



()2 + ()2  =

 



[ 0()]2 + [0()]2 

(b)  =
 

2


()2 + ()2  =

 

2()


[ 0()]2 + [0()]2 

4. (a) See Figure 5 in Section 10.3.

(b)  =  cos ,  =  sin 

(c) To find a polar representation ( ) with  ≥ 0 and 0 ≤   2, first calculate  =

2 + 2. Then  is specified by

cos  =  and sin  = .

5. (a) Calculate



=








=




()




()

=




( sin )




( cos )

=







sin  +  cos 






cos  −  sin 

, where  = ().

(b) Calculate  =
 


1
2
2  =

 


1
2
[()]2 

(c)  =
 



()2 + ()2  =

 



2 + ()2  =

 



[()]2 + [ 0()]2 

6. (a) A parabola is a set of points in a plane whose distances from a fixed point  (the focus) and a fixed line  (the directrix)

are equal.

(b) 2 = 4; 2 = 4
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7. (a) An ellipse is a set of points in a plane the sum of whose distances from two fixed points (the foci) is a constant.

(b)
2

2
+

2

2 − 2
= 1.

8. (a) A hyperbola is a set of points in a plane the difference of whose distances from two fixed points (the foci) is a constant.

This difference should be interpreted as the larger distance minus the smaller distance.

(b)
2

2
− 2

2 − 2
= 1

(c)  = ±
√
2 − 2




9. (a) If a conic section has focus  and corresponding directrix , then the eccentricity  is the fixed ratio | |  || for points
 of the conic section.

(b)   1 for an ellipse;   1 for a hyperbola;  = 1 for a parabola.

(c)  = :  =


1 +  cos 
.  = −:  = 

1−  cos 
.  = :  =



1 +  sin 
.  = −:  = 

1−  sin 
.

1. False. Consider the curve defined by  = () = (− 1)3 and  = () = (− 1)2. Then 0() = 2(− 1), so 0(1) = 0,
but its graph has a vertical tangent when  = 1. Note: The statement is true if  0(1) 6= 0 when 0(1) = 0.

3. False. For example, if () = cos  and () = sin  for 0 ≤  ≤ 4, then the curve is a circle of radius 1, hence its length
is 2, but

 4
0


[ 0()]2 + [0()]2  =

 4
0


(− sin )2 + (cos )2  =  4

0
1  = 4, since as  increases

from 0 to 4, the circle is traversed twice.

5. True. The curve  = 1− sin 2 is unchanged if we rotate it through 180◦ about  because
1− sin 2( + ) = 1− sin(2 + 2) = 1− sin 2. So it’s unchanged if we replace  by −. (See the discussion
after Example 8 in Section 10.3.) In other words, it’s the same curve as  = −(1− sin 2) = sin 2 − 1.

7. False. The first pair of equations gives the portion of the parabola  = 2 with  ≥ 0, whereas the second pair of equations
traces out the whole parabola  = 2.

9. True. By rotating and translating the parabola, we can assume it has an equation of the form  = 2, where   0.

The tangent at the point

 2


is the line  − 2 = 2(− ); i.e.,  = 2− 2. This tangent meets

the parabola at the points

 2


where 2 = 2− 2. This equation is equivalent to 2 = 2− 2

[since   0]. But 2 = 2− 2 ⇔ 2 − 2+ 2 = 0 ⇔ (− )
2
= 0 ⇔  =  ⇔

 2

=

 2


. This shows that each tangent meets the parabola at exactly one point.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



CHAPTER 10 REVIEW ¤ 37

1.  = 2 + 4,  = 2− , −4 ≤  ≤ 1.  = 2− , so

 = (2− )
2
+ 4(2− ) = 4− 4 + 2 + 8− 4 = 2 − 8 + 12 ⇔

+ 4 = 2 − 8 + 16 = ( − 4)2. This is part of a parabola with vertex
(−4 4), opening to the right.

3.  = sec  =
1

cos 
=
1


. Since 0 ≤  ≤ 2, 0   ≤ 1 and  ≥ 1.

This is part of the hyperbola  = 1.

5. Three different sets of parametric equations for the curve  =
√
 are

(i)  = ,  =
√


(ii)  = 4,  = 2

(iii)  = tan2 ,  = tan , 0 ≤   2

There are many other sets of equations that also give this curve.

7. (a) The Cartesian coordinates are  = 4cos 2
3
= 4

− 1
2


= −2 and

 = 4 sin 2
3
= 4

√
3
2


= 2

√
3, that is, the point

−2 2√3 .

(b) Given  = −3 and  = 3, we have  =

(−3)2 + 32 = √18 = 3√2. Also, tan  = 


⇒ tan  =

3

−3 , and since

(−3 3) is in the second quadrant,  = 3
4
. Thus, one set of polar coordinates for (−3 3) is 3√2 3

4


, and two others are

3
√
2 11

4


and

−3√2 7
4


.

9.  = 1− cos . This cardioid is
symmetric about the polar axis.
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11.  = cos 3. This is a

three-leaved rose. The curve is

traced twice.

13.  = 1 + cos 2. The curve is

symmetric about the pole and

both the horizontal and vertical

axes.

15.  =
3

1 + 2 sin 
⇒  = 2  1, so the conic is a hyperbola.  = 3 ⇒

 = 3
2
and the form “+2 sin ” imply that the directrix is above the focus at

the origin and has equation  = 3
2
. The vertices are


1 

2


and

−3 3
2


.

17. +  = 2 ⇔  cos  +  sin  = 2 ⇔ (cos  + sin ) = 2 ⇔  =
2

cos  + sin 

19.  = (sin ). As → ±∞,  → 0.

As → 0, → 1. In the first figure,

there are an infinite number of

-intercepts at  = ,  a nonzero

integer. These correspond to pole

points in the second figure.

21.  = ln ,  = 1 + 2;  = 1.



= 2 and




=
1


, so




=




=
2

1
= 22.

When  = 1, ( ) = (0 2) and  = 2.

23.  = − ⇒  =  sin  = − sin  and  =  cos  = − cos  ⇒




=




=



sin  +  cos 



cos  −  sin 

=
−− sin  + − cos 
−− cos  − − sin 

· −


− =
sin  − cos 
cos  + sin 

.

When  = ,



=
0− (−1)
−1 + 0 =

1

−1 = −1.
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25.  = + sin ,  = − cos  ⇒ 


=




=
1 + sin 

1 + cos 
⇒

2

2
=













=

(1 + cos ) cos − (1 + sin )(− sin )
(1 + cos )2

1 + cos 
=
cos + cos2 + sin + sin2 

(1 + cos )3
=
1 + cos + sin 

(1 + cos )3

27. We graph the curve  = 3 − 3,  = 2 + + 1 for −22 ≤  ≤ 12.
By zooming in or using a cursor, we find that the lowest point is about

(14 075). To find the exact values, we find the -value at which

 = 2+ 1 = 0 ⇔  = − 1
2
⇔ ( ) =


11
8
 3
4




29.  = 2 cos −  cos 2 ⇒ 


= −2 sin + 2 sin 2 = 2 sin (2 cos − 1) = 0 ⇔

sin  = 0 or cos  = 1
2
⇒  = 0, 

3
, , or 5

3
.

 = 2 sin −  sin 2 ⇒ 


= 2 cos − 2 cos 2 = 21 + cos − 2 cos2  = 2(1− cos )(1 + 2 cos ) = 0 ⇒

 = 0, 2
3
, or 4

3
.

Thus the graph has vertical tangents where  = 
3
,  and 5

3
, and horizontal tangents where  = 2

3
and 4

3
. To determine

what the slope is where  = 0, we use l’Hospital’s Rule to evaluate lim
→0




= 0, so there is a horizontal tangent there.

  

0  0


3

3
2


√
3
2


2
3

− 1
2
 3

√
3

2


 −3 0

4
3

− 1
2
 − 3

√
3

2


5
3

3
2
 −

√
3
2


31. The curve 2 = 9 cos 5 has 10 “petals.” For instance, for − 
10
≤  ≤ 

10
, there are two petals, one with   0 and one

with   0.

 = 10
 10
−10

1
2
2  = 5

 10
−10 9 cos 5  = 5 · 9 · 2

 10
0

cos 5  = 18

sin 5

10
0

= 18

33. The curves intersect when 4 cos  = 2 ⇒ cos  = 1
2
⇒  = ±

3

for − ≤  ≤ . The points of intersection are

2 

3


and


2−

3


.
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35. The curves intersect where 2 sin  = sin  + cos  ⇒
sin  = cos  ⇒  = 

4
, and also at the origin (at which  = 3

4

on the second curve).

=
 4
0

1
2
(2 sin )2  +

 34
4

1
2
(sin  + cos )2 

=
 4
0

(1− cos 2)  + 1
2

 34
4

(1 + sin 2) 

=

 − 1

2
sin 2

4
0

+

1
2
 − 1

4
cos 2

34
4

= 1
2
( − 1)

37.  = 32,  = 23.

=
 2
0


()2 + ()2  =

 2
0


(6)2 + (62)2  =

 2
0

√
362 + 364  =

 2
0

√
362

√
1 + 2 

=
 2
0
6 ||√1 + 2  = 6

 2
0

√
1 + 2  = 6

 5
1
12


1
2

 

 = 1 + 2,  = 2 


= 6 · 1
2
· 2
3


32

5
1
= 2(532 − 1) = 25√5− 1

39.  =
 2



2 + ()2  =

 2



(1)2 + (−12)2  =

 2




2 + 1

2


24
=


−

2 + 1


+ ln


 +


2 + 1

2


=

√
2 + 1


−
√
42 + 1

2
+ ln


2 +

√
42 + 1

 +
√
2 + 1



=
2
√
2 + 1−√42 + 1

2
+ ln


2 +

√
42 + 1

 +
√
2 + 1



41.  = 4
√
,  =

3

3
+

1

22
, 1 ≤  ≤ 4 ⇒

 =
 4
1
2


()2 + ()2  =

 4
1
2

1
3
3 + 1

2
−2


2
√

2
+ (2 − −3)2 

= 2
 4
1


1
3
3 + 1

2
−2


(2 + −3)2  = 2
 4
1


1
3
5 + 5

6
+ 1

2
−5

 = 2


1
18
6 + 5

6
− 1

8
−4
4
1
= 471,295

1024


43. For all  except −1, the curve is asymptotic to the line  = 1. For
  −1, the curve bulges to the right near  = 0. As  increases, the
bulge becomes smaller, until at  = −1 the curve is the straight line  = 1.
As  continues to increase, the curve bulges to the left, until at  = 0 there

is a cusp at the origin. For   0, there is a loop to the left of the origin,

whose size and roundness increase as  increases. Note that the -intercept

of the curve is always −
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45.
2

9
+

2

8
= 1 is an ellipse with center (0 0).

 = 3,  = 2
√
2,  = 1 ⇒

foci (±1 0), vertices (±3 0).

47. 62 + − 36 + 55 = 0 ⇔
6(2 − 6 + 9) = −(+ 1) ⇔
( − 3)2 = −1

6
(+ 1), a parabola with vertex (−1 3),

opening to the left,  = − 1
24

⇒ focus
− 25

24
 3

and

directrix  = − 23
24
.

49. The ellipse with foci (±4 0) and vertices (±5 0) has center (0 0) and a horizontal major axis, with  = 5 and  = 4,

so 2 = 2 − 2 = 52 − 42 = 9. An equation is 
2

25
+

2

9
= 1.

51. The center of a hyperbola with foci (0±4) is (0 0), so  = 4 and an equation is 
2

2
− 2

2
= 1.

The asymptote  = 3 has slope 3, so



=
3

1
⇒  = 3 and 2 + 2 = 2 ⇒ (3)2 + 2 = 42 ⇒

102 = 16 ⇒ 2 = 8
5
and so 2 = 16− 8

5
= 72

5
. Thus, an equation is

2

725
− 2

85
= 1, or

52

72
− 52

8
= 1.

53. 2 = −( − 100) has its vertex at (0 100), so one of the vertices of the ellipse is (0 100). Another form of the equation of a
parabola is 2 = 4( − 100) so 4( − 100) = −( − 100) ⇒ 4 = −1 ⇒  = −1

4
. Therefore the shared focus is

found at

0 399

4


so 2 = 399

4
− 0 ⇒  = 399

8
and the center of the ellipse is


0 399

8


. So  = 100− 399

8
= 401

8
and

2 = 2 − 2 =
4012 − 3992

82
= 25. So the equation of the ellipse is

2

2
+


 − 399

8

2
2

= 1 ⇒ 2

25
+


 − 399

8

2
401
8

2 = 1,

or
2

25
+
(8 − 399)2
160,801

= 1.

55. Directrix  = 4 ⇒  = 4, so  = 1
3
⇒  =



1 +  cos 
=

4

3 + cos 
.

57. (a) If ( ) lies on the curve, then there is some parameter value 1 such that
31

1 + 31
=  and

321
1 + 31

= . If 1 = 0,

the point is (0 0), which lies on the line  = . If 1 6= 0, then the point corresponding to  = 1

1
is given by

 =
3(11)

1 + (11)3
=

321
31 + 1

= ,  =
3(11)

2

1 + (11)3
=

31

31 + 1
= . So ( ) also lies on the curve. [Another way to see

this is to do part (e) first; the result is immediate.] The curve intersects the line  =  when
3

1 + 3
=

32

1 + 3
⇒

 = 2 ⇒  = 0 or 1, so the points are (0 0) and

3
2
 3
2


.
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(b)



=
(1 + 3)(6)− 32(32)

(1 + 3)2
=
6− 34
(1 + 3)2

= 0 when 6− 34 = 3(2− 3) = 0 ⇒  = 0 or  = 3
√
2, so there are

horizontal tangents at (0 0) and

3
√
2

3
√
4

. Using the symmetry from part (a), we see that there are vertical tangents at

(0 0) and

3
√
4

3
√
2

.

(c) Notice that as → −1+, we have → −∞ and  →∞. As → −1−, we have →∞ and  → −∞. Also

 − (−− 1) =  + + 1 =
3+ 32 + (1 + 3)

1 + 3
=
(+ 1)3

1 + 3
=

(+ 1)2

2 − + 1
→ 0 as → −1. So  = −− 1 is a

slant asymptote.

(d)



=
(1 + 3)(3)− 3(32)

(1 + 3)2
=

3− 63
(1 + 3)2

and from part (b) we have



=
6− 34
(1 + 3)2

. So



=




=

(2− 3)

1− 23 .

Also
2

2
=













=
2(1 + 3)4

3(1− 23)3  0 ⇔  
1
3
√
2
.

So the curve is concave upward there and has a minimum point at (0 0)

and a maximum point at

3
√
2

3
√
4

. Using this together with the

information from parts (a), (b), and (c), we sketch the curve.

(e) 3 + 3 =


3

1 + 3

3
+


32

1 + 3

3
=
273 + 276

(1 + 3)3
=
273(1 + 3)

(1 + 3)3
=

273

(1 + 3)2
and

3 = 3


3

1 + 3


32

1 + 3


=

273

(1 + 3)2
, so 3 + 3 = 3.

(f ) We start with the equation from part (e) and substitute  =  cos ,  =  sin . Then 3 + 3 = 3 ⇒

3 cos3  + 3 sin3  = 32 cos  sin . For  6= 0, this gives  = 3 cos  sin 

cos3  + sin3 
. Dividing numerator and denominator

by cos3 , we obtain  =
3


1

cos 


sin 

cos 

1 +
sin3 

cos3 

=
3 sec  tan 

1 + tan3 
.

(g) The loop corresponds to  ∈ 0 
2


, so its area is

=

 2

0

2

2
 =

1

2

 2

0


3 sec  tan 

1 + tan3 

2
 =

9

2

 2

0

sec2  tan2 

(1 + tan3 )2
 =

9

2

 ∞

0

2 

(1 + 3)2
[let  = tan ]

= lim
→∞

9
2

−1
3
(1 + 3)−1


0
= 3

2

(h) By symmetry, the area between the folium and the line  = −− 1 is equal to the enclosed area in the third quadrant,
plus twice the enclosed area in the fourth quadrant. The area in the third quadrant is 1

2
, and since  = −− 1 ⇒

 sin  = − cos  − 1 ⇒  = − 1

sin  + cos 
, the area in the fourth quadrant is

1

2

 −4

−2


− 1

sin  + cos 

2
−

3 sec  tan 

1 + tan3 

2


CAS
=
1

2
. Therefore, the total area is 1

2
+ 2

1
2


= 3

2
.
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1.  =
 

1

cos


,  =

 

1

sin


, so by FTC1, we have




=
cos 


and




=
sin 


. Vertical tangent lines occur when




= 0 ⇔ cos  = 0. The parameter value corresponding to ( ) = (0, 0) is  = 1, so the nearest vertical tangent

occurs when  = 
2
. Therefore, the arc length between these points is

 =

 2

1






2
+






2
 =

 2

1


cos2 

2
+
sin2 

2
 =

 2

1




=

ln 
2
1

= ln 
2

3. In terms of  and , we have  =  cos  = (1 +  sin ) cos  = cos  +  sin  cos  = cos  + 1
2
 sin 2 and

 =  sin  = (1 +  sin ) sin  = sin  +  sin2 . Now−1 ≤ sin  ≤ 1 ⇒ −1 ≤ sin  +  sin2  ≤ 1 +  ≤ 2, so

−1 ≤  ≤ 2. Furthermore,  = 2 when  = 1 and  = 
2
, while  = −1 for  = 0 and  = 3

2
. Therefore, we need a viewing

rectangle with −1 ≤  ≤ 2.

To find the -values, look at the equation  = cos  + 1
2
 sin 2 and use the fact that sin 2 ≥ 0 for 0 ≤  ≤ 

2
and

sin 2 ≤ 0 for −
2
≤  ≤ 0. [Because  = 1 +  sin  is symmetric about the -axis, we only need to consider

−
2
≤  ≤ 

2
.] So for −

2
≤  ≤ 0,  has a maximum value when  = 0 and then  = cos  has a maximum value

of 1 at  = 0. Thus, the maximum value of  must occur on

0 

2


with  = 1. Then  = cos  + 1

2
sin 2 ⇒



= − sin  + cos 2 = − sin  + 1− 2 sin2  ⇒ 


= −(2 sin  − 1)(sin  + 1) = 0 when sin  = −1 or 1

2

[but sin  6= −1 for 0 ≤  ≤ 
2
]. If sin  = 1

2
, then  = 

6
and

 = cos 
6
+ 1

2
sin 

3
= 3

4

√
3. Thus, the maximum value of  is 3

4

√
3, and,

by symmetry, the minimum value is − 3
4

√
3. Therefore, the smallest

viewing rectangle that contains every member of the family of polar curves

 = 1 +  sin , where 0 ≤  ≤ 1, is −3
4

√
3 3

4

√
3
× [−1 2].

5. Without loss of generality, assume the hyperbola has equation
2

2
− 2

2
= 1. Use implicit differentiation to get

2

2
− 2 0

2
= 0, so 0 =

2

2
. The tangent line at the point ( ) on the hyperbola has equation  −  =

2

2
(− ).

The tangent line intersects the asymptote  =



 when




−  =

2

2
(− ) ⇒ − 22 = 2− 22 ⇒
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− 2 = 22 − 22 ⇒  =
22 − 22

(− )
=

+ 


and the -value is





+ 


=

+ 


.

Similarly, the tangent line intersects  = − 


 at


− 



− 




. The midpoint of these intersection points is


1

2


+ 


+

− 





1

2


+ 


+

− 




=


1

2

2



1

2

2




= ( ), the point of tangency.

Note: If  = 0, then at (± 0), the tangent line is  = ±, and the points of intersection are clearly equidistant from the point

of tangency.
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11 INFINITE SEQUENCES AND SERIES

11.1 Sequences

1. (a) A sequence is an ordered list of numbers. It can also be defined as a function whose domain is the set of positive integers.

(b) The terms  approach 8 as  becomes large. In fact, we can make  as close to 8 as we like by taking  sufficiently

large.

(c) The terms  become large as  becomes large. In fact, we can make  as large as we like by taking  sufficiently large.

3.  =
2

2 + 1
, so the sequence is


2

1 + 1

4

4 + 1

6

9 + 1


8

16 + 1

10

25 + 1
   


=


1
4

5

3

5

8

17

5

13
   


.

5.  =
(−1)−1
5

, so the sequence is


1

51

−1
52


1

53

−1
54


1

55
   


=


1

5
− 1

25

1

125
− 1

625

1

3125
   


.

7.  =
1

(+ 1)!
, so the sequence is


1

2!

1

3!

1

4!

1

5!

1

6!
   


=


1

2

1

6

1

24

1

120

1

720
   


.

9. 1 = 1, +1 = 5 − 3. Each term is defined in terms of the preceding term. 2 = 51 − 3 = 5(1)− 3 = 2.

3 = 52 − 3 = 5(2)− 3 = 7. 4 = 53 − 3 = 5(7)− 3 = 32. 5 = 54 − 3 = 5(32)− 3 = 157.

The sequence is {1 2 7 32 157   }.

11. 1 = 2, +1 =


1 + 
. 2 =

1

1 + 1
=

2

1 + 2
=
2

3
. 3 =

2

1 + 2
=

23

1 + 23
=
2

5
. 4 =

3

1 + 3
=

25

1 + 25
=
2

7
.

5 =
4

1 + 4
=

27

1 + 27
=
2

9
. The sequence is


2 2

3
 2
5
 2
7
 2
9
   


.

13.

1 1

3
 1
5
 1
7
 1
9
   


. The denominator of the nth term is the nth positive odd integer, so  =

1

2− 1 .

15.
−3 2− 4

3
 8
9
− 16

27
   


. The first term is −3 and each term is −2

3
times the preceding one, so  = −3

− 2
3

−1
.

17.

1
2
− 4

3
 9
4
− 16

5
 25
6
   


. The numerator of the nth term is 2 and its denominator is + 1. Including the alternating signs,

we get  = (−1)+1 2

+ 1
.
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19.
  =

3

1 + 6

1 04286

2 04615

3 04737

4 04800

5 04839

6 04865

7 04884

8 04898

9 04909

10 04918

It appears that lim
→∞

 = 05.

lim
→∞

3

1 + 6
= lim

→∞
(3)

(1 + 6)
= lim

→∞
3

1+ 6
=
3

6
=
1

2

21.
  = 1 +

− 1
2


1 05000

2 12500

3 08750

4 10625

5 09688

6 10156

7 09922

8 10039

9 09980

10 10010

It appears that lim
→∞

 = 1.

lim
→∞


1 +

− 1
2


= lim

→∞
1 + lim

→∞

− 1
2


= 1 + 0 = 1 since

lim
→∞

− 1
2


= 0 by (9).

23.  = 1− (02), so lim
→∞

 = 1− 0 = 1 by (9) . Converges

25.  =
3 + 52

+ 2
=
(3 + 52)2

(+ 2)2
=
5 + 32

1 + 1
, so  → 5 + 0

1 + 0
= 5 as →∞. Converges

27. Because the natural exponential function is continuous at 0, Theorem 7 enables us to write

lim
→∞

 = lim
→∞

1 = lim→∞(1) = 0 = 1 Converges

29. If  =
2

1 + 8
, then lim

→∞
 = lim

→∞
(2)

(1 + 8)
= lim

→∞
2

1+ 8
=
2

8
=



4
. Since tan is continuous at 

4
, by

Theorem 7, lim
→∞

tan


2

1 + 8


= tan


lim
→∞

2

1 + 8


= tan



4
= 1. Converges

31.  =
2√

3 + 4
=

2
√
3√

3 + 4
√
3

=

√


1 + 42
, so  →∞ as →∞ since lim

→∞
√
 =∞ and

lim
→∞


1 + 42 = 1. Diverges

33. lim
→∞

|| = lim
→∞

 (−1)2
√


 = 1

2
lim
→∞

1

12
=
1

2
(0) = 0, so lim

→∞
 = 0 by (6). Converges
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35.  = cos(2). This sequence diverges since the terms don’t approach any particular real number as →∞.
The terms take on values between −1 and 1

37.  =
(2− 1)!
(2+ 1)!

=
(2− 1)!

(2+ 1)(2)(2− 1)! =
1

(2+ 1)(2)
→ 0 as →∞. Converges

39.  =
 + −

2 − 1 · 
−

−
=
1 + −2

 − −
→ 0 as →∞ because 1 + −2 → 1 and  − − →∞. Converges

41.  = 2− =
2


. Since lim

→∞
2


H
= lim

→∞
2


H
= lim

→∞
2


= 0, it follows from Theorem 3 that lim

→∞
 = 0. Converges

43. 0 ≤ cos2 

2
≤ 1

2
[since 0 ≤ cos2  ≤ 1], so since lim

→∞
1

2
= 0,


cos2 

2


converges to 0 by the Squeeze Theorem.

45.  =  sin(1) =
sin(1)

1
. Since lim

→∞
sin(1)

1
= lim

→0+

sin 


[where  = 1] = 1, it follows from Theorem 3

that {} converges to 1.

47.  =


1 +

2




⇒ ln  =  ln


1 +

2




, so

lim
→∞

ln  = lim
→∞

ln(1 + 2)

1

H
= lim

→∞


1

1 + 2


− 2

2


−12 = lim

→∞
2

1 + 2
= 2 ⇒

lim
→∞


1 +

2




= lim

→∞
ln  = 2, so by Theorem 3, lim

→∞


1 +

2




= 2. Converges

49.  = ln(22 + 1)− ln(2 + 1) = ln

22 + 1

2 + 1


= ln


2 + 12

1 + 12


→ ln 2 as →∞. Converges

51.  = arctan(ln). Let () = arctan(ln). Then lim
→∞

() = 
2
since ln→∞ as →∞ and arctan is continuous.

Thus, lim
→∞

 = lim
→∞

() = 
2
. Converges

53. {0 1 0 0 1 0 0 0 1   } diverges since the sequence takes on only two values, 0 and 1, and never stays arbitrarily close to
either one (or any other value) for  sufficiently large.

55.  =
!

2
=
1

2
· 2
2
· 3
2
· · · · · (− 1)

2
· 
2
≥ 1

2
· 
2

[for   1] =


4
→∞ as →∞, so {} diverges.

57. From the graph, it appears that the sequence converges to 1.

{(−2)} converges to 0 by (7), and hence {1 + (−2)}
converges to 1 + 0 = 1.
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59. From the graph, it appears that the sequence converges to 1
2
.

As →∞,

 =


3 + 22

82 + 
=


32 + 2

8 + 1
⇒


0 + 2

8 + 0
=


1

4
=
1

2
,

so lim
→∞

 =
1
2
.

61. From the graph, it appears that the sequence {} =

2 cos

1 + 2


is

divergent, since it oscillates between 1 and −1 (approximately). To

prove this, suppose that {} converges to . If  = 2

1 + 2
, then

{} converges to 1, and lim
→∞




=



1
= . But




= cos, so

lim
→∞




does not exist. This contradiction shows that {} diverges.

63. From the graph, it appears that the sequence approaches 0.

0   =
1 · 3 · 5 · · · · · (2− 1)

(2)
 =

1

2
· 3
2
· 5
2
· · · · · 2− 1

2

≤ 1

2
· (1) · (1) · · · · · (1) = 1

2
→ 0 as →∞

So by the Squeeze Theorem,


1 · 3 · 5 · · · · · (2− 1)

(2)



converges to 0.

65. (a)  = 1000(106) ⇒ 1 = 1060, 2 = 112360, 3 = 119102, 4 = 126248, and 5 = 133823.

(b) lim
→∞

 = 1000 lim
→∞

(106), so the sequence diverges by (9) with  = 106  1.

67. (a) We are given that the initial population is 5000, so 0 = 5000. The number of catfish increases by 8% per month and is

decreased by 300 per month, so 1 = 0 + 8%0 − 300 = 1080 − 300, 2 = 1081 − 300, and so on. Thus,
 = 108−1 − 300.

(b) Using the recursive formula with 0 = 5000, we get 1 = 5100, 2 = 5208, 3 = 5325 (rounding any portion of a

catfish), 4 = 5451, 5 = 5587, and 6 = 5734, which is the number of catfish in the pond after six months.

69. If || ≥ 1, then {} diverges by (9), so {} diverges also, since || =  || ≥ ||. If ||  1 then

lim
→∞

 = lim
→∞



−
H
= lim

→∞
1

(− ln ) − = lim
→∞



− ln  = 0, so lim→∞
 = 0, and hence {} converges

whenever ||  1.
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71. Since {} is a decreasing sequence,   +1 for all  ≥ 1. Because all of its terms lie between 5 and 8, {} is a
bounded sequence. By the Monotonic Sequence Theorem, {} is convergent; that is, {} has a limit .  must be less than

8 since {} is decreasing, so 5 ≤   8.

73.  =
1

2+ 3
is decreasing since +1 =

1

2(+ 1) + 3
=

1

2+ 5


1

2+ 3
=  for each  ≥ 1. The sequence is

bounded since 0   ≤ 1
5
for all  ≥ 1. Note that 1 = 1

5
.

75. The terms of  = (−1) alternate in sign, so the sequence is not monotonic. The first five terms are −1, 2, −3, 4, and −5.

Since lim
→∞

|| = lim
→∞

 =∞, the sequence is not bounded.

77.  =


2 + 1
defines a decreasing sequence since for () =



2 + 1
,  0() =

(2 + 1)(1)− (2)

(2 + 1)2
=

1− 2

(2 + 1)2
≤ 0

for  ≥ 1. The sequence is bounded since 0   ≤ 1
2
for all  ≥ 1.

79. For

√
2,

2
√
2,

2

2
√
2,   


, 1 = 212, 2 = 234, 3 = 278,   , so  = 2(2

−1)2 = 21−(12
).

lim
→∞

 = lim
→∞

21−(12
) = 21 = 2.

Alternate solution: Let  = lim
→∞

. (We could show the limit exists by showing that {} is bounded and increasing.)

Then  must satisfy  =
√
2 ·  ⇒ 2 = 2 ⇒ (− 2) = 0.  6= 0 since the sequence increases, so  = 2.

81. 1 = 1, +1 = 3− 1


. We show by induction that {} is increasing and bounded above by 3. Let  be the proposition

that +1   and 0    3. Clearly 1 is true. Assume that  is true. Then +1   ⇒ 1

+1


1


⇒

− 1

+1
 − 1


. Now +2 = 3− 1

+1
 3− 1


= +1 ⇔ +1. This proves that {} is increasing and bounded

above by 3, so 1 = 1    3, that is, {} is bounded, and hence convergent by the Monotonic Sequence Theorem.

If  = lim
→∞

, then lim
→∞

+1 =  also, so  must satisfy  = 3− 1 ⇒ 2 − 3+ 1 = 0 ⇒  = 3±√5
2
.

But   1, so  = 3+
√
5

2
.

83. (a) Let  be the number of rabbit pairs in the nth month. Clearly 1 = 1 = 2. In the nth month, each pair that is

2 or more months old (that is, −2 pairs) will produce a new pair to add to the −1 pairs already present. Thus,

 = −1 + −2, so that {} = {}, the Fibonacci sequence.

(b)  =
+1


⇒ −1 =



−1
=

−1 + −2
−1

= 1 +
−2
−1

= 1 +
1

−1 /−2
= 1 +

1

−2
. If  = lim

→∞
,

then  = lim
→∞

−1 and  = lim
→∞

−2, so  must satisfy  = 1 +
1


⇒ 2 − − 1 = 0 ⇒  = 1+

√
5

2

[since  must be positive].
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85. (a) From the graph, it appears that the sequence


5

!



converges to 0, that is, lim
→∞

5

!
= 0.

(b)

From the first graph, it seems that the smallest possible value of corresponding to  = 01 is 9, since 5!  01

whenever  ≥ 10, but 959!  01. From the second graph, it seems that for  = 0001, the smallest possible value for

is 11 since 5!  0001 whenever  ≥ 12.

87. Theorem 6: If lim
→∞

|| = 0 then lim
→∞

− || = 0, and since − || ≤  ≤ ||, we have that lim
→∞

 = 0 by the

Squeeze Theorem.

89. To Prove: If lim
→∞

 = 0 and {} is bounded, then lim
→∞

() = 0.

Proof: Since {} is bounded, there is a positive number such that || ≤ and hence, || || ≤ || for

all  ≥ 1. Let   0 be given. Since lim
→∞

 = 0, there is an integer  such that | − 0|  


if    . Then

| − 0| = || = || || ≤ || = | − 0| 



· =  for all    . Since  was arbitrary,

lim
→∞

() = 0.

91. (a) First we show that   1  1  .

1 − 1 =
+ 
2
−
√
 = 1

2


− 2

√
+ 


= 1

2

√
−

√

2

 0 [since   ] ⇒ 1  1. Also

− 1 = − 1
2
(+ ) = 1

2
(− )  0 and − 1 = −

√
 =

√

√

−√

 0, so   1  1  . In the same

way we can show that 1  2  2  1 and so the given assertion is true for  = 1. Suppose it is true for  = , that is,

  +1  +1  . Then
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+2 − +2 =
1
2
(+1 + +1)−


+1+1 =

1
2


+1 − 2


+1+1 + +1


= 1

2

√
+1 −


+1

2
 0,

+1 − +2 = +1 − 1
2
(+1 + +1) =

1
2
(+1 − +1)  0, and

+1 − +2 = +1 −

+1+1 =


+1


+1 −√+1


 0 ⇒ +1  +2  +2  +1,

so the assertion is true for  =  + 1. Thus, it is true for all  by mathematical induction.

(b) From part (a) we have     +1  +1    , which shows that both sequences, {} and {}, are
monotonic and bounded. So they are both convergent by the Monotonic Sequence Theorem.

(c) Let lim
→∞

 =  and lim
→∞

 = . Then lim
→∞

+1 = lim
→∞

 + 

2
⇒  =

+ 

2
⇒

2 = +  ⇒  = .

93. (a) Suppose {} converges to . Then +1 = 

+ 
⇒ lim

→∞
+1 =

 lim
→∞



+ lim
→∞


⇒  =



+ 
⇒

2 +  =  ⇒ (+ − ) = 0 ⇒  = 0 or  = − .

(b) +1 =


+ 
=









1 +












 since 1 +




 1.

(c) By part (b), 1 







0, 2 







1 






2
0, 3 







2 






3
0, etc. In general,  







0,

so lim
→∞

 ≤ lim
→∞







· 0 = 0 since   .


By (7) lim

→∞
 = 0 if − 1    1. Here  =




∈ (0 1) .


(d) Let   . We first show, by induction, that if 0  − , then   −  and +1  .

For  = 0, we have 1 − 0 =
0

+ 0
− 0 =

0(− − 0)

+ 0
 0 since 0  − . So 1  0.

Now we suppose the assertion is true for  = , that is,   −  and +1  . Then

− − +1 = − − 

+ 
=

(− ) +  −  − 

+ 
=

(− − )

+ 
 0 because   − . So

+1  − . And +2 − +1 =
+1

+ +1
− +1 =

+1(− − +1)

+ +1
 0 since +1  − . Therefore,

+2  +1. Thus, the assertion is true for  =  + 1. It is therefore true for all  by mathematical induction.

A similar proof by induction shows that if 0  − , then   −  and {} is decreasing.
In either case the sequence {} is bounded and monotonic, so it is convergent by the Monotonic Sequence Theorem.

It then follows from part (a) that lim
→∞

 = − .

11.2 Series

1. (a) A sequence is an ordered list of numbers whereas a series is the sum of a list of numbers.

(b) A series is convergent if the sequence of partial sums is a convergent sequence. A series is divergent if it is not convergent.
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3.
∞
=1

 = lim
→∞

 = lim
→∞

[2− 3(08)] = lim
→∞

2− 3 lim
→∞

(08) = 2− 3(0) = 2

5. For
∞
=1

1

3
,  =

1

3
. 1 = 1 =

1

13
= 1, 2 = 1 + 2 = 1 +

1

23
= 1125, 3 = 2 + 3 ≈ 11620,

4 = 3 + 4 ≈ 11777, 5 = 4 + 5 ≈ 11857, 6 = 5 + 6 ≈ 11903, 7 = 6 + 7 ≈ 11932, and

8 = 7 + 8 ≈ 11952. It appears that the series is convergent.

7. For
∞
=1



1 +
√

,  =



1 +
√

. 1 = 1 =

1

1 +
√
1
= 05, 2 = 1 + 2 = 05 +

2

1 +
√
2
≈ 13284,

3 = 2 + 3 ≈ 24265, 4 = 3 + 4 ≈ 37598, 5 = 4 + 5 ≈ 53049, 6 = 5 + 6 ≈ 70443,

7 = 6 + 7 ≈ 89644, 8 = 7 + 8 ≈ 110540. It appears that the series is divergent.

9.

 

1 −240000
2 −192000
3 −201600
4 −199680
5 −200064
6 −199987
7 −200003
8 −199999
9 −200000
10 −200000

From the graph and the table, it seems that the series converges to −2. In fact, it is a geometric

series with  = −24 and  = − 1
5
, so its sum is

∞
=1

12

(−5) =
−24

1− − 1
5

 = −24
12

= −2

Note that the dot corresponding to  = 1 is part of both {} and {}.

TI-86 Note: To graph {} and {}, set your calculator to Param mode and DrawDot mode. (DrawDot is under
GRAPH, MORE, FORMT (F3).) Now under E(t)= make the assignments: xt1=t, yt1=12/(-5)ˆt, xt2=t,

yt2=sum seq(yt1,t,1,t,1). (sum and seq are under LIST, OPS (F5), MORE.) Under WIND use

1,10,1,0,10,1,-3,1,1 to obtain a graph similar to the one above. Then use TRACE (F4) to see the values.

11.
 

1 044721

2 115432

3 198637

4 288080

5 380927

6 475796

7 571948

8 668962

9 766581

10 864639

The series
∞
=1

√
2 + 4

diverges, since its terms do not approach 0.
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13.
 

1 029289

2 042265

3 050000

4 055279

5 059175

6 062204

7 064645

8 066667

9 068377

10 069849

From the graph and the table, it seems that the series converges.


=1


1√

− 1√

+ 1


=


1√
1
− 1√

2


+


1√
2
− 1√

3


+ · · ·+


1√

− 1√

 + 1


= 1− 1√

 + 1
,

so
∞
=1


1√

− 1√

+ 1


= lim

→∞


1− 1√

 + 1


= 1.

15. (a) lim
→∞

 = lim
→∞

2

3+ 1
=
2

3
, so the sequence {} is convergent by (11.1.1).

(b) Since lim
→∞

 =
2
3
6= 0, the series

∞
=1

 is divergent by the Test for Divergence.

17. 3− 4 + 16
3
− 64

9
+ · · · is a geometric series with ratio  = −4

3
. Since || = 4

3
 1, the series diverges.

19. 10− 2 + 04− 008 + · · · is a geometric series with ratio − 2
10
= − 1

5
. Since || = 1

5
 1, the series converges to



1− 
=

10

1− (−15) =
10

65
=
50

6
=
25

3
.

21.
∞
=1

6(09)−1 is a geometric series with first term  = 6 and ratio  = 09. Since || = 09  1, the series converges to



1− 
=

6

1− 09 =
6

01
= 60.

23.
∞
=1

(−3)−1
4

=
1

4

∞
=1


−3
4

−1
. The latter series is geometric with  = 1 and ratio  = − 3

4
. Since || = 3

4
 1, it

converges to
1

1− (−34) =
4
7
. Thus, the given series converges to


1
4


4
7


= 1

7
.

25.
∞
=0



3+1
=
1

3

∞
=0


3


is a geometric series with ratio  =



3
. Since ||  1, the series diverges.

27.
1

3
+
1

6
+
1

9
+
1

12
+
1

15
+ · · · =

∞
=1

1

3
=
1

3

∞
=1

1


. This is a constant multiple of the divergent harmonic series, so

it diverges.

29.
∞
=1

− 1
3− 1 diverges by the Test for Divergence since lim→∞

 = lim
→∞

− 1
3− 1 =

1

3
6= 0.
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31. Converges.

∞
=1

1 + 2

3
=

∞
=1


1

3
+
2

3


=

∞
=1


1

3


+


2

3


[sum of two convergent geometric series]

=
13

1− 13 +
23

1− 23 =
1

2
+ 2 =

5

2

33.
∞
=1


√
2 = 2 +

√
2 +

3
√
2 +

4
√
2 + · · · diverges by the Test for Divergence since

lim
→∞

 = lim
→∞


√
2 = lim

→∞
21 = 20 = 1 6= 0.

35.
∞
=1

ln


2 + 1

22 + 1


diverges by the Test for Divergence since

lim
→∞

 = lim
→∞

ln


2 + 1

22 + 1


= ln


lim
→∞

2 + 1

22 + 1


= ln 1

2
6= 0.

37.
∞
=0



3


is a geometric series with ratio  = 

3
≈ 1047. It diverges because || ≥ 1.

39.
∞
=1

arctan  diverges by the Test for Divergence since lim
→∞

 = lim
→∞

arctan = 
2
6= 0.

41.
∞
=1

1


=

∞
=1


1




is a geometric series with first term  =

1


and ratio  =

1


. Since || = 1


 1, the series converges

to
1

1− 1 =
1

1− 1 ·



=

1

− 1 . By Example 7,
∞
=1

1

(+ 1)
= 1. Thus, by Theorem 8(ii),

∞
=1


1


+

1

(+ 1)


=

∞
=1

1


+

∞
=1

1

(+ 1)
=

1

− 1 + 1 =
1

− 1 +
− 1
− 1 =



− 1 .

43. Using partial fractions, the partial sums of the series
∞
=2

2

2 − 1 are

 =

=2

2

(− 1)(+ 1) =

=2


1

− 1 −
1

+ 1



=


1− 1

3


+


1

2
− 1

4


+


1

3
− 1

5


+ · · ·+


1

− 3 −
1

− 1

+


1

− 2 −
1




This sum is a telescoping series and  = 1 +

1

2
− 1

− 1 −
1


.

Thus,
∞
=2

2

2 − 1 = lim
→∞

 = lim
→∞


1 +

1

2
− 1

− 1 −
1




=
3

2
.

45. For the series
∞
=1

3

(+ 3)
,  =


=1

3

(+ 3)
=


=1


1


− 1

+ 3


[using partial fractions]. The latter sum is


1− 1

4


+

1
2
− 1

5


+

1
3
− 1

6


+

1
4
− 1

7


+ · · ·+


1

−3 − 1



+


1
−2 − 1

+1


+


1
−1 − 1

+2


+

1

− 1

+3


= 1 + 1

2
+ 1

3
− 1

+1
− 1

+2
− 1

+3
[telescoping series]

Thus,
∞
=1

3

(+ 3)
= lim

→∞
 = lim

→∞


1 + 1

2
+ 1

3
− 1

+1
− 1

+2
− 1

+3


= 1 + 1

2
+ 1

3
= 11

6
. Converges
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47. For the series
∞
=1


1 − 1(+1)


,

 =

=1


1 − 1(+1)


= (1 − 12) + (12 − 13) + · · ·+


1 − 1(+1)


= − 1(+1)

[telescoping series]

Thus,
∞
=1


1 − 1(+1)


= lim

→∞
 = lim

→∞


− 1(+1)


= − 0 = − 1. Converges

49. (a) Many people would guess that   1, but note that  consists of an infinite number of 9s.

(b)  = 099999    =
9

10
+

9

100
+

9

1000
+

9

10,000
+ · · · =

∞
=1

9

10
, which is a geometric series with 1 = 09 and

 = 01. Its sum is
09

1− 01 =
09

09
= 1, that is,  = 1.

(c) The number 1 has two decimal representations, 100000    and 099999    .

(d) Except for 0, all rational numbers that have a terminating decimal representation can be written in more than one way. For

example, 05 can be written as 049999    as well as 050000    .

51. 08 =
8

10
+

8

102
+ · · · is a geometric series with  = 8

10
and  =

1

10
. It converges to



1− 
=

810

1− 110 =
8

9
.

53. 2516 = 2 +
516

103
+
516

106
+ · · · . Now 516

103
+
516

106
+ · · · is a geometric series with  = 516

103
and  =

1

103
. It converges to



1− 
=

516103

1− 1103 =
516103

999103
=
516

999
. Thus, 2516 = 2 +

516

999
=
2514

999
=
838

333
.

55. 15342 = 153 +
42

104
+
42

106
+ · · · . Now 42

104
+
42

106
+ · · · is a geometric series with  = 42

104
and  =

1

102
.

It converges to


1− 
=

42104

1− 1102 =
42104

99102
=

42

9900
.

Thus, 15342 = 153 +
42

9900
=
153

100
+

42

9900
=
15,147
9900

+
42

9900
=
15,189
9900

or
5063

3300
.

57.
∞
=1

(−5) =
∞
=1

(−5) is a geometric series with  = −5, so the series converges ⇔ ||  1 ⇔

|−5|  1 ⇔ ||  1
5
, that is, − 1

5
   1

5
. In that case, the sum of the series is



1− 
=

−5
1− (−5) =

−5
1 + 5

.

59.
∞
=0

(− 2)
3

=
∞
=0


− 2
3


is a geometric series with  =

− 2
3
, so the series converges ⇔ ||  1 ⇔− 23

  1 ⇔ −1  − 2
3

 1 ⇔ −3  − 2  3 ⇔ −1    5. In that case, the sum of the series is



1− 
=

1

1− − 2
3

=
1

3− (− 2)
3

=
3

5− 
.

61.
∞
=0

2


=

∞
=0


2




is a geometric series with  =

2


, so the series converges ⇔ ||  1 ⇔

 2
  1 ⇔

2  || ⇔   2 or   −2. In that case, the sum of the series is 

1− 
=

1

1− 2 =


− 2 .
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63.
∞
=0

 =
∞
=0

()
 is a geometric series with  = , so the series converges ⇔ ||  1 ⇔ ||  1 ⇔

−1    1 ⇔ 0    1 ⇔   0. In that case, the sum of the series is


1− 
=

1

1− 
.

65. After defining  , We use convert(f,parfrac); in Maple, Apart in Mathematica, or Expand Rational and

Simplify in Derive to find that the general term is
32 + 3+ 1

(2 + )3
=
1

3
− 1

(+ 1)3
. So the nth partial sum is

 =


=1


1

3
− 1

( + 1)3


=


1− 1

23


+


1

23
− 1

33


+ · · ·+


1

3
− 1

(+ 1)3


= 1− 1

(+ 1)3

The series converges to lim
→∞

 = 1. This can be confirmed by directly computing the sum using

sum(f,n=1..infinity); (in Maple), Sum[f,{n,1,Infinity}] (in Mathematica), or Calculus Sum

(from 1 to∞) and Simplify (in Derive).

67. For  = 1, 1 = 0 since 1 = 0. For   1,

 =  − −1 =
− 1
+ 1

− (− 1)− 1
(− 1) + 1 =

(− 1)− (+ 1)(− 2)
(+ 1)

=
2

(+ 1)

Also,
∞
=1

 = lim
→∞

 = lim
→∞

1− 1
1 + 1

= 1.

69. (a) The quantity of the drug in the body after the first tablet is 150 mg. After the second tablet, there is 150 mg plus 5%

of the first 150-mg tablet, that is, [150 + 150(005)] mg. After the third tablet, the quantity is

[150 + 150(005) + 150(005)2] = 157875 mg. After  tablets, the quantity (in mg) is

150 + 150(005) + · · ·+ 150(005)−1. We can use Formula 3 to write this as 150(1− 005
)

1− 005 =
3000

19
(1− 005).

(b) The number of milligrams remaining in the body in the long run is lim
→∞


3000
19
(1− 005) = 3000

19
(1− 0) ≈ 157895,

only 002 mg more than the amount after 3 tablets.

71. (a) The first step in the chain occurs when the local government spends dollars. The people who receive it spend a

fraction  of those dollars, that is, dollars. Those who receive the dollars spend a fraction  of it, that is,

2 dollars. Continuing in this way, we see that the total spending after  transactions is

 =  ++2 + · · ·+–1 =
(1− )

1− 
by (3).

(b) lim
→∞

 = lim
→∞

(1− )

1− 
=



1− 
lim
→∞

(1− ) =


1− 


since 0    1 ⇒ lim

→∞
 = 0


=




[since +  = 1] =  [since  = 1]

If  = 08, then  = 1−  = 02 and the multiplier is  = 1 = 5.

73.
∞
=2

(1 + )− is a geometric series with  = (1 + )
−2 and  = (1 + )

−1, so the series converges when

(1 + )
−1  1 ⇔ |1 + |  1 ⇔ 1 +   1 or 1 +   −1 ⇔   0 or   −2. We calculate the sum of the
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series and set it equal to 2:
(1 + )

−2

1− (1 + )
−1 = 2 ⇔


1

1 + 

2
= 2− 2


1

1 + 


⇔ 1 = 2(1 + )2 − 2(1 + ) ⇔

22 + 2− 1 = 0 ⇔  = −2±√12
4

= ±√3− 1
2

. However, the negative root is inadmissible because −2  −√3− 1
2

 0.

So  =
√
3− 1
2
.

75.  = 1+
1
2
+
1
3
+···+ 1

 = 11213 · · · 1  (1 + 1)

1 + 1

2

 
1 + 1

3

 · · · 1 + 1



[  1 + ]

=
2

1

3

2

4

3
· · · + 1


= + 1

Thus,   + 1 and lim
→∞

 =∞. Since {} is increasing, lim
→∞

 =∞, implying that the harmonic series is

divergent.

77. Let  be the diameter of . We draw lines from the centers of the  to

the center of (or ), and using the Pythagorean Theorem, we can write

12 +

1− 1

2
1
2
=

1 + 1

2
1
2 ⇔

1 =

1 + 1

2
1
2 − 1− 1

2
1
2
= 21 [difference of squares] ⇒ 1 =

1
2
.

Similarly,

1 =

1 + 1

2
2
2 − 1− 1 − 1

2
2
2
= 22 + 21 − 21 − 12

= (2− 1)(1 + 2) ⇔

2 =
1

2− 1
− 1 =

(1− 1)
2

2− 1
, 1 =


1 + 1

2
3
2 − 1− 1 − 2 − 1

2
3
2 ⇔ 3 =

[1− (1 + 2)]
2

2− (1 + 2)
, and in general,

+1 =


1−

=1 
2

2−

=1 
. If we actually calculate 2 and 3 from the formulas above, we find that they are

1

6
=

1

2 · 3 and

1

12
=

1

3 · 4 respectively, so we suspect that in general,  =
1

(+ 1)
. To prove this, we use induction: Assume that for all

 ≤ ,  =
1

( + 1)
=
1


− 1

 + 1
. Then


=1

 = 1− 1

+ 1
=



+ 1
[telescoping sum]. Substituting this into our

formula for +1, we get +1 =


1− 

+ 1

2
2−




+ 1

 =

1

(+ 1)
2

+ 2

+ 1

=
1

(+ 1)(+ 2)
, and the induction is complete.

Now, we observe that the partial sums


=1  of the diameters of the circles approach 1 as →∞; that is,
∞
=1

 =
∞
=1

1

(+ 1)
= 1, which is what we wanted to prove.

79. The series 1− 1 + 1− 1 + 1− 1 + · · · diverges (geometric series with  = −1) so we cannot say that
0 = 1− 1 + 1− 1 + 1− 1 + · · · .

81.
∞

=1  = lim
→∞



=1  = lim
→∞




=1  =  lim
→∞



=1  = 
∞

=1 , which exists by hypothesis.
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83. Suppose on the contrary that

( + ) converges. Then


( + ) and


 are convergent series. So by

Theorem 8(iii),

[( + )− ] would also be convergent. But


[( + )− ] =


, a contradiction, since

 is given to be divergent.

85. The partial sums {} form an increasing sequence, since  − −1 =   0 for all . Also, the sequence {} is bounded
since  ≤ 1000 for all . So by the Monotonic Sequence Theorem, the sequence of partial sums converges, that is, the series

 is convergent.

87. (a) At the first step, only the interval

1
3
 2
3


(length 1

3
) is removed. At the second step, we remove the intervals


1
9
 2
9


and

7
9
 8
9


, which have a total length of 2 ·  1

3

2
. At the third step, we remove 22 intervals, each of length


1
3

3
. In general,

at the nth step we remove 2−1 intervals, each of length

1
3


, for a length of 2−1 ·  1

3


= 1

3


2
3

−1
. Thus, the total

length of all removed intervals is
∞
=1

1
3


2
3

−1
=

13

1− 23 = 1

geometric series with  = 1

3
and  = 2

3


. Notice that at

the th step, the leftmost interval that is removed is


1
3




2
3


, so we never remove 0, and 0 is in the Cantor set. Also,

the rightmost interval removed is

1−  2

3


 1−  1

3


, so 1 is never removed. Some other numbers in the Cantor set

are 1
3
, 2
3
, 1
9
, 2
9
, 7
9
, and 8

9
.

(b) The area removed at the first step is 1
9
; at the second step, 8 ·  1

9

2
; at the third step, (8)2 ·  1

9

3
. In general, the area

removed at the th step is (8)−1

1
9


= 1

9


8
9

−1
, so the total area of all removed squares is

∞
=1

1

9


8

9

−1
=

19

1 − 89
= 1.

89. (a) For
∞
=1



(+ 1)!
, 1 =

1

1 · 2 =
1

2
, 2 =

1

2
+

2

1 · 2 · 3 =
5

6
, 3 =

5

6
+

3

1 · 2 · 3 · 4 =
23

24
,

4 =
23

24
+

4

1 · 2 · 3 · 4 · 5 =
119

120
. The denominators are (+ 1)!, so a guess would be  =

(+ 1)!− 1
(+ 1)!

.

(b) For  = 1, 1 =
1

2
=
2!− 1
2!

, so the formula holds for  = 1. Assume  =
( + 1)!− 1
( + 1)!

. Then

+1 =
( + 1)!− 1
( + 1)!

+
 + 1

( + 2)!
=
( + 1)!− 1
( + 1)!

+
 + 1

( + 1)!( + 2)
=
( + 2)!− ( + 2) +  + 1

( + 2)!

=
( + 2)!− 1
( + 2)!

Thus, the formula is true for  =  + 1. So by induction, the guess is correct.

(c) lim
→∞

 = lim
→∞

(+ 1)!− 1
(+ 1)!

= lim
→∞


1− 1

(+ 1)!


= 1 and so

∞
=1



(+ 1)!
= 1.
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11.3 The Integral Test and Estimates of Sums

1. The picture shows that 2 =
1

213


 2

1

1

13
,

3 =
1

313


 3

2

1

13
, and so on, so

∞
=2

1

13


 ∞

1

1

13
. The

integral converges by (7.8.2) with  = 13  1, so the series converges.

3. The function () = 1 5
√
 = −15 is continuous, positive, and decreasing on [1∞), so the Integral Test applies.∞

1
−15  = lim

→∞

 
1
−15  = lim

→∞


5
4
45


1
= lim

→∞


5
4
45 − 5

4


=∞, so

∞
=1

1 5
√
 diverges.

5. The function () =
1

(2+ 1)3
is continuous, positive, and decreasing on [1∞), so the Integral Test applies.

 ∞

1

1

(2+ 1)3
 = lim

→∞

 

1

1

(2+ 1)3
 = lim

→∞


−1
4

1

(2+ 1)2


1

= lim
→∞


− 1

4(2+ 1)2
+
1

36


=
1

36
.

Since this improper integral is convergent, the series
∞
=1

1

(2+ 1)3
is also convergent by the Integral Test.

7. The function () =


2 + 1
is continuous, positive, and decreasing on [1∞), so the Integral Test applies.

 ∞

1



2 + 1
 = lim

→∞

 

1



2 + 1
 = lim

→∞


1

2
ln(

2
+ 1)


1

=
1

2
lim
→∞

[ln(
2
+ 1)− ln 2] =∞. Since this improper

integral is divergent, the series
∞
=1



2 + 1
is also divergent by the Integral Test.

9.
∞
=1

1


√
2
is a -series with  =

√
2  1, so it converges by (1).

11. 1 +
1

8
+
1

27
+
1

64
+

1

125
+ · · · =

∞
=1

1

3
. This is a -series with  = 3  1, so it converges by (1).

13. 1 +
1

3
+
1

5
+
1

7
+
1

9
+ · · · =

∞
=1

1

2− 1 . The function () =
1

2− 1 is

continuous, positive, and decreasing on [1∞), so the Integral Test applies. ∞

1

1

2− 1  = lim
→∞

 

1

1

2− 1  = lim
→∞


1
2
ln |2− 1|

1
= 1

2
lim
→∞

(ln(2− 1)− 0) =∞, so the series
∞
=1

1

2− 1
diverges.

15.
∞
=1

√
+ 4

2
=

∞
=1

√


2
+
4

2


=

∞
=1

1

32
+

∞
=1

4

2
.

∞
=1

1

32
is a convergent -series with  = 3

2
 1.

∞
=1

4

2
= 4

∞
=1

1

2
is a constant multiple of a convergent -series with  = 2  1, so it converges. The sum of two

convergent series is convergent, so the original series is convergent.
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17. The function () =
1

2 + 4
is continuous, positive, and decreasing on [1∞), so we can apply the Integral Test.

 ∞

1

1

2 + 4
= lim

→∞

 

1

1

2 + 4
 = lim

→∞


1

2
tan

−1 
2


1

=
1

2
lim
→∞


tan

−1



2


− tan−1


1

2


=
1

2




2
− tan−1


1

2


Therefore, the series

∞
=1

1

2 + 4
converges.

19.
∞
=1

ln

3
=

∞
=2

ln

3
since

ln 1

1
= 0. The function () =

ln

3
is continuous and positive on [2∞).

 0() =
3(1)− (ln)(32)

(3)2
=

2 − 32 ln
6

=
1− 3 ln

4
 0 ⇔ 1− 3 ln  0 ⇔ ln  1

3
⇔

  13 ≈ 14, so  is decreasing on [2∞), and the Integral Test applies. ∞

2

ln

3
 = lim

→∞

 

2

ln

3


()
= lim

→∞


− ln
22

− 1

42


1

= lim
→∞


− 1

42
(2 ln + 1) +

1

4


()
=

1

4
, so the series

∞
=2

ln

3

converges.

():  = ln,  = −3  ⇒  = (1) ,  = −1
2
−2, so

ln

3
 = −1

2

−2
ln−


− 1
2

−2
(1)  = −1

2

−2
ln+ 1

2



−3

 = −1
2

−2
ln− 1

4

−2
+ 

(): lim
→∞


−2 ln + 1

42


H
= − lim

→∞
2

8
= −1

4
lim
→∞

1

2
= 0.

21. () =
1

 ln
is continuous and positive on [2∞), and also decreasing since  0() = − 1 + ln

2(ln)2
 0 for   2, so we can

use the Integral Test.
 ∞

2

1

 ln
 = lim

→∞
[ln(ln)]



2 = lim
→∞

[ln(ln )− ln(ln 2)] =∞, so the series
∞
=2

1

 ln
diverges.

23. The function () = 12 is continuous, positive, and decreasing on [1∞), so the Integral Test applies.

[() = 1 is decreasing and dividing by 2 doesn’t change that fact.] ∞

1

()  = lim
→∞

 

1

1

2
 = lim

→∞


−1


1
= − lim

→∞
(
1 − ) = −(1− ) = − 1, so the series

∞
=1

1

2

converges.

25. The function () =
1

2 + 3
=
1

2
− 1


+

1

+ 1
[by partial fractions] is continuous, positive and decreasing on [1∞),

so the Integral Test applies. ∞

1

() = lim
→∞

 

1


1

2
− 1


+

1

+ 1


 = lim

→∞


− 1

− ln+ ln(+ 1)


1

= lim
→∞


−1

+ ln

+ 1


+ 1− ln 2


= 0 + 0 + 1− ln 2

The integral converges, so the series
∞
=1

1

2 + 3
converges.
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27. The function () =
cos√


is neither positive nor decreasing on [1∞), so the hypotheses of the Integral Test are not

satisfied for the series
∞
=1

cos√

.

29. We have already shown (in Exercise 21) that when  = 1 the series
∞
=2

1

(ln)
diverges, so assume that  6= 1.

() =
1

(ln)
is continuous and positive on [2∞), and  0() = − + ln

2(ln)+1
 0 if   −, so that  is eventually

decreasing and we can use the Integral Test. ∞

2

1

(ln)
 = lim

→∞


(ln)1−

1− 


2

[for  6= 1] = lim
→∞


(ln )1−

1− 
− (ln 2)1−

1− 


This limit exists whenever 1−   0 ⇔   1, so the series converges for   1.

31. Clearly the series cannot converge if  ≥ − 1
2
, because then lim

→∞
(1 + 2) 6= 0. So assume   − 1

2
. Then

() = (1 + 2) is continuous, positive, and eventually decreasing on [1∞), and we can use the Integral Test. ∞

1

(1 + 
2
)

 = lim

→∞


1

2
· (1 + 2)+1

+ 1


1

=
1

2(+ 1)
lim
→∞

[(1 + 
2
)
+1 − 2+1].

This limit exists and is finite ⇔ + 1  0 ⇔   −1, so the series converges whenever   −1.

33. Since this is a -series with  = , () is defined when   1. Unless specified otherwise, the domain of a function  is the

set of real numbers  such that the expression for () makes sense and defines a real number. So, in the case of a series, it’s

the set of real numbers  such that the series is convergent.

35. (a)
∞
=1


3



4
=

∞
=1

81

4
= 81

∞
=1

1

4
= 81


4

90


=
94

10

(b)
∞
=5

1

( − 2)4 =
1

34
+
1

44
+
1

54
+ · · · =

∞
=3

1

4
=

4

90
−

1

14
+
1

24


[subtract 1 and 2] =

4

90
− 17

16

37. (a) () =
1

2
is positive and continuous and  0() = − 2

3
is negative for   0, and so the Integral Test applies.

∞
=1

1

2
≈ 10 =

1

12
+
1

22
+
1

32
+ · · ·+ 1

102
≈ 1549768.

10 ≤
 ∞

10

1

2
 = lim

→∞

−1



10

= lim
→∞


−1

+
1

10


=
1

10
, so the error is at most 01.

(b) 10 +
 ∞

11

1

2
 ≤  ≤ 10 +

 ∞

10

1

2
 ⇒ 10 +

1
11
≤  ≤ 10 +

1
10

⇒

1549768 + 0090909 = 1640677 ≤  ≤ 1549768 + 01 = 1649768, so we get  ≈ 164522 (the average of 1640677

and 1649768) with error ≤ 0005 (the maximum of 1649768− 164522 and 164522− 1640677, rounded up).
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(c) The estimate in part (b) is  ≈ 164522 with error ≤ 0005. The exact value given in Exercise 34 is 26 ≈ 1644934.
The difference is less than 00003.

(d)  ≤
 ∞



1

2
 =

1


. So   0001 if

1




1

1000
⇔   1000.

39. () = 1(2+ 1)6 is continuous, positive, and decreasing on [1∞), so the Integral Test applies. Using (3),

 ≤
 ∞



(2+ 1)
−6

 = lim
→∞

 −1
10(2+ 1)5




=
1

10(2+ 1)5
. To be correct to five decimal places, we want

1

10(2+ 1)5
≤ 5

106
⇔ (2+ 1)5 ≥ 20,000 ⇔  ≥ 1

2


5
√
20,000− 1 ≈ 312, so use  = 4.

4 =
4

=1

1

(2+ 1)6
=
1

36
+
1

56
+
1

76
+
1

96
≈ 0001 446 ≈ 000145.

41.
∞
=1

−1001 =
∞
=1

1

1001
is a convergent -series with  = 1001  1. Using (2), we get

 ≤
 ∞




−1001

 = lim
→∞


−0001

−0001



= −1000 lim
→∞


1

0001




= −1000

− 1

0001


=
1000

0001
.

We want   0000 000 005 ⇔ 1000

0001
 5 × 10−9 ⇔ 0001 

1000

5× 10−9 ⇔

 

2× 10111000 = 21000 × 1011,000 ≈ 107× 10301 × 1011,000 = 107× 1011,301.

43. (a) From the figure, 2 + 3 + · · ·+  ≤
 
1
() , so with

() =
1


,
1

2
+
1

3
+
1

4
+ · · ·+ 1


≤
 

1

1


 = ln.

Thus,  = 1 +
1

2
+
1

3
+
1

4
+ · · ·+ 1


≤ 1 + ln.

(b) By part (a), 106 ≤ 1 + ln 106 ≈ 1482  15 and
109 ≤ 1 + ln 109 ≈ 2172  22.

45. ln =

ln 

ln
=

ln

ln 
= ln  =

1

− ln 
. This is a -series, which converges for all  such that − ln   1 ⇔

ln   −1 ⇔   −1 ⇔   1 [with   0].

11.4 The Comparison Tests

1. (a) We cannot say anything about


. If    for all  and


 is convergent, then


 could be convergent or

divergent. (See the note after Example 2.)

(b) If    for all , then


 is convergent. [This is part (i) of the Comparison Test.]

3.


23 + 1




23
=

1

22

1

2
for all  ≥ 1, so

∞
=1



23 + 1
converges by comparison with

∞
=1

1

2
, which converges

because it is a p-series with  = 2  1.
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5.
+ 1


√






√

=

1√

for all  ≥ 1, so

∞
=1

+ 1


√

diverges by comparison with

∞
=1

1√

, which diverges because it is a

p-series with  = 1
2
≤ 1.

7.
9

3 + 10

9

10
=


9

10


for all  ≥ 1.

∞
=1


9
10


is a convergent geometric series

|| = 9
10

 1

, so

∞
=1

9

3 + 10

converges by the Comparison Test.

9.
ln 



1


for all k ≥ 3 [since ln   1 for  ≥ 3], so

∞
=3

ln 


diverges by comparison with

∞
=3

1


, which diverges because it

is a -series with  = 1 ≤ 1 (the harmonic series). Thus,
∞
=1

ln 


diverges since a finite number of terms doesn’t affect the

convergence or divergence of a series.

11.
3
√
√

3 + 4 + 3


3
√
√
3
=

13

32
=

1

76
for all  ≥ 1, so

∞
=1

3
√
√

3 + 4 + 3
converges by comparison with

∞
=1

1

76
,

which converges because it is a -series with  = 7
6
 1.

13.
arctan

12


2

12
for all  ≥ 1, so

∞
=1

arctan

12
converges by comparison with



2

∞
=1

1

12
, which converges because it is a

constant times a p-series with  = 12  1.

15.
4+1

3 − 2 
4 · 4
3

= 4


4

3


for all  ≥ 1.

∞
=1

4


4

3


= 4

∞
=1


4

3


is a divergent geometric series

|| = 4
3
 1


, so

∞
=1

4+1

3 − 2 diverges by the Comparison Test.

17. Use the Limit Comparison Test with  =
1√

2 + 1
and  =

1


:

lim
→∞




= lim

→∞
√

2 + 1
= lim

→∞
1

1 + (12)
= 1  0. Since the harmonic series

∞
=1

1


diverges, so does

∞
=1

1√
2 + 1

.

19. Use the Limit Comparison Test with  =
1 + 4

1 + 3
and  =

4

3
:

lim
→∞




= lim

→∞

1 + 4

1 + 3

4

3

= lim
→∞

1 + 4

1 + 3
· 3



4
= lim

→∞
1 + 4

4
· 3

1 + 3
= lim

→∞


1

4
+ 1


· 1

1

3
+ 1

= 1  0

Since the geometric series


 =


4
3


diverges, so does

∞
=1

1 + 4

1 + 3
. Alternatively, use the Comparison Test with

1 + 4

1 + 3

1 + 4

3 + 3


4

2(3)
=
1

2


4

3


or use the Test for Divergence.
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21. Use the Limit Comparison Test with  =

√
+ 2

22 + + 1
and  =

1

32
:

lim
→∞




= lim

→∞
32

√
+ 2

22 + + 1
= lim

→∞
(32

√
+ 2 )(32

√
 )

(22 + + 1)2
= lim

→∞


1 + 2

2 + 1+ 12
=

√
1

2
=
1

2
 0.

Since
∞
=1

1

32
is a convergent p-series


 = 3

2
 1


, the series

∞
=1

√
+ 2

22 + + 1
also converges.

23. Use the Limit Comparison Test with  =
5 + 2

(1 + 2)2
and  =

1

3
:

lim
→∞




= lim

→∞
3(5 + 2)

(1 + 2)2
= lim

→∞
53 + 24

(1 + 2)2
· 14

1(2)2
= lim

→∞

5

+ 2

1

2
+ 1
2 = 2  0. Since

∞
=1

1

3
is a convergent

-series [ = 3  1], the series
∞
=1

5 + 2

(1 + 2)2
also converges.

25.

√
4 + 1

3 + 2


√
4

2(+ 1)
=

2

2(+ 1)
=

1

+ 1
for all  ≥ 1, so

∞
=1

√
4 + 1

3 + 2
diverges by comparison with

∞
=1

1

+ 1
=

∞
=2

1


, which diverges because it is a -series with  = 1 ≤ 1.

27. Use the Limit Comparison Test with  =


1 +

1



2
− and  = −: lim

→∞



= lim

→∞


1 +

1



2
= 1  0. Since

∞
=1

− =
∞
=1

1


is a convergent geometric series

|| = 1

 1


, the series

∞
=1


1 +

1



2
− also converges.

29. Clearly ! = (− 1)(− 2) · · · (3)(2) ≥ 2 · 2 · 2 · · · · · 2 · 2 = 2−1, so 1
!
≤ 1

2−1
.
∞
=1

1

2−1
is a convergent geometric

series
|| = 1

2
 1


, so

∞
=1

1

!
converges by the Comparison Test.

31. Use the Limit Comparison Test with  = sin


1




and  =

1


. Then


 and


 are series with positive terms and

lim
→∞




= lim

→∞
sin(1)

1
= lim

→0

sin 


= 1  0. Since

∞
=1

 is the divergent harmonic series,

∞
=1

sin (1) also diverges. [Note that we could also use l’Hospital’s Rule to evaluate the limit:

lim
→∞

sin(1)

1

H
= lim

→∞
cos(1) · −12

−12 = lim
→∞

cos
1


= cos 0 = 1.]

33.
10
=1

1√
4 + 1

=
1√
2
+

1√
17
+

1√
82
+ · · ·+ 1√

10,001
≈ 124856. Now 1√

4 + 1


1√
4
=
1

2
, so the error is

10 ≤ 10 ≤
 ∞

10

1

2
 = lim

→∞


− 1



10

= lim
→∞


−1

+
1

10


=
1

10
= 01.
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35.
10
=1

5− cos2  =
cos2 1

5
+
cos2 2

52
+
cos2 3

53
+ · · ·+ cos2 10

510
≈ 007393. Now cos

2 

5
≤ 1

5
, so the error is

10 ≤ 10 ≤
 ∞

10

1

5
 = lim

→∞

 

10

5
−

 = lim
→∞


−5

−

ln 5


10

= lim
→∞


−5

−

ln 5
+
5−10

ln 5


=

1

510 ln 5
 64× 10−8.

37. Since


10
≤ 9

10
for each , and since

∞
=1

9

10
is a convergent geometric series

|| = 1
10

 1

, 0123    =

∞
=1



10

will always converge by the Comparison Test.

39. Since


 converges, lim
→∞

 = 0, so there exists such that | − 0|  1 for all    ⇒ 0 ≤   1 for

all    ⇒ 0 ≤ 2 ≤ . Since


 converges, so does


2 by the Comparison Test.

41. (a) Since lim
→∞




=∞, there is an integer such that




 1 whenever    . (Take = 1 in Definition 11.1.5.)

Then    whenever    and since


 is divergent,


 is also divergent by the Comparison Test.

(b) (i) If  =
1

ln
and  =

1


for  ≥ 2, then lim

→∞



= lim

→∞


ln
= lim

→∞


ln

H
= lim

→∞
1

1
= lim

→∞
 =∞,

so by part (a),
∞
=2

1

ln
is divergent.

(ii) If  =
ln


and  =

1


, then

∞
=1

 is the divergent harmonic series and lim
→∞




= lim

→∞
ln = lim

→∞
ln =∞,

so
∞
=1

 diverges by part (a).

43. lim
→∞

 = lim
→∞



1
, so we apply the Limit Comparison Test with  =

1


. Since lim

→∞
  0 we know that either both

series converge or both series diverge, and we also know that
∞
=1

1


diverges [-series with  = 1]. Therefore,


 must be

divergent.

45. Yes. Since


 is a convergent series with positive terms, lim
→∞

 = 0 by Theorem 11.2.6, and


 =

sin() is a

series with positive terms (for large enough ). We have lim
→∞




= lim

→∞
sin()


= 1  0 by Theorem 2.4.2

[ET Theorem 3.3.2]. Thus,


 is also convergent by the Limit Comparison Test.

11.5 Alternating Series

1. (a) An alternating series is a series whose terms are alternately positive and negative.

(b) An alternating series
∞
=1

 =
∞
=1

(−1)−1, where  = ||, converges if 0  +1 ≤  for all  and lim
→∞

 = 0.

(This is the Alternating Series Test.)

(c) The error involved in using the partial sum  as an approximation to the total sum  is the remainder = −  and the

size of the error is smaller than +1; that is, || ≤ +1. (This is the Alternating Series Estimation Theorem.)
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3. −2
5
+
4

6
− 6

7
+
8

8
− 10

9
+ · · · =

∞
=1

(−1) 2

+ 4
. Now lim

→∞
 = lim

→∞
2

+ 4
= lim

→∞
2

1 + 4
=
2

1
6= 0. Since

lim
→∞

 6= 0 (in fact the limit does not exist), the series diverges by the Test for Divergence.

5.
∞
=1

 =
∞
=1

(−1)−1 1

2+ 1
=

∞
=1

(−1)−1 . Now  =
1

2+ 1
 0, {} is decreasing, and lim

→∞
 = 0, so the

series converges by the Alternating Series Test.

7.
∞
=1

 =
∞
=1

(−1) 3− 1
2+ 1

=
∞
=1

(−1). Now lim
→∞

 = lim
→∞

3− 1
2 + 1

=
3

2
6= 0. Since lim

→∞
 6= 0

(in fact the limit does not exist), the series diverges by the Test for Divergence.

9.
∞
=1

 =
∞
=1

(−1)− =
∞
=1

(−1). Now  =
1


 0, {} is decreasing, and lim

→∞
 = 0, so the series converges

by the Alternating Series Test.

11.  =
2

3 + 4
 0 for  ≥ 1. {} is decreasing for  ≥ 2 since

2

3 + 4

0
=
(3 + 4)(2)− 2(32)

(3 + 4)2
=

(23 + 8− 33)
(3 + 4)2

=
(8− 3)

(3 + 4)2
 0 for   2. Also,

lim
→∞

 = lim
→∞

1

1 + 43
= 0. Thus, the series

∞
=1

(−1)+1 2

3 + 4
converges by the Alternating Series Test.

13. lim
→∞

 = lim
→∞

2 = 0 = 1, so lim
→∞

(−1)−12 does not exist. Thus, the series
∞
=1

(−1)−12 diverges by the

Test for Divergence.

15.  =
sin

+ 1

2




1 +
√


=
(−1)
1 +

√

. Now  =

1

1 +
√

 0 for  ≥ 0, {} is decreasing, and lim

→∞
 = 0, so the series

∞
=0

sin

+ 1

2




1 +
√


converges by the Alternating Series Test.

17.
∞
=1

(−1) sin




.  = sin





 0 for  ≥ 2 and sin





≥ sin




+ 1


, and lim

→∞
sin




= sin 0 = 0, so the

series converges by the Alternating Series Test.

19.


!
=

 ·  · · · · · 
1 · 2 · · · · ·  ≥  ⇒ lim

→∞


!
=∞ ⇒ lim

→∞
(−1) 

!
does not exist. So the series

∞
=1

(−1)


!
diverges

by the Test for Divergence.

21. The graph gives us an estimate for the sum of the series

∞
=1

(−08)
!

of −055.

8 =
(08)

8!
≈ 0000 004, so
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∞
=1

(−08)
!

≈ 7 =
7

=1

(−08)
!

≈ −08 + 032− 00853 + 001706− 0002 731 + 0000 364− 0000 042 ≈ −05507
Adding 8 to 7 does not change the fourth decimal place of 7, so the sum of the series, correct to four decimal places,

is−05507.

23. The series
∞
=1

(−1)+1
6

satisfies (i) of the Alternating Series Test because
1

(+ 1)6

1

6
and (ii) lim

→∞
1

6
= 0, so the

series is convergent. Now 5 =
1

56
= 0000064  000005 and 6 =

1

66
≈ 000002  000005, so by the Alternating Series

Estimation Theorem,  = 5. (That is, since the 6th term is less than the desired error, we need to add the first 5 terms to get the

sum to the desired accuracy.)

25. The series
∞
=0

(−1)
10 !

satisfies (i) of the Alternating Series Test because
1

10+1(+ 1)!


1

10 !
and (ii) lim

→∞
1

10 !
= 0,

so the series is convergent. Now 3 =
1

103 3!
≈ 0000 167  0000 005 and 4 =

1

104 4!
= 0000 004  0000 005, so by

the Alternating Series Estimation Theorem,  = 4 (since the series starts with  = 0, not  = 1). (That is, since the 5th term

is less than the desired error, we need to add the first 4 terms to get the sum to the desired accuracy.)

27. 4 =
1

8!
=

1

40,320
≈ 0000 025, so

∞
=1

(−1)
(2)!

≈ 3 =
3

=1

(−1)
(2)!

= −1
2
+
1

24
− 1

720
≈ −0459 722

Adding 4 to 3 does not change the fourth decimal place of 3, so by the Alternating Series Estimation Theorem, the sum of

the series, correct to four decimal places, is −04597.

29. 7 =
72

107
= 0000 004 9, so

∞
=1

(−1)−12
10

≈ 6 =
6

=1

(−1)−12
10

= 1
10
− 4

100
+ 9

1000
− 16

10,000 +
25

100,000 − 36
1,000,000 = 0067 614

Adding 7 to 6 does not change the fourth decimal place of 6, so by the Alternating Series Estimation Theorem, the sum of

the series, correct to four decimal places, is 00676.

31.
∞
=1

(−1)−1


= 1− 1

2
+
1

3
− 1

4
+ · · ·+ 1

49
− 1

50
+
1

51
− 1

52
+ · · · . The 50th partial sum of this series is an

underestimate, since
∞
=1

(−1)−1


= 50 +


1

51
− 1

52


+


1

53
− 1

54


+ · · · , and the terms in parentheses are all positive.

The result can be seen geometrically in Figure 1.

33. Clearly  =
1

+ 
is decreasing and eventually positive and lim

→∞
 = 0 for any . So the series converges (by the

Alternating Series Test) for any  for which every  is defined, that is, +  6= 0 for  ≥ 1, or  is not a negative integer.
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35.


2 =

1(2)2 clearly converges (by comparison with the -series for  = 2). So suppose that


(−1)−1 

converges. Then by Theorem 11.2.8(ii), so does


(−1)−1 + 

= 2


1 + 1

3
+ 1

5
+ · · ·  = 2 1

2− 1 . But this

diverges by comparison with the harmonic series, a contradiction. Therefore,

(−1)−1  must diverge. The Alternating

Series Test does not apply since {} is not decreasing.

11.6 Absolute Convergence and the Ratio and Root Tests

1. (a) Since lim
→∞

+1

 = 8  1, part (b) of the Ratio Test tells us that the series is divergent.

(b) Since lim
→∞

+1

 = 08  1, part (a) of the Ratio Test tells us that the series


 is absolutely convergent (and

therefore convergent).

(c) Since lim
→∞

+1

 = 1, the Ratio Test fails and the series might converge or it might diverge.

3. lim
→∞

+1

 = lim
→∞

+ 15+1
· 5





 = lim
→∞

15 · + 1

 = 1

5
lim
→∞

1 + 1

1
=
1

5
(1) =

1

5
 1, so the series

∞
=1



5
is

absolutely convergent by the Ratio Test.

5.  =
1

5+ 1
 0 for  ≥ 0, {} is decreasing for  ≥ 0, and lim

→∞
 = 0, so

∞
=0

(−1)
5+ 1

converges by the Alternating

Series Test. To determine absolute convergence, choose  =
1


to get

lim
→∞




= lim

→∞
1

1(5+ 1)
= lim

→∞
5+ 1


= 5  0, so

∞
=1

1

5+ 1
diverges by the Limit Comparison Test with the

harmonic series. Thus, the series
∞
=0

(−1)
5+ 1

is conditionally convergent.

7. lim
→∞

+1

 = lim
→∞


( + 1)


2
3

+1


2
3



= lim

→∞
 + 1




2

3

1
=
2

3
lim
→∞


1 +

1




= 2

3
(1) = 2

3
 1, so the series

∞
=1



2
3


is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the

same as convergence.

9. lim
→∞

+1

= lim
→∞


(11)+1

(+ 1)
4
· 4

(11)


= lim

→∞
(11)4

(+ 1)
4
= (11) lim

→∞
1

(+ 1)
4

4

= (11) lim
→∞

1

(1 + 1)4

= (11)(1) = 11  1,

so the series
∞
=1

(−1) (11)


4
diverges by the Ratio Test.

11. Since 0 ≤ 1

3
≤ 

3
= 


1

3


and

∞
=1

1

3
is a convergent -series [ = 3  1],

∞
=1

1

3
converges, and so

∞
=1

(−1)1
3

is absolutely convergent.
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13. lim
→∞

+1

 = lim
→∞


10+1

(+ 2) 42+3
· (+ 1) 4

2+1

10


= lim

→∞


10

42
· + 1
+ 2


=
5

8
 1, so the series

∞
=1

10

(+ 1)42+1

is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the same as

convergence.

15.

 (−1) arctan2

  2

2
, so since

∞
=1

2

2
=



2

∞
=1

1

2
converges ( = 2  1), the given series

∞
=1

(−1) arctan
2

converges absolutely by the Comparison Test.

17.
∞
=2

(−1)
ln

converges by the Alternating Series Test since lim
→∞

1

ln
= 0 and


1

ln


is decreasing. Now ln  , so

1

ln

1


, and since

∞
=2

1


is the divergent (partial) harmonic series,

∞
=2

1

ln
diverges by the Comparison Test. Thus,

∞
=2

(−1)
ln

is conditionally convergent.

19.
|cos (3)|

!
≤ 1

!
and

∞
=1

1

!
converges (use the Ratio Test), so the series

∞
=1

cos(3)

!
converges absolutely by the

Comparison Test.

21. lim
→∞



|| = lim

→∞
2 + 1

22 + 1
= lim

→∞
1 + 12

2 + 12
=
1

2
 1, so the series

∞
=1


2 + 1

22 + 1


is absolutely convergent by the

Root Test.

23. lim
→∞



|| = lim

→∞



1 +

1



2
= lim

→∞


1 +

1




=   1 [by Equation 7.4.9 (or 7.4*.9) [ ET 3.6.6] ],

so the series
∞
=1


1 +

1



2
diverges by the Root Test.

25. lim
→∞

+1

= lim
→∞

 (+ 1)100100+1(+ 1)!
· !

100100

 = lim
→∞

100

+ 1


+ 1



100
= lim

→∞
100

+ 1


1 +

1



100
= 0 · 1 = 0  1

so the series
∞
=1

100100

!
is absolutely convergent by the Ratio Test.

27. Use the Ratio Test with the series

1− 1 · 3
3!

+
1 · 3 · 5
5!

− 1 · 3 · 5 · 7
7!

+ · · ·+ (−1)−1 1 · 3 · 5 · · · · · (2− 1)
(2− 1)! + · · · =

∞
=1

(−1)−1 1 · 3 · 5 · · · · · (2− 1)
(2− 1)! .

lim
→∞

+1

= lim
→∞

 (−1) · 1 · 3 · 5 · · · · · (2− 1)[2(+ 1)− 1][2(+ 1)− 1]! · (2− 1)!
(−1)−1 · 1 · 3 · 5 · · · · · (2− 1)


= lim

→∞

 (−1)(2+ 1)(2− 1)!(2+ 1)(2)(2− 1)!

 = lim
→∞

1

2
= 0  1,

so the given series is absolutely convergent and therefore convergent.
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29.
∞
=1

2 · 4 · 6 · · · · · (2)
!

=
∞
=1

(2 · 1) · (2 · 2) · (2 · 3) · · · · · (2 · )
!

=
∞
=1

2!

!
=

∞
=1

2, which diverges by the Test for

Divergence since lim
→∞

2 =∞.

31. By the recursive definition, lim
→∞

+1

 = lim
→∞

5+ 14+ 3

 = 5

4
 1, so the series diverges by the Ratio Test.

33. The series
∞
=1

 cos


=

∞
=1

(−1) 




, where   0 for  ≥ 1 and lim

→∞
 =

1

2
.

lim
→∞

+1

 = lim
→∞

 (−1)+1+1

+ 1
· 

(−1)

 = lim
→∞




+ 1
=
1

2
(1) =

1

2
 1, so the series

∞
=1

 cos


is

absolutely convergent by the Ratio Test.

35. (a) lim
→∞

1(+ 1)313

 = lim
→∞

3

(+ 1)
3
= lim

→∞
1

(1 + 1)
3
= 1. Inconclusive

(b) lim
→∞

 (+ 1)2+1
· 2





 = lim
→∞

+ 1

2
= lim

→∞


1

2
+
1

2


=
1

2
. Conclusive (convergent)

(c) lim
→∞

 (−3)√
+ 1

·
√


(−3)−1
 = 3 lim→∞




+ 1
= 3 lim

→∞


1

1 + 1
= 3. Conclusive (divergent)

(d) lim
→∞

 √
+ 1

1 + (+ 1)
2
· 1 + 2√



 = lim
→∞


1 +

1


· 12 + 1

12 + (1 + 1)
2


= 1. Inconclusive

37. (a) lim
→∞

+1

 = lim
→∞

 +1

(+ 1)!
· !


 = lim
→∞

 

+ 1

 = || lim→∞
1

+ 1
= || · 0 = 0  1, so by the Ratio Test the

series
∞
=0



!
converges for all .

(b) Since the series of part (a) always converges, we must have lim
→∞



!
= 0 by Theorem 11.2.6.

39. (a) 5 =
5

=1

1

2
=
1

2
+
1

8
+
1

24
+
1

64
+

1

160
=
661

960
≈ 068854. Now the ratios

 =
+1


=

2

(+ 1)2+1
=



2(+ 1)
form an increasing sequence, since

+1 −  =
+ 1

2(+ 2)
− 

2(+ 1)
=
(+ 1)

2 − (+ 2)

2(+ 1)(+ 2)
=

1

2(+ 1)(+ 2)
 0. So by Exercise 34(b), the error

in using 5 is 5 ≤ 6

1− lim
→∞


=
1

6 · 26

1− 12 =
1

192
≈ 000521.

(b) The error in using  as an approximation to the sum is  =
+1

1− 1
2

=
2

(+ 1)2+1
. We want   000005 ⇔

1

(+ 1)2
 000005 ⇔ (+ 1)2  20,000. To find such an  we can use trial and error or a graph. We calculate

(11 + 1)211 = 24,576, so 11 =
11
=1

1

2
≈ 0693109 is within 000005 of the actual sum.
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41. (i) Following the hint, we get that ||   for  ≥  , and so since the geometric series
∞

=1 
 converges [0    1],

the series
∞

= || converges as well by the Comparison Test, and hence so does
∞

=1 ||, so
∞

=1  is absolutely

convergent.

(ii) If lim
→∞



|| =   1, then there is an integer such that 


||  1 for all  ≥  , so ||  1 for  ≥  . Thus,

lim
→∞

 6= 0, so
∞

=1
 diverges by the Test for Divergence.

(iii) Consider
∞
=1

1


[diverges] and

∞
=1

1

2
[converges]. For each sum, lim

→∞


|| = 1, so the Root Test is inconclusive.

43. (a) Since


 is absolutely convergent, and since
+  ≤ || and −  ≤ || (because + and − each equal

either  or 0), we conclude by the Comparison Test that both


+ and


− must be absolutely convergent.

Or: Use Theorem 11.2.8.

(b) We will show by contradiction that both


+ and


− must diverge. For suppose that


+ converged. Then so

would


+ − 1
2


by Theorem 11.2.8. But


+ − 1

2


=


1
2
( + ||)− 1

2


= 1

2

 ||, which

diverges because


 is only conditionally convergent. Hence,


+ can’t converge. Similarly, neither can


− .

45. Suppose that


 is conditionally convergent.

(a)


2 is divergent: Suppose


2 converges. Then lim
→∞

2 = 0 by Theorem 6 in Section 11.2, so there is an

integer   0 such that    ⇒ 2 ||  1. For    , we have ||  1

2
, so




|| converges by

comparison with the convergent -series



1

2
. In other words,


 converges absolutely, contradicting the

assumption that


 is conditionally convergent. This contradiction shows that


2 diverges.

Remark: The same argument shows that


 diverges for any   1.

(b)
∞
=2

(−1)
 ln

is conditionally convergent. It converges by the Alternating Series Test, but does not converge absolutely


by the Integral Test, since the function () =

1

 ln
is continuous, positive, and decreasing on [2∞) and

 ∞

2



 ln
= lim

→∞

 

2



 ln
= lim

→∞


ln(ln)


2
=∞


. Setting  =

(−1)
 ln

for  ≥ 2, we find that

∞
=2

 =
∞
=2

(−1)
ln

converges by the Alternating Series Test.

It is easy to find conditionally convergent series


 such that


 diverges. Two examples are
∞
=1

(−1)−1


and

∞
=1

(−1)−1√


, both of which converge by the Alternating Series Test and fail to converge absolutely because
 || is a

-series with  ≤ 1. In both cases, diverges by the Test for Divergence.
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11.7 Strategy for Testing Series

1.
1

+ 3


1

3
=


1

3


for all  ≥ 1.

∞
=1


1

3


is a convergent geometric series

 || = 1
3
 1


, so

∞
=1

1

+ 3

converges by the Comparison Test.

3. lim
→∞

|| = lim
→∞



+ 2
= 1, so lim

→∞
 = lim

→∞
(−1) 

+ 2
does not exist. Thus, the series

∞
=1

(−1) 

+ 2
diverges by

the Test for Divergence.

5. lim
→∞

+1

 = lim
→∞

 (+ 1)2 2(−5)+1 · (−5)


2 2−1

 = lim
→∞

2(+ 1)2

52
=
2

5
lim
→∞


1 +

1



2
=
2

5
(1) =

2

5
 1, so the series

∞
=1

2 2−1

(−5) converges by the Ratio Test.

7. Let () =
1


√
ln

. Then  is positive, continuous, and decreasing on [2∞), so we can apply the Integral Test.

Since


1


√
ln




 = ln,

 = 


=



−12

 = 2
12

+  = 2
√
ln+ , we find

 ∞

2




√
ln

= lim
→∞

 

2




√
ln

= lim
→∞


2
√
ln


2
= lim

→∞


2
√
ln − 2

√
ln 2


=∞. Since the integral diverges, the

given series
∞
=2

1


√
ln

diverges.

9.
∞
=1

2− =
∞
=1

2


. Using the Ratio Test, we get

lim
→∞

+1

 = lim
→∞

 ( + 1)2+1
· 



2

 = lim
→∞


 + 1



2
· 1



= 12 · 1


=
1


 1, so the series converges.

11.
∞
=1


1

3
+
1

3


=

∞
=1

1

3
+

∞
=1


1

3


. The first series converges since it is a -series with  = 3  1 and the second

series converges since it is geometric with || = 1
3
 1. The sum of two convergent series is convergent.

13. lim
→∞

+1

 = lim
→∞

3+1 (+ 1)2(+ 1)!
· !

32

 = lim
→∞

3(+ 1)2

(+ 1)2
= 3 lim

→∞
+ 1

2
= 0  1, so the series

∞
=1

32

!

converges by the Ratio Test.

15.  =
2−13+1


=
22−1331


=
3

2


2 · 3



. By the Root Test, lim

→∞



6




= lim

→∞
6


= 0  1, so the series

∞
=1


6




converges. It follows from Theorem 8(i) in Section 11.2 that the given series,

∞
=1

2−13+1


=

∞
=1

3

2


6




,

also converges.
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17. lim
→∞

+1

= lim
→∞

1 · 3 · 5 · · · · · (2− 1)(2+ 1)2 · 5 · 8 · · · · · (3− 1)(3+ 2) ·
2 · 5 · 8 · · · · · (3− 1)
1 · 3 · 5 · · · · · (2− 1)

 = lim
→∞

2+ 1

3+ 2

= lim
→∞

2 + 1

3 + 2
=
2

3
 1

so the series
∞
=1

1 · 3 · 5 · · · · · (2− 1)
2 · 5 · 8 · · · · · (3− 1) converges by the Ratio Test.

19. Let () =
ln√

. Then  0() =

2− ln
232

 0 when ln  2 or   2, so
ln√

is decreasing for   2.

By l’Hospital’s Rule, lim
→∞

ln√

= lim

→∞
1

1

2
√

 = lim

→∞
2√

= 0, so the series

∞
=1

(−1) ln√

converges by the

Alternating Series Test.

21. lim
→∞

|| = lim
→∞

(−1) cos(12) = lim
→∞

cos(12) = cos 0 = 1, so the series ∞
=1

(−1) cos(12) diverges by the

Test for Divergence.

23. Using the Limit Comparison Test with  = tan


1




and  =

1


, we have

lim
→∞




= lim

→∞
tan(1)

1
= lim

→∞
tan(1)

1

H
= lim

→∞
sec2(1) · (−12)

−12 = lim
→∞

sec2(1) = 12 = 1  0. Since

∞
=1

 is the divergent harmonic series,
∞
=1

 is also divergent.

25. Use the Ratio Test. lim
→∞

+1

 = lim
→∞

 (+ 1)!(+1)
2 ·


2

!

 = lim
→∞

(+ 1)! · 2


2+2+1!
= lim

→∞
+ 1

2+1
= 0  1, so

∞
=1

!


2

converges.

27.

 ∞

2

ln

2
 = lim

→∞


− ln


− 1




1

[using integration by parts]
H
= 1. So

∞
=1

ln

2
converges by the Integral Test, and since

 ln 

( + 1)
3


 ln 

3
=
ln 

2
, the given series

∞
=1

 ln 

( + 1)
3
converges by the Comparison Test.

29.
∞
=1

 =
∞
=1

(−1) 1

cosh
=

∞
=1

(−1) . Now  =
1

cosh
 0, {} is decreasing, and lim

→∞
 = 0, so the series

converges by the Alternating Series Test.

Or: Write
1

cosh
=

2

 + −

2


and

∞
=1

1


is a convergent geometric series, so

∞
=1

1

cosh
is convergent by the

Comparison Test. So
∞
=1

(−1) 1

cosh
is absolutely convergent and therefore convergent.

31. lim
→∞

 = lim
→∞

5

3 + 4
= [divide by 4] lim

→∞
(54)

(34) + 1
=∞ since lim

→∞


3

4


= 0 and lim

→∞


5

4


=∞.

Thus,
∞
=1

5

3 + 4
diverges by the Test for Divergence.
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33. lim
→∞



|| = lim

→∞




+ 1

2
= lim

→∞
1

[(+ 1) ]
 =

1

lim
→∞

(1 + 1)
 =

1


 1, so the series

∞
=1




+ 1

2
converges by the Root Test.

35.  =
1

1+1
=

1

 · 1 , so let  =
1


and use the Limit Comparison Test. lim

→∞



= lim

→∞
1

1
= 1  0

[see Exercise 4.4.61], so the series
∞
=1

1

1+1
diverges by comparison with the divergent harmonic series.

37. lim
→∞



|| = lim

→∞
(21 − 1) = 1− 1 = 0  1, so the series

∞
=1



√
2− 1 converges by the Root Test.

11.8 Power Series

1. A power series is a series of the form
∞

=0


 = 0 + 1+ 2
2 + 3

3 + · · · , where  is a variable and the ’s are
constants called the coefficients of the series.

More generally, a series of the form
∞

=0 (− ) = 0 + 1(− ) + 2(− )2 + · · · is called a power series in
(− ) or a power series centered at  or a power series about , where  is a constant.

3. If  = (−1), then

lim
→∞

+1

 = lim
→∞

 (−1)+1(+ 1)+1(−1) 
 = lim

→∞

(−1)+ 1


 = lim
→∞


1 +

1




||

= ||. By the Ratio Test, the

series
∞
=1

(−1) converges when ||  1, so the radius of convergence  = 1. Now we’ll check the endpoints, that is,

 = ±1. Both series
∞
=1

(−1)(±1) =
∞
=1

(∓1) diverge by the Test for Divergence since lim
→∞

|(∓1)| =∞. Thus,

the interval of convergence is  = (−1 1).

5. If  =


2− 1 , then lim→∞

+1

 = lim
→∞

 +12+ 1
· 2− 1



 = lim
→∞


2− 1
2+ 1

||

= lim

→∞


2− 1
2 + 1

||

= ||. By

the Ratio Test, the series
∞
=1



2− 1 converges when ||  1, so  = 1. When  = 1, the series
∞
=1

1

2− 1 diverges by

comparison with
∞
=1

1

2
since

1

2− 1 
1

2
and

1

2

∞
=1

1


diverges since it is a constant multiple of the harmonic series.

When  = −1, the series
∞
=1

(−1)
2− 1 converges by the Alternating Series Test. Thus, the interval of convergence is [−1 1).

7. If  =


!
, then lim

→∞

+1

 = lim
→∞

 +1

(+ 1)!
· !


 = lim
→∞

 

+ 1

 = || lim→∞
1

+ 1
= || · 0 = 0  1 for all real .

So, by the Ratio Test,  =∞ and  = (−∞∞).

9. If  = (−1) 2

2
, then

lim
→∞

+1

 = lim
→∞

 (+ 1)2 +12+1
· 2

2 

 = lim
→∞

(+ 1)222

 = lim
→∞


||
2


1 +

1



2
=
||
2
(1)2 = 1

2
||. By the
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Ratio Test, the series
∞
=1

(−1) 2

2
converges when 1

2
||  1 ⇔ ||  2, so the radius of convergence is  = 2.

When  = ±2, both series
∞
=1

(−1) 2(±2)
2

=
∞
=1

(∓1)2 diverge by the Test for Divergence since

lim
→∞

(∓1) 2 =∞. Thus, the interval of convergence is  = (−2 2).
11. If  =

(−3)
32

, then

lim
→∞

+1

= lim
→∞

 (−3)+1+1(+ 1)32
· 32

(−3)
 = lim

→∞

−3




+ 1

32 = 3 || lim→∞


1

1 + 1

32
= 3 || (1) = 3 ||

By the Ratio Test, the series
∞
=1

(−3)

√


 converges when 3 ||  1 ⇔ ||  1
3
, so  = 1

3
. When  = 1

3
, the series

∞
=1

(−1)
32

converges by the Alternating Series Test. When  = − 1
3
, the series

∞
=1

1

32
is a convergent -series


 = 3

2
 1


. Thus, the interval of convergence is

− 1
3
 1
3


.

13. If  = (−1) 

4 ln
, then lim

→∞

+1

 = lim
→∞

 +1

4+1 ln(+ 1)
· 4

 ln



 = ||
4
lim
→∞

ln

ln(+ 1)
=
||
4
· 1

[by l’Hospital’s Rule] =
||
4
. By the Ratio Test, the series converges when

||
4

 1 ⇔ ||  4, so  = 4. When

 = −4,
∞
=2

(−1) 

4 ln
=

∞
=2

[(−1)(−4)]
4 ln

=
∞
=2

1

ln
. Since ln   for  ≥ 2, 1

ln

1


and

∞
=2

1


is the

divergent harmonic series (without the  = 1 term),
∞
=2

1

ln
is divergent by the Comparison Test. When  = 4,

∞
=2

(−1) 

4 ln
=

∞
=2

(−1) 1

ln
, which converges by the Alternating Series Test. Thus,  = (−4 4].

15. If  =
(− 2)
2 + 1

, then lim
→∞

+1

 = lim
→∞

 (− 2)+1(+ 1)2 + 1
· 2 + 1

(− 2)
 = |− 2| lim→∞

2 + 1

(+ 1)2 + 1
= |− 2|. By the

Ratio Test, the series
∞
=0

(− 2)
2 + 1

converges when |− 2|  1 [ = 1] ⇔ −1  − 2  1 ⇔ 1    3. When

 = 1, the series
∞
=0

(−1) 1

2 + 1
converges by the Alternating Series Test; when  = 3, the series

∞
=0

1

2 + 1
converges by

comparison with the p-series
∞
=1

1

2
[ = 2  1]. Thus, the interval of convergence is  = [1 3].

17. If  =
3(+ 4)√


, then lim

→∞

+1

 = lim
→∞

3+1(+ 4)+1√
+ 1

·
√


3(+ 4)

 = 3 |+ 4| lim→∞

√
√

+ 1
= 3 |+ 4|.

By the Ratio Test, the series
∞
=1

3(+ 4)√


converges when 3 |+ 4|  1 ⇔ |+ 4|  1
3


 = 1

3

 ⇔

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



76 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES

− 1
3
 + 4  1

3
⇔ − 13

3
   − 11

3
. When  = − 13

3
, the series

∞
=1

(−1) 1√

converges by the Alternating Series

Test; when  = − 11
3
, the series

∞
=1

1√

diverges


 = 1

2
≤ 1. Thus, the interval of convergence is  = − 13

3
− 11

3


.

19. If  =
(− 2)


, then lim

→∞


|| = lim

→∞
|− 2|


= 0, so the series converges for all  (by the Root Test).

 =∞ and  = (−∞∞).

21.  =



(− ), where   0.

lim
→∞

+1

 = lim
→∞

(+ 1) |− |+1
+1

· 

 |− | = lim
→∞


1 +

1



 |− |


=
|− |


.

By the Ratio Test, the series converges when
|− |


 1 ⇔ |− |   [so  = ] ⇔ −  −    ⇔

−     + . When |− | = , lim
→∞

|| = lim
→∞

 =∞, so the series diverges. Thus,  = (−  + ).

23. If  = ! (2− 1), then lim
→∞

+1

 = lim
→∞

 (+ 1)! (2− 1)+1!(2− 1)
 = lim

→∞
(+ 1) |2− 1|→∞ as →∞

for all  6= 1
2
. Since the series diverges for all  6= 1

2
,  = 0 and  =


1
2


.

25. If  =
(5− 4)

3
, then

lim
→∞

+1

= lim
→∞

 (5− 4)+1(+ 1)3
· 3

(5− 4)
 = lim

→∞
|5− 4|




+ 1

3
= lim

→∞
|5− 4|


1

1 + 1

3
= |5− 4| · 1 = |5− 4|

By the Ratio Test,
∞
=1

(5− 4)
3

converges when |5− 4|  1 ⇔
− 4

5

  1
5
⇔ −1

5
 − 4

5
 1

5
⇔

3
5
   1, so  = 1

5
. When  = 1, the series

∞
=1

1

3
is a convergent -series ( = 3  1). When  = 3

5
, the series

∞
=1

(−1)
3

converges by the Alternating Series Test. Thus, the interval of convergence is  =

3
5
 1

.

27. If  =


1 · 3 · 5 · · · · · (2− 1) , then

lim
→∞

+1

 = lim
→∞

 +1

1 · 3 · 5 · · · · · (2− 1)(2+ 1) ·
1 · 3 · 5 · · · · · (2− 1)



 = lim
→∞

||
2+ 1

= 0  1. Thus, by

the Ratio Test, the series
∞
=1



1 · 3 · 5 · · · · · (2− 1) converges for all real  and we have  =∞ and  = (−∞∞).

29. (a) We are given that the power series
∞

=0


 is convergent for  = 4. So by Theorem 3, it must converge for at least

−4   ≤ 4. In particular, it converges when  = −2; that is,∞
=0 (−2) is convergent.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 11.8 POWER SERIES ¤ 77

(b) It does not follow that
∞

=0 (−4) is necessarily convergent. [See the comments after Theorem 3 about convergence at

the endpoint of an interval. An example is  = (−1)(4).]

31. If  =
(!)



()!
, then

lim
→∞

+1

= lim
→∞

[(+ 1)!]

()!

(!)

[(+ 1)]!

|| = lim
→∞

(+ 1)


(+ )(+  − 1) · · · (+ 2)(+ 1) ||

= lim
→∞


(+ 1)

(+ 1)

(+ 1)

(+ 2)
· · · (+ 1)
(+ )


||

= lim
→∞


+ 1

+ 1


lim
→∞


+ 1

+ 2


· · · lim

→∞


+ 1

+ 


||

=


1




||  1 ⇔ ||   for convergence, and the radius of convergence is  = 

33. No. If a power series is centered at , its interval of convergence is symmetric about . If a power series has an infinite radius

of convergence, then its interval of convergence must be (−∞∞), not [0∞).

35. (a) If  =
(−1) 2+1

!(+ 1)! 22+1
, then

lim
→∞

+1

 = lim
→∞

 2+3

(+ 1)!(+ 2)! 22+3
· !(+ 1)! 2

2+1

2+1

 = 22 lim→∞
1

(+ 1)(+ 2)
= 0 for all .

So 1() converges for all  and its domain is (−∞∞).

(b), (c) The initial terms of 1() up to  = 5 are 0 =


2
,

1 = −3

16
, 2 =

5

384
, 3 = − 7

18,432
, 4 =

9

1,474,560
,

and 5 = − 11

176,947,200
. The partial sums seem to

approximate 1() well near the origin, but as || increases,
we need to take a large number of terms to get a good

approximation.

37. 2−1 = 1 + 2+ 2 + 23 + 4 + 25 + · · ·+ 2−2 + 22−1

= 1(1 + 2) + 2(1 + 2) + 4(1 + 2) + · · ·+ 2−2(1 + 2) = (1 + 2)(1 + 2 + 4 + · · ·+ 2−2)

= (1 + 2)
1− 2

1− 2
[by (11.2.3) with  = 2] → 1 + 2

1− 2
as →∞ by (11.2.4), when ||  1.

Also 2 = 2−1 + 2 → 1 + 2

1− 2
since 2 → 0 for ||  1. Therefore,  → 1 + 2

1− 2
since 2 and 2−1 both

approach
1 + 2

1− 2
as →∞. Thus, the interval of convergence is (−1 1) and () = 1 + 2

1− 2
.
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39. We use the Root Test on the series



. We need lim

→∞


|| = || lim

→∞


|| =  ||  1 for convergence, or

||  1, so  = 1.

41. For 2    3,



 diverges and




 converges. By Exercise 11.2.69,

( + )

 diverges. Since both series

converge for ||  2, the radius of convergence of( + )
 is 2.

11.9 Representations of Functions as Power Series

1. If () =
∞
=0


 has radius of convergence 10, then  0() =

∞
=1


−1 also has radius of convergence 10 by

Theorem 2.

3. Our goal is to write the function in the form
1

1− 
, and then use Equation (1) to represent the function as a sum of a power

series. () =
1

1 + 
=

1

1− (−) =
∞
=0

(−) =
∞
=0

(−1) with |−|  1 ⇔ ||  1, so  = 1 and  = (−1 1).

5. () =
2

3− 
=
2

3


1

1− 3


=
2

3

∞
=0


3


or, equivalently, 2

∞
=0

1

3+1
. The series converges when


3

  1,
that is, when ||  3, so  = 3 and  = (−3 3).

7. () =


9 + 2
=



9


1

1 + (3)2


=



9


1

1− {−(3)2}

=



9

∞
=0


−

3

2
=



9

∞
=0

(−1) 
2

9
=

∞
=0

(−1) 
2+1

9+1

The geometric series
∞
=0


−

3

2
converges when

−32
  1 ⇔

2
9

 1 ⇔ ||2  9 ⇔ ||  3, so

 = 3 and  = (−3 3).

9. () =
1 + 

1− 
= (1 + )


1

1− 


= (1 + )

∞
=0

 =
∞
=0

 +
∞
=0

+1 = 1 +
∞
=1

 +
∞
=1

 = 1 + 2
∞
=1

.

The series converges when ||  1, so  = 1 and  = (−1 1).

A second approach: () =
1 + 

1− 
=
−(1− ) + 2

1− 
= −1 + 2


1

1− 


= −1 + 2

∞
=0

 = 1 + 2
∞
=1

.

A third approach:

() =
1 + 

1− 
= (1 + )


1

1− 


= (1 + )(1 + + 2 + 3 + · · · )

= (1 + + 2 + 3 + · · · ) + (+ 2 + 3 + 4 + · · · ) = 1 + 2+ 22 + 23 + · · · = 1 + 2
∞
=1

.
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11. () =
3

2 − − 2 =
3

(− 2)(+ 1) =


− 2 +


+ 1
⇒ 3 = (+ 1) +(− 2). Let  = 2 to get  = 1 and

 = −1 to get  = −1. Thus

3

2 − − 2 =
1

− 2 −
1

+ 1
=

1

−2


1

1− (2)

− 1

1− (−) = −
1

2

∞
=0


2


−

∞
=0

(−)

=
∞
=0


−1
2


1

2


− 1(−1)


 =

∞
=0


(−1)+1 − 1

2+1




We represented  as the sum of two geometric series; the first converges for  ∈ (−2 2) and the second converges for (−1 1).

Thus, the sum converges for  ∈ (−1 1) = .

13. (a) () =
1

(1 + )
2
=





 −1
1 + 


= − 



 ∞
=0

(−1) 

[from Exercise 3]

=
∞
=1

(−1)+1−1 [from Theorem 2(i)] =
∞
=0

(−1)(+ 1) with  = 1.

In the last step, note that we decreased the initial value of the summation variable  by 1, and then increased each

occurrence of  in the term by 1 [also note that (−1)+2 = (−1)].

(b) () =
1

(1 + )
3
= −1

2






1

(1 + )
2


= −1

2





 ∞
=0

(−1)(+ 1)

[from part (a)]

= − 1
2

∞
=1

(−1)(+ 1)−1 = 1
2

∞
=0

(−1)(+ 2)(+ 1) with  = 1.

(c) () =
2

(1 + )3
= 2 · 1

(1 + )3
= 2 · 1

2

∞
=0

(−1)(+ 2)(+ 1) [from part (b)]

=
1

2

∞
=0

(−1)(+ 2)(+ 1)+2

To write the power series with  rather than +2, we will decrease each occurrence of  in the term by 2 and increase

the initial value of the summation variable by 2. This gives us
1

2

∞
=2

(−1)()(− 1) with  = 1.

15. () = ln(5− ) = −




5− 
= −1

5




1− 5
= −1

5

  ∞
=0


5


 =  − 1

5

∞
=0

+1

5(+ 1)
=  −

∞
=1



 5

Putting  = 0, we get  = ln 5. The series converges for |5|  1 ⇔ ||  5, so  = 5.

17. We know that
1

1 + 4
=

1

1− (−4) =
∞
=0

(−4). Differentiating, we get

−4
(1 + 4)2

=
∞
=1

(−4)−1 =
∞
=0

(−4)+1(+ 1), so

() =


(1 + 4)2
=
−
4
· −4
(1 + 4)2

=
−
4

∞
=0

(−4)+1(+ 1) =
∞
=0

(−1)4(+ 1)+1

for |−4|  1 ⇔ ||  1
4
, so  = 1

4
.
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19. By Example 5,
1

(1− )2
=

∞
=0

(+ 1). Thus,

() =
1 + 

(1− )2
=

1

(1− )2
+



(1− )2
=

∞
=0

(+ 1) +
∞
=0

(+ 1)+1

=
∞
=0

(+ 1) +
∞
=1

 [make the starting values equal]

= 1 +
∞
=1

[(+ 1) + ] = 1 +
∞
=1

(2+ 1) =
∞
=0

(2+ 1) with  = 1.

21. () =


2 + 16
=



16


1

1− (−216)

=



16

∞
=0


−2

16


=



16

∞
=0

(−1) 1

16
2 =

∞
=0

(−1) 1

16+1
2+1.

The series converges when
−216  1 ⇔ 2  16 ⇔ ||  4, so  = 4. The partial sums are 1 =



16
,

2 = 1 − 3

162
, 3 = 2 +

5

163
, 4 = 3 − 7

164
, 5 = 4 +

9

165
,    . Note that 1 corresponds to the first term of the infinite

sum, regardless of the value of the summation variable and the value of the exponent.

As  increases, () approximates  better on the interval of convergence, which is (−4 4).

23. () = ln


1 + 

1− 


= ln(1 + )− ln(1− ) =




1 + 
+




1− 
=




1− (−) +




1− 

=

  ∞
=0

(−1) +
∞
=0





 =


[(1− + 

2 − 
3
+ 

4 − · · · ) + (1 + + 
2
+ 

3
+ 

4
+ · · · )] 

=


(2 + 2

2
+ 2

4
+ · · · )  =

 ∞
=0

2
2

=  +
∞
=0

22+1

2+ 1

But (0) = ln 1
1
= 0, so  = 0 and we have () =

∞
=0

22+1

2+ 1
with  = 1. If  = ±1, then () = ±2

∞
=0

1

2+ 1
,

which both diverge by the Limit Comparison Test with  =
1


.
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The partial sums are 1 =
2

1
, 2 = 1 +

23

3
, 3 = 2 +

25

5
,    .

As  increases, () approximates  better on the interval of

convergence, which is (−1 1).

25.


1− 8
=  · 1

1− 8
= 

∞
=0

(8) =
∞
=0

8+1 ⇒




1− 8
 =  +

∞
=0

8+2

8+ 2
. The series for

1

1− 8
converges

when
8  1 ⇔ ||  1, so  = 1 for that series and also the series for (1− 8). By Theorem 2, the series for


1− 8
 also has  = 1.

27. From Example 6, ln(1 + ) =
∞
=1

(−1)−1 



for ||  1, so 2 ln(1 + ) =

∞
=1

(−1)−1 
+2


and



2
ln(1 + )  =  +

∞
=1

(−1) +3

(+ 3)
.  = 1 for the series for ln(1 + ), so  = 1 for the series representing

2 ln(1 + ) as well. By Theorem 2, the series for



2
ln(1 + )  also has  = 1.

29.
1

1 + 5
=

1

1− (−5) =
∞
=0

−5 = ∞
=0

(−1)5 ⇒


1

1 + 5
 =

 ∞
=0

(−1)5  =  +
∞
=0

(−1) 5+1

5+ 1
. Thus,

 =

 02

0

1

1 + 5
 =


− 6

6
+

11

11
− · · ·

02
0

= 02− (02)6

6
+
(02)11

11
− · · · . The series is alternating, so if we use

the first two terms, the error is at most (02)1111 ≈ 19× 10−9. So  ≈ 02− (02)66 ≈ 0199 989 to six decimal places.

31. We substitute 3 for  in Example 7, and find that
 arctan(3)  =



∞
=0

(−1) (3)
2+1

2+ 1
 =

 ∞
=0

(−1) 3
2+1 2+2

2+ 1
 =  +

∞
=0

(−1) 32+1 2+3

(2+ 1)(2+ 3)

So
 01

0

 arctan(3) =


33

1 · 3 −
335

3 · 5 +
357

5 · 7 −
379

7 · 9 + · · ·
01
0

=
1

103
− 9

5× 105 +
243

35× 107 −
2187

63× 109 + · · · .

The series is alternating, so if we use three terms, the error is at most
2187

63× 109 ≈ 35× 10
−8. So

 01

0

 arctan(3)  ≈ 1

103
− 9

5× 105 +
243

35× 107 ≈ 0000 983 to six decimal places.
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33. By Example 7, arctan = − 3

3
+

5

5
− 7

7
+ · · · , so arctan 02 = 02− (02)3

3
+
(02)5

5
− (02)7

7
+ · · · .

The series is alternating, so if we use three terms, the error is at most
(02)7

7
≈ 0000 002.

Thus, to five decimal places, arctan 02 ≈ 02− (02)3

3
+
(02)5

5
≈ 0197 40.

35. (a) 0() =
∞
=0

(−1) 2
22(!)2

  00() =
∞
=1

(−1) 22−1
22(!)2

, and  000 () =
∞
=1

(−1) 2(2− 1)2−2
22(!)2

, so

2 000 () +  00() + 20() =
∞
=1

(−1) 2(2− 1)2
22(!)2

+
∞
=1

(−1) 22
22(!)2

+
∞
=0

(−1) 2+2
22(!)2

=
∞
=1

(−1) 2(2− 1)2
22(!)2

+
∞
=1

(−1) 22
22(!)2

+
∞
=1

(−1)−1 2
22−2 [(− 1)!]2

=
∞
=1

(−1) 2(2− 1)2
22(!)2

+
∞
=1

(−1) 22
22(!)2

+
∞
=1

(−1)(−1)−12222
22(!)2

=
∞
=1

(−1)

2(2− 1) + 2− 222

22(!)2


2

=
∞
=1

(−1)

42 − 2+ 2− 42

22(!)2


2 = 0

(b)
 1

0

0()  =

 1

0

 ∞
=0

(−1) 2
22(!)2


 =

 1

0


1− 2

4
+

4

64
− 6

2304
+ · · ·




=


− 3

3 · 4 +
5

5 · 64 −
7

7 · 2304 + · · ·
1
0

= 1− 1

12
+

1

320
− 1

16,128
+ · · ·

Since 1
16,128 ≈ 0000062, it follows from The Alternating Series Estimation Theorem that, correct to three decimal places, 1

0
0()  ≈ 1− 1

12
+ 1

320
≈ 0920.

37. (a) () =
∞
=0



!
⇒  0() =

∞
=1

−1

!
=

∞
=1

−1

(− 1)! =
∞
=0



!
= ()

(b) By Theorem 9.4.2, the only solution to the differential equation () = () is () = , but (0) = 1, so

 = 1 and () = .

Or: We could solve the equation () = () as a separable differential equation.

39. If  =


2
, then by the Ratio Test, lim

→∞

+1

 = lim
→∞

 +1

(+ 1)2
· 

2



 = || lim→∞




+ 1

2
= ||  1 for

convergence, so  = 1. When  = ±1,
∞
=1

2
 = ∞

=1

1

2
which is a convergent -series ( = 2  1), so the interval of

convergence for  is [−1 1]. By Theorem 2, the radii of convergence of  0 and  00 are both 1, so we need only check the

endpoints. () =
∞
=1



2
⇒  0() =

∞
=1

−1

2
=

∞
=0



+ 1
, and this series diverges for  = 1 (harmonic series)
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and converges for  = −1 (Alternating Series Test), so the interval of convergence is [−1 1).  00() =
∞
=1

−1

+ 1
diverges

at both 1 and −1 (Test for Divergence) since lim
→∞



+ 1
= 1 6= 0, so its interval of convergence is (−1 1).

41. By Example 7, tan−1  =
∞
=0

(−1) 2+1

2+ 1
for ||  1. In particular, for  =

1√
3
, we

have


6
= tan−1


1√
3


=

∞
=0

(−1)

1
√
3
2+1

2+ 1
=

∞
=0

(−1)

1

3


1√
3

1

2+ 1
, so

 =
6√
3

∞
=0

(−1)
(2+ 1)3

= 2
√
3
∞
=0

(−1)
(2+ 1)3

.

11.10 Taylor and Maclaurin Series

1. Using Theorem 5 with
∞
=0

(− 5),  =  ()()

!
, so 8 =

 (8)(5)

8!
.

3. Since  ()(0) = ( + 1)!, Equation 7 gives the Maclaurin series

∞
=0

 ()(0)

!
 =

∞
=0

(+ 1)!

!
 =

∞
=0

(+ 1). Applying the Ratio Test with  = (+ 1) gives us

lim
→∞

+1

 = lim
→∞

 (+ 2)+1(+ 1)

 = || lim→∞
+ 2

+ 1
= || · 1 = ||. For convergence, we must have ||  1, so the

radius of convergence  = 1.

5.
  ()()  ()(0)

0 (1− )−2 1

1 2(1− )−3 2

2 6(1− )−4 6

3 24(1− )−5 24

4 120(1− )−6 120

...
...

...

(1− )−2 = (0) +  0(0)+
 00(0)
2!

2 +
 000(0)
3!

3 +
 (4)(0)

4!
4 + · · ·

= 1 + 2+ 6
2
2 + 24

6
3 + 120

24
4 + · · ·

= 1 + 2+ 32 + 43 + 54 + · · · =
∞
=0

(+ 1)

lim
→∞

+1

 = lim
→∞

 (+ 2)+1(+ 1)

 = || lim→∞
+ 2

+ 1
= || (1) = ||  1

for convergence, so  = 1.

7.
  ()()  ()(0)

0 sin 0

1  cos 

2 −2 sin 0

3 −3 cos −3
4 4 sin 0

5 5 cos 5

...
...

...

sin = (0) +  0(0)+
 00(0)
2!

2 +
 000(0)
3!

3

+
 (4)(0)

4!
4 +

 (5)(0)

5!
5 + · · ·

= 0 + + 0− 3

3!
3 + 0 +

5

5!
5 + · · ·

= − 3

3!
3 +

5

5!
5 − 7

7!
7 + · · ·

=
∞
=0

(−1) 2+1

(2+ 1)!
2+1

lim
→∞

+1

 = lim
→∞

2+3 2+3(2+ 3)!
· (2+ 1)!

2+1 2+1

 = lim
→∞

2 2

(2+ 3)(2+ 2)
= 0  1 for all , so  =∞.
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9.
  ()()  ()(0)

0 2 1

1 2(ln 2) ln 2

2 2(ln 2)2 (ln 2)2

3 2(ln 2)3 (ln 2)3

4 2(ln 2)4 (ln 2)4

...
...

...

2 =
∞
=0

 ()(0)

!
 =

∞
=0

(ln 2)

!
.

lim
→∞

+1

= lim
→∞

 (ln 2)+1+1(+ 1)!
· !

(ln 2)


= lim

→∞
(ln 2) ||
+ 1

= 0  1 for all , so  =∞.

11.
  ()()  ()(0)

0 sinh 0

1 cosh 1

2 sinh 0

3 cosh 1

4 sinh 0

...
...

...

 ()(0) =


0 if  is even

1 if  is odd
so sinh =

∞
=0

2+1

(2+ 1)!
.

Use the Ratio Test to find . If  =
2+1

(2+ 1)!
, then

lim
→∞

+1

= lim
→∞

 2+3

(2+ 3)!
· (2+ 1)!

2+1

 = 2 · lim
→∞

1

(2+ 3)(2+ 2)

= 0  1 for all , so  =∞.

13.
  ()()  ()(1)

0 4 − 32 + 1 −1
1 43 − 6 −2
2 122 − 6 6

3 24 24

4 24 24

5 0 0

6 0 0

...
...

...

 ()() = 0 for  ≥ 5, so  has a finite series expansion about  = 1.

() = 4 − 32 + 1 =
4

=0

 ()(1)

!
(− 1)

=
−1
0!
(− 1)0 + −2

1!
(− 1)1 + 6

2!
(− 1)2

+
24

3!
(− 1)3 + 24

4!
(− 1)4

= −1− 2(− 1) + 3(− 1)2 + 4(− 1)3 + (− 1)4

A finite series converges for all , so  =∞.

15.
  ()()  ()(2)

0 ln ln 2

1 1 12

2 −12 −122
3 23 223

4 −64 −624
5 245 2425

...
...

...

() = ln =
∞
=0

 ()(2)

!
(− 2)

=
ln2

0!
(− 2)0 + 1

1! 21
(− 2)1 + −1

2! 22
(− 2)2 + 2

3! 23
(− 2)3

+
−6
4! 24

(− 2)4 + 24

5! 25
(− 2)5 + · · ·

= ln 2 +
∞
=1

(−1)+1 (− 1)!
! 2

(− 2)

= ln 2 +
∞
=1

(−1)+1 1

 2
(− 2)
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lim
→∞

+1

= lim
→∞

 (−1)+2(− 2)+1(+ 1) 2+1
·  2

(−1)+1(− 2)
 = lim

→∞

 (−1)(− 2)(+ 1)2

 = lim
→∞




+ 1

 |− 2|
2

=
|− 2|
2

 1 for convergence, so |− 2|  2 and  = 2.

17.
  ()()  ()(3)

0 2 6

1 22 26

2 222 46

3 232 86

4 242 166

...
...

...

()= 2 =
∞
=0

 ()(3)

!
(− 3)

=
6

0!
(− 3)0 + 26

1!
(− 3)1 + 46

2!
(− 3)2

+
86

3!
(− 3)3 + 166

4!
(− 3)4 + · · ·

=
∞
=0

26

!
(− 3)

lim
→∞

+1

 = lim
→∞

2+16(− 3)+1(+ 1)!
· !

26(− 3)
 = lim

→∞
2 |− 3|
+ 1

= 0  1 for all , so  =∞.

19.
  ()()  ()()

0 cos −1
1 − sin 0

2 − cos 1

3 sin 0

4 cos −1
...

...
...

() = cos =
∞
=0

 ()()

!
(− )

= −1 + (− )2

2!
− (− )4

4!
+
(− )6

6!
− · · ·

=
∞
=0

(−1)+1 (− )2

(2)!

lim
→∞

+1

= lim
→∞

 |− |2+2
(2+ 2)!

· (2)!

|− |2


= lim
→∞

|− |2
(2+ 2)(2+ 1)

= 0  1 for all , so  =∞.

21. If () = sin, then  (+1)() = ±+1 sin or ±+1 cos. In each case,
 (+1)() ≤ +1, so by Formula 9

with  = 0 and = +1, |()| ≤ +1

(+ 1)!
||+1 = ||+1

(+ 1)!
. Thus, |()|→ 0 as →∞ by Equation 10.

So lim
→∞

() = 0 and, by Theorem 8, the series in Exercise 7 represents sin for all .

23. If () = sinh, then for all ,  (+1)() = cosh or sinh. Since |sinh|  |cosh| = cosh for all , we have (+1)() ≤ cosh for all . If  is any positive number and || ≤ , then
 (+1)() ≤ cosh ≤ cosh , so by

Formula 9 with  = 0 and = cosh , we have |()| ≤ cosh 

(+ 1)!
||+1. It follows that |()|→ 0 as →∞ for

|| ≤  (by Equation 10). But  was an arbitrary positive number. So by Theorem 8, the series represents sinh for all .
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25. 4
√
1− = [1 + (−)]14 =

∞
=0


14




(−) = 1 + 1

4
(−) +

1
4

−3
4


2!

(−)2 +
1
4

−3
4

 − 7
4


3!

(−)3 + · · ·

= 1− 1

4
+

∞
=2

(−1)−1(−1) · [3 · 7 · · · · · (4− 5)]
4 · ! 

= 1− 1

4
−

∞
=2

3 · 7 · · · · · (4− 5)
4 · ! 

and |−|  1 ⇔ ||  1, so  = 1.

27.
1

(2 + )
3
=

1

[2(1 + 2)]
3
=
1

8


1 +



2

−3
=
1

8

∞
=0


−3



2


. The binomial coefficient is


−3



=
(−3)(−4)(−5) · · · · · (−3− + 1)

!
=
(−3)(−4)(−5) · · · · · [−(+ 2)]

!

=
(−1) · 2 · 3 · 4 · 5 · · · · · (+ 1)(+ 2)

2 · ! =
(−1)(+ 1)(+ 2)

2

Thus,
1

(2 + )
3
=
1

8

∞
=0

(−1)(+ 1)(+ 2)
2



2
=

∞
=0

(−1)(+ 1)(+ 2)
2+4

for

2

  1 ⇔ ||  2, so  = 2.

29. sin =
∞
=0

(−1) 2+1

(2+ 1)!
⇒ () = sin() =

∞
=0

(−1) ()
2+1

(2+ 1)!
=

∞
=0

(−1) 2+1

(2+ 1)!
2+1,  =∞.

31.  =
∞
=0



!
⇒ 2 =

∞
=0

(2)

!
=

∞
=0

2 

!
, so () =  + 2 =

∞
=0

1

!
 +

∞
=0

2

!
 =

∞
=0

2 + 1

!
,

 =∞.

33. cos =
∞
=0

(−1) 2

(2)!
⇒ cos


1
2
2

=

∞
=0

(−1)

1
2
2
2

(2)!
=

∞
=0

(−1) 4

22 (2)!
, so

() =  cos

1
2
2

=

∞
=0

(−1) 1

22(2)!
4+1,  =∞.

35. We must write the binomial in the form (1+ expression), so we’ll factor out a 4.

√
4 + 2

=


4(1 + 24)
=



2

1 + 24

=


2


1 +

2

4

−12
=



2

∞
=0


− 1
2




2

4



=


2


1 +

− 1
2

2
4
+

−1
2

−3
2


2!


2

4

2
+

− 1
2

−3
2

−5
2


3!


2

4

3
+ · · ·



=


2
+



2

∞
=1

(−1) 1 · 3 · 5 · · · · · (2− 1)
2 · 4 · ! 2

=


2
+

∞
=1

(−1) 1 · 3 · 5 · · · · · (2− 1)
! 23+1

2+1 and
2

4
 1 ⇔ ||

2
 1 ⇔ ||  2, so  = 2.

37. sin2  =
1

2
(1− cos 2) = 1

2


1−

∞
=0

(−1)(2)2
(2)!


=
1

2


1− 1−

∞
=1

(−1)(2)2
(2)!


=

∞
=1

(−1)+122−12
(2)!

,

 =∞
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39. cos
(16)
=

∞
=0

(−1) 2

(2)!
⇒

() = cos(2) =
∞
=0

(−1) (2)2
(2)!

=
∞
=0

(−1)4
(2)!

= 1− 1
2
4 + 1

24
8 − 1

720
12 + · · ·

The series for cos converges for all , so the same is true of the series for

(), that is,  =∞. Notice that, as  increases, () becomes a better
approximation to ().

41. 
(11)
=

∞
=0



!
, so − =

∞
=0

(−)
!

=
∞
=0

(−1) 

!
, so

() = − =
∞
=0

(−1) 1

!
+1

= − 2 + 1
2
3 − 1

6
4 + 1

24
5 − 1

120
6 + · · ·

=
∞
=1

(−1)−1 

(− 1)!
The series for  converges for all , so the same is true of the series

for (); that is,  =∞. From the graphs of  and the first few Taylor

polynomials, we see that () provides a closer fit to () near 0 as  increases.

43. 5◦ = 5◦
 

180◦


=



36
radians and cos =

∞
=0

(−1) 2

(2)!
= 1 − 2

2!
+

4

4!
− 6

6!
+ · · · , so

cos


36
= 1− (36)2

2!
+
(36)4

4!
− (36)6

6!
+ · · · . Now 1− (36)2

2!
≈ 099619 and adding (36)

4

4!
≈ 24× 10−6

does not affect the fifth decimal place, so cos 5◦ ≈ 099619 by the Alternating Series Estimation Theorem.

45. (a) 1
√
1− 2 =


1 +

−2−12 = 1 + − 1
2

−2+ −1
2

−3
2


2!

−22 + − 1
2

− 3
2

− 5
2


3!

−23 + · · ·
= 1 +

∞
=1

1 · 3 · 5 · · · · · (2− 1)
2 · ! 2

(b) sin−1  =


1√
1− 2

 =  + +
∞
=1

1 · 3 · 5 · · · · · (2− 1)
(2+ 1)2 · ! 

2+1

= +
∞
=1

1 · 3 · 5 · · · · · (2− 1)
(2+ 1)2 · ! 2+1 since 0 = sin−1 0 = .

47. cos
(16)
=

∞
=0

(−1) 2

(2)!
⇒ cos(3) =

∞
=0

(−1) (
3)2

(2)!
=

∞
=0

(−1) 6

(2)!
⇒

 cos(3) =
∞
=0

(−1) 
6+1

(2)!
⇒


 cos(

3
)  =  +

∞
=0

(−1) 6+2

(6+ 2)(2)!
, with  =∞.

49. cos
(16)
=

∞
=0

(−1) 2

(2)!
⇒ cos− 1 =

∞
=1

(−1) 2

(2)!
⇒ cos− 1


=

∞
=1

(−1) 2−1

(2)!
⇒


cos− 1


 =  +

∞
=1

(−1) 2

2 · (2)! , with  =∞.
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51. arctan =
∞
=0

(−1) 2+1

2+ 1
for ||  1, so 3 arctan =

∞
=0

(−1) 2+4

2+ 1
for ||  1 and



3
arctan =  +

∞
=0

(−1) 2+5

(2+ 1)(2+ 5)
. Since 1

2
 1, we have

 12

0


3
arctan =

∞
=0

(−1) (12)2+5

(2+ 1)(2+ 5)
=
(12)5

1 · 5 − (12)7

3 · 7 +
(12)9

5 · 9 − (12)11

7 · 11 + · · · . Now

(12)5

1 · 5 − (12)7

3 · 7 +
(12)9

5 · 9 ≈ 00059 and subtracting (12)
11

7 · 11 ≈ 63× 10−6 does not affect the fourth decimal place,

so
 12
0

3 arctan ≈ 00059 by the Alternating Series Estimation Theorem.

53.
√
1 + 4 = (1 + 4)12 =

∞
=0


12




(4), so

 
1 + 4  =  +

∞
=0


12




4+1

4+ 1
and hence, since 04  1,

we have

 =

 04

0


1 + 4  =

∞
=0


12




(04)4+1

4+ 1

= (1)
(04)1

0!
+

1
2

1!

(04)5

5
+

1
2

− 1
2


2!

(04)9

9
+

1
2

− 1
2

−3
2


3!

(04)13

13
+

1
2

− 1
2

− 3
2

− 5
2


4!

(04)17

17
+ · · ·

= 04 +
(04)5

10
− (04)9

72
+
(04)13

208
− 5(04)17

2176
+ · · ·

Now
(04)9

72
≈ 36× 10−6  5× 10−6, so by the Alternating Series Estimation Theorem,  ≈ 04 + (04)5

10
≈ 040102

(correct to five decimal places).

55. lim
→0

− ln(1 + )

2
= lim

→0

− (− 1
2
2 + 1

3
3 − 1

4
4 + 1

5
5 − · · · )

2
= lim

→0

1
2
2 − 1

3
3 + 1

4
4 − 1

5
5 + · · ·

2

= lim
→0

( 1
2
− 1

3
+ 1

4
2 − 1

5
3 + · · · ) = 1

2

since power series are continuous functions.

57. lim
→0

sin− + 1
6
3

5
= lim

→0


− 1

3!
3 + 1

5!
5 − 1

7!
7 + · · · − + 1

6
3

5

= lim
→0

1
5!
5 − 1

7!
7 + · · ·

5
= lim

→0


1

5!
− 2

7!
+

4

9!
− · · ·


=
1

5!
=

1

120

since power series are continuous functions.

59. From Equation 11, we have −
2

= 1− 2

1!
+

4

2!
− 6

3!
+ · · · and we know that cos = 1− 2

2!
+

4

4!
− · · · from

Equation 16. Therefore, −
2

cos =

1− 2 + 1

2
4 − · · · 1− 1

2
2 + 1

24
4 − · · · . Writing only the terms with

degree ≤ 4, we get −2 cos = 1− 1
2
2 + 1

24
4 − 2 + 1

2
4 + 1

2
4 + · · · = 1− 3

2
2 + 25

24
4 + · · · .
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61.


sin

(15)
=



− 1
6
3 + 1

120
5 − · · · .

1 + 1
6
2 + 7

360
4 + · · ·

− 1
6
3 + 1

120
5 − · · · 

− 1
6
3 + 1

120
5 − · · ·

1
6
3 − 1

120
5 + · · ·

1
6
3 − 1

36
5 + · · ·

7
360

5 + · · ·
7
360

5 + · · ·

· · ·
From the long division above,



sin
= 1+ 1

6
2 + 7

360
4 + · · · .

63.
∞
=0

(−1) 
4

!
=

∞
=0

−4
!

= −
4

, by (11).

65.
∞
=1

(−1)−1 3


5
=

∞
=1

(−1)−1 (35)



= ln


1 +

3

5


[from Table 1] = ln

8

5

67.
∞
=0

(−1) 2+1
42+1(2+ 1)!

=
∞
=0

(−1)
4

2+1
(2+ 1)!

= sin 
4
= 1√

2
, by (15).

69. 3 +
9

2!
+
27

3!
+
81

4!
+ · · · = 31

1!
+
32

2!
+
33

3!
+
34

4!
+ · · · =

∞
=1

3

!
=

∞
=0

3

!
− 1 = 3 − 1, by (11).

71. If  is an th-degree polynomial, then ()() = 0 for   , so its Taylor series at  is () =

=0

()()

!
(− ).

Put −  = 1, so that  = + 1. Then (+ 1) =

=0

()()

!
.

This is true for any , so replace  by : (+ 1) =

=0

()()

!

73. Assume that | 000()| ≤  , so  000() ≤  for  ≤  ≤ + . Now
 

 000()  ≤  


  ⇒

 00()−  00() ≤(− ) ⇒  00() ≤  00() +(− ). Thus,
 

 00()  ≤  


[ 00() +(− )]  ⇒

 0()−  0() ≤  00()(− ) + 1
2
(− )2 ⇒  0() ≤  0() +  00()(− ) + 1

2
(− )2 ⇒ 


 0()  ≤  




 0() +  00()(− ) + 1

2
(− )2


 ⇒

() − () ≤  0()( − ) + 1
2
 00()( − )2 + 1

6
( − )3. So

() − () −  0()( − ) − 1
2
 00()( − )2 ≤ 1

6
( − )3. But

2() = ()− 2() = ()− ()−  0()(− )− 1
2
 00()(− )2, so 2() ≤ 1

6
(− )3.

A similar argument using  000() ≥ − shows that 2() ≥ − 1
6
(− )3. So |2(2)| ≤ 1

6
 |− |3.

Although we have assumed that   , a similar calculation shows that this inequality is also true if   .
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75. (a) () =
∞
=0







 ⇒ 0() =

∞
=1







−1, so

(1 + )0() = (1 + )
∞
=1







−1 =

∞
=1







−1 +

∞
=1









=
∞
=0




+ 1


(+ 1) +

∞
=0










Replace  with + 1

in the first series



=
∞
=0

(+ 1)
( − 1)( − 2) · · · ( − + 1)( − )

(+ 1)!
 +

∞
=0


()

( − 1)( − 2) · · · ( − + 1)

!




=
∞
=0

(+ 1)( − 1)( − 2) · · · ( − + 1)

(+ 1)!
[( − ) + ]

= 
∞
=0

( − 1)( − 2) · · · ( − + 1)

!
 = 

∞
=0







 = ()

Thus, 0() =
()

1 + 
.

(b) () = (1 + )
−

() ⇒

0() = −(1 + )−−1() + (1 + )
−

0() [Product Rule]

= −(1 + )−−1() + (1 + )
− ()

1 + 
[from part (a)]

= −(1 + )−−1() + (1 + )−−1() = 0

(c) From part (b) we see that () must be constant for  ∈ (−1 1), so () = (0) = 1 for  ∈ (−1 1).

Thus, () = 1 = (1 + )
−

() ⇔ () = (1 + )
 for  ∈ (−1 1).

11.11 Applications of Taylor Polynomials

1. (a)
  ()()  ()(0) ()

0 cos 1 1

1 − sin 0 1

2 − cos −1 1− 1
2
2

3 sin 0 1− 1
2
2

4 cos 1 1− 1
2
2 + 1

24
4

5 − sin 0 1− 1
2
2 + 1

24
4

6 − cos −1 1− 1
2
2 + 1

24
4 − 1

720
6
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(b)
  0 = 1 2 = 3 4 = 5 6


4

07071 1 06916 07074 07071


2

0 1 −02337 00200 −00009
 −1 1 −39348 01239 −12114

(c) As  increases, () is a good approximation to () on a larger and larger interval.

3.
  ()()  ()(2)

0 1 1
2

1 −12 − 1
4

2 23 1
4

3 −64 − 3
8

3() =
3

=0

 ()(2)

!
(− 2)

=
1
2

0!
−

1
4

1!
(− 2) +

1
4

2!
(− 2)2 −

3
8

3!
(− 2)3

= 1
2
− 1

4
(− 2) + 1

8
(− 2)2 − 1

16
(− 2)3

5.
  ()()  ()(2)

0 cos 0

1 − sin −1
2 − cos 0

3 sin 1

3() =
3

=0

 ()(2)

!


− 

2


= −− 

2


+ 1

6


− 

2

3
7.

  ()()  ()(1)

0 ln 0

1 1 1

2 −12 −1
3 23 2

3() =
3

=0

 ()(1)

!
(− 1)

= 0 +
1

1!
(− 1) + −1

2!
(− 1)2 + 2

3!
(− 1)3

= (− 1)− 1
2
(− 1)2 + 1

3
(− 1)3
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9.
  ()()  ()(0)

0 −2 0

1 (1− 2)−2 1

2 4(− 1)−2 −4
3 4(3− 2)−2 12

3() =
3

=0

 ()(0)

!
 = 0

1
· 1 + 1

1
1 + −4

2
2 + 12

6
3 = − 22 + 23

11. You may be able to simply find the Taylor polynomials for

() = cot using your CAS. We will list the values of  ()(4)

for  = 0 to  = 5.

 0 1 2 3 4 5

 ()(4) 1 −2 4 −16 80 −512

5() =
5

=0

 ()(4)

!


− 

4


= 1− 2 − 

4


+ 2

− 

4

2 − 8
3


− 

4

3
+ 10

3


− 

4

4 − 64
15


− 

4

5
For  = 2 to  = 5, () is the polynomial consisting of all the terms up to and including the


− 

4


term

13.
  ()()  ()(4)

0
√
 2

1 1
2
−12 1

4

2 − 1
4
−32 − 1

32

3 3
8
−52

(a) () =
√
 ≈ 2() = 2 +

1

4
(− 4)− 132

2!
(− 4)2

= 2+ 1
4
(− 4)− 1

64
(− 4)2

(b) |2()| ≤ 

3!
|− 4|3, where | 000()| ≤ Now 4 ≤  ≤ 42 ⇒

|− 4| ≤ 02 ⇒ |− 4|3 ≤ 0008. Since  000() is decreasing
on [4 42], we can take = | 000(4)| = 3

8
4−52 = 3

256
, so

|2()| ≤ 3256

6
(0008) =

0008

512
= 0000 015 625.

(c)

From the graph of |2()| = |√− 2()|, it seems that the

error is less than 152× 10−5 on [4 42].
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15.
  ()()  ()(1)

0 23 1

1 2
3
−13 2

3

2 − 2
9
−43 − 2

9

3 8
27
−73 8

27

4 − 56
81
−103

(a) () = 23 ≈ 3() = 1 +
2
3
(− 1)− 29

2!
(− 1)2 + 827

3!
(− 1)3

= 1 + 2
3
(− 1)− 1

9
(− 1)2 + 4

81
(− 1)3

(b) |3()| ≤ 

4!
|− 1|4, where

  (4)() ≤ . Now 08 ≤  ≤ 12 ⇒

|− 1| ≤ 02 ⇒ |− 1|4 ≤ 00016. Since
 (4)() is decreasing

on [08 12], we can take =
  (4)(08) = 56

81
(08)−103, so

|3()| ≤
56
81
(08)−103

24
(00016) ≈ 0000 096 97.

(c)

From the graph of |3()| =
23 − 3()

, it seems that the
error is less than 0000 053 3 on [08 12].

17.
  ()()  ()(0)

0 sec 1

1 sec tan 0

2 sec (2 sec2 − 1) 1

3 sec tan (6 sec2 − 1)

(a) () = sec ≈ 2() = 1 +
1
2
2

(b) |2()| ≤ 

3!
||3, where

  (3)() ≤ . Now −02 ≤  ≤ 02 ⇒ || ≤ 02 ⇒ ||3 ≤ (02)3.

 (3)() is an odd function and it is increasing on [0 02] since sec and tan are increasing on [0 02],

so
  (3)() ≤  (3)(02) ≈ 1085 158 892. Thus, |2()| ≤  (3)(02)

3!
(02)3 ≈ 0001 447.

(c)

From the graph of |2()| = |sec− 2()|, it seems that the

error is less than 0000 339 on [−02 02].

19.
  ()()  ()(0)

0 
2

1

1 
2

(2) 0

2 
2

(2 + 42) 2

3 
2

(12+ 83) 0

4 
2

(12 + 482 + 164)

(a) () = 
2 ≈ 3() = 1 +

2

2!
2 = 1 + 2

(b) |3()| ≤ 

4!
||4, where

 (4)() ≤ . Now 0 ≤  ≤ 01 ⇒

4 ≤ (01)4, and letting  = 01 gives

|3()| ≤ 001 (12 + 048 + 00016)

24
(01)4 ≈ 000006.
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(c)

From the graph of |3()| =
2 − 3()

, it appears that the
error is less than 0000 051 on [0 01].

21.
  ()()  ()(0)

0  sin 0

1 sin+  cos 0

2 2 cos−  sin 2

3 −3 sin−  cos 0

4 −4 cos+  sin −4
5 5 sin+  cos

(a) () =  sin ≈ 4() =
2

2!
(− 0)2 + −4

4!
(− 0)4 = 2 − 1

6
4

(b) |4()| ≤ 

5!
||5, where

  (5)() ≤ . Now−1 ≤  ≤ 1 ⇒

|| ≤ 1, and a graph of  (5)() shows that
  (5)() ≤ 5 for −1 ≤  ≤ 1.

Thus, we can take = 5 and get |4()| ≤ 5

5!
· 15 = 1

24
= 00416.

(c)

From the graph of |4()| = | sin− 4()|, it seems that the
error is less than 00082 on [−1 1].

23. From Exercise 5, cos = − − 
2


+ 1

6


− 

2

3
+3(), where |3()| ≤ 

4!

− 
2

4 with (4)() = |cos| ≤  = 1. Now  = 80◦ = (90◦ − 10◦) = 
2
− 

18


= 4

9
radians, so the error is

3


4
9

 ≤ 1
24



18

4 ≈ 0000 039, which means our estimate would not be accurate to five decimal places. However,
3 = 4, so we can use

4


4
9

 ≤ 1
120



18

5 ≈ 0000 001. Therefore, to five decimal places,
cos 80◦ ≈ − − 

18


+ 1

6

− 
18

3 ≈ 017365.
25. All derivatives of  are , so |()| ≤ 

(+ 1)!
||+1, where 0    01. Letting  = 01,

(01) ≤ 01

(+ 1)!
(01)+1  000001, and by trial and error we find that  = 3 satisfies this inequality since

3(01)  00000046. Thus, by adding the four terms of the Maclaurin series for  corresponding to  = 0, 1, 2, and 3,

we can estimate 01 to within 000001. (In fact, this sum is 110516 and 01 ≈ 110517.)

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 11.11 APPLICATIONS OF TAYLOR POLYNOMIALS ¤ 95

27. sin = − 1

3!
3 +

1

5!
5 − · · · . By the Alternating Series

Estimation Theorem, the error in the approximation

sin = − 1

3!
3 is less than

 15!5
  001 ⇔

5  120(001) ⇔ ||  (12)15 ≈ 1037. The curves

 = − 1
6
3 and  = sin− 001 intersect at  ≈ 1043, so

the graph confirms our estimate. Since both the sine function

and the given approximation are odd functions, we need to check the estimate only for   0. Thus, the desired range of

values for  is −1037    1037.

29. arctan = − 3

3
+

5

5
− 7

7
+ · · · . By the Alternating Series

Estimation Theorem, the error is less than
− 1

7
7
  005 ⇔7  035 ⇔ ||  (035)17 ≈ 08607. The curves

 = − 1
3
3 + 1

5
5 and  = arctan+ 005 intersect at

 ≈ 09245, so the graph confirms our estimate. Since both the
arctangent function and the given approximation are odd functions,

we need to check the estimate only for   0. Thus, the desired

range of values for  is −086    086.

31. Let () be the position function of the car, and for convenience set (0) = 0. The velocity of the car is () = 0() and the

acceleration is () = 00(), so the second degree Taylor polynomial is 2() = (0) + (0)+
(0)

2
2 = 20+ 2. We

estimate the distance traveled during the next second to be (1) ≈ 2(1) = 20 + 1 = 21 m. The function 2() would not be

accurate over a full minute, since the car could not possibly maintain an acceleration of 2 ms2 for that long (if it did, its final

speed would be 140 ms ≈ 313 mih!).

33.  =


2
− 

( + )2
=



2
− 

2(1 + )2
=



2


1−


1 +





−2
.

We use the Binomial Series to expand (1 + )−2:

 =


2


1−


1− 2







+
2 · 3
2!






2
− 2 · 3 · 4

3!






3
+ · · ·


=



2


2







− 3





2
+ 4






3
− · · ·



≈ 

2
· 2






= 2 · 1

3

when is much larger than ; that is, when  is far away from the dipole.

35. (a) If the water is deep, then 2 is large, and we know that tanh→ 1 as →∞. So we can approximate
tanh(2) ≈ 1, and so 2 ≈ (2) ⇔  ≈


(2).
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(b) From the table, the first term in the Maclaurin series of

tanh is , so if the water is shallow, we can approximate

tanh
2


≈ 2


, and so 2 ≈ 

2
· 2


⇔  ≈ √.

  ()()  ()(0)

0 tanh 0

1 sech2  1

2 −2 sech2  tanh 0

3 2 sech2  (3 tanh2 − 1) −2

(c) Since tanh is an odd function, its Maclaurin series is alternating, so the error in the approximation

tanh
2


≈ 2


is less than the first neglected term, which is

| 000(0)|
3!


2



3
=
1

3


2



3
.

If   10, then
1

3


2



3

1

3


2 · 1

10

3
=

3

375
, so the error in the approximation 2 =  is less

than


2
· 

3

375
≈ 00132.

37. (a)  is the length of the arc subtended by the angle , so  =  ⇒

 = . Now sec  = (+ ) ⇒  sec  = +  ⇒

 =  sec  − =  sec()−.

(b) First we’ll find a Taylor polynomial 4() for () = sec at  = 0.

  ()()  ()(0)

0 sec 1

1 sec tan 0

2 sec(2 tan2+ 1) 1

3 sec tan(6 tan2+ 5) 0

4 sec(24 tan4+ 28 tan2+ 5) 5

Thus, () = sec ≈ 4() = 1 +
1
2!
(− 0)2 + 5

4!
(− 0)4 = 1 + 1

2
2 + 5

24
4. By part (a),

 ≈ 


1 +

1

2






2
+
5

24






4
− = +

1

2
 · 

2

2
+
5

24
 · 

4

4
− =

2

2
+
54

243
.

(c) Taking  = 100 km and  = 6370 km, the formula in part (a) says that

 =  sec()− = 6370 sec(1006370)− 6370 ≈ 0785 009 965 44 km.

The formula in part (b) says that  ≈ 2

2
+
54

243
=

1002

2 · 6370 +
5 · 1004
24 · 63703 ≈ 0785 009 957 36 km.

The difference between these two results is only 0000 000 008 08 km, or 0000 008 08 m!

39. Using () = () +() with  = 1 and  = , we have () = 1() +1(), where 1 is the first-degree Taylor

polynomial of  at . Because  = , () = () +  0()( − ) +1(). But  is a root of  , so () = 0

and we have 0 = () +  0()( − ) +1(). Taking the first two terms to the left side gives us
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 0()( − )− () = 1(). Dividing by  0(), we get  −  − ()

 0()
=

1()

 0()
. By the formula for Newton’s

method, the left side of the preceding equation is +1 − , so |+1 − | =
 1()

 0()

. Taylor’s Inequality gives us
|1()| ≤ | 00()|

2!
| − |2. Combining this inequality with the facts | 00()| ≤ and | 0()| ≥  gives us

|+1 − | ≤ 

2
| − |2.

11 Review

1. (a) See Definition 11.1.1.

(b) See Definition 11.2.2.

(c) The terms of the sequence {} approach 3 as  becomes large.

(d) By adding sufficiently many terms of the series, we can make the partial sums as close to 3 as we like.

2. (a) See the definition on page 721 [ET page 697].

(b) A sequence is monotonic if it is either increasing or decreasing.

(c) By Theorem 11.1.12, every bounded, monotonic sequence is convergent.

3. (a) See (4) in Section 11.2.

(b) The -series
∞
=1

1


is convergent if   1.

4. If


 = 3, then lim
→∞

 = 0 and lim
→∞

 = 3.

5. (a) Test for Divergence: If lim
→∞

 does not exist or if lim
→∞

 6= 0, then the series
∞

=1  is divergent.

(b) Integral Test: Suppose  is a continuous, positive, decreasing function on [1∞) and let  = (). Then the series∞
=1  is convergent if and only if the improper integral

∞
1

()  is convergent. In other words:

(i) If
∞
1

()  is convergent, then
∞

=1  is convergent.

(ii) If
∞
1

()  is divergent, then
∞

=1  is divergent.

(c) Comparison Test: Suppose that


 and


 are series with positive terms.

(i) If


 is convergent and  ≤  for all , then


 is also convergent.

(ii) If


 is divergent and  ≥  for all , then


 is also divergent.

(d) Limit Comparison Test: Suppose that


 and


 are series with positive terms. If lim
→∞

() = , where  is a

finite number and   0, then either both series converge or both diverge.

(e) Alternating Series Test: If the alternating series
∞

=1(−1)−1 = 1 − 2 + 3 − 4 + 5 − 6 + · · · [  0]

satisfies (i) +1 ≤  for all  and (ii) lim
→∞

 = 0, then the series is convergent.
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(f ) Ratio Test:

(i) If lim
→∞

+1

 =   1, then the series
∞
=1

 is absolutely convergent (and therefore convergent).

(ii) If lim
→∞

+1

 =   1 or lim
→∞

+1

 =∞, then the series ∞
=1

 is divergent.

(iii) If lim
→∞

+1

 = 1, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or
divergence of


.

(g) Root Test:

(i) If lim
→∞



|| =   1, then the series

∞
=1

 is absolutely convergent (and therefore convergent).

(ii) If lim
→∞



|| =   1 or lim

→∞


|| =∞, then the series

∞
=1

 is divergent.

(iii) If lim
→∞



|| = 1, the Root Test is inconclusive.

6. (a) A series


 is called absolutely convergent if the series of absolute values
 || is convergent.

(b) If a series


 is absolutely convergent, then it is convergent.

(c) A series


 is called conditionally convergent if it is convergent but not absolutely convergent.

7. (a) Use (3) in Section 11.3.

(b) See Example 5 in Section 11.4.

(c) By adding terms until you reach the desired accuracy given by the Alternating Series Estimation Theorem.

8. (a)
∞
=0

(− )

(b) Given the power series
∞
=0

(− ), the radius of convergence is:

(i) 0 if the series converges only when  = 

(ii) ∞ if the series converges for all , or

(iii) a positive number  such that the series converges if |− |   and diverges if |− |  .

(c) The interval of convergence of a power series is the interval that consists of all values of  for which the series converges.

Corresponding to the cases in part (b), the interval of convergence is: (i) the single point {}, (ii) all real numbers, that is,
the real number line (−∞∞), or (iii) an interval with endpoints − and + which can contain neither, either, or

both of the endpoints. In this case, we must test the series for convergence at each endpoint to determine the interval of

convergence.

9. (a), (b) See Theorem 11.9.2.

10. (a) () =

=0

 ()()

!
(− )

(b)
∞
=0

 ()()

!
(− )
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(c)
∞
=0

 ()(0)

!
 [ = 0 in part (b)]

(d) See Theorem 11.10.8.

(e) See Taylor’s Inequality (11.10.9).

11. (a)–(f ) See Table 1 on page 786 [ ET 762].

12. See the binomial series (11.10.17) for the expansion. The radius of convergence for the binomial series is 1.

1. False. See Note 2 after Theorem 11.2.6.

3. True. If lim
→∞

 = , then as →∞, 2+ 1→∞, so 2+1 → .

5. False. For example, take  = (−1)(6).

7. False, since lim
→∞

+1

 = lim
→∞

 1

(+ 1)
3
· 

3

1

 = lim
→∞

 3

(+ 1)
3
· 1

3

13

 = lim
→∞

1

(1 + 1)
3
= 1.

9. False. See the note after Example 2 in Section 11.4.

11. True. See (9) in Section 11.1.

13. True. By Theorem 11.10.5 the coefficient of 3 is
 000(0)
3!

=
1

3
⇒  000(0) = 2.

Or: Use Theorem 11.9.2 to differentiate  three times.

15. False. For example, let  =  = (−1). Then {} and {} are divergent, but  = 1, so {} is convergent.

17. True by Theorem 11.6.3. [

(−1)  is absolutely convergent and hence convergent.]

19. True. 099999    = 09 + 09(01)1 + 09(01)2 + 09(01)3 + · · · =
∞
=1

(09)(01)−1 =
09

1− 01 = 1 by the formula

for the sum of a geometric series [ = 1(1− )] with ratio  satisfying ||  1.

21. True. A finite number of terms doesn’t affect convergence or divergence of a series.

1.


2 + 3

1 + 23


converges since lim

→∞
2 + 3

1 + 23
= lim

→∞
23 + 1

13 + 2
=
1

2
.

3. lim
→∞

 = lim
→∞

3

1 + 2
= lim

→∞


12 + 1
=∞, so the sequence diverges.
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5. || =
 sin2 + 1

 ≤ 

2 + 1

1


, so ||→ 0 as →∞. Thus, lim

→∞
 = 0. The sequence {} is convergent.

7.


1 +

3



4
is convergent. Let  =


1 +

3



4
. Then

lim
→∞

ln  = lim
→∞

4 ln(1 + 3) = lim
→∞

ln(1 + 3)

1(4)

H
= lim

→∞

1

1 + 3


− 3

2


−1(42) = lim

→∞
12

1 + 3
= 12, so

lim
→∞

 = lim
→∞


1 +

3



4
= 12.

9. We use induction, hypothesizing that −1    2. Note first that 1  2 =
1
3
(1 + 4) = 5

3
 2, so the hypothesis holds

for  = 2. Now assume that −1    2. Then  = 1
3
(−1 + 4)  1

3
( + 4) 

1
3
(2 + 4) = 2. So   +1  2,

and the induction is complete. To find the limit of the sequence, we note that  = lim
→∞

 = lim
→∞

+1 ⇒

 = 1
3
(+ 4) ⇒  = 2.

11.


3 + 1




3
=
1

2
, so

∞
=1



3 + 1
converges by the Comparison Test with the convergent -series

∞
=1

1

2
[  = 2  1].

13. lim
→∞

+1

 = lim
→∞


(+ 1)3

5+1
· 5



3


= lim

→∞


1 +

1



3
· 1
5
=
1

5
 1, so

∞
=1

3

5
converges by the Ratio Test.

15. Let () =
1


√
ln

. Then  is continuous, positive, and decreasing on [2∞), so the Integral Test applies.

 ∞

2

() = lim
→∞

 

2

1


√
ln



 = ln,  =

1





= lim

→∞

 ln 

ln 2


−12

 = lim
→∞


2
√

ln 
ln 2

= lim
→∞


2
√
ln − 2

√
ln 2


=∞

so the series
∞
=2

1


√
ln

diverges.

17. || =
 cos 3

1 + (12)

 ≤ 1

1 + (12)


1

(12)
=


5

6


, so

∞
=1

|| converges by comparison with the convergent geometric

series
∞
=1


5
6

 
 = 5

6
 1


. It follows that

∞
=1

 converges (by Theorem 3 in Section 11.6).

19. lim
→∞

+1

 = lim
→∞

1 · 3 · 5 · · · · · (2− 1)(2+ 1)
5+1 (+ 1)!

· 5 !

1 · 3 · 5 · · · · · (2− 1) = lim
→∞

2+ 1

5(+ 1)
=
2

5
 1, so the series

converges by the Ratio Test.

21.  =

√


+ 1
 0, {} is decreasing, and lim

→∞
 = 0, so the series

∞
=1

(−1)−1
√


+ 1
converges by the Alternating

Series Test.
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23. Consider the series of absolute values:
∞
=1

−13 is a p-series with  = 1
3
≤ 1 and is therefore divergent. But if we apply the

Alternating Series Test, we see that  =
1
3
√

 0, {} is decreasing, and lim

→∞
 = 0, so the series

∞
=1

(−1)−1 −13

converges. Thus,
∞
=1

(−1)−1 −13 is conditionally convergent.

25.

+1

 =  (−1)+1(+ 2)3+122+3
· 22+1

(−1)(+ 1)3
 = + 2

+ 1
· 3
4
=
1 + (2)

1 + (1)
· 3
4
→ 3

4
 1 as →∞, so by the Ratio

Test,
∞
=1

(−1)(+ 1)3
22+1

is absolutely convergent.

27.
∞
=1

(−3)−1
23

=
∞
=1

(−3)−1
(23)

=
∞
=1

(−3)−1
8

=
1

8

∞
=1

(−3)−1
8−1

=
1

8

∞
=1


−3
8

−1
=
1

8


1

1− (−38)


=
1

8
· 8
11
=
1

11

29.
∞
=1

[tan−1(+ 1)− tan−1 ] = lim
→∞



= lim
→∞

[(tan−1 2− tan−1 1) + (tan−1 3− tan−1 2) + · · ·+ (tan−1(+ 1)− tan−1 )]

= lim
→∞

[tan−1(+ 1)− tan−1 1] = 
2
− 

4
= 

4

31. 1− +
2

2!
− 3

3!
+

4

4!
− · · · =

∞
=0

(−1) 


!
=

∞
=0

(−)
!

= − since  =
∞
=0



!
for all .

33. cosh =
1

2
( + −) =

1

2

 ∞
=0



!
+

∞
=0

(−)
!



=
1

2


1 + +

2

2!
+

3

3!
+

4

4!
+ · · ·


+


1− +

2

2!
− 3

3!
+

4

4!
− · · ·



=
1

2


2 + 2 · 

2

2!
+ 2 · 

4

4!
+ · · ·


= 1+

1

2
2 +

∞
=2

2

(2)!
≥ 1 + 1

2
2 for all 

35.
∞
=1

(−1)+1
5

= 1− 1

32
+

1

243
− 1

1024
+

1

3125
− 1

7776
+

1

16,807
− 1

32,768
+ · · · .

Since 8 =
1

85
=

1

32,768
 0000031,

∞
=1

(−1)+1
5

≈
7

=1

(−1)+1
5

≈ 09721.

37.
∞
=1

1

2 + 5
≈

8
=1

1

2 + 5
≈ 018976224. To estimate the error, note that 1

2 + 5


1

5
, so the remainder term is

8 =
∞
=9

1

2 + 5


∞
=9

1

5
=

159

1− 15 = 64× 10
−7 geometric series with  = 1

59
and  = 1

5


.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



102 ¤ CHAPTER 11 INFINITE SEQUENCES AND SERIES

39. Use the Limit Comparison Test. lim
→∞



+1







 = lim
→∞

+ 1


= lim

→∞


1 +

1




= 1  0.

Since
 || is convergent, so is

+ 1




, by the Limit Comparison Test.
41. lim

→∞

+1

 = lim
→∞

 |+ 2|+1
(+ 1) 4+1

·  4

|+ 2|

= lim

→∞




+ 1

|+ 2|
4


=
|+ 2|
4

 1 ⇔ |+ 2|  4, so  = 4.

|+ 2|  4 ⇔ −4  + 2  4 ⇔ −6    2. If  = −6, then the series
∞
=1

(+ 2)

 4
becomes

∞
=1

(−4)
4

=
∞
=1

(−1)


, the alternating harmonic series, which converges by the Alternating Series Test. When  = 2, the

series becomes the harmonic series
∞
=1

1


, which diverges. Thus,  = [−6 2).

43. lim
→∞

+1

 = lim
→∞

2+1(− 3)+1√
+ 4

·
√
+ 3

2(− 3)
 = 2 |− 3| lim→∞


+ 3

+ 4
= 2 |− 3|  1 ⇔ |− 3|  1

2
,

so  = 1
2
. |− 3|  1

2
⇔ −1

2
 − 3  1

2
⇔ 5

2
   7

2
. For  = 7

2
, the series

∞
=1

2(− 3)√
+ 3

becomes

∞
=0

1√
+ 3

=
∞
=3

1

12
, which diverges


 = 1

2
≤ 1, but for  = 5

2
, we get

∞
=0

(−1)√
+ 3

, which is a convergent

alternating series, so  =

5
2
 7
2


.

45.
  ()()  ()



6


0 sin 1

2

1 cos
√
3
2

2 − sin − 1
2

3 − cos −
√
3
2

4 sin 1
2

...
...

...

sin= 

6


+  0


6


− 

6


+

 00

6


2!


− 

6

2
+

 (3)

6


3!


− 

6

3
+

 (4)

6


4!


− 

6

4
+ · · ·

=
1

2


1− 1

2!


− 

6

2
+
1

4!


− 

6

4
− · · ·


+

√
3

2


− 

6


− 1

3!


− 

6

3
+ · · ·



=
1

2

∞
=0

(−1) 1

(2)!


− 

6

2
+

√
3

2

∞
=0

(−1) 1

(2+ 1)!


− 

6

2+1

47.
1

1 + 
=

1

1− (−) =
∞
=0

(−) =
∞
=0

(−1)  for ||  1 ⇒ 2

1 + 
=

∞
=0

(−1) +2 with  = 1.
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49.


1

4− 
 = − ln(4 − ) +  and


1

4− 
 =

1

4


1

1− 4
 =

1

4

 ∞
=0


4


 =

1

4

 ∞
=0



4
 =

1

4

∞
=0

+1

4(+ 1)
+. So

ln(4− ) = −1
4

∞
=0

+1

4(+ 1)
+  = −

∞
=0

+1

4+1(+ 1)
+ = −

∞
=1



4
+ . Putting  = 0, we get  = ln 4.

Thus, () = ln(4− ) = ln 4−
∞
=1



4
. The series converges for |4|  1 ⇔ ||  4, so  = 4.

Another solution:

ln(4− ) = ln[4(1− 4)] = ln 4 + ln(1− 4) = ln 4 + ln[1 + (−4)]

= ln 4 +
∞
=1

(−1)+1 (−4)



[from Table 1] = ln 4 +

∞
=1

(−1)2+1 

4
= ln 4−

∞
=1



4
.

51. sin =
∞
=0

(−1) 2+1
(2+ 1)!

⇒ sin(4) =
∞
=0

(−1) (4)2+1
(2+ 1)!

=
∞
=0

(−1) 8+4
(2+ 1)!

for all , so the radius of

convergence is∞.

53. () =
1

4
√
16− 

=
1

4

16(1− 16)

=
1

4
√
16

1− 1

16

14 = 1

2


1− 1

16

−14

=
1

2


1 +


−1
4


− 

16


+

− 1
4

−5
4


2!


− 

16

2
+

− 1
4

 − 5
4

 − 9
4


3!


− 

16

3
+ · · ·



=
1

2
+

∞
=1

1 · 5 · 9 · · · · · (4− 3)
2 · 4 · ! · 16  =

1

2
+

∞
=1

1 · 5 · 9 · · · · · (4− 3)
26+1 !



for
− 

16

  1 ⇔ ||  16, so  = 16.

55.  =
∞
=0



!
, so




=
1



∞
=0



!
=

∞
=0

−1

!
= −1 +

∞
=1

−1

!
=
1


+

∞
=1

−1

!
and





 =  + ln ||+

∞
=1



 · ! .

57. (a)
  ()()  ()(1)

0 12 1

1 1
2
−12 1

2

2 − 1
4
−32 − 1

4

3 3
8
−52 3

8

4 − 15
16
−72 − 15

16

...
...

...

√
 ≈ 3() = 1 +

12

1!
(− 1)− 14

2!
(− 1)2 + 38

3!
(− 1)3

= 1 + 1
2
(− 1)− 1

8
(− 1)2 + 1

16
(− 1)3
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(b) (c) |3 ()| ≤ 

4!
|− 1|4, where

 (4) () ≤ with

 (4)() = − 15
16
−72. Now 09 ≤  ≤ 11 ⇒

−01 ≤ − 1 ≤ 01 ⇒ (− 1)4 ≤ (01)4,

and letting  = 09 gives =
15

16(09)72
, so

|3()| ≤ 15

16(09)72 4!
(01)

4 ≈ 0000 005 648

≈ 0000 006 = 6× 10−6
(d)

From the graph of |3()| = |√− 3()|, it appears that

the error is less than 5× 10−6 on [09 11].

59. sin =
∞
=0

(−1) 2+1

(2+ 1)!
= − 3

3!
+

5

5!
− 7

7!
+ · · · , so sin−  = −3

3!
+

5

5!
− 7

7!
+ · · · and

sin− 

3
= − 1

3!
+

2

5!
− 4

7!
+ · · · . Thus, lim

→0

sin− 

3
= lim

→0


−1
6
+

2

120
− 4

5040
+ · · ·


= −1

6
.

61. () =
∞
=0

 
 ⇒ (−) =

∞
=0

(−) =
∞
=0

(−1) 

(a) If  is an odd function, then (−) = −() ⇒
∞
=0

(−1) =
∞
=0

−. The coefficients of any power series

are uniquely determined (by Theorem 11.10.5), so (−1)  = −.

If  is even, then (−1) = 1, so  = − ⇒ 2 = 0 ⇒  = 0. Thus, all even coefficients are 0, that is,

0 = 2 = 4 = · · · = 0.

(b) If  is even, then (−) = () ⇒
∞
=0

(−1)   =
∞
=0

 
 ⇒ (−1)  = .

If  is odd, then (−1) = −1, so − =  ⇒ 2 = 0 ⇒  = 0. Thus, all odd coefficients are 0,

that is, 1 = 3 = 5 = · · · = 0.
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1. It would be far too much work to compute 15 derivatives of  . The key idea is to remember that  ()(0) occurs in the

coefficient of  in the Maclaurin series of  . We start with the Maclaurin series for sin: sin = − 3

3!
+

5

5!
− · · · .

Then sin(3) = 3 − 9

3!
+

15

5!
− · · · , and so the coefficient of 15 is 

(15)(0)

15!
=
1

5!
. Therefore,

 (15)(0) =
15!

5!
= 6 · 7 · 8 · 9 · 10 · 11 · 12 · 13 · 14 · 15 = 10,897,286,400.

3. (a) From Formula 14a in Appendix D, with  =  = , we get tan 2 =
2 tan 

1− tan2  , so cot 2 =
1− tan2 
2 tan 

⇒

2 cot 2 =
1− tan2 
tan 

= cot  − tan . Replacing  by 1
2
, we get 2 cot = cot 1

2
− tan 1

2
, or

tan 1
2
 = cot 1

2
− 2 cot.

(b) From part (a) with


2−1
in place of , tan



2
= cot



2
− 2 cot 

2−1
, so the th partial sum of

∞
=1

1

2
tan



2
is

 =
tan(2)

2
+
tan(4)

4
+
tan(8)

8
+ · · ·+ tan(2)

2

=


cot(2)

2
− cot


+


cot(4)

4
− cot(2)

2


+


cot(8)

8
− cot(4)

4


+ · · ·

+


cot(2)

2
− cot(2−1)

2−1


= − cot+ cot(2)

2
[telescoping sum]

Now
cot(2)

2
=

cos(2)

2 sin(2)
=
cos(2)


· 2

sin(2)
→ 1


· 1 = 1


as →∞ since 2 → 0

for  6= 0. Therefore, if  6= 0 and  6=  where  is any integer, then

∞
=1

1

2
tan



2
= lim

→∞
 = lim

→∞


− cot+ 1

2
cot



2


= − cot+ 1



If  = 0, then all terms in the series are 0, so the sum is 0.

5. (a) At each stage, each side is replaced by four shorter sides, each of length

1
3
of the side length at the preceding stage. Writing 0 and 0 for the

number of sides and the length of the side of the initial triangle, we

generate the table at right. In general, we have  = 3 · 4 and
 =


1
3


, so the length of the perimeter at the th stage of construction

is  =  = 3 · 4 ·

1
3


= 3 ·  4

3


.

0 = 3 0 = 1

1 = 3 · 4 1 = 13

2 = 3 · 42 2 = 13
2

3 = 3 · 43 3 = 13
3

...
...

(b)  =
4

3−1
= 4


4

3

−1
. Since 4

3
 1,  →∞ as →∞.

(c) The area of each of the small triangles added at a given stage is one-ninth of the area of the triangle added at the preceding

stage. Let  be the area of the original triangle. Then the area  of each of the small triangles added at stage  is
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 =  · 1
9
=



9
. Since a small triangle is added to each side at every stage, it follows that the total area added to the

figure at the th stage is  = −1 ·  = 3 · 4−1 · 

9
=  · 4

−1

32−1
. Then the total area enclosed by the snowflake

curve is  = +1 +2 +3 + · · · = +  · 1
3
+  · 4

33
+  · 4

2

35
+  · 4

3

37
+ · · · . After the first term, this is a

geometric series with common ratio
4

9
, so  = +

3

1− 4
9

= +


3
· 9
5
=
8

5
. But the area of the original equilateral

triangle with side 1 is  =
1

2
· 1 · sin 

3
=

√
3

4
. So the area enclosed by the snowflake curve is

8

5
·
√
3

4
=
2
√
3

5
.

7. (a) Let  = arctan and  = arctan . Then, from Formula 14b in Appendix D,

tan(− ) =
tan − tan 
1 + tan  tan 

=
tan(arctan)− tan(arctan )
1 + tan(arctan) tan(arctan )

=
− 

1 + 

Now arctan− arctan  = −  = arctan(tan(− )) = arctan
− 

1 + 
since−

2
 −   

2
.

(b) From part (a) we have

arctan 120
119
− arctan 1

239
= arctan

120
119
− 1

239

1 + 120
119

· 1
239

= arctan

28,561
28,441
28,561
28,441

= arctan 1 = 
4

(c) Replacing  by − in the formula of part (a), we get arctan+ arctan  = arctan + 

1− 
. So

4 arctan 1
5
= 2


arctan 1

5
+ arctan 1

5


= 2arctan

1
5
+ 1

5

1− 1
5
· 1
5

= 2arctan 5
12
= arctan 5

12
+ arctan 5

12

= arctan
5
12
+ 5

12

1− 5
12
· 5
12

= arctan 120
119

Thus, from part (b), we have 4 arctan 1
5
− arctan 1

239
= arctan 120

119
− arctan 1

239
= 

4
.

(d) From Example 7 in Section 11.9 we have arctan = − 3

3
+

5

5
− 7

7
+

9

9
− 11

11
+ · · · , so

arctan
1

5
=
1

5
− 1

3 · 53 +
1

5 · 55 −
1

7 · 57 +
1

9 · 59 −
1

11 · 511 + · · ·

This is an alternating series and the size of the terms decreases to 0, so by the Alternating Series Estimation Theorem,

the sum lies between 5 and 6, that is, 0197395560  arctan 1
5
 0197395562.

(e) From the series in part (d) we get arctan
1

239
=

1

239
− 1

3 · 2393 +
1

5 · 2395 − · · · . The third term is less than

26× 10−13, so by the Alternating Series Estimation Theorem, we have, to nine decimal places,
arctan 1

239
≈ 2 ≈ 0004184076. Thus, 0004184075  arctan 1

239
 0004184077.

(f ) From part (c) we have  = 16 arctan 1
5
− 4 arctan 1

239
, so from parts (d) and (e) we have

16(0197395560) − 4(0004184077)    16(0197395562) − 4(0004184075) ⇒
3141592652    3141592692. So, to 7 decimal places,  ≈ 31415927.
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9. We start with the geometric series
∞
=0

 =
1

1− 
, ||  1, and differentiate:

∞
=1

−1 =




 ∞
=0



=






1

1− 


=

1

(1− )2
for ||  1 ⇒

∞
=1

 = 
∞
=1

−1 =


(1− )2

for ||  1. Differentiate again:
∞
=1

2−1 =






(1− )2
=
(1− )2 −  · 2(1− )(−1)

(1− )4
=

+ 1

(1− )3
⇒

∞
=1

2  =
2 + 

(1− )3
⇒

∞
=1

3−1 =




2 + 

(1− )3
=
(1− )3(2+ 1)− (2 + )3(1− )2(−1)

(1− )6
=

2 + 4+ 1

(1− )4
⇒

∞
=1

3 =
3 + 42 + 

(1− )4
, ||  1. The radius of convergence is 1 because that is the radius of convergence for the

geometric series we started with. If  = ±1, the series is3(±1), which diverges by the Test For Divergence, so the
interval of convergence is (−1 1).

11. ln


1− 1

2


= ln


2 − 1
2


= ln

(+ 1)(− 1)
2

= ln[(+ 1)(− 1)]− ln2

= ln(+ 1) + ln(− 1)− 2 ln = ln(− 1)− ln− ln+ ln(+ 1)

= ln
− 1


− [ln− ln(+ 1)] = ln − 1


− ln 

+ 1
.

Let  =


=2

ln


1− 1

2


=


=2


ln

− 1


− ln 

+ 1


for  ≥ 2. Then

 =


ln
1

2
− ln 2

3


+


ln
2

3
− ln 3

4


+ · · ·+


ln

 − 1


− ln 

 + 1


= ln

1

2
− ln 

 + 1
, so

∞
=2

ln


1− 1

2


= lim

→∞
 = lim

→∞


ln
1

2
− ln 

 + 1


= ln

1

2
− ln 1 = ln 1− ln 2− ln 1 = − ln 2.

13. (a) The x-intercepts of the curve occur where sin = 0 ⇔  = ,

 an integer. So using the formula for disks (and either a CAS or

sin2  = 1
2
(1− cos 2) and Formula 99 to evaluate the integral),

the volume of the nth bead is

 = 
 
(−1) (

−10 sin)2  = 
 
(−1) 

−5 sin2 

= 250
101

(−(−1)5 − −5)

(b) The total volume is


∞
0

−5 sin2  =
∞
=1

 =
250
101

∞
=1

[−(−1)5 − −5] = 250
101

[telescoping sum].

Another method: If the volume in part (a) has been written as  = 250
101

−5(5 − 1), then we recognize
∞
=1



as a geometric series with  = 250
101

(1− −5) and  = −5

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



108 ¤ CHAPTER 11 PROBLEMS PLUS

15. If  is the length of a side of the equilateral triangle, then the area is  = 1
2
 ·

√
3
2
 =

√
3
4
2 and so 2 = 4√

3
.

Let  be the radius of one of the circles. When there are  rows of circles, the figure shows that

 =
√
3  +  + (− 2)(2) +  +

√
3  = 


2− 2 + 2√3 , so  = 

2

+

√
3− 1 .

The number of circles is 1 + 2 + · · ·+  =
(+ 1)

2
, and so the total area of the circles is

 =
(+ 1)

2
2 =

(+ 1)

2


2

4

+

√
3− 12

=
(+ 1)

2


4
√
3

4

+

√
3− 12 = (+ 1)

+
√
3− 12 

2
√
3

⇒




=

(+ 1)
+

√
3− 12 

2
√
3

=
1 + 1

1 +
√
3− 12 

2
√
3
→ 

2
√
3
as →∞

17. As in Section 11.9 we have to integrate the function  by integrating series. Writing  = (ln ) =  ln  and using the

Maclaurin series for , we have  = (ln ) =  ln  =
∞
=0

( ln)

!
=

∞
=0

(ln)

!
. As with power series, we can

integrate this series term-by-term:
 1

0



 =

∞
=0

 1

0

(ln)

!
 =

∞
=0

1

!

 1

0



(ln)


. We integrate by parts

with  = (ln),  =  , so  =
(ln)−1


 and  =

+1

+ 1
:

 1

0



(ln)


 = lim

→0+

 1





(ln)


 = lim

→0+


+1

+ 1
(ln)



1


− lim
→0+

 1





+ 1


(ln)

−1


= 0− 

+ 1

 1

0



(ln)

−1


(where l’Hospital’s Rule was used to help evaluate the first limit). Further integration by parts gives 1

0



(ln)


 = − 

+ 1

 1

0



(ln)

−1
 and, combining these steps, we get

 1

0



(ln)


 =

(−1) !
(+ 1)

 1

0



 =

(−1) !
(+ 1)+1

⇒

 1

0



 =

∞
=0

1

!

 1

0



(ln)


 =

∞
=0

1

!

(−1) !
(+ 1)+1

=
∞
=0

(−1)
(+ 1)+1

=
∞
=1

(−1)−1


.

19. By Table 1 in Section 11.10, tan−1  =
∞
=0

(−1) 2+1

2+ 1
for ||  1. In particular, for  =

1√
3
, we

have


6
= tan−1


1√
3


=

∞
=0

(−1)

1
√
3
2+1

2+ 1
=

∞
=0

(−1)

1

3


1√
3

1

2+ 1
, so

 =
6√
3

∞
=0

(−1)
(2+ 1)3

= 2
√
3
∞
=0

(−1)
(2+ 1)3

= 2
√
3


1 +

∞
=1

(−1)
(2+ 1)3


⇒

∞
=1

(−1)
(2+ 1)3

=


2
√
3
− 1.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



CHAPTER 11 PROBLEMS PLUS ¤ 109

21. Let () denote the left-hand side of the equation 1 +


2!
+

2

4!
+

3

6!
+

4

8!
+ · · · = 0. If  ≥ 0, then () ≥ 1 and there are

no solutions of the equation. Note that (−2) = 1− 2

2!
+

4

4!
− 6

6!
+

8

8!
− · · · = cos. The solutions of cos = 0 for

  0 are given by  =


2
− , where  is a positive integer. Thus, the solutions of () = 0 are  = −


2
− 

2
, where

 is a positive integer.

23. Call the series . We group the terms according to the number of digits in their denominators:

 =

1
1
+ 1

2
+ · · ·+ 1

8
+ 1

9

  
1

+

1
11
+ · · ·+ 1

99

  
2

+


1
111

+ · · ·+ 1
999

  
3

+ · · ·

Now in the group , since we have 9 choices for each of the  digits in the denominator, there are 9 terms.

Furthermore, each term in  is less than 1

10−1 [except for the first term in 1]. So   9 · 1

10−1 = 9

9
10

−1
.

Now
∞
=1

9

9
10

−1
is a geometric series with  = 9 and  = 9

10
 1. Therefore, by the Comparison Test,

 =
∞
=1

 
∞
=1

9

9
10

−1
= 9

1− 910 = 90.

25.  = 1 +
3

3!
+

6

6!
+

9

9!
+ · · · ,  = +

4

4!
+

7

7!
+

10

10!
+ · · · ,  = 2

2!
+

5

5!
+

8

8!
+ · · · .

Use the Ratio Test to show that the series for , , and  have positive radii of convergence (∞ in each case), so

Theorem 11.9.2 applies, and hence, we may differentiate each of these series:




=
32

3!
+
65

6!
+
98

9!
+ · · · = 2

2!
+

5

5!
+

8

8!
+ · · · = 

Similarly,



= 1 +

3

3!
+

6

6!
+

9

9!
+ · · · = , and




= +

4

4!
+

7

7!
+

10

10!
+ · · · = .

So 0 = , 0 = , and 0 = . Now differentiate the left-hand side of the desired equation:




(3 + 3 +3 − 3) = 320 + 320 + 320 − 3(0 + 0 + 0)

= 32 + 32+ 32 − 3(2 + 2 + 2) = 0 ⇒

3 + 3 + 3 − 3 = . To find the value of the constant , we put  = 0 in the last equation and get

13 + 03 + 03 − 3(1 · 0 · 0) =  ⇒  = 1, so 3 + 3 +3 − 3 = 1.
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12 VECTORS AND THE GEOMETRY OF SPACE

12.1 Three-Dimensional Coordinate Systems

1. We start at the origin, which has coordinates (0 0 0). First we move 4 units along the positive -axis, affecting only the

-coordinate, bringing us to the point (4 0 0). We then move 3 units straight downward, in the negative -direction. Thus

only the -coordinate is affected, and we arrive at (4 0−3).

3. The distance from a point to the -plane is the absolute value of the -coordinate of the point. (2 4 6) has the -coordinate

with the smallest absolute value, so  is the point closest to the -plane. (−4 0−1) must lie in the -plane since the

distance from  to the -plane, given by the -coordinate of , is 0.

5. The equation +  = 2 represents the set of all points in

R3 whose - and -coordinates have a sum of 2, or

equivalently where  = 2−  This is the set

{( 2−  ) |  ∈ R  ∈ R} which is a vertical plane
that intersects the -plane in the line  = 2− ,  = 0.

7. We can find the lengths of the sides of the triangle by using the distance formula between pairs of vertices:

|| =

(7− 3)2 + [0− (−2)]2 + [1− (−3)]2 = √16 + 4 + 16 = 6

|| =

(1− 7)2 + (2− 0)2 + (1− 1)2 = √36 + 4 + 0 = √40 = 2√10

| | =

(3− 1)2 + (−2− 2)2 + (−3− 1)2 = √4 + 16 + 16 = 6

The longest side is, but the Pythagorean Theorem is not satisfied: ||2 + | |2 6= ||2. Thus  is not a right

triangle.  is isosceles, as two sides have the same length.

9. (a) First we find the distances between points:

|| =

(3− 2)2 + (7− 4)2 + (−2− 2)2 = √26

|| =

(1− 3)2 + (3− 7)2 + [3− (−2)]2 = √45 = 3√5

|| =

(1− 2)2 + (3− 4)2 + (3− 2)2 = √3

In order for the points to lie on a straight line, the sum of the two shortest distances must be equal to the longest distance.

Since
√
26 +

√
3 6= 3√5, the three points do not lie on a straight line.
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(b) First we find the distances between points:

|| =

(1− 0)2 + [−2− (−5)]2 + (4− 5)2 = √11

| | =

(3− 1)2 + [4− (−2)]2 + (2− 4)2 = √44 = 2√11

| | =

(3− 0)2 + [4− (−5)]2 + (2− 5)2 = √99 = 3√11

Since ||+ | | = | |, the three points lie on a straight line.

11. An equation of the sphere with center (−3 2 5) and radius 4 is [− (−3)]2 + ( − 2)2 + ( − 5)2 = 42 or

(+ 3)
2
+ ( − 2)2 + ( − 5)2 = 16. The intersection of this sphere with the -plane is the set of points on the sphere

whose -coordinate is 0. Putting  = 0 into the equation, we have 9 + ( − 2)2 + ( − 5)2 = 16  = 0 or

( − 2)2 + ( − 5)2 = 7  = 0, which represents a circle in the -plane with center (0 2 5) and radius√7.

13. The radius of the sphere is the distance between (4 3−1) and (3 8 1):  =

(3− 4)2 + (8− 3)2 + [1− (−1)]2 = √30.

Thus, an equation of the sphere is (− 3)2 + ( − 8)2 + ( − 1)2 = 30.

15. Completing squares in the equation 2 + 2 + 2 − 2− 4 + 8 = 15 gives

(2− 2+1)+ (2− 4+4)+ (2 +8+16) = 15+ 1+ 4+16 ⇒ (− 1)2 + (− 2)2 +(+4)2 = 36, which we

recognize as an equation of a sphere with center (1 2−4) and radius 6.

17. Completing squares in the equation 22 − 8 + 22 + 22 + 24 = 1 gives

2(2 − 4+ 4) + 22 + 2(2 + 12 + 36) = 1 + 8 + 72 ⇒ 2(− 2)2 + 22 + 2( + 6)2 = 81 ⇒

(− 2)2 + 2 + ( + 6)2 = 81
2
, which we recognize as an equation of a sphere with center (2 0−6) and

radius


81
2
= 9

√
2.

19. (a) If the midpoint of the line segment from 1(1 1 1) to 2(2 2 2) is  =
1 + 2

2

1 + 2

2

1 + 2

2


,

then the distances |1| and |2| are equal, and each is half of |12|. We verify that this is the case:

|12|=

(2 − 1)

2
+ (2 − 1)

2
+ (2 − 1)

2

|1|=


1
2
(1 + 2)− 1

2
+

1
2
(1 + 2)− 1

2
+

1
2
(1 + 2)− 1

2
=


1
2
2 − 1

2
1
2
+

1
2
2 − 1

2
1
2
+

1
2
2 − 1

2
1
2

=


1
2

2
(2 − 1)

2
+ (2 − 1)

2
+ (2 − 1)

2

= 1

2


(2 − 1)

2
+ (2 − 1)

2
+ (2 − 1)

2

= 1
2
|12|
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|2|=


2 − 1
2
(1 + 2)

2
+

2 − 1

2
(1 + 2)

2
+

2 − 1

2
(1 + 2)

2
=


1
2
2 − 1

2
1
2
+

1
2
2 − 1

2
1
2
+

1
2
2 − 1

2
1
2
=


1
2

2
(2 − 1)

2
+ (2 − 1)

2
+ (2 − 1)

2


= 1
2


(2 − 1)

2
+ (2 − 1)

2
+ (2 − 1)

2
= 1

2
|12|

So is indeed the midpoint of 12.

(b) By part (a), the midpoints of sides ,  and  are 1
− 1

2
 1 4


, 2


1 1

2
 5

and 3


5
2
 3
2
 4

. (Recall that a median

of a triangle is a line segment from a vertex to the midpoint of the opposite side.) Then the lengths of the medians are:

|2| =

02 +


1
2
− 22 + (5− 3)2 =9

4
+ 4 =


25
4
= 5

2

|3|=


5
2
+ 2
2
+

3
2

2
+ (4− 5)2 =


81
4
+ 9

4
+ 1 =


94
4
= 1

2

√
94

|1|=
−1

2
− 42 + (1− 1)2 + (4− 5)2 = 81

4
+ 1 = 1

2

√
85

21. (a) Since the sphere touches the -plane, its radius is the distance from its center, (2−3 6), to the -plane, namely 6.
Therefore  = 6 and an equation of the sphere is (− 2)2 + ( + 3)2 + ( − 6)2 = 62 = 36.

(b) The radius of this sphere is the distance from its center (2−3 6) to the -plane, which is 2. Therefore, an equation is
(− 2)2 + ( + 3)2 + ( − 6)2 = 4.

(c) Here the radius is the distance from the center (2−3 6) to the -plane, which is 3. Therefore, an equation is
(− 2)2 + ( + 3)2 + ( − 6)2 = 9.

23. The equation  = 5 represents a plane parallel to the -plane and 5 units in front of it.

25. The inequality   8 represents a half-space consisting of all points to the left of the plane  = 8.

27. The inequality 0 ≤  ≤ 6 represents all points on or between the horizontal planes  = 0 (the -plane) and  = 6.

29. Because  = −1, all points in the region must lie in the horizontal plane  = −1. In addition, 2 + 2 = 4, so the region

consists of all points that lie on a circle with radius 2 and center on the -axis that is contained in the plane  = −1.

31. The inequality 2 + 2 + 2 ≤ 3 is equivalent to

2 + 2 + 2 ≤ √3, so the region consists of those points whose distance

from the origin is at most
√
3. This is the set of all points on or inside the sphere with radius

√
3 and center (0 0 0).

33. Here 2 + 2 ≤ 9 or equivalently√2 + 2 ≤ 3 which describes the set of all points in R3 whose distance from the -axis is
at most 3. Thus, the inequality represents the region consisting of all points on or inside a circular cylinder of radius 3 with

axis the -axis.

35. This describes all points whose -coordinate is between 0 and 5, that is, 0    5.

37. This describes a region all of whose points have a distance to the origin which is greater than , but smaller than . So

inequalities describing the region are  

2 + 2 + 2  , or 2  2 + 2 + 2  2.
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39. (a) To find the - and -coordinates of the point  , we project it onto 2

and project the resulting point onto the - and -axes. To find the

-coordinate, we project  onto either the -plane or the -plane

(using our knowledge of its - or -coordinate) and then project the

resulting point onto the -axis. (Or, we could draw a line parallel to

 from  to the -axis.) The coordinates of  are (2 1 4).

(b)  is the intersection of 1 and 2,  is directly below the

-intercept of 2, and  is directly above the -intercept of 2.

41. We need to find a set of points

 (  )

 | | = | |.
(+ 1)2 + ( − 5)2 + ( − 3)2 =


(− 6)2 + ( − 2)2 + ( + 2)2 ⇒

(+ 1)
2
+ ( − 5) + ( − 3)2 = (− 6)2 + ( − 2)2 + ( + 2)2 ⇒

2 + 2+ 1+ 2 − 10 + 25 + 2 − 6 + 9 = 2 − 12+ 36 + 2 − 4 + 4+ 2 + 4 + 4 ⇒ 14− 6 − 10 = 9.
Thus the set of points is a plane perpendicular to the line segment joining  and  (since this plane must contain the

perpendicular bisector of the line segment ).

43. The sphere 2 + 2 + 2 = 4 has center (0 0 0) and radius 2. Completing squares in 2 − 4+ 2 − 4 + 2 − 4 = −11

gives (2 − 4+ 4) + (2 − 4 + 4) + (2 − 4 + 4) = −11 + 4 + 4 + 4 ⇒ (− 2)2 + ( − 2)2 + ( − 2)2 = 1,

so this is the sphere with center (2 2 2) and radius 1. The (shortest) distance between the spheres is measured along

the line segment connecting their centers. The distance between (0 0 0) and (2 2 2) is
(2− 0)2 + (2− 0)2 + (2− 0)2 = √12 = 2√3, and subtracting the radius of each circle, the distance between the

spheres is 2
√
3− 2− 1 = 2√3− 3.

12.2 Vectors

1. (a) The cost of a theater ticket is a scalar, because it has only magnitude.

(b) The current in a river is a vector, because it has both magnitude (the speed of the current) and direction at any given

location.

(c) If we assume that the initial path is linear, the initial flight path from Houston to Dallas is a vector, because it has both

magnitude (distance) and direction.

(d) The population of the world is a scalar, because it has only magnitude.

3. Vectors are equal when they share the same length and direction (but not necessarily location). Using the symmetry of the

parallelogram as a guide, we see that
−→
 =

−−→
,

−−→
 =

−−→
,

−−→
 =

−−→
, and

−→
 =

−−→
.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 12.2 VECTORS ¤ 115

5. (a) (b) (c)

(d) (e) (f )

7. Because the tail of d is the midpoint of  we have
−→
 = 2d, and by the Triangle Law,

a+ 2d = b ⇒ 2d = b− a ⇒ d = 1
2
(b− a) = 1

2
b− 1

2
a. Again by the Triangle Law we have c+ d = b so

c = b− d = b−  1
2
b− 1

2
a

= 1

2
a+ 1

2
b.

9. a = h3− (−1) 2− 1i = h4 1i 11. a = h2− (−1) 2− 3i = h3−1i

13. a = h2− 0 3− 3−1− 1i = h2 0−2i 15. h−1 4i+ h6−2i = h−1 + 6 4 + (−2)i = h5 2i

17. h3 0 1i+ h0 8 0i= h3 + 0 0 + 8 1 + 0i
= h3 8 1i
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19. a+ b = h5 + (−3) −12 + (−6)i = h2−18i
2a+ 3b = h10−24i+ h−9−18i = h1−42i

|a| =

52 + (−12)2 = √169 = 13

|a− b| = |h5− (−3)−12− (−6)i| = |h8−6i| =

82 + (−6)2 = √100 = 10

21. a+ b = (i+ 2 j− 3k) + (−2 i− j+ 5k) = − i+ j+ 2k
2a+ 3b = 2 (i+ 2 j− 3k) + 3 (−2 i− j+ 5k) = 2 i+ 4 j− 6k− 6 i− 3 j+ 15k =− 4 i+ j+ 9k

|a| =

12 + 22 + (−3)2 = √14

|a− b| = |(i+ 2 j− 3k)− (−2 i− j+ 5k)| = |3 i+ 3 j− 8k| =

32 + 32 + (−8)2 = √82

23. The vector −3 i+ 7 j has length |−3 i+ 7 j| =

(−3)2 + 72 = √58, so by Equation 4 the unit vector with the same

direction is
1√
58
(−3 i+ 7 j) = − 3√

58
i+

7√
58
j.

25. The vector 8 i− j+ 4k has length |8 i− j+ 4k| =

82 + (−1)2 + 42 = √81 = 9, so by Equation 4 the unit vector with

the same direction is 1
9
(8 i− j+ 4k) = 8

9
i− 1

9
j+ 4

9
k.

27. From the figure, we see that tan  =

√
3

1
=
√
3 ⇒  = 60◦.

29. From the figure, we see that the -component of v is

1 = |v| cos(3) = 4 · 12 = 2 and the -component is

2 = |v| sin(3) = 4 ·
√
3
2
= 2

√
3 Thus

v = h1 2i =

2 2

√
3

.

31. The velocity vector v makes an angle of 40◦ with the horizontal and

has magnitude equal to the speed at which the football was thrown.

From the figure, we see that the horizontal component of v is

|v| cos 40◦ = 60 cos 40◦ ≈ 4596 ft/s and the vertical component
is |v| sin 40◦ = 60 sin 40◦ ≈ 3857 ft/s.
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33. The given force vectors can be expressed in terms of their horizontal and vertical components as −300 i and

200 cos 60◦ i+ 200 sin 60◦ j = 200

1
2


i+ 200

√
3
2


j = 100 i+ 100

√
3 j. The resultant force F is the sum of

these two vectors: F = (−300 + 100) i+ 0 + 100√3  j = −200 i+ 100√3 j. Then we have
|F| ≈


(−200)2 + 100√3 2 = √70,000 = 100√7 ≈ 2646 N. Let  be the angle F makes with the

positive -axis. Then tan  =
100

√
3

−200 = −
√
3

2
and the terminal point of F lies in the second quadrant, so

 = tan−1

−
√
3

2


+ 180◦ ≈ −409◦ + 180◦ = 1391◦.

35. With respect to the water’s surface, the woman’s velocity is the vector sum of the velocity of the ship with respect

to the water, and the woman’s velocity with respect to the ship. If we let north be the positive -direction, then

v = h0 22i+ h−3 0i = h−3 22i. The woman’s speed is |v| = √9 + 484 ≈ 222 mih. The vector v makes an angle 

with the east, where  = tan−1

22
−3


≈ 98◦. Therefore, the woman’s direction is about N(98− 90)◦W= N8◦W.

37. LetT1 andT2 represent the tension vectors in each side of the

clothesline as shown in the figure. T1 andT2 have equal vertical

components and opposite horizontal components, so we can write

T1 = − i+  j andT2 =  i+  j [   0]. By similar triangles,



=
008

4
⇒  = 50. The force due to gravity

acting on the shirt has magnitude 08 ≈ (08)(98) = 784 N, hence we havew = −784 j. The resultantT1 +T2

of the tensile forces counterbalancesw, so T1 +T2 = −w ⇒ (− i+  j) + ( i+  j) = 784 j ⇒
(−50 i+  j) + (50 i+  j) = 2 j = 784 j ⇒  = 784

2
= 392 and  = 50 = 196. Thus the tensions are

T1 = − i+  j = −196 i+ 392 j andT2 =  i+  j = 196 i+ 392 j.

Alternatively, we can find the value of  and proceed as in Example 7.

39. (a) Set up coordinate axes so that the boatman is at the origin, the canal is

bordered by the -axis and the line  = 3, and the current flows in the

negative -direction. The boatman wants to reach the point (3 2). Let  be

the angle, measured from the positive -axis, in the direction he should

steer. (See the figure.)

 

In still water, the boat has velocity v = h13 sin  13 cos i and the velocity of the current is v h0−35i, so the true path
of the boat is determined by the velocity vector v = v + v = h13 sin  13 cos  − 35i. Let  be the time (in hours)
after the boat departs; then the position of the boat at time  is given by v and the boat crosses the canal when

v = h13 sin  13 cos  − 35i  = h3 2i. Thus 13(sin ) = 3 ⇒  =
3

13 sin 
and (13 cos  − 35)  = 2.
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Substituting gives (13 cos  − 35) 3

13 sin 
= 2 ⇒ 39 cos  − 105 = 26 sin  (1). Squaring both sides, we have

1521 cos2  − 819 cos  + 11025 = 676 sin2  = 676 1− cos2 
2197 cos2  − 819 cos  − 56575 = 0

The quadratic formula gives

cos  =
819±


(−819)2 − 4(2197)(−56575)

2(2197)

=
819±√5,642,572

4394
≈ 072699 or − 035421

The acute value for  is approximately cos−1(072699) ≈ 434◦. Thus the boatman should steer in the direction that is
434◦ from the bank, toward upstream.

Alternate solution: We could solve (1) graphically by plotting  = 39 cos  − 105 and  = 26 sin  on a graphing device
and finding the appoximate intersection point (0757 1785). Thus  ≈ 0757 radians or equivalently 434◦.

(b) From part (a) we know the trip is completed when  =
3

13 sin 
. But  ≈ 434◦, so the time required is approximately

3

13 sin 434◦
≈ 0336 hours or 202 minutes.

41. The slope of the tangent line to the graph of  = 2 at the point (2 4) is






=2

= 2


=2

= 4

and a parallel vector is i+ 4 j which has length |i+ 4 j| = √12 + 42 = √17, so unit vectors parallel to the tangent line
are ± 1√

17
(i+ 4 j).

43. By the Triangle Law,
−→
 +

−−→
 =

−→
. Then

−→
 +

−−→
 +

−→
 =

−→
 +

−→
, but

−→
 +

−→
 =

−→
 +


−
−→



= 0.

So
−→
 +

−−→
 +

−→
 = 0.

45. (a), (b) (c) From the sketch, we estimate that  ≈ 13 and  ≈ 16.

(d) c = a+ b ⇔ 7 = 3+ 2 and 1 = 2− .

Solving these equations gives  = 9
7
and  = 11

7
.

47. |r− r0| is the distance between the points (  ) and (0 0 0), so the set of points is a sphere with radius 1 and
center (0 0 0).

Alternate method: |r− r0| = 1 ⇔

(− 0)2 + ( − 0)2 + ( − 0)2 = 1 ⇔

(− 0)
2 + ( − 0)

2 + ( − 0)
2 = 1, which is the equation of a sphere with radius 1 and center (0 0 0).
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49. a+ (b+ c) = h1 2i+ (h1 2i+ h1 2i) = h1 2i+ h1 + 1 2 + 2i
= h1 + 1 + 1 2 + 2 + 2i = h(1 + 1) + 1 (2 + 2) + 2i
= h1 + 1 2 + 2i+ h1 2i = (h1 2i+ h1 2i) + h1 2i
= (a+ b) + c

51. Consider triangle , where and  are the midpoints of  and . We know that
−→
 +

−−→
 =

−→
 (1) and

−−→
 +

−−→
 =

−−→
 (2). However,

−−→
 = 1

2

−→
, and

−−→
 = 1

2

−−→
. Substituting these expressions for

−−→
 and

−−→
 into

(2) gives 1
2

−→
 + 1

2

−−→
 =

−−→
. Comparing this with (1) gives

−−→
 = 1

2

−→
. Therefore

−→
 and

−−→
 are parallel and−−→

 = 1
2

−→.
12.3 The Dot Product

1. (a) a · b is a scalar, and the dot product is defined only for vectors, so (a · b) · c has no meaning.

(b) (a · b) c is a scalar multiple of a vector, so it does have meaning.

(c) Both |a| and b · c are scalars, so |a| (b · c) is an ordinary product of real numbers, and has meaning.

(d) Both a and b+ c are vectors, so the dot product a · (b+ c) has meaning.

(e) a · b is a scalar, but c is a vector, and so the two quantities cannot be added and a · b+ c has no meaning.

(f ) |a| is a scalar, and the dot product is defined only for vectors, so |a| · (b+ c) has no meaning.

3. a · b = −2 1
3

 · h−5 12i = (−2)(−5) +  1
3


(12) = 10 + 4 = 14

5. a · b = 4 1 1
4

 · h6−3−8i = (4)(6) + (1)(−3) +  1
4


(−8) = 19

7. a · b = (2 i+ j) · (i− j+ k) = (2)(1) + (1)(−1) + (0)(1) = 1

9. By Theorem 3, a · b = |a| |b| cos  = (6)(5) cos 2
3
= 30

− 1
2


= −15.

11. u v andw are all unit vectors, so the triangle is an equilateral triangle. Thus the angle between u and v is 60◦ and

u · v = |u| |v| cos 60◦ = (1)(1) 1
2


= 1

2
 Ifw is moved so it has the same initial point as u, we can see that the angle

between them is 120◦ and we have u ·w = |u| |w| cos 120◦ = (1)(1)−1
2


= − 1

2
.

13. (a) i · j = h1 0 0i · h0 1 0i = (1)(0) + (0)(1) + (0)(0) = 0. Similarly, j · k = (0)(0) + (1)(0) + (0)(1) = 0 and
k · i = (0)(1) + (0)(0) + (1)(0) = 0.
Another method: Because i, j, and k are mutually perpendicular, the cosine factor in each dot product (see Theorem 3)

is cos 
2
= 0.

(b) By Property 1 of the dot product, i · i = |i|2 = 12 = 1 since i is a unit vector. Similarly, j · j = |j|2 = 1 and
k · k = |k|2 = 1.
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15. |a| = √42 + 32 = 5, |b| =

22 + (−1)2 = √5, and a · b = (4)(2) + (3)(−1) = 5. From Corollary 6, we have

cos  =
a · b
|a| |b| =

5

5 ·√5 =
1√
5
. So the angle between a and b is  = cos−1


1√
5


≈ 63◦.

17. |a| =

32 + (−1)2 + 52 = √35, |b| =


(−2)2 + 42 + 32 = √29, and a · b = (3)(−2) + (−1)(4) + (5)(3) = 5. Then

cos  =
a · b
|a| |b| =

5√
35 ·√29 =

5√
1015

and the angle between a and b is  = cos−1


5√
1015


≈ 81◦.

19. |a| =

42 + (−3)2 + 12 = √26, |b| =


22 + 02 + (−1)2 = √5, and a · b = (4)(2) + (−3)(0) + (1)(−1) = 7.

Then cos  =
a · b
|a| |b| =

7√
26 ·√5 =

7√
130

and  = cos−1


7√
130


≈ 52◦.

21. Let , , and  be the angles at vertices  , , and  respectively.

Then  is the angle between vectors
−−→
 and

−→
,  is the angle

between vectors
−−→
 and

−→
, and  is the angle between vectors

−→
 and

−→
.

  

Thus cos  =

−−→
 ·

−→
−−→ −→ = h−2 3i · h1 4i

(−2)2 + 32√12 + 42 =
−2 + 12√
13
√
17
=

10√
221

and  = cos−1


10√
221


≈ 48◦. Similarly,

cos  =

−−→
 ·

−→
−−→  −→ = h2−3i · h3 1i√

4 + 9
√
9 + 1

=
6− 3√
13
√
10
=

3√
130

so  = cos−1


3√
130


≈ 75◦ and

 ≈ 180◦ − (48◦+ 75◦) = 57◦.

Alternate solution: Apply the Law of Cosines three times as follows: cos  =

−→2 − −−→2 − −→2
2
−−→ −→ ,

cos  =

−→2 − −−→2 − −→2
2
−−→ −→ , and cos  =

−−→2 − −→2 − −→2
2
−→ −→ .

23. (a) a · b = (−5)(6) + (3)(−8) + (7)(2) = −40 6= 0, so a and b are not orthogonal. Also, since a is not a scalar multiple
of b, a and b are not parallel.

(b) a · b = (4)(−3) + (6)(2) = 0, so a and b are orthogonal (and not parallel).

(c) a · b = (−1)(3) + (2)(4) + (5)(−1) = 0, so a and b are orthogonal (and not parallel).

(d) Because a = − 2
3
b, a and b are parallel.

25.
−−→
 = h−1−3 2i,

−→
 = h4−2−1i, and

−−→
 ·

−→
 = −4 + 6− 2 = 0. Thus

−−→
 and

−→
 are orthogonal, so the angle of

the triangle at vertex  is a right angle.
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27. Let a = 1 i+ 2 j+ 3 k be a vector orthogonal to both i+ j and i+ k. Then a · (i+ j) = 0 ⇔ 1 + 2 = 0 and

a · (i+ k) = 0 ⇔ 1 + 3 = 0, so 1 = −2 = −3. Furthermore a is to be a unit vector, so 1 = 21 + 22 + 23 = 3
2
1

implies 1 = ± 1√
3
. Thus a = 1√

3
i− 1√

3
j− 1√

3
k and a = − 1√

3
i+ 1√

3
j+ 1√

3
k are two such unit vectors.

29. The line 2−  = 3 ⇔  = 2− 3 has slope 2, so a vector parallel to the line is a = h1 2i. The line 3+  = 7 ⇔
 = −3+ 7 has slope −3, so a vector parallel to the line is b = h1−3i. The angle between the lines is the same as the

angle  between the vectors. Here we have a · b = (1)(1) + (2)(−3) = −5, |a| = √12 + 22 = √5, and

|b| =

12 + (−3)2 = √10, so cos  = a · b

|a| |b| =
−5√
5 ·√10 =

−5
5
√
2
= − 1√

2
or −

√
2

2
. Thus  = 135◦, and the

acute angle between the lines is 180◦ − 135◦ = 45◦.

31. The curves  = 2 and  = 3 meet when 2 = 3 ⇔ 3 − 2 = 0 ⇔ 2(− 1) = 0 ⇔  = 0,  = 1. We have




2 = 2 and




3 = 32, so the tangent lines of both curves have slope 0 at  = 0. Thus the angle between the curves is

0◦ at the point (0 0). For  = 1,



2

=1

= 2 and



3

=1

= 3 so the tangent lines at the point (1 1) have slopes 2 and

3. Vectors parallel to the tangent lines are h1 2i and h1 3i, and the angle  between them is given by

cos  =
h1 2i · h1 3i
|h1 2i| |h1 3i| =

1 + 6√
5
√
10
=

7

5
√
2

Thus  = cos−1


7

5
√
2


≈ 81◦.

33. Since |h2 1 2i| = √4 + 1 + 4 = √9 = 3, using Equations 8 and 9 we have cos = 2
3
, cos = 1

3
, and cos  = 2

3
. The

direction angles are given by  = cos−1

2
3

 ≈ 48◦,  = cos−1 1
3

 ≈ 71◦, and  = cos−1 2
3


= 48◦.

35. Since | i− 2 j− 3k| = √1 + 4 + 9 = √14, Equations 8 and 9 give cos = 1√
14
, cos = −2√

14
, and cos  = −3√

14
, while

 = cos−1


1√
14


≈ 74◦,  = cos−1


− 2√

14


≈ 122◦, and  = cos−1


− 3√

14


≈ 143◦.

37. |h  i| = √2 + 2 + 2 =
√
3 [since   0], so cos = cos = cos  =

√
3
=

1√
3
and

 =  =  = cos−1


1√
3


≈ 55◦.

39. |a| =

(−5)2 + 122 = √169 = 13. The scalar projection of b onto a is compa b =

a · b
|a| =

−5 · 4 + 12 · 6
13

= 4 and the

vector projection of b onto a is proja b =


a · b
|a|


a

|a| = 4 ·
1
13
h−5 12i = − 20

13
− 48

13


.

41. |a| = √9 + 36 + 4 = 7 so the scalar projection of b onto a is compab = a · b
|a| =

1
7
(3 + 12− 6) = 9

7
. The vector

projection of b onto a is projab =
9

7

a

|a| =
9
7
· 1
7
h3 6−2i = 9

49
h3 6−2i =  27

49
 54
49
− 18

49


.
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43. |a| = √4 + 1 + 16 = √21 so the scalar projection of b onto a is compa b =
a · b
|a| =

0− 1 + 2√
21

=
1√
21
while the vector

projection of b onto a is proja b =
1√
21

a

|a| =
1√
21
· 2 i− j+ 4k√

21
= 1

21
(2 i− j+ 4k) = 2

21
i− 1

21
j+ 4

21
k.

45. (ortha b) · a = (b− proja b) · a = b · a− (proja b) · a = b · a−
a · b
|a|2 a · a = b · a−

a · b
|a|2 |a|

2
= b · a− a · b = 0.

So they are orthogonal by (7).

47. compa b =
a · b
|a| = 2 ⇔ a · b = 2 |a| = 2√10. If b = h1 2 3i, then we need 31 + 02 − 13 = 2

√
10.

One possible solution is obtained by taking 1 = 0, 2 = 0, 3 = −2
√
10. In general, b =


  3− 2√10 , ,  ∈ R.

49. The displacement vector isD = (6− 0) i+ (12− 10) j+ (20− 8)k = 6 i+ 2 j+ 12k so, by Equation 12, the work done is
 = F ·D = (8 i− 6 j+ 9k) · (6 i+ 2 j+ 12k) = 48− 12 + 108 = 144 joules.

51. Here |D| = 80 ft, |F| = 30 lb, and  = 40◦. Thus

 = F ·D = |F| |D| cos  = (30)(80) cos 40◦ = 2400 cos 40◦ ≈ 1839 ft-lb.

53. First note that n = h i is perpendicular to the line, because if1 = (1 1) and 2 = (2 2) lie on the line, then

n ·
−−−→
12 = 2 − 1 + 2 − 1 = 0, since 2 + 2 = − = 1 + 1 from the equation of the line.

Let 2 = (2 2) lie on the line. Then the distance from 1 to the line is the absolute value of the scalar projection

of
−−−→
12 onto n. compn

−−−→
12


=
|n · h2 − 1 2 − 1i|

|n| =
|2 − 1 + 2 − 1|√

2 + 2
=
|1 + 1 + |√

2 + 2

since 2 + 2 = −. The required distance is |(3)(−2) + (−4)(3) + 5|
32 + (−4)2 =

13

5
.

55. For convenience, consider the unit cube positioned so that its back left corner is at the origin, and its edges lie along the

coordinate axes. The diagonal of the cube that begins at the origin and ends at (1 1 1) has vector representation h1 1 1i.
The angle  between this vector and the vector of the edge which also begins at the origin and runs along the -axis [that is,

h1 0 0i] is given by cos  = h1 1 1i · h1 0 0i
|h1 1 1i| |h1 0 0i| =

1√
3

⇒  = cos−1


1√
3


≈ 55◦.

57. Consider the H—C—H combination consisting of the sole carbon atom and the two hydrogen atoms that are at (1 0 0) and

(0 1 0) (or any H—C—H combination, for that matter). Vector representations of the line segments emanating from the

carbon atom and extending to these two hydrogen atoms are

1− 1

2
 0− 1

2
 0− 1

2


=

1
2
− 1

2
− 1

2


and

0− 1
2
 1− 1

2
 0− 1

2


=
− 1

2
 1
2
− 1

2


. The bond angle, , is therefore given by

cos  =


1
2
− 1

2
− 1

2

 · − 1
2
 1
2
− 1

2

 1
2
− 1

2
− 1

2

 − 1
2
 1
2
− 1

2

 = − 1
4
− 1

4
+ 1

4
3
4


3
4

= −1
3

⇒  = cos−1
− 1

3

 ≈ 1095◦.
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59. Let a = h1 2 3i and = h1 2 3i.

Property 2: a · b = h1 2 3i · h1 2 3i = 11 + 22 + 33

= 11 + 22 + 33 = h1 2 3i · h1 2 3i = b · a

Property 4: (a) · b = h1 2 3i · h1 2 3i = (1)1 + (2)2 + (3)3
=  (11 + 22 + 33) =  (a · b) = 1(1) + 2(2) + 3(3)

= h1 2 3i · h1 2 3i = a · (b)

Property 5: 0 · a = h0 0 0i · h1 2 3i = (0)(1) + (0)(2) + (0)(3) = 0

61. |a · b| =
 |a| |b| cos  = |a| |b| |cos |. Since |cos | ≤ 1, |a · b| = |a| |b| |cos | ≤ |a| |b|.

Note: We have equality in the case of cos  = ±1, so  = 0 or  = , thus equality when a and b are parallel.

63. (a) The Parallelogram Law states that the sum of the squares of the

lengths of the diagonals of a parallelogram equals the sum of the

squares of its (four) sides.

(b) |a+ b|2 = (a+ b) · (a+ b) = |a|2 + 2(a · b) + |b|2 and |a− b|2 = (a− b) · (a− b) = |a|2 − 2(a · b) + |b|2.

Adding these two equations gives |a+ b|2 + |a− b|2 = 2 |a|2 + 2 |b|2.

12.4 The Cross Product

1. a× b=


i j k

6 0 −2
0 8 0

 =
 0 −2
8 0

 i −
 6 −2
0 0

 j +
 6 0

0 8

k
= [0− (−16)] i− (0− 0) j+ (48− 0)k = 16 i+ 48k

Now (a× b) · a = h16 0 48i · h6 0−2i = 96 + 0− 96 = 0 and (a× b) · b = h16 0 48i · h0 8 0i = 0 + 0 + 0 = 0, so

a× b is orthogonal to both a and b.

3. a× b =


i j k

1 3 −2
−1 0 5

 =
 3 −2
0 5

 i −
 1 −2
−1 5

 j +
 1 3

−1 0

k
= (15− 0) i− (5− 2) j+ [0− (−3)]k = 15 i− 3 j+ 3k

Since (a× b) · a = (15 i− 3 j+ 3k) · (i+ 3 j− 2k) = 15− 9− 6 = 0, a× b is orthogonal to a.

Since (a× b) · b = (15 i− 3 j+ 3k) · (−i+ 5k) = −15 + 0 + 15 = 0, a× b is orthogonal to b.
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5. a× b =


i j k

1 −1 −1
1
2

1 1
2

 =
−1 −1
1 1

2

 i −
 1 −1
1
2

1
2

 j +
 1 −1
1
2

1

k
=
−1

2
− (−1) i−  1

2
− (− 1

2
)

j+


1− (− 1

2
)

k = 1

2
i− j+ 3

2
k

Now (a× b) · a =  1
2
i− j+ 3

2
k
 · (i − j − k) = 1

2
+ 1 − 3

2
= 0 and

(a× b) · b =  1
2
i− j+ 3

2
k
 ·  1

2
i+ j+ 1

2
k

= 1

4
− 1 + 3

4
= 0, so a× b is orthogonal to both a and b.

7. a× b =


i j k

 1 1

2 2 1

 =
 1 1

2 1

 i −
  1

2 1

 j +
  1

2 2

k
= (1− ) i− (− ) j+ (3 − 2)k = (1− ) i+ (3 − 2)k

Since (a× b) · a = 1−  0 3 − 2
 · h 1 1i = − 2 + 0 + 2 −  = 0, a× b is orthogonal to a.

Since (a× b) · b = 1−  0 3 − 2
 · 2 2 1 = 2 − 3 + 0 + 3 − 2 = 0, a× b is orthogonal to b.

9. According to the discussion preceding Theorem 11, i× j = k, so (i× j)× k = k× k = 0 [by Example 2].

11. (j− k)× (k− i) = (j− k)× k+ (j− k)× (−i) by Property 3 of Theorem 11

= j× k+ (−k)× k+ j× (−i) + (−k)× (−i) by Property 4 of Theorem 11

= (j× k) + (−1)(k× k) + (−1)(j× i) + (−1)2(k× i) by Property 2 of Theorem 11

= i+ (−1)0+ (−1)(−k) + j = i+ j+ k by Example 2 and

the discussion preceeding Theorem 11

13. (a) Since b× c is a vector, the dot product a · (b× c) is meaningful and is a scalar.

(b) b · c is a scalar, so a× (b · c) is meaningless, as the cross product is defined only for two vectors.

(c) Since b× c is a vector, the cross product a× (b× c) is meaningful and results in another vector.

(d) b · c is a scalar, so the dot product a · (b · c) is meaningless, as the dot product is defined only for two vectors.

(e) Since (a · b) and (c · d) are both scalars, the cross product (a · b)× (c · d) is meaningless.

(f ) a× b and c× d are both vectors, so the dot product (a× b) · (c× d) is meaningful and is a scalar.

15. If we sketch u and v starting from the same initial point, we see that the

angle between them is 60◦. Using Theorem 9, we have

|u× v| = |u| |v| sin  = (12)(16) sin 60◦ = 192 ·
√
3

2
= 96

√
3.

By the right-hand rule, u× v is directed into the page.
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17. a×b =


i j k

2 −1 3

4 2 1

 =
−1 3

2 1

 i −
 2 3

4 1

 j +
 2 −1
4 2

k = (−1−6) i−(2−12) j+[4−(−4)]k = −7 i+10 j+8k

b×a =


i j k

4 2 1

2 −1 3

 =
 2 1

−1 3

 i −
 4 1

2 3

 j +
 4 2

2 −1

k = [6− (−1)] i− (12−2) j+(−4−4)k = 7 i−10 j−8k
Notice a× b = −b× a here, as we know is always true by Property 1 of Theorem 11.

19. By Theorem 8, the cross product of two vectors is orthogonal to both vectors. So we calculate

h3 2 1i × h−1 1 0i =


i j k

3 2 1

−1 1 0

 =
 2 1

1 0

 i −
 3 1

−1 0

 j +
 3 2

−1 1

k = −i− j+ 5k.
So two unit vectors orthogonal to both are ± h−1−1 5i√

1 + 1 + 25
= ±h−1−1 5i

3
√
3

, that is,

− 1

3
√
3
− 1

3
√
3
 5

3
√
3


and


1

3
√
3
 1

3
√
3
− 5

3
√
3


.

21. Let a = h1 2 3i. Then

0× a =


i j k

0 0 0

1 2 3

 =
 0 0

2 3

 i −
 0 0

1 3

 j +
 0 0

1 2

k = 0,

a× 0 =


i j k

1 2 3

0 0 0

 =
 2 3

0 0

 i −
 1 3

0 0

 j +
 1 2

0 0

k = 0.

23. a× b = h23 − 32 31 − 13 12 − 21i
= h(−1)(23 − 32)  (−1)(31 − 13)  (−1)(12 − 21)i
= − h23 − 32 31 − 13 12 − 21i = −b× a

25. a× (b+ c) = a× h1 + 1 2 + 2 3 + 3i
= h2(3 + 3)− 3(2 + 2) , 3(1 + 1)− 1(3 + 3) , 1(2 + 2)− 2(1 + 1)i
= h23 + 23 − 32 − 32, 31 + 31 − 13 − 13, 12 + 12 − 21 − 21i
= h(23 − 32) + (23 − 32) , (31 − 13) + (31 − 13) , (12 − 21) + (12 − 21)i
= h23 − 32 31 − 13 12 − 21i+ h23 − 32 31 − 13 12 − 21i
= (a× b) + (a× c)
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27. By plotting the vertices, we can see that the parallelogram is determined by the

vectors
−→
 = h2 3i and

−−→
 = h4−2i. We know that the area of the parallelogram

determined by two vectors is equal to the length of the cross product of these vectors.

In order to compute the cross product, we consider the vector
−→
 as the three-

dimensional vector h2 3 0i (and similarly for
−−→
), and then the area of

parallelogram  is

−→ ×−−→ =


i j k

2 3 0

4 −2 0


 = |(0) i− (0) j+ (−4− 12)k| = |−16k| = 16

29. (a) Because the plane through  , , and  contains the vectors
−−→
 and

−→
, a vector orthogonal to both of these vectors

(such as their cross product) is also orthogonal to the plane. Here
−−→
 = h−3 1 2i and

−→
 = h3 2 4i, so

−−→
×

−→
 = h(1)(4)− (2)(2) (2)(3)− (−3)(4) (−3)(2)− (1)(3)i = h0 18−9i

Therefore, h0 18−9i (or any nonzero scalar multiple thereof, such as h0 2−1i) is orthogonal to the plane through  , ,
and .

(b) Note that the area of the triangle determined by  , , and  is equal to half of the area of the

parallelogram determined by the three points. From part (a), the area of the parallelogram is−−→×−→  = |h0 18−9i| = √0 + 324 + 81 = √405 = 9√5, so the area of the triangle is 12 · 9√5 = 9
2

√
5.

31. (a)
−−→
 = h4 3−2i and

−→
 = h5 5 1i, so a vector orthogonal to the plane through  , , and  is

−−→
×

−→
 = h(3)(1)− (−2)(5) (−2)(5)− (4)(1) (4)(5)− (3)(5)i = h13−14 5i [or any scalar mutiple thereof ].

(b) The area of the parallelogram determined by
−−→
 and

−→
 is−−→×−→ = |h13−14 5i| =132 + (−14)2 + 52 = √390, so the area of triangle  is 12√390.

33. By Equation 14, the volume of the parallelepiped determined by a, b, and c is the magnitude of their scalar triple product,

which is a · (b× c) =


1 2 3

−1 1 2

2 1 4

 = 1
 1 2

1 4

 − 2

−1 2

2 4

 + 3

−1 1

2 1

 = 1(4− 2)− 2(−4− 4) + 3(−1− 2) = 9.
Thus the volume of the parallelepiped is 9 cubic units.

35. a =
−−→
 = h4 2 2i, b =

−→
 = h3 3−1i, and c =

−→
 = h5 5 1i.

a · (b× c) =


4 2 2

3 3 −1
5 5 1

 = 4
 3 −1
5 1

 − 2

 3 −1
5 1

 + 2

 3 3

5 5

 = 32− 16 + 0 = 16,
so the volume of the parallelepiped is 16 cubic units.
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37. u · (v×w) =


1 5 −2
3 −1 0

5 9 −4

 = 1
−1 0

9 −4

− 5
 3 0

5 −4

+ (−2)
 3 −15 9

 = 4 + 60− 64 = 0, which says that the volume
of the parallelepiped determined by u, v andw is 0, and thus these three vectors are coplanar.

39. The magnitude of the torque is | | = |r×F| = |r| |F| sin  = (018 m)(60 N) sin(70 + 10)◦ = 108 sin 80◦ ≈ 106 N·m.

41. Using the notation of the text, r = h0 03 0i and F has direction h0 3−4i. The angle  between them can be determined by

cos  =
h0 03 0i · h0 3−4i
|h0 03 0i| |h0 3−4i| ⇒ cos  =

09

(03)(5)
⇒ cos  = 06 ⇒  ≈ 531◦. Then | | = |r| |F| sin  ⇒

100 = 03 |F| sin 531◦ ⇒ |F| ≈ 417 N.

43. From Theorem 9 we have |a× b| = |a| |b| sin , where  is the angle between a and b, and from Theorem 12.3.3 we have

a · b = |a| |b| cos  ⇒ |a| |b| = a · b
cos 

. Substituting the second equation into the first gives |a× b| = a · b
cos 

sin , so

|a× b|
a · b = tan . Here |a× b| = |h1 2 2i| = √1 + 4 + 4 = 3, so tan  = |a× b|

a · b =
3√
3
=
√
3 ⇒  = 60◦.

45. (a) The distance between a point and a line is the length of the perpendicular

from the point to the line, here
−→ = . But referring to triangle ,

 =
−→ = −−→  sin  = |b| sin . But  is the angle between −−→ = b

and
−→
 = a. Thus by Theorem 9, sin  =

|a× b|
|a| |b|

and so  = |b| sin  = |b| |a× b|
|a| |b| =

|a× b|
|a| .

(b) a =
−→
 = h−1−2−1i and b =

−−→
 = h1−5−7i. Then

a× b = h(−2)(−7)− (−1)(−5) (−1)(1)− (−1)(−7) (−1)(−5)− (−2)(1)i = h9−8 7i.

Thus the distance is  =
|a× b|
|a| = 1√

6

√
81 + 64 + 49 =


194
6
=


97
3
.

47. From Theorem 9 we have |a× b| = |a| |b| sin  so

|a× b|2 = |a|2 |b|2 sin2  = |a|2 |b|2 1− cos2 
= |a|2 |b|2 − (|a| |b| cos )2 = |a|2 |b|2 − (a · b)2

by Theorem 12.3.3.
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49. (a− b)× (a+ b) = (a− b)× a+ (a− b)× b by Property 3 of Theorem 11

= a× a+ (−b)× a+ a× b+ (−b)× b by Property 4 of Theorem 11

= (a× a)− (b× a) + (a× b)− (b× b) by Property 2 of Theorem 11 (with  = −1)
= 0− (b× a) + (a× b)− 0 by Example 2

= (a× b) + (a× b) by Property 1 of Theorem 11

= 2(a× b)

51. a× (b× c) + b× (c× a) + c× (a× b)

= [(a · c)b− (a · b)c] + [(b · a)c− (b · c)a] + [(c · b)a− (c · a)b] by Exercise 50

= (a · c)b− (a · b)c+ (a · b)c− (b · c)a+ (b · c)a− (a · c)b = 0

53. (a) No. If a · b = a · c, then a · (b− c) = 0, so a is perpendicular to b− c, which can happen if b 6= c. For example,
let a = h1 1 1i, b = h1 0 0i and c = h0 1 0i.

(b) No. If a× b = a× c then a× (b− c) = 0, which implies that a is parallel to b− c, which of course can happen
if b 6= c.

(c) Yes. Since a · c = a · b, a is perpendicular to b− c, by part (a). From part (b), a is also parallel to b− c. Thus since
a 6= 0 but is both parallel and perpendicular to b− c, we have b− c = 0, so b = c.

12.5 Equations of Lines and Planes

1. (a) True; each of the first two lines has a direction vector parallel to the direction vector of the third line, so these vectors are

each scalar multiples of the third direction vector. Then the first two direction vectors are also scalar multiples of each

other, so these vectors, and hence the two lines, are parallel.

(b) False; for example, the - and -axes are both perpendicular to the -axis, yet the - and -axes are not parallel.

(c) True; each of the first two planes has a normal vector parallel to the normal vector of the third plane, so these two normal

vectors are parallel to each other and the planes are parallel.

(d) False; for example, the - and -planes are not parallel, yet they are both perpendicular to the -plane.

(e) False; the - and -axes are not parallel, yet they are both parallel to the plane  = 1.

(f ) True; if each line is perpendicular to a plane, then the lines’ direction vectors are both parallel to a normal vector for the

plane. Thus, the direction vectors are parallel to each other and the lines are parallel.

(g) False; the planes  = 1 and  = 1 are not parallel, yet they are both parallel to the -axis.

(h) True; if each plane is perpendicular to a line, then any normal vector for each plane is parallel to a direction vector for the

line. Thus, the normal vectors are parallel to each other and the planes are parallel.

(i) True; see Figure 9 and the accompanying discussion.
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( j) False; they can be skew, as in Example 3.

(k) True. Consider any normal vector for the plane and any direction vector for the line. If the normal vector is perpendicular

to the direction vector, the line and plane are parallel. Otherwise, the vectors meet at an angle , 0◦ ≤   90◦, and the

line will intersect the plane at an angle 90◦ − .

3. For this line, we have r0 = 2 i+ 24 j + 35k and v = 3 i+ 2 j− k, so a vector equation is
r = r0 + v = (2 i+24 j+35k) + (3 i+2 j− k) = (2+ 3) i+ (24+ 2) j+ (35− )k and parametric equations are

 = 2 + 3,  = 24 + 2,  = 35− .

5. A line perpendicular to the given plane has the same direction as a normal vector to the plane, such as

n = h1 3 1i. So r0 = i + 6k, and we can take v = i + 3 j + k. Then a vector equation is
r = (i+ 6k) + (i+ 3 j+ k) = (1 + ) i+ 3 j+ (6 + )k, and parametric equations are  = 1 + ,  = 3,  = 6 + .

7. The vector v =

2− 0 1− 1

2
−3− 1 = 2 1

2
−4 is parallel to the line. Letting 0 = (2 1−3), parametric equations

are  = 2 + 2,  = 1 + 1
2
,  = −3− 4, while symmetric equations are − 2

2
=

 − 1
12

=
 + 3

−4 or

− 2
2

= 2 − 2 =  + 3

−4 .

9. v = h3− (−8)−2− 1 4− 4i = h11−3 0i, and letting 0 = (−8 1 4), parametric equations are  = −8 + 11,

 = 1− 3,  = 4 + 0 = 4, while symmetric equations are + 8
11

=
 − 1
−3 ,  = 4. Notice here that the direction number

 = 0, so rather than writing
 − 4
0

in the symmetric equation we must write the equation  = 4 separately.

11. The line has direction v = h1 2 1i. Letting 0 = (1−1 1), parametric equations are  = 1 + ,  = −1 + 2,  = 1 + 

and symmetric equations are − 1 =  + 1

2
=  − 1.

13. Direction vectors of the lines are v1 = h−2− (−4) 0− (−6)−3− 1i = h2 6−4i and
v2 = h5− 10 3− 18 14− 4i = h−5−15 10i, and since v2 = −5

2
v1, the direction vectors and thus the lines are parallel.

15. (a) The line passes through the point (1−5 6) and a direction vector for the line is h−1 2−3i, so symmetric equations for

the line are
− 1
−1 =

 + 5

2
=

 − 6
−3 .

(b) The line intersects the -plane when  = 0, so we need
− 1
−1 =

 + 5

2
=
0− 6
−3 or

− 1
−1 = 2 ⇒  = −1,

 + 5

2
= 2 ⇒  = −1. Thus the point of intersection with the -plane is (−1−1 0). Similarly for the -plane,

we need  = 0 ⇒ 1 =
 + 5

2
=

 − 6
−3 ⇒  = −3,  = 3. Thus the line intersects the -plane at (0−3 3). For

the -plane, we need  = 0 ⇒ − 1
−1 =

5

2
=

 − 6
−3 ⇒  = − 3

2
,  = − 3

2
. So the line intersects the -plane

at
− 3

2
 0− 3

2


.
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17. From Equation 4, the line segment from r0 = 2 i − j + 4k to r1 = 4 i + 6 j + k is

r() = (1− ) r0 +  r1 = (1− )(2 i− j+ 4k) + (4 i+ 6 j+ k) = (2 i− j+ 4k) + (2 i+ 7 j− 3k), 0 ≤  ≤ 1.

19. Since the direction vectors h2−1 3i and h4−2 5i are not scalar multiples of each other, the lines aren’t parallel. For the
lines to intersect, we must be able to find one value of  and one value of  that produce the same point from the respective

parametric equations. Thus we need to satisfy the following three equations: 3 + 2 = 1 + 4, 4−  = 3− 2,
1 + 3 = 4 + 5. Solving the last two equations we get  = 1,  = 0 and checking, we see that these values don’t satisfy the

first equation. Thus the lines aren’t parallel and don’t intersect, so they must be skew lines.

21. Since the direction vectors h1−2−3i and h1 3−7i aren’t scalar multiples of each other, the lines aren’t parallel. Parametric
equations of the lines are 1:  = 2+ ,  = 3− 2,  = 1− 3 and 2:  = 3+ ,  = −4 + 3,  = 2− 7. Thus, for the
lines to intersect, the three equations 2+  = 3+ , 3− 2 = −4 + 3, and 1− 3 = 2− 7 must be satisfied simultaneously.
Solving the first two equations gives  = 2,  = 1 and checking, we see that these values do satisfy the third equation, so the

lines intersect when  = 2 and  = 1, that is, at the point (4−1−5).

23. Since the plane is perpendicular to the vector h1−2 5i, we can take h1−2 5i as a normal vector to the plane.

(0 0 0) is a point on the plane, so setting  = 1,  = −2,  = 5 and 0 = 0, 0 = 0, 0 = 0 in Equation 7 gives
1(− 0) + (−2)( − 0) + 5( − 0) = 0 or − 2 + 5 = 0 as an equation of the plane.

25. i+ 4 j+ k = h1 4 1i is a normal vector to the plane and −1 1
2
 3

is a point on the plane, so setting  = 1,  = 4,  = 1

0 = −1, 0 = 1
2
, 0 = 3 in Equation 7 gives 1[− (−1)] + 4


 − 1

2


+ 1( − 3) = 0 or + 4 +  = 4 as an equation of

the plane.

27. Since the two planes are parallel, they will have the same normal vectors. So we can take n = h5−1−1i, and an equation of
the plane is 5(− 1)− 1[ − (−1)]− 1[ − (−1)] = 0 or 5−  −  = 7.

29. Since the two planes are parallel, they will have the same normal vectors. So we can take n = h1 1 1i, and an equation of the

plane is 1(− 1) + 1  − 1
2


+ 1


 − 1

3


= 0 or +  +  = 11

6
or 6+ 6 + 6 = 11.

31. Here the vectors a = h1− 0 0− 1 1− 1i = h1−1 0i and b = h1− 0 1− 1 0− 1i = h1 0−1i lie in the plane, so
a× b is a normal vector to the plane. Thus, we can take n = a× b = h1− 0 0 + 1 0 + 1i = h1 1 1i. If 0 is the point

(0 1 1), an equation of the plane is 1(− 0) + 1( − 1) + 1( − 1) = 0 or +  +  = 2.

33. Here the vectors a = h8− 3 2− (−1) 4− 2i = h5 3 2i and b = h−1− 3−2− (−1)−3− 2i = h−4−1−5i lie in

the plane, so a normal vector to the plane is n = a× b = h−15 + 2−8 + 25−5 + 12i = h−13 17 7i and an equation of
the plane is−13(− 3) + 17[ − (−1)] + 7( − 2) = 0 or −13+ 17 + 7 = −42.

35. If we first find two nonparallel vectors in the plane, their cross product will be a normal vector to the plane. Since the given

line lies in the plane, its direction vector a = h−2 5 4i is one vector in the plane. We can verify that the given point (6 0−2)
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does not lie on this line, so to find another nonparallel vector b which lies in the plane, we can pick any point on the line and

find a vector connecting the points. If we put  = 0, we see that (4 3 7) is on the line, so

b = h6− 4 0− 3−2− 7i = h2−3−9i and n = a× b = h−45 + 12 8− 18 6− 10i = h−33−10−4i. Thus, an
equation of the plane is −33(− 6)− 10( − 0)− 4[ − (−2)] = 0 or 33+ 10 + 4 = 190.

37. A direction vector for the line of intersection is a = n1 × n2 = h1 1−1i × h2−1 3i = h2−5−3i, and a is parallel to the
desired plane. Another vector parallel to the plane is the vector connecting any point on the line of intersection to the given

point (−1 2 1) in the plane. Setting  = 0, the equations of the planes reduce to  −  = 2 and − + 3 = 1 with
simultaneous solution  = 7

2
and  = 3

2
. So a point on the line is


0 7

2
 3
2


and another vector parallel to the plane is−1− 3

2
− 1

2


. Then a normal vector to the plane is n = h2−5−3i × −1− 3

2
− 1

2


= h−2 4−8i and an equation of

the plane is−2(+ 1) + 4( − 2)− 8( − 1) = 0 or − 2 + 4 = −1.

39. If a plane is perpendicular to two other planes, its normal vector is perpendicular to the normal vectors of the other two planes.

Thus h2 1−2i × h1 0 3i = h3− 0−2− 6 0− 1i = h3−8−1i is a normal vector to the desired plane. The point
(1 5 1) lies on the plane, so an equation is 3(− 1)− 8( − 5)− ( − 1) = 0 or 3− 8 −  = −38.

41. To find the -intercept we set  =  = 0 in the equation 2+ 5 +  = 10

and obtain 2 = 10 ⇒  = 5 so the -intercept is (5 0 0). When

 =  = 0 we get 5 = 10 ⇒  = 2, so the -intercept is (0 2 0).

Setting  =  = 0 gives  = 10, so the -intercept is (0 0 10) and we

graph the portion of the plane that lies in the first octant.

43. Setting  =  = 0 in the equation 6− 3 + 4 = 6 gives 6 = 6 ⇒
 = 1, when  =  = 0 we have −3 = 6 ⇒  = −2, and  =  = 0

implies 4 = 6 ⇒  = 3
2
, so the intercepts are (1 0 0), (0−2 0), and

(0 0 3
2
). The figure shows the portion of the plane cut off by the coordinate

planes.

45. Substitute the parametric equations of the line into the equation of the plane: (3− )− (2 + ) + 2(5) = 9 ⇒
8 = 8 ⇒  = 1. Therefore, the point of intersection of the line and the plane is given by  = 3− 1 = 2,  = 2 + 1 = 3,
and  = 5(1) = 5 that is, the point (2 3 5).

47. Parametric equations for the line are  = ,  = 1 + ,  = 1
2
 and substituting into the equation of the plane gives

4()− (1 + ) + 3

1
2


= 8 ⇒ 9

2
 = 9 ⇒  = 2. Thus  = 2,  = 1 + 2 = 3,  = 1

2
(2) = 1 and the point of

intersection is (2 3 1).
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49. Setting  = 0, we see that (0 1 0) satisfies the equations of both planes, so that they do in fact have a line of intersection.

v = n1 × n2 = h1 1 1i × h1 0 1i = h1 0−1i is the direction of this line. Therefore, direction numbers of the intersecting
line are 1, 0, −1.

51. Normal vectors for the planes are n1 = h1 4−3i and n2 = h−3 6 7i, so the normals (and thus the planes) aren’t parallel.
But n1 · n2 = −3 + 24− 21 = 0, so the normals (and thus the planes) are perpendicular.

53. Normal vectors for the planes are n1 = h1 1 1i and n2 = h1−1 1i. The normals are not parallel, so neither are the planes.
Furthermore, n1 · n2 = 1− 1 + 1 = 1 6= 0, so the planes aren’t perpendicular. The angle between them is given by

cos  =
n1 · n2
|n1| |n2| =

1√
3
√
3
=
1

3
⇒  = cos−1


1
3

 ≈ 705◦.
55. The normals are n1 = h1−4 2i and n2 = h2−8 4i. Since n2 = 2n1, the normals (and thus the planes) are parallel.

57. (a) To find a point on the line of intersection, set one of the variables equal to a constant, say  = 0. (This will fail if the line of

intersection does not cross the -plane; in that case, try setting  or  equal to 0.) The equations of the two planes reduce

to +  = 1 and + 2 = 1. Solving these two equations gives  = 1,  = 0. Thus a point on the line is (1 0 0).

A vector v in the direction of this intersecting line is perpendicular to the normal vectors of both planes, so we can take

v = n1 × n2 = h1 1 1i × h1 2 2i = h2− 2 1− 2 2− 1i = h0−1 1i. By Equations 2, parametric equations for the
line are  = 1,  = −,  = .

(b) The angle between the planes satisfies cos  =
n1 · n2
|n1| |n2| =

1 + 2 + 2√
3
√
9
=

5

3
√
3
. Therefore  = cos−1


5

3
√
3


≈ 158◦.

59. Setting  = 0, the equations of the two planes become 5− 2 = 1 and 4+  = 6. Solving these two equations gives

 = 1,  = 2 so a point on the line of intersection is (1 2 0). A vector v in the direction of this intersecting line is

perpendicular to the normal vectors of both planes. So we can use v = n1 × n2 = h5−2−2i × h4 1 1i = h0−13 13i or

equivalently we can take v = h0−1 1i, and symmetric equations for the line are  = 1,  − 2−1 =


1
or  = 1,  − 2 = −.

61. The distance from a point (  ) to (1 0−2) is 1 =

(− 1)2 + 2 + ( + 2)2 and the distance from (  ) to

(3 4 0) is 2 =

(− 3)2 + ( − 4)2 + 2. The plane consists of all points (  ) where 1 = 2 ⇒  21 =  22 ⇔

(− 1)2 + 2 + ( + 2)2 = (− 3)2 + ( − 4)2 + 2 ⇔

2 − 2+ 2 + 2 + 4 + 5 = 2 − 6+ 2 − 8 + 2 + 25 ⇔ 4+ 8 + 4 = 20 so an equation for the plane is

4+ 8 + 4 = 20 or equivalently + 2 +  = 5.

Alternatively, you can argue that the segment joining points (1 0−2) and (3 4 0) is perpendicular to the plane and the plane
includes the midpoint of the segment.

63. The plane contains the points ( 0 0), (0  0) and (0 0 ). Thus the vectors a = h−  0i and b = h− 0 i lie in the
plane, and n = a× b = h− 0 0 +  0 + i = h  i is a normal vector to the plane. The equation of the plane is
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therefore +  +  = + 0 + 0 or +  +  = . Notice that if  6= 0,  6= 0 and  6= 0 then we can

rewrite the equation as



+




+




= 1. This is a good equation to remember!

65. Two vectors which are perpendicular to the required line are the normal of the given plane, h1 1 1i, and a direction vector for

the given line, h1−1 2i. So a direction vector for the required line is h1 1 1i × h1−1 2i = h3−1−2i. Thus  is given

by h  i = h0 1 2i+ h3−1−2i, or in parametric form,  = 3,  = 1− ,  = 2− 2.

67. Let  have normal vector n. Then n1 = h3 6−3i, n2 = h4−12 8i, n3 = h3−9 6i, n4 = h1 2−1i. Now n1 = 3n4,

so n1 and n4 are parallel, and hence 1 and 4 are parallel; similarly 2 and 3 are parallel because n2 = 4
3
n3. However, n1

and n2 are not parallel (so not all four planes are parallel). Notice that the point (2 0 0) lies on both 1 and 4, so these two

planes are identical. The point

5
4
 0 0


lies on 2 but not on 3, so these are different planes.

69. Let  = (1 3 4) and  = (2 1 1), points on the line corresponding to  = 0 and  = 1. Let

 = (4 1−2). Then a =
−→
 = h1−2−3i, b =

−−→
 = h3−2−6i. The distance is

 =
|a× b|
|a| =

|h1−2−3i × h3−2−6i|
|h1−2−3i| =

|h6−3 4i|
|h1−2−3i| =


62 + (−3)2 + 42

12 + (−2)2 + (−3)2 =
√
61√
14
=


61

14
.

71. By Equation 9, the distance is =
|1 + 1 + 1 + |√

2 + 2 + 2
=
|3(1) + 2(−2) + 6(4)− 5|√

32 + 22 + 62
=
|18|√
49
=
18

7
.

73. Put  =  = 0 in the equation of the first plane to get the point (2 0 0) on the plane. Because the planes are parallel, the

distance  between them is the distance from (2 0 0) to the second plane. By Equation 9,

 =
|4(2)− 6(0) + 2(0)− 3|

42 + (−6)2 + (2)2 =
5√
56
=

5

2
√
14
or
5
√
14

28
.

75. The distance between two parallel planes is the same as the distance between a point on one of the planes and the other plane.

Let 0 = (0 0 0) be a point on the plane given by +  +  + 1 = 0. Then 0 + 0 + 0 + 1 = 0 and the

distance between 0 and the plane given by +  +  + 2 = 0 is, from Equation 9,

 =
|0 + 0 + 0 + 2|√

2 + 2 + 2
=

|−1 + 2|√
2 + 2 + 2

=
|1 − 2|√
2 + 2 + 2

.

77. 1:  =  =  ⇒  =  (1). 2: + 1 = 2 = 3 ⇒ + 1 = 2 (2). The solution of (1) and (2) is

 =  = −2. However, when  = −2,  =  ⇒  = −2, but + 1 = 3 ⇒  = −3, a contradiction. Hence the

lines do not intersect. For 1, v1 = h1 1 1i, and for 2, v2 = h1 2 3i, so the lines are not parallel. Thus the lines are skew

lines. If two lines are skew, they can be viewed as lying in two parallel planes and so the distance between the skew lines

would be the same as the distance between these parallel planes. The common normal vector to the planes must be

perpendicular to both h1 1 1i and h1 2 3i, the direction vectors of the two lines. So set
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n = h1 1 1i × h1 2 3i = h3− 2−3 + 1 2− 1i = h1−2 1i. From above, we know that (−2−2−2) and (−2−2−3)

are points of 1 and 2 respectively. So in the notation of Equation 8, 1(−2)− 2(−2) + 1(−2) + 1 = 0 ⇒ 1 = 0 and

1(−2)− 2(−2) + 1(−3) + 2 = 0 ⇒ 2 = 1.

By Exercise 75, the distance between these two skew lines is =
|0− 1|√
1 + 4 + 1

=
1√
6
.

Alternate solution (without reference to planes): A vector which is perpendicular to both of the lines is

n = h1 1 1i × h1 2 3i = h1−2 1i. Pick any point on each of the lines, say (−2−2−2) and (−2−2−3), and form the

vector b = h0 0 1i connecting the two points. The distance between the two skew lines is the absolute value of the scalar

projection of b along n, that is, =
|n · b|
|n| =

|1 · 0− 2 · 0 + 1 · 1|√
1 + 4 + 1

=
1√
6
.

79. A direction vector for 1 is v1 = h2 0−1i and a direction vector for 2 is v2 = h3 2 2i. These vectors are not parallel so

neither are the lines. Parametric equations for the lines are 1:  = 2,  = 0,  = −, and 2:  = 1 + 3,  = −1 + 2,

 = 1 + 2. No values of  and  satisfy these equations simultaneously, so the lines don’t intersect and hence are skew. We

can view the lines as lying in two parallel planes; a common normal vector to the planes is n = v1 × v2 = h2−7 4i. Line

1 passes through the origin, so (0 0 0) lies on one of the planes, and (1−1 1) is a point on 2 and therefore on the other

plane. Equations of the planes then are 2− 7 + 4 = 0 and 2− 7 + 4 − 13 = 0, and by Exercise 75, the distance

between the two skew lines is =
|0− (−13)|√
4 + 49 + 16

=
13√
69
.

Alternate solution (without reference to planes): Direction vectors of the two lines are v1 = h2 0−1i and v2 = h3 2 2i.

Then n = v1 ×v2 = h2−7 4i is perpendicular to both lines. Pick any point on each of the lines, say (0 0 0) and (1−1 1),

and form the vector b = h1−1 1i connecting the two points. Then the distance between the two skew lines is the absolute

value of the scalar projection of b along n, that is, =
|n · b|
|n| =

|2 + 7 + 4|√
4 + 49 + 16

=
13√
69
.

81. If  6= 0, then +  +  +  = 0 ⇒ (+ ) + ( − 0) + ( − 0) = 0 which by (7) is the scalar equation of the

plane through the point (− 0 0) with normal vector h  i. Similarly, if  6= 0 (or if  6= 0) the equation of the plane can

be rewritten as (− 0) + ( + ) + ( − 0) = 0 [or as (− 0) + ( − 0) + ( + ) = 0] which by (7) is the

scalar equation of a plane through the point (0− 0) [or the point (0 0−)] with normal vector h  i.
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12.6 Cylinders and Quadric Surfaces

1. (a) In R2, the equation  = 2 represents a parabola.

(b) In R3, the equation  = 2 doesn’t involve , so any

horizontal plane with equation  =  intersects the graph

in a curve with equation  = 2. Thus, the surface is a

parabolic cylinder, made up of infinitely many shifted

copies of the same parabola. The rulings are parallel to

the -axis.

(c) In R3, the equation  = 2 also represents a parabolic

cylinder. Since  doesn’t appear, the graph is formed by

moving the parabola  = 2 in the direction of the -axis.

Thus, the rulings of the cylinder are parallel to the -axis.

3. Since  is missing from the equation, the vertical traces

2 + 2 = 1,  = , are copies of the same circle in

the plane  = . Thus the surface 2 + 2 = 1 is a

circular cylinder with rulings parallel to the -axis.

5. Since  is missing, each vertical trace  = 1− 2,

 = , is a copy of the same parabola in the plane

 = . Thus the surface  = 1− 2 is a parabolic

cylinder with rulings parallel to the -axis.

.
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7. Since  is missing, each horizontal trace  = 1,

 = , is a copy of the same hyperbola in the plane

 = . Thus the surface  = 1 is a hyperbolic

cylinder with rulings parallel to the -axis.

9. (a) The traces of 2 + 2 − 2 = 1 in  =  are 2 − 2 = 1− 2, a family of hyperbolas. (Note that the hyperbolas are

oriented differently for −1    1 than for   −1 or   1.) The traces in  =  are 2 − 2 = 1− 2, a similar

family of hyperbolas. The traces in  =  are 2 + 2 = 1 + 2, a family of circles. For  = 0, the trace in the

-plane, the circle is of radius 1. As || increases, so does the radius of the circle. This behavior, combined with the

hyperbolic vertical traces, gives the graph of the hyperboloid of one sheet in Table 1.

(b) The shape of the surface is unchanged, but the hyperboloid is

rotated so that its axis is the -axis. Traces in  =  are circles,

while traces in  =  and  =  are hyperbolas.

(c) Completing the square in  gives 2 + ( + 1)2 − 2 = 1. The

surface is a hyperboloid identical to the one in part (a) but shifted

one unit in the negative -direction.

11. For  = 2 + 42, the traces in  =  are 2 + 42 = . When   0 we

have a family of ellipses. When  = 0 we have just a point at the origin, and

the trace is empty for   0. The traces in  =  are  = 42 + 2, a

family of parabolas opening in the positive -direction. Similarly, the traces

in  =  are  = 2 + 42, a family of parabolas opening in the positive

-direction. We recognize the graph as an elliptic paraboloid with axis the

-axis and vertex the origin.
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13. 2 = 2 + 42. The traces in  =  are the ellipses 2 + 42 = 2. The

traces in  =  are 2 − 42 = 2, hyperbolas for  6= 0 and two
intersecting lines if  = 0. Similarly, the traces in  =  are

2 − 2 = 42, hyperbolas for  6= 0 and two intersecting lines if  = 0.
We recognize the graph as an elliptic cone with axis the -axis and vertex

the origin.

15. −2 + 42 − 2 = 4. The traces in  =  are the hyperbolas

42− 2 = 4+ 2. The traces in  =  are 2+ 2 = 42 − 4, a family of

circles for ||  1, and the traces in  =  are 42 − 2 = 4+ 2, a family

of hyperbolas. Thus the surface is a hyperboloid of two sheets with

axis the -axis.

17. 362 + 2 +362 = 36. The traces in  =  are 2 + 362 = 36(1− 2),

a family of ellipses for ||  1. (The traces are a single point for || = 1

and are empty for ||  1.) The traces in  =  are the circles

362 + 362 = 36− 2 ⇔ 2 + 2 = 1− 1
36
2, ||  6, and the

traces in  =  are the ellipses 362 + 2 = 36(1− 2), ||  1. The
graph is an ellipsoid centered at the origin with intercepts  = ±1,  = ±6,
 = ±1.

19.  = 2 − 2. The traces in  =  are the parabolas  = 2 − 2;

the traces in  =  are  = 2 − 2, which are hyperbolas (note the hyperbolas

are oriented differently for   0 than for   0); and the traces in  =  are

the parabolas  = 2 − 2. Thus,


1
=

2

12
− 2

12
is a hyperbolic paraboloid.

21. This is the equation of an ellipsoid: 2 + 42 + 92 = 2 +
2

(12)
2
+

2

(13)
2
= 1, with -intercepts ±1, -intercepts± 1

2

and -intercepts± 1
3
. So the major axis is the -axis and the only possible graph is VII.

23. This is the equation of a hyperboloid of one sheet, with  =  =  = 1. Since the coefficient of 2 is negative, the axis of the

hyperboloid is the -axis, hence the correct graph is II.
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25. There are no real values of  and  that satisfy this equation for   0, so this surface does not extend to the left of the

-plane. The surface intersects the plane  =   0 in an ellipse. Notice that  occurs to the first power whereas  and 

occur to the second power. So the surface is an elliptic paraboloid with axis the -axis. Its graph is VI.

27. This surface is a cylinder because the variable  is missing from the equation. The intersection of the surface and the -plane

is an ellipse. So the graph is VIII.

29. 2 = 2 + 1
9
2 or 2 = 2 +

2

9
represents an elliptic

cone with vertex (0 0 0) and axis the -axis.

31. 2 + 2 − 22 = 0 or 2 = 22 − 2 or  = 2 − 2

2

represents a hyperbolic paraboloid with center (0 0 0).

33. Completing squares in  and  gives

42 + ( − 2)2 + 4( − 3)2 = 4 or

2 +
( − 2)2

4
+ ( − 3)2 = 1, an ellipsoid with

center (0 2 3).

35. Completing squares in all three variables gives

(− 2)2 − ( + 1)2 + ( − 1)2 = 0 or
( + 1)2 = (− 2)2 + ( − 1)2, a circular cone with
center (2−1 1) and axis the horizontal line  = 2,
 = 1.

37. Solving the equation for  we get  = ±

1 + 42 + 2, so we plot separately  =


1 + 42 + 2 and

 = −

1 + 42 + 2.
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To restrict the -range as in the second graph, we can use the option view=-4..4 in Maple’s plot3d command, or

PlotRange- {-4,4} in Mathematica’s Plot3D command.

39. Solving the equation for  we get  = ±

42 + 2, so we plot separately  =


42 + 2 and  = −


42 + 2.

41. 43. The surface is a paraboloid of revolution (circular paraboloid) with vertex at

the origin, axis the -axis and opens to the right. Thus the trace in the

-plane is also a parabola:  = 2,  = 0. The equation is  = 2 + 2.

45. Let  = (, , ) be an arbitrary point equidistant from (−1, 0, 0) and the plane  = 1. Then the distance from  to

(−1, 0, 0) is

(+ 1)2 + 2 + 2 and the distance from  to the plane  = 1 is |− 1| 

√
12 = |− 1|

(by Equation 12.5.9). So |− 1| =

(+ 1)2 + 2 + 2 ⇔ (− 1)2 = (+ 1)2 + 2 + 2 ⇔

2 − 2+ 1 = 2 + 2+ 1 + 2 + 2 ⇔ −4 = 2 + 2. Thus the collection of all such points  is a circular

paraboloid with vertex at the origin, axis the -axis, which opens in the negative direction.

47. (a) An equation for an ellipsoid centered at the origin with intercepts  = ±,  = ±, and  = ± is 
2

2
+

2

2
+

2

2
= 1.

Here the poles of the model intersect the -axis at  = ±6356523 and the equator intersects the - and -axes at

 = ±6378137,  = ±6378137, so an equation is

2

(6378137)2
+

2

(6378137)2
+

2

(6356523)2
= 1

(b) Traces in  =  are the circles
2

(6378137)2
+

2

(6378137)2
= 1 − 2

(6356523)2
⇔

2 + 2 = (6378137)2 −

6378137

6356523

2
2.
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(c) To identify the traces in  =  we substitute  =  into the equation of the ellipsoid:

2

(6378137)2
+

()2

(6378137)2
+

2

(6356523)2
= 1

(1 +2)2

(6378137)2
+

2

(6356523)2
= 1

2

(6378137)2(1 +2)
+

2

(6356523)2
= 1

As expected, this is a family of ellipses.

49. If (  ) satisfies  = 2 − 2, then  = 2 − 2. 1:  = + ,  = + ,  = + 2(− ),

2:  = + ,  = − ,  = − 2(+ ). Substitute the parametric equations of 1 into the equation

of the hyperbolic paraboloid in order to find the points of intersection:  = 2 − 2 ⇒

+ 2(− ) = (+ )2 − (+ )2 = 2 − 2 + 2(− ) ⇒  = 2 − 2. As this is true for all values of ,

1 lies on  = 2 − 2. Performing similar operations with 2 gives:  = 2 − 2 ⇒

− 2(+ ) = (− )2 − (+ )2 = 2 − 2 − 2(+ ) ⇒  = 2 − 2. This tells us that all of 2 also lies on

 = 2 − 2.

51. The curve of intersection looks like a bent ellipse. The projection

of this curve onto the -plane is the set of points (  0) which

satisfy 2 + 2 = 1− 2 ⇔ 2 + 22 = 1 ⇔

2 +
2

1
√
2
2 = 1. This is an equation of an ellipse.

12 Review

1. A scalar is a real number, while a vector is a quantity that has both a real-valued magnitude and a direction.

2. To add two vectors geometrically, we can use either the Triangle Law or the Parallelogram Law, as illustrated in Figures 3

and 4 in Section 12.2. Algebraically, we add the corresponding components of the vectors.

3. For   0, a is a vector with the same direction as a and length  times the length of a. If   0, a points in the opposite

direction as a and has length || times the length of a. (See Figures 7 and 15 in Section 12.2.) Algebraically, to find a we
multiply each component of a by .

4. See (1) in Section 12.2.

5. See Theorem 12.3.3 and Definition 12.3.1.
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6. The dot product can be used to find the angle between two vectors and the scalar projection of one vector onto another. In

particular, the dot product can determine if two vectors are orthogonal. Also, the dot product can be used to determine the

work done moving an object given the force and displacement vectors.

7. See the boxed equations as well as Figures 4 and 5 and the accompanying discussion on page 828 [ET 804].

8. See Theorem 12.4.9 and the preceding discussion; use either (4) or (7) in Section 12.4.

9. The cross product can be used to create a vector orthogonal to two given vectors as well as to determine if two vectors are

parallel. The cross product can also be used to find the area of a parallelogram determined by two vectors. In addition, the

cross product can be used to determine torque if the force and position vectors are known.

10. (a) The area of the parallelogram determined by a and b is the length of the cross product: |a× b|.

(b) The volume of the parallelepiped determined by a, b, and c is the magnitude of their scalar triple product: |a · (b× c)|.

11. If an equation of the plane is known, it can be written as + + +  = 0. A normal vector, which is perpendicular to the

plane, is h  i (or any scalar multiple of h  i). If an equation is not known, we can use points on the plane to find two
non-parallel vectors which lie in the plane. The cross product of these vectors is a vector perpendicular to the plane.

12. The angle between two intersecting planes is defined as the acute angle between their normal vectors. We can find this angle

using Corollary 12.3.6.

13. See (1), (2), and (3) in Section 12.5.

14. See (5), (6), and (7) in Section 12.5.

15. (a) Two (nonzero) vectors are parallel if and only if one is a scalar multiple of the other. In addition, two nonzero vectors are

parallel if and only if their cross product is 0.

(b) Two vectors are perpendicular if and only if their dot product is 0.

(c) Two planes are parallel if and only if their normal vectors are parallel.

16. (a) Determine the vectors
−−→
 = h1 2 3i and

−→
 = h1 2 3i. If there is a scalar  such that

h1 2 3i =  h1 2 3i, then the vectors are parallel and the points must all lie on the same line.

Alternatively, if
−−→
×

−→
 = 0, then

−−→
 and

−→
 are parallel, so  , , and  are collinear.

Thirdly, an algebraic method is to determine an equation of the line joining two of the points, and then check whether or

not the third point satisfies this equation.

(b) Find the vectors
−−→
 = a,

−→
 = b,

−→
 = c. a× b is normal to the plane formed by  ,  and , and so  lies on this

plane if a× b and c are orthogonal, that is, if (a× b) · c = 0. (Or use the reasoning in Example 5 in Section 12.4.)
Alternatively, find an equation for the plane determined by three of the points and check whether or not the fourth point

satisfies this equation.
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17. (a) See Exercise 12.4.45.

(b) See Example 8 in Section 12.5.

(c) See Example 10 in Section 12.5.

18. The traces of a surface are the curves of intersection of the surface with planes parallel to the coordinate planes. We can find

the trace in the plane  =  (parallel to the -plane) by setting  =  and determining the curve represented by the resulting

equation. Traces in the planes  =  (parallel to the -plane) and  =  (parallel to the -plane) are found similarly.

19. See Table 1 in Section 12.6.

1. This is false, as the dot product of two vectors is a scalar, not a vector.

3. False. For example, if u = i and v = j then |u · v| = |0| = 0 but |u| |v| = 1 · 1 = 1. In fact, by Theorem 12.3.3,

|u · v| =
|u| |v| cos .

5. True, by Theorem 12.3.2, property 2.

7. True. If  is the angle between u and v, then by Theorem 12.4.9, |u× v| = |u| |v| sin  = |v| |u| sin  = |v× u|.
(Or, by Theorem 12.4.11, |u× v| = |−v× u| = |−1| |v× u| = |v× u|.)

9. Theorem 12.4.11, property 2 tells us that this is true.

11. This is true by Theorem 12.4.11, property 5.

13. This is true because u× v is orthogonal to u (see Theorem 12.4.8), and the dot product of two orthogonal vectors is 0.

15. This is false. A normal vector to the plane is n = h6−2 4i. Because h3−1 2i = 1
2
n, the vector is parallel to n and hence

perpendicular to the plane.

17. This is false. In R2, 2 + 2 = 1 represents a circle, but

(  ) | 2 + 2 = 1


represents a three-dimensional surface,

namely, a circular cylinder with axis the -axis.

19. False. For example, i · j = 0 but i 6= 0 and j 6= 0.

21. This is true. If u and v are both nonzero, then by (7) in Section 12.3, u · v = 0 implies that u and v are orthogonal. But
u× v = 0 implies that u and v are parallel (see Corollary 12.4.10). Two nonzero vectors can’t be both parallel and
orthogonal, so at least one of u, v must be 0.
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1. (a) The radius of the sphere is the distance between the points (−1 2 1) and (6−2 3), namely,
[6− (−1)]2 + (−2− 2)2 + (3− 1)2 = √69. By the formula for an equation of a sphere (see page 813 [ET 789]),

an equation of the sphere with center (−1 2 1) and radius√69 is (+ 1)2 + ( − 2)2 + ( − 1)2 = 69.

(b) The intersection of this sphere with the -plane is the set of points on the sphere whose -coordinate is 0. Putting  = 0

into the equation, we have ( − 2)2 + ( − 1)2 = 68  = 0 which represents a circle in the -plane with center (0 2 1)

and radius
√
68.

(c) Completing squares gives (− 4)2 + ( + 1)2 + ( + 3)2 = −1 + 16 + 1 + 9 = 25. Thus the sphere is centered at
(4−1−3) and has radius 5.

3. u · v = |u| |v| cos 45◦ = (2)(3)
√
2
2
= 3

√
2. |u× v| = |u| |v| sin 45◦ = (2)(3)

√
2
2
= 3

√
2.

By the right-hand rule, u× v is directed out of the page.

5. For the two vectors to be orthogonal, we need h3 2 i · h2 4 i = 0 ⇔ (3)(2) + (2)(4) + ()() = 0 ⇔
2 + 6+ 8 = 0 ⇔ (+ 2)(+ 4) = 0 ⇔  = −2 or  = −4.

7. (a) (u× v) ·w = u · (v×w) = 2

(b) u · (w× v) = u · [− (v×w)] = −u · (v×w) = −2

(c) v · (u×w) = (v× u) ·w = − (u× v) ·w = −2

(d) (u× v) · v = u · (v× v) = u · 0 = 0

9. For simplicity, consider a unit cube positioned with its back left corner at the origin. Vector representations of the diagonals

joining the points (0 0 0) to (1 1 1) and (1 0 0) to (0 1 1) are h1 1 1i and h−1 1 1i. Let  be the angle between these

two vectors. h1 1 1i · h−1 1 1i = −1 + 1 + 1 = 1 = |h1 1 1i| |h−1 1 1i| cos  = 3 cos  ⇒ cos  = 1
3
⇒

 = cos−1

1
3

 ≈ 71◦.
11.
−→
 = h1 0−1i,

−→
 = h0 4 3i, so

(a) a vector perpendicular to the plane is
−→
 ×

−→
 = h0 + 4−(3 + 0) 4− 0i = h4−3 4i.

(b) 1
2

−→ ×−→  = 1
2

√
16 + 9 + 16 =

√
41
2
.

13. Let 1 be the magnitude of the force directed 20◦ away from the direction of shore, and let 2 be the magnitude of the other

force. Separating these forces into components parallel to the direction of the resultant force and perpendicular to it gives

1 cos 20
◦ + 2 cos 30

◦ = 255 (1), and 1 sin 20◦ − 2 sin 30
◦ = 0 ⇒ 1 = 2

sin 30◦

sin 20◦
(2). Substituting (2)

into (1) gives 2(sin 30◦ cot 20◦ + cos 30◦) = 255 ⇒ 2 ≈ 114 N. Substituting this into (2) gives 1 ≈ 166 N.
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15. The line has direction v = h−3 2 3i. Letting 0 = (4−1 2), parametric equations are

 = 4− 3,  = −1 + 2,  = 2+ 3.

17. A direction vector for the line is a normal vector for the plane, n = h2−1 5i, and parametric equations for the line are

 = −2 + 2,  = 2− ,  = 4 + 5.

19. Here the vectors a = h4− 3 0− (−1)  2− 1i = h1 1 1i and b = h6− 3 3− (−1) 1− 1i = h3 4 0i lie in the plane,

so n = a× b = h−4 3 1i is a normal vector to the plane and an equation of the plane is

−4(− 3) + 3( − (−1)) + 1( − 1) = 0 or −4+ 3 +  = −14.

21. Substitution of the parametric equations into the equation of the plane gives 2−  +  = 2(2− )− (1 + 3) + 4 = 2 ⇒

−+ 3 = 2 ⇒  = 1. When  = 1, the parametric equations give  = 2− 1 = 1,  = 1 + 3 = 4 and  = 4. Therefore,

the point of intersection is (1 4 4).

23. Since the direction vectors h2 3 4i and h6−1 2i aren’t parallel, neither are the lines. For the lines to intersect, the three

equations 1 + 2 = −1 + 6, 2 + 3 = 3− , 3 + 4 = −5 + 2 must be satisfied simultaneously. Solving the first two

equations gives  = 1
5
,  = 2

5
and checking we see these values don’t satisfy the third equation. Thus the lines aren’t parallel

and they don’t intersect, so they must be skew.

25. n1 = h1 0−1i and n2 = h0 1 2i. Setting  = 0, it is easy to see that (1 3 0) is a point on the line of intersection of

−  = 1 and  + 2 = 3. The direction of this line is v1 = n1 × n2 = h1−2 1i. A second vector parallel to the desired

plane is v2 = h1 1−2i, since it is perpendicular to +  − 2 = 1. Therefore, the normal of the plane in question is

n = v1 × v2 = h4− 1 1 + 2 1 + 2i = 3 h1 1 1i. Taking (0 0 0) = (1 3 0), the equation we are looking for is

(− 1) + ( − 3) +  = 0 ⇔ +  +  = 4.

27. By Exercise 12.5.75, =
|−2− (−24)|
32 + 12 + (−4)2 =

22√
26
.

29. The equation  =  represents a plane perpendicular to

the -plane and intersecting the -plane in the line

 = ,  = 0.

31. The equation 2 = 2 + 42 represents a (right elliptical)

cone with vertex at the origin and axis the -axis.
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33. An equivalent equation is −2 + 2

4
− 2 = 1, a

hyperboloid of two sheets with axis the -axis. For

||  2, traces parallel to the -plane are circles.

35. Completing the square in  gives

42 + 4( − 1)2 + 2 = 4 or 2 + ( − 1)2 + 2

4
= 1,

an ellipsoid centered at (0 1 0).

37. 42 + 2 = 16 ⇔ 2

4
+

2

16
= 1. The equation of the ellipsoid is

2

4
+

2

16
+

2

2
= 1, since the horizontal trace in the

plane  = 0 must be the original ellipse. The traces of the ellipsoid in the -plane must be circles since the surface is obtained

by rotation about the -axis. Therefore, 2 = 16 and the equation of the ellipsoid is
2

4
+

2

16
+

2

16
= 1 ⇔

42 + 2 + 2 = 16.
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1. Since three-dimensional situations are often difficult to visualize and work with, let

us first try to find an analogous problem in two dimensions. The analogue of a cube

is a square and the analogue of a sphere is a circle. Thus a similar problem in two

dimensions is the following: if five circles with the same radius  are contained in a

square of side 1 m so that the circles touch each other and four of the circles touch

two sides of the square, find .

The diagonal of the square is
√
2. The diagonal is also 4 + 2. But  is the diagonal of a smaller square of side . Therefore

 =
√
2  ⇒ √

2 = 4 + 2 = 4 + 2
√
2  =


4 + 2

√
2

 ⇒  =

√
2

4+ 2
√
2
.

Let’s use these ideas to solve the original three-dimensional problem. The diagonal of the cube is
√
12 + 12 + 12 =

√
3.

The diagonal of the cube is also 4 + 2 where  is the diagonal of a smaller cube with edge . Therefore

 =
√
2 + 2 + 2 =

√
3  ⇒ √

3 = 4 + 2 = 4 + 2
√
3  =


4 + 2

√
3

. Thus  =

√
3

4 + 2
√
3
=
2
√
3 − 3

2
.

The radius of each ball is
√
3− 3

2


m.

3. (a) We find the line of intersection  as in Example 12.5.7(b). Observe that the point (−1  ) lies on both planes. Now since

 lies in both planes, it is perpendicular to both of the normal vectors n1 and n2, and thus parallel to their cross product

n1 × n2 =


i j k

 1 1

1 − 

 =

2−2 + 1−2 − 1. So symmetric equations of  can be written as

+ 1

−2 =
 − 

2 − 1 =
 − 

2 + 1
, provided that  6= 0, ±1.

If  = 0, then the two planes are given by  +  = 0 and  = −1, so symmetric equations of  are  = −1,  = −. If

 = −1, then the two planes are given by−+  +  = −1 and +  +  = −1, and they intersect in the line  = 0,

 = − − 1. If  = 1, then the two planes are given by +  +  = 1 and −  +  = 1, and they intersect in the line

 = 0,  = 1− .

(b) If we set  =  in the symmetric equations and solve for  and  separately, we get + 1 =
(− )(−2)

2 + 1
,

 −  =
(− )(2 − 1)

2 + 1
⇒  =

−2+ (2 − 1)
2 + 1

,  =
(2 − 1)+ 2

2 + 1
. Eliminating  from these equations, we

have 2 + 2 = 2 + 1. So the curve traced out by  in the plane  =  is a circle with center at (0 0 ) and

radius
√
2 + 1.
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(c) The area of a horizontal cross-section of the solid is () = (2 + 1), so  =
 1
0
() = 


1
3
3 + 

1
0
= 4

3
.

5. v3 = projv1v2 =
v1 · v2
|v1|2

v1 =
5

22
v1 so |v3| = 5

22
|v1| = 5

2
,

v4 = projv2v3 =
v2 · v3
|v2|2

v2 =
v2 · 5

22
v1

|v2|2
v2 =

5

22 · 32 (v1 · v2)v2 =
52

22 · 32 v2 ⇒ |v4| = 52

22 · 32 |v2| =
52

22 · 3 ,

v5 = projv3v4 =
v3 · v4
|v3|2

v3 =

5

22
v1 · 52

22 32
v2

5
2

2 
5

22
v1


=

52

24 · 32 (v1 · v2) v1 =
53

24 · 32 v1 ⇒

|v5| = 53

24 · 32 |v1| =
53

23 · 32 . Similarly, |v6| =
54

24 · 33 , |v7| =
55

25 · 34 , and in general, |v| =
5−2

2−2 · 3−3 = 3

5
6

−2
.

Thus

∞
=1

|v|= |v1|+ |v2|+
∞
=3

3

5
6

−2
= 2 + 3 +

∞
=1

3

5
6


= 5 +

∞
=1

5
2


5
6

−1
= 5 +

5
2

1− 5
6

[sum of a geometric series] = 5 + 15 = 20

7. (a) When  = , the block is not moving, so the sum of the forces on the block

must be 0, thusN+F+W = 0 This relationship is illustrated

geometrically in the figure. Since the vectors form a right triangle, we have

tan() =
|F|
|N| =




= .

(b) We place the block at the origin and sketch the force vectors acting on the block, including the additional horizontal force

H, with initial points at the origin. We then rotate this system so that F lies along the positive -axis and the inclined plane

is parallel to the -axis. (See the following figure.)

|F| is maximal, so |F| =  for   . Then the vectors, in terms of components parallel and perpendicular to the

inclined plane, are

N =  j F = () i

W = (− sin ) i+ (− cos ) j H = (min cos ) i+ (−min sin ) j
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Equating components, we have

− sin  + min cos  = 0 ⇒ min cos  +  =  sin  (1)

− cos  − min sin  = 0 ⇒ min sin  + cos  =  (2)

(c) Since (2) is solved for , we substitute into (1):

min cos  + (min sin  + cos ) = sin  ⇒

min cos  + min sin  = sin  − cos  ⇒

min = 


sin  −  cos 

cos  +  sin 


= 


tan  − 
1 +  tan 



From part (a) we know  = tan , so this becomes min = 


tan  − tan 
1 + tan  tan 


and using a trigonometric identity,

this is tan( − ) as desired.

Note for  = , min =  tan 0 = 0, which makes sense since the block is at rest for , thus no additional forceH

is necessary to prevent it from moving. As  increases, the factor tan( − ), and hence the value of min, increases

slowly for small values of  −  but much more rapidly as  −  becomes significant. This seems reasonable, as the

steeper the inclined plane, the less the horizontal components of the various forces affect the movement of the block, so we

would need a much larger magnitude of horizontal force to keep the block motionless. If we allow → 90◦, corresponding

to the inclined plane being placed vertically, the value of min is quite large; this is to be expected, as it takes a great

amount of horizontal force to keep an object from moving vertically. In fact, without friction (so  = 0), we would have

→ 90◦ ⇒ min →∞, and it would be impossible to keep the block from slipping.

(d) Since max is the largest value of  that keeps the block from slipping, the force of friction is keeping the block from

moving up the inclined plane; thus, F is directed down the plane. Our system of forces is similar to that in part (b), then,

except that we have F = −() i. (Note that |F| is again maximal.) Following our procedure in parts (b) and (c), we

equate components:

−− sin  + max cos  = 0 ⇒ max cos  −  =  sin 

− cos  − max sin  = 0 ⇒ max sin  + cos  = 

Then substituting,

max cos  − (max sin  + cos ) =  sin  ⇒

max cos  − max sin  =  sin  + cos  ⇒
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max = 


sin  +  cos 

cos  −  sin 


= 


tan  + 
1−  tan 



= 


tan  + tan 

1− tan  tan 

=  tan( + )

We would expect max to increase as  increases, with similar behavior as we established for min, but with max values

always larger than min. We can see that this is the case if we graph max as a function of , as the curve is the graph of

min translated 2 to the left, so the equation does seem reasonable. Notice that the equation predicts max →∞ as

 → (90◦ − ). In fact, as max increases, the normal force increases as well. When (90◦ − ) ≤  ≤ 90◦, the

horizontal force is completely counteracted by the sum of the normal and frictional forces, so no part of the horizontal

force contributes to moving the block up the plane no matter how large its magnitude.
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13 VECTOR FUNCTIONS

13.1 Vector Functions and Space Curves

1. The component functions
√
4− 2, −3, and ln(+ 1) are all defined when 4− 2 ≥ 0 ⇒ −2 ≤  ≤ 2 and

+ 1  0 ⇒   −1, so the domain of r is (−1 2].

3. lim
→0

−3 = 0 = 1, lim
→0

2

sin2 
= lim

→0

1

sin2 

2

=
1

lim
→0

sin2 

2

=
1

lim
→0

sin 



2 = 1

12
= 1,

and lim
→0

cos 2 = cos 0 = 1. Thus

lim
→0


−3 i+

2

sin2 
j+ cos 2k


=

lim
→0

−3

i+


lim
→0

2

sin2 


j+


lim
→0

cos 2

k = i+ j+ k.

5. lim
→∞

1 + 2

1− 2
= lim

→∞
(12) + 1

(12)− 1 =
0 + 1

0− 1 = −1, lim→∞
tan−1  = 

2
, lim
→∞

1− −2


= lim

→∞
1


− 1

2
= 0− 0 = 0. Thus

lim
→∞


1 + 2

1− 2
 tan−1 

1− −2




=
−1 

2
 0

.

7. The corresponding parametric equations for this curve are  = sin ,  = .

We can make a table of values, or we can eliminate the parameter:  =  ⇒
 = sin , with  ∈ R. By comparing different values of , we find the direction in
which  increases as indicated in the graph.

9. The corresponding parametric equations are  = ,  = 2− ,  = 2, which are

parametric equations of a line through the point (0 2 0) and with direction vector

h1−1 2i.
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11. The corresponding parametric equations are  = 1,  = cos ,  = 2 sin .

Eliminating the parameter in  and  gives 2 + (2)2 = cos2 + sin2  = 1

or 2 + 24 = 1. Since  = 1, the curve is an ellipse centered at (1 0 0) in

the plane  = 1.

13. The parametric equations are  = 2,  = 4,  = 6. These are positive

for  6= 0 and 0 when  = 0. So the curve lies entirely in the first octant.

The projection of the graph onto the -plane is  = 2,   0, a half parabola.

Onto the -plane  = 3,   0, a half cubic, and the -plane, 3 = 2.

15. The projection of the curve onto the -plane is given by r() = h sin  0i [we use 0 for the -component] whose graph

is the curve  = sin,  = 0. Similarly, the projection onto the -plane is r() = h 0 2 cos i, whose graph is the cosine

wave  = 2cos,  = 0, and the projection onto the -plane is r() = h0 sin  2 cos i whose graph is the ellipse

2 + 1
4
2 = 1,  = 0.

-plane -plane -plane

From the projection onto the -plane we see that the curve lies on an elliptical

cylinder with axis the -axis. The other two projections show that the curve

oscillates both vertically and horizontally as we move in the -direction,

suggesting that the curve is an elliptical helix that spirals along the cylinder.

17. Taking r0 = h2 0 0i and r1 = h6 2−2i, we have from Equation 12.5.4
r() = (1− ) r0 +  r1 = (1− ) h2 0 0i+  h6 2−2i, 0 ≤  ≤ 1 or r() = h2 + 4 2−2i, 0 ≤  ≤ 1.
Parametric equations are  = 2 + 4,  = 2,  = −2, 0 ≤  ≤ 1.
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19. Taking r0 = h0−1 1i and r1 =

1
2
 1
3
 1
4


, we have

r() = (1− ) r0 +  r1 = (1− ) h0−1 1i+ 

1
2
 1
3
 1
4


, 0 ≤  ≤ 1 or r() =  1

2
−1 + 4

3
 1− 3

4


, 0 ≤  ≤ 1.

Parametric equations are  = 1
2
,  = −1 + 4

3
,  = 1− 3

4
, 0 ≤  ≤ 1.

21.  =  cos ,  = ,  =  sin ,  ≥ 0. At any point (  ) on the curve, 2 + 2 = 2 cos2 + 2 sin2  = 2 = 2 so the

curve lies on the circular cone 2 + 2 = 2 with axis the -axis. Also notice that  ≥ 0; the graph is II.

23.  = ,  = 1(1 + 2),  = 2. At any point on the curve we have  = 2, so the curve lies on a parabolic cylinder parallel

to the -axis. Notice that 0   ≤ 1 and  ≥ 0. Also the curve passes through (0 1 0) when  = 0 and  → 0,  →∞ as

→ ±∞, so the graph must be V.

25.  = cos 8,  = sin 8,  = 08,  ≥ 0. 2 + 2 = cos2 8+ sin2 8 = 1, so the curve lies on a circular cylinder with

axis the -axis. A point (  ) on the curve lies directly above the point (  0), which moves counterclockwise around the

unit circle in the -plane as  increases. The curve starts at (1 0 1), when  = 0, and  →∞ (at an increasing rate) as

→∞, so the graph is IV.

27. If  =  cos ,  =  sin ,  = , then 2 + 2 = 2 cos2 + 2 sin2  = 2 = 2,

so the curve lies on the cone 2 = 2 + 2. Since  = , the curve is a spiral on

this cone.

29. Parametric equations for the curve are  = ,  = 0,  = 2− 2. Substituting into the equation of the paraboloid

gives 2− 2 = 2 ⇒ 2 = 22 ⇒  = 0, 1. Since r(0) = 0 and r(1) = i+ k, the points of intersection

are (0 0 0) and (1 0 1).

31. r() = hcos  sin 2 sin  sin 2 cos 2i.
We include both a regular plot and a plot

showing a tube of radius 0.08 around the

curve.
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33. r() = h  sin   cos i 35. r() = hcos 2 cos 3 cos 4i

37.  = (1 + cos 16) cos ,  = (1 + cos 16) sin ,  = 1 + cos 16. At any

point on the graph,

2 + 2 = (1 + cos 16)2 cos2 + (1 + cos 16)2 sin2 

= (1 + cos 16)2 = 2, so the graph lies on the cone 2 + 2 = 2.

From the graph at left, we see that this curve looks like the projection of a

leaved two-dimensional curve onto a cone.

39. If  = −1, then  = 1,  = 4,  = 0, so the curve passes through the point (1 4 0). If  = 3, then  = 9,  = −8,  = 28,

so the curve passes through the point (9−8 28). For the point (4 7−6) to be on the curve, we require  = 1− 3 = 7 ⇒

 = −2 But then  = 1 + (−2)3 = −7 6= −6, so (4 7−6) is not on the curve.

41. Both equations are solved for , so we can substitute to eliminate :

2 + 2 = 1 +  ⇒ 2 + 2 = 1 + 2 + 2 ⇒

2 = 1 + 2 ⇒  = 1
2
(2 − 1). We can form parametric equations for the curve  of intersection by choosing a

parameter  = , then  = 1
2
(2 − 1) and  = 1 +  = 1 + 1

2
(2 − 1) = 1

2
(2 + 1). Thus a vector function representing 

is r() =  i+ 1
2
(2 − 1) j+ 1

2
(2 + 1)k.

43. The projection of the curve  of intersection onto the -plane is the circle 2 + 2 = 1,  = 0, so we can write  = cos ,

 = sin , 0 ≤  ≤ 2. Since  also lies on the surface  = 2 − 2, we have  = 2 − 2 = cos2 − sin2  or cos 2.
Thus parametric equations for  are  = cos ,  = sin ,  = cos 2, 0 ≤  ≤ 2, and the corresponding vector function
is r() = cos  i+ sin  j+ cos 2k, 0 ≤  ≤ 2.

45.

 

The projection of the curve  of intersection onto the

-plane is the circle 2 + 2 = 4  = 0. Then we can write

 = 2 cos ,  = 2 sin , 0 ≤  ≤ 2. Since  also lies on

the surface  = 2, we have  = 2 = (2 cos )2 = 4cos2 .

Then parametric equations for  are  = 2cos ,  = 2 sin ,

 = 4 cos2 , 0 ≤  ≤ 2.
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47. For the particles to collide, we require r1() = r2() ⇔ 
2 7− 12 2 = 4− 3 2 5− 6. Equating components

gives 2 = 4− 3, 7− 12 = 2, and 2 = 5− 6. From the first equation, 2− 4+3 = 0 ⇔ (− 3)(− 1) = 0 so  = 1

or  = 3.  = 1 does not satisfy the other two equations, but  = 3 does. The particles collide when  = 3, at the

point (9 9 9).

49. Let u() = h1() 2() 3()i and v() = h1() 2() 3()i. In each part of this problem the basic procedure is to use

Equation 1 and then analyze the individual component functions using the limit properties we have already developed for

real-valued functions.

(a) lim
→

u() + lim
→

v() =

lim
→

1() lim
→

2() lim
→

3()

+

lim
→

1() lim
→

2() lim
→

3()

and the limits of these

component functions must each exist since the vector functions both possess limits as → . Then adding the two vectors

and using the addition property of limits for real-valued functions, we have that

lim
→

u() + lim
→

v() =

lim
→

1() + lim
→

1() lim
→

2() + lim
→

2() lim
→

3() + lim
→

3()


=

lim
→

[1() + 1()]  lim
→

[2() + 2()]  lim
→

[3() + 3()]


= lim
→

h1() + 1() 2() + 2() 3() + 3()i [using (1) backward]

= lim
→

[u() + v()]

(b) lim
→

u() = lim
→

h1() 2() 3()i =

lim
→

1() lim
→

2() lim
→

3()


=

 lim
→

1()  lim
→

2()  lim
→

3()

= 


lim
→

1() lim
→

2() lim
→

3()


=  lim
→

h1() 2() 3()i =  lim
→

u()

(c) lim
→

u() · lim
→

v() =

lim
→

1() lim
→

2() lim
→

3()

·

lim
→

1() lim
→

2() lim
→

3()


=

lim
→

1()
 
lim
→

1()

+

lim
→

2()
 
lim
→

2()

+

lim
→

3()
 
lim
→

3()


= lim
→

1()1() + lim
→

2()2() + lim
→

3()3()

= lim
→

[1()1() + 2()2() + 3()3()] = lim
→

[u() · v()]
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(d) lim
→

u()× lim
→

v() =

lim
→

1() lim
→

2() lim
→

3()

×

lim
→

1() lim
→

2() lim
→

3()


=

lim
→

2()
 
lim
→

3()

−

lim
→

3()
 
lim
→

2()



lim
→

3()
 
lim
→

1()

−

lim
→

1()
 
lim
→

3()



lim
→

1()
 
lim
→

2()

−

lim
→

2()
 
lim
→

1()


=

lim
→

[2()3()− 3()2()]  lim
→

[3()1()− 1()3()] 

lim
→

[1()2()− 2()1()]


= lim
→

h2()3()− 3()2() 3 () 1()− 1()3() 1()2()− 2()1()i

= lim
→

[u()× v()]

51. Let r() = h ()   ()   ()i and b = h1 2 3i. If lim
→

r() = b, then lim
→

r() exists, so by (1),

b = lim
→

r() =

lim
→

() lim
→

() lim
→

()

. By the definition of equal vectors we have lim

→
() = 1, lim

→
() = 2

and lim
→

() = 3. But these are limits of real-valued functions, so by the definition of limits, for every   0 there exists

1  0, 2  0, 3  0 so that if 0  |− |  1 then |()− 1|  3, if 0  |− |  2 then |()− 2|  3, and

if 0  |− |  3 then |()− 3|  3. Letting  =minimum of {1 2 3}, then if 0  |− |   we have

|()− 1|+ |()− 2|+ |()− 3|  3 + 3 + 3 = . But

|r()− b|= |h()− 1 ()− 2 ()− 3i| =

(()− 1)2 + (()− 2)2 + (()− 3)2

≤

[()− 1]2 +


[()− 2]2 +


[()− 3]2 = |()− 1|+ |()− 2|+ |()− 3|

Thus for every   0 there exists   0 such that if 0  |− |   then

|r()− b| ≤ |()− 1|+ |()− 2|+ |()− 3|  . Conversely, suppose for every   0, there exists   0 such

that if 0  |− |   then |r()− b|   ⇔ |h()− 1 ()− 2 ()− 3i|   ⇔
[()− 1]2 + [()− 2]2 + [()− 3]2   ⇔ [()− 1]

2 + [()− 2]
2 + [()− 3]

2  2. But each term

on the left side of the last inequality is positive, so if 0  |− |  , then [()− 1]
2  2, [()− 2]

2  2 and

[()− 3]
2  2 or, taking the square root of both sides in each of the above, |()− 1|  , |()− 2|   and

|()− 3|  . And by definition of limits of real-valued functions we have lim
→

() = 1, lim
→

() = 2 and

lim
→

() = 3. But by (1), lim
→

r() =

lim
→

() lim
→

() lim
→

()

, so lim

→
r() = h1 2 3i = b.
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13.2 Derivatives and Integrals of Vector Functions

1. (a)

(b)
r(45)− r(4)

05
= 2[r(45)− r(4)], so we draw a vector in the same

direction but with twice the length of the vector r(45)− r(4).
r(42)− r(4)

02
= 5[r(42)− r(4)], so we draw a vector in the same

direction but with 5 times the length of the vector r(42)− r(4).

(c) By Definition 1, r0(4) = lim
→0

r(4 + )− r(4)


. T(4) =
r0(4)
|r0(4)| .

(d) T(4) is a unit vector in the same direction as r0(4), that is, parallel to the

tangent line to the curve at r(4) with length 1.

3. Since (+ 2)2 = 2 =  − 1 ⇒
 = (+ 2)2 + 1, the curve is a

parabola.

(a), (c) (b) r0() = h1 2i,
r0(−1) = h1−2i

5.  = sin ,  = 2cos  so

2 + (2)2 = 1 and the curve is

an ellipse.

(a), (c) (b) r0() = cos  i− 2 sin  j,

r0

4


=

√
2

2
i−√2 j
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7. Since  = 2 = ()2 = 2, the

curve is part of a parabola. Note

that here   0,   0.

(a), (c) (b) r0() = 22 i+  j,

r0(0) = 2 i+ j

9. r0() =





[ sin ] 






2





[ cos 2]


= h cos + sin  2 (− sin 2) · 2 + cos 2i

= h cos + sin  2 cos 2− 2 sin 2i

11. r() =  i+ j+ 2
√
k ⇒ r0() = 1 i+ 0 j+ 2


1
2
−12


k = i+

1√

k

13. r() = 
2

i− j+ ln(1 + 3)k ⇒ r0() = 2
2

i+
3

1 + 3
k

15. r0() = 0+ b+ 2 c = b+ 2 c by Formulas 1 and 3 of Theorem 3.

17. r0() =
−− + − 2(1 + 2) 2

 ⇒ r0(0) = h1 2 2i. So |r0(0)| = √12 + 22 + 22 = √9 = 3 and

T(0) =
r0(0)
|r0(0)| =

1
3
h1 2 2i =  1

3
 2
3
 2
3


.

19. r0() = − sin  i + 3 j + 4 cos 2k ⇒ r0(0) = 3 j + 4k. Thus

T(0) =
r0(0)
|r0(0)| =

1√
02 + 32 + 42

(3 j+ 4k) = 1
5
(3 j+ 4k) = 3

5
j+ 4

5
k.

21. r() =

 2 3

 ⇒ r0() =

1 2 32


. Then r0(1) = h1 2 3i and |r0(1)| = √12 + 22 + 32 = √14, so

T(1) =
r0(1)
|r0(1)| =

1√
14
h1 2 3i =


1√
14
 2√

14
 3√

14


. r00() = h0 2 6i, so

r0()× r00() =


i j k

1 2 32

0 2 6

 =
 2 32

2 6

 i −
 1 32

0 6

 j +
 1 2

0 2

k
= (122 − 62) i− (6− 0) j+ (2− 0)k = 62−6 2

23. The vector equation for the curve is r() =

1 + 2

√
 3 −  3 + 


, so r0() =


1
√
 32 − 1 32 + 1. The point

(3 0 2) corresponds to  = 1, so the tangent vector there is r0(1) = h1 2 4i. Thus, the tangent line goes through the point
(3 0 2) and is parallel to the vector h1 2 4i. Parametric equations are  = 3 + ,  = 2,  = 2 + 4.

25. The vector equation for the curve is r() =

− cos  − sin  −


, so

r0() =

−(− sin ) + (cos )(−−), − cos + (sin )(−−), (−−)

=
−−(cos + sin ) −(cos − sin )−−

The point (1 0 1) corresponds to  = 0, so the tangent vector there is

r0(0) =
−0(cos 0 + sin 0) 0(cos 0− sin 0)−0 = h−1 1−1i. Thus, the tangent line is parallel to the vector

h−1 1−1i and parametric equations are  = 1 + (−1) = 1− ,  = 0 + 1 ·  = ,  = 1 + (−1) = 1− .
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27. First we parametrize the curve  of intersection. The projection of  onto the -plane is contained in the circle

2 + 2 = 25,  = 0, so we can write  = 5 cos ,  = 5 sin .  also lies on the cylinder 2 + 2 = 20, and  ≥ 0

near the point (3 4 2), so we can write  =

20− 2 =


20− 25 sin2 . A vector equation then for  is

r() =

5 cos  5 sin 


20− 25 sin2 


⇒ r0() =


−5 sin  5 cos  1

2
(20− 25 sin2 )−12(−50 sin  cos )


.

The point (3 4 2) corresponds to  = cos−1

3
5


, so the tangent vector there is

r0

cos−1


3
5


=


−5 4

5


 5

3
5


 1
2


20− 25  4

5

2−12 −50 4
5


3
5


= h−4 3−6i.

The tangent line is parallel to this vector and passes through (3 4 2), so a vector equation for the line

is r() = (3− 4)i+ (4 + 3)j+ (2− 6)k.

29. r() =

 − 2− 2

 ⇒ r0() =

1−− 2− 2. At (0 1 0),

 = 0 and r0(0) = h1−1 2i. Thus, parametric equations of the tangent
line are  = ,  = 1− ,  = 2.

31. r() = h cos    sin i ⇒ r0() = hcos −  sin  1  cos + sin i.

At (−  0),  =  and r0() = h−1 1−i. Thus, parametric equations
of the tangent line are  = − − ,  =  + ,  = −.

33. The angle of intersection of the two curves is the angle between the two tangent vectors to the curves at the point of

intersection. Since r01() =

1 2 32


and  = 0 at (0 0 0), r01(0) = h1 0 0i is a tangent vector to r1 at (0 0 0). Similarly,

r02() = hcos  2 cos 2 1i and since r2(0) = h0 0 0i, r02 (0) = h1 2 1i is a tangent vector to r2 at (0 0 0). If  is the angle

between these two tangent vectors, then cos  = 1√
1
√
6
h1 0 0i · h1 2 1i = 1√

6
and  = cos−1


1√
6


≈ 66◦.

35.
 2
0
( i− 3 j+ 35 k)  =

 2
0
 

i−

 2
0
3 


j+

 2
0
35 


k

=

1
2
2
2
0
i−  1

4
4
2
0
j+


1
2
6
2
0
k

= 1
2
(4− 0) i− 1

4
(16− 0) j+ 1

2
(64− 0)k = 2 i− 4 j+ 32k
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37.
 2
0

(3 sin2  cos  i+ 3 sin  cos2  j+ 2 sin  cos k) 

=
 2

0
3 sin2  cos  


i+

 2
0

3 sin  cos2  

j+

 2
0

2 sin  cos  

k

=

sin3 

2
0

i+
− cos3 2

0
j+

sin2 

2
0

k = (1− 0) i+ (0 + 1) j+ (1− 0)k = i+ j+ k

39.

(sec2  i+ (2 + 1)3 j+ 2 ln k) =


sec2  


i+


(2 + 1)3 


j+


2 ln  


k

= tan  i+ 1
8
(2 + 1)4 j+


1
3
3 ln − 1

9
3

k+C,

whereC is a vector constant of integration. [For the -component, integrate by parts with  = ln ,  = 2 .]

41. r0() = 2 i+ 32 j+
√
k ⇒ r() = 2 i+ 3 j+ 2

3
32 k+C, whereC is a constant vector.

But i+ j = r (1) = i+ j+ 2
3
k+C. ThusC = − 2

3
k and r() = 2 i+ 3 j+


2
3
32 − 2

3


k.

For Exercises 43–46, let u() = h1() 2() 3()i and v() = h1() 2() 3()i. In each of these exercises, the procedure is to apply

Theorem 2 so that the corresponding properties of derivatives of real-valued functions can be used.

43.



[u() + v()] =




h1() + 1() 2() + 2() 3() + 3()i

=





[1() + 1 ()] 




[2() + 2()] 




[3() + 3()]


= h01() + 01() 

0
2() + 02() 

0
3() + 03()i

= h01() 02 ()  03()i+ h01() 02() 03()i = u0() + v0()

45.



[u()× v()] = 


h2()3()− 3()2() 3()1()− 1()3() 1()2()− 2()1()i

= h023() + 2()
0
3()− 03()2()− 3()

0
2()

03()1() + 3()
0
1 ()− 01()3()− 1()

0
3()

01()2() + 1()
0
2()− 02()1()− 2()

0
1()i

= h02()3()− 03()2 ()  
0
3()1()− 01()3() 

0
1()2()− 02()1()i

+ h2()03()− 3()
0
2() 3()

0
1 ()− 1()

0
3() 1()

0
2()− 2()

0
1()i

= u0()× v() + u()× v0()
Alternate solution: Let r() = u()× v(). Then

r(+ )− r() = [u(+ )× v(+ )]− [u()× v()]
= [u(+ )× v(+ )]− [u()× v()] + [u(+ )× v()]− [u(+ )× v()]
= u(+ )× [v(+ )− v()] + [u(+ )− u()]× v()

(Be careful of the order of the cross product.) Dividing through by  and taking the limit as → 0 we have

r0() = lim
→0

u(+ )× [v(+ )− v()]


+ lim
→0

[u(+ )− u()]× v()


= u()× v0() + u0()× v()

by Exercise 13.1.49(a) and Definition 1.
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47.



[u() · v()] = u0() · v() + u() · v0() [by Formula 4 of Theorem 3]

= hcos − sin  1i · h cos  sin i+ hsin  cos  i · h1− sin  cos i
=  cos − cos  sin + sin + sin − cos  sin +  cos 

= 2 cos + 2 sin − 2 cos  sin 

49. By Formula 4 of Theorem 3,  0() = u0() · v() + u() · v0(), and v0() = 1 2 32, so
 0(2) = u0(2) · v(2) + u(2) · v0(2) = h3 0 4i · h2 4 8i+ h1 2−1i · h1 4 12i = 6 + 0 + 32 + 1 + 8− 12 = 35.

51.



[r()× r0()] = r0()× r0() + r()× r00() by Formula 5 of Theorem 3. But r0()× r0() = 0 (by Example 2 in

Section 12.4). Thus,



[r()× r0()] = r()× r00().

53.



|r()| = 


[r() · r()]12 = 1

2
[r() · r()]−12 [2r() · r0()] = 1

|r()| r() · r
0()

55. Since u() = r() · [r0()× r00()],

u0() = r0() · [r0()× r00()] + r() · 

[r0()× r00()]

= 0 + r() · [r00()× r00() + r0()× r000()] [since r0() ⊥ r0()× r00()]
= r() · [r0()× r000()] [since r00()× r00() = 0]

13.3 Arc Length and Curvature

1. r() = h 3 cos  3 sin i ⇒ r0() = h1−3 sin  3 cos i ⇒

|r0()| =

12 + (−3 sin )2 + (3 cos )2 =


1 + 9(sin2 + cos2 ) =

√
10.

Then using Formula 3, we have  =
 5
−5 |r0()|  =

 5
−5
√
10  =

√
10 

5
−5 = 10

√
10.

3. r() =
√
2  i+ j+ −k ⇒ r0() =

√
2 i+ j− −k ⇒

|r0()| =
√

2
2
+ ()2 + (−−)2 = √2 + 2 + −2 =


( + −)2 =  + − [since  + −  0].

Then  =
 1
0
|r0()|  =  1

0
( + −)  =


 − −

1
0
= − −1.

5. r() = i+ 2 j+ 3 k ⇒ r0() = 2 j+ 32 k ⇒ |r0()| = √42 + 94 = 
√
4 + 92 [since  ≥ 0].

Then  =
 1
0
|r0()|  =  1

0

√
4 + 92  = 1

18
· 2
3
(4 + 92)32

1
0
= 1

27
(1332 − 432) = 1

27
(1332 − 8).

7. r() =

2 3 4

 ⇒ r0() =

2 32 43

 ⇒ |r0()| =

(2)

2
+ (32)2 + (43)2 =

√
42 + 94 + 166, so

 =
 2
0
|r0()|  =  2

0

√
42 + 94 + 166  ≈ 186833.
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9. r() = hsin  cos  tan i ⇒ r0() =

cos − sin  sec2  ⇒

|r0()| =

cos2 + (− sin )2 + (sec2 )2 = √1 + sec4  and  =  4

0
|r0()|  =  4

0

√
1 + sec4   ≈ 12780.

11. The projection of the curve  onto the -plane is the curve 2 = 2 or  = 1
2
2,  = 0. Then we can choose the parameter

 =  ⇒  = 1
2
2. Since  also lies on the surface 3 = , we have  = 1

3
 = 1

3
()( 1

2
2) = 1

6
3. Then parametric

equations for  are  = ,  = 1
2
2,  = 1

6
3 and the corresponding vector equation is r() =


 1
2
2 1

6
3

. The origin

corresponds to  = 0 and the point (6 18 36) corresponds to  = 6, so

=
 6
0
|r0()|  =  6

0

1  1
2
2
  =  6

0


12 + 2 +


1
2
2
2
 =

 6
0


1 + 2 + 1

4
4 

=
 6
0


(1 + 1

2
2)2  =

 6
0
(1 + 1

2
2)  =


+ 1

6
3
6
0
= 6 + 36 = 42

13. r() = 2 i+ (1− 3) j+ (5 + 4)k ⇒ r0() = 2 i− 3 j+ 4k and 

= |r0()| = √4 + 9 + 16 = √29. Then

 = () =
 
0
|r0()|  =  

0

√
29  =

√
29 . Therefore,  = 1√

29
, and substituting for  in the original equation, we

have r(()) = 2√
29
 i+


1− 3√

29


j+


5 + 4√

29


k.

15. Here r() = h3 sin  4 3 cos i, so r0() = h3 cos  4−3 sin i and |r0()| =

9 cos2 + 16 + 9 sin2  =

√
25 = 5.

The point (0 0 3) corresponds to  = 0, so the arc length function beginning at (0 0 3) and measuring in the positive

direction is given by () =
 
0
|r0()|  =  

0
5  = 5. () = 5 ⇒ 5 = 5 ⇒  = 1, thus your location after

moving 5 units along the curve is (3 sin 1 4 3 cos 1).

17. (a) r() = h 3 cos  3 sin i ⇒ r0() = h1−3 sin  3 cos i ⇒ |r0()| =

1 + 9 sin2 + 9cos2  =

√
10.

Then T() =
r0()
|r0()| =

1√
10
h1−3 sin  3 cos i or


1√
10
− 3√

10
sin  3√

10
cos 


.

T0() = 1√
10
h0−3 cos −3 sin i ⇒ |T0()| = 1√

10


0 + 9 cos2 + 9 sin2  = 3√

10
. Thus

N() =
T0()
|T0()| =

1
√
10

3
√
10
h0−3 cos −3 sin i = h0− cos − sin i.

(b) () =
|T0()|
|r0()| =

3
√
10√
10

=
3

10

19. (a) r() =
√
2   −

 ⇒ r0() =
√
2 −− ⇒ |r0()| = √2 + 2 + −2 =


( + −)2 =  + −.

Then

T() =
r0()
|r0()| =

1

 + −
√
2 −− = 1

2 + 1

√
2  2−1 

after multiplying by





and

T0() =
1

2 + 1

√
2  22 0

− 22

(2 + 1)
2

√
2  2−1

=
1

(2 + 1)2


(2 + 1)

√
2  22 0

− 22 √2  2−1 = 1

(2 + 1)2

√
2 


1− 2


 22 22
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Then

|T0()|= 1

(2 + 1)2


22(1− 22 + 4) + 44 + 44 =

1

(2 + 1)
2


22(1 + 22 + 4)

=
1

(2 + 1)2


22 (1 + 2)

2
=

√
2 (1 + 2)

(2 + 1)2
=

√
2 

2 + 1

Therefore

N() =
T0()
|T0()| =

2 + 1√
2 

1

(2 + 1)2

√
2 (1− 2) 22 22


=

1√
2 (2 + 1)

√
2 (1− 2) 22 22


=

1

2 + 1


1− 2

√
2 

√
2 


(b) () =
|T0()|
|r0()| =

√
2 

2 + 1
· 1

 + −
=

√
2 

3 + 2 + −
=

√
2 2

4 + 22 + 1
=

√
2 2

(2 + 1)2

21. r() = 3 j+ 2 k ⇒ r0() = 32 j+ 2k, r00() = 6 j+ 2k, |r0()| =

02 + (32)2 + (2)2 =

√
94 + 42,

r0()× r00() = −62 i, |r0()× r00()| = 62. Then () = |r0()× r00()|
|r0()|3 =

62√
94 + 42

3 = 62

(94 + 42)32
.

23. r() = 3 i+ 4 sin  j+ 4 cos k ⇒ r0() = 3 i+ 4 cos  j− 4 sin k, r00() = −4 sin  j− 4 cos k,

|r0()| =

9 + 16 cos2 + 16 sin2  =

√
9 + 16 = 5, r0()× r00() = −16 i+ 12 cos  j− 12 sin k,

|r0()× r00()| =

256 + 144 cos2 + 144 sin2  =

√
400 = 20. Then () =

|r0()× r00()|
|r0()|3 =

20

53
=
4

25
.

25. r() =

 2 3

 ⇒ r0() =

1 2 32


. The point (1 1 1) corresponds to  = 1, and r0(1) = h1 2 3i ⇒

|r0(1)| = √1 + 4 + 9 = √14. r00() = h0 2 6i ⇒ r00(1) = h0 2 6i. r0(1)× r00(1) = h6−6 2i, so

|r0(1)× r00(1)| = √36 + 36 + 4 = √76. Then (1) = |r0(1)× r00(1)|
|r0(1)|3 =

√
76√
14

3
=
1

7


19

14
.

27. () = 4,  0() = 43,  00() = 122, () =
| 00()|

[1 + ( 0())2]32
=

122
[1 + (43)2]32

=
122

(1 + 166)32

29. () = ,  0() =  + ,  00() =  + 2,

() =
| 00()|

[1 + ( 0())2]32
=

| + 2|
[1 + ( + )2]32

=
|+ 2| 

[1 + ( + )2]32

31. Since 0 = 00 = , the curvature is () =
|00()|

[1 + (0())2]32
=



(1 + 2)32
= (1 + 2)−32.

To find the maximum curvature, we first find the critical numbers of ():

0() = (1 + 2)−32 + 
−3

2


(1 + 2)−52(22) = 

1 + 2 − 32
(1 + 2)52

= 
1− 22

(1 + 2)52
.

0() = 0 when 1− 22 = 0, so 2 = 1
2
or  = − 1

2
ln 2. And since 1− 22  0 for   − 1

2
ln 2 and 1− 22  0
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for   − 1
2
ln 2, the maximum curvature is attained at the point


− 1
2
ln 2 (− ln 2)2


=

− 1
2
ln 2 1√

2


.

Since lim
→∞

(1 + 2)−32 = 0 () approaches 0 as →∞.

33. (a)  appears to be changing direction more quickly at  than, so we would expect the curvature to be greater at  .

(b) First we sketch approximate osculating circles at  and. Using the

axes scale as a guide, we measure the radius of the osculating circle

at  to be approximately 08 units, thus  =
1


⇒

 =
1


≈ 1

08
≈ 13. Similarly, we estimate the radius of the

osculating circle at to be 14 units, so  =
1


≈ 1

14
≈ 07.

35.  = −2 ⇒ 0 = −2−3, 00 = 6−4, and

() =
|00|

1 + (0)2
32 =

6−4
1 + (−2−3)232 = 6

4 (1 + 4−6)32
.

The appearance of the two humps in this graph is perhaps a little surprising, but it is

explained by the fact that  = −2 increases asymptotically at the origin from both

directions, and so its graph has very little bend there. [Note that (0) is undefined.]

37. r() =

 −

√
2
 ⇒ r0() =


(+ 1)−−√2, r00() =


(+ 2) − 0


. Then

r0()× r00() = −√2−√2(+ 2) 2+ 3, |r0()× r00()| =

2−2 + 2(+ 2)22 + (2+ 3)2,

|r0()| =

(+ 1)22 + −2 + 2, and () =

|r0()× r00()|
|r0()|3 =


2−2 + 2(+ 2)22 + (2+ 3)2

[(+ 1)22 + −2 + 2]32
.

We plot the space curve and its curvature function for−5 ≤  ≤ 5 below.

From the graph of () we see that curvature is maximized for  = 0, so the curve bends most sharply at the point (0 1 0).

The curve bends more gradually as we move away from this point, becoming almost linear. This is reflected in the curvature

graph, where () becomes nearly 0 as || increases.

39. Notice that the curve  has two inflection points at which the graph appears almost straight. We would expect the curvature to

be 0 or nearly 0 at these values, but the curve  isn’t near 0 there. Thus,  must be the graph of  = () rather than the graph

of curvature, and  is the graph of  = ().
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41. Using a CAS, we find (after simplifying)

() =
6
√
4 cos2 − 12 cos + 13
(17− 12 cos )32 . (To compute cross

products in Maple, use the VectorCalculus or

LinearAlgebra package and the CrossProduct(a,b)

command; in Mathematica, use Cross[a,b].) Curvature is

largest at integer multiples of 2.

43.  = 2 ⇒ ̇ = 2 ⇒ ̈ = 2,  = 3 ⇒ ̇ = 32 ⇒ ̈ = 6.

Then () =
|̇̈ − ̇̈|
[̇2 + ̇2]32

=

(2)(6)− (32)(2)
[(2)2 + (32)2]32

=

122 − 62
(42 + 94)32

=
62

(42 + 94)32
.

45.  =  cos  ⇒ ̇ = (cos − sin ) ⇒ ̈ = (− sin − cos ) + (cos − sin ) = −2 sin ,
 =  sin  ⇒ ̇ = (cos + sin ) ⇒ ̈ = (− sin + cos ) + (cos + sin ) = 2 cos . Then

() =
|̇̈ − ̇̈|
[̇2 + ̇2]32

=

(cos − sin )(2 cos )− (cos + sin )(−2 sin )


([(cos − sin )]2 + [(cos + sin )]2)32

=

22(cos2 − sin  cos + sin  cos + sin2 )
2(cos2 − 2 cos  sin + sin2 + cos2 + 2cos  sin + sin2 )32 =

22(1)
[2(1 + 1)]

32
=

22

3(2)32
=

1√
2 

47.

1 2

3
 1

corresponds to  = 1. T() =

r0()
|r0()| =


2 22 1


√
42 + 44 + 1

=


2 22 1


22 + 1

, soT(1) =

2
3
 2
3
 1
3


.

T0() = −4(22 + 1)−2 2 22 1+ (22 + 1)−1 h2 4 0i [by Formula 3 of Theorem 13.2.3]

= (22 + 1)−2
−82 + 42 + 2−83 + 83 + 4−4 = 2(22 + 1)−2 1− 22 2−2

N() =
T0()
|T0()| =

2(22 + 1)−2

1− 22 2−2

2(22 + 1)−2

(1− 22)2 + (2)2 + (−2)2 =


1− 22 2−2√
1− 42 + 44 + 82 =


1− 22 2−2

1 + 22

N(1) =
− 1

3
 2
3
− 2

3


andB(1) = T(1)×N(1) = −4

9
− 2

9
− − 4

9
+ 1

9


 4
9
+ 2

9


=
− 2

3
 1
3
 2
3


.

49. (0 −2) corresponds to  = . r() = h2 sin 3  2 cos 3i ⇒

T() =
r0()
|r0()| =

h6 cos 3 1−6 sin 3i
36 cos2 3+ 1 + 36 sin2 3

=
1√
37
h6 cos 3 1−6 sin 3i.

T() = 1√
37
h−6 1 0i is a normal vector for the normal plane, and so h−6 1 0i is also normal. Thus an equation for the

plane is−6 (− 0) + 1( − ) + 0( + 2) = 0 or  − 6 = .

T0() = 1√
37
h−18 sin 3 0−18 cos 3i ⇒ |T0()| =


182 sin2 3+ 182 cos2 3√

37
=

18√
37

⇒

N() =
T0()
|T0()| = h− sin 3 0− cos 3i. SoN() = h0 0 1i andB() =

1√
37
h−6 1 0i × h0 0 1i = 1√

37
h1 6 0i.

SinceB() is a normal to the osculating plane, so is h1 6 0i.
An equation for the plane is 1(− 0) + 6( − ) + 0( + 2) = 0 or + 6 = 6.
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51. The ellipse is given by the parametric equations  = 2cos ,  = 3 sin , so using the result from Exercise 42,

() =
|̇̈ − ̈̇|
[̇2 + ̇2]32

=
|(−2 sin )(−3 sin )− (3 cos )(−2 cos )|

(4 sin2 + 9 cos2 )32
=

6

(4 sin2 + 9cos2 )32
.

At (2 0),  = 0. Now (0) = 6
27
= 2

9
, so the radius of the osculating circle is

1(0) = 9
2
and its center is

−5
2
 0

. Its equation is therefore


+ 5

2

2
+ 2 = 81

4
.

At (0 3),  = 
2
, and 



2


= 6

8
= 3

4
. So the radius of the osculating circle is 4

3
and

its center is

0 5

3


. Hence its equation is 2 +


 − 5

3

2
= 16

9
.

53. The tangent vector is normal to the normal plane, and the vector h6 6−8i is normal to the given plane.

ButT() k r0() and h6 6−8i k h3 3−4i, so we need to find  such that r0() k h3 3−4i.

r() =

3 3 4

 ⇒ r0() =

32 3 43

 k h3 3−4i when  = −1. So the planes are parallel at the point (−1−3 1).
55. First we parametrize the curve of intersection. We can choose  = ; then  = 2 = 2 and  = 2 = 4, and the curve is

given by r() =

2  4


. r0() =


2 1 43


and the point (1 1 1) corresponds to  = 1, so r0(1) = h2 1 4i is a normal

vector for the normal plane. Thus an equation of the normal plane is

2(− 1) + 1( − 1) + 4( − 1) = 0 or 2+  + 4 = 7. T() =
r0()
|r0()| =

1√
42 + 1 + 166


2 1 43


and

T0() = − 1
2
(42 + 1 + 166)−32(8+ 965)


2 1 43


+ (42 + 1 + 166)−12


2 0 122


. A normal vector for

the osculating plane is B(1) = T(1) ×N(1), but r0(1) = h2 1 4i is parallel to T(1) and

T0(1) = −1
2
(21)−32(104)h2 1 4i+ (21)−12h2 0 12i = 2

21
√
21
h−31−26 22i is parallel toN(1) as is h−31−26 22i,

so h2 1 4i × h−31−26 22i = h126−168−21i is normal to the osculating plane. Thus an equation for the osculating

plane is 126(− 1)− 168( − 1)− 21( − 1) = 0 or 6− 8 −  = −3.

57.  =

T
 = T

 = |T|


andN =
T

|T| , so N =

T
 TT
 

=
T


=

T


by the Chain Rule.

59. (a) |B| = 1 ⇒ B ·B = 1 ⇒ 


(B ·B) = 0 ⇒ 2

B


·B = 0 ⇒ B


⊥ B

(b) B = T×N ⇒
B


=




(T×N) = 


(T×N) 1


=




(T×N) 1

|r0()| = [(T
0 ×N) + (T×N0)]

1

|r0()|

=


T0 × T0

|T0|

+ (T×N0)


1

|r0()| =
T×N0

|r0()| ⇒ B


⊥ T
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(c) B = T×N ⇒ T ⊥ N,B ⊥ T andB ⊥ N. SoB, T andN form an orthogonal set of vectors in the three-

dimensional space R3. From parts (a) and (b), B is perpendicular to bothB and T, so B is parallel toN.

Therefore, B = −()N, where () is a scalar.

(d) SinceB = T×N, T ⊥N and both T andN are unit vectors,B is a unit vector mutually perpendicular to bothT and

N. For a plane curve, T andN always lie in the plane of the curve, so that B is a constant unit vector always

perpendicular to the plane. Thus B = 0, but B = −()N andN 6= 0, so () = 0.

61. (a) r0 = 0T ⇒ r00 = 00T+ 0T0 = 00T+ 0
T


0 = 00T+ (0)2N by the first Serret-Frenet formula.

(b) Using part (a), we have

r0 × r00 = (0T)× [00T+ (0)2N]

= [(0T)× (00T)] + (0T)× ((0)2N) [by Property 3 of Theorem 12.4.11 ]

= (000)(T×T) + (0)3(T×N) = 0+ (0)3B = (0)3B

(c) Using part (a), we have

r000 = [00T+ (0)2N]0 = 000T+ 00T0 + 0(0)2N+ 2000N+ (0)2N0

= 000T+ 00
T


0 + 0(0)2N+ 2000N+ (0)2

N


0

= 000T+ 000N+ 0(0)2N+ 2000N+ (0)3(−T+  B) [by the second formula]

= [000 − 2(0)3]T+ [3000 + 0(0)2]N+ (0)3B

(d) Using parts (b) and (c) and the facts thatB ·T = 0,B ·N = 0, andB ·B = 1, we get

(r0 × r00) · r000
|r0 × r00|2 =

(0)3B · [000 − 2(0)3]T+ [3000 + 0(0)2]N+ (0)3B


|(0)3B|2 =
(0)3(0)3

[(0)3]2
=  .

63. r =

 1
2
2 1

3
3
 ⇒ r0 =


1  2


, r00 = h0 1 2i, r000 = h0 0 2i ⇒ r0 × r00 = 2−2 1 ⇒

 =
(r0 × r00) · r000
|r0 × r00|2 =


2−2 1 · h0 0 2i

4 + 42 + 1
=

2

4 + 42 + 1

65. For one helix, the vector equation is r() = h10 cos  10 sin  34(2)i (measuring in angstroms), because the radius of each

helix is 10 angstroms, and  increases by 34 angstroms for each increase of 2 in . Using the arc length formula, letting  go

from 0 to 29× 108 × 2, we find the approximate length of each helix to be

=
 29×108×2
0

|r0()|  =  29×108×2
0


(−10 sin )2 + (10 cos )2 +  34

2

2
 =


100 +


34
2

2


29×108×2
0

= 29× 108 × 2

100 +


34
2

2 ≈ 207× 1010 Å—more than two meters!
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13.4 Motion in Space: Velocity and Acceleration

1. (a) If r() = () i+  () j+ ()k is the position vector of the particle at time t, then the average velocity over the time

interval [0 1] is

vave =
r(1)− r(0)
1− 0 =

(45 i+ 60 j+ 30k)− (27 i+ 98 j+ 37k)
1

= 18 i− 38 j− 07k. Similarly, over the other

intervals we have

[05 1] : vave =
r(1)− r(05)
1− 05 =

(45 i+ 60 j+ 30k)− (35 i+ 72 j+ 33k)
05

= 20 i− 24 j− 06k

[1 2] : vave =
r(2)− r(1)
2− 1 =

(73 i+ 78 j+ 27k)− (45 i+ 60 j+ 30k)
1

= 28 i+ 18 j− 03k

[1 15] : vave =
r(15)− r(1)
15− 1 =

(59 i+ 64 j+ 28k)− (45 i+ 60 j+ 30k)
05

= 28 i+ 08 j− 04k

(b) We can estimate the velocity at  = 1 by averaging the average velocities over the time intervals [05 1] and [1 15]:

v(1) ≈ 1
2
[(2 i− 24 j− 06k) + (28 i+ 08 j− 04k)] = 24 i− 08 j− 05k. Then the speed is

|v(1)| ≈

(24)2 + (−08)2 + (−05)2 ≈ 258.

3. r() =
− 1

2
2 

 ⇒ At  = 2:

v() = r0() = h− 1i v(2) = h−2 1i

a() = r00() = h−1 0i a(2) = h−1 0i

|v()| = √2 + 1

5. r() = 3 cos  i+ 2 sin  j ⇒ At  = 3:

v() = −3 sin  i+ 2 cos  j v


3


= − 3

√
3

2
i+ j

a() = −3 cos  i− 2 sin  j a


3


= − 3

2
i−√3 j

|v()| =

9 sin2 + 4 cos2  =


4 + 5 sin2 

Notice that 29 + 24 = sin2 + cos2  = 1, so the path is an ellipse.

7. r() =  i+ 2 j+ 2k ⇒ At  = 1:

v() = i+ 2 j v(1) = i+ 2 j

a() = 2 j a(1) = 2 j

|v()| = √1 + 42

Here  = ,  = 2 ⇒  = 2 and  = 2, so the path of the particle is a

parabola in the plane  = 2.
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9. r() =

2 +  2 −  3

 ⇒ v() = r0() =

2+ 1 2− 1 32, a() = v0() = h2 2 6i,

|v()| =

(2+ 1)2 + (2− 1)2 + (32)2 = √94 + 82 + 2.

11. r() =
√
2  i+  j+ − k ⇒ v() = r0() =

√
2 i+  j− − k, a() = v0() =  j+ − k,

|v()| = √2 + 2 + −2 =

( + −)2 =  + −.

13. r() = hcos  sin  i ⇒

v() = r0() = hcos  sin  i+  h− sin  cos  1i = hcos − sin  sin + cos  + 1i

a() = v0() = hcos − sin − sin − cos  sin + cos + cos − sin  + 1 + 1i
= h−2 sin  2 cos  + 2i

|v()| = 

cos2 + sin2 − 2 cos  sin + sin2 + cos2 + 2 sin  cos + 2 + 2+ 1

= 
√
2 + 2+ 3

15. a() = i+ 2 j ⇒ v() =

a()  =


(i+ 2 j)  =  i+ 2 j+C and k = v (0) = C,

soC = k and v() =  i+ 2 j+ k. r() =

v()  =


( i+ 2 j+ k)  = 1

2
2 i+ 2 j+ k+D.

But i = r (0) = D, soD = i and r() =

1
2
2 + 1


i+ 2 j+ k.

17. (a) a() = 2 i+ sin  j+ cos 2k ⇒
v() =


(2 i+ sin  j+ cos 2k)  = 2 i− cos  j+ 1

2
sin 2k+C

and i = v (0) = −j+C, soC = i+ j

and v() =

2 + 1


i+ (1− cos ) j+ 1

2
sin 2k.

r() =

[

2 + 1


i+ (1− cos ) j+ 1

2
sin 2k]

=

1
3
3 + 


i+ (− sin ) j− 1

4
cos 2k+D

But j = r (0) = −1
4
k+D, soD = j+ 1

4
k and r() =


1
3
3 + 


i+ (− sin + 1) j+  1

4
− 1

4
cos 2


k.

(b)

19. r() =

2 5 2 − 16 ⇒ v() = h2 5 2− 16i, |v()| = √42 + 25 + 42 − 64+ 256 = √82 − 64+ 281

and



|v()| = 1

2
(82 − 64+ 281)−12(16− 64). This is zero if and only if the numerator is zero, that is,

16− 64 = 0 or  = 4. Since 


|v()|  0 for   4 and




|v()|  0 for   4, the minimum speed of

√
153 is attained

at  = 4 units of time.

21. |F()| = 20 N in the direction of the positive -axis, so F() = 20k. Also = 4 kg, r(0) = 0 and v(0) = i− j.
Since 20k = F() = 4a(), a() = 5k. Then v() = 5k+ c1 where c1 = i− j so v() = i− j+ 5k and the

speed is |v()| = √1 + 1 + 252 = √252 + 2. Also r() =  i−  j+ 5
2
2 k+ c2 and 0 = r(0), so c2 = 0

and r() =  i−  j+ 5
2
2 k.
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23. |v(0)| = 200 ms and, since the angle of elevation is 60◦, a unit vector in the direction of the velocity is

(cos 60◦)i+ (sin 60◦)j = 1
2
i+

√
3
2
j. Thus v(0) = 200


1
2
i+

√
3
2
j

= 100 i+ 100

√
3 j and if we set up the axes so that the

projectile starts at the origin, then r(0) = 0. Ignoring air resistance, the only force is that due to gravity, so

F() = a() = − j where  ≈ 98 ms2. Thus a() = −98 j and, integrating, we have v() = −98 j+C. But

100 i+ 100
√
3 j = v(0) = C, so v() = 100 i+


100

√
3− 98 j and then (integrating again)

r() = 100  i+

100

√
3 − 492 j+D where 0 = r(0) = D. Thus the position function of the projectile is

r() = 100  i+

100

√
3 − 492 j.

(a) Parametric equations for the projectile are () = 100, () = 100
√
3 − 492. The projectile reaches the ground when

() = 0 (and   0) ⇒ 100
√
3 − 492 = 


100

√
3− 49 = 0 ⇒  = 100

√
3

49
≈ 353 s. So the range is



100
√
3

49


= 100


100
√
3

49


≈ 3535 m.

(b) The maximum height is reached when () has a critical number (or equivalently, when the vertical component

of velocity is 0): 0() = 0 ⇒ 100
√
3− 98 = 0 ⇒  = 100

√
3

98
≈ 177 s. Thus the maximum height is



100
√
3

98


= 100

√
3

100
√
3

98


− 49


100
√
3

98

2
≈ 1531 m.

(c) From part (a), impact occurs at  = 100
√
3

49
s. Thus, the velocity at impact is

v

100
√
3

49


= 100 i +


100

√
3− 98


100
√
3

49


j = 100 i − 100√3 j and the speed isv100√349

 = √10,000 + 30,000 = 200 ms.
25. As in Example 5, r() = (0 cos 45◦) i+


(0 sin 45

◦)− 1
2
2

j = 1

2


0
√
2  i+


0
√
2 − 2


j

. The ball lands when

 = 0 (and   0) ⇒  =
0
√
2


s. Now since it lands 90 m away, 90 =  = 1

2
0
√
2
0
√
2


or 20 = 90 and the initial

velocity is 0 =
√
90 ≈ 30 ms.

27. Let  be the angle of elevation. Then 0 = 150 ms and from Example 5, the horizontal distance traveled by the projectile is

 =
20 sin 2


. Thus

1502 sin 2


= 800 ⇒ sin 2 =

800

1502
≈ 03484 ⇒ 2 ≈ 204◦ or 180− 204 = 1596◦.

Two angles of elevation then are  ≈ 102◦ and  ≈ 798◦.

29. Place the catapult at the origin and assume the catapult is 100 meters from the city, so the city lies between (100 0)

and (600 0). The initial speed is 0 = 80 ms and let  be the angle the catapult is set at. As in Example 5, the trajectory of

the catapulted rock is given by r () = (80 cos ) i+

(80 sin )− 492 j. The top of the near city wall is at (100 15),

which the rock will hit when (80 cos )  = 100 ⇒  =
5

4 cos 
and (80 sin )− 492 = 15 ⇒
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80 sin  · 5

4 cos 
− 49


5

4 cos 

2
= 15 ⇒ 100 tan  − 765625 sec2  = 15. Replacing sec2  with tan2  + 1 gives

765625 tan2  − 100 tan  + 2265625 = 0. Using the quadratic formula, we have tan  ≈ 0230635, 128306 ⇒
 ≈ 130◦, 855◦. So for 130◦    855◦, the rock will land beyond the near city wall. The base of the far wall is

located at (600 0) which the rock hits if (80 cos ) = 600 ⇒  =
15

2 cos 
and (80 sin )− 492 = 0 ⇒

80 sin  · 15

2 cos 
− 49


15

2 cos 

2
= 0 ⇒ 600 tan  − 275625 sec2  = 0 ⇒

275625 tan2  − 600 tan  + 275625 = 0. Solutions are tan  ≈ 0658678, 151819 ⇒  ≈ 334◦, 566◦. Thus the
rock lands beyond the enclosed city ground for 334◦    566◦, and the angles that allow the rock to land on city ground

are 130◦    334◦, 566◦    855◦. If you consider that the rock can hit the far wall and bounce back into the city, we

calculate the angles that cause the rock to hit the top of the wall at (600 15): (80 cos ) = 600 ⇒  =
15

2 cos 
and

(80 sin )− 492 = 15 ⇒ 600 tan  − 275625 sec2  = 15 ⇒ 275625 tan2  − 600 tan  + 290625 = 0.
Solutions are tan  ≈ 0727506, 144936 ⇒  ≈ 360◦, 554◦, so the catapult should be set with angle  where
130◦    360◦, 554◦    855◦.

31. Here a() = −4 j− 32k so v() = −4 j− 32k+ v0 = −4 j− 32k+ 50 i+ 80k = 50 i− 4 j+ (80− 32)k and

r() = 50 i− 22 j+ (80− 162)k (note that r0 = 0). The ball lands when the -component of r() is zero

and   0: 80− 162 = 16(5 − ) = 0 ⇒  = 5. The position of the ball then is

r(5) = 50(5) i− 2(5)2 j+ [80(5)− 16(5)2]k = 250 i− 50 j or equivalently the point (250−50 0). This is a distance of
2502 + (−50)2 + 02 = √65,000 ≈ 255 ft from the origin at an angle of tan−1  50

250

 ≈ 113◦ from the eastern direction
toward the south. The speed of the ball is |v(5)| = |50 i− 20 j− 80k| =


502 + (−20)2 + (−80)2 = √9300 ≈ 964 ft/s.

33. (a) After  seconds, the boat will be 5 meters west of point . The velocity

of the water at that location is 3
400
(5)(40− 5) j. The velocity of the

boat in still water is 5 i so the resultant velocity of the boat is

v() = 5 i+ 3
400
(5)(40− 5) j = 5i+  3

2
− 3

16
2

j. Integrating, we obtain

r() = 5 i+

3
4
2 − 1

16
3

j+C. If we place the origin at  (and consider j

to coincide with the northern direction) then r(0) = 0 ⇒ C = 0 and we have r() = 5 i+

3
4
2 − 1

16
3

j. The boat

reaches the east bank after 8 s, and it is located at r(8) = 5(8)i+

3
4
(8)2 − 1

16
(8)3


j = 40 i+16 j. Thus the boat is 16 m

downstream.

(b) Let  be the angle north of east that the boat heads. Then the velocity of the boat in still water is given by

5(cos) i+ 5(sin) j. At  seconds, the boat is 5(cos) meters from the west bank, at which point the velocity

of the water is 3
400
[5(cos)][40− 5(cos)] j. The resultant velocity of the boat is given by
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v() = 5(cos) i+

5 sin+ 3

400
(5 cos)(40− 5 cos) j = (5 cos) i+ 5 sin+ 3

2
 cos− 3

16
2 cos2 


j.

Integrating, r() = (5 cos) i+

5 sin+ 3

4
2 cos− 1

16
3 cos2 


j (where we have again placed

the origin at ). The boat will reach the east bank when 5 cos = 40 ⇒  =
40

5 cos
=

8

cos
.

In order to land at point (40 0) we need 5 sin+ 3
4
2 cos− 1

16
3 cos2  = 0 ⇒

5


8

cos


sin+ 3

4


8

cos

2
cos− 1

16


8

cos

3
cos2  = 0 ⇒ 1

cos
(40 sin+ 48− 32) = 0 ⇒

40 sin+ 16 = 0 ⇒ sin = − 2
5
. Thus  = sin−1

− 2
5

 ≈ −236◦, so the boat should head 236◦ south of
east (upstream). The path does seem realistic. The boat initially heads

upstream to counteract the effect of the current. Near the center of the river,

the current is stronger and the boat is pushed downstream. When the boat

nears the eastern bank, the current is slower and the boat is able to progress

upstream to arrive at point .

35. If r0() = c× r() then r0() is perpendicular to both c and r(). Remember that r0() points in the direction of motion, so if
r0() is always perpendicular to c, the path of the particle must lie in a plane perpendicular to c. But r0() is also perpendicular

to the position vector r() which confines the path to a sphere centered at the origin. Considering both restrictions, the path

must be contained in a circle that lies in a plane perpendicular to c, and the circle is centered on a line through the origin in the

direction of c.

37. r() = (3 − 3) i + 32 j ⇒ r0() = (3 − 32) i + 6 j,

|r0()| =

(3− 32)2 + (6)2 = √9 + 182 + 94 =


(3− 32)2 = 3 + 32,

r00() = −6 i + 6 j, r0() × r00() = (18 + 182)k. Then Equation 9 gives

 =
r0() · r00()
|r0()| =

(3− 32)(−6) + (6)(6)
3 + 32

=
18+ 183

3 + 32
=
18(1 + 2)

3(1 + 2)
= 6


or by Equation 8,

 = 0 =





3 + 32


= 6


and Equation 10 gives  =

|r0()× r00()|
|r0()| =

18 + 182

3 + 32
=
18(1 + 2)

3(1 + 2)
= 6.

39. r() = cos  i+ sin  j+ k ⇒ r0() = − sin  i+ cos  j+ k, |r0()| =

sin2 + cos2 + 1 =

√
2,

r00() = − cos  i− sin  j, r0()× r00() = sin  i− cos  j+ k.

Then  =
r0() · r00()
|r0()| =

sin  cos − sin  cos √
2

= 0 and  =
|r0()× r00()|

|r0()| =


sin2 + cos2 + 1√

2
=

√
2√
2
= 1.

41. r() =  i+
√
2  j+ − k ⇒ r0() =  i+

√
2 j− − k, |r()| = √2 + 2 + −2 =


( + −)2 =  + −,

r00() =  i + − k. Then  =
2 − −2

 + −
=
( + −)( − −)

 + −
=  − − = 2 sinh 

and  =

√2− i− 2 j−√2 k
 + −

=


2(−2 + 2 + 2)

 + −
=
√
2
 + −

 + −
=
√
2.
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43. The tangential component of a is the length of the projection of a onto T, so we sketch

the scalar projection of a in the tangential direction to the curve and estimate its length to

be 45 (using the fact that a has length 10 as a guide). Similarly, the normal component of

a is the length of the projection of a ontoN, so we sketch the scalar projection of a in the

normal direction to the curve and estimate its length to be 90. Thus  ≈ 45 cms2 and

 ≈ 90 cms2.

45. If the engines are turned off at time , then the spacecraft will continue to travel in the direction of v(), so we need a  such

that for some scalar   0, r() + v() = h6 4 9i. v() = r0() = i+
1


j+

8

(2 + 1)2
k ⇒

r() + v() =


3 + +  2 + ln +




 7− 4

2 + 1
+

8

(2 + 1)2


⇒ 3 + +  = 6 ⇒  = 3− ,

so 7− 4

2 + 1
+
8(3− )

(2 + 1)2
= 9 ⇔ 24− 122 − 4

(2 + 1)2
= 2 ⇔ 4 + 82 − 12+ 3 = 0.

It is easily seen that  = 1 is a root of this polynomial. Also 2 + ln 1 +
3− 1
1

= 4, so  = 1 is the desired solution.

13 Review

1. A vector function is a function whose domain is a set of real numbers and whose range is a set of vectors. To find the derivative

or integral, we can differentiate or integrate each component of the vector function.

2. The tip of the moving vector r() of a continuous vector function traces out a space curve.

3. The tangent vector to a smooth curve at a point  with position vector r() is the vector r0(). The tangent line at  is the line

through  parallel to the tangent vector r0(). The unit tangent vector is T() =
r0()
|r0()| .

4. (a) (a) – (f ) See Theorem 13.2.3.

5. Use Formula 13.3.2, or equivalently, 13.3.3.

6. (a) The curvature of a curve is  =

T
 whereT is the unit tangent vector.

(b) () =

T0()
r0()

 (c) () =
|r0()× r00()|
|r0()|3 (d) () =

| 00()|
[1 + ( 0())2]32

7. (a) The unit normal vector: N() =
T0()
|T0()| . The binormal vector: B() = T()×N().

(b) See the discussion preceding Example 7 in Section 13.3.

8. (a) If r() is the position vector of the particle on the space curve, the velocity v() = r0(), the speed is given by |v()|,
and the acceleration a() = v0() = r00().
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(b) a = T+ N where  = 0 and  = 2.

9. See the statement of Kepler’s Laws on page 892 [ET 868].

1. True. If we reparametrize the curve by replacing  = 3, we have r() =  i+ 2 j+ 3k, which is a line through the origin

with direction vector i+ 2 j+ 3k.

3. False. The vector function represents a line, but the line does not pass through the origin; the -component is 0 only for  = 0

which corresponds to the point (0 3 0) not (0 0 0).

5. False. By Formula 5 of Theorem 13.2.3,



[u()× v()] = u0()× v() + u()× v0().

7. False.  is the magnitude of the rate of change of the unit tangent vectorT with respect to arc length , not with respect to .

9. True. At an inflection point where  is twice continuously differentiable we must have  00() = 0, and by Equation 13.3.11,

the curvature is 0 there.

11. False. If r() is the position of a moving particle at time  and |r()| = 1 then the particle lies on the unit circle or the unit

sphere, but this does not mean that the speed |r0()| must be constant. As a counterexample, let r() = √1− 2

, then

r0() =

1−√1− 2


and |r()| = √2 + 1− 2 = 1 but |r0()| =


1 + 2(1− 2) = 1

√
1− 2 which is not

constant.

13. True. See the discussion preceding Example 7 in Section 13.3.

1. (a) The corresponding parametric equations for the curve are  = ,

 = cos ,  = sin . Since 2 + 2 = 1, the curve is contained in a

circular cylinder with axis the -axis. Since  = , the curve is a helix.

(b) r() =  i+ cos  j+ sin k ⇒
r0() = i−  sin  j+  cos k ⇒
r00() = −2 cos  j− 2 sin k

3. The projection of the curve  of intersection onto the -plane is the circle 2 + 2 = 16  = 0. So we can write

 = 4 cos ,  = 4 sin , 0 ≤  ≤ 2. From the equation of the plane, we have  = 5−  = 5− 4 cos , so parametric

equations for  are  = 4cos ,  = 4 sin ,  = 5− 4 cos , 0 ≤  ≤ 2, and the corresponding vector function is

r() = 4 cos  i+ 4 sin  j+ (5− 4 cos )k, 0 ≤  ≤ 2.
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5.
 1
0
(2 i+  cos  j+ sin k)  =

 1
0
2 


i+

 1
0
 cos  


j+

 1
0
sin  


k

=

1
3
3
1
0
i+




sin 

1
0
−  1

0

1

sin  


j+

− 1

cos 

1
0
k

= 1
3
i+


1

2
cos 

1
0
j+ 2


k = 1

3
i− 2

2
j+ 2


k

where we integrated by parts in the -component.

7. r() =

2 3 4

 ⇒ r0() =

2 32 43

 ⇒ |r0()| = √42 + 94 + 166 and

 =
 3
0
|r0()|  =  3

0

√
42 + 94 + 166 . Using Simpson’s Rule with () =

√
42 + 94 + 166 and  = 6 we

have∆ = 3−0
6
= 1

2
and

≈ ∆
3


(0) + 4


1
2


+ 2(1) + 4


3
2


+ 2(2) + 4


5
2


+ (3)


= 1

6

√
0 + 0 + 0 + 4 ·


4

1
2

2
+ 9

1
2

4
+ 16


1
2

6
+ 2 ·


4(1)2 + 9(1)4 + 16(1)6

+ 4 ·

4

3
2

2
+ 9

3
2

4
+ 16


3
2

6
+ 2 ·


4(2)2 + 9(2)4 + 16(2)6

+ 4 ·

4

5
2

2
+ 9

5
2

4
+ 16


5
2

6
+

4(3)2 + 9(3)4 + 16(3)6


≈ 86631

9. The angle of intersection of the two curves, , is the angle between their respective tangents at the point of intersection.

For both curves the point (1 0 0) occurs when  = 0.

r01() = − sin  i+ cos  j+ k ⇒ r01(0) = j+ k and r
0
2() = i+ 2 j+ 32 k ⇒ r02(0) = i.

r01(0) · r02(0) = (j+ k) · i = 0. Therefore, the curves intersect in a right angle, that is,  = 
2
.

11. (a) T() =
r0()
|r0()| =


2  1


|h2  1i| =


2  1


√
4 + 2 + 1

(b) T0() = − 1
2
(4 + 2 + 1)−32(43 + 2)


2  1


+ (4 + 2 + 1)−12h2 1 0i

=
−23 − 

(4 + 2 + 1)32


2  1


+

1

(4 + 2 + 1)12
h2 1 0i

=

−25 − 3−24 − 2−23 − 

+

25 + 23 + 2 4 + 2 + 1 0


(4 + 2 + 1)32

=


3 + 2−4 + 1−23 − 


(4 + 2 + 1)32

|T0()| =
√
6 + 44 + 42 + 8 − 24 + 1 + 46 + 44 + 2

(4 + 2 + 1)32
=

√
8 + 56 + 64 + 52 + 1

(4 + 2 + 1)32
and

N() =


3 + 2 1− 4−23 − 


√
8 + 56 + 64 + 52 + 1

.

(c) () =
|T0()|
|r0()| =

√
8 + 56 + 64 + 52 + 1

(4 + 2 + 1)2
or

√
4 + 42 + 1

(4 + 2 + 1)32

13. 0 = 43, 00 = 122 and () =
|00|

[1 + (0)2]32
=

122
(1 + 166)32

, so (1) =
12

1732
.
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15. r() = hsin 2  cos 2i ⇒ r0() = h2 cos 2 1−2 sin 2i ⇒ T() = 1√
5
h2 cos 2 1−2 sin 2i ⇒

T0() = 1√
5
h−4 sin 2 0−4 cos 2i ⇒ N() = h− sin 2 0− cos 2i. SoN =N() = h0 0−1i and

B = T×N = 1√
5
h−1 2 0i. So a normal to the osculating plane is h−1 2 0i and an equation is

−1(− 0) + 2( − ) + 0( − 1) = 0 or − 2 + 2 = 0.

17. r() =  ln  i+  j+ − k, v() = r0() = (1 + ln ) i+ j− − k,

|v ()| =

(1 + ln )2 + 12 + (−−)2 =


2 + 2 ln + (ln )2 + −2, a() = v0() = 1


i+ − k

19. We set up the axes so that the shot leaves the athlete’s hand 7 ft above the origin. Then we are given r(0) = 7j,

|v(0)| = 43 fts, and v(0) has direction given by a 45◦ angle of elevation. Then a unit vector in the direction of v(0) is
1√
2
(i+ j) ⇒ v(0) = 43√

2
(i+ j). Assuming air resistance is negligible, the only external force is due to gravity, so as in

Example 13.4.5 we have a = − j where here  ≈ 32 fts2. Since v0() = a(), we integrate, giving v() = − j+C

whereC = v(0) = 43√
2
(i+ j) ⇒ v () = 43√

2
i+


43√
2
− 


j. Since r0() = v() we integrate again, so

r() = 43√
2
 i+


43√
2
− 1

2
2

j+D. ButD = r(0) = 7 j ⇒ r() = 43√

2
 i+


43√
2
− 1

2
2 + 7


j.

(a) At 2 seconds, the shot is at r(2) = 43√
2
(2) i+


43√
2
(2)− 1

2
(2)2 + 7


j ≈ 608 i+ 38 j, so the shot is about 38 ft above

the ground, at a horizontal distance of 608 ft from the athlete.

(b) The shot reaches its maximum height when the vertical component of velocity is 0: 43√
2
−  = 0 ⇒

 =
43√
2 

≈ 095 s. Then r(095) ≈ 289 i+ 214 j, so the maximum height is approximately 214 ft.

(c) The shot hits the ground when the vertical component of r() is 0, so 43√
2
− 1

2
2 + 7 = 0 ⇒

−162 + 43√
2
+ 7 = 0 ⇒  ≈ 211 s. r(211) ≈ 642 i− 008 j, thus the shot lands approximately 642 ft from the

athlete.

21. (a) Instead of proceeding directly, we use Formula 3 of Theorem 13.2.3: r() = R() ⇒
v = r0() = R() + R0() = cos i+ sin j+ v.

(b) Using the same method as in part (a) and starting with v = R() + R0(), we have

a = v0 = R0() +R0() + R00() = 2R0() + R00() = 2v + a.

(c) Here we have r() = − cos i + − sin j = −R(). So, as in parts (a) and (b),

v = r0() = −R0()− −R() = −[R0()−R()] ⇒

a = v0 = −[R00()−R0()]− −[R0()−R()] = −[R00()− 2R0() +R()]

= − a − 2− v + −R

Thus, the Coriolis acceleration (the sum of the “extra” terms not involving a) is −2− v + −R.
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23. (a) r() =  cos i+ sin j ⇒ v = r0() = − sin i+  cos j, so r = (cos i+ sin j) and

v = (− sin i+ cos j). v · r = 2(− cos sin+ sin cos) = 0, so v ⊥ r. Since r points along a
radius of the circle, and v ⊥ r, v is tangent to the circle. Because it is a velocity vector, v points in the direction of motion.

(b) In (a), we wrote v in the form u, where u is the unit vector − sin i+ cos j. Clearly |v| =  |u| = . At

speed , the particle completes one revolution, a distance 2, in time  =
2


=
2


.

(c) a =
v


= −2 cos i− 2 sin j = −2(cos i+ sin j), so a = −2r. This shows that a is proportional

to r and points in the opposite direction (toward the origin). Also, |a| = 2 |r| = 2.

(d) By Newton’s Second Law (see Section 13.4), F = a, so |F| =  |a| = 2 =
 ()

2


=

 |v|2


.
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PROBLEMS PLUS

1. (a) The projectile reaches maximum height when 0 =



=




[(0 sin)− 1

2
2] = 0 sin− ; that is, when

 =
0 sin


and  = (0 sin)


0 sin




− 1

2



0 sin



2
=

20 sin
2 

2
. This is the maximum height attained when

the projectile is fired with an angle of elevation . This maximum height is largest when  = 
2
. In that case, sin = 1

and the maximum height is
20
2
.

(b) Let  = 20

. We are asked to consider the parabola 2 + 2 −2 = 0 which can be rewritten as  = − 1

2
2 +



2
.

The points on or inside this parabola are those for which− ≤  ≤  and 0 ≤  ≤ −1
2

2 +


2
. When the projectile is

fired at angle of elevation , the points ( ) along its path satisfy the relations  = (0 cos)  and

 = (0 sin)− 1
2
2, where 0 ≤  ≤ (20 sin) (as in Example 13.4.5). Thus

|| ≤
0 cos20 sin

 = 20 sin 2
 ≤ 20

 = ||. This shows that − ≤  ≤ .

For  in the specified range, we also have  = 

0 sin− 1

2


= 1

2



20 sin


− 


≥ 0 and

 = (0 sin)


0 cos
− 

2




0 cos

2
= (tan)− 

220 cos
2 

2 = − 1

2 cos2 
2 + (tan). Thus

 −
−1
2

2 +


2


=

−1
2 cos2 

2 +
1

2
2 + (tan)− 

2

=
2

2


1− 1

cos2 


+ (tan)− 

2
=

2(1− sec2 ) + 2 (tan)−2

2

=
−(tan2 )2 + 2 (tan)−2

2
=
− [(tan)−]

2

2
≤ 0

We have shown that every target that can be hit by the projectile lies on or inside the parabola  = − 1

2
2 +



2
.

Now let ( ) be any point on or inside the parabola  = − 1

2
2 +



2
. Then− ≤  ≤  and 0 ≤  ≤ − 1

2
2 +



2
.

We seek an angle  such that ( ) lies in the path of the projectile; that is, we wish to find an angle  such that

 = − 1

2 cos2 
2 + (tan)  or equivalently  =

−1
2

(tan2 + 1)2 + (tan) . Rearranging this equation we get

2

2
tan2 −  tan+


2

2
+ 


= 0 or 2(tan)2 − 2(tan) + (2 + 2) = 0 () . This quadratic equation

for tan has real solutions exactly when the discriminant is nonnegative. Now 2 − 4 ≥ 0 ⇔
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(−2)2 − 42(2 + 2) ≥ 0 ⇔ 42(2 − 2 − 2) ≥ 0 ⇔ −2 − 2+2 ≥ 0 ⇔

 ≤ 1

2
(2 − 2) ⇔  ≤ −1

2
2 +



2
. This condition is satisfied since ( ) is on or inside the parabola

 = − 1

2
2 +



2
. It follows that ( ) lies in the path of the projectile when tan satisfies (), that is, when

tan =
2±


42(2 − 2 − 2)

22
=

±√2 − 2− 2


.

(c) If the gun is pointed at a target with height  at a distance downrange, then

tan = . When the projectile reaches a distance downrange (remember

we are assuming that it doesn’t hit the ground first), we have =  = (0 cos),

so  =


0 cos
and  = (0 sin)− 1

2
2 =  tan− 2

220 cos
2 
.

Meanwhile, the target, whose -coordinate is also , has fallen from height  to height

− 1
2
2 =  tan− 2

220 cos
2 
. Thus the projectile hits the target.

3. (a) a = − j ⇒ v = v0 −  j = 2 i−  j ⇒ s = s0 + 2 i− 1
2
2 j = 35 j+ 2 i− 1

2
2 j ⇒

s = 2 i+

35− 1

2
2

j. Therefore  = 0 when  =


7 seconds. At that instant, the ball is 2


7 ≈ 094 ft to the

right of the table top. Its coordinates (relative to an origin on the floor directly under the table’s edge) are (094 0). At

impact, the velocity is v = 2 i−√7 j, so the speed is |v| = √4 + 7 ≈ 15 fts.

(b) The slope of the curve when  =


7


is



=




=
−
2

=
−

7

2
=
−√7
2

. Thus cot  =
√
7

2

and  ≈ 76◦.

(c) From (a), |v| = √4 + 7. So the ball rebounds with speed 08√4 + 7 ≈ 1208 fts at angle of inclination

90◦ −  ≈ 823886◦. By Example 13.4.5, the horizontal distance traveled between bounces is  = 20 sin 2


, where

0 ≈ 1208 fts and  ≈ 823886◦. Therefore,  ≈ 1197 ft. So the ball strikes the floor at about

2

7 + 1197 ≈ 213 ft to the right of the table’s edge.

5. The trajectory of the projectile is given by r() = ( cos) i +

( sin)− 1

2
2

j, so

v() = r0() =  cos i+ ( sin− ) j and

|v()|=

( cos)2 + ( sin− )2 =


2 − (2 sin) + 22 =


2

2 − 2


(sin) +

2

2



= 


− 


sin

2
+

2

2
− 2

2
sin2  = 


− 


sin

2
+

2

2
cos2 
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The projectile hits the ground when ( sin)− 1
2
2 = 0 ⇒  = 2


sin, so the distance traveled by the projectile is

() =

 (2) sin

0

|v()|  =
 (2) sin

0




− 


sin

2
+

2

2
cos2 

= 

 − () sin
2


− 


sin

2
+





cos

2

+
[() cos]

2

2
ln

− 


sin+


− 


sin

2
+





cos

2(2) sin
0

[using Formula 21 in the Table of Integrals]

=


2



sin





sin

2
+





cos

2
+





cos

2
ln




sin+





sin

2
+





cos

2
+




sin





sin

2
+





cos

2
−




cos

2
ln

−


sin+





sin

2
+





cos

2
=



2





sin · 


+

2

2
cos2  ln





sin+






+




sin · 


− 2

2
cos2  ln


−


sin+







=
2


sin+

2

2
cos2  ln


() sin+ 

− () sin+ 


=

2


sin+

2

2
cos2  ln


1 + sin

1− sin


We want to maximize () for 0 ≤  ≤ 2.

0() =
2


cos+

2

2


cos2  · 1− sin

1 + sin
· 2 cos

(1− sin)2 − 2 cos sin ln

1 + sin

1− sin


=
2


cos+

2

2


cos2  · 2

cos
− 2 cos sin ln


1 + sin

1− sin


=
2


cos+

2


cos


1− sin ln


1 + sin

1− sin


=
2


cos


2− sin ln


1 + sin

1− sin


() has critical points for 0    2 when 0() = 0 ⇒ 2− sin ln

1 + sin

1 − sin


= 0 [since cos 6= 0].

Solving by graphing (or using a CAS) gives  ≈ 09855. Compare values at the critical point and the endpoints:
(0) = 0, (2) = 2, and (09855) ≈ 1202. Thus the distance traveled by the projectile is maximized
for  ≈ 09855 or ≈ 56◦.

7. We can write the vector equation as r() = a2 + b+ c where a = h1 2 3i, b = h1 2 3i, and c = h1 2 3i.

Then r0() = 2a+ b which says that each tangent vector is the sum of a scalar multiple of a and the vector b. Thus the

tangent vectors are all parallel to the plane determined by a and b so the curve must be parallel to this plane. [Here we assume

that a and b are nonparallel. Otherwise the tangent vectors are all parallel and the curve lies along a single line.] A normal
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vector for the plane is a× b = h23 − 32 31 − 13 12 − 21i. The point (1, 2, 3) lies on the plane (when

 = 0), so an equation of the plane is

(23 − 32)(− 1) + (31 − 13)( − 2) + (12 − 21)( − 3) = 0

or

(23 − 32)+ (31 − 13) + (12 − 21) = 231 − 321 + 312 − 132 + 123 − 213
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14 PARTIAL DERIVATIVES

14.1 Functions of Several Variables

1. (a) From Table 1, (−15 40) = −27, which means that if the temperature is−15◦C and the wind speed is 40 kmh, then the
air would feel equivalent to approximately−27◦C without wind.

(b) The question is asking: when the temperature is −20◦C, what wind speed gives a wind-chill index of −30◦C? From
Table 1, the speed is 20 kmh.

(c) The question is asking: when the wind speed is 20 kmh, what temperature gives a wind-chill index of −49◦C? From
Table 1, the temperature is−35◦C.

(d) The function = (−5 ) means that we fix  at −5 and allow  to vary, resulting in a function of one variable. In

other words, the function gives wind-chill index values for different wind speeds when the temperature is −5◦C. From
Table 1 (look at the row corresponding to  = −5), the function decreases and appears to approach a constant value as 
increases.

(e) The function = ( 50) means that we fix  at 50 and allow  to vary, again giving a function of one variable. In

other words, the function gives wind-chill index values for different temperatures when the wind speed is 50 kmh . From

Table 1 (look at the column corresponding to  = 50), the function increases almost linearly as  increases.

3.  (120 20) = 147(120)065(20)035 ≈ 942, so when the manufacturer invests $20 million in capital and 120,000 hours of
labor are completed yearly, the monetary value of the production is about $94.2 million.

5. (a) (160 70) = 01091(160)0425(70)0725 ≈ 205, which means that the surface area of a person 70 inches (5 feet 10
inches) tall who weighs 160 pounds is approximately 20.5 square feet.

(b) Answers will vary depending on the height and weight of the reader.

7. (a) According to Table 4, (40 15) = 25, which means that if a 40-knot wind has been blowing in the open sea for 15 hours,

it will create waves with estimated heights of 25 feet.

(b)  = (30 ) means we fix  at 30 and allow  to vary, resulting in a function of one variable. Thus here,  = (30 )

gives the wave heights produced by 30-knot winds blowing for  hours. From the table (look at the row corresponding to

 = 30), the function increases but at a declining rate as  increases. In fact, the function values appear to be approaching a

limiting value of approximately 19, which suggests that 30-knot winds cannot produce waves higher than about 19 feet.

(c)  = ( 30) means we fix  at 30, again giving a function of one variable. So,  = ( 30) gives the wave heights

produced by winds of speed  blowing for 30 hours. From the table (look at the column corresponding to  = 30), the

function appears to increase at an increasing rate, with no apparent limiting value. This suggests that faster winds (lasting

30 hours) always create higher waves.
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9. (a) (2−1) = cos(2 + 2(−1)) = cos(0) = 1

(b) + 2 is defined for all choices of values for  and  and the cosine function is defined for all input values, so the domain

of  is R2.

(c) The range of the cosine function is [−1 1] and + 2 generates all possible input values for the cosine function, so the
range of cos(+ 2) is [−1 1].

11. (a) (1 1 1) =
√
1 +

√
1 +

√
1 + ln(4− 12 − 12 − 12) = 3 + ln 1 = 3

(b)
√
,
√
,
√
 are defined only when  ≥ 0,  ≥ 0,  ≥ 0, and ln(4− 2 − 2 − 2) is defined when

4− 2 − 2 − 2  0 ⇔ 2 + 2 + 2  4, thus the domain is
(  ) | 2 + 2 + 2  4  ≥ 0  ≥ 0  ≥ 0, the portion of the interior of a sphere of radius 2, centered at the
origin, that is in the first octant.

13.
√
2−  is defined only when 2−  ≥ 0, or  ≤ 2.

So the domain of  is {( ) |  ≤ 2}.
15. ln(9− 2 − 92) is defined only when
9− 2 − 92  0, or 1

9
2 + 2  1. So the domain of 

is

( )

 1
9
2 + 2  1


, the interior of an ellipse.

17.
√
1− 2 is defined only when 1− 2 ≥ 0, or

2 ≤ 1 ⇔ −1 ≤  ≤ 1, and

1− 2 is defined

only when 1− 2 ≥ 0, or 2 ≤ 1 ⇔ −1 ≤  ≤ 1.
Thus the domain of  is

{( ) | −1 ≤  ≤ 1 − 1 ≤  ≤ 1}.

19.

 − 2 is defined only when  − 2 ≥ 0, or  ≥ 2.

In addition,  is not defined if 1− 2 = 0 ⇔
 = ±1. Thus the domain of  is
( ) |  ≥ 2  6= ±1.
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21. We need 1− 2 − 2 − 2 ≥ 0 or 2 + 2 + 2 ≤ 1,
so =


(  ) | 2 + 2 + 2 ≤ 1 (the points inside

or on the sphere of radius 1, center the origin).

23.  = 1 + , a plane which intersects the -plane in the

line  = 1 + ,  = 0. The portion of this plane for

 ≥ 0,  ≥ 0 is shown.

25.  = 10− 4− 5 or 4+ 5 +  = 10, a plane with

intercepts 25, 2, and 10.

27.  = 2 + 1, a parabolic cylinder

29.  = 9− 2 − 92, an elliptic paraboloid opening
downward with vertex at (0 0 9).

31.  =

4− 42 − 2 so 42 + 2 + 2 = 4 or

2 +
2

4
+

2

4
= 1 and  ≥ 0, the top half of an

ellipsoid.

33. The point (−3 3) lies between the level curves with -values 50 and 60. Since the point is a little closer to the level curve with
 = 60, we estimate that (−3 3) ≈ 56. The point (3−2) appears to be just about halfway between the level curves with
-values 30 and 40, so we estimate (3−2) ≈ 35. The graph rises as we approach the origin, gradually from above, steeply
from below.
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35. The point (160 10), corresponding to day 160 and a depth of 10 m, lies between the isothermals with temperature values

of 8 and 12◦C. Since the point appears to be located about three-fourths the distance from the 8◦C isothermal to the 12◦C

isothermal, we estimate the temperature at that point to be approximately 11◦C. The point (180 5) lies between the 16 and

20◦C isothermals, very close to the 20◦C level curve, so we estimate the temperature there to be about 195◦C.

37. Near , the level curves are very close together, indicating that the terrain is quite steep. At , the level curves are much

farther apart, so we would expect the terrain to be much less steep than near , perhaps almost flat.

39. 41.

43. The level curves are ( − 2)2 =  or  = 2±
√
,

 ≥ 0, a family of pairs of parallel lines.
45. The level curves are

√
+  =  or  = −√+ , a

family of vertical translations of the graph of the root

function  = −√.

47. The level curves are  =  or  = −, a family of

exponential curves.

49. The level curves are

2 − 2 =  or 2 − 2 = 2,

 ≥ 0. When  = 0 the level curve is the pair of lines
 = ±. For   0, the level curves are hyperbolas

with axis the -axis.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 14.1 FUNCTIONS OF SEVERAL VARIABLES ¤ 187

51. The contour map consists of the level curves  = 2 + 92, a family of

ellipses with major axis the -axis. (Or, if  = 0, the origin.)

The graph of ( ) is the surface  = 2 + 92, an elliptic paraboloid.

If we visualize lifting each ellipse  = 2 + 92 of the contour map to the plane

 = , we have horizontal traces that indicate the shape of the graph of  .

53. The isothermals are given by  = 100(1 + 2 + 22) or

2 + 22 = (100− ) [0   ≤ 100], a family of ellipses.

55. ( ) = 2 − 3

The traces parallel to the -plane (such as the left-front trace in the graph above) are parabolas; those parallel to the -plane

(such as the right-front trace) are cubic curves. The surface is called a monkey saddle because a monkey sitting on the surface

near the origin has places for both legs and tail to rest.

57. ( ) = −(
2+2)3


sin(2) + cos(2)
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59.  = sin() (a) C (b) II

Reasons: This function is periodic in both  and , and the function is the same when  is interchanged with , so its graph is

symmetric about the plane  = . In addition, the function is 0 along the - and -axes. These conditions are satisfied only by

C and II.

61.  = sin(− ) (a) F (b) I

Reasons: This function is periodic in both  and  but is constant along the lines  = + , a condition satisfied only

by F and I.

63.  = (1− 2)(1− 2) (a) B (b) VI

Reasons: This function is 0 along the lines  = ±1 and  = ±1. The only contour map in which this could occur is VI. Also

note that the trace in the -plane is the parabola  = 1− 2 and the trace in the -plane is the parabola  = 1− 2, so the

graph is B.

65.  = + 3 + 5 is a family of parallel planes with normal vector h1 3 5i.

67. Equations for the level surfaces are  = 2 + 2. For   0, we have a family of circular cylinders with axis the -axis and

radius
√
. When  = 0 the level surface is the -axis. (There are no level surfaces for   0.)

69. (a) The graph of  is the graph of  shifted upward 2 units.

(b) The graph of  is the graph of  stretched vertically by a factor of 2.

(c) The graph of  is the graph of  reflected about the -plane.

(d) The graph of ( ) = −( ) + 2 is the graph of  reflected about the -plane and then shifted upward 2 units.

71. ( ) = 3− 4 − 42 − 10

Three-dimensional view Front view

It does appear that the function has a maximum value, at the higher of the two “hilltops.” From the front view graph, the

maximum value appears to be approximately 15. Both hilltops could be considered local maximum points, as the values of 

there are larger than at the neighboring points. There does not appear to be any local minimum point; although the valley shape

between the two peaks looks like a minimum of some kind, some neighboring points have lower function values.
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73. ( ) =
+ 

2 + 2
. As both  and  become large, the function values

appear to approach 0, regardless of which direction is considered. As

( ) approaches the origin, the graph exhibits asymptotic behavior.

From some directions, ( )→∞, while in others ( )→ −∞.
(These are the vertical spikes visible in the graph.) If the graph is

examined carefully, however, one can see that ( ) approaches 0

along the line  = −.

75. ( ) = 
2+2 . First, if  = 0, the graph is the cylindrical surface

 = 
2

(whose level curves are parallel lines). When   0, the vertical trace

above the -axis remains fixed while the sides of the surface in the -direction

“curl” upward, giving the graph a shape resembling an elliptic paraboloid. The

level curves of the surface are ellipses centered at the origin.

 = 0

For 0    1, the ellipses have major axis the -axis and the eccentricity increases as → 0.

 = 05 (level curves in increments of 1)

For  = 1 the level curves are circles centered at the origin.

 = 1 (level curves in increments of 1)

[continued]
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When   1, the level curves are ellipses with major axis the -axis, and the eccentricity increases as  increases.

 = 2 (level curves in increments of 4)

For values of   0, the sides of the surface in the -direction curl downward and approach the -plane (while the vertical

trace  = 0 remains fixed), giving a saddle-shaped appearance to the graph near the point (0 0 1). The level curves consist of

a family of hyperbolas. As  decreases, the surface becomes flatter in the -direction and the surface’s approach to the curve in

the trace  = 0 becomes steeper, as the graphs demonstrate.

 = −05 (level curves in increments of 025)

 = −2 (level curves in increments of 025)

77.  = 2 + 2 + . When   −2, the surface intersects the plane  =  6= 0 in a hyperbola. (See the following graph.)
It intersects the plane  =  in the parabola  = (2 + )2, and the plane  = − in the parabola  = (2− )2. These

parabolas open in opposite directions, so the surface is a hyperbolic paraboloid.

When  = −2 the surface is  = 2 + 2 − 2 = (− )
2. So the surface is constant along each line −  = . That

is, the surface is a cylinder with axis −  = 0,  = 0. The shape of the cylinder is determined by its intersection with the

plane +  = 0, where  = 42, and hence the cylinder is parabolic with minima of 0 on the line  = .
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 = −5,  = 2  = −10  = −2

When −2   ≤ 0,  ≥ 0 for all  and . If  and  have the same sign, then
2 + 2 +  ≥ 2 + 2 − 2 = (− )

2 ≥ 0. If they have opposite signs, then  ≥ 0. The intersection with the
surface and the plane  =   0 is an ellipse (see graph below). The intersection with the surface and the planes  = 0 and

 = 0 are parabolas  = 2 and  = 2 respectively, so the surface is an elliptic paraboloid.

When   0 the graphs have the same shape, but are reflected in the plane  = 0, because

2 + 2 +  = (−)2 + 2 + (−)(−). That is, the value of  is the same for  at ( ) as it is for − at (− ).

 = −1,  = 2  = 0  = 10

So the surface is an elliptic paraboloid for 0    2, a parabolic cylinder for  = 2, and a hyperbolic paraboloid for   2.

79. (a)  = 1− ⇒ 


= − ⇒ 


= 







⇒ ln




= ln










⇒

ln



= ln +  ln







(b) We list the values for ln() and ln() for the years 1899 –1922. (Historically, these values were rounded to

2 decimal places.)

Year  = ln()  = ln()

1899 0 0

1900 −002 −006
1901 −004 −002
1902 −004 0

1903 −007 −005
1904 −013 −012
1905 −018 −004
1906 −020 −007
1907 −023 −015
1908 −041 −038
1909 −033 −024
1910 −035 −027

Year  = ln()  = ln()

1911 −038 −034
1912 −038 −024
1913 −041 −025
1914 −047 −037
1915 −053 −034
1916 −049 −028
1917 −053 −039
1918 −060 −050
1919 −068 −057
1920 −074 −057
1921 −105 −085
1922 −098 −059
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After entering the ( ) pairs into a calculator or CAS, the resulting least squares regression line through the points is

approximately  = 075136+ 001053, which we round to  = 075+ 001.

(c) Comparing the regression line from part (b) to the equation  = ln +  with  = ln() and  = ln(), we have

 = 075 and ln  = 001 ⇒  = 001 ≈ 101. Thus, the Cobb-Douglas production function is

 = 1− = 101075025.

14.2 Limits and Continuity

1. In general, we can’t say anything about (3 1)! lim
()→(31)

( ) = 6 means that the values of ( ) approach 6 as

( ) approaches, but is not equal to, (3 1). If  is continuous, we know that lim
()→()

( ) = ( ), so

lim
()→(31)

( ) = (3 1) = 6.

3. We make a table of values of

( ) =
23 + 32 − 5

2− 
for a set

of ( ) points near the origin.

As the table shows, the values of ( ) seem to approach −25 as ( ) approaches the origin from a variety of different
directions. This suggests that lim

()→(00)
( ) = −25. Since  is a rational function, it is continuous on its domain.  is

defined at (0 0), so we can use direct substitution to establish that lim
()→(00)

( ) =
0203 + 0302 − 5

2− 0 · 0 = −5
2
, verifying

our guess.

5. ( ) = 53 − 22 is a polynomial, and hence continuous, so lim
()→(12)

( ) = (1 2) = 5(1)
3 − (1)2(2)2 = 1.

7. ( ) =
4− 

2 + 32
is a rational function and hence continuous on its domain.

(2 1) is in the domain of  , so  is continuous there and lim
()→(21)

( ) = (2 1) =
4− (2)(1)
(2)2 + 3(1)2

=
2

7
.

9. ( ) = (4 − 42)(2 + 22). First approach (0 0) along the -axis. Then ( 0) = 42 = 2 for  6= 0, so

( )→ 0. Now approach (0 0) along the -axis. For  6= 0, (0 ) = −4222 = −2, so ( )→ −2. Since  has
two different limits along two different lines, the limit does not exist.
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11. ( ) = (2 sin2 )(4 + 4). On the -axis, ( 0) = 0 for  6= 0, so ( )→ 0 as ( )→ (0 0) along the

-axis. Approaching (0 0) along the line  = , ( ) =
2 sin2 

4 + 4
=
sin2 

22
=
1

2


sin



2
for  6= 0 and

lim
→0

sin


= 1, so ( )→ 1

2
. Since  has two different limits along two different lines, the limit does not exist.

13. ( ) =


2 + 2
. We can see that the limit along any line through (0 0) is 0, as well as along other paths through

(0 0) such as  = 2 and  = 2. So we suspect that the limit exists and equals 0; we use the Squeeze Theorem to prove our

assertion. 0 ≤
 

2 + 2

 ≤ || since || ≤2 + 2, and ||→ 0 as ( )→ (0 0). So lim
()→(00)

( ) = 0.

15. Let ( ) =
2

4 + 42
. Then ( 0) = 0 for  6= 0, so ( )→ 0 as ( )→ (0 0) along the -axis. Approaching

(0 0) along the -axis or the line  =  also gives a limit of 0. But 

 2


=

22 
2

4 + 4(2)2
=

4
2

54
=


2

5
for  6= 0, so

( )→ 05 = 1
5
as ( )→ (0 0) along the parabola  = 2. Thus the limit doesn’t exist.

17. lim
()→(00)

2 + 2
2 + 2 + 1− 1

= lim
()→(00)

2 + 2
2 + 2 + 1− 1

·

2 + 2 + 1 + 1
2 + 2 + 1 + 1

= lim
()→(00)


2 + 2


2 + 2 + 1 + 1


2 + 2

= lim
()→(00)


2 + 2 + 1 + 1


= 2

19. 
2

is a composition of continuous functions and hence continuous.  is a continuous function and tan  is continuous for

 6= 
2
+  ( an integer), so the composition tan() is continuous for  6= 

2
+ . Thus the product

(  ) = 
2

tan() is a continuous function for  6= 
2
+ . If  =  and  = 1

3
then  6= 

2
+ , so

lim
()→(013)

(  ) =  ( 0 13) = 0
2

tan( · 13) = 1 · tan(3) = √3.

21. (  ) =
 + 2 + 2

2 + 2 + 4
. Then ( 0 0) = 02 = 0 for  6= 0, so as (  )→ (0 0 0) along the -axis,

(  )→ 0. But (  0) = 2(22) = 1
2
for  6= 0, so as (  )→ (0 0 0) along the line  = ,  = 0,

(  )→ 1
2
. Thus the limit doesn’t exist.

23. From the ridges on the graph, we see that as ( )→ (0 0) along the

lines under the two ridges, ( ) approaches different values. So the

limit does not exist.
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25. ( ) = (( )) = (2+ 3 − 6)2 +√2+ 3 − 6. Since  is a polynomial, it is continuous on R2 and  is
continuous on its domain { |  ≥ 0}. Thus  is continuous on its domain.

 = {( ) | 2+ 3 − 6 ≥ 0} = ( ) |  ≥ − 2
3
+ 2


, which consists of all points on or above the line  = − 2

3
+2.

27. From the graph, it appears that  is discontinuous along the line  = .

If we consider ( ) = 1(−) as a composition of functions,

( ) = 1(− ) is a rational function and therefore continuous except

where −  = 0 ⇒  = . Since the function () =  is continuous

everywhere, the composition (( )) = 1(−) = ( ) is

continuous except along the line  = , as we suspected.

29. The functions  and 1+ − are continuous everywhere, and 1+ − is never zero, so  ( ) =


1 + −
is continuous

on its domain R2.

31.  ( ) =
1 + 2 + 2

1− 2 − 2
is a rational function and thus is continuous on its domain


( ) | 1− 2 − 2 6= 0 = ( ) | 2 + 2 6= 1.

33. ( ) = ln(2 + 2 − 4) = (( )) where ( ) = 2 + 2 − 4, continuous on R2, and () = ln , continuous on its

domain { |   0}. Thus is continuous on its domain ( ) | 2 + 2 − 4  0

=

( ) | 2 + 2  4


, the exterior

of the circle 2 + 2 = 4.

35. (  ) = ((  )) where (  ) = 2 + 2 + 2, a polynomial that is continuous

everywhere, and () = arcsin , continuous on [−1 1]. Thus  is continuous on its domain
(  ) | −1 ≤ 2 + 2 + 2 ≤ 1 = (  ) | 2 + 2 + 2 ≤ 1, so  is continuous on the unit ball.

37. ( ) =


23

22 + 2
if ( ) 6= (0 0)

1 if ( ) = (0 0)

The first piece of  is a rational function defined everywhere except at the

origin, so  is continuous on R2 except possibly at the origin. Since 2 ≤ 22 + 2, we have
23(22 + 2)

 ≤ 3. We
know that

3→ 0 as ( )→ (0 0). So, by the Squeeze Theorem, lim
()→(00)

( ) = lim
()→(00)

23

22 + 2
= 0.

But (0 0) = 1, so  is discontinuous at (0 0). Therefore,  is continuous on the set {( ) | ( ) 6= (0 0)}.

39. lim
()→(00)

3 + 3

2 + 2
= lim

→0+

( cos )3 + ( sin )3

2
= lim

→0+
( cos3  +  sin3 ) = 0

41. lim
()→(00)

−
2−2 − 1
2 + 2

= lim
→0+

−
2 − 1
2

= lim
→0+

−
2

(−2)
2

[using l’Hospital’s Rule]

= lim
→0+

−−2 = −0 = −1
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43. ( ) =


sin()


if ( ) 6= (0 0)

1 if ( ) = (0 0)

From the graph, it appears that  is continuous everywhere. We know

 is continuous on R2 and sin  is continuous everywhere, so

sin() is continuous on R2 and
sin()


is continuous on R2

except possibly where  = 0. To show that  is continuous at those points, consider any point ( ) in R2 where  = 0.

Because  is continuous,  →  = 0 as ( )→ ( ). If we let  = , then → 0 as ( )→ ( ) and

lim
()→()

sin()


= lim

→0

sin()


= 1 by Equation 2.4.2 [ET 3.3.2]. Thus lim

()→()
( ) = ( ) and  is continuous

on R2.

45. Since |x− a|2 = |x|2 + |a|2 − 2 |x| |a| cos  ≥ |x|2 + |a|2 − 2 |x| |a| = (|x|− |a|)2, we have
|x|− |a| ≤ |x− a|. Let

  0 be given and set  = . Then if 0  |x− a|  ,
|x|− |a| ≤ |x− a|   = . Hence limx→a |x| = |a| and

 (x) = |x| is continuous on R.

14.3 Partial Derivatives

1. (a)  represents the rate of change of  when we fix  and  and consider  as a function of the single variable , which

describes how quickly the temperature changes when longitude changes but latitude and time are constant. 

represents the rate of change of  when we fix  and  and consider  as a function of , which describes how quickly the

temperature changes when latitude changes but longitude and time are constant.  represents the rate of change of 

when we fix  and  and consider  as a function of , which describes how quickly the temperature changes over time for

a constant longitude and latitude.

(b) (158 21 9) represents the rate of change of temperature at longitude 158◦W, latitude 21◦N at 9:00 AM when only

longitude varies. Since the air is warmer to the west than to the east, increasing longitude results in an increased air

temperature, so we would expect (158 21 9) to be positive. (158 21 9) represents the rate of change of temperature

at the same time and location when only latitude varies. Since the air is warmer to the south and cooler to the north,

increasing latitude results in a decreased air temperature, so we would expect (158 21 9) to be negative. (158 21 9)

represents the rate of change of temperature at the same time and location when only time varies. Since typically air

temperature increases from the morning to the afternoon as the sun warms it, we would expect (158 21 9) to be

positive.

3. (a) By Definition 4,  (−15 30) = lim
→0

(−15 +  30)− (−15 30)


, which we can approximate by considering  = 5

and  = −5 and using the values given in the table:
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 (−15 30) ≈ (−10 30)− (−15 30)
5

=
−20− (−26)

5
=
6

5
= 12,

 (−15 30) ≈ (−20 30)− (−15 30)
−5 =

−33− (−26)
−5 =

−7
−5 = 14. Averaging these values, we estimate

 (−15 30) to be approximately 13. Thus, when the actual temperature is −15◦C and the wind speed is 30 kmh, the
apparent temperature rises by about 13◦C for every degree that the actual temperature rises.

Similarly, (−15 30) = lim
→0

(−15 30 + )− (−15 30)


which we can approximate by considering  = 10

and  = −10: (−15 30) ≈ (−15 40)− (−15 30)
10

=
−27− (−26)

10
=
−1
10

= −01,

(−15 30) ≈ (−15 20)− (−15 30)
−10 =

−24− (−26)
−10 =

2

−10 = −02. Averaging these values, we estimate

(−15 30) to be approximately −015. Thus, when the actual temperature is −15◦C and the wind speed is 30 kmh, the
apparent temperature decreases by about 015◦C for every kmh that the wind speed increases.

(b) For a fixed wind speed , the values of the wind-chill index increase as temperature  increases (look at a column of

the table), so



is positive. For a fixed temperature  , the values of decrease (or remain constant) as  increases

(look at a row of the table), so



is negative (or perhaps 0).

(c) For fixed values of  , the function values ( ) appear to become constant (or nearly constant) as  increases, so the

corresponding rate of change is 0 or near 0 as  increases. This suggests that lim
→∞

() = 0.

5. (a) If we start at (1 2) and move in the positive -direction, the graph of  increases. Thus (1 2) is positive.

(b) If we start at (1 2) and move in the positive -direction, the graph of  decreases. Thus (1 2) is negative.

7. (a)  = 

(), so  is the rate of change of  in the -direction.  is negative at (−1 2) and if we move in the

positive -direction, the surface becomes less steep. Thus the values of  are increasing and (−1 2) is positive.

(b)  is the rate of change of  in the -direction.  is negative at (−1 2) and if we move in the positive -direction, the

surface becomes steeper. Thus the values of  are decreasing, and (−1 2) is negative.

9. First of all, if we start at the point (3−3) and move in the positive -direction, we see that both  and  decrease, while 

increases. Both  and  have a low point at about (3−15), while  is 0 at this point. So  is definitely the graph of , and

one of  and  is the graph of  . To see which is which, we start at the point (−3−15) and move in the positive -direction.

 traces out a line with negative slope, while  traces out a parabola opening downward. This tells us that  is the -derivative

of . So  is the graph of  ,  is the graph of , and  is the graph of  .
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11. ( ) = 16− 42 − 2 ⇒ ( ) = −8 and ( ) = −2 ⇒ (1 2) = −8 and (1 2) = −4. The graph

of  is the paraboloid  = 16− 42 − 2 and the vertical plane  = 2 intersects it in the parabola  = 12− 42,  = 2

(the curve 1 in the first figure). The slope of the tangent line

to this parabola at (1 2 8) is (1 2) = −8. Similarly the
plane  = 1 intersects the paraboloid in the parabola

 = 12− 2,  = 1 (the curve 2 in the second figure) and

the slope of the tangent line at (1 2 8) is (1 2) = −4.

13. ( ) = 23 ⇒  = 2
3,  = 3

22

Note that traces of  in planes parallel to the -plane are parabolas which open downward for   0 and upward for   0,

and the traces of  in these planes are straight lines, which have negative slopes for   0 and positive slopes for   0. The

traces of  in planes parallel to the -plane are cubic curves, and the traces of  in these planes are parabolas.

15. ( ) = 5 − 3 ⇒ ( ) = 0− 3 = −3, ( ) = 54 − 3

17. ( ) = − cos ⇒ ( ) = − (− sin) () = −− sin, ( ) = −(−1) cos = −− cos

19.  = (2+ 3)10 ⇒ 


= 10(2+ 3)9 · 2 = 20(2+ 3)9, 


= 10(2+ 3)9 · 3 = 30(2+ 3)9

21. ( ) =  = −1 ⇒ ( ) = −1 = 1, ( ) = −−2 = −2

23. ( ) =
+ 

+ 
⇒ ( ) =

(+ )()− (+ )()

(+ )2
=
(− )

(+ )2
,

( ) =
(+ )()− (+ )()

(+ )2
=
(− )

(+ )2
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25. ( ) = (2 − 3)5 ⇒ ( ) = 5(2 − 3)4 · 2 = 10(2 − 3)4,

( ) = 5(
2 − 3)4(2 − 32) = 5(2 − 32)(2 − 3)4

27. ( ) = tan−1(2) ⇒ ( ) =
1

1 + (2)2
· 2 = 2

1 + 24
, ( ) =

1

1 + (2)2
· 2 = 2

1 + 24

29.  ( ) =
 



cos(

)  ⇒ ( ) =





 



cos




 = cos(


) by the Fundamental Theorem of Calculus, Part 1;

( ) =




 



cos




 =






−
 



cos







= − 



 



cos




 = − cos().

31. (  ) =  − 5234 ⇒ (  ) =  − 1034, (  ) = −15224, (  ) = − 20233

33.  = ln(+ 2 + 3) ⇒ 


=

1

+ 2 + 3
,



=

2

+ 2 + 3
,



=

3

+ 2 + 3

35.  =  sin−1() ⇒ 


=  sin−1(),




=  · 1

1− ()2 ()+ sin
−1() · = 

1− 22
+ sin−1(),




=  · 1

1− ()2 () =
2
1− 22

37. (   ) = 2 cos() ⇒ (   ) = 2 cos(), (   ) = 2 cos(),

(   ) = −2 sin()(1) = (−2) sin(), (   ) = −2 sin()(−−2) = (22) sin()

39.  =

21 + 22 + · · ·+ 2. For each  = 1,   , ,  =

1
2


21 + 22 + · · ·+ 2

−12
(2) =


21 + 22 + · · ·+ 2

.

41. ( ) = ln

+


2 + 2


⇒

( ) =
1

+

2 + 2


1 + 1

2
(2 + 2)−12(2)


=

1

+

2 + 2


1 +


2 + 2


,

so (3 4) =
1

3 +
√
32 + 42


1 +

3√
32 + 42


= 1

8


1 + 3

5


= 1

5
.

43. (  ) =


+  + 
⇒ (  ) =

1(+  + )− (1)

(+  + )2
=

+ 

(+  + )2
,

so (2 1−1) = 2 + (−1)
(2 + 1 + (−1))2 =

1

4
.

45. ( ) = 2 − 3 ⇒

 ( ) = lim
→0

(+  )− ( )


= lim

→0

(+ )2 − (+ )3 − (2 − 3)



= lim
→0

(2 − 32 − 3− 2)


= lim

→0
(2 − 32 − 3− 2) = 2 − 32

 ( ) = lim
→0

(  + )− ( )


= lim

→0

( + )2 − 3( + )− (2 − 3)


= lim

→0

(2 + − 3)



= lim
→0

(2 + − 3) = 2 − 3
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47. 2 + 22 + 32 = 1 ⇒ 


(2 + 22 + 32) =




(1) ⇒ 2+ 0 + 6




= 0 ⇒ 6




= −2 ⇒




=
−2
6

= − 

3
, and




(2 + 22 + 32) =




(1) ⇒ 0 + 4 + 6




= 0 ⇒ 6




= −4 ⇒




=
−4
6

= −2
3
.

49.  =  ⇒ 


() =




() ⇒ 




= 






+  · 1


⇒ 




− 




=  ⇒

( − )



= , so




=



 − 
.




() =




() ⇒ 




= 






+  · 1


⇒ 




− 




=  ⇒ ( − )




= , so




=



 − 
.

51. (a)  = () + () ⇒ 


=  0(),




= 0()

(b)  = (+ ). Let  = + . Then



=








=




(1) =  0() =  0(+ ),




=








=




(1) =  0() =  0(+ ).

53. ( ) = 35 + 24 ⇒ ( ) = 3
25 + 83, ( ) = 534 + 24. Then ( ) = 65 + 242,

( ) = 15
24 + 83, ( ) = 1524 + 83, and ( ) = 2033.

55.  =
√
2 + 2 ⇒  =

1
2
(2 + 2)−12 · 2 = √

2 + 2
,  =

1
2
(2 + 2)−12 · 2 = √

2 + 2
. Then

 =
1 ·√2 + 2 −  · 1

2
(2 + 2)−12(2)√

2 + 2
2 =

√
2 + 2 − 2

√
2 + 2

2 + 2
=

2 + 2 − 2

(2 + 2)32
=

2

(2 + 2)32
,

 = 
−1

2

 
2 + 2

−32
(2) = − 

(2 + 2)32
,  = 

− 1
2

 
2 + 2

−32
(2) = − 

(2 + 2)32
,

 =
1 ·√2 + 2 −  · 1

2
(2 + 2)−12(2)√

2 + 2
2 =

√
2 + 2 − 2

√
2 + 2

2 + 2
=

2 + 2 − 2

(2 + 2)32
=

2

(2 + 2)32
.

57.  = arctan
+ 

1− 
⇒

 =
1

1 +


+

1−

2 · (1)(1− )− (+ )(−)
(1− )2

=
1 + 2

(1− )2 + (+ )2
=

1 + 2

1 + 2 + 2 + 22

=
1 + 2

(1 + 2)(1 + 2)
=

1

1 + 2
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 =
1

1 +


+

1−

2 · (1)(1− )− (+ )(−)
(1− )2

=
1 + 2

(1− )2 + (+ )2
=

1 + 2

(1 + 2)(1 + 2)
=

1

1 + 2
.

Then  = −(1 + 2)−2 · 2 = − 2

(1 + 2)2
,  = 0,  = 0,  = −(1 + 2)−2 · 2 = − 2

(1 + 2)2
.

59.  = 43 − 4 ⇒  = 4
33,  = 12

32 and  = 342 − 43,  = 12
32.

Thus  = .

61.  = cos(2) ⇒  = − sin(2) · 2 = −2 sin(2),

 = −2 · cos(2) · 2 + sin(2) · (−2) = −23 cos(2) − 2 sin(2) and

 = − sin(2) ·2 = −2 sin(2),  = −2 · cos(2) · 2+sin(2) · (−2) = −23 cos(2)− 2 sin(2).
Thus  = .

63. ( ) = 42 − 3 ⇒  = 4
32 − 32,  = 1222 − 6,  = 242 − 6 and

 = 8
3 − 32,  = 242 − 6.

65. (  ) = 
2 ⇒  = 

2 · 2 = 2
2

,  = 2 · 2(2) + 
2 · 2 = (4 + 2)

2

,

 = (
4 + 2) · 2(2) + 

2 · (43 + 2) = (2225 + 63 + 2)2 .

67.  =  sin  ⇒ 


=  cos  + sin  ·  () =  (cos  +  sin ),

2

 
=  (sin ) + (cos  +  sin )  () =  (sin  +  cos  +  sin ),

3

2 
=  ( sin ) + (sin  +  cos  +  sin ) ·  () =  (2 sin  +  cos  +  sin ).

69.  =


 + 2
= ( + 2)−1 ⇒ 


= ( + 2)−1,

2

 
= −( + 2)−2(1) = −( + 2)−2,

3

  
= −(−2)( + 2)−3(2) = 4( + 2)−3 = 4

( + 2)3
and




= (−1)( + 2)−2(1) = −( + 2)−2,

2


= −( + 2)−2, 3

2 
= 0.

71. Assuming that the third partial derivatives of  are continuous (easily verified), we can write  =  . Then

(  ) = 23 + arcsin


√


⇒  = 2

3 + 0,  = 23, and  = 62 =  .

73. By Definition 4, (3 2) = lim
→0

(3 +  2)− (3 2)


which we can approximate by considering  = 05 and  = −05:

(3 2) ≈ (35 2)− (3 2)

05
=
224− 175

05
= 98, (3 2) ≈ (25 2)− (3 2)

−05 =
102− 175
−05 = 146. Averaging

these values, we estimate (3 2) to be approximately 122. Similarly, (3 22) = lim
→0

(3 +  22)− (3 22)


which
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we can approximate by considering  = 05 and  = −05: (3 22) ≈ (35 22)− (3 22)

05
=
261− 159

05
= 204,

(3 22) ≈ (25 22)− (3 22)

−05 =
93− 159
−05 = 132. Averaging these values, we have (3 22) ≈ 168.

To estimate (3 2), we first need an estimate for (3 18):

(3 18) ≈ (35 18)− (3 18)

05
=
200− 181

05
= 38, (3 18) ≈ (25 18)− (3 18)

−05 =
125− 181
−05 = 112.

Averaging these values, we get (3 18) ≈ 75. Now ( ) =



[( )] and ( ) is itself a function of two

variables, so Definition 4 says that ( ) =



[( )] = lim

→0

(  + )− ( )


⇒

(3 2) = lim
→0

(3 2 + )− (3 2)


. We can estimate this value using our previous work with  = 02 and  = −02:

(3 2) ≈ (3 22)− (3 2)

02
=
168− 122

02
= 23, (3 2) ≈ (3 18)− (3 2)

−02 =
75− 122
−02 = 235.

Averaging these values, we estimate (3 2) to be approximately 2325.

75.  = −
22 sin  ⇒  = −

22 cos ,  = −2−22 sin , and  = −22−22 sin .
Thus 2 = .

77.  =
1

2 + 2 + 2
⇒  =

− 1
2


(2 + 2 + 2)−32(2) = −(2 + 2 + 2)−32 and

 = −(2 + 2 + 2)−32 − 
− 3

2


(2 + 2 + 2)−52(2) =

22 − 2 − 2

(2 + 2 + 2)52
.

By symmetry,  =
22 − 2 − 2

(2 + 2 + 2)52
and  =

22 − 2 − 2

(2 + 2 + 2)52
.

Thus  +  +  =
22 − 2 − 2 + 22 − 2 − 2 + 22 − 2 − 2

(2 + 2 + 2)52
= 0.

79. Let  = + ,  = − . Then  =
[() + ()]


=

()






+

()






=  0()− 0() and

 =
[ 0()− 0()]


= [ 00() + 00()] = 2[ 00() + 00()]. Similarly, by using the Chain Rule we have

 =  0() + 0() and  =  00() + 00(). Thus  = 2.

81.  = ln( + ) ⇒ 


=



 + 
and




=



 + 
, so




+




=



 + 
+



 + 
=

 + 

 + 
= 1.

2

2
=

( + )− ()

( + )2
=

+

( + )2
,

2

 
=
0− ()

( + )2
= − +

( + )2
, and

2

2
=

( + )− ()

( + )2
=

+

( + )2
. Thus

2

2
2

2
−


2



2
=

+

( + )2
· +

( + )2
−

− +

( + )2

2
=

(+)2

( + )4
− (+)2

( + )4
= 0
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83. By the Chain Rule, taking the partial derivative of both sides with respect to 1 gives

−1





1

=
 [(11) + (12) + (13)]

1

or −−2 

1

= −−21 . Thus


1

=
2

2
1

.

85. If we fix = 0  (0) is a function of a single variable , and



= 




is a separable differential equation. Then




= 




⇒





=






⇒ ln | | =  ln ||+  (0), where (0) can depend on0. Then

| | =  ln||+(0), and since   0 and   0, we have  =  ln(0) = (0)ln


= 1(0)
 where

1(0) = (0).

87.


 +

2

 2


( − ) =  ⇒  =

1




 +

2

 2


( − ), so




=

1


(1)( − ) =

 − 


.

We can also write  +
2

 2
=



 − 
⇒  =



 − 
− 2

 2
=  ( − )−1 − 2 −2, so




= − ( − )−2(1) + 22 −3 =

22

 3
− 

( − )2
.

89. By Exercise 88,  =  ⇒  =



, so




=




. Also,  =  ⇒  =




and




=




.

Since  =



, we have 








=




· 


· 


= .

91.



= 1

2
2,




= ,

2

2
= . Thus




· 

2

2
= 1

2
2 = .

93. ( ) = + 4 ⇒ ( ) = 4 and ( ) = 3−  ⇒ ( ) = 3. Since  and  are continuous

everywhere but ( ) 6= ( ), Clairaut’s Theorem implies that such a function ( ) does not exist.

95. By the geometry of partial derivatives, the slope of the tangent line is (1 2). By implicit differentiation of

42 + 22 + 2 = 16, we get 8+ 2 () = 0 ⇒  = −4, so when  = 1 and  = 2 we have
 = −2. So the slope is (1 2) = −2. Thus the tangent line is given by  − 2 = −2(− 1),  = 2. Taking the
parameter to be  = − 1, we can write parametric equations for this line:  = 1 + ,  = 2,  = 2− 2.

97. By Clairaut’s Theorem,  = () = () =  = () = () = .

99. Let () = ( 0) = (2)−320 =  ||−3. But we are using the point (1 0), so near (1 0), () = −2. Then

0() = −2−3 and 0(1) = −2, so using (1) we have (1 0) = 0(1) = −2.
101. (a) (b) For ( ) 6= (0 0),

( ) =
(32 − 3)(2 + 2)− (3 − 3)(2)

(2 + 2)2

=
4 + 423 − 5

(2 + 2)2

and by symmetry ( ) =
5 − 432 − 4

(2 + 2)2
.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 14.4 TANGENT PLANES AND LINEAR APPROXIMATIONS ¤ 203

(c) (0 0) = lim
→0

( 0)− (0 0)


= lim

→0

(02)− 0


= 0 and (0 0) = lim
→0

(0 )− (0 0)


= 0.

(d) By (3), (0 0) =



= lim

→0

(0 )− (0 0)


= lim

→0

(−5 − 0)4


= −1 while by (2),

(0 0) =



= lim

→0

( 0)− (0 0)


= lim

→0

54


= 1.

(e) For ( ) 6= (0 0), we use a CAS to compute

( ) =
6 + 942 − 924 − 6

(2 + 2)3

Now as ( )→ (0 0) along the -axis, ( )→ 1 while as

( )→ (0 0) along the -axis, ( )→−1. Thus  isn’t

continuous at (0 0) and Clairaut’s Theorem doesn’t apply, so there is

no contradiction. The graphs of  and  are identical except at the

origin, where we observe the discontinuity.

14.4 Tangent Planes and Linear Approximations

1.  = ( ) = 32 − 22 +  ⇒ ( ) = −4+ 1, ( ) = 6, so (2−1) = −7, (2−1) = −6.

By Equation 2, an equation of the tangent plane is  − (−3) = (2−1)(− 2) + (2−1)[ − (−1)] ⇒

 + 3 = −7(− 2)− 6( + 1) or  = −7− 6 + 5.

3.  = ( ) =

 ⇒ ( ) =

1
2
()−12 ·  = 1

2


, ( ) = 1

2
()−12 ·  = 1

2


, so (1 1) = 1

2

and (1 1) = 1
2
. Thus an equation of the tangent plane is  − 1 = (1 1)(− 1) + (1 1)( − 1) ⇒

 − 1 = 1
2
(− 1) + 1

2
( − 1) or +  − 2 = 0.

5.  = ( ) =  sin(+ ) ⇒ ( ) =  · cos(+ ) + sin(+ ) · 1 =  cos(+ ) + sin(+ ),

( ) =  cos(+ ), so (−1 1) = (−1) cos 0 + sin 0 = −1, (−1 1) = (−1) cos 0 = −1 and an equation of the

tangent plane is  − 0 = (−1)(+ 1) + (−1)( − 1) or +  +  = 0.

7.  = ( ) = 2 +  + 32, so ( ) = 2+  ⇒ (1 1) = 3, ( ) = + 6 ⇒ (1 1) = 7 and an

equation of the tangent plane is  − 5 = 3(− 1) + 7( − 1) or  = 3+ 7 − 5. After zooming in, the surface and the
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tangent plane become almost indistinguishable. (Here, the tangent plane is below the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

9. ( ) =
 sin (− )

1 + 2 + 2
. A CAS gives ( ) =

 sin (− ) +  cos (− )

1 + 2 + 2
− 22 sin (− )

(1 + 2 + 2)
2
and

( ) =
 sin (− )−  cos (− )

1 + 2 + 2
− 22 sin (− )

(1 + 2 + 2)
2
. We use the CAS to evaluate these at (1 1), and then

substitute the results into Equation 2 to compute an equation of the tangent plane:  = 1
3
− 1

3
. The surface and tangent

plane are shown in the first graph below. After zooming in, the surface and the tangent plane become almost indistinguishable,

as shown in the second graph. (Here, the tangent plane is shown with fewer traces than the surface.) If we zoom in farther, the

surface and the tangent plane will appear to coincide.

11. ( ) = 1+ ln(− 5). The partial derivatives are ( ) =  · 1

 − 5 ()+ ln(− 5) · 1 =


 − 5 + ln(− 5)

and ( ) =  · 1

 − 5 () =
2

 − 5 , so (2 3) = 6 and (2 3) = 4. Both  and  are continuous functions for

  5, so by Theorem 8,  is differentiable at (2 3). By Equation 3, the linearization of  at (2 3) is given by

( ) = (2 3) + (2 3)(− 2) + (2 3)( − 3) = 1 + 6(− 2) + 4( − 3) = 6+ 4 − 23.

13. ( ) =


+ 
. The partial derivatives are ( ) =

1(+ )− (1)

(+ )2
= (+ )2 and

( ) = (−1)(+ )−2 · 1 = −(+ )2, so (2 1) = 1
9
and (2 1) = −2

9
. Both  and  are continuous

functions for  6= −, so  is differentiable at (2 1) by Theorem 8. The linearization of  at (2 1) is given by

 ( ) = (2 1) + (2 1)(− 2) + (2 1)( − 1) = 2
3
+ 1

9
(− 2)− 2

9
( − 1) = 1

9
− 2

9
 + 2

3
.
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15. ( ) = − cos . The partial derivatives are ( ) = −(−) cos  = −− cos  and

( ) = −(− sin ) + (cos )−(−) = −−(sin  +  cos ), so ( 0) = 0 and ( 0) = −.

Both  and  are continuous functions, so  is differentiable at ( 0), and the linearization of  at ( 0) is

( ) = ( 0) + ( 0)(− ) + ( 0)( − 0) = 1 + 0(− )− ( − 0) = 1− .

17. Let ( ) =
2+ 3

4 + 1
. Then ( ) =

2

4 + 1
and ( ) = (2+3)(−1)(4+ 1)−2(4) = −8− 12

(4 + 1)2
. Both  and 

are continuous functions for  6= − 1
4
, so by Theorem 8,  is differentiable at (0 0). We have (0 0) = 2, (0 0) = −12

and the linear approximation of  at (0 0) is ( ) ≈ (0 0) + (0 0)(− 0) + (0 0)( − 0) = 3 + 2− 12.

19. We can estimate (22 49) using a linear approximation of  at (2 5), given by

( ) ≈ (2 5) + (2 5)(− 2) + (2 5)( − 5) = 6 + 1(− 2) + (−1)( − 5) = −  + 9. Thus

(22 49) ≈ 22− 49 + 9 = 63.

21. (  ) =

2 + 2 + 2 ⇒ (  ) =


2 + 2 + 2

, (  ) =


2 + 2 + 2
, and

(  ) =


2 + 2 + 2
, so (3 2 6) = 3

7
, (3 2 6) = 2

7
, (3 2 6) = 6

7
. Then the linear approximation of 

at (3 2 6) is given by

(  )≈ (3 2 6) + (3 2 6)(− 3) + (3 2 6)( − 2) + (3 2 6)( − 6)
= 7 + 3

7
(− 3) + 2

7
( − 2) + 6

7
( − 6) = 3

7
+ 2

7
 + 6

7


Thus

(302)2 + (197)2 + (599)2 = (302 197 599) ≈ 3

7
(302) + 2

7
(197) + 6

7
(599) ≈ 69914.

23. From the table, (94 80) = 127. To estimate  (94 80) and (94 80) we follow the procedure used in Section 14.3. Since

 (94 80) = lim
→0

(94 +  80)− (94 80)


, we approximate this quantity with  = ±2 and use the values given in the

table:

 (94 80) ≈ (96 80)− (94 80)

2
=
135− 127

2
= 4,  (94 80) ≈ (92 80)− (94 80)

−2 =
119− 127
−2 = 4

Averaging these values gives  (94 80) ≈ 4. Similarly, (94 80) = lim
→0

(94 80 + )− (94 80)


, so we use  = ±5:

(94 80) ≈ (94 85)− (94 80)

5
=
132− 127

5
= 1, (94 80) ≈ (94 75)− (94 80)

−5 =
122− 127
−5 = 1

Averaging these values gives (94 80) ≈ 1. The linear approximation, then, is

()≈ (94 80) +  (94 80)( − 94) + (94 80)( − 80)
≈ 127 + 4( − 94) + 1( − 80) [or 4 + − 329]

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



206 ¤ CHAPTER 14 PARTIAL DERIVATIVES

Thus when  = 95 and = 78, (95 78) ≈ 127 + 4(95− 94) + 1(78− 80) = 129, so we estimate the heat index to be

approximately 129◦F.

25.  = −2 cos 2 ⇒

 =



+




 = −2(−2) cos 2 + −2(− sin 2)(2)  = −2−2 cos 2 − 2−2 sin 2 

27.  = 53 ⇒  =



+




 = 543 + 352 

29.  = 2 cos  ⇒  =



+




 +




 = 2 cos  + 2 cos   − 2 sin  

31.  = ∆ = 005,  = ∆ = 01,  = 52 + 2,  = 10,  = 2. Thus when  = 1 and  = 2,

 = (1 2)  + (1 2)  = (10)(005) + (4)(01) = 09 while

∆ = (105 21)− (1 2) = 5(105)
2
+ (21)

2 − 5− 4 = 09225.

33.  =



+




 =  +  and |∆| ≤ 01, |∆| ≤ 01. We use  = 01,  = 01 with  = 30,  = 24; then

the maximum error in the area is about  = 24(01) + 30(01) = 54 cm2.

35. The volume of a can is  = 2 and∆ ≈  is an estimate of the amount of tin. Here  = 2 + 2 , so put

 = 004,  = 008 (004 on top, 004 on bottom) and then∆ ≈  = 2(48)(004) + (16)(008) ≈ 1608 cm3.

Thus the amount of tin is about 16 cm3.

37.  =


22 +2
, so the differential of  is

 =



+




 =

(22 +2)()−(2)

(22 +2)2
+

(22 +2)(0)−(4)

(22 +2)2


=
(22 −2)

(22 +2)2
− 4

(22 +2)2


Here we have∆ = 01 and∆ = 01, so we take  = 01,  = 01 with  = 3,  = 07. Then the change in the

tension  is approximately

 =
[2(07)2 − (3)2]
[2(07)2 + (3)2]2

(01)− 4(3)(07)

[2(07)2 + (3)2]2
(01)

= −0802

(998)2
− 084

(998)2
= − 1642

996004
 ≈ −00165

Because the change is negative, tension decreases.
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39. First we find


1

implicitly by taking partial derivatives of both sides with respect to 1:



1


1




=

 [(11) + (12) + (13)]

1

⇒ −−2 
1

= −−21 ⇒ 

1

=
2

2
1

. Then by symmetry,



2

=
2

2
2

,


3

=
2

2
3

. When 1 = 25, 2 = 40 and 3 = 50,
1


=
17

200
⇔  = 200

17
Ω. Since the possible error

for each  is 05%, the maximum error of  is attained by setting ∆ = 0005. So

∆ ≈  =


1

∆1 +


2

∆2 +


3

∆3 = (0005)
2


1

1

+
1

2

+
1

3


= (0005) = 1

17
≈ 0059 Ω.

41. The errors in measurement are at most 2%, so

∆



 ≤ 002 and ∆



 ≤ 002. The relative error in the calculated surface
area is

∆


≈ 


=
01091(04250425−1)0725  + 010910425(07250725−1) 

0109104250725
= 0425




+ 0725





To estimate the maximum relative error, we use



=

∆



 = 002 and  =

∆



 = 002 ⇒




= 0425 (002) + 0725 (002) = 0023. Thus the maximum percentage error is approximately 23%.

43. ∆ = (+∆ +∆)− ( ) = (+∆)2 + (+∆)2 − (2 + 2)

= 2 + 2∆+ (∆)2 + 2 + 2∆ + (∆)2 − 2 − 2 = 2∆+ (∆)2 + 2∆ + (∆)2

But ( ) = 2 and ( ) = 2 and so∆ = ( )∆+ ( )∆ +∆∆+∆∆, which is Definition 7

with 1 = ∆ and 2 = ∆. Hence  is differentiable.

45. To show that  is continuous at ( ) we need to show that lim
()→()

( ) = ( ) or

equivalently lim
(∆∆)→(00)

(+∆  +∆) = ( ). Since  is differentiable at ( ),

(+∆ +∆)− ( ) = ∆ = ( )∆+ ( )∆ + 1∆+ 2∆, where 1 and 2 → 0 as

(∆∆)→ (0 0). Thus (+∆ +∆) = ( ) + ( )∆+ ( )∆ + 1∆+ 2∆. Taking the limit of

both sides as (∆∆)→ (0 0) gives lim
(∆∆)→(00)

(+∆ +∆) = ( ). Thus  is continuous at ( ).

14.5 The Chain Rule

1.  = 2 + 2 + ,  = sin ,  =  ⇒ 


=








+








= (2+ ) cos + (2 + )

3.  =

1 + 2 + 2,  = ln ,  = cos  ⇒




=








+







= 1

2
(1+2+2)−12(2) · 1


+ 1

2
(1+2+2)−12(2)(− sin ) = 1

1 + 2 + 2



−  sin 
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5.  =  ,  = 2,  = 1− ,  = 1 + 2 ⇒



=








+








+








=  · 2+ 


1




· (−1) + 


− 

2


· 2 = 


2− 


− 2

2


7.  = 23,  =  cos ,  =  sin  ⇒




=








+








= 23 cos + 322 sin 




=








+








= (23)(− sin ) + (322)( cos ) = −23 sin + 322 cos 

9.  = sin  cos,  = 2,  = 2 ⇒



=








+








= (cos  cos)(2) + (− sin  sin)(2) = 2 cos  cos− 2 sin  sin




=








+








= (cos  cos)(2) + (− sin  sin)(2) = 2 cos  cos− 2 sin  sin

11.  =  cos ,  = ,  =
√
2 + 2 ⇒




=








+








=  cos  · + (− sin ) · 1

2
(2 + 2)−12(2) =  cos  −  sin  · √

2 + 2

= 

 cos  − √

2 + 2
sin 





=








+








=  cos  · + (− sin ) · 1

2
(2 + 2)−12(2) =  cos  −  sin  · √

2 + 2

= 

 cos  − √

2 + 2
sin 


13. When  = 3,  = (3) = 2 and  = (3) = 7. By the Chain Rule (2),




=








+








= (2 7)

0(3) + (2 7)
0(3) = (6)(5) + (−8)(−4) = 62.

15. ( ) = (( ) ( )) where  =  + sin ,  =  + cos  ⇒



= ,




= cos ,




= ,




= − sin . By the Chain Rule (3), 


=








+








. Then

(0 0) = ((0 0) (0 0))(0 0) + ((0 0) (0 0)) (0 0) = (1 2)(
0) + (1 2)(

0) = 2(1) + 5(1) = 7.

Similarly,



=








+








. Then

(0 0) = ((0 0) (0 0))(0 0) + ((0 0) (0 0)) (0 0) = (1 2)(cos 0) + (1 2)(− sin 0)
= 2(1) + 5(0) = 2

17.  = ( ),  = (  ),  = (  ) ⇒




=








+








,




=








+








,




=








+
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19.  = (  ),  = ( ),  = ( ),  = ( ) ⇒



=








+








+








,




=








+








+









21.  = 4 + 2,  = + 2− ,  = 2 ⇒



=








+








= (43 + 2)(1) + (2)(2),




=








+








= (43 + 2)(2) + (2)(2),




=








+








= (43 + 2)(−1) + (2)(2).

When  = 4,  = 2, and  = 1 we have  = 7 and  = 8,

so



= (1484)(1) + (49)(2) = 1582,




= (1484) (2) + (49)(4) = 3164,




= (1484)(−1) + (49)(16) = −700.

23.  =  +  + ,  =  cos ,  =  sin ,  =  ⇒



=








+








+








= ( + )(cos ) + (+ )(sin ) + ( + )(),




=








+








+








= ( + )(− sin ) + (+ )( cos ) + ( + )().

When  = 2 and  = 2 we have  = 0,  = 2, and  = , so



= (2 + )(0) + (0 + )(1) + (2 + 0)(2) = 2 and




= (2 + )(−2) + (0 + )(0) + (2 + 0)(2) = −2.

25.  =
+ 

+ 
,  = + ,  =  + ,  =  +  ⇒




=








+








+









=
(+ )(1)− (+ )(1)

(+ )2
(1) +

(+ )(1)− (+ )(0)

(+ )2
() +

(+ )(0)− (+ )(1)

(+ )2
()

=
( − ) + (+ ) − (+ )

(+ )2
,




=








+








+








=

 − 

(+ )2
() +

+ 

(+ )2
(1) +

−(+ )

(+ )2
() =

( − ) + (+ )− (+ )

(+ )2
,




=








+








+








=

 − 

(+ )2
() +

+ 

(+ )2
() +

−(+ )

(+ )2
(1) =

( − ) + (+ )− (+ )

(+ )2
.

When  = 2,  = 3, and  = 4 we have  = 14,  = 11, and  = 10, so



=
−1 + (24)(4)− (25)(3)

(24)2
=
20

576
=

5

144
,




=
(−1)(4) + 24− (25)(2)

(24)2
=
−30
576

= − 5

96
, and




=
(−1)(3) + (24)(2)− 25

(24)2
=
20

576
=

5

144
.
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27.  cos = 2 + 2, so let  ( ) =  cos− 2 − 2 = 0. Then by Equation 6




= −


= −− sin− 2

cos− 2 =
2+  sin

cos− 2 .

29. tan−1(2) = + 2, so let  ( ) = tan−1(2)− − 2 = 0. Then

( ) =
1

1 + (2)2
(2)− 1− 2 =

2

1 + 42
− 1− 2 =

2 − (1 + 2)(1 + 42)

1 + 42
,

( ) =
1

1 + (2)2
(2)− 2 = 2

1 + 42
− 2 = 2 − 2(1 + 42)

1 + 42

and



= −


= − [2 − (1 + 2)(1 + 42)](1 + 42)

[2 − 2(1 + 42)](1 + 42)
=
(1 + 2)(1 + 42)− 2

2 − 2(1 + 42)

=
1 + 42 + 2 + 44 − 2

2 − 2 − 253

31. 2 + 22 + 32 = 1, so let  (  ) = 2 + 22 + 32 − 1 = 0. Then by Equations 7



= −


= −2

6
= − 

3
and




= −


= −4

6
= −2

3
.

33.  = , so let  (  ) =  −  = 0. Then



= −


= − −

 − 
=



 − 
and




= −


= − −

 − 
=



 − 
.

35. Since  and  are each functions of ,  ( ) is a function of , so by the Chain Rule,



=








+








. After

3 seconds,  =
√
1 +  =

√
1 + 3 = 2,  = 2 + 1

3
 = 2 + 1

3
(3) = 3,




=

1

2
√
1 + 

=
1

2
√
1 + 3

=
1

4
, and




=
1

3
.

Then



= (2 3)




+ (2 3)




= 4


1
4


+ 3

1
3


= 2. Thus the temperature is rising at a rate of 2◦Cs.

37.  = 14492 + 46 − 0055 2 + 000029 3 + 0016, so



= 46− 011 + 000087 2 and




= 0016.

According to the graph, the diver is experiencing a temperature of approximately 125◦C at  = 20 minutes, so




= 46− 011(125) + 000087(125)2 ≈ 336. By sketching tangent lines at  = 20 to the graphs given, we estimate




≈ 1

2
and




≈ − 1

10
. Then, by the Chain Rule,




=








+








≈ (336)− 1

10


+ (0016)


1
2

 ≈ −033.
Thus the speed of sound experienced by the diver is decreasing at a rate of approximately 033 ms per minute.

39. (a)  = , so by the Chain Rule,




=








+








+








= 




+ 




+ 




= 2 · 2 · 2 + 1 · 2 · 2 + 1 · 2 · (−3) = 6 m3s.
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(b)  = 2( + +), so by the Chain Rule,




=








+








+








= 2( + )




+ 2(+ )




+ 2(+)





= 2(2 + 2)2 + 2(1 + 2)2 + 2(1 + 2)(−3) = 10 m2s

(c) 2 = 2 + 2 + 2 ⇒ 2



= 2




+ 2




+ 2




= 2(1)(2) + 2(2)(2) + 2(2)(−3) = 0 ⇒

 = 0 ms.

41.



= 005,




= 015,  = 831




and




=
831






− 831 

 2




. Thus when  = 20 and  = 320,




= 831


015

20
− (005)(320)

400


≈ −027 Ls.

43. Let  be the length of the first side of the triangle and  the length of the second side. The area  of the triangle is given by

 = 1
2
 sin  where  is the angle between the two sides. Thus  is a function of , , and , and , , and  are each in turn

functions of time . We are given that



= 3,




= −2, and because  is constant, 


= 0. By the Chain Rule,




=








+








+








⇒ 


= 1

2
 sin  · 


+ 1

2
 sin  · 


+ 1

2
 cos  · 


. When  = 20,  = 30,

and  = 6 we have

0 = 1
2
(30)


sin 

6


(3) + 1

2
(20)


sin 

6


(−2) + 1

2
(20)(30)


cos 

6

 


= 45 · 1
2
− 20 · 1

2
+ 300 ·

√
3

2
· 

= 25

2
+ 150

√
3




Solving for



gives




=
−252
150

√
3
= − 1

12
√
3
, so the angle between the sides is decreasing at a rate of

1

12
√
3
 ≈ 0048 rads.

45. (a) By the Chain Rule,



=




cos  +




sin ,




=




(− sin ) + 


 cos .

(b)






2
=






2
cos2  + 2








cos  sin  +






2
sin2 ,






2
=






2
2 sin2  − 2 






2 cos  sin  +






2
2 cos2 . Thus






2
+
1

2






2
=






2
+






2
(cos2  + sin2 ) =






2
+






2
.

47. Let  = − . Then



=








=




and




=




(−1). Thus 


+




= 0.
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49. Let  = + ,  = − . Then  = () + (), so  =  0() and  = 0().

Thus



=








+








=  0()− 0() and

2

2
= 




[ 0()− 0()] = 


 0()





− 0()








= 2 00() + 200().

Similarly



=  0() + 0() and

2

2
=  00() + 00(). Thus

2

2
= 2

2

2
.

51.



=




2+




2. Then

2

 
=









2


+









2



=
2

2



2+














2+








2+

2

2



2 +














2 +




2

= 4
2

2
+

2

 
42 + 0 + 4

2

2
+

2

 
42 + 2





By the continuity of the partials,
2


= 4

2

2
+ 4

2

2
+ (42 + 42)

2


+ 2




.

53.



=




cos  +




sin  and




= −


 sin  +




 cos . Then

2

2
= cos 


2

2
cos  +

2

 
sin 


+ sin 


2

2
sin  +

2

 
cos 


= cos2 

2

2
+ 2cos  sin 

2

 
+ sin2 

2

2

and

2

2
= − cos  


+ (− sin )


2

2
(− sin ) + 2

 
 cos 


− sin  


+  cos 


2

2
 cos  +

2

 
(− sin )


= − cos  


−  sin 




+ 2 sin2 

2

2
− 22 cos  sin  2


+ 2 cos2 

2

2

Thus

2

2
+
1

2
2

2
+
1






= (cos2  + sin2 )

2

2
+

sin2  + cos2 

 2
2

−1

cos 




− 1


sin 




+
1




cos 




+ sin 






=

2

2
+

2

2
as desired.

55. (a) Since  is a polynomial, it has continuous second-order partial derivatives, and

( ) = ()2() + 2()()2 + 5()3 = 32 + 232 + 533 = 3(2 + 22 + 53) = 3 ( ).

Thus,  is homogeneous of degree 3.
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(b) Differentiating both sides of ( ) = ( ) with respect to  using the Chain Rule, we get




( ) =




[( )] ⇔



()
( ) · ()


+



()
( ) · ()


= 



()
( ) + 



()
( ) = −1( ).

Setting  = 1: 



( ) + 




( ) = ( ).

57. Differentiating both sides of ( ) = ( ) with respect to  using the Chain Rule, we get




( ) =




[( )] ⇔



 ()
( ) ·  ()


+



 ()
( ) ·  ()


= 




( ) ⇔ ( ) = ( ).

Thus ( ) = −1( ).

59. Given a function defined implicitly by  ( ) = 0, where  is differentiable and  6= 0, we know that 


= −


. Let

( ) = −


so




= ( ). Differentiating both sides with respect to  and using the Chain Rule gives

2

2
=








+








where




=






−




= − − 

 2


,



=






−




= − − 

 2


.

Thus

2

2
=


− − 

 2



(1) +


− − 

 2



−




= −

2
 −  −  + 

2


 3


But  has continuous second derivatives, so by Clauraut’s Theorem,  =  and we have

2

2
= −

2
 − 2 + 

2


 3


as desired.

14.6 Directional Derivatives and the Gradient Vector

1. We can approximate the directional derivative of the pressure function at K in the direction of S by the average rate of change

of pressure between the points where the red line intersects the contour lines closest to K (extend the red line slightly at the

left). In the direction of S, the pressure changes from 1000 millibars to 996 millibars and we estimate the distance between

these two points to be approximately 50 km (using the fact that the distance from K to S is 300 km). Then the rate of change of

pressure in the direction given is approximately 996− 1000
50

= −008 millibarkm.

3. u (−20 30) = ∇ (−20 30) · u =  (−20 30)


1√
2


+ (−20 30)


1√
2


.

 (−20 30) = lim
→0

(−20 +  30)− (−20 30)


, so we can approximate  (−20 30) by considering  = ±5 and
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using the values given in the table:  (−20 30) ≈ (−15 30)− (−20 30)
5

=
−26− (−33)

5
= 14,

 (−20 30) ≈ (−25 30)− (−20 30)
−5 =

−39− (−33)
−5 = 12. Averaging these values gives  (−20 30) ≈ 13.

Similarly, (−20 30) = lim
→0

(−20 30 + )− (−20 30)


, so we can approximate (−20 30) with  = ±10:

(−20 30) ≈ (−20 40)− (−20 30)
10

=
−34− (−33)

10
= −01,

(−20 30) ≈ (−20 20)− (−20 30)
−10 =

−30− (−33)
−10 = −03. Averaging these values gives (−20 30) ≈ −02.

Thenu(−20 30) ≈ 13


1√
2


+ (−02)


1√
2


≈ 0778.

5. ( ) = − ⇒ ( ) = −− and ( ) = −. If u is a unit vector in the direction of  = 23, then

from Equation 6,u (0 4) = (0 4) cos

2
3


+ (0 4) sin


2
3


= −4 · − 1

2


+ 1 ·

√
3
2
= 2+

√
3
2
.

7. ( ) = sin(2+ 3)

(a) ∇( ) = 


i+




j = [cos(2+ 3) · 2] i+ [cos(2+ 3) · 3] j = 2 cos (2+ 3) i+ 3 cos (2+ 3) j

(b) ∇(−6 4) = (2 cos 0) i+ (3 cos 0) j = 2 i+ 3 j

(c) By Equation 9,u (−6 4) = ∇(−6 4) · u = (2 i+ 3 j) · 1
2

√
3 i− j = 1

2


2
√
3− 3 = √3− 3

2
.

9. (  ) = 2 − 3

(a) ∇(  ) = h(  ) (  ) (  )i =

2 − 3 2 − 3 2 − 32

(b) ∇(2−1 1) = h−4 + 1 4− 2−4 + 6i = h−3 2 2i

(c) By Equation 14,u(2−1 1) = ∇(2−1 1) · u = h−3 2 2i ·

0 4

5
− 3

5


= 0 + 8

5
− 6

5
= 2

5
.

11. ( ) =  sin  ⇒ ∇( ) = h sin   cos i, ∇(0 3) =
√

3
2
 1
2


, and a

unit vector in the direction of v is u = 1√
(−6)2+82

h−6 8i = 1
10
h−6 8i = − 3

5
 4
5


, so

u (0 3) = ∇(0 3) · u =
√

3
2
 1
2


· − 3

5
 4
5


= − 3

√
3

10
+ 4

10
= 4−3√3

10
.

13. ( ) = 4 − 23 ⇒ ∇( ) = 43 − 23 i+ −322 j, ∇(2 1) = 28 i− 12 j, and a unit
vector in the direction of v is u = 1√

12+32
(i + 3 j) = 1√

10
(i + 3 j), so

u (2 1) = ∇(2 1) · u = (28 i− 12 j) · 1√
10
(i+ 3 j) = 1√

10
(28− 36) = − 8√

10
or −4

√
10
5
.

15. (  ) =  +  +  ⇒ ∇(  ) = h +   +   + i,∇(0 0 0) = h1 1 1i, and a unit

vector in the direction of v is u = 1√
25+1+4

h5 1−2i = 1√
30
h5 1−2i, so

u (0 0 0) = ∇(0 0 0) · u = h1 1 1i · 1√
30
h5 1−2i = 4√

30
.
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17. (  ) = ln(3 + 6+ 9) ⇒ ∇(  ) = h3(3 + 6+ 9) 6(3 + 6+ 9) 9(3 + 6+ 9)i,

∇(1 1 1) =  1
6
 1
3
 1
2


, and a unit vector in the direction of v = 4 i + 12 j + 6k

is u = 1√
16+144+36

(4 i+ 12 j+ 6k) = 2
7
i + 6

7
j + 3

7
k, so

u (1 1 1) = ∇(1 1 1) · u =

1
6
 1
3
 1
2

 ·  2
7
 6
7
 3
7


= 1

21
+ 2

7
+ 3

14
= 23

42
.

19. ( ) =

 ⇒ ∇( ) =


1
2
()−12() 1

2
()−12()


=




2






2




, so∇(2 8) = 1 1

4


.

The unit vector in the direction of
−−→
 = h5− 2 4− 8i = h3−4i is u =  3

5
− 4

5


, so

u (2 8) = ∇(2 8) · u =

1 1

4

 ·  3
5
− 4

5


= 2

5
.

21. ( ) = 4
√
 ⇒ ∇( ) =


4 · 1

2
−12 4

√


= h2√ 4√ i.

∇(4 1) = h1 8i is the direction of maximum rate of change, and the maximum rate is |∇(4 1)| = √1 + 64 = √65.

23. ( ) = sin() ⇒ ∇( ) = h cos()  cos()i,∇(1 0) = h0 1i. Thus the maximum rate of change is

|∇(1 0)| = 1 in the direction h0 1i.

25. (  ) =

2 + 2 + 2 ⇒

∇(  ) =

1
2
(2 + 2 + 2)−12 · 2 1

2
(2 + 2 + 2)−12 · 2 1

2
(2 + 2 + 2)−12 · 2


=




2 + 2 + 2



2 + 2 + 2




2 + 2 + 2




∇(3 6−2) =


3√
49
 6√

49
 −2√

49


=

3
7
 6
7
− 2

7


. Thus the maximum rate of change is

|∇(3 6−2)| =


3
7

2
+

6
7

2
+
− 2

7

2
=


9+ 36+ 4
49

= 1 in the direction

3
7
 6
7
− 2

7


or equivalently h3 6−2i.

27. (a) As in the proof of Theorem 15,u  = |∇ | cos . Since the minimum value of cos  is −1 occurring when  = , the

minimum value ofu  is − |∇ | occurring when  = , that is when u is in the opposite direction of∇

(assuming∇ 6= 0).

(b) ( ) = 4 − 23 ⇒ ∇( ) = 43 − 23 4 − 322, so  decreases fastest at the point (2−3) in the
direction −∇(2−3) = − h12−92i = h−12 92i.

29. The direction of fastest change is∇( ) = (2− 2) i+ (2 − 4) j, so we need to find all points ( ) where∇( ) is

parallel to i+ j ⇔ (2− 2) i+ (2 − 4) j =  (i+ j) ⇔  = 2− 2 and  = 2 − 4. Then 2− 2 = 2 − 4 ⇒

 = + 1 so the direction of fastest change is i+ j at all points on the line  = + 1.
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31.  =


2 + 2 + 2
and 120 =  (1 2 2) =



3
so  = 360.

(a) u =
h1−1 1i√

3
,

u (1 2 2) = ∇ (1 2 2) ·u =

−3602 + 2 + 2

−32h  i
(122)

·u = − 40
3
h1 2 2i · 1√

3
h1−1 1i = − 40

3
√
3

(b) From (a),∇ = −3602 + 2 + 2
−32h  i, and since h  i is the position vector of the point (  ), the

vector − h  i, and thus∇ , always points toward the origin.

33. ∇ (  ) = h10− 3 +   − 3 i, ∇ (3 4 5) = h38 6 12i

(a) u  (3 4 5) = h38 6 12i · 1√
3
h1 1−1i = 32√

3

(b) ∇ (3 4 5) = h38 6 12i, or equivalently, h19 3 6i.

(c) |∇ (3 4 5)| = √382 + 62 + 122 = √1624 = 2√406

35. A unit vector in the direction of
−→
 is i and a unit vector in the direction of

−→
 is j. Thus−−→


(1 3) = (1 3) = 3 and

−−→


(1 3) = (1 3) = 26. Therefore ∇(1 3) = h(1 3) (1 3)i = h3 26i, and by definition,

−−→


(1 3) = ∇ · u where u is a unit vector in the direction of
−−→
, which is


5
13
 12
13


. Therefore,

−−→


 (1 3) = h3 26i ·  5
13
 12
13


= 3 · 5

13
+ 26 · 12

13
= 327

13
.

37. (a) ∇(+ ) =


(+ )



(+ )




=






+ 




 




+ 






= 











+ 











= ∇+ ∇

(b) ∇() =





+ 




 




+ 






= 











+ 











= ∇+ ∇

(c) ∇




=






− 




2







− 





2


=













− 











2

=
∇− ∇

2

(d) ∇ =

()



()




=


−1




 −1






= −1∇

39. ( ) = 3 + 52 + 3 ⇒

u( ) = ∇( ) · u =

32 + 10 52 + 32

 ·  3
5
 4
5


= 9

5
2 +6+42 + 12

5
2 = 29

5
2 +6+ 12

5
2. Then

2
u( ) = u [u( )] = ∇ [u( )] · u =


58
5
+ 6 6+ 24

5

 ·  3

5
 4
5


= 174

25
+ 18

5
 + 24

5
+ 96

25
 = 294

25
+ 186

25


and2
u(2 1) =

294
25
(2) + 186

25
(1) = 774

25
.
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41. Let  (  ) = 2(− 2)2 + ( − 1)2 + ( − 3)2. Then 2(− 2)2 + ( − 1)2 + ( − 3)2 = 10 is a level surface of  .
(  ) = 4(− 2) ⇒ (3 3 5) = 4, (  ) = 2( − 1) ⇒ (3 3 5) = 4, and

(  ) = 2( − 3) ⇒ (3 3 5) = 4.

(a) Equation 19 gives an equation of the tangent plane at (3 3 5) as 4(− 3) + 4( − 3) + 4( − 5) = 0 ⇔
4+ 4 + 4 = 44 or equivalently +  +  = 11.

(b) By Equation 20, the normal line has symmetric equations
− 3
4

=
 − 3
4

=
 − 5
4

or equivalently

− 3 =  − 3 =  − 5. Corresponding parametric equations are  = 3 + ,  = 3 + ,  = 5 + .

43. Let  (  ) = 2. Then 2 = 6 is a level surface of  and∇ (  ) = 2 2 2.
(a) ∇ (3 2 1) = h2 3 12i is a normal vector for the tangent plane at (3 2 1), so an equation of the tangent plane
is 2(− 3) + 3( − 2) + 12( − 1) = 0 or 2+ 3 + 12 = 24.

(b) The normal line has direction h2 3 12i, so parametric equations are  = 3 + 2,  = 2 + 3,  = 1 + 12, and

symmetric equations are
− 3
2

=
 − 2
3

=
 − 1
12

.

45. Let  (  ) = +  +  −  . Then +  +  =  is the level surface  (  ) = 0,

and∇ (  ) = h1−  1−  1− i.

(a) ∇ (0 0 1) = h1 1 1i is a normal vector for the tangent plane at (0 0 1), so an equation of the tangent plane
is 1(− 0) + 1( − 0) + 1( − 1) = 0 or +  +  = 1.

(b) The normal line has direction h1 1 1i, so parametric equations are  = ,  = ,  = 1 + , and symmetric equations are

 =  =  − 1.

47.  (  ) =  +  + ,∇ (  ) = h +  +   + i,∇ (1 1 1) = h2 2 2i, so an equation of the tangent
plane is 2+ 2 + 2 = 6 or +  +  = 3, and the normal line is given by − 1 =  − 1 =  − 1 or  =  = . To graph

the surface we solve for :  =
3− 

+ 
.
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49. ( ) =  ⇒ ∇( ) = h i,∇(3 2) = h2 3i. ∇(3 2)
is perpendicular to the tangent line, so the tangent line has equation

∇(3 2) · h− 3  − 2i = 0 ⇒ h2 3i · h− 3 − 2i = 0 ⇒
2(− 3) + 3( − 2) = 0 or 2+ 3 = 12.

51. ∇ (0 0 0) =

20

2

20

2

20

2


. Thus an equation of the tangent plane at (0 0 0) is

20

2
+

20

2
 +

20

2
 = 2


20
2
+

20
2
+

20
2


= 2(1) = 2 since (0 0 0) is a point on the ellipsoid. Hence

0

2
+

0

2
 +

0

2
 = 1 is an equation of the tangent plane.

53. ∇ (0 0 0) =

20

2

20

2

−1



, so an equation of the tangent plane is

20

2
+

20

2
 − 1


 =

220
2

+
220
2
− 0



or
20

2
+

20

2
 =




+ 2


20
2
+

20
2


− 0


. But

0


=

20
2
+

20
2
, so the equation can be written as

20

2
+

20

2
 =

 + 0


.

55. The hyperboloid 2 − 2 − 2 = 1 is a level surface of  (  ) = 2 − 2 − 2 and∇ (  ) = h2−2−2i is a
normal vector to the surface and hence a normal vector for the tangent plane at (  ). The tangent plane is parallel to the

plane  = +  or +  −  = 0 if and only if the corresponding normal vectors are parallel, so we need a point (0 0 0)

on the hyperboloid where h20−20−20i =  h1 1−1i or equivalently h0−0−0i =  h1 1−1i for some  6= 0.
Then we must have 0 = , 0 = −, 0 =  and substituting into the equation of the hyperboloid gives

2 − (−)2 − 2 = 1 ⇔ −2 = 1, an impossibility. Thus there is no such point on the hyperboloid.

57. Let (0 0 0) be a point on the cone [other than (0 0 0)]. The cone is a level surface of  (  ) = 2 + 2 − 2 and

∇ (  ) = h2 2−2i, so∇ (0 0 0) = h20 20−20i is a normal vector to the cone at this point and an

equation of the tangent plane there is 20 (− 0) + 20 ( − 0)− 20 ( − 0) = 0 or 0+ 0 − 0 = 20 + 20 − 20 .

But 20 + 20 = 20 so the tangent plane is given by 0+ 0 − 0 = 0, a plane which always contains the origin.

59. Let  (  ) = 2 + 2 − . Then the paraboloid is the level surface  (  ) = 0 and∇ (  ) = h2 2−1i, so

∇ (1 1 2) = h2 2−1i is a normal vector to the surface. Thus the normal line at (1 1 2) is given by  = 1 + 2,

 = 1+ 2,  = 2− . Substitution into the equation of the paraboloid  = 2 + 2 gives 2−  = (1+ 2)2 + (1+ 2)2 ⇔

2−  = 2 + 8+ 82 ⇔ 82 + 9 = 0 ⇔ (8+ 9) = 0. Thus the line intersects the paraboloid when  = 0,

corresponding to the given point (1 1 2), or when  = − 9
8
, corresponding to the point

−5
4
− 5

4
 25
8


.
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61. Let (0 0 0) be a point on the surface. Then an equation of the tangent plane at the point is



2
√
0
+



2
√
0
+



2
√
0
=

√
0 +

√
0 +

√
0

2
. But

√
0 +

√
0 +

√
0 =

√
, so the equation is

√
0
+

√
0
+

√
0
=
√
. The -, -, and -intercepts are

√
0,

√
0 and

√
0 respectively. (The -intercept is found by

setting  =  = 0 and solving the resulting equation for , and the - and -intercepts are found similarly.) So the sum of the

intercepts is
√

√

0 +
√
0 +

√
0

= , a constant.

63. If (  ) =  − 2 − 2 and (  ) = 42 + 2 + 2, then the tangent line is perpendicular to both∇ and∇

at (−1 1 2). The vector v = ∇ ×∇ will therefore be parallel to the tangent line.

We have∇(  ) = h−2−2 1i ⇒ ∇(−1 1 2) = h2−2 1i, and∇(  ) = h8 2 2i ⇒

∇(−1 1 2) = h−8 2 4i. Hence v = ∇ ×∇ =


i j k

2 −2 1

−8 2 4

 = −10 i− 16 j− 12k.
Parametric equations are:  = −1− 10,  = 1− 16,  = 2− 12.

65. (a) The direction of the normal line of  is given by ∇ , and that of  by ∇. Assuming that

∇ 6= 0 6= ∇, the two normal lines are perpendicular at  if ∇ ·∇ = 0 at  ⇔

h  i · h  i = 0 at  ⇔  +  +  = 0 at  .

(b) Here  = 2 + 2 − 2 and  = 2 + 2 + 2 − 2, so

∇ ·∇ = h2 2−2i · h2 2 2i = 42 + 42 − 42 = 4 = 0, since the point (  ) lies on the graph of

 = 0. To see that this is true without using calculus, note that = 0 is the equation of a sphere centered at the origin and

 = 0 is the equation of a right circular cone with vertex at the origin (which is generated by lines through the origin). At

any point of intersection, the sphere’s normal line (which passes through the origin) lies on the cone, and thus is

perpendicular to the cone’s normal line. So the surfaces with equations  = 0 and = 0 are everywhere orthogonal.

67. Let u = h i and v = h i. Then we know that at the given point, u  = ∇ · u =  +  and

v  = ∇ · v =  +  . But these are just two linear equations in the two unknowns  and  , and since u and v are

not parallel, we can solve the equations to find ∇ = h i at the given point. In fact,

∇ =

u  − v 

− 

v  − u 

− 


.
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14.7 Maximum and Minimum Values

1. (a) First we compute(1 1) = (1 1) (1 1)− [(1 1)]2 = (4)(2)− (1)2 = 7. Since(1 1)  0 and

(1 1)  0,  has a local minimum at (1 1) by the Second Derivatives Test.

(b) (1 1) = (1 1) (1 1)− [(1 1)]2 = (4)(2)− (3)2 = −1. Since(1 1)  0,  has a saddle point at (1 1) by

the Second Derivatives Test.

3. In the figure, a point at approximately (1 1) is enclosed by level curves which are oval in shape and indicate that as we move

away from the point in any direction the values of  are increasing. Hence we would expect a local minimum at or near (1 1).

The level curves near (0 0) resemble hyperbolas, and as we move away from the origin, the values of  increase in some

directions and decrease in others, so we would expect to find a saddle point there.

To verify our predictions, we have ( ) = 4 + 3 + 3 − 3 ⇒ ( ) = 3
2 − 3, ( ) = 32 − 3. We

have critical points where these partial derivatives are equal to 0: 32 − 3 = 0, 32 − 3 = 0. Substituting  = 2 from the

first equation into the second equation gives 3(2)2 − 3 = 0 ⇒ 3(3 − 1) = 0 ⇒  = 0 or  = 1. Then we have

two critical points, (0 0) and (1 1). The second partial derivatives are ( ) = 6, ( ) = −3, and ( ) = 6,

so( ) = ( ) ( )− [( )]2 = (6)(6)− (−3)2 = 36 − 9. Then(0 0) = 36(0)(0)− 9 = −9,

and(1 1) = 36(1)(1)− 9 = 27. Since(0 0)  0,  has a saddle point at (0 0) by the Second Derivatives Test. Since

(1 1)  0 and (1 1)  0,  has a local minimum at (1 1).

5. ( ) = 2 +  + 2 +  ⇒  = 2+ ,  = + 2 + 1,  = 2,  = 1,  = 2. Then  = 0 implies

 = −2, and substitution into  = + 2 + 1 = 0 gives + 2 (−2) + 1 = 0 ⇒ −3 = −1 ⇒  = 1
3
.

Then  = − 2
3
and the only critical point is


1
3
− 2

3


.

( ) =  − ()2 = (2)(2)− (1)2 = 3, and since



1
3
− 2

3


= 3  0 and 


1
3
− 2

3


= 2  0, 


1
3
− 2

3


= − 1

3
is a local

minimum by the Second Derivatives Test.

7. ( ) = (− )(1− ) = −  − 2 + 2 ⇒  = 1− 2 + 2,  = −1− 2 + 2,  = −2,

 = −2+ 2,  = 2. Then  = 0 implies 1− 2 + 2 = 0 and  = 0 implies−1− 2 + 2 = 0. Adding the

two equations gives 1 + 2 − 1− 2 = 0 ⇒ 2 = 2 ⇒  = ±, but if  = − then  = 0 implies
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1 + 22 + 2 = 0 ⇒ 32 = −1 which has no real solution. If  = 

then substitution into  = 0 gives 1− 22 + 2 = 0 ⇒ 2 = 1 ⇒
 = ±1, so the critical points are (1 1) and (−1−1). Now

(1 1) = (−2)(2)− 02 = −4  0 and

(−1−1) = (2)(−2)− 02 = −4  0, so (1 1) and (−1−1) are
saddle points.

9. ( ) = 3 + 32 − 62 − 62 + 2 ⇒  = 6 − 12,  = 32 + 32 − 12,  = 6 − 12,  = 6,

 = 6 − 12. Then  = 0 implies 6( − 2) = 0, so  = 0 or  = 2. If  = 0 then substitution into  = 0 gives

32 − 12 = 0 ⇒ 3( − 4) = 0 ⇒  = 0 or  = 4, so we have critical points (0 0) and (0 4). If  = 2,

substitution into  = 0 gives 12 + 32 − 24 = 0 ⇒ 2 = 4 ⇒
 = ±2, so we have critical points (±2 2).

(0 0) = (−12)(−12)− 02 = 144  0 and (0 0) = −12  0, so

(0 0) = 2 is a local maximum. (0 4) = (12)(12)− 02 = 144  0

and (0 4) = 12  0, so (0 4) = −30 is a local minimum.

(±2 2) = (0)(0)− (±12)2 = −144  0, so (±2 2) are saddle points.

11. ( ) = 3 − 12 + 83 ⇒  = 3
2 − 12,  = −12+ 242,  = 6,  = −12,  = 48. Then  = 0

implies 2 = 4 and  = 0 implies  = 22. Substituting the second equation into the first gives (22)2 = 4 ⇒

44 = 4 ⇒ 4(3 − 1) = 0 ⇒  = 0 or  = 1. If  = 0 then

 = 0 and if  = 1 then  = 2, so the critical points are (0 0) and (2 1).

(0 0) = (0)(0)− (−12)2 = −144  0, so (0 0) is a saddle point.

(2 1) = (12)(48)− (−12)2 = 432  0 and (2 1) = 12  0 so

(2 1) = −8 is a local minimum.

13. ( ) =  cos  ⇒  =  cos ,  = − sin .
Now  = 0 implies cos  = 0 or  = 

2
+  for  an integer.

But sin


2
+ 

 6= 0, so there are no critical points.
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15. ( ) = (2 + 2)
2−2 ⇒

 = (
2 + 2)

2−2(−2) + 22−2 = 22−2(1− 2 − 2),

 = (
2 + 2)

2−2(2) + 2
2−2 = 2

2−2(1 + 2 + 2),

 = 2
2−2(−2) + (1− 2 − 2)


2

−22−2


+ 2

2−2

= 2

2−2((1− 2 − 2)(1− 22)− 22),

 = 2
2−2(−2) + 2(2)2−2(1− 2 − 2) = −42−2(2 + 2),

 = 2
2−2 (2) + (1 + 2 + 2)


2

2

2−2

+ 2

2−2

= 2

2−2((1 + 2 + 2)(1 + 22) + 22).

 = 0 implies  = 0, and substituting into  = 0 gives

2−
2

(1− 2) = 0 ⇒  = 0 or  = ±1. Thus the critical points are
(0 0) and (±1 0). Now(0 0) = (2)(2)− 0  0 and (0 0) = 2  0,
so (0 0) = 0 is a local minimum. (±1 0) = (−4−1)(4−1)− 0  0
so (±1 0) are saddle points.

17. ( ) = 2 − 2 cos ⇒  = 2 sin,  = 2 − 2 cos,

 = 2 cos,  = 2 sin,  = 2. Then  = 0 implies  = 0 or

sin = 0 ⇒  = 0, , or 2 for −1 ≤  ≤ 7. Substituting  = 0 into

 = 0 gives cos = 0 ⇒  = 
2
or 3

2
, substituting  = 0 or  = 2

into  = 0 gives  = 1, and substituting  =  into  = 0 gives  = −1.

Thus the critical points are (0 1),


2
 0

, (−1),  3

2
 0

, and (2 1).




2
 0

= 


3
2
 0

= −4  0 so



2
 0

and


3
2
 0

are saddle points. (0 1) = (−1) = (2 1) = 4  0 and

(0 1) = (−1) = (2 1) = 2  0, so (0 1) = (−1) = (2 1) = −1 are local minima.

19. ( ) = 2 + 42 − 4 + 2 ⇒  = 2− 4,  = 8 − 4,  = 2,  = −4,  = 8. Then  = 0

and  = 0 each implies  = 1
2
, so all points of the form


0

1
2
0

are critical points and for each of these we have



0

1
2
0

= (2)(8)− (−4)2 = 0. The Second Derivatives Test gives no information, but

( ) = 2 + 42 − 4 + 2 = (− 2)2 + 2 ≥ 2 with equality if and only if  = 1
2
. Thus 


0

1
2
0

= 2 are all local

(and absolute) minima.
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21. ( ) = 2 + 2 + −2−2

From the graphs, there appear to be local minima of about (1±1) = (−1±1) ≈ 3 (and no local maxima or saddle

points).  = 2− 2−3−2,  = 2 − 2−2−3,  = 2 + 6−4−2,  = 4−3−3,  = 2 + 6−2−4. Then

 = 0 implies 242 − 2 = 0 or 42 = 1 or 2 = −4. Note that neither  nor  can be zero. Now  = 0 implies

224 − 2 = 0, and with 2 = −4 this implies 2−6 − 2 = 0 or 6 = 1. Thus  = ±1 and if  = 1,  = ±1; if  = −1,

 = ±1. So the critical points are (1 1), (1−1),(−1 1) and (−1−1). Now(1±1) = (−1±1) = 64− 16  0 and

  0 always, so (1±1) = (−1±1) = 3 are local minima.

23. ( ) = sin+ sin  + sin(+ ), 0 ≤  ≤ 2, 0 ≤  ≤ 2

From the graphs it appears that  has a local maximum at about (1 1) with value approximately 26, a local minimum

at about (5 5) with value approximately −26, and a saddle point at about (3 3).

 = cos+ cos(+ ),  = cos  + cos(+ ),  = − sin− sin(+ ),  = − sin  − sin(+ ),

 = − sin(+ ). Setting  = 0 and  = 0 and subtracting gives cos− cos  = 0 or cos = cos . Thus  = 

or  = 2 − . If  = ,  = 0 becomes cos+ cos 2 = 0 or 2 cos2 + cos− 1 = 0, a quadratic in cos. Thus

cos = −1 or 1
2
and  = , 

3
, or 5

3
, giving the critical points ( ),



3
 
3


and


5
3
 5
3


. Similarly if

 = 2 − ,  = 0 becomes (cos) + 1 = 0 and the resulting critical point is ( ). Now

( ) = sin sin + sin sin(+ ) + sin  sin(+ ). So( ) = 0 and the Second Derivatives Test doesn’t apply.

However, along the line  =  we have ( ) = 2 sin+ sin 2 = 2 sin+ 2 sin cos = 2 sin(1 + cos), and
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( )  0 for 0     while ( )  0 for     2. Thus every disk with center ( ) contains points where  is

positive as well as points where  is negative, so the graph crosses its tangent plane ( = 0) there and ( ) is a saddle point.




3
 
3


= 9

4
 0 and 



3
 
3


 0 so 



3
 
3


= 3

√
3

2
is a local maximum while


5
3
 5
3


= 9

4
 0 and



5
3
 5
3


 0, so 


5
3
 5
3


= − 3

√
3

2
is a local minimum.

25. ( ) = 4 + 4 − 42 + 2 ⇒ ( ) = 4
3 − 8 and ( ) = 43 − 42 + 2.  = 0 ⇒

4(2 − 2) = 0, so  = 0 or 2 = 2. If  = 0 then substitution into  = 0 gives 43 = −2 ⇒  = − 1
3√
2
, so

0− 1
3√
2


is a critical point. Substituting 2 = 2 into  = 0 gives 43 − 8 + 2 = 0. Using a graph, solutions are

approximately  = −1526, 0259, and 1267. (Alternatively, we could have used a calculator or a CAS to find these roots.)

We have 2 = 2 ⇒  = ±√2, so  = −1526 gives no real-valued solution for , but

 = 0259 ⇒  ≈ ±0720 and  = 1267 ⇒  ≈ ±1592. Thus to three decimal places, the critical points are
0− 1

3√
2


≈ (0−0794), (±0720 0259), and (±1592 1267). Now since  = 122 − 8,  = −8,  = 122,

and = (122 − 8)(122)− 642, we have(0−0794)  0, (0−0794)  0,(±0720 0259)  0,

(±1592 1267)  0, and (±1592 1267)  0. Therefore (0−0794) ≈ −1191 and (±1592 1267) ≈ −1310

are local minima, and (±0720 0259) are saddle points. There is no highest point on the graph, but the lowest points are

approximately (±1592 1267−1310).

27. ( ) = 4 + 3 − 32 + 2 + − 2 + 1 ⇒ ( ) = 4
3 − 6+ 1 and ( ) = 32 + 2 − 2. From the

graphs, we see that to three decimal places,  = 0 when  ≈ −1301, 0170, or 1131, and  = 0 when  ≈ −1215 or

0549. (Alternatively, we could have used a calculator or a CAS to find these roots. We could also use the quadratic formula to

find the solutions of  = 0.) So, to three decimal places,  has critical points at (−1301−1215), (−1301 0549),

(0170−1215), (0170 0549), (1131−1215), and (1131 0549). Now since  = 122 − 6,  = 0,  = 6 + 2,

and = (122 − 6)(6 + 2), we have(−1301−1215)  0,(−1301 0549)  0, (−1301 0549)  0,

(0170−1215)  0, (0170−1215)  0,(0170 0549)  0,(1131−1215)  0,(1131 0549)  0, and

(1131 0549)  0. Therefore, to three decimal places, (−1301 0549) ≈ −3145 and (1131 0549) ≈ −0701 are
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local minima, (0170−1215) ≈ 3197 is a local maximum, and (−1301−1215), (0170 0549), and (1131−1215)

are saddle points. There is no highest or lowest point on the graph.

29. Since  is a polynomial it is continuous on, so an absolute maximum and minimum exist. Here  = 2− 2,  = 2, and

setting  =  = 0 gives (1 0) as the only critical point (which is inside), where (1 0) = −1. Along 1:  = 0 and

(0 ) = 2 for −2 ≤  ≤ 2, a quadratic function which attains its minimum at  = 0, where (0 0) = 0, and its maximum

at  = ±2, where (0±2) = 4. Along 2:  = − 2 for 0 ≤  ≤ 2, and ( − 2) = 22 − 6+ 4 = 2− 3
2

2 − 1
2
,

a quadratic which attains its minimum at  = 3
2
, where 


3
2
− 1

2


= − 1

2
, and its maximum at  = 0, where (0−2) = 4.

Along 3:  = 2−  for 0 ≤  ≤ 2, and

( 2− ) = 22 − 6+ 4 = 2− 3
2

2 − 1
2
, a quadratic which attains

its minimum at  = 3
2
, where 


3
2
 1
2


= − 1

2
, and its maximum at  = 0,

where (0 2) = 4. Thus the absolute maximum of  on is (0±2) = 4

and the absolute minimum is (1 0) = −1.

31. ( ) = 2+ 2, ( ) = 2 + 2, and setting  =  = 0

gives (0 0) as the only critical point in, with (0 0) = 4.

On 1:  = −1, (−1) = 5, a constant.

On 2:  = 1, (1 ) = 2 +  + 5, a quadratic in  which attains its

maximum at (1 1), (1 1) = 7 and its minimum at

1−1

2


, 

1−1

2


= 19

4
.

On 3: ( 1) = 22 + 5 which attains its maximum at (−1 1) and (1 1)
with (±1 1) = 7 and its minimum at (0 1), (0 1) = 5.
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On 4: (−1 ) = 2 +  + 5 with maximum at (−1 1), (−1 1) = 7 and minimum at −1− 1
2


, 
−1− 1

2


= 19

4
.

Thus the absolute maximum is attained at both (±1 1) with (±1 1) = 7 and the absolute minimum on is attained at

(0 0) with (0 0) = 4.

33. ( ) = 4+ 4 − 4+2 is a polynomial and hence continuous on, so

it has an absolute maximum and minimum on. ( ) = 43 − 4 and

( ) = 4
3 − 4; then  = 0 implies  = 3, and substitution into

 = 0 ⇒  = 3 gives 9 −  = 0 ⇒ (8 − 1) = 0 ⇒  = 0

or  = ±1. Thus the critical points are (0 0), (1 1), and (−1−1), but only

(1 1) with (1 1) = 0 is inside. On 1:  = 0, ( 0) = 4 + 2,

0 ≤  ≤ 3, a polynomial in  which attains its maximum at  = 3, (3 0) = 83, and its minimum at  = 0, (0 0) = 2.

On 2:  = 3, (3 ) = 4 − 12 + 83, 0 ≤  ≤ 2, a polynomial in  which attains its minimum at  = 3
√
3,



3

3
√
3

= 83− 9 3

√
3 ≈ 700, and its maximum at  = 0, (3 0) = 83.

On 3:  = 2, ( 2) = 4 − 8+ 18, 0 ≤  ≤ 3, a polynomial in  which attains its minimum at  = 3
√
2,



3
√
2 2

= 18− 6 3

√
2 ≈ 104, and its maximum at  = 3 (3 2) = 75. On 4:  = 0, (0 ) = 4 + 2, 0 ≤  ≤ 2, a

polynomial in  which attains its maximum at  = 2, (0 2) = 18, and its minimum at  = 0, (0 0) = 2. Thus the absolute

maximum of  on is (3 0) = 83 and the absolute minimum is (1 1) = 0.

35. ( ) = 62 and ( ) = 43. And so  = 0 and  = 0 only occur when  =  = 0. Hence, the only critical point

inside the disk is at  =  = 0 where (0 0) = 0. Now on the circle 2 + 2 = 1, 2 = 1− 2 so let

() = ( ) = 23 + (1− 2)2 = 4 + 23 − 22 + 1,−1 ≤  ≤ 1. Then 0() = 43 + 62 − 4 = 0 ⇒  = 0,

−2, or 1
2
. (0±1) =  (0) = 1, 


1
2
±

√
3
2


= 


1
2


= 13

16
, and (−2−3) is not in. Checking the endpoints, we get

(−1 0) = (−1) = −2 and (1 0) = (1) = 2. Thus the absolute maximum and minimum of  on are (1 0) = 2 and

(−1 0) = −2.
Another method: On the boundary 2 + 2 = 1 we can write  = cos ,  = sin , so (cos  sin ) = 2 cos3  + sin4 ,

0 ≤  ≤ 2.

37. ( ) = −(2 − 1)2 − (2 − − 1)2 ⇒ ( ) = −2(2 − 1)(2)− 2(2 − − 1)(2 − 1) and
( ) = −2(2 − − 1)2. Setting ( ) = 0 gives either  = 0 or 2 − − 1 = 0.

There are no critical points for  = 0, since (0 ) = −2, so we set 2 − − 1 = 0 ⇔  =
+ 1

2
[ 6= 0],

so 




+ 1

2


= −2(2 − 1)(2)− 2


2

+ 1

2
− − 1


2

+ 1

2
− 1

= −4(2 − 1). Therefore

( ) = ( ) = 0 at the points (1 2) and (−1 0). To classify these critical points, we calculate
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( ) = −122 − 1222 + 12 + 4 + 2, ( ) = −24,
and ( ) = −83 + 62 + 4. In order to use the Second Derivatives
Test we calculate

(−1 0) = (−1 0) (−1 0)− [(−1 0)]2 = 16  0,
(−1 0) = −10  0,(1 2) = 16  0, and (1 2) = −26  0, so
both (−1 0) and (1 2) give local maxima.

39. Let  be the distance from (2 0−3) to any point (  ) on the plane +  +  = 1, so  =

(− 2)2 + 2 + ( + 3)2

where  = 1− − , and we minimize 2 = ( ) = (− 2)2 + 2 + (4− − )2. Then

( ) = 2(− 2) + 2(4− − )(−1) = 4+ 2 − 12, ( ) = 2 + 2(4− − )(−1) = 2+ 4 − 8. Solving
4+ 2 − 12 = 0 and 2+ 4 − 8 = 0 simultaneously gives  = 8

3
,  = 2

3
, so the only critical point is


8
3
 2
3


. An absolute

minimum exists (since there is a minimum distance from the point to the plane) and it must occur at a critical point, so the

shortest distance occurs for  = 8
3
,  = 2

3
for which  =


8
3
− 22 +  2

3

2
+

4− 8

3
− 2

3

2
=


4
3
= 2√

3
.

41. Let  be the distance from the point (4 2 0) to any point (  ) on the cone, so  =

(− 4)2 + ( − 2)2 + 2 where

2 = 2 + 2, and we minimize 2 = (− 4)2 + ( − 2)2 + 2 + 2 = ( ). Then

( ) = 2 (− 4) + 2 = 4− 8, ( ) = 2 ( − 2) + 2 = 4 − 4, and the critical points occur when
 = 0 ⇒  = 2,  = 0 ⇒  = 1. Thus the only critical point is (2 1). An absolute minimum exists (since there is a

minimum distance from the cone to the point) which must occur at a critical point, so the points on the cone closest

to (4 2 0) are

2 1±√5 .

43. +  +  = 100, so maximize ( ) = (100− − ).  = 100 − 2 − 2,  = 100− 2 − 2,
 = −2,  = −2,  = 100− 2− 2. Then  = 0 implies  = 0 or  = 100− 2. Substituting  = 0 into
 = 0 gives  = 0 or  = 100 and substituting  = 100− 2 into  = 0 gives 32 − 100 = 0 so  = 0 or 1003 .

Thus the critical points are (0 0), (100 0), (0 100) and

100
3
 100
3


.

(0 0) = (100 0) = (0 100) = −10,000 while 100
3
 100
3


= 10,000

3
and 


100
3
 100
3


= − 200

3
 0. Thus (0 0),

(100 0) and (0 100) are saddle points whereas 

100
3
, 100
3


is a local maximum. Thus the numbers are  =  =  = 100

3
.

45. Center the sphere at the origin so that its equation is 2 + 2 + 2 = 2, and orient the inscribed rectangular box so that its

edges are parallel to the coordinate axes. Any vertex of the box satisfies 2 + 2 + 2 = 2, so take (  ) to be the vertex

in the first octant. Then the box has length 2, width 2, and height 2 = 2

2 − 2 − 2 with volume given by

 ( ) = (2)(2)

2

2 − 2 − 2


= 8


2 − 2 − 2 for 0    , 0    . Then

 = (8) · 12 (2 − 2 − 2)−12(−2) +

2 − 2 − 2 · 8 = 8(2 − 22 − 2)

2 − 2 − 2
and  =

8(2 − 2 − 22)
2 − 2 − 2

.

Setting  = 0 gives  = 0 or 22 + 2 = 2, but   0 so only the latter solution applies. Similarly,  = 0 with   0
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implies 2 + 22 = 2. Substituting, we have 22 + 2 = 2 + 22 ⇒ 2 = 2 ⇒  = . Then 2 + 22 = 2 ⇒

32 = 2 ⇒  =

23 = 

√
3 = . Thus the only critical point is



√
3 

√
3

. There must be a maximum

volume and here it must occur at a critical point, so the maximum volume occurs when  =  = 
√
3 and the maximum

volume is 


√
3
 √

3


= 8


√
3


√
3


2 −


√
3

2
−


√
3

2
=

8

3
√
3
3.

47. Maximize ( ) =


3
(6− − 2), then the maximum volume is  = .

 =
1
3
(6 − 2 − 2) = 1

3
(6− 2− 2) and  = 1

3
 (6− − 4). Setting  = 0 and  = 0 gives the critical point

(2 1) which geometrically must give a maximum. Thus the volume of the largest such box is  = (2)(1)

2
3


= 4

3
.

49. Let the dimensions be , , and ; then 4 + 4 + 4 =  and the volume is

 =  = 

1
4
− − 


= 1

4
− 2− 2,   0,   0. Then  = 1

4
 − 2− 2 and  = 1

4
− 2 − 2,

so  = 0 =  when 2+  = 1
4
 and + 2 = 1

4
. Solving, we get  = 1

12
,  = 1

12
 and  = 1

4
− −  = 1

12
. From

the geometrical nature of the problem, this critical point must give an absolute maximum. Thus the box is a cube with edge

length 1
12
.

51. Let the dimensions be ,  and , then minimize  + 2( + ) if  = 32,000 cm3. Then

( ) =  + [64,000(+ )] =  + 64,000(−1 + −1),  =  − 64,000−2,  = − 64,000−2.
And  = 0 implies  = 64,0002; substituting into  = 0 implies 3 = 64,000 or  = 40 and then  = 40. Now

( ) = [(2)(64,000)]2−3−3 − 1  0 for (40 40) and (40 40)  0 so this is indeed a minimum. Thus the

dimensions of the box are  =  = 40 cm,  = 20 cm.

53. Let  ,  be the dimensions of the rectangular box. Then the volume of the box is  and

 =

2 + 2 + 2 ⇒ 2 = 2 + 2 + 2 ⇒  =


2 − 2 − 2.

Substituting, we have volume  ( ) = 

2 − 2 − 2 (   0).

 =  · 1
2
(2 − 2 − 2)−12(−2) + 


2 − 2 − 2 = 


2 − 2 − 2 − 2

2 − 2 − 2
,

 = 

2 − 2 − 2 − 2

2 − 2 − 2
.  = 0 implies (2 − 2 − 2) = 2 ⇒ (2 − 22 − 2) = 0 ⇒

22 + 2 = 2 (since   0), and  = 0 implies (2 − 2 − 2) = 2 ⇒ (2 − 2 − 22) = 0 ⇒
2 + 22 = 2 (since   0). Substituting 2 = 2 − 22 into 2 + 22 = 2 gives 2 + 22 − 42 = 2 ⇒

32 = 2 ⇒  = 
√
3 (since   0) and then  =


2 − 2√3 2 = 

√
3.

So the only critical point is


√
3 

√
3

which, from the geometrical nature of the problem, must give an absolute

maximum. Thus the maximum volume is 


√
3 

√
3

=


√
3
2

2 − √3 2 − √3 2 = 3

3
√
3


cubic units.
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55. Note that here the variables are and , and ( ) =


=1

[ − ( + )]
2. Then  =


=1

−2[ − ( + )] = 0

implies


=1


 −2 − 


= 0 or


=1

 = 


=1

2 + 


=1

 and  =


=1

−2[ − ( + )] = 0 implies


=1

 = 


=1

 +


=1

 = 




=1




+ . Thus we have the two desired equations.

Now  =


=1

22 ,  =


=1

2 = 2 and  =


=1

2. And ( )  0 always and

( ) = 4




=1

2


− 4



=1



2
= 4







=1

2


−



=1



2
 0 always so the solutions of these two

equations do indeed minimize


=1

2 .

14.8 Lagrange Multipliers

1. At the extreme values of  , the level curves of  just touch the curve ( ) = 8 with a common tangent line. (See Figure 1

and the accompanying discussion.) We can observe several such occurrences on the contour map, but the level curve

( ) =  with the largest value of  which still intersects the curve ( ) = 8 is approximately  = 59, and the smallest

value of  corresponding to a level curve which intersects ( ) = 8 appears to be  = 30. Thus we estimate the maximum

value of  subject to the constraint ( ) = 8 to be about 59 and the minimum to be 30.

3. ( ) = 2 + 2, ( ) =  = 1, and∇ = ∇ ⇒ h2 2i = h i, so 2 = , 2 = , and  = 1.

From the last equation,  6= 0 and  6= 0, so 2 =  ⇒  = 2. Substituting, we have 2 = (2) ⇒

2 = 2 ⇒  = ±. But  = 1, so  =  = ±1 and the possible points for the extreme values of  are (1 1) and

(−1−1). Here there is no maximum value, since the constraint  = 1 allows  or  to become arbitrarily large, and hence

( ) = 2 + 2 can be made arbitrarily large. The minimum value is (1 1) = (−1−1) = 2.

5. ( ) = 2 − 2, ( ) = 1
4
2 + 2 = 1, and∇ = ∇ ⇒ h−2 2i =  1

2
 2


, so −2 = 1

2
, 2 = 2,

and 1
4
2 + 2 = 1. From the first equation we have (4 + ) = 0 ⇒  = 0 or  = −4. If  = 0 then the third equation

gives  = ±1. If  = −4 then the second equation gives 2 = −8 ⇒  = 0, and substituting into the third equation,

we have  = ±2. Thus the possible extreme values of  occur at the points (0±1) and (±2 0). Evaluating  at these points,

we see that the maximum value is (0±1) = 1 and the minimum is (±2 0) = −4.

7. (  ) = 2+ 2 + , (  ) = 2 + 2 + 2 = 9, and∇ = ∇ ⇒ h2 2 1i = h2 2 2i, so 2 = 2,

2 = 2, 2 = 1, and 2 + 2 + 2 = 9. The first three equations imply  =
1


,  =

1


, and  =

1

2
. But substitution into

the fourth equation gives


1



2
+


1



2
+


1

2

2
= 9 ⇒ 9

42
= 9 ⇒  = ±1

2
, so  has possible extreme values at
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the points (2 2 1) and (−2−2−1). The maximum value of  on 2 + 2 + 2 = 9 is (2 2 1) = 9, and the minimum is

(−2−2−1) = −9.

9. (  ) = , (  ) = 2 + 22 + 32 = 6. ∇ = ∇ ⇒ h  i =  h2 4 6i. If any of , , or  is

zero then  =  =  = 0 which contradicts 2 + 22 + 32 = 6. Then  = ()(2) = ()(4) = ()(6) or

2 = 22 and 2 = 2
3
2. Thus 2 + 22 + 32 = 6 implies 62 = 6 or  = ±1. Then the possible points are√

2±1


2
3


,
√
2±1−


2
3


,

−√2±1


2
3


,

−√2±1−


2
3


. The maximum value of  on the ellipsoid is

2√
3
, occurring when all coordinates are positive or exactly two are negative and the minimum is− 2√

3
occurring when 1 or 3 of

the coordinates are negative.

11. (  ) = 2 + 2 + 2, (  ) = 4 + 4 + 4 = 1 ⇒ ∇ = h2 2 2i, ∇ = 43 43 43.
Case 1: If  6= 0,  6= 0 and  6= 0, then∇ = ∇ implies  = 1(22) = 1(22) = 1(22) or 2 = 2 = 2 and

34 = 1 or  = ± 1
4√
3
giving the points


± 1

4√
3
 1
4√
3
 1
4√
3


,

± 1

4√
3
− 1

4√
3
 1
4√
3


,

± 1

4√
3
 1
4√
3
− 1

4√
3


,

± 1

4√
3
− 1

4√
3
− 1

4√
3


all with an  -value of

√
3.

Case 2: If one of the variables equals zero and the other two are not zero, then the squares of the two nonzero coordinates are

equal with common value 1√
2
and corresponding  value of

√
2.

Case 3: If exactly two of the variables are zero, then the third variable has value±1 with the corresponding  value of 1. Thus

on 4 + 4 + 4 = 1, the maximum value of  is
√
3 and the minimum value is 1.

13. (   ) = +  +  + , (   ) = 2 + 2 + 2 + 2 = 1 ⇒ h1 1 1 1i = h2 2 2 2i, so

 = 1(2) = 1(2) = 1(2) = 1(2) and  =  =  = . But 2 + 2 + 2 + 2 = 1, so the possible points are± 1
2
± 1

2
± 1

2
± 1

2


. Thus the maximum value of  is 


1
2
 1
2
 1
2
 1
2


= 2 and the minimum value is


− 1

2
− 1

2
− 1

2
− 1

2


= −2.

15. (  ) = + 2, (  ) = +  +  = 1, (  ) = 2 + 2 = 4 ⇒ ∇ = h1 2 0i, ∇ = h  i

and ∇ = h0 2 2i. Then 1 = , 2 = + 2 and 0 = + 2 so  = 1
2
= − or  = 1(2),  = −1(2).

Thus +  +  = 1 implies  = 1 and 2 + 2 = 4 implies  = ± 1

2
√
2
. Then the possible points are


1±√2∓√2 

and the maximum value is 

1
√
2−√2  = 1 + 2√2 and the minimum value is  1−√2√2  = 1− 2√2.

17. (  ) =  + , (  ) =  = 1, (  ) = 2 + 2 = 1 ⇒ ∇ = h +  i, ∇ = h  0i,

∇ = h0 2 2i. Then  =  implies  = 1 [ 6= 0 since (  ) = 1], +  = + 2 and  = 2. Thus

 = (2) = (2) or 2 = 2, and so 2 + 2 = 1 implies  = ± 1√
2
,  = ± 1√

2
. Then  = 1 implies  = ±√2 and
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the possible points are

±√2± 1√

2
 1√

2


,

±√2± 1√

2
− 1√

2


. Hence the maximum of  subject to the constraints is



±√2± 1√

2
± 1√

2


= 3

2
and the minimum is 


±√2± 1√

2
∓ 1√

2


= 1

2
.

Note: Since  = 1 is one of the constraints we could have solved the problem by solving ( ) =  + 1 subject to

2 + 2 = 1.

19. ( ) = 2 + 2 + 4− 4. For the interior of the region, we find the critical points:  = 2+ 4,  = 2 − 4, so the

only critical point is (−2 2) (which is inside the region) and (−2 2) = −8. For the boundary, we use Lagrange multipliers.

( ) = 2 + 2 = 9, so∇ = ∇ ⇒ h2+ 4 2 − 4i = h2 2i. Thus 2+ 4 = 2 and 2 − 4 = 2.

Adding the two equations gives 2+ 2 = 2+ 2 ⇒ +  = (+ ) ⇒ (+ )(− 1) = 0, so

+  = 0 ⇒  = − or − 1 = 0 ⇒  = 1. But  = 1 leads to a contradition in 2+ 4 = 2, so  = − and

2 + 2 = 9 implies 22 = 9 ⇒  = ± 3√
2
. We have 


3√
2
− 3√

2


= 9 + 12

√
2 ≈ 2597 and



− 3√

2
 3√

2


= 9− 12√2 ≈ −797, so the maximum value of  on the disk 2 + 2 ≤ 9 is 


3√
2
− 3√

2


= 9 + 12

√
2

and the minimum is (−2 2) = −8.

21. ( ) = − . For the interior of the region, we find the critical points:  = −− ,  = −− , so the only

critical point is (0 0), and (0 0) = 1. For the boundary, we use Lagrange multipliers. ( ) = 2 + 42 = 1 ⇒

∇ = h2 8i, so setting∇ = ∇ we get −− = 2 and −− = 8. The first of these gives

− = −2, and then the second gives −(−2) = 8 ⇒ 2 = 42. Solving this last equation with the

constraint 2 + 42 = 1 gives  = ± 1√
2
and  = ± 1

2
√
2
. Now 


± 1√

2
∓ 1

2
√
2


= 14 ≈ 1284 and



± 1√

2
± 1

2
√
2


= −14 ≈ 0779. The former are the maxima on the region and the latter are the minima.

23. (a) ( ) = , ( ) = 2 + 4 − 3 = 0 ⇒ ∇ = h1 0i = ∇ = 

43 − 32 2. Then

1 = (43 − 32) (1) and 0 = 2 (2). We have  6= 0 from (1), so (2) gives  = 0. Then, from the constraint equation,

4 − 3 = 0 ⇒ 3(− 1) = 0 ⇒  = 0 or  = 1. But  = 0 contradicts (1), so the only possible extreme value

subject to the constraint is (1 0) = 1. (The question remains whether this is indeed the minimum of  .)

(b) The constraint is 2 + 4 − 3 = 0 ⇔ 2 = 3 − 4. The left side is non-negative, so we must have 3 − 4 ≥ 0

which is true only for 0 ≤  ≤ 1. Therefore the minimum possible value for ( ) =  is 0 which occurs for  =  = 0.

However, ∇(0 0) =  h0− 0 0i = h0 0i and∇(0 0) = h1 0i, so∇(0 0) 6= ∇(0 0) for all values of .

(c) Here∇(0 0) = 0 but the method of Lagrange multipliers requires that∇ 6= 0 everywhere on the constraint curve.
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25.  () = 1−, () = +  =  ⇒ ∇ =

−11− (1− )−


, ∇ = hi.

Then ()1− =  and (1− )() =  and+  = , so ()1− = (1− )() or

[(1− )] = ()()1− or  = [(1− )]. Substituting into+  =  gives = (1− )

and  =  for the maximum production.

27. Let the sides of the rectangle be  and . Then ( ) = , ( ) = 2+ 2 =  ⇒ ∇( ) = h i,

∇ = h2 2i. Then  = 1
2
 = 1

2
 implies  =  and the rectangle with maximum area is a square with side length 1

4
.

29. The distance from (2 0−3) to a point (  ) on the plane is  =

(− 2)2 + 2 + ( + 3)2, so we seek to minimize

2 = (  ) = (− 2)2 + 2 + ( + 3)2 subject to the constraint that (  ) lies on the plane +  +  = 1, that is,

that (  ) = +  +  = 1. Then∇ = ∇ ⇒ h2(− 2) 2 2( + 3)i = h  i, so  = (+ 4)2,

 = 2,  = (− 6)2. Substituting into the constraint equation gives + 4
2

+


2
+

− 6
2

= 1 ⇒ 3− 2 = 2 ⇒

 = 4
3
, so  = 8

3
,  = 2

3
, and  = − 7

3
. This must correspond to a minimum, so the shortest distance is

 =


8
3
− 22 +  2

3

2
+
− 7

3
+ 3
2
=


4
3
= 2√

3
.

31. Let (  ) = 2 = (− 4)2 + ( − 2)2 + 2. Then we want to minimize  subject to the constraint

 (  ) = 2 + 2 − 2 = 0. ∇ = ∇ ⇒ h2 (− 4)  2 ( − 2)  2i = h2 2−2i, so − 4 = ,

 − 2 = , and  = −. From the last equation we have  +  = 0 ⇒  (1 + ) = 0, so either  = 0 or  = −1.

But from the constraint equation we have  = 0 ⇒ 2 + 2 = 0 ⇒  =  = 0 which is not possible from the first

two equations. So  = −1 and − 4 =  ⇒  = 2,  − 2 =  ⇒  = 1, and 2 + 2 − 2 = 0 ⇒

4 + 1− 2 = 0 ⇒  = ±√5. This must correspond to a minimum, so the points on the cone closest to (4 2 0)

are

2 1±√5 .

33. (  ) = , (  ) = +  +  = 100 ⇒ ∇ = h  i = ∇ = h  i. Then  =  =  = 

implies  =  =  = 100
3
.

35. If the dimensions are 2, 2, and 2, then maximize (  ) = (2)(2)(2) = 8 subject to

(  ) = 2 + 2 + 2 = 2 (  0,   0,   0). Then∇ = ∇ ⇒ h8 8 8i =  h2 2 2i ⇒

8 = 2, 8 = 2, and 8 = 2, so  =
4


=
4


=
4


. This gives 2 = 2 ⇒ 2 = 2 (since  6= 0)

and 2 = 2 ⇒ 2 = 2, so 2 = 2 = 2 ⇒  =  = , and substituting into the constraint

equation gives 32 = 2 ⇒  = 
√
3 =  = . Thus the largest volume of such a box is




√
3
 √

3
 √

3


= 8


√
3


√
3


√
3


=

8

3
√
3
3.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 14.8 LAGRANGE MULTIPLIERS ¤ 233

37. (  ) = , (  ) = + 2 + 3 = 6 ⇒ ∇ = h  i = ∇ = h 2 3i.

Then  =  = 1
2
 = 1

3
 implies  = 2,  = 2

3
. But 2 + 2 + 2 = 6 so  = 1,  = 2,  = 2

3
and the volume

is  = 4
3
.

39. (  ) = , (  ) = 4(+  + ) =  ⇒ ∇ = h  i, ∇ = h4 4 4i. Thus

4 =  =  =  or  =  =  = 1
12
 are the dimensions giving the maximum volume.

41. If the dimensions of the box are given by , , and , then we need to find the maximum value of (  ) = 

[    0] subject to the constraint  =

2 + 2 + 2 or (  ) = 2 + 2 + 2 = 2. ∇ = ∇ ⇒

h  i = h2 2 2i, so  = 2 ⇒  =


2
,  = 2 ⇒  =



2
, and  = 2 ⇒  =



2
.

Thus  =


2
=



2
⇒ 2 = 2 [since  6= 0] ⇒  =  and  =



2
=



2
⇒  =  [since  6= 0].

Substituting into the constraint equation gives 2 + 2 + 2 = 2 ⇒ 2 = 23 ⇒  = 
√
3 =  =  and the

maximum volume is


√
3
3
= 3


3
√
3

.

43. We need to find the extreme values of (  ) = 2 + 2 + 2 subject to the two constraints (  ) = +  + 2 = 2

and (  ) = 2 + 2 −  = 0. ∇ = h2 2 2i, ∇ = h  2i and ∇ = h2 2−i. Thus we need

2 = + 2 (1), 2 = + 2 (2), 2 = 2−  (3), +  + 2 = 2 (4), and 2 + 2 −  = 0 (5).

From (1) and (2), 2(− ) = 2(− ), so if  6= ,  = 1. Putting this in (3) gives 2 = 2− 1 or  =  + 1
2
, but putting

 = 1 into (1) says  = 0. Hence  + 1
2
= 0 or  = −1

2
. Then (4) and (5) become +  − 3 = 0 and 2 + 2 + 1

2
= 0. The

last equation cannot be true, so this case gives no solution. So we must have  = . Then (4) and (5) become 2+2 = 2 and

22 −  = 0 which imply  = 1−  and  = 22. Thus 22 = 1−  or 22 + − 1 = (2− 1)(+ 1) = 0 so  = 1
2
or

 = −1. The two points to check are  1
2
 1
2
 1
2


and (−1−1 2):  1

2
 1
2
 1
2


= 3

4
and (−1−1 2) = 6. Thus  1

2
 1
2
 1
2


is

the point on the ellipse nearest the origin and (−1−1 2) is the one farthest from the origin.

45. (  ) = − , (  ) = 92 + 42 + 362 = 36, (  ) =  +  = 1. ∇ = ∇ + ∇ ⇒
− −−− = h18 8 72i+ h +  i, so − = 18+ , − = 8 + (+ ),

−− = 72 + , 92 + 42 + 362 = 36,  +  = 1. Using a CAS to solve these 5 equations simultaneously for ,

, , , and  (in Maple, use the allvalues command), we get 4 real-valued solutions:

 ≈ 0222444,  ≈ −2157012,  ≈ −0686049,  ≈ −0200401,  ≈ 2108584
 ≈ −1951921,  ≈ −0545867,  ≈ 0119973,  ≈ 0003141,  ≈ −0076238
 ≈ 0155142,  ≈ 0904622,  ≈ 0950293,  ≈ −0012447,  ≈ 0489938
 ≈ 1138731,  ≈ 1768057,  ≈ −0573138,  ≈ 0317141,  ≈ 1862675

Substituting these values into  gives (0222444−2157012−0686049) ≈ −53506,
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(−1951921−0545867 0119973) ≈ −00688, (0155142 0904622 0950293) ≈ 04084,
(1138731 1768057−0573138) ≈ 97938. Thus the maximum is approximately 97938, and the minimum is
approximately −53506.

47. (a) We wish to maximize (1 2,    , ) = 
√
12 · · · subject to

(1 2,    , ) = 1 + 2 + · · ·+  =  and   0.

∇ =

1

(12 · · ·)

1

−1
(2 · · ·) , 1 (12 · · ·)

1

−1
(13 · · ·) ,    , 1 (12 · · ·)

1

−1
(1 · · ·−1)


and ∇ = h ,    , i, so we need to solve the system of equations

1

(12 · · ·)

1

−1
(2 · · ·) =  ⇒ 

1
1 

1
2 · · ·1 = 1

1

(12 · · ·)

1

−1
(13 · · ·) =  ⇒ 

1
1 

1
2 · · ·1 = 2

...

1

(12 · · ·)

1

−1
(1 · · ·−1) =  ⇒ 

1
1 

1
2 · · ·1 = 

This implies 1 = 2 = · · · = . Note  6= 0, otherwise we can’t have all   0. Thus 1 = 2 = · · · = .

But 1 + 2 + · · ·+  =  ⇒ 1 =  ⇒ 1 =



= 2 = 3 = · · · = . Then the only point where  can

have an extreme value is
 





,    ,






. Since we can choose values for (1 2     ) that make  as close to

zero (but not equal) as we like,  has no minimum value. Thus the maximum value is


 





,    ,






= 





· 

· · · · · 


=




.

(b) From part (a),



is the maximum value of  . Thus (1 2,    , ) = 

√
12 · · · ≤ 


. But

1 + 2 + · · ·+  = , so 
√
12 · · · ≤ 1 + 2 + · · ·+ 


. These two means are equal when  attains its

maximum value



, but this can occur only at the point

 





,    ,






we found in part (a). So the means are equal only

when 1 = 2 = 3 = · · · =  =



.

14 Review

1. (a) A function  of two variables is a rule that assigns to each ordered pair ( ) of real numbers in its domain a unique real

number denoted by ( ).

(b) One way to visualize a function of two variables is by graphing it, resulting in the surface  = ( ). Another method for

visualizing a function of two variables is a contour map. The contour map consists of level curves of the function which are

horizontal traces of the graph of the function projected onto the -plane. Also, we can use an arrow diagram such as

Figure 1 in Section 14.1.
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2. A function  of three variables is a rule that assigns to each ordered triple (  ) in its domain a unique real number

(  ). We can visualize a function of three variables by examining its level surfaces (  ) = , where  is a constant.

3. lim
()→()

( ) =  means the values of ( ) approach the number  as the point ( ) approaches the point ( )

along any path that is within the domain of  . We can show that a limit at a point does not exist by finding two different paths

approaching the point along which ( ) has different limits.

4. (a) See Definition 14.2.4.

(b) If  is continuous on R2, its graph will appear as a surface without holes or breaks.

5. (a) See (2) and (3) in Section 14.3.

(b) See “Interpretations of Partial Derivatives” on page 927 [ET 903].

(c) To find , regard  as a constant and differentiate ( ) with respect to . To find , regard  as a constant and

differentiate ( ) with respect to .

6. See the statement of Clairaut’s Theorem on page 931 [ET 907].

7. (a) See (2) in Section 14.4.

(b) See (19) and the preceding discussion in Section 14.6.

8. See (3) and (4) and the accompanying discussion in Section 14.4. We can interpret the linearization of  at ( ) geometrically

as the linear function whose graph is the tangent plane to the graph of  at ( ). Thus it is the linear function which best

approximates  near ( ).

9. (a) See Definition 14.4.7.

(b) Use Theorem 14.4.8.

10. See (10) and the associated discussion in Section 14.4.

11. See (2) and (3) in Section 14.5.

12. See (7) and the preceding discussion in Section 14.5.

13. (a) See Definition 14.6.2. We can interpret it as the rate of change of  at (0 0) in the direction of u. Geometrically, if  is

the point (0 0 (0 0)) on the graph of  and  is the curve of intersection of the graph of  with the vertical plane

that passes through  in the direction u, the directional derivative of  at (0 0) in the direction of u is the slope of the

tangent line to  at  . (See Figure 5 in Section 14.6.)

(b) See Theorem 14.6.3.

14. (a) See (8) and (13) in Section 14.6.

(b) u ( ) = ∇( ) · u oru (  ) = ∇(  ) · u
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(c) The gradient vector of a function points in the direction of maximum rate of increase of the function. On a graph of the

function, the gradient points in the direction of steepest ascent.

15. (a)  has a local maximum at ( ) if ( ) ≤ ( ) when ( ) is near ( ).

(b)  has an absolute maximum at ( ) if ( ) ≤ ( ) for all points ( ) in the domain of  .

(c)  has a local minimum at ( ) if ( ) ≥ ( ) when ( ) is near ( ).

(d)  has an absolute minimum at ( ) if ( ) ≥ ( ) for all points ( ) in the domain of  .

(e)  has a saddle point at ( ) if ( ) is a local maximum in one direction but a local minimum in another.

16. (a) By Theorem 14.7.2, if  has a local maximum at ( ) and the first-order partial derivatives of  exist there, then

( ) = 0 and ( ) = 0.

(b) A critical point of  is a point ( ) such that ( ) = 0 and ( ) = 0 or one of these partial derivatives does

not exist.

17. See (3) in Section 14.7.

18. (a) See Figure 11 and the accompanying discussion in Section 14.7.

(b) See Theorem 14.7.8.

(c) See the procedure outlined in (9) in Section 14.7.

19. See the discussion beginning on page 981 [ET 957]; see “Two Constraints” on page 985 [ET 961].

1. True. ( ) = lim
→0

( + )− ( )


from Equation 14.3.3. Let  =  − . As → 0,  → . Then by substituting,

we get ( ) = lim
→

( )− ( )

 − 
.

3. False.  =
2

 
.

5. False. See Example 14.2.3.

7. True. If  has a local minimum and  is differentiable at ( ) then by Theorem 14.7.2, ( ) = 0 and ( ) = 0, so

∇( ) = h( ) ( )i = h0 0i = 0.

9. False. ∇( ) = h0 1i.

11. True. ∇ = hcos cos i, so |∇ | =

cos2 + cos2 . But |cos | ≤ 1, so |∇ | ≤ √2. Now

u ( ) = ∇ · u = |∇ | |u| cos , but u is a unit vector, so |u ( )| ≤
√
2 · 1 · 1 = √2.
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1. ln(+  + 1) is defined only when +  + 1  0 ⇔   −− 1,
so the domain of  is {( ) |   −− 1}, all those points above the
line  = −− 1.

3.  = ( ) = 1− 2, a parabolic cylinder 5. The level curves are

42 + 2 =  or 42 + 2 = 2,

 ≥ 0, a family of ellipses.

7. 9.  is a rational function, so it is continuous on its domain.

Since  is defined at (1 1), we use direct substitution to

evaluate the limit: lim
()→(11)

2

2 + 22
=

2(1)(1)

12 + 2(1)2
=
2

3
.

11. (a) (6 4) = lim
→0

 (6 +  4)−  (6 4)


, so we can approximate (6 4) by considering  = ±2 and

using the values given in the table: (6 4) ≈  (8 4)−  (6 4)

2
=
86− 80
2

= 3,

(6 4) ≈  (4 4)−  (6 4)

−2 =
72− 80
−2 = 4. Averaging these values, we estimate (6 4) to be approximately

35◦Cm. Similarly,  (6 4) = lim
→0

 (6 4 + )−  (6 4)


, which we can approximate with  = ±2:

(6 4) ≈  (6 6)−  (6 4)

2
=
75− 80
2

= −25, (6 4) ≈  (6 2)−  (6 4)

−2 =
87− 80
−2 = −35. Averaging these

values, we estimate (6 4) to be approximately−30◦Cm.
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(b) Here u =


1√
2
 1√

2


, so by Equation 14.6.9,u  (6 4) = ∇ (6 4) · u = (6 4)

1√
2
+ (6 4)

1√
2
. Using our

estimates from part (a), we haveu  (6 4) ≈ (35) 1√
2
+ (−30) 1√

2
= 1

2
√
2
≈ 035. This means that as we move

through the point (6 4) in the direction of u, the temperature increases at a rate of approximately 035◦Cm.

Alternatively, we can use Definition 14.6.2: u  (6 4) = lim
→0



6 +  1√

2
 4 +  1√

2


−  (6 4)


,

which we can estimate with  = ±2√2. Then u  (6 4) ≈  (8 6)−  (6 4)

2
√
2

=
80− 80
2
√
2

= 0,

u  (6 4) ≈  (4 2)−  (6 4)

−2√2 =
74− 80
−2√2 =

3√
2
. Averaging these values, we haveu  (6 4) ≈ 3

2
√
2
≈ 11◦Cm.

(c) ( ) =



[( )] = lim

→0

(  + )− ( )


, so (6 4) = lim

→0

(6 4 + )− (6 4)


which we can

estimate with  = ±2. We have (6 4) ≈ 35 from part (a), but we will also need values for (6 6) and (6 2). If we

use  = ±2 and the values given in the table, we have

(6 6) ≈  (8 6)−  (6 6)

2
=
80 − 75

2
= 25, (6 6) ≈  (4 6)−  (6 6)

−2 =
68 − 75

−2 = 35.

Averaging these values, we estimate (6 6) ≈ 30. Similarly,

(6 2) ≈  (8 2)− (6 2)

2
=
90 − 87

2
= 15, (6 2) ≈  (4 2)−  (6 2)

−2 =
74 − 87

−2 = 65.

Averaging these values, we estimate (6 2) ≈ 40. Finally, we estimate (6 4):

(6 4) ≈ (6 6)− (6 4)

2
=
30 − 35

2
= −025, (6 4) ≈ (6 2)− (6 4)

−2 =
40 − 35

−2 = −025.

Averaging these values, we have  (6 4) ≈ −025.

13. ( ) = (53 + 22)8 ⇒  = 8(5
3 + 22)7(4) = 32(53 + 22)7,

 = 8(5
3 + 22)7(152 + 22) = (162 + 1202)(53 + 22)7

15.  ( ) = 2 ln(2 + 2) ⇒  = 2 · 1

2 + 2
(2) + ln(2 + 2) · 2 = 23

2 + 2
+ 2 ln(2 + 2),

 = 2 · 1

2 + 2
(2) =

22

2 + 2

17. ( ) =  arctan(
√
) ⇒  = arctan(

√
),  =  · 1

1 + (
√
)

2
(
√
) =


√


1 + 2
,

 =  · 1

1 + (
√
)

2


 · 1

2
−12


=



2
√
 (1 + 2)

19. ( ) = 43 − 2 ⇒  = 12
2 − 2,  = −2,  = 24,  = −2,  =  = −2
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21. (  ) =  ⇒  = −1,  = −1,  = −1,  = ( − 1)−2,

 = ( − 1)−2,  = (− 1)−2,  =  = −1−1,  =  = −1−1,

 =  = −1−1

23.  =  +  ⇒ 


=  − 


 + ,




= +  and





+




= 


 − 


 + 


+

+ 


= −+++ = ++ = +.

25. (a)  = 6+ 2 ⇒ (1−2) = 8 and  = −2 ⇒ (1−2) = 4, so an equation of the tangent plane is

 − 1 = 8(− 1) + 4( + 2) or  = 8+ 4 + 1.

(b) A normal vector to the tangent plane (and the surface) at (1−2 1) is h8 4−1i. Then parametric equations for the normal

line there are  = 1 + 8,  = −2 + 4,  = 1− , and symmetric equations are
− 1
8

=
 + 2

4
=

 − 1
−1 .

27. (a) Let  (  ) = 2 + 22 − 32. Then  = 2,  = 4,  = −6, so (2−1 1) = 4, (2−1 1) = −4,

(2−1 1) = −6. From Equation 14.6.19, an equation of the tangent plane is 4(− 2)− 4( + 1)− 6( − 1) = 0
or, equivalently, 2− 2 − 3 = 3.

(b) From Equations 14.6.20, symmetric equations for the normal line are
− 2
4

=
 + 1

−4 =
 − 1
−6 .

29. (a) Let  (  ) = +2+3− sin(). Then  = 1−  cos(),  = 2−  cos(),  = 3−  cos(),

so (2−1 0) = 1, (2−1 0) = 2, (2−1 0) = 5. From Equation 14.6.19, an equation of the tangent plane is

1(− 2) + 2( + 1) + 5( − 0) = 0 or + 2 + 5 = 0.

(b) From Equations 14.6.20, symmetric equations for the normal line are
− 2
1

=
 + 1

2
=



5
or − 2 =  + 1

2
=



5
.

Parametric equations are  = 2+ ,  = −1 + 2,  = 5.

31. The hyperboloid is a level surface of the function  (  ) = 2 + 42 − 2, so a normal vector to the surface at (00 0)

is∇ (00 0) = h20 80−20i. A normal vector for the plane 2+ 2 +  = 5 is h2 2 1i. For the planes to be

parallel, we need the normal vectors to be parallel, so h20 80−20i =  h2 2 1i, or 0 =  , 0 = 1
4
, and 0 = − 1

2
.

But 20 + 4
2
0 − 20 = 4 ⇒ 2 + 1

4
2 − 1

4
2 = 4 ⇒ 2 = 4 ⇒  = ±2. So there are two such points:

2 1
2
−1 and −2− 1

2
 1

.

33. (  ) = 3

2 + 2 ⇒ (  ) = 3

2

2 + 2, (  ) =

3
2 + 2

, (  ) =
3
2 + 2

,

so (2 3 4) = 8(5) = 40, (2 3 4) = 3(4)
√
25 = 60, (2 3 4) =

3(8)√
25
= 24

5
, and (2 3 4) =

4(8)√
25
= 32

5
. Then the
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linear approximation of  at (2 3 4) is

(  )≈ (2 3 4) + (2 3 4)(− 2) + (2 3 4)( − 3) + (2 3 4)( − 4)
= 40 + 60(− 2) + 24

5
( − 3) + 32

5
( − 4) = 60+ 24

5
 + 32

5
 − 120

Then (198)3

(301)2 + (397)2 = (198 301 397) ≈ 60(198) + 24

5
(301) + 32

5
(397)− 120 = 38656.

35.



=








+








+








= 23(1 + 6) + 322( + ) + 43( cos + sin )

37. By the Chain Rule,



=








+








. When  = 1 and  = 2,  = (1 2) = 3 and  = (1 2) = 6, so




= (3 6)(1 2) +  (3 6)(1 2) = (7)(−1) + (8)(−5) = −47. Similarly, 


=








+








, so




= (3 6)(1 2) +  (3 6)(1 2) = (7)(4) + (8)(10) = 108.

39.



= 2 0(2 − 2),




= 1 − 2 0(2 − 2)


where  0 =



(2 − 2)


. Then





+ 




= 2 0(2 − 2) + − 2 0(2 − 2) = .

41.



=




 +





−
2

and

2

2
= 











+
2

3



+
−
2











=
2

3



+ 


2

2
 +

2

 

−
2


+
−
2


2

2
−
2

+
2

 




=
2

3



+ 2

2

2
− 22

2
2


+

2

4
2

2

Also



= 




+
1






and

2

2
= 











+
1













= 


2

2
+

2

 

1




+
1




2

2
1


+

2





= 2

2

2
+ 2

2


+
1

2
2

2

Thus

2
2

2
− 2

2

2
=
2






+ 22

2

2
− 22 2


+

2

2
2

2
− 22

2

2
− 22 2

 
− 2

2
2

2

=
2






− 42 2


= 2




− 4 2



since  =  =



or 2 = .

43. (  ) = 2
2 ⇒ ∇ = h  i =


2

2

, 2
2 · 2, 22 · 2


=

2

2

, 22
2

, 22
2
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45. ( ) = 2− ⇒ ∇ = 2−−2−, ∇(−2 0) = h−4−4i. The direction is given by h4−3i, so
u = 1√

42+(−3)2
h4−3i = 1

5
h4−3i andu (−2 0) = ∇(−2 0) · u = h−4−4i · 15 h4−3i = 1

5
(−16 + 12) = − 4

5
.

47. ∇ = 2 2 + 12√ , |∇(2 1)| = 4 9
2

. Thus the maximum rate of change of  at (2 1) is √145
2
in the

direction

4 9

2


.

49. First we draw a line passing through Homestead and the eye of the hurricane. We can approximate the directional derivative at

Homestead in the direction of the eye of the hurricane by the average rate of change of wind speed between the points where

this line intersects the contour lines closest to Homestead. In the direction of the eye of the hurricane, the wind speed changes

from 45 to 50 knots. We estimate the distance between these two points to be approximately 8 miles, so the rate of change of

wind speed in the direction given is approximately 50− 45
8

= 5
8
= 0625 knotmi.

51. ( ) = 2 −  + 2 + 9− 6 + 10 ⇒  = 2−  + 9,

 = −+ 2 − 6,  = 2 =  ,  = −1. Then  = 0 and  = 0 imply

 = 1,  = −4. Thus the only critical point is (−4 1) and (−4 1)  0,
(−4 1) = 3  0, so (−4 1) = −11 is a local minimum.

53. ( ) = 3 − 2 − 2 ⇒  = 3 − 2 − 2,  = 3− 2 − 2,
 = −2,  = −2,  = 3− 2− 2. Then  = 0 implies
(3− 2− ) = 0 so  = 0 or  = 3− 2. Substituting into  = 0 implies
(3− ) = 0 or 3(−1 + ) = 0. Hence the critical points are (0 0), (3 0),

(0 3) and (1 1). (0 0) = (3 0) = (0 3) = −9  0 so (0 0), (3 0), and
(0 3) are saddle points. (1 1) = 3  0 and (1 1) = −2  0, so
(1 1) = 1 is a local maximum.

55. First solve inside. Here  = 42 − 22 − 3,  = 8 − 22 − 32.
Then  = 0 implies  = 0 or  = 4− 2, but  = 0 isn’t inside. Substituting
 = 4− 2 into  = 0 implies  = 0,  = 2 or  = 1, but  = 0 isn’t inside,
and when  = 2,  = 0 but (2 0) isn’t inside. Thus the only critical point inside

 is (1 2) and (1 2) = 4. Secondly we consider the boundary of.

On 1: ( 0) = 0 and so  = 0 on 1. On 2:  = − + 6 and
(− + 6 ) = 2(6− )(−2) = −2(62 − 3) which has critical points

at  = 0 and  = 4. Then (6 0) = 0 while (2 4) = −64. On 3: (0 ) = 0, so  = 0 on 3. Thus on the absolute

maximum of  is (1 2) = 4 while the absolute minimum is (2 4) = −64.
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57. ( ) = 3 − 3+ 4 − 22

 

From the graphs, it appears that  has a local maximum (−1 0) ≈ 2, local minima (1±1) ≈ −3, and saddle points at

(−1±1) and (1 0).

To find the exact quantities, we calculate  = 32 − 3 = 0 ⇔  = ±1 and  = 43 − 4 = 0 ⇔

 = 0, ±1, giving the critical points estimated above. Also  = 6,  = 0,  = 122 − 4, so using the Second

Derivatives Test, (−1 0) = 24  0 and (−1 0) = −6  0 indicating a local maximum (−1 0) = 2;

(1±1) = 48  0 and (1±1) = 6  0 indicating local minima (1±1) = −3; and(−1±1) = −48 and

(1 0) = −24, indicating saddle points.

59. ( ) = 2, ( ) = 2 + 2 = 1 ⇒ ∇ = 2 2 = ∇ = h2 2i. Then 2 = 2 implies  = 0 or

 = . If  = 0 then 2 + 2 = 1 gives  = ±1 and we have possible points (0±1) where  (0±1) = 0. If  =  then

2 = 2 implies 2 = 22 and substitution into 2 + 2 = 1 gives 32 = 1 ⇒  = ± 1√
3
and  = ±


2
3
. The

corresponding possible points are

±


2
3
± 1√

3


. The absolute maximum is 


±


2
3
 1√

3


= 2

3
√
3
while the absolute

minimum is 

±


2
3
− 1√

3


= − 2

3
√
3
.

61. (  ) = , (  ) = 2 + 2 + 2 = 3. ∇ = ∇ ⇒ h  i = h2 2 2i. If any of , , or  is

zero, then  =  =  = 0 which contradicts 2 + 2 + 2 = 3. Then  =


2
=



2
=



2
⇒ 22 = 22 ⇒

2 = 2, and similarly 22 = 22 ⇒ 2 = 2. Substituting into the constraint equation gives 2 + 2 + 2 = 3 ⇒

2 = 1 = 2 = 2. Thus the possible points are (1 1±1), (1−1±1), (−1 1±1), (−1−1±1). The absolute maximum

is (1 1 1) = (1−1−1) = (−1 1−1) = (−1−1 1) = 1 and the absolute

minimum is (1 1−1) = (1−1 1) = (−1 1 1) = (−1−1−1) = −1.

63. (  ) = 2 + 2 + 2, (  ) = 23 = 2 ⇒ ∇ = h2 2 2i = ∇ = 23 23 322.
Since 23 = 2,  6= 0,  6= 0 and  6= 0, so 2 = 23 (1), 1 = 3 (2), 2 = 32 (3). Then (2) and (3) imply

1

3
=

2

32
or 2 = 2

3
2 so  = ±


2
3
. Similarly (1) and (3) imply

2

23
=

2

32
or 32 = 2 so  = ± 1√

3
. But

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



CHAPTER 14 REVIEW ¤ 243

23 = 2 so  and  must have the same sign, that is,  = 1√
3
. Thus (  ) = 2 implies 1√

3


2
3
2

3 = 2 or

 = ±314 and the possible points are (±3−14 3−14√2±314), (±3−14−3−14√2±314). However at each of these

points  takes on the same value, 2
√
3. But (2 1 1) also satisfies (  ) = 2 and (2 1 1) = 6  2

√
3. Thus  has an

absolute minimum value of 2
√
3 and no absolute maximum subject to the constraint 23 = 2.

Alternate solution: (  ) = 23 = 2 implies 2 =
2

3
, so minimize ( ) = 2 +

2

3
+ 2. Then

 = 2− 2

23
,  = − 6

4
+ 2,  = 2 +

4

33
,  =

24

5
+ 2 and  =

6

24
. Now  = 0 implies

233 − 2 = 0 or  = 1. Substituting into  = 0 implies −63 + 2−1 = 0 or  = 1
4√
3
, so the two critical points are


± 1

4√
3
± 4
√
3

. Then


± 1

4√
3
± 4
√
3

= (2 + 4)


2 + 24

3

−  6√
3

2
 0 and 


± 1

4√
3
± 4
√
3

= 6  0, so each point

is a minimum. Finally, 2 =
2

3
, so the four points closest to the origin are


± 1

4√
3

√
2

4√
3
± 4
√
3

,

± 1

4√
3
−

√
2

4√
3
± 4
√
3

.

65. The area of the triangle is 1
2
 sin  and the area of the rectangle is . Thus,

the area of the whole object is (  ) = 1
2
 sin  + . The perimeter of

the object is (  ) = 2+ 2+  =  . To simplify sin  in terms of , ,

and  notice that 2 sin2  +

1
2

2
= 2 ⇒ sin  =

1

2

√
42 − 2.

Thus (  ) =


4

√
42 − 2 + . (Instead of using , we could just have

used the Pythagorean Theorem.) As a result, by Lagrange’s method, we must find , , , and  by solving∇ = ∇ which

gives the following equations: (42 − 2)−12 = 2 (1),  = 2 (2), 1
4
(42 − 2)12 − 1

4
2(42 − 2)−12 +  = 

(3), and 2+ 2+  =  (4). From (2),  = 1
2
 and so (1) produces (42 − 2)−12 =  ⇒ (42 − 2)12 =  ⇒

42 − 2 = 2 ⇒  =
√
3  (5). Similarly, since


42 − 2

12
=  and  = 1

2
, (3) gives



4
− 2

4
+  =



2
, so from

(5),


4
− 3

4
+  =

√
3 

2
⇒ −

2
−
√
3 

2
= − ⇒  =



2


1 +

√
3

(6). Substituting (5) and (6) into (4) we get:

2+ 

1 +

√
3

+
√
3  =  ⇒ 3+ 2

√
3 =  ⇒  =



3 + 2
√
3
=
2
√
3− 3
3

 and thus

 =


2
√
3− 31 +√3 

6
 =

3−√3
6

 and  =

2−√3  .
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1. The areas of the smaller rectangles are 1 = , 2 = (− ),

3 = (− )( − ), 4 = ( − ). For 0 ≤  ≤ , 0 ≤  ≤ , let

( ) = 2
1 +2

2 +2
3 +2

4

= 22 + (− )22 + (− )2( − )2 + 2( − )2

= [2 + (− )2][2 + ( − )2]

Then we need to find the maximum and minimum values of ( ). Here

( ) = [2− 2( − )][2 + ( − )2] = 0 ⇒ 4− 2 = 0 or  = 1
2
, and

( ) = [
2 + (− )2][2 − 2( − )] = 0 ⇒ 4 − 2 = 0 or  = 2. Also

 = 4[
2 + ( − )

2
],  = 4[2 + (− )2], and  = (4− 2)(4 − 2 ). Then

 = 16[2 + ( − )2][2 + (− )2]− (4− 2)2(4 − 2 )2. Thus when  = 1
2
 and  = 1

2
 ,  0 and

 = 2
2  0. Thus a minimum of  occurs at


1
2
 1

2


and this minimum value is 


1
2
 1

2


= 1

4
2 2.

There are no other critical points, so the maximum must occur on the boundary. Now along the width of the rectangle let

() = (0 ) = ( ) = 2[2 + ( − )2], 0 ≤  ≤ . Then 0() = 2[2 − 2( − )] = 0 ⇔  = 1
2
 .

And 

1
2


= 1

2
2 2. Checking the endpoints, we get (0) = ( ) = 2 2. Along the length of the rectangle let

() = ( 0) = ( ) =  2[2 + (− )2], 0 ≤  ≤ . By symmetry 0() = 0 ⇔  = 1
2
 and



1
2


= 1

2
2 2. At the endpoints we have (0) = () = 2 2. Therefore 2 2 is the maximum value of  .

This maximum value of  occurs when the “cutting” lines correspond to sides of the rectangle.

3. (a) The area of a trapezoid is 1
2
(1 + 2), where  is the height (the distance between the two parallel sides) and 1, 2 are

the lengths of the bases (the parallel sides). From the figure in the text, we see that  =  sin , 1 =  − 2, and
2 =  − 2+ 2 cos . Therefore the cross-sectional area of the rain gutter is

( ) = 1
2
 sin  [( − 2) + ( − 2+ 2 cos )] = ( sin )( − 2+  cos )

=  sin  − 22 sin  + 2 sin  cos , 0   ≤ 1
2
, 0   ≤ 

2

We look for the critical points of :  =  sin  − 4 sin  + 2 sin  cos  and
 =  cos  − 22 cos  + 2(cos2  − sin2 ), so  = 0 ⇔ sin  ( − 4+ 2 cos ) = 0 ⇔

cos  =
4−

2
= 2− 

2
(0   ≤ 

2
⇒ sin   0). If, in addition,  = 0, then

0 =  cos  − 22 cos  + 2(2 cos2  − 1)

= 

2− 

2


− 22


2− 

2


+ 2


2

2− 

2

2
− 1


= 2− 1
2
2 − 42 ++ 2


8− 4


+

2

22
− 1

= −+ 32 = (3−)
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Since   0, we must have  = 1
3
, in which case cos  = 1

2
, so  = 

3
, sin  =

√
3
2
,  =

√
3
6
, 1 = 1

3
, 2 = 2

3
,

and  =
√
3

12
2. As in Example 14.7.6, we can argue from the physical nature of this problem that we have found a local

maximum of . Now checking the boundary of , let

() = (2 ) = 1
2
2 sin  − 1

2
2 sin  + 1

4
2 sin  cos  = 1

8
2 sin 2, 0   ≤ 

2
. Clearly  is maximized when

sin 2 = 1 in which case  = 1
8
2. Also along the line  = 

2
, let () = 


 

2


= − 22, 0    1

2
 ⇒

0() =  − 4 = 0 ⇔  = 1
4
, and 


1
4


= 


1
4

− 2 1

4

2
= 1

8
2. Since 1

8
2 

√
3

12
2, we conclude that

the local maximum found earlier was an absolute maximum.

(b) If the metal were bent into a semi-circular gutter of radius , we would have  =  and  = 1
2
2 = 1

2




2
=

2

2
.

Since
2

2


√
32

12
, it would be better to bend the metal into a gutter with a semicircular cross-section.

5. Let ( ) = 




. Then ( ) = 





+  0





− 

2


= 





− 


 0




and

( ) =  0



 1



=  0





. Thus the tangent plane at (0 0 0) on the surface has equation

 − 0


0

0


=





0

0


− 0

−1
0  0


0

0


(− 0) +  0


0

0


( − 0) ⇒





0

0


− 0

−1
0  0


0

0


+


 0

0

0


 −  = 0. But any plane whose equation is of the form +  +  = 0

passes through the origin. Thus the origin is the common point of intersection.

7. Since we are minimizing the area of the ellipse, and the circle lies above the -axis,

the ellipse will intersect the circle for only one value of . This -value must

satisfy both the equation of the circle and the equation of the ellipse. Now

2

2
+

2

2
= 1 ⇒ 2 =

2

2


2 − 2


. Substituting into the equation of the

circle gives
2

2
(2 − 2) + 2 − 2 = 0 ⇒


2 − 2

2


2 − 2 + 2 = 0.

In order for there to be only one solution to this quadratic equation, the discriminant must be 0, so 4− 42 
2 − 2

2
= 0 ⇒

2 − 22 + 4 = 0. The area of the ellipse is ( ) = , and we minimize this function subject to the constraint

( ) = 2 − 22 + 4 = 0.

Now∇ = ∇ ⇔  = (43 − 22),  = (2− 22) ⇒  =


2(22 − 2)
(1),

 =


2(1− 2)
(2), 2 − 22 + 4 = 0 (3). Comparing (1) and (2) gives



2(22 − 2)
=



2(1− 2)
⇒

22 = 44 ⇔ 2 = 1√
2
. Substitute this into (3) to get  = 3√

2
⇒  =


3
2
.
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15.1 Double Integrals over Rectangles

1. (a) The subrectangles are shown in the figure.

The surface is the graph of ( ) =  and∆ = 4, so we estimate

≈
3

=1

2
=1

( )∆

= (2 2)∆+ (2 4)∆+ (4 2)∆+ (4 4)∆+ (6 2)∆+ (6 4)∆

= 4(4) + 8(4) + 8(4) + 16(4) + 12(4) + 24(4) = 288

(b)  ≈
3

=1

2
=1



 


∆ = (1 1)∆+ (1 3)∆+ (3 1)∆+ (3 3)∆+ (5 1)∆+ (5 3)∆

= 1(4) + 3(4) + 3(4) + 9(4) + 5(4) + 15(4) = 144

3. (a) The subrectangles are shown in the figure. Since∆ = 1 · 1
2
= 1

2
, we estimate


−  ≈

2
=1

2
=1



∗  

∗



∆

= 

1 1

2


∆+ (1 1)∆+ 


2 1

2


∆+ (2 1)∆

= −12

1
2


+ −1


1
2


+ 2−1


1
2


+ 2−2


1
2

 ≈ 0990

(b)


−  ≈

2
=1

2
=1

( )∆

= 

1
2
 1
4


∆+ 


1
2
 3
4


∆+ 


3
2
 1
4


∆+ 


3
2
 3
4


∆

= 1
2
−18


1
2


+ 1

2
−38


1
2


+ 3

2
−38


1
2


+ 3

2
−98


1
2

 ≈ 1151
5. (a) Each subrectangle and its midpoint are shown in the figure.

The area of each subrectangle is∆ = 2, so we evaluate 

at each midpoint and estimate

( )  ≈

2
=1

2
=1



 


∆

= (1 25)∆+ (1 35)∆

+ (3 25)∆+ (3 35)∆

= −2(2) + (−1)(2) + 2(2) + 3(2) = 4
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(b) The subrectangles are shown in the figure.

In each subrectangle, the sample point closest to the origin

is the lower left corner, and the area of each subrectangle is∆ = 1
2
.

Thus we estimate

( )  ≈

4
=1

4
=1



∗  

∗



∆

= (0 2)∆+ (0 25)∆+ (0 3)∆+ (0 35)∆

+ (1 2)∆+ (1 25)∆+ (1 3)∆+ (1 35)∆

+ (2 2)∆+ (2 25)∆+ (2 3)∆+ (2 35)∆

+ (3 2)∆+ (3 25)∆+ (3 3)∆+ (3 35)∆

= −31
2


+ (−5) 1

2


+ (−6) 1

2


+ (−4) 1

2


+ (−1) 1

2


+ (−2) 1

2


+ (−3) 1

2


+ (−1) 1

2


+ 1

1
2


+ 0

1
2


+ (−1) 1

2


+ 1

1
2


+ 2

1
2


+ 2

1
2


+ 1

1
2


+ 3

1
2


= −8

7. The values of ( ) =

52− 2 − 2 get smaller as we move farther from the origin, so on any of the subrectangles in the

problem, the function will have its largest value at the lower left corner of the subrectangle and its smallest value at the upper

right corner, and any other value will lie between these two. So using these subrectangles we have     . (Note that this

is true no matter how  is divided into subrectangles.)

9. (a) With =  = 2, we have∆ = 4. Using the contour map to estimate the value of  at the center of each subrectangle,

we have



( )  ≈

2
=1

2
=1



 


∆ = ∆[(1 1) + (1 3) + (3 1) + (3 3)] ≈ 4(27 + 4 + 14 + 17) = 248

(b) ave = 1
()



( )  ≈ 1

16
(248) = 155

11.  = 3  0, so we can interpret the integral as the volume of the solid  that lies below the plane  = 3 and above the

rectangle [−2 2]× [1 6].  is a rectangular solid, thus 

3  = 4 · 5 · 3 = 60.

13.  = ( ) = 4− 2 ≥ 0 for 0 ≤  ≤ 1. Thus the integral represents the volume of that
part of the rectangular solid [0 1]× [0 1]× [0 4] which lies below the plane  = 4− 2.
So 


(4− 2)  = (1)(1)(2) + 1

2
(1)(1)(2) = 3
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15. To calculate the estimates using a programmable calculator, we can use an algorithm

similar to that of Exercise 4.1.9 [ET 5.1.9]. In Maple, we can define the function

( ) =
√
1 + − (calling it f), load the student package, and then use the

command

middlesum(middlesum(f,x=0..1,m),

y=0..1,m);

to get the estimate with  = 2 squares of equal size. Mathematica has no special

Riemann sum command, but we can define f and then use nested Sum commands to

calculate the estimates.

 estimate

1 1141606

4 1143191

16 1143535

64 1143617

256 1143637

1024 1143642

17. If we divide  into subrectangles,


  ≈


=1


=1



∗  

∗



∆ for any choice of sample points


∗  

∗



.

But 

∗  

∗



=  always and


=1


=1

∆ = area of  = (− )(− ). Thus, no matter how we choose the sample

points,

=1


=1



∗  

∗



∆ = 


=1


=1

∆ = (− )(− ) and so



  = lim

→∞


=1


=1



∗  

∗



∆ = lim

→∞



=1


=1

∆ = lim
→∞

(− )(− ) = (− )(− ).

15.2 Iterated Integrals

1.
 5
0
1223  =


12

3

3
3
=5
=0

= 433
=5
=0

= 4(5)3 3 − 4(0)3 3 = 5003,

 1
0
1223  =


122

4

4

=1
=0

= 324
=1
=0

= 32(1)4 − 32(0)4 = 32

3.
 4
1

 2
0
(62−2)   =  4

1


322 − 2=2

=0
 =

 4
1
(122−4)  = 43 − 224

1
= (256−32)− (4−2) = 222

5.
 2
0

 4
0
32   =

 2
0
2 

 4
0
3  [as in Example 5] =


1
2
2
2
0


1
4
4
4
0
= 1

2
(4 − 1)(64− 0) = 32(4 − 1)

7.
 3
−3
 2
0

( + 2 cos)   =
 3
−3

 + 2 sin

=2
=0



=
 3
−3


2
 + 2


 =



4
2 + 1

3
3
3
−3

=

9
4
+ 9−  9

4
− 9 = 18

9.

 4

1

 2

1





+






  =

 4

1


 ln ||+ 1


· 1
2

2

=2
=1

 =

 4

1


 ln 2 +

3

2


 =


1
2

2
ln 2 + 3

2
ln || 4

1

= 8 ln 2 + 3
2
ln 4− 1

2
ln 2 = 15

2
ln 2 + 3 ln 412 = 21

2
ln 2

11.
 1
0

 1
0
(+ 2)4  =

 1
0


1
5
(+ 2)5

=1
=0

 = 1
5

 1
0


(1 + 2)5 − (0 + 2)5




= 1
5

 1
0


(1 + 2)5 − 11


 = 1

5


1
2
· 1
6
(1 + 2)6 − 1

12
12
1
0

[substitute  = 1 + 2 ⇒  = 2  in the first term]

= 1
60


(26 − 1)− (1− 0) = 1

60
(63− 1) = 31

30

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



250 ¤ CHAPTER 15 MULTIPLE INTEGRALS

13.
 2
0

 
0
 sin2    =

 2
0
 

 
0
sin2   [as in Example 5] =

 2
0
 

 
0

1
2
(1− cos 2) 

=

1
2
2
2
0
· 1
2


 − 1

2
sin 2


0
= (2− 0) · 1

2


 − 1

2
sin 2

− 0− 1
2
sin 0


= 2 · 1

2
[( − 0)− (0− 0)] = 

15.



sin(− )  =

 2
0

 2
0

sin(− )   =
 2
0

[cos(− )]
=2

=0
 =

 2
0


cos(− 

2
)− cos 

=

sin(− 

2
)− sin

2
0

= sin 0− sin 
2
− sin(−

2
)− sin 0

= 0− 1− (−1− 0) = 0

17.




2

2 + 1
 =

 1

0

 3

−3

2

2 + 1
  =

 1

0



2 + 1


 3

−3

2
 =


1
2
ln(

2
+ 1)

1
0


1
3

3
3
−3

= 1
2
(ln 2− ln 1) · 1

3
(27 + 27) = 9 ln 2

19.
 6
0

 3
0

 sin(+ )  

=
 6
0

− cos(+ )
=3

=0
 =

 6
0


 cos−  cos


+ 

3




= 

sin− sin+ 

3

6
0

−  6
0


sin− sin+ 

3


 [by integrating by parts separately for each term]

= 
6


1
2
− 1− − cos+ cos+ 

3

6
0

= − 
12
−

−
√
3
2
+ 0− −1 + 1

2


=
√
3−1
2

− 
12

21.



−  =

 3
0

 2
0
−   =

 3
0

−−=2
=0

 =
 3
0
(−−2 + 1)  =  1

2
−2 + 

3
0

= 1
2
−6 + 3−  1

2
+ 0

= 1

2
−6 + 5

2

23.  = ( ) = 4− − 2 ≥ 0 for 0 ≤  ≤ 1 and 0 ≤  ≤ 1. So the solid
is the region in the first octant which lies below the plane  = 4− − 2
and above [0 1]× [0 1].

25. The solid lies under the plane 4+ 6 − 2 + 15 = 0 or  = 2+ 3 + 15
2
so

 =


(2+ 3 + 15

2
)  =

 1
−1
 2
−1(2+ 3 +

15
2
)   =

 1
−1

2 + 3 + 15

2

=2
=−1 

=
 1
−1

(19 + 6)− (− 13

2
− 3)  =  1−1( 512 + 9)  =  512  + 9

2
2
1
−1 = 30− (−21) = 51

27.  =
 2
−2
 1
−1

1− 1

4
2 − 1

9
2

  = 4

 2
0

 1
0


1− 1

4
2 − 1

9
2



= 4
 2
0


− 1

12
3 − 1

9
2

=1

=0
 = 4

 2
0


11
12
− 1

9
2

 = 4


11
12
 − 1

27
3
2
0
= 4 · 83

54
= 166

27

29. Here we need the volume of the solid lying under the surface  =  sec2  and above the rectangle  = [0 2]× [0 4] in
the -plane.

 =
 2
0

 4
0

 sec2    =
 2
0


 4
0

sec2   =

1
2
2
2
0


tan 

4
0

= (2− 0)(tan 
4
− tan 0) = 2(1− 0) = 2
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31. The solid lies below the surface  = 2 + 2 + ( − 2)2 and above the plane  = 1 for −1 ≤  ≤ 1, 0 ≤  ≤ 4. The volume
of the solid is the difference in volumes between the solid that lies under  = 2 + 2 + ( − 2)2 over the rectangle
 = [−1 1]× [0 4] and the solid that lies under  = 1 over .

 =
 4
0

 1
−1[2 + 2 + ( − 2)2]   −  4

0

 1
−1(1)  =

 4
0


2+ 1

3
3 + ( − 2)2=1

=−1  −
 1
−1 

 4
0


=
 4
0


(2 + 1

3
+ ( − 2)2)− (−2− 1

3
− ( − 2)2)  − []1−1 []40

=
 4
0


14
3
+ 2( − 2)2  − [1− (−1)][4− 0] =  14

3
 + 2

3
( − 2)34

0
− (2)(4)

=


56
3
+ 16

3

− 0− 16
3

− 8 = 88
3
− 8 = 64

3

33. In Maple, we can calculate the integral by defining the integrand as f

and then using the command int(int(f,x=0..1),y=0..1);.

In Mathematica, we can use the command

Integrate[f,{x,0,1},{y,0,1}]

We find that



53  = 21− 57 ≈ 00839. We can use plot3d

(in Maple) or Plot3D (in Mathematica) to graph the function.

35.  is the rectangle [−1 1] × [0 5]. Thus, () = 2 · 5 = 10 and

ave =
1

()



( )  = 1

10

 5
0

 1
−1 

2   = 1
10

 5
0


1
3
3

=1

=−1  =
1
10

 5
0
2
3
  = 1

10


1
3
2
5
0
= 5

6
.

37.






1 + 4
 =

 1

−1

 1

0



1 + 4
  =

 1

−1



1 + 4


 1

0

  [by Equation 5] but () =


1 + 4
is an odd

function so
 1

−1
()  = 0 by (6) in Section 4.5 [ET (7) in Section 5.5]. Thus






1 + 4
 = 0 ·

 1

0

  = 0.

39. Let ( ) =
− 

(+ )3
. Then a CAS gives

 1
0

 1
0
( )   = 1

2
and

 1
0

 1
0
( )   = − 1

2
.

To explain the seeming violation of Fubini’s Theorem, note that  has an infinite discontinuity at (0 0) and thus does not

satisfy the conditions of Fubini’s Theorem. In fact, both iterated integrals involve improper integrals which diverge at their

lower limits of integration.

15.3 Double Integrals over General Regions

1.
 4
0

√
0

2   =
 4
0


1
2
22

=√
=0

 =
 4
0
1
2
2[(


 )2 − 02] = 1

2

 4
0
3  = 1

2


1
4
4
4
0
= 1

2
(64− 0) = 32

3.
 1
0

 
2
(1 + 2)  =

 1
0


 + 2

=
=2

 =
 1
0


+ 2 − 2 − (2)2 

=
 1
0
(− 4) =


1
2
2 − 1

5
5
1
0
= 1

2
− 1

5
− 0 + 0 = 3

10

5.
 1
0

 2
0
cos(3)   =

 1
0


 cos(3)

=2
=0

 =
 1
0
2 cos(3)  = 1

3
sin(3)

1
0
= 1

3
(sin 1− sin 0) = 1

3
sin 1
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7.



2  =

 1
−1
 
−−2 

2  =
 1
−1

2

=
=−−2  =

 1
−1 

2 [ − (− − 2)] 

=
 1
−1(2

3 + 22) =

1
2
4 + 2

3
3
1
−1 =

1
2
+ 2

3
− 1

2
+ 2

3
= 4

3

9.



=

 
0

 sin
0

  =
 
0
[]

=sin 

=0
 =

 
0
 sin


integrate by parts

with  =   = sin 


=
− cos+ sin

0
= − cos + sin + 0− sin 0 = 

11. (a) At the right we sketch an example of a region that can be described as lying

between the graphs of two continuous functions of  (a type I region) but not as

lying between graphs of two continuous functions of  (a type II region). The

regions shown in Figures 6 and 8 in the text are additional examples.

(b) Now we sketch an example of a region that can be described as lying between

the graphs of two continuous functions of  but not as lying between graphs of two

continuous functions of . The first region shown in Figure 7 is another example.

13. As a type I region, lies between the lower boundary  = 0 and the upper

boundary  =  for 0 ≤  ≤ 1, so = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ }. If we

describe as a type II region, lies between the left boundary  =  and the

right boundary  = 1 for 0 ≤  ≤ 1, so = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1}.

Thus



 =

 1
0

 
0
  =

 1
0



=

=0
 =

 1
0
2  = 1

3
3
1
0
= 1

3
(1− 0) = 1

3
or


 =

 1
0

 1

 =

 1
0


1
2
2
=1

= 
 = 1

2

 1
0
(1− 2)  = 1

2


 − 1

3
3
1
0
= 1

2


1− 1

3

− 0 = 1
3
.

15. The curves  = − 2 or  =  + 2 and  = 2 intersect when  + 2 = 2 ⇔

2 −  − 2 = 0 ⇔ ( − 2)( + 1) = 0 ⇔  = −1,  = 2, so the points of

intersection are (1−1) and (4 2). If we describe as a type I region, the upper

boundary curve is  =
√
 but the lower boundary curve consists of two parts,

 = −√ for 0 ≤  ≤ 1 and  = − 2 for 1 ≤  ≤ 4.

Thus  = {( ) | 0 ≤  ≤ 1, −√ ≤  ≤ √ } ∪ {( ) | 1 ≤  ≤ 4, − 2 ≤  ≤ √ } and

  =

 1
0

√
−√   +

 4
1

√
−2   . If we describe as a type II region, is enclosed by the left boundary

 = 2 and the right boundary  =  + 2 for −1 ≤  ≤ 2, so =

( ) | −1 ≤  ≤ 2, 2 ≤  ≤  + 2


and
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  =

 2
−1
 +2
2

  . In either case, the resulting iterated integrals are not difficult to evaluate but the region is

more simply described as a type II region, giving one iterated integral rather than a sum of two, so we evaluate the latter

integral: 

 =

 2
−1
 +2
2

   =
 2
−1


= +2

= 2
 =

 2
−1( + 2− 2)  =

 2
−1(

2 + 2 − 3) 

=

1
3
3 + 2 − 1

4
4
2
−1 =


8
3
+ 4− 4− − 1

3
+ 1− 1

4


= 9

4

17.
 1
0

 2
0

 cos    =
 1
0


 sin 

= 2

=0
 =

 1
0
 sin2  = − 1

2
cos2

1
0
= 1

2
(1− cos 1)

19.


2  =

 2

1

 7−3

−1

2
 =

 2

1




2
=7−3
=−1 

=
 2
1
[(7− 3)− ( − 1)] 2  =  2

1
(82 − 43) 

=

8
3
3 − 4

2
1
= 64

3
− 16− 8

3
+ 1 = 11

3

21.  2

−2

 √4−2

−
√
4−2

(2− )  

=

 2

−2


2 − 1

2

2
=√4−2

=−
√
4−2



=
 2
−2

2
√
4− 2 − 1

2


4− 2


+ 2

√
4− 2 + 1

2


4− 2




=
 2
−2 4

√
4− 2  = − 4

3


4− 2

322
−2
= 0

[Or, note that 4
√
4− 2 is an odd function, so

 2
−2 4

√
4− 2  = 0.]

23. =
 1
0

 1−2
1− (1− + 2)   =

 1
0


 −  + 2

=1−2
=1− 

=

 1

0


(1− 

2
)− (1− 

2
) + (1− 

2
)
2


−

(1− )− (1− ) + (1− )2




=
 1
0


4 + 3 − 32 − + 2

− 22 − 4+ 2 
=
 1
0


4 + 3 − 52 + 3  =  1

5
5 + 1

4
4 − 5

3
3 + 3

2
2
1
0

= 1
5
+ 1

4
− 5

3
+ 3

2
= 17

60

25. =
 2
1

 7− 3
1

   =
 2
1


1
2
2

=7− 3

=1


= 1
2

 2
1
(48 − 422 + 93) 

= 1
2


242 − 143 + 9

4
4
2
1
= 31

8

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



254 ¤ CHAPTER 15 MULTIPLE INTEGRALS

27.  =
 2
0

 3− 3
2


0
(6− 3− 2)  

=
 2
0


6 − 3 − 2

=3− 3
2


=0


=
 2
0


6(3 − 3

2
)− 3(3 − 3

2
)− (3 − 3

2
)2



=
 2
0


9
4
2 − 9+ 9  =  3

4
3 − 9

2
2 + 9

2
0
= 6− 0 = 6

29.

=
 2
−2
 4
2

2  

=
 2
−2 

2


=4
=2

 =
 2
−2(4

2 − 4) 

=

4
3
3 − 1

5
5
2
−2 =

32
3
− 32

5
+ 32

3
− 32

5
= 128

15

31.

 =

 1

0

 √1−2

0

   =

 1

0


2

2

=√1−2

=0



=

 1

0

1− 2

2
 = 1

2


− 1

3

3
1
0
= 1

3

33. From the graph, it appears that the two curves intersect at  = 0 and

at  ≈ 1213. Thus the desired integral is

≈  1213

0

 3− 2

4
  =

 1213
0



=3−2

=4


=
 1213
0

(32 − 3 − 5)  =

3 − 1

4
4 − 1

6
6
1213
0

≈ 0713

35. The two bounding curves  = 1− 2 and  = 2 − 1 intersect at (±1 0) with 1− 2 ≥ 2 − 1 on [−1 1]. Within this
region, the plane  = 2+ 2 + 10 is above the plane  = 2− − , so

 =
 1
−1
 1−2
2−1 (2+ 2 + 10)  −

 1
−1
 1−2
2−1 (2− − )  

=
 1
−1
 1−2
2−1 (2+ 2 + 10− (2− − ))  

=
 1
−1
 1−2
2−1 (3+ 3 + 8)   =

 1
−1


3 + 3

2
2 + 8

=1−2
=2−1



=
 1
−1

3(1− 2) + 3

2
(1− 2)2 + 8(1− 2)− 3(2 − 1)− 3

2
(2 − 1)2 − 8(2 − 1) 

=
 1
−1(−63 − 162 + 6+ 16)  =

− 3
2
4 − 16

3
3 + 32 + 16

1
−1

= − 3
2
− 16

3
+ 3 + 16 + 3

2
− 16

3
− 3 + 16 = 64

3
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37. The solid lies below the plane  = 1− − 

or +  +  = 1 and above the region

 = {( ) | 0 ≤  ≤ 1 0 ≤  ≤ 1− }
in the -plane. The solid is a tetrahedron.

39. The two bounding curves  = 3 −  and  = 2 +  intersect at the origin and at  = 2, with 2 +   3 −  on (0 2).

Using a CAS, we find that the volume is

 =

 2

0

 2 +

3−

   =

 2

0

 2 +

3− 

(
3

4
+ 

2
)   =

13,984,735,616
14,549,535

41. The two surfaces intersect in the circle 2 + 2 = 1,  = 0 and the region of integration is the disk: 2 + 2 ≤ 1.

Using a CAS, the volume is




(1− 
2 − 

2
)  =

 1

−1

 √1−2

−
√
1−2

(1− 
2 − 

2
)   =



2
.

43. Because the region of integration is

 = {( ) | 0 ≤  ≤  0 ≤  ≤ 1} = {( ) |  ≤  ≤ 1 0 ≤  ≤ 1}

we have
 1
0

 
0
( )   =



( )  =

 1
0

 1

( )  .

45. Because the region of integration is

= {( ) | 0 ≤  ≤ cos 0 ≤  ≤ 2}
=

( ) | 0 ≤  ≤ cos−1  0 ≤  ≤ 1

we have 2
0

 cos
0

( )   =


( )  =

 1
0

 cos−1 
0

( )  .

47. Because the region of integration is

 = {( ) | 0 ≤  ≤ ln, 1 ≤  ≤ 2} = {( ) |  ≤  ≤ 2, 0 ≤  ≤ ln 2}
we have 2

1

 ln

0

( )   =




( )  =

 ln 2

0

 2


( ) 

49.
 1

0

 3

3


2

  =

 3

0

 3

0


2

  =

 3

0



2

=3
=0



=

 3

0


3



2

 = 1
6

2
3
0
=

9 − 1
6
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51.  4

0

 2

√


1

3 + 1
 =

 2

0

 2

0

1

3 + 1
 

=

 2

0

1

3 + 1



=2
=0

 =

 2

0

2

3 + 1


= 1
3
ln
3 + 1 2

0
= 1

3
(ln 9− ln 1) = 1

3
ln 9

53.
 1

0

 2

arcsin 

cos

1 + cos2 

=
 2
0

 sin
0

cos
√
1 + cos2  

=
 2
0

cos
√
1 + cos2 



=sin
=0



=
 2
0

cos
√
1 + cos2  sin


Let  = cos ,  = − sin ,

 = (− sin)


=
 0
1
−√1 + 2  = − 1

3


1 + 2

320
1

= 1
3

√
8− 1 = 1

3


2
√
2− 1

55.  = {( ) | 0 ≤  ≤ 1, − + 1 ≤  ≤ 1} ∪ {( ) | −1 ≤  ≤ 0, + 1 ≤  ≤ 1}
∪ {( ) | 0 ≤  ≤ 1, − 1 ≤  ≤ − 1} ∪ {( ) | −1 ≤  ≤ 0, − 1 ≤  ≤ −− 1}, all type I.




2
=

 1

0

 1

1−


2
 +

 0

−1

 1

+1


2
 +

 1

0

 − 1

−1

2
 +

 0

−1

 −− 1

−1

2
 

= 4

 1

0

 1

1−


2
  [by symmetry of the regions and because ( ) = 

2 ≥ 0]

= 4
 1
0
3  = 4


1
4
4
1
0
= 1

57. Here  =

( ) | 2 + 2 ≤ 1

4
  ≥ 0  ≥ 0, and 0 ≤ (2 + 2)2 ≤  1

4

2 ⇒ − 1
16
≤ −(2 + 2)2 ≤ 0 so

−116 ≤ −(
2+2)2 ≤ 0 = 1 since  is an increasing function. We have () = 1

4


1
2

2
= 

16
, so by Property 11,

−116() ≤ 

−(

2+2)2 ≤ 1 ·() ⇒ 
16
−116 ≤ 


−(

2+2)2 ≤ 
16
or we can say

01844 



−(

2+2)2  01964. (We have rounded the lower bound down and the upper bound up to preserve the

inequalities.)

59. The average value of a function  of two variables defined on a rectangle  was

defined in Section 15.1 as ave = 1
()



( ). Extending this definition

to general regions, we have ave = 1
()



( ).

Here = {( ) | 0 ≤  ≤ 1 0 ≤  ≤ 3}, so () = 1
2
(1)(3) = 3

2
and

ave =
1

()



( ) = 1

32

 1
0

 3
0

  

= 2
3

 1
0


1
2
2

=3
=0

 = 1
3

 1
0
93  = 3

4
4
1
0
= 3

4
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61. Since ≤ ( ) ≤ ,


 ≤ 


( )  ≤ 


  by (8) ⇒





1  ≤ 


( )  ≤



1  by (7) ⇒ () ≤ 


( )  ≤() by (10).

63. First we can write



(+ 2)  =



+



2 . But ( ) =  is

an odd function with respect to  [that is, (− ) = −( )] and is

symmetric with respect to . Consequently, the volume above and below the

graph of  is the same as the volume below and above the graph of  , so

 = 0. Also,



2  = 2 ·() = 2 · 1

2
(3)2 = 9 since is a half

disk of radius 3. Thus



(+ 2)  = 0 + 9 = 9.

65. We can write



(2+ 3)  =



2+



3 .



2 represents the volume of the solid lying under the

plane  = 2 and above the rectangle. This solid region is a triangular cylinder with length  and whose cross-section is a

triangle with width  and height 2. (See the first figure.)

Thus its volume is 1
2
·  · 2 ·  = 2. Similarly,



3  represents the volume of a triangular cylinder with length ,

triangular cross-section with width  and height 3, and volume 1
2
·  · 3 ·  = 3

2
2. (See the second figure.) Thus



(2+ 3)  = 2+ 3

2
2

67.





3 + 3 +

√
2 − 2


 =



3 +



3 +




√
2 − 2 . Now 3 is odd with respect

to  and 3 is odd with respect to , and the region of integration is symmetric with respect to both  and ,

so



3  =



3  = 0.



√
2 − 2  represents the volume of the solid region under the

graph of  =
√
2 − 2 and above the rectangle, namely a half circular

cylinder with radius  and length 2 (see the figure) whose volume is

1
2
· 2 = 1

2
2(2) = 2. Thus




3 + 3 +

√
2 − 2


 = 0 + 0 + 2 = 2.
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15.4 Double Integrals in Polar Coordinates

1. The region  is more easily described by polar coordinates:  =

( ) | 0 ≤  ≤ 4, 0 ≤  ≤ 3

2


.

Thus



( )  =

 32
0

 4
0
( cos   sin )   .

3. The region  is more easily described by rectangular coordinates:  =

( ) | −1 ≤  ≤ 1, 0 ≤  ≤ 1

2
+ 1

2


.

Thus



( )  =

 1
−1
 (+1)2
0

( )  .

5. The integral
 34
4

 2
1
   represents the area of the region

 = {( ) | 1 ≤  ≤ 2, 4 ≤  ≤ 34}, the top quarter portion of a
ring (annulus). 34
4

 2
1
   =

 34
4


 2

1
 


=


34
4


1
2
2
2
1
=

3
4
− 

4

 · 1
2
(4− 1) = 

2
· 3
2
= 3

4

7. The half disk can be described in polar coordinates as = {( ) | 0 ≤  ≤ 5, 0 ≤  ≤ }. Then

2  =

 
0

 5
0
( cos )2( sin )    =

 
0
cos2  sin  

 5
0
4 


=
− 1

3
cos3 


0


1
5
5
5
0
= − 1

3
(−1− 1) · 625 = 1250

3

9.


sin(2 + 2) =

 2
0

 3
1
sin(2)    =

 2
0


 3

1
 sin(2) 


=


2
0

−1
2
cos(2)

3
1

=


2

 − 1
2
(cos 9− cos 1) = 

4
(cos 1− cos 9)

11.


−

2−2  =
 2
−2

 2
0
−

2

   =
 2
−2 

 2
0
−

2



=


2
−2


− 1
2
−

2
2
0
= 

− 1
2


(−4 − 0) = 

2
(1− −4)

13.  is the region shown in the figure, and can be described

by  = {( ) | 0 ≤  ≤ 4 1 ≤  ≤ 2}. Thus

arctan()  =

 4
0

 2
1
arctan(tan )    since  = tan .

Also, arctan(tan ) =  for 0 ≤  ≤ 4, so the integral becomes 4
0

 2
1
    =

 4
0

 
 2
1
  =


1
2
2
4
0


1
2
2
2
1
= 2

32
· 3
2
= 3

64
2.

15. One loop is given by the region

 = {( ) |−6 ≤  ≤ 6, 0 ≤  ≤ cos 3 }, so the area is


 =

 6

−6

 cos 3

0

   =

 6

−6


1

2

2

=cos 3
=0



=

 6

−6

1

2
cos

2
3  = 2

 6

0

1

2


1 + cos 6

2




=
1

2


 +

1

6
sin 6

6
0

=


12
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17. In polar coordinates the circle (− 1)2 + 2 = 1 ⇔ 2 + 2 = 2 is 2 = 2 cos  ⇒  = 2cos ,

and the circle 2 + 2 = 1 is  = 1. The curves intersect in the first quadrant when

2 cos  = 1 ⇒ cos  = 1
2

⇒  = 3, so the portion of the region in the first quadrant is given by

 = {( ) | 1 ≤  ≤ 2 cos  0 ≤  ≤ 2}. By symmetry, the total area
is twice the area of:

2() = 2



 = 2

 3
0

 2 cos 
1

   = 2
 3
0


1
2
2
=2 cos 
=1



=
 3
0


4 cos2  − 1  =  3

0


4 · 1

2
(1 + cos 2)− 1 

=
 3
0

(1 + 2 cos 2)  = [ + sin 2]
3

0
= 

3
+
√
3
2

19.  =


2 + 2≤4

2 + 2  =

 2
0

 2
0

√
2    =

 2
0


 2
0
2  =



2
0


1
3
3
2
0
= 2


8
3


= 16

3


21. The hyperboloid of two sheets−2 − 2 + 2 = 1 intersects the plane  = 2 when−2 − 2 +4 = 1 or 2 + 2 = 3. So the

solid region lies above the surface  =

1 + 2 + 2 and below the plane  = 2 for 2 + 2 ≤ 3, and its volume is

 =


2 + 2≤ 3


2−


1 + 2 + 2


 =

 2

0

 √
3

0


2−


1 + 2


  

=
 2
0


√3
0


2 − 

√
1 + 2


 =



2
0


2 − 1

3
(1 + 2)32

√3
0

= 2

3− 8

3
− 0 + 1

3


= 4

3


23. By symmetry,

 = 2


2 + 2≤ 2


2 − 2 − 2  = 2

 2

0

 

0


2 − 2    = 2

 2

0



 

0



2 − 2 

= 2


2
0


− 1
3
(2 − 2)32


0
= 2(2)


0 + 1

3
3

= 4

3
3

25. The cone  =

2 + 2 intersects the sphere 2 + 2 + 2 = 1 when 2 + 2 +


2 + 2

2
= 1 or 2 + 2 = 1

2
. So

 =


2 + 2≤ 12


1− 2 − 2 −


2 + 2


 =

 2

0

 1
√
2

0


1− 2 − 


  

=
 2
0


 1√2
0



√
1− 2 − 2


 =



2
0


− 1
3
(1− 2)32 − 1

3
3
1√2
0

= 2
− 1

3


1√
2
− 1

= 

3


2−√2 

27. The given solid is the region inside the cylinder 2 + 2 = 4 between the surfaces  =

64− 42 − 42

and  = −

64− 42 − 42. So

 =


2 + 2≤ 4


64− 42 − 42 −


−

64− 42 − 42


 =


2+2≤ 4

2

64− 42 − 42 

= 4
 2
0

 2
0

√
16− 2    = 4

 2
0


 2
0

√
16− 2  = 4



2
0


− 1
3
(16− 2)32

2
0

= 8
−1

3


(1232 − 1623) = 8

3


64− 24√3 
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29.
 3

−3

 √9−2

0

sin(
2
+ 

2
)  =

 

0

 3

0

sin


2

  

=
 
0

 3
0
 sin


2

 = []



0

−1
2
cos

2
3
0

= 
−1

2


(cos 9− 1) = 

2
(1− cos 9)

31.
 4
0

√2
0
( cos  +  sin )    =

 4
0

(cos  + sin ) 
√2
0

2 

= [sin  − cos ]40


1
3
3
√2
0

=
√

2
2
−
√
2
2
− 0 + 1


· 1
3


2
√
2− 0 = 2

√
2

3

33.  = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ 2}, so

(

2+2)2  =
 2
0

 1
0
(

2)2    =
 2
0


 1
0


4

 = 2
 1
0


4

. Using a calculator, we estimate

2
 1
0


4

 ≈ 45951.

35. The surface of the water in the pool is a circular disk with radius 20 ft. If we place on coordinate axes with the origin at

the center of and define ( ) to be the depth of the water at ( ), then the volume of water in the pool is the volume of

the solid that lies above =

( ) | 2 + 2 ≤ 400 and below the graph of ( ). We can associate north with the

positive -direction, so we are given that the depth is constant in the -direction and the depth increases linearly in the

-direction from (0−20) = 2 to (0 20) = 7. The trace in the -plane is a line segment from (0−20 2) to (0 20 7).

The slope of this line is 7− 2
20− (−20) =

1
8
, so an equation of the line is  − 7 = 1

8
( − 20) ⇒  = 1

8
 + 9

2
. Since ( ) is

independent of , ( ) = 1
8
 + 9

2
. Thus the volume is given by



( ) , which is most conveniently evaluated

using polar coordinates. Then = {( ) | 0 ≤  ≤ 20, 0 ≤  ≤ 2} and substituting  =  cos ,  =  sin  the integral

becomes  2
0

 20
0


1
8
 sin  + 9

2


   =

 2
0


1
24
3 sin  + 9

4
2
=20

=0
 =

 2
0


1000
3
sin  + 900




=
− 1000

3
cos  + 900

2
0
= 1800

Thus the pool contains 1800 ≈ 5655 ft3 of water.

37. As in Exercise 15.3.59, ave = 1
()



( ). Here  = {( ) |  ≤  ≤  0 ≤  ≤ 2},

so () =  2 − 2 = ( 2 − 2) and

ave =
1

()




1
2 + 2

 =
1

( 2 − 2)

 2

0

 



1√
2

   =
1

( 2 − 2)

 2

0



 





=
1

( 2 − 2)



2
0





=

1

( 2 − 2)
(2)(− ) =

2(− )

(+ )(− )
=

2

+ 
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39.
 1

1
√
2

 

√
1−2

  +

 √
2

1

 

0

  +

 2

√
2

 √4−2

0

  

=

 4

0

 2

1


3
cos  sin    =

 4

0


4

4
cos  sin 

=2

=1



=
15

4

 4

0

sin  cos   =
15

4


sin2 

2

4
0

=
15

16

41. (a) We integrate by parts with  =  and  = −
2

. Then  =  and  = − 1
2
−

2

, so∞
0

2−
2

= lim
→∞

 
0
2−

2

 = lim
→∞


−1
2
−

2

0
+
 
0

1
2
−

2




= lim

→∞


− 1
2
−

2

+ 1

2

∞
0

−
2

 = 0 + 1
2

∞
0

−
2

 [by l’Hospital’s Rule]

= 1
4

∞
−∞ −

2

 [since −
2

is an even function]

= 1
4

√
 [by Exercise 40(c)]

(b) Let  =
√
. Then 2 =  ⇒  = 2 ⇒∞

0

√
−  = lim

→∞

 
0

√
 −  = lim

→∞

√
0

−
2

2 = 2
∞
0

2−
2

 = 2

1
4

√


[by part(a)] = 1

2

√
.

15.5 Applications of Double Integrals

1.  =


( )  =

 5
0

 5
2
(2+ 4)   =

 5
0


2 + 22

=5
=2



=
 5
0
(10+ 50− 4− 8)  =  5

0
(6+ 42)  =


32 + 42

5
0
= 75 + 210 = 285 C

3.  =



( )  =

 3
1

 4
1
2   = 

 3
1

 4
1
2  =  []

3

1


1
3
3
4
1
= (2)(21) = 42,

 = 1




( )  = 1

42

 3
1

 4
1
2   = 1

42

 3
1


 4
1
2  = 1

42


1
2
2
3
1


1
3
3
4
1
= 1

42
(4)(21) = 2,

 = 1




( )  = 1

42

 3
1

 4
1
3   = 1

42

 3
1


 4
1
3  = 1

42
[]

3

1


1
4
4
4
1
= 1

42
(2)

255
4


= 85

28

Hence = 42, ( ) =

2 85

28


.

5.  =
 2
0

 3−
2

(+ )   =
 2
0


 + 1

2
2
=3−
=2

 =
 2
0




3− 3

2


+ 1

2
(3− )2 − 1

8
2



=
 2
0

− 9
8
2 + 9

2


 =

− 9
8


1
3
3

+ 9

2

2
0
= 6,

 =
 2
0

 3−
2

(2 + )   =
 2
0


2 + 1

2
2

=3−
=2

 =
 2
0


9
2
− 9

8
3

 = 9

2
,

 =
 2
0

 3−
2

( + 2)   =
 2
0


1
2
2 + 1

3
3
=3−
=2

 =
 2
0


9− 9

2


 = 9.

Hence = 6, ( ) =











=


3

4

3

2


.

7.  =
 1
−1
 1−2
0

   = 
 1
−1

1
2
2
=1−2
=0

 = 1
2

 1
−1(1− 2)2  = 1

2

 1
−1(1− 22 + 4) 

= 1
2


− 2

3
3 + 1

5
5
1
−1 =

1
2


1− 2

3
+ 1

5
+ 1− 2

3
+ 1

5


= 8

15
,
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 =
 1
−1
 1−2
0

   = 
 1
−1

1
2
2

=1−2
=0

 = 1
2

 1
−1  (1− 2)2  = 1

2

 1
−1(− 23 + 5) 

= 1
2


1
2
2 − 1

2
4 + 1

6
6
1
−1 =

1
2


1
2
− 1

2
+ 1

6
− 1

2
+ 1

2
− 1

6


= 0,

 =
 1
−1
 1−2
0

2   = 
 1
−1

1
3
3
=1−2
=0

 = 1
3

 1
−1(1− 2)3  = 1

3

 1
−1(1− 32 + 34 − 6) 

= 1
3


− 3 + 3

5
5 − 1

7
7
1
−1 =

1
3


1− 1 + 3

5
− 1

7
+ 1− 1 + 3

5
− 1

7


= 32

105
.

Hence = 8
15
, ( ) =


0

32105

815


=

0 4

7


.

9. Note that sin() ≥ 0 for 0 ≤  ≤ .

 =
 
0

 sin()
0

   =
 
0

1
2
sin2()  = 1

2


1
2
− 

4
sin(2)


0
= 1

4
,

 =
 
0

 sin()
0

 ·    = 1
2

 
0
 sin2() 


integrate by parts with

 =   = sin2() 


= 1

2
·  1

2
− 

4
sin(2)


0
− 1

2

 
0


1
2
− 

4
sin(2)




= 1
4
2 − 1

2


1
4
2 + 2

42
cos(2)


0
= 1

4
2 − 1

2


1
4
2 + 2

42
− 2

42


= 1

8
2

 =
 
0

 sin()
0

 ·    =  
0

1
3
sin3()  = 1

3

 
0


1− cos2() sin() 

[substitute  = cos ()] ⇒  = − 

sin()]

= 1
3

−



cos()− 1

3
cos3()


0
= − 

3

−1 + 1
3
− 1 + 1

3


= 4

9
.

Hence =


4
, ( ) =


28

4

4(9)

4


=




2

16

9


.

11. ( ) =  =  sin , =
 2
0

 1
0
2 sin    = 1

3

 2
0

sin   = 1
3

− cos 2

0
= 1

3
,

 =
 2
0

 1
0
3 sin  cos    = 1

4

 2
0

sin  cos   = 1
8

− cos 22

0
= 1

8
,

 =
 2
0

 1
0
3 sin2    = 1

4

 2
0

sin2   = 1
8


 + sin 2

2
0

= 
16
.

Hence ( ) =

3
8
 3
16


.

13. ( ) = 

2 + 2 = ,

=



( ) =

 
0

 2
1
 ·   

= 
 
0

 2
1
2  = ()


1
3
3
2
1
= 7

3
,

 =



( ) =

 
0

 2
1
( cos )()    = 

 
0
cos  

 2
1
3 

= 

sin 


0


1
4
4
2
1
= (0)


15
4


= 0

[this is to be expected as the region and density

function are symmetric about the y-axis]

 =



( ) =

 
0

 2
1
( sin )()    = 

 
0
sin  

 2
1
3 

= 
− cos 

0


1
4
4
2
1
= (1 + 1)


15
4


= 15

2


Hence ( ) =

0

152

73


=

0 45

14


.
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15. Placing the vertex opposite the hypotenuse at (0 0), ( ) = (2 + 2). Then

 =
 
0

 −

0


2 + 2


  = 

 
0


2 − 3 + 1

3
(− )

3

 = 


1
3
3 − 1

4
4 − 1

12
(− )

4

0
= 1

6
4.

By symmetry,

 = =
 
0

 −

0
(2 + 2)   = 

 
0


1
2
(− )22 + 1

4
(− )4




= 

1
6
23 − 1

4
4 + 1

10
5 − 1

20
(− )5


0
= 1

15
5

Hence ( ) =

2
5
 2

5


.

17.  =



2( ) =

 1
−1
 1−2
0

2 ·    = 
 1
−1

1
4
4
=1−2
=0

 = 1
4

 1
−1(1− 2)4 

= 1
4

 1
−1(

8 − 46 + 64 − 42 + 1)  = 1
4


1
9
9 − 4

7
7 + 6

5
5 − 4

3
3 + 

1
−1 =

64
315

,

 =



2( )  =

 1
−1
 1−2
0

2   = 
 1
−1

1
2
22

=1−2
=0

 = 1
2

 1
−1 

2(1− 2)2 

= 1
2

 1
−1(

2 − 24 + 6)  = 1
2


1
3
3 − 2

5
5 + 1

7
7
1
−1 =

8
105

,

and 0 =  +  =
64
315

 + 8
105

 = 88
315

.

19. As in Exercise 15, we place the vertex opposite the hypotenuse at (0 0) and the equal sides along the positive axes.

 =
 
0

 −
0

2(2 + 2)   = 
 
0

 −
0

(22 + 4)   = 
 
0


1
3
23 + 1

5
5
=−
=0



= 
 
0


1
3
2(− )3 + 1

5
(− )5


 = 


1
3


1
3
33 − 3

4
24 + 3

5
5 − 1

6
6
− 1

30
(− )6


0
= 7

180
6,

 =
 
0

 −
0

2(2 + 2)   = 
 
0

 −
0

(4 + 22)   = 
 
0


4 + 1

3
23

=−
=0



= 
 
0


4 (− ) + 1

3
2 (− )

3

 = 


1
5
5 − 1

6
6 + 1

3


1
3
33 − 3

4
24 + 3

5
5 − 1

6
6

0
= 7

180
6,

and 0 =  +  =
7
90
6.

21.  =



2( ) =

 
0

 
0
2   = 

 
0

 
0
2  = 




0


1
3
3

0
= 


1
3
3

= 1

3
3,

 =



2( ) =

 
0

 
0
2   = 

 
0
2 

 
0
 = 


1
3
3

0
[]



0 =
1
3
3,

and =  (area of rectangle) =  since the lamina is homogeneous. Hence 
2
=




=

1
3
3


=

2

3
⇒  =

√
3

and 
2
=




=

1
3
3


=

2

3
⇒  =

√
3
.

23. In polar coordinates, the region is =

( ) | 0 ≤  ≤  0 ≤  ≤ 

2


, so

 =



2  =

 2
0

 
0
( sin )2    = 

 2
0

sin2 
 
0
3 

= 

1
2
 − 1

4
sin 2

2
0


1
4
4

0
= 



4

 
1
4
4

= 1

16
4,

 =



2  =

 2
0

 
0
( cos )2    = 

 2
0

cos2 
 
0
3 

= 

1
2
 + 1

4
sin 2

2
0


1
4
4

0
= 



4

 
1
4
4

= 1

16
4,

and =  ·() =  · 1
4
2 since the lamina is homogeneous. Hence 

2
= 

2
=

1
16
4

1
4
2

=
2

4
⇒  =  =



2
.
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25. The right loop of the curve is given by = {( ) | 0 ≤  ≤ cos 2, − 4 ≤  ≤ 4}. Using a CAS, we

find =



( )  =



(2 + 2)  =

 4
−4

 cos 2
0

2    =
3

64
. Then

 =
1






( )  =
64

3

 4

−4

 cos 2

0

( cos ) 
2
   =

64

3

 4

−4

 cos 2

0


4
cos    =

16384
√
2

10395
and

 =
1






( )  =
64

3

 4

−4

 cos 2

0

( sin ) 
2
   =

64

3

 4

−4

 cos 2

0


4
sin    = 0, so

( ) =


16384

√
2

10395
 0


.

The moments of inertia are

 =



2( )  =

 4
−4

 cos 2
0

( sin )2 2    =
 4
−4

 cos 2
0

5 sin2    =
5

384
− 4

105
,

 =



2( )  =

 4
−4

 cos 2
0

( cos )2 2    =
 4
−4

 cos 2
0

5 cos2    =
5

384
+

4

105
, and

0 =  +  =
5

192
.

27. (a) ( ) is a joint density function, so we know

R2 ( )  = 1. Since ( ) = 0 outside the

rectangle [0 1]× [0 2], we can say
R2 ( ) =

∞
−∞

∞
−∞ ( )   =

 1
0

 2
0
(1 + )  

= 
 1
0


 + 1

2
2
=2
=0

 = 
 1
0
4 = 


22

1
0
= 2

Then 2 = 1 ⇒  = 1
2
.

(b)  ( ≤ 1  ≤ 1) =  1−∞  1−∞ ( )   =
 1
0

 1
0
1
2
(1 + )  

=
 1
0
1
2


 + 1

2
2
=1

=0
 =

 1
0
1
2


3
2


 = 3

4


1
2
2
1
0
= 3

8
or 0375

(c)  ( +  ≤ 1) =  (( ) ∈ ) where is the triangular region shown in

the figure. Thus

 ( +  ≤ 1) = 

( )  =

 1
0

 1−

0

1
2
(1 + )  

=
 1
0

1
2


 + 1

2
2
=1−
=0

 =
 1
0

1
2


1
2
2 − 2+ 3

2




= 1
4

 1
0


3 − 42 + 3  = 1

4


4

4
− 43

3
+ 3

2

2

1
0

= 5
48
≈ 01042

29. (a) ( ) ≥ 0, so  is a joint density function if R2 ( )  = 1. Here, ( ) = 0 outside the first quadrant, so
R2 ( ) =

∞
0

∞
0
01−(05+02)   = 01

∞
0

∞
0

−05−02   = 01
∞
0

−05 
∞
0

−02 

= 01 lim
→∞

 
0
−05  lim

→∞

 
0
−02  = 01 lim

→∞

−2−05
0
lim
→∞

−5−02
0

= 01 lim
→∞

−2(−05 − 1) lim
→∞

−5(−02 − 1) = (01) · (−2)(0− 1) · (−5)(0− 1) = 1
Thus ( ) is a joint density function.
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(b) (i) No restriction is placed on, so

 ( ≥ 1) = ∞−∞ ∞1 ( )   =
∞
0

∞
1
01−(05+02)  

= 01
∞
0

−05 
∞
1

−02  = 01 lim
→∞

 
0
−05  lim

→∞

 
1
−02 

= 01 lim
→∞

−2−05
0
lim
→∞

−5−02
1
= 01 lim

→∞

−2(−05 − 1) lim
→∞

−5(−02 − −02)


(01) · (−2)(0− 1) · (−5)(0− −02) = −02 ≈ 08187

(ii)  ( ≤ 2  ≤ 4) =  2−∞  4−∞ ( )   =
 2
0

 4
0
01−(05+02)  

= 01
 2
0
−05 

 4
0
−02  = 01

−2−052
0

−5−024
0

= (01) · (−2)(−1 − 1) · (−5)(−08 − 1)
= (−1 − 1)(−08 − 1) = 1 + −18 − −08 − −1 ≈ 03481

(c) The expected value of is given by

1 =

R2  ( )  =

∞
0

∞
0



01−(05+02)


 

= 01
∞
0

−05 
∞
0

−02  = 01 lim
→∞

 
0
−05  lim

→∞

 
0
−02 

To evaluate the first integral, we integrate by parts with  =  and  = −05  (or we can use Formula 96

in the Table of Integrals):

−05  = −2−05 −  −2−05  = −2−05 − 4−05 = −2(+ 2)−05.

Thus

1 = 01 lim
→∞

−2(+ 2)−05
0
lim
→∞

−5−02
0

= 01 lim
→∞

(−2)(+ 2)−05 − 2 lim
→∞

(−5)−02 − 1
= 01(−2)


lim
→∞

+ 2

05
− 2

(−5)(−1) = 2 [by l’Hospital’s Rule]

The expected value of  is given by

2 =

R2  ( )  =

∞
0

∞
0



01−(05+02)


 

= 01
∞
0

−05 
∞
0

−02  = 01 lim
→∞

 
0
−05  lim

→∞

 
0
−02 

To evaluate the second integral, we integrate by parts with  =  and  = −02  (or again we can use Formula 96 in

the Table of Integrals) which gives

−02  = −5−02 +  5−02  = −5( + 5)−02 . Then

2 = 01 lim
→∞

−2−05
0
lim
→∞

−5( + 5)−02
0

= 01 lim
→∞

−2(−05 − 1) lim
→∞

−5(+ 5)−02 − 5
= 01(−2)(−1) · (−5)


lim
→∞

+ 5

02
− 5

= 5 [by l’Hospital’s Rule]

31. (a) The random variables and  are normally distributed with 1 = 45, 2 = 20, 1 = 05, and 2 = 01.

The individual density functions for  and  , then, are 1() =
1

05
√
2

−(−45)
205 and

2 () =
1

01
√
2

−(−20)
2002. Since and  are independent, the joint density function is the product

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



266 ¤ CHAPTER 15 MULTIPLE INTEGRALS

( ) = 1()2() =
1

05
√
2

−(−45)
205 1

01
√
2

−(−20)
2002 = 10


−2(−45)

2−50(−20)2 

Then  (40 ≤  ≤ 50, 20 ≤  ≤ 25) =  50
40

 25
20

( )   = 10


 50
40

 25
20

−2(−45)
2−50(−20)2  .

Using a CAS or calculator to evaluate the integral, we get  (40 ≤  ≤ 50, 20 ≤  ≤ 25) ≈ 0500.

(b)  (4( − 45)2 + 100( − 20)2 ≤ 2) = 


10

−2(−45)

2−50(−20)2 , where is the region enclosed by the ellipse

4(− 45)2 + 100( − 20)2 = 2. Solving for  gives  = 20± 1
10


2− 4(− 45)2, the upper and lower halves of the

ellipse, and these two halves meet where  = 20 [since the ellipse is centered at (45 20)] ⇒ 4(− 45)2 = 2 ⇒

 = 45± 1√
2
. Thus




10


−2(−45)2−50(−20)2

 = 10


 45+1
√
2

45−1√2

 20+ 1
10

√
2− 4(−45)2

20− 1
10

√
2− 4(−45)2


−2(−45)2−50(−20)2

 .

Using a CAS or calculator to evaluate the integral, we get  (4( − 45)2 + 100( − 20)2 ≤ 2) ≈ 0632.

33. (a) If () is the probability that an individual at  will be infected by an individual at  , and   is the number of

infected individuals in an element of area , then ()  is the number of infections that should result from

exposure of the individual at  to infected people in the element of area . Integration over gives the number of

infections of the person at  due to all the infected people in. In rectangular coordinates (with the origin at the city’s

center), the exposure of a person at  is

 =




()  = 




1
20
[20− ()]  = 





1− 1

20


(− 0)2 + ( − 0)2




(b) If  = (0 0), then

 = 





1− 1

20


2 + 2




= 

 2

0

 10

0


1− 1

20


   = 2


1
2

2 − 1

60

3
10
0

= 2

50− 50

3


= 200

3
 ≈ 209

For  at the edge of the city, it is convenient to use a polar coordinate system centered at . Then the polar equation for

the circular boundary of the city becomes  = 20 cos  instead of  = 10, and the distance from  to a point  in the city

is again  (see the figure). So

 = 

 2

−2

 20 cos 

0


1− 1

20


   = 

 2

−2


1
2

2 − 1

60

3
=20 cos 
=0



= 
 2
−2


200 cos2  − 400

3
cos3 


 = 200

 2
−2


1
2
+ 1

2
cos 2 − 2

3


1− sin2  cos  

= 200

1
2
 + 1

4
sin 2 − 2

3
sin  + 2

3
· 1
3
sin3 

2
−2 = 200



4
+ 0− 2

3
+ 2

9
+ 

4
+ 0− 2

3
+ 2

9


= 200



2
− 8

9

 ≈ 136
Therefore the risk of infection is much lower at the edge of the city than in the middle, so it is better to live at the edge.
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15.6 Surface Area

1. Here  = ( ) = 2 + 3+ 4 and is the rectangle [0 5]× [1 4], so by Formula 2 the area of the surface is

() =





[( )]2 + [( )]2 + 1  =




√
32 + 42 + 1  =

√
26





=
√
26() =

√
26 (5)(3) = 15

√
26

3.  = ( ) = 6− 3− 2 which intersects the -plane in the line 3+ 2 = 6, so is the triangular region given by
( )

 0 ≤  ≤ 2 0 ≤  ≤ 3− 3
2


. Thus

() =





(−3)2 + (−2)2 + 1  = √14 


 =

√
14() =

√
14

1
2
· 2 · 3 = 3√14

5. 2 + 2 = 9 ⇒  =

9− 2.  = 0,  = −(9− 2)−12 ⇒

() =

 4

0

 2

0


02 + [−(9− 2)−12]2 + 1   =

 4

0

 2

0


2

9− 2
+ 1  

=

 4

0

 2

0

3
9− 2

  = 3

 4

0


sin
−1 
3

=2
=0

 = 3

sin
−1 2

3



4
0
= 12 sin

−1 2
3


7.  = ( ) = 2 − 2 with 1 ≤ 2 + 2 ≤ 4. Then

() =





1 + 42 + 42  =

 2
0

 2
1

√
1 + 42    =

 2
0


 2
1

√
1 + 42 

=


2
0


1
12
(1 + 42)32

2
1
= 

6


17
√
17− 5√5 

9.  = ( ) =  with 2 + 2 ≤ 1, so  = ,  =  ⇒

() =





2 + 2 + 1  =

 2
0

 1
0

√
2 + 1    =

 2
0


1
3
(2 + 1)32

=1
=0



=
 2
0

1
3


2
√
2− 1  = 2

3


2
√
2− 1

11.  =

2 − 2 − 2,  = −(2 − 2 − 2)−12,  = −(2 − 2 − 2)−12,

 () =





2 + 2

2 − 2 − 2
+ 1 

=

 2

−2

  cos 

0


2

2 − 2
+ 1   

=

 2

−2

  cos 

0

√
2 − 2

 

=

 2

−2


−

2 − 2

= cos 
=0



=

 2

−2
−


2 − 2 cos2  − 

 = 2

2

 2

0


1−


1− cos2 




= 22
 2

0

 − 22
 2

0


sin2   = 

2
 − 22

 2

0

sin   = 
2
( − 2)
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13.  = ( ) = −
2−2 ,  = −2−2−2 ,  = −2−2−2 . Then

() =


2+2≤4


(−2−2−2)2 + (−2−2−2)2 + 1  = 

2+2≤4


4(2 + 2)−2(2+2) + 1 .

Converting to polar coordinates we have

() =
 2
0

 2
0


42−22 + 1    =

 2
0


 2
0


42−22 + 1 

= 2
 2
0


42−22 + 1  ≈ 139783 using a calculator.

15. (a) The midpoints of the four squares are

1
4
 1
4


,

1
4
 3
4


,

3
4
 1
4


, and


3
4
 3
4


. Here ( ) = 2 + 2, so the Midpoint Rule

gives

() =





[( )]2 + [( )]2 + 1  =





(2)2 + (2)2 + 1 

≈ 1
4


2

1
4

2
+

2

1
4

2
+ 1 +


2

1
4

2
+

2

3
4

2
+ 1

+


2

3
4

2
+

2

1
4

2
+ 1 +


2

3
4

2
+

2

3
4

2
+ 1


= 1

4


3
2
+ 2


7
2
+


11
2


≈ 18279

(b) A CAS estimates the integral to be () =





1 + (2)2 + (2)2  =

 1
0

 1
0


1 + 42 + 42   ≈ 18616.

This agrees with the Midpoint estimate only in the first decimal place.

17.  = 1 + 2+ 3 + 42, so

() =





1 +






2
+






2
 =

 4

1

 1

0


1 + 4 + (3 + 8)2   =

 4

1

 1

0


14 + 48 + 642  .

Using a CAS, we have
 4
1

 1
0


14 + 48 + 642   = 45

8

√
14+ 15

16
ln

11
√
5 + 3

√
14
√
5
− 15

16
ln

3
√
5 +

√
14
√
5


or 45
8

√
14 + 15

16
ln
11
√
5 + 3

√
70

3
√
5 +

√
70

.

19. ( ) = 1 + 22 ⇒  = 2
2,  = 22. We use a CAS (with precision reduced to five significant digits, to speed

up the calculation) to estimate the integral

() =

 1

−1

 √1−2

−
√
1−2


2 + 2 + 1   =

 1

−1

 √1−2

−
√
1−2


424 + 442 + 1  , and find that () ≈ 33213.

21. Here  = ( ) =  +  + , ( ) = , ( ) = , so

() =




√
2 + 2 + 1  =

√
2 + 2 + 1



 =

√
2 + 2 + 1().

23. If we project the surface onto the -plane, then the surface lies “above” the disk 2 + 2 ≤ 25 in the -plane.

We have  = ( ) = 2 + 2 and, adapting Formula 2, the area of the surface is

() =


2+2≤25


[( )]2 + [( )]2 + 1  =


2+2≤25

√
42 + 42 + 1 
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Converting to polar coordinates  =  cos ,  =  sin  we have

() =
 2
0

 5
0

√
42 + 1    =

 2
0


 5
0
(42 + 1)12  =



2
0


1
12
(42 + 1)32

5
0
= 

6


101

√
101− 1

15.7 Triple Integrals

1.



2  =

 1
0

 3
0

 2
−1 

2    =
 1
0

 3
0


1
2
22

=2
=−1   =

 1
0

 3
0

3
2
2  

=
 1
0


1
2
3

=3
=0

 =
 1
0

27
2
 = 27

4
2
1
0
= 27

4

3.
 2
0

 2
0

 −
0

(2− )    =
 2
0

 2
0


2 − 

=−
=0

  =
 2
0

 2
0


( − )2 − ( − )


 

=
 2
0

 2
0


2 − 


  =

 2
0


2 − 1

2
2
=2
=0

 =
 2
0


4 − 1

2
5



=

1
5
5 − 1

12
6
2
0
= 32

5
− 64

12
= 16

15

5.
 2
1

 2
0

 ln 
0

−    =
 2
1

 2
0

−−=ln 
=0

 =
 2
1

 2
0

−− ln + 0

 

=
 2
1

 2
0
(−1 + )   =

 2
1

−+ 1
2
2
=2
=0



=
 2
1

−2 + 22  = −2 + 2
3
3
2
1
= −4 + 16

3
+ 1− 2

3
= 5

3

7.
 2
0

 
0

 
0
cos(+  + )   =

 2
0

 
0


sin(+  + )

=
=0

 

=
 2
0

 
0
[sin(2+ )− sin(+ )]  

=
 2
0

−1
2
cos(2+ ) + cos(+ )

=
=0



=
 2
0

−1
2
cos 3 + cos 2 + 1

2
cos  − cos  

=
− 1

6
sin 3 + 1

2
sin 2 − 1

2
sin 

2
0

= 1
6
− 1

2
= − 1

3

9.



  =

 3
0

 
0

 +
−     =

 3
0

 
0



=+
=−   =

 3
0

 
0
22  

=
 3
0


2
3
3
=
=0

 =
 3
0

2
3
3  = 1

6
4
3
0
= 81

6
= 27

2

11.






2 + 2
 =

 4

1

 4



 

0



2 + 2
  =

 4

1

 4




 · 1


tan

−1 


=
=0

 

=
 4
1

 4



tan−1(1)− tan−1(0)   =  4

1

 4




4
− 0   = 

4

 4
1



=4
=



= 
4

 4
1
(4− )  = 

4


4 − 1

2
2
4
1
= 

4


16− 8− 4 + 1

2


= 9

8

13. Here  = {(  ) | 0 ≤  ≤ 1 0 ≤  ≤ √ 0 ≤  ≤ 1 + + }, so

6  =

 1
0

√
0

 1++
0

6    =
 1
0

√
0


6

=1++
=0

 

=
 1
0

√
0

6(1 + + )   =
 1
0


32 + 322 + 23

=√
=0



=
 1
0
(32 + 33 + 252)  =


3 + 3

4
4 + 4

7
72

1
0
= 65

28
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15. Here  = {(  ) | 0 ≤  ≤ 1 0 ≤  ≤ 1−  0 ≤  ≤ 1− − }, so

2  =

 1
0

 1−
0

 1−−
0

2    =
 1
0

 1−
0

2(1− − )  

=
 1
0

 1−
0

(2 − 3 − 2)   =
 1
0


2 − 3 − 1

2
22

=1−
=0



=
 1
0


2(1− )− 3(1− )− 1

2
2(1− )2




=
 1
0


1
2
4 − 3 + 1

2
2

 =


1
10
5 − 1

4
4 + 1

6
3
1
0

= 1
10
− 1

4
+ 1

6
= 1

60

17. The projection of  on the -plane is the disk 2 + 2 ≤ 1. Using polar
coordinates  =  cos  and  =  sin , we get


 =




 4
42 +42



 = 1

2





42 − (42 + 42)2 

= 8
 2
0

 1
0
(1− 4)    = 8

 2
0


 1
0
( − 5) 

= 8(2)

1
2
2 − 1

6
6
1
0
= 16

3

19. The plane 2+  +  = 4 intersects the -plane when

2+  + 0 = 4 ⇒  = 4− 2, so
 = {(  ) | 0 ≤  ≤ 2, 0 ≤  ≤ 4− 2, 0 ≤  ≤ 4− 2− } and

=
 2
0

 4−2
0

 4−2−
0

   =
 2
0

 4−2
0

(4− 2− )  

=
 2
0


4 − 2 − 1

2
2
=4−2
=0



=
 2
0


4(4− 2)− 2(4− 2)− 1

2
(4− 2)2 

=
 2
0
(22 − 8+ 8)  =  2

3
3 − 42 + 82

0
= 16

3

21. The plane  +  = 1 intersects the -plane in the line  = 1, so

 =

(  ) | −1 ≤  ≤ 1, 2 ≤  ≤ 1, 0 ≤  ≤ 1− 


and

 =



 =

 1
−1
 1
2

 1−
0

   =
 1
−1
 1
2
(1− )  

=
 1
−1

 − 1

2
2
=1
=2

 =
 1
−1

1
2
− 2 + 1

2
4



=

1
2
− 1

3
3 + 1

10
5
1
−1 =

1
2
− 1

3
+ 1

10
+ 1

2
− 1

3
+ 1

10
= 8

15
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23. (a) The wedge can be described as the region

 =

(  ) | 2 + 2 ≤ 1, 0 ≤  ≤ 1, 0 ≤  ≤ 


=

(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ , 0 ≤  ≤


1− 2


So the integral expressing the volume of the wedge is


 =

 1
0

 
0

√1− 2

0
  .

(b) A CAS gives
 1
0

 
0

√1− 2

0
   = 

4
− 1

3
.

(Or use Formulas 30 and 87 from the Table of Integrals.)

25. Here (  ) = cos() and∆ = 1
2
· 1
2
· 1
2
= 1

8
, so the Midpoint Rule gives



(  )  ≈


=1


=1


=1



   


∆

= 1
8




1
4
 1
4
 1
4


+ 


1
4
 1
4
 3
4


+ 


1
4
 3
4
 1
4


+ 


1
4
 3
4
 3
4


+ 


3
4
 1
4
 1
4


+ 


3
4
 1
4
 3
4


+ 


3
4
 3
4
 1
4


+ 


3
4
 3
4
 3
4


= 1

8


cos 1

64
+ cos 3

64
+ cos 3

64
+ cos 9

64
+ cos 3

64
+ cos 9

64
+ cos 9

64
+ cos 27

64

 ≈ 0985
27.  = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ 1− , 0 ≤  ≤ 2− 2},
the solid bounded by the three coordinate planes and the planes

 = 1− ,  = 2− 2.

29.

If1,2,3 are the projections of  on the -, -, and -planes, then

1 =

( ) | −2 ≤  ≤ 2, 0 ≤  ≤ 4− 2


=

( ) | 0 ≤  ≤ 4, −√4−  ≤  ≤ √4− 


2 =


( ) | 0 ≤  ≤ 4, − 1

2

√
4−  ≤  ≤ 1

2

√
4− 


=

( ) | −1 ≤  ≤ 1, 0 ≤  ≤ 4− 42

3 =

( ) | 2 + 42 ≤ 4
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Therefore

 =

(  ) | −2 ≤  ≤ 2, 0 ≤  ≤ 4− 2, − 1

2


4− 2 −  ≤  ≤ 1

2


4− 2 − 


=

(  ) | 0 ≤  ≤ 4, −√4−  ≤  ≤ √4− , − 1

2


4− 2 −  ≤  ≤ 1

2


4− 2 − 


=

(  ) | −1 ≤  ≤ 1, 0 ≤  ≤ 4− 42, −


4−  − 42 ≤  ≤


4−  − 42


=

(  ) | 0 ≤  ≤ 4, − 1

2

√
4−  ≤  ≤ 1

2

√
4− , −


4−  − 42 ≤  ≤


4−  − 42


=

(  ) | −2 ≤  ≤ 2, − 1

2

√
4− 2 ≤  ≤ 1

2

√
4− 2, 0 ≤  ≤ 4− 2 − 42


=

(  ) | −1 ≤  ≤ 1, −√4− 42 ≤  ≤ √4− 42, 0 ≤  ≤ 4− 2 − 42


Then


(  )  =

 2
−2
 4−2
0

√4−2−2
−
√
4−2−2

(  )    =
 4
0

√4−
−√4−

√4−2−2
−
√
4−2−2

(  )   

=
 1
−1
 4−42
0

√4−−42

−
√
4−−42

(  )   =
 4
0

√4−2
−√4−2

√4−−42

−
√
4−−42

(  )   

=
 2
−2
√4−22
−
√
4−22

 4−2−42
0

(  )    =
 1
−1
√4−42

−
√
4−42

 4−2−42
0

(  )   

31.

If1,2, and3 are the projections of  on the -, -, and -planes, then

1 =

( ) | −2 ≤  ≤ 2 2 ≤  ≤ 4


=

( ) | 0 ≤  ≤ 4−


 ≤  ≤




,

2 =

( ) | 0 ≤  ≤ 4 0 ≤  ≤ 2− 1

2


=

( ) | 0 ≤  ≤ 2 0 ≤  ≤ 4− 2


, and

3 =

( ) | −2 ≤  ≤ 2 0 ≤  ≤ 2− 1

2
2

=

( ) | 0 ≤  ≤ 2−√4− 2 ≤  ≤ √4− 2
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Therefore  =

(  ) | −2 ≤  ≤ 2, 2 ≤  ≤ 4, 0 ≤  ≤ 2− 1

2



=

(  ) | 0 ≤  ≤ 4, −


 ≤  ≤


, 0 ≤  ≤ 2− 1

2



=

(  ) | 0 ≤  ≤ 4, 0 ≤  ≤ 2− 1

2
, −


 ≤  ≤





=

(  ) | 0 ≤  ≤ 2, 0 ≤  ≤ 4− 2, −


 ≤  ≤





=

(  ) | −2 ≤  ≤ 2, 0 ≤  ≤ 2− 1

2
2, 2 ≤  ≤ 4− 2


=

(  ) | 0 ≤  ≤ 2, −√4− 2 ≤  ≤ √4− 2, 2 ≤  ≤ 4− 2


Then



(  )  =

 2
−2
 4
2

 2−2
0

(  )    =
 4
0

√
−√

 2−2
0

(  )   

=
 4
0

 2−2
0

√
−√ (  )   =

 2
0

 4−2
0

√
−√ (  )  

=
 2
−2
 2− 22

0

 4−2
2

(  )    =
 2
0

√4−2
−√4−2

 4−2
2

(  )   

33.

The diagrams show the projections

of  on the -, -, and -planes.

Therefore

 1
0

 1√


 1− 

0
(  )   =

 1
0

 2
0

 1−
0

(  )   =
 1
0

 1−
0

 2
0

(  )   

=
 1
0

 1−
0

 2
0

(  )   =
 1
0

 1−√
0

 1−√


(  )   

=
 1
0

 (1−)2
0

 1−√


(  )   

35.

 1
0

 1


 
0
(  )    =



(  )  where  = {(  ) | 0 ≤  ≤ ,  ≤  ≤ 1, 0 ≤  ≤ 1}.

If1,2, and3 are the projections of  on the -, - and -planes then

1 = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1} = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ },

2 = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ } = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1}, and

3 = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ } = {( ) | 0 ≤  ≤ 1,  ≤  ≤ 1}.
[continued]
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Thus we also have

 = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ , 0 ≤  ≤ } = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ ,  ≤  ≤ 1}
= {(  ) | 0 ≤  ≤ 1,  ≤  ≤ 1,  ≤  ≤ 1} = {(  ) | 0 ≤  ≤ 1, 0 ≤  ≤ ,  ≤  ≤ }
= {(  ) | 0 ≤  ≤ 1,  ≤  ≤ 1,  ≤  ≤ } .

Then  1
0

 1


 
0
(  )    =

 1
0

 
0

 
0
(  )    =

 1
0

 
0

 1

(  )   

=
 1
0

 1


 1

(  )    =

 1
0

 
0

 

(  )   

=
 1
0

 1


 

(  )  

37. The region  is the solid bounded by a circular cylinder of radius 2 with axis the -axis for −2 ≤  ≤ 2. We can write

(4 + 522)  =



4  +



522  , but (  ) = 522 is an odd function with

respect to . Since  is symmetrical about the -plane, we have



522  = 0. Thus


(4 + 522)  =



4  = 4 ·  () = 4 · (2)2(4) = 64.

39.  =



(  )  =

 1
0

√
0

 1++
0

2    =
 1
0

√
0

2(1 + + )  

=
 1
0


2 + 2 + 2

=√
=0

 =
 1
0


2
√
+ 232 + 


 =


4
3
32 + 4

5
52 + 1

2
2
1
0
= 79

30

 =



(  )  =

 1
0

√
0

 1++
0

2   =
 1
0

√
0

2(1 + + )  

=
 1
0


2 + 22 + 2

=√
=0

 =
 1
0
(232 + 252 + 2)  =


4
5
52 + 4

7
72 + 1

3
3
1
0
= 179

105

 =



(  )  =

 1
0

√
0

 1++
0

2    =
 1
0

√
0

2(1 + + )  

=
 1
0


2 + 2 + 2

3
3
=√
=0

 =
 1
0


+ 2 + 2

3
32


 =


1
2
2 + 1

3
3 + 4

15
52

1
0
= 11

10

 =



(  )  =

 1
0

√
0

 1++
0

2    =
 1
0

√
0


2
=1++
=0

  =
 1
0

√
0

(1 + + )
2
 

=
 1
0

√
0
(1 + 2+ 2 + 2 + 2 + 2)   =

 1
0


 + 2 + 2 + 2 + 2 + 1

3
3
=√
=0



=
 1
0

√
+ 7

3
32 + + 2 + 52


 =


2
3
32 + 14

15
52 + 1

2
2 + 1

3
3 + 2

7
72

1
0
= 571

210

Thus the mass is 79
30
and the center of mass is (  ) =















=


358

553

33

79

571

553


.

41.  =
 
0

 
0

 
0
(2 + 2 + 2)   =

 
0

 
0


1
3
3 + 2 + 2

=
=0

  =
 
0

 
0


1
3
3 + 2 + 2


 

=
 
0


1
3
3 + 1

3
3 + 2

=
=0

 =
 
0


2
3
4 + 22


 =


2
3
4 + 1

3
23


0
= 2

3
5 + 1

3
5 = 5

 =
 
0

 
0

 
0


3 + (2 + 2)


  =

 
0

 
0


1
4
4 + 1

2
2(2 + 2)


 

=
 
0


1
4
5 + 1

6
5 + 1

2
32


 = 1

4
6 + 1

3
6 = 7

12
6 = = by symmetry of  and (  )

Hence (  ) =

7
12
 7

12
 7

12


.
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43.  =
 
0

 
0

 
0
(2 + 2)    = 

 
0

 
0


2 + 1

3
3

  = 

 
0

2
3
4  = 2

3
5.

By symmetry,  =  =  =
2
3
5.

45.  =



(2 + 2) (  )  =


2+2≤2

 
0
(2 + 2) 


 =


2+2≤2

(2 + 2)

= 
 2
0

 
0
(2)    = 

 2
0


 
0
3  = (2)


1
4
4

0
= 2 · 1

4
4 = 1

2
4

47. (a)  =
 1
−1
 1
2

 1−
0


2 + 2   

(b) (  ) where  = 1


 1
−1
 1
2

 1−
0



2 + 2   ,  = 1



 1
−1
 1
2

 1−
0



2 + 2   , and

 = 1


 1
−1
 1
2

 1−
0



2 + 2   .

(c)  =
 1
−1
 1
2

 1−
0

(2 + 2)

2 + 2    =

 1
−1
 1
2

 1−
0

(2 + 2)32   

49. (a)  =
 1
0

√1−2
0

 
0
(1 + +  + )    = 3

32
+ 11

24

(b) (  ) =


−1

 1
0

√1−2
0

 
0
(1 + +  + )   

−1
 1
0

√1−2
0

 
0
(1 + +  + )   

−1
 1
0

√1−2
0

 
0
(1 + +  + )   



=


28

9 + 44

30 + 128

45 + 220

45 + 208

135 + 660



(c)  =
 1

0

 √1−2

0

 

0

(
2
+ 

2
)(1 + +  + )    =

68 + 15

240

51. (a) (  ) is a joint density function, so we know


R3 (  )  = 1. Here we have
R3 (  )  =

∞
−∞

∞
−∞

∞
−∞ (  )    =

 2
0

 2
0

 2
0
   

= 
 2
0


 2
0
 

 2
0
  = 


1
2
2
2
0


1
2
2
2
0


1
2
2
2
0
= 8

Then we must have 8 = 1 ⇒  = 1
8
.

(b)  ( ≤ 1  ≤ 1  ≤ 1) =  1−∞  1−∞  1−∞ (  )    =
 1
0

 1
0

 1
0

1
8
   

= 1
8

 1
0


 1
0
 

 1
0
  = 1

8


1
2
2
1
0


1
2
2
1
0


1
2
2
1
0
= 1

8


1
2

3
= 1

64

(c)  ( +  + ≤ 1) =  (() ∈ ) where  is the solid region in the first octant bounded by the coordinate planes

and the plane +  +  = 1. The plane +  +  = 1 meets the -plane in the line +  = 1, so we have

 ( +  +  ≤ 1) = 

(  )  =

 1
0

 1−
0

 1−−
0

1
8
   

= 1
8

 1
0

 1−
0



1
2
2
=1−−
=0

  = 1
16

 1
0

 1−
0

(1− − )2  

= 1
16

 1
0

 1−
0

[(3 − 22 + ) + (22 − 2)2 + 3]  

= 1
16

 1
0


(3 − 22 + ) 1

2
2 + (22 − 2) 1

3
3 + 


1
4
4
=1−
=0



= 1
192

 1
0
(− 42 + 63 − 44 + 5)  = 1

192


1
30


= 1

5760
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53.  () = 3 ⇒ ave =
1

3

 

0

 

0

 

0

   =
1

3

 

0



 

0

 

 

0

 

=
1

3


2

2


0


2

2


0


2

2


0

=
1

3
2

2

2

2

2

2
=

3

8

55. (a) The triple integral will attain its maximum when the integrand 1− 2 − 22 − 32 is positive in the region  and negative

everywhere else. For if  contains some region  where the integrand is negative, the integral could be increased by

excluding  from , and if  fails to contain some part  of the region where the integrand is positive, the integral could

be increased by including in . So we require that 2 + 22 + 32 ≤ 1. This describes the region bounded by the

ellipsoid 2 + 22 + 32 = 1.

(b) The maximum value of



(1− 2 − 22 − 32)  occurs when  is the solid region bounded by the ellipsoid

2 + 22 + 32 = 1. The projection of  on the -plane is the planar region bounded by the ellipse 2 + 22 = 1, so

=

(  ) | −1 ≤  ≤ 1−


1
2
(1− 2) ≤  ≤


1
2
(1− 2)−


1
3
(1− 2 − 22) ≤  ≤


1
3
(1− 2 − 22)


and



(1− 
2 − 22 − 32)  =

 1

−1

 
1
2 (1−2)

−


1
2 (1−2)

 
1
3 (1−2−22)

−


1
3 (1−2−22)

(1− 
2 − 22 − 32)    = 4

√
6

45


using a CAS.

15.8 Triple Integrals in Cylindrical Coordinates

1. (a) From Equations 1,  =  cos  = 4cos


3
= 4 · 1

2
= 2,

 =  sin  = 4 sin


3
= 4 ·

√
3
2
= 2
√
3,  = −2, so the point is


2 2
√
3−2 in rectangular coordinates.

(b)  = 2cos
−

2


= 0,  = 2 sin

−
2


= −2,

and  = 1, so the point is (0−2 1) in rectangular coordinates.
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3. (a) From Equations 2 we have 2 = (−1)2 + 12 = 2 so  = √2; tan  = 1
−1 = −1 and the point (−1 1 ) is in the second

quadrant of the -plane, so  = 3
4
+ 2;  = 1. Thus, one set of cylindrical coordinates is

√
2 3

4
 1

.

(b) 2 = (−2)2 + (2√3)2 = 16 so  = 4; tan  = 2
√
3

−2 = −
√
3 and the point

−2 2√3  is in the second quadrant of the
-plane, so  = 2

3
+ 2;  = 3. Thus, one set of cylindrical coordinates is


4 2

3
 3

.

5. Since  = 
4
but  and  may vary, the surface is a vertical half-plane including the -axis and intersecting the -plane in the

half-line  = ,  ≥ 0.

7.  = 4− 2 = 4− (2 + 2) or 4− 2 − 2, so the surface is a circular paraboloid with vertex (0 0 4), axis the -axis, and

opening downward.

9. (a) Substituting 2 + 2 = 2 and  =  cos , the equation 2 − + 2 + 2 = 1 becomes 2 −  cos  + 2 = 1 or

2 = 1 +  cos  − 2.

(b) Substituting  =  cos  and  =  sin , the equation  = 2 − 2 becomes

 = ( cos )2 − ( sin )2 = 2(cos2  − sin2 ) or  = 2 cos 2.

11. 0 ≤  ≤ 2 and 0 ≤  ≤ 1 describe a solid circular cylinder with
radius 2, axis the -axis, and height 1, but −2 ≤  ≤ 2 restricts

the solid to the first and fourth quadrants of the -plane, so we have

a half-cylinder.

13. We can position the cylindrical shell vertically so that its axis coincides with the -axis and its base lies in the -plane. If we

use centimeters as the unit of measurement, then cylindrical coordinates conveniently describe the shell as 6 ≤  ≤ 7,
0 ≤  ≤ 2, 0 ≤  ≤ 20.

15. The region of integration is given in cylindrical coordinates by

 =

(  ) | −2 ≤  ≤ 2, 0 ≤  ≤ 2, 0 ≤  ≤ 2


. This

represents the solid region above quadrants I and IV of the -plane enclosed

by the circular cylinder  = 2, bounded above by the circular paraboloid

 = 2 ( = 2 + 2), and bounded below by the -plane ( = 0). 2
−2

 2
0

 2
0

    =
 2
−2

 2
0



=2
=0

  =
 2
−2

 2
0
3  

=
 2
−2 

 2
0
3  =



2
−2


1
4
4
2
0

=  (4− 0) = 4
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17. In cylindrical coordinates,  is given by {(  ) | 0 ≤  ≤ 2 0 ≤  ≤ 4−5 ≤  ≤ 4}. So





2 + 2  =

 2
0

 4
0

 4
−5
√
2     =

 2
0


 4
0
2 

 4
−5 

=


2
0


1
3
3
4
0



4
−5 = (2)


64
3


(9) = 384

19. The paraboloid  = 4− 2 − 2 = 4− 2 intersects the -plane in the circle 2 + 2 = 4 or 2 = 4 ⇒  = 2, so in

cylindrical coordinates,  is given by

(  )

 0 ≤  ≤ 2 0 ≤  ≤ 2 0 ≤  ≤ 4− 2

. Thus



(+  + )  =

 2
0

 2
0

 4−2
0

( cos  +  sin  + )     =
 2
0

 2
0


2(cos  + sin ) + 1

2
2
=4−2
=0

 

=
 2
0

 2
0


(42 − 4)(cos  + sin ) + 1

2
(4− 2)2


 

=
 2
0


4
3
3 − 1

5
5

(cos  + sin )− 1

12
(4− 2)3

=2
=0



=
 2
0


64
15
(cos  + sin ) + 16

3


 =


64
15
(sin  − cos ) + 16

3

2
0

= 64
15
(1− 0) + 16

3
· 
2
− 64

15
(0− 1)− 0 = 8

3
 + 128

15

21. In cylindrical coordinates,  is bounded by the cylinder  = 1, the plane  = 0, and the cone  = 2. So

 = {(  ) | 0 ≤  ≤ 2 0 ≤  ≤ 1 0 ≤  ≤ 2} and

2  =

 2
0

 1
0

 2
0

2 cos2      =
 2
0

 1
0


3 cos2  

=2
=0

  =
 2
0

 1
0
24 cos2   

=
 2
0


2
5
5 cos2 

=1
=0

 = 2
5

 2
0
cos2   = 2

5

 2
0

1
2
(1 + cos 2)  = 1

5


 + 1

2
sin 2

2
0
= 2

5

23. In cylindrical coordinates,  is bounded below by the cone  =  and above by the sphere 2 + 2 = 2 or  =
√
2− 2. The

cone and the sphere intersect when 22 = 2 ⇒  = 1, so  =

(  ) | 0 ≤  ≤ 2 0 ≤  ≤ 1  ≤  ≤ √2− 2


and the volume is


 =

 2
0

 1
0

√2−2


    =
 2
0

 1
0
[]

=
√
2−2

=   =
 2
0

 1
0



√
2− 2 − 2


 

=
 2
0


 1
0



√
2− 2 − 2


 = 2


− 1
3
(2− 2)32 − 1

3
3
1
0

= 2
− 1

3


(1 + 1− 232) = − 2

3


2− 2√2 = 4

3

√
2− 1

25. (a) The paraboloids intersect when 2 + 2 = 36− 32 − 32 ⇒ 2 + 2 = 9, so the region of integration

is  =

( ) | 2 + 2 ≤ 9. Then, in cylindrical coordinates,

 =

(  ) | 2 ≤  ≤ 36− 32, 0 ≤  ≤ 3, 0 ≤  ≤ 2 and

 =
 2
0

 3
0

 36− 32
2

    =
 2
0

 3
0


36 − 43   =  2

0


182 − 4

=3
=0

 =
 2
0
81  = 162.

(b) For constant density, =  = 162 from part (a). Since the region is homogeneous and symmetric,

 = = 0 and
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 =
 2
0

 3
0

 36−32
2

()     = 
 2
0

 3
0


1
2
2
=36−32
=2

 

= 
2

 2
0

 3
0
((36− 32)2 − 4)   = 

2

 2
0


 3
0
(85 − 2163 + 1296) 

= 
2
(2)


8
6
6 − 216

4
4 + 1296

2
2
3
0
= (2430) = 2430

Thus (  ) =















=

0 0 2430

162


= (0 0 15).

27. The paraboloid  = 42 + 42 intersects the plane  =  when  = 42 + 42 or 2 + 2 = 1
4
. So, in cylindrical

coordinates,  =

(  ) | 0 ≤  ≤ 1

2

√
 0 ≤  ≤ 2 42 ≤  ≤ 


. Thus

=

 2

0

 √
2

0

 

42
    = 

 2

0

 √
2

0

( − 43)  

= 

 2

0


1
2


2 − 
4
=√2
=0

 = 

 2

0

1
16

2
 = 1

8

2


Since the region is homogeneous and symmetric, = = 0 and

 =

 2

0

 √
2

0

 

42
    = 

 2

0

 √
2

0


1
2

2
 − 85  

= 

 2

0


1
4

2

2 − 4

3

6
=√2
=0

 = 

 2

0

1
24

3
 = 1

12

3


Hence (  ) =

0 0 2

3


.

29. The region of integration is the region above the cone  =

2 + 2, or  = , and below the plane  = 2. Also, we have

−2 ≤  ≤ 2 with −

4− 2 ≤  ≤


4− 2 which describes a circle of radius 2 in the -plane centered at (0 0). Thus, 2

−2

 √4−2

−
√
4−2

 2

√
2+2

    =

 2

0

 2

0

 2



( cos )      =

 2

0

 2

0

 2




2
(cos )    

=
 2
0

 2
0
2 (cos )


1
2
2
=2
=

  = 1
2

 2
0

 2
0
2 (cos )


4− 2


 

= 1
2

 2
0
cos  

 2
0


42 − 4


 = 1

2
[sin ]

2

0


4
3
3 − 1

5
5
2
0
= 0

31. (a) The mountain comprises a solid conical region . The work done in lifting a small volume of material∆ with density

( ) to a height ( ) above sea level is ( )( )∆ . Summing over the whole mountain we get

 =



( )( )  .

(b) Here  is a solid right circular cone with radius  = 62,000 ft, height = 12,400 ft,

and density ( ) = 200 lbft3 at all points  in . We use cylindrical coordinates:

 =
 2
0


0

 (1−)
0

 · 200    = 2 
0
200


1
2
2
=(1−)
=0



= 400

 

0


2

2


1− 



2
 = 200

2

 

0


 − 22


+

3

2




= 2002


2

2
− 23

3
+

4

42


0

= 2002


2

2
− 22

3
+

2

4


= 50

3
22 = 50

3
(62,000)2(12,400)2 ≈ 31× 1019 ft-lb




=

 − 


= 1− 
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15.9 Triple Integrals in Spherical Coordinates

1. (a) From Equations 1,  =  sin cos  = 6 sin 
6
cos 

3
= 6 · 1

2
· 1
2
= 3

2
,

 =  sin sin  = 6 sin 
6
sin 

3
= 6 · 1

2
·
√
3
2
= 3

√
3

2
, and

 =  cos = 6 cos 
6
= 6 ·

√
3
2
= 3
√
3, so the point is


3
2
 3
√
3

2
 3
√
3

in

rectangular coordinates.

(b)  = 3 sin 3
4
cos 

2
= 3 ·

√
2
2
· 0 = 0,

 = 3 sin 3
4
sin 

2
= 3 ·

√
2
2
· 1 = 3

√
2

2
, and

 = 3 cos 3
4
= 3


−
√
2
2


= − 3

√
2

2
, so the point is


0 3

√
2

2
− 3

√
2

2


in

rectangular coordinates.

3. (a) From Equations 1 and 2,  =

2 + 2 + 2 =


02 + (−2)2 + 02 = 2, cos = 


=
0

2
= 0 ⇒  =



2
, and

cos  =


 sin
=

0

2 sin(2)
= 0 ⇒  =

3

2
[since   0]. Thus spherical coordinates are


2
3

2



2


.

(b)  =
√
1 + 1 + 2 = 2, cos =




=
−√2
2

⇒  =
3

4
, and

cos  =


 sin
=

−1
2 sin(34)

=
−1

2
√
22
 = − 1√

2
⇒  =

3

4
[since   0]. Thus spherical coordinates

are


2
3

4

3

4


.

5. Since  = 
3
, the surface is the top half of the right circular cone with vertex at the origin and axis the positive -axis.

7.  = sin  sin ⇒ 2 =  sin  sin ⇔ 2 + 2 + 2 =  ⇔ 2 + 2 −  + 1
4
+ 2 = 1

4
⇔

2 + ( − 1
2
)2 + 2 = 1

4
. Therefore, the surface is a sphere of radius 1

2
centered at


0 1

2
 0

.

9. (a)  =  sin cos ,  =  sin sin , and  =  cos, so the equation 2 = 2 + 2 becomes

( cos)
2
= ( sin cos )

2
+ ( sin sin )

2 or 2 cos2  = 2 sin2 . If  6= 0, this becomes cos2  = sin2 . ( = 0

corresponds to the origin which is included in the surface.) There are many equivalent equations in spherical coordinates,

such as tan2  = 1, 2 cos2  = 1, cos 2 = 0, or even  = 
4
,  = 3

4
.

(b) 2 + 2 = 9 ⇔ ( sin cos )
2
+ ( cos)

2
= 9 ⇔ 2 sin2  cos2  + 2 cos2  = 9 or

2

sin2  cos2  + cos2 


= 9.
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11. 2 ≤  ≤ 4 represents the solid region between and including the spheres of
radii 2 and 4, centered at the origin. 0 ≤  ≤ 

3
restricts the solid to that

portion on or above the cone  = 
3
, and 0 ≤  ≤  further restricts the

solid to that portion on or to the right of the -plane.

13.  ≤ 1 represents the solid sphere of radius 1 centered at the origin.
3
4
≤  ≤  restricts the solid to that portion on or below the cone  = 3

4
.

15.  ≥

2 + 2 because the solid lies above the cone. Squaring both sides of this inequality gives 2 ≥ 2 + 2 ⇒

22 ≥ 2 + 2 + 2 = 2 ⇒ 2 = 2 cos2  ≥ 1
2
2 ⇒ cos2  ≥ 1

2
. The cone opens upward so that the inequality is

cos ≥ 1√
2
, or equivalently 0 ≤  ≤ 

4
. In spherical coordinates the sphere  = 2 + 2 + 2 is  cos = 2 ⇒

 = cos. 0 ≤  ≤ cos because the solid lies below the sphere. The solid can therefore be described as the region in

spherical coordinates satisfying 0 ≤  ≤ cos, 0 ≤  ≤ 
4
.

17. The region of integration is given in spherical coordinates by

 = {(  ) | 0 ≤  ≤ 3 0 ≤  ≤ 2 0 ≤  ≤ 6}. This represents the solid
region in the first octant bounded above by the sphere  = 3 and below by the cone

 = 6. 6
0

 2
0

 3
0
2 sin   =

 6
0

sin
 2
0


 3
0
2 

=
− cos6

0



2
0


1
3
3
3
0

=


1−

√
3

2


2


(9) =

9

4


2−√3 

19. The solid  is most conveniently described if we use cylindrical coordinates:

 =

(  ) | 0 ≤  ≤ 

2
 0 ≤  ≤ 3 0 ≤  ≤ 2. Then


(  )  =

 2
0

 3
0

 2
0
( cos   sin  )    .
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21. In spherical coordinates,  is represented by {(  ) | 0 ≤  ≤ 5 0 ≤  ≤ 2 0 ≤  ≤  }. Thus

(2 + 2 + 2)2  =

 
0

 2
0

 5
0
(2)22 sin   =

 
0
sin

 2
0


 5
0
6 

=
− cos

0



2
0


1
7
7
5
0
= (2)(2)


78,125
7


= 312,500

7
 ≈ 140,2497

23. In spherical coordinates,  is represented by {(  ) | 2 ≤  ≤ 3 0 ≤  ≤ 2 0 ≤  ≤  } and

2 + 2 = 2 sin2  cos2  + 2 sin2  sin2  = 2 sin2 

cos2  + sin2 


= 2 sin2 . Thus


(2 + 2)  =

 
0

 2
0

 3
2
(2 sin2 ) 2 sin   =

 
0
sin3 

 2
0


 3
2
4 

=
 
0
(1− cos2 ) sin   2

0


1
5
5
3
2
=
− cos+ 1

3
cos3 


0
(2) · 1

5
(243− 32)

=

1− 1

3
+ 1− 1

3


(2)


211
5


= 1688

15

25. In spherical coordinates,  is represented by

(  )

 0 ≤  ≤ 1 0 ≤  ≤ 
2
 0 ≤  ≤ 

2


. Thus




2+2+2  =
 2
0

 2
0

 1
0
( sin cos )

2

2 sin  =
 2
0

sin2 
 2
0

cos  
 1
0
3

2



=
 2
0

1
2
(1− cos 2)   2

0
cos  


1
2
2

2
1
0
−  1

0


2





integrate by parts with  = 2,  = 

2




=

1
2
− 1

4
sin 2

2
0

[sin ]
2

0


1
2
2

2 − 1
2


2
1
0
=


4
− 0 (1− 0) 0 + 1

2


= 

8

27. The solid region is given by  =

(  ) | 0 ≤  ≤  0 ≤  ≤ 2 

6
≤  ≤ 

3


and its volume is

 =



 =

 3
6

 2
0

 
0
2 sin   =

 3
6

sin
 2
0


 
0
2 

= [− cos]3
6

[]
2

0


1
3
3

0
=

− 1
2
+
√
3
2


(2)


1
3
3

=
√
3−1
3

3

29. (a) Since  = 4cos implies 2 = 4 cos, the equation is that of a sphere of radius 2 with center at (0 0 2). Thus

 =
 2
0

 3
0

 4 cos
0

2 sin =
 2
0

 3
0


1
3
3
=4 cos
=0

sin =
 2
0

 3
0


64
3
cos3


sin

=
 2
0

−16
3
cos4

=3
=0

 =
 2
0
− 16

3


1
16
− 1  = 5

2
0
= 10

(b) By the symmetry of the problem = = 0. Then

 =
 2
0

 3
0

 4 cos
0

3 cos sin  =
 2
0

 3
0

cos sin

64 cos4




=
 2
0
64
− 1

6
cos6

=3
=0

 =
 2
0

21
2
 = 21

Hence (  ) = (0 0 21).

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



SECTION 15.9 TRIPLE INTEGRALS IN SPHERICAL COORDINATES ¤ 283

31. (a) By the symmetry of the region, = 0 and = 0. Assuming constant density ,

 =



  = 



 = 

8
 (from Example 4). Then

 =



   = 

 2
0

 4
0

 cos
0

( cos) 2 sin = 
 2
0

 4
0

sin cos

1
4
4
=cos
=0



= 1
4

 2
0

 4
0

sin cos

cos4 


 = 1

4

 2
0


 4
0

cos5  sin

= 1
4



2
0

− 1
6
cos6 

4
0

= 1
4
(2)

− 1
6

 √
2
2

6
− 1

= − 

12

− 7

8


= 7

96


Thus the centroid is (  ) =















=


0 0

796

8


=

0 0 7

12


.

(b) As in Exercise 23, 2 + 2 = 2 sin2  and

 =



(2 + 2)  = 

 2
0

 4
0

 cos
0

(2 sin2 ) 2 sin  = 
 2
0

 4
0

sin3 

1
5
5
=cos
=0



= 1
5

 2
0

 4
0

sin3  cos5  = 1
5

 2
0


 4
0

cos5 

1− cos2  sin

= 1
5



2
0

−1
6
cos6 + 1

8
cos8 

4
0

= 1
5
(2)


−1
6

√
2
2

6
+ 1

8

√
2
2

8
+ 1

6
− 1

8


= 2

5


11
384


= 11

960


33. (a) The density function is (  ) = , a constant, and by the symmetry of the problem = = 0. Then

 =
 2
0

 2
0

 
0
3 sin cos  = 1

2
4

 2
0

sin cos = 1
8
4. But the mass is(volume of

the hemisphere) = 2
3
3, so the centroid is


0 0 3

8


.

(b) Place the center of the base at (0 0 0); the density function is (  ) = . By symmetry, the moments of inertia about

any two such diameters will be equal, so we just need to find :

 =
 2
0

 2
0

 
0
(2 sin) 2 (sin2  sin2  + cos2 )  

= 
 2
0

 2
0

(sin3  sin2  + sin cos2 )

1
5
5



= 1
5
5

 2
0


sin2 

− cos+ 1
3
cos3 


+
−1

3
cos3 

=2
=0

 = 1
5
5

 2
0


2
3
sin2  + 1

3




= 1
5
5


2
3


1
2
 − 1

4
sin 2


+ 1

3

2
0
= 1

5
5


2
3
( − 0) + 1

3
(2 − 0) = 4

15
5

35. In spherical coordinates  =

2 + 2 becomes cos = sin or  = 

4
. Then

 =
 2
0

 4
0

 1
0
2 sin =

 2
0


 4
0

sin
 1
0
2  = 2


−
√
2
2
+ 1


1
3


= 1

3


2−√2 ,

 =
 2
0

 4
0

 1
0
3 sin cos = 2

− 1
4
cos 2

4
0


1
4


= 

8
and by symmetry = = 0.

Hence (  ) =


0 0

3

8

2−√2 


.

37. In cylindrical coordinates the paraboloid is given by  = 2 and the plane by  = 2 sin  and they intersect in the circle

 = 2 sin . Then



  =

 
0

 2 sin 
0

 2 sin 
2

    = 5
6

[using a CAS].
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39. The region  of integration is the region above the cone  =

2 + 2 and below the sphere 2 + 2 + 2 = 2 in the first

octant. Because  is in the first octant we have 0 ≤  ≤ 
2
. The cone has equation  = 

4
(as in Example 4), so 0 ≤  ≤ 

4
,

and 0 ≤  ≤ √2. So the integral becomes 4
0

 2
0

√2
0
( sin cos ) ( sin sin ) 2 sin 

=
 4
0

sin3 
 2
0

sin  cos  
√2
0

4  =
 4

0


1− cos2  sin  1

2
sin2 

2
0


1
5
5
√2
0

=

1
3
cos3 − cos4

0
· 1
2
· 1
5

√
2
5
=
√

2
12
−
√
2
2
−  1

3
− 1 · 2√2

5
= 4

√
2−5
15

41. The region of integration is the solid sphere 2 + 2 + ( − 2)2 ≤ 4 or equivalently

2 sin2 + ( cos− 2)2 = 2 − 4 cos+ 4 ≤ 4 ⇒  ≤ 4 cos, so 0 ≤  ≤ 2, 0 ≤  ≤ 
2
, and

0 ≤  ≤ 4 cos. Also (2 + 2 + 2)32 = (2)32 = 3, so the integral becomes

 2
0

 2
0

 4 cos
0


3

2 sin =

 2
0

 2
0
sin


1
6
6
=4 cos
=0

  = 1
6

 2
0

 2
0
sin


4096 cos6 


 

= 1
6
(4096)

 2
0

cos6  sin
 2
0

 = 2048
3

− 1
7
cos7 

2
0



2
0

= 2048
3


1
7


(2) = 4096

21

43. In cylindrical coordinates, the equation of the cylinder is  = 3, 0 ≤  ≤ 10.
The hemisphere is the upper part of the sphere radius 3, center (0 0 10), equation

2 + ( − 10)2 = 32,  ≥ 10. In Maple, we can use the coords=cylindrical option
in a regular plot3d command. In Mathematica, we can use ParametricPlot3D.

45. If  is the solid enclosed by the surface  = 1 + 1
5
sin 6 sin 5, it can be described in spherical coordinates as

 =

(  ) | 0 ≤  ≤ 1 + 1

5
sin 6 sin 5 0 ≤  ≤ 2 0 ≤  ≤ 


. Its volume is given by

 () =



 =

 
0

 2
0

 1+ (sin 6 sin 5)5

0
2 sin  = 136

99
[using a CAS].

47. (a) From the diagram,  =  cot0 to  =
√
2 − 2,  = 0

to  =  sin0 (or use 
2 − 2 = 2 cot2 0). Thus

 =
 2
0

  sin0
0

√2−2
 cot0

   

= 2
  sin0
0



√
2 − 2 − 2 cot0




= 2
3


−(2 − 2)32 − 3 cot0

 sin0
0

= 2
3


− 2 − 2 sin2 0

32 − 3 sin3 0 cot0 + 3


= 2
3
3


1− cos3 0 + sin2 0 cos0 = 2

3
3(1− cos0)
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(b) The wedge in question is the shaded area rotated from  = 1 to  = 2.

Letting

 = volume of the region bounded by the sphere of radius 

and the cone with angle  ( = 1 to 2)

and letting  be the volume of the wedge, we have

 = (22 − 21)− (12 − 11)

= 1
3
(2 − 1)


32(1− cos2)− 32(1− cos1)− 31(1− cos2) + 31(1− cos1)


= 1

3
(2 − 1)


32 − 31


(1− cos2)−


32 − 31


(1− cos1)


= 1

3
(2 − 1)


32 − 31


(cos1 − cos2)


Or: Show that  =

 2

1

 2 sin2

1 sin1

  cot1

 cot2

   .

(c) By the Mean Value Theorem with () = 3 there exists some ̃ with 1 ≤ ̃ ≤ 2 such that

(2)− (1) =  0(̃)(2 − 1) or 
3
1 − 32 = 3̃

2∆. Similarly there exists  with 1 ≤ ̃ ≤ 2

such that cos2 − cos1 =

− sin ̃


∆. Substituting into the result from (b) gives

∆ = (̃2∆)(2 − 1)(sin ̃) ∆ = ̃2 sin ̃∆∆∆.

15.10 Change of Variables in Multiple Integrals

1.  = 5− ,  = + 3.

The Jacobian is
( )

( )
=

  

 

 =
 5 −11 3

 = 5(3)− (−1)(1) = 16.
3.  = − sin ,  =  cos .

( )

( )
=

  

 

 =
−

− sin  − cos 

 cos  − sin 

 = − sin2  − − cos2  = sin2  − cos2  or − cos 2

5.  = ,  = ,  = .

(  )

( )
=


  

  

  

 =

1 −2 0

0 1 −2

−2 0 1


=
1



 1 −2

0 1

 − − 

2

 0 −2

−2 1

+ 0
 0 1

−2 0


=
1




1


− 0

+



2


0− 

2


+ 0 =

1


− 1


= 0

7. The transformation maps the boundary of  to the boundary of the image , so we first look at side 1 in the -plane. 1 is

described by  = 0, 0 ≤  ≤ 3, so  = 2+ 3 = 2 and  = −  = . Eliminating , we have  = 2, 0 ≤  ≤ 6. 2 is

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



286 ¤ CHAPTER 15 MULTIPLE INTEGRALS

the line segment  = 3, 0 ≤  ≤ 2, so  = 6 + 3 and  = 3− . Then  = 3−  ⇒  = 6 + 3(3− ) = 15− 3,
6 ≤  ≤ 12. 3 is the line segment  = 2, 0 ≤  ≤ 3, so  = 2+ 6 and  = − 2, giving  =  + 2 ⇒  = 2 + 10,

6 ≤  ≤ 12. Finally, 4 is the segment  = 0, 0 ≤  ≤ 2, so  = 3 and  = − ⇒  = −3, 0 ≤  ≤ 6. The image of
set  is the region  shown in the -plane, a parallelogram bounded by these four segments.

9. 1 is the line segment  = , 0 ≤  ≤ 1, so  =  =  and  = 2 = 2. Since 0 ≤  ≤ 1, the image is the portion of the
parabola  = 2, 0 ≤  ≤ 1. 2 is the segment  = 1, 0 ≤  ≤ 1, thus  =  = 1 and  = 2, so 0 ≤  ≤ 1. The image is
the line segment  = 1, 0 ≤  ≤ 1. 3 is the segment  = 0, 0 ≤  ≤ 1, so  = 2 = 0 and  =  ⇒ 0 ≤  ≤ 1. The
image is the segment  = 0, 0 ≤  ≤ 1. Thus, the image of  is the region  in the first quadrant bounded by the parabola
 = 2, the -axis, and the line  = 1.

11.  is a parallelogram enclosed by the parallel lines  = 2− 1,  = 2+ 1 and the parallel lines  = 1− ,  = 3− . The

first pair of equations can be written as  − 2 = −1,  − 2 = 1. If we let  =  − 2 then these lines are mapped to the
vertical lines  = −1,  = 1 in the -plane. Similarly, the second pair of equations can be written as +  = 1, +  = 3,

and setting  = +  maps these lines to the horizontal lines  = 1,  = 3 in the -plane. Boundary curves are mapped to

boundary curves under a transformation, so here the equations  =  − 2,  = +  define a transformation −1 that

maps  in the -plane to the square  enclosed by the lines  = −1,  = 1,  = 1,  = 3 in the -plane. To find the
transformation  that maps  to  we solve  =  − 2,  = +  for , : Subtracting the first equation from the second

gives  −  = 3 ⇒  = 1
3
( − ) and adding twice the second equation to the first gives + 2 = 3 ⇒

 = 1
3
(+ 2). Thus one possible transformation  (there are many) is given by  = 1

3
( − ),  = 1

3
(+ 2).
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13.  is a portion of an annular region (see the figure) that is easily described in polar coordinates as

 =

( ) | 1 ≤  ≤ √2 0 ≤  ≤ 2


. If we converted a double integral over  to polar coordinates the resulting region

of integration is a rectangle (in the -plane), so we can create a transformation  here by letting  play the role of  and  the

role of . Thus  is defined by  =  cos ,  =  sin  and  maps the rectangle  =

( ) | 1 ≤  ≤ √2 0 ≤  ≤ 2


in the -plane to  in the -plane.

15.
( )

( )
=

 2 1

1 2

 = 3 and − 3 = (2+ )− 3(+ 2) = −− 5. To find the region  in the -plane that

corresponds to we first find the corresponding boundary under the given transformation. The line through (0 0) and (2 1) is

 = 1
2
 which is the image of + 2 = 1

2
(2+ ) ⇒  = 0; the line through (2 1) and (1 2) is +  = 3 which is the

image of (2+ ) + (+ 2) = 3 ⇒ +  = 1; the line through (0 0) and (1 2) is  = 2 which is the image of

+ 2 = 2(2+ ) ⇒  = 0. Thus  is the triangle 0 ≤  ≤ 1− , 0 ≤  ≤ 1 in the -plane and

(− 3)  =

 1
0

 1−
0

(−− 5) |3|   = −3  1
0


 + 5

2
2
=1−
=0



= −3  1
0


− 2 + 5

2
(1− )2


 = −3 1

2
2 − 1

3
3 − 5

6
(1− )3

1
0
= −3 1

2
− 1

3
+ 5

6


= −3

17.
( )

( )
=

2 00 3
 = 6, 2 = 42 and the planar ellipse 92 + 42 ≤ 36 is the image of the disk 2 + 2 ≤ 1. Thus



2 =


2+2≤1

(42)(6)  =
 2
0

 1
0
(242 cos2 )    = 24

 2
0
cos2  

 1
0
3 

= 24

1
2
+ 1

4
sin 2

2
0


1
4
4
1
0
= 24()


1
4


= 6

19.
( )

( )
=

 1 −2

0 1

 = 1


,  = ,  =  is the image of the parabola 2 = ,  = 3 is the image of the parabola

2 = 3, and the hyperbolas  = 1,  = 3 are the images of the lines  = 1 and  = 3 respectively. Thus


  =

 3

1

 √
3

√





1




  =

 3

1



ln
√
3− ln√


 =

 3
1
 ln

√
3  = 4 ln

√
3 = 2 ln 3.

21. (a)
(  )

(  )
=


 0 0

0  0

0 0 

 =  and since  =



,  =




,  =




the solid enclosed by the ellipsoid is the image of the

ball 2 + 2 +2 ≤ 1. So

 =


2+2+2≤ 1

    = ()(volume of the ball) = 4
3
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(b) If we approximate the surface of the earth by the ellipsoid
2

63782
+

2

63782
+

2

63562
= 1, then we can estimate

the volume of the earth by finding the volume of the solid  enclosed by the ellipsoid. From part (a), this is

 = 4

3
(6378)(6378)(6356) ≈ 1083× 1012 km3.

(c) The moment of intertia about the -axis is  =





2 + 2


(  )  , where  is the solid enclosed by

2

2
+

2

2
+

2

2
= 1. As in part (a), we use the transformation  = ,  = ,  = , so

 (  )( )

 =  and

 =





2 + 2


  =


2+2+2≤ 1

(22 + 22)()  

= 
 
0

 2
0

 1
0
(22 sin2  cos2  + 22 sin2  sin2 ) 2 sin  

= 

2
 
0

 2
0

 1
0
(2 sin2  cos2 ) 2 sin  + 2

 
0

 2
0

 1
0
(2 sin2  sin2 ) 2 sin 


= 3

 
0
sin3 

 2
0
cos2  

 1
0
4 + 3

 
0
sin3 

 2
0
sin2  

 1
0
4 

= 3

1
3
cos3 − cos

0


1
2
 + 1

4
sin 2

2
0


1
5
5
1
0
+ 3


1
3
cos3 − cos

0


1
2
 − 1

4
sin 2

2
0


1
5
5
1
0

= 3

4
3


()


1
5


+ 3


4
3


()


1
5


= 4

15


2 + 2




23. Letting  = − 2 and  = 3− , we have  = 1
5
(2 − ) and  = 1

5
( − 3). Then ( )

( )
=

−15 25

−35 15

 = 1

5

and  is the image of the rectangle enclosed by the lines  = 0,  = 4,  = 1, and  = 8. Thus




− 2
3− 

 =

 4

0

 8

1





15
   =

1

5

 4

0



 8

1

1


 = 1

5


1
2

2
4
0


ln || 8

1
= 8

5
ln 8.

25. Letting  =  − ,  =  + , we have  = 1
2
(+ ),  = 1

2
( − ). Then

( )

( )
=

−12 12

12 12

 = −12 and  is the
image of the trapezoidal region with vertices (−1 1), (−2 2), (2 2), and (1 1). Thus



cos
 − 

 + 
 =

 2

1

 

−
cos





−12
  = 1

2

 2

1


 sin





= 

=−
 =

1

2

 2

1

2 sin(1)  = 3
2
sin 1

27. Let  = +  and  = −+ . Then +  = 2 ⇒  = 1
2
(+ ) and −  = 2 ⇒  = 1

2
(− ).

( )

( )
=

 12 −12
12 12

 = 1

2
. Now || = |+ | ≤ ||+ || ≤ 1 ⇒ −1 ≤  ≤ 1, and

|| = |−+ | ≤ ||+ || ≤ 1 ⇒ −1 ≤  ≤ 1.  is the image of the square

region with vertices (1 1), (1−1), (−1−1), and (−1 1).

So



+  = 1

2

 1
−1
 1
−1 

  = 1
2



1
−1


1
−1 = − −1.
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15 Review

1. (a) A double Riemann sum of  is

=1


=1



∗  

∗



∆, where∆ is the area of each subrectangle and


∗  

∗



is a

sample point in each subrectangle. If ( ) ≥ 0, this sum represents an approximation to the volume of the solid that lies
above the rectangle  and below the graph of  .

(b)



( )  = lim

→∞


=1


=1



∗  

∗



∆

(c) If ( ) ≥ 0, 

( )  represents the volume of the solid that lies above the rectangle and below the surface

 = ( ). If  takes on both positive and negative values,



( )  is the difference of the volume above  but

below the surface  = ( ) and the volume below  but above the surface  = ( ).

(d) We usually evaluate



( )  as an iterated integral according to Fubini’s Theorem (see Theorem 15.2.4).

(e) The Midpoint Rule for Double Integrals says that we approximate the double integral



( )  by the double

Riemann sum

=1


=1



 


∆ where the sample points


 


are the centers of the subrectangles.

(f ) ave =
1

 ()




( )  where  () is the area of .

2. (a) See (1) and (2) and the accompanying discussion in Section 15.3.

(b) See (3) and the accompanying discussion in Section 15.3.

(c) See (5) and the preceding discussion in Section 15.3.

(d) See (6)–(11) in Section 15.3.

3. We may want to change from rectangular to polar coordinates in a double integral if the region of integration is more easily

described in polar coordinates. To accomplish this, we use



( )  =

 


 

( cos   sin )    where  is

given by 0 ≤  ≤  ≤ ,  ≤  ≤ .

4. (a)  =



( ) 

(b)  =



( ) , =



( ) 

(c) The center of mass is ( ) where  =



and  =




.

(d)  =



2( ) ,  =



2( ) , 0 =



(2 + 2)( ) 

5. (a)  ( ≤  ≤   ≤  ≤ ) =
 


 

( )  

(b) ( ) ≥ 0 and R2 ( )  = 1.
(c) The expected value of is 1 =


R2 ( ) ; the expected value of  is 2 =


R2 ( ) .
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6. () =





[( )]2 + [( )]2 + 1 

7. (a)



(  )  = lim

→∞


=1


=1


=1



∗ 

∗
 

∗



∆

(b) We usually evaluate



(  )  as an iterated integral according to Fubini’s Theorem for Triple Integrals

(see Theorem 15.7.4).

(c) See the paragraph following Example 15.7.1.

(d) See (5) and (6) and the accompanying discussion in Section 15.7.

(e) See (10) and the accompanying discussion in Section 15.7.

(f ) See (11) and the preceding discussion in Section 15.7.

8. (a)  =



(  ) 

(b)  =



(  )  ,  =



(  )  ,  =



(  )  .

(c) The center of mass is (  ) where  =



,  =




, and  =




.

(d)  =



(2 + 2)(  )  ,  =



(2 + 2)(  )  ,  =



(2 + 2)(  )  .

9. (a) See Formula 15.8.4 and the accompanying discussion.

(b) See Formula 15.9.3 and the accompanying discussion.

(c) We may want to change from rectangular to cylindrical or spherical coordinates in a triple integral if the region  of

integration is more easily described in cylindrical or spherical coordinates or if the triple integral is easier to evaluate using

cylindrical or spherical coordinates.

10. (a)
 ( )

 ( )
=

  

 

 = 






− 







(b) See (9) and the accompanying discussion in Section 15.10.

(c) See (13) and the accompanying discussion in Section 15.10.

1. This is true by Fubini’s Theorem.

3. True by Equation 15.2.5.

5. True. By Equation 15.2.5 we can write
 1
0

 1
0
() ()   =

 1
0
() 

 1
0
() . But

 1
0
()  =

 1
0
()  so

this becomes
 1
0
() 

 1
0
()  =

 1
0
() 

2
.

7. True:





4− 2 − 2  = the volume under the surface 2 + 2 + 2 = 4 and above the -plane

= 1
2


the volume of the sphere 2 + 2 + 2 = 4


= 1

2
· 4
3
(2)3 = 16

3
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9. The volume enclosed by the cone  =

2 + 2 and the plane  = 2 is, in cylindrical coordinates,

 =
 2
0

 2
0

 2

    6=  2

0

 2
0

 2

  , so the assertion is false.

1. As shown in the contour map, we divide  into 9 equally sized subsquares, each with area∆ = 1. Then we approximate

( )  by a Riemann sum with =  = 3 and the sample points the upper right corners of each square, so



( ) ≈

3
=1

3
=1

( )∆

= ∆ [(1 1) + (1 2) + (1 3) + (2 1) + (2 2) + (2 3) + (3 1) + (3 2) + (3 3)]

Using the contour lines to estimate the function values, we have

( )  ≈ 1[27 + 47 + 80 + 47 + 67 + 100 + 67 + 86 + 119] ≈ 640

3.
 2
1

 2
0
( + 2)   =

 2
1


 + 2

=2
=0

 =
 2
1
(2 + 4)  =


2 + 4

2
1

= 4 + 42 − 1− 4 = 42 − 4+ 3

5.
 1
0

 
0
cos(2)   =

 1
0


cos(2)

=
=0

 =
 1
0
 cos(2)  = 1

2
sin(2)

1
0
= 1

2
sin 1

7.
 
0

 1
0

√1−2
0

 sin   =
 
0

 1
0


( sin)

=√1−2
=0

  =
 
0

 1
0


1− 2 sin 

=
 
0


− 1
3
(1− 2)32 sin

=1
=0

 =
 
0

1
3
sin = − 1

3
cos


0
= 2

3

9. The region  is more easily described by polar coordinates:  = {( ) | 2 ≤  ≤ 4, 0 ≤  ≤ }. Thus

( )  =

 
0

 4
2
( cos   sin )   .

11. The region whose area is given by
 2
0

 sin 2
0

   is
( ) | 0 ≤  ≤ 

2
 0 ≤  ≤ sin 2, which is the region contained in the

loop in the first quadrant of the four-leaved rose  = sin 2.

13.
 1
0

 1

cos(2)   =

 1
0

 
0
cos(2) 

=
 1
0
cos(2)



=
=0

 =
 1
0
 cos(2) 

=

1
2
sin(2)

1
0
= 1

2
sin 1

15.



  =

 3
0

 2
0
  =

 3
0



=2
=0

 =
 3
0
(2 − 1)  =  1

2
2 − 

3
0
= 1

2
6 − 3− 1

2
= 1

2
6 − 7

2
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17. 




1 + 2
 =

 1

0

 √


0



1 + 2
  =

 1

0

1

1 + 2


1
2

2
=√
=0



= 1
2

 1

0



1 + 2
 =


1
4
ln(1 + 

2
)
1
0
= 1

4
ln 2

19.



  =

 2
0

 8−2
2

  

=
 2
0



=8−2
=2

 =
 2
0
(8− 2 − 2) 

=
 2
0
(8 − 23)  = 42 − 1

2
4
2
0
= 8

21. 




2
+ 

2
32

 =

 3

0

 3

0

(
2
)
32

  

=

 3

0



 3

0


4
 =



3
0


1
5

5
3
0

=


3

35

5
=
81

5

23.



  =

 3
0

 
0

 +
0

    =
 3
0

 
0



=+
=0

  =
 3
0

 
0
(+ )  

=
 3
0

 
0
(2 + 2)   =

 3
0


1
2
22 + 1

3
3

=
=0

 =
 3
0


1
2
4 + 1

3
4



= 5
6

 3
0
4  =


1
6
5
3
0
= 81

2
= 405

25.



22  =

 1
−1
√1−2

−
√
1−2

 1− 2− 2

0
22   =

 1
−1
√1−2

−
√
1−2

22(1− 2 − 2)  

=
 2
0

 1
0
(2 cos2 )(2 sin2 )(1− 2)    =

 2
0

 1
0
1
4
sin2 2(5 − 7)  

=
 2
0

1
8
(1− cos 4)1

6
6 − 1

8
8
=1
=0

 = 1
192


 − 1

4
sin 4

2
0
= 2

192
= 

96

27.



  =

 2
−2
√4−2
0

 
0
    =

 2
−2
√4−2
0

1
2
3  =

 
0

 2
0

1
2
3(sin3 )   

= 16
5

 
0
sin3   = 16

5

− cos  + 1
3
cos3 


0
= 64

15

29.  =
 2
0

 4
1
(2 + 42)   =

 2
0


2 + 4

3
3
=4
=1

 =
 2
0
(32 + 84)  = 176

31.
 =

 2
0

 
0

 (2−)2
0

   =
 2
0

 
0


1− 1

2


 

=
 2
0


 − 1

2
2

 = 2

3
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33. Using the wedge above the plane  = 0 and below the plane  =  and noting that we have the same volume for  0 as

for  0 (so use  0), we have

 = 2
 3
0

√2−92
0

 = 2
 3
0

1
2
(2 − 92)  = 


2 − 333

0
= 


1
3
3 − 1

9
3

= 2

9
3.

35. (a)  =
 1
0

 1−2
0

   =
 1
0
( − 3)  = 1

2
− 1

4
= 1

4

(b)  =
 1
0

 1− 2

0
   =

 1
0

1
2
(1 − 2)2  = − 1

12
(1− 2)3

1
0
= 1

12
,

 =
 1
0

 1− 2

0
2   =

 1
0
(2 − 4)  = 2

15
. Hence ( ) =


1
3
 8
15


.

(c)  =
 1
0

 1−2
0

3   =
 1
0
(3 − 5)  = 1

12
,

 =
 1
0

 1−2
0

2  =
 1
0

1
3
(1− 2)3  = − 1

24
(1− 2)4

1
0
= 1

24
,

0 =  +  =
1
8
, 

2
=

112

14
= 1

3
⇒  = 1√

3
, and 

2
=

124

14
= 1

6
⇒  = 1√

6
.

37. (a) The equation of the cone with the suggested orientation is (− ) = 



2 + 2, 0 ≤  ≤ . Then  = 1

3
2 is the

volume of one frustum of a cone; by symmetry = = 0; and

 =


2+2≤2

 −()
√
2+2

0

   =

 2

0

 

0

 ()(−)

0

    = 

 

0


2

2
(− )

2


=
2

2

 

0

(
2
 − 22 + 

3
)  =

2

2


4

2
− 24

3
+

4

4


=

22

12

Hence the centroid is (  ) =

0 0 1

4


.

(b)  =
 2

0

 

0

 ()(−)

0


3
   = 2

 

0




(

3 − 
4
)  =

2




5

4
− 5

5


=

4

10

39. Let represent the given triangle; then can be described as the area enclosed by the - and -axes and the line  = 2− 2,
or equivalently = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ 2− 2}. We want to find the surface area of the part of the graph of
 = 2 +  that lies over, so using Equation 15.6.3 we have

() =





1 +






2
+






2
 =





1 + (2)2 + (1)2  =

 1

0

 2−2

0


2 + 42  

=
 1
0

√
2 + 42



=2−2
=0

 =
 1
0
(2− 2)√2 + 42  =  1

0
2
√
2 + 42 −  1

0
2
√
2 + 42 

Using Formula 21 in the Table of Integrals with  =
√
2,  = 2, and  = 2 , we have

2
√
2 + 42  = 

√
2 + 42 + ln


2+

√
2 + 42


. If we substitute  = 2 + 42 in the second integral, then

 = 8 and

2
√
2 + 42  = 1

4

 √
 = 1

4
· 2
3
32 = 1

6
(2 + 42)32. Thus

() =


√
2 + 42 + ln


2+

√
2 + 42

− 1
6
(2 + 42)32

1
0

=
√
6 + ln


2 +

√
6
− 1

6
(6)32 − ln√2 +

√
2
3
= ln 2+

√
6√

2
+
√
2
3

= ln
√
2 +

√
3

+
√
2
3
≈ 1.6176
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41.  3

0

 √9−2

−
√
9−2

(
3
+ 

2
)   =

 3

0

 √9−2

−
√
9−2

(
2
+ 

2
)  

=
 2
−2

 3
0
( cos )(2)   

=
 2
−2 cos  

 3
0
4 

=

sin 

2
−2


1
5
5
3
0
= 2 · 1

5
(243) = 486

5
= 972

43. From the graph, it appears that 1− 2 =  at  ≈ −071 and at
 = 0, with 1− 2   on (−071 0). So the desired integral is


2≈  0−071  1−2

2  

= 1
3

 0
−071[(1− 2)3 − 3] 

= 1
3


− 3 + 3

5
5 − 1

7
7 − 1

3
3
0
−071 ≈ 00512

45. (a) ( ) is a joint density function, so we know that


R2 ( )  = 1. Since ( ) = 0 outside the rectangle

[0 3]× [0 2], we can say
R2 ( ) =

∞
−∞

∞
−∞ ( )   =

 3
0

 2
0
(+ )  

= 
 3
0


 + 1

2
2
=2
=0

 = 
 3
0
(2+ 2)  = 


2 + 2

3
0
= 15

Then 15 = 1 ⇒  = 1
15
.

(b)  ( ≤ 2  ≥ 1) =  2−∞ ∞1 ( )   =
 2
0

 2
1

1
15
( )   = 1

15

 2
0


 + 1

2
2
=2
=1



= 1
15

 2
0


+ 3

2


 = 1

15


1
2
2 + 3

2

2
0
= 1

3

(c)  ( +  ≤ 1) =  (( ) ∈ ) where is the triangular region shown in

the figure. Thus

 ( +  ≤ 1) = 

( )  =

 1
0

 1−
0

1
15
(+ )  

= 1
15

 1
0


 + 1

2
2
=1−
=0



= 1
15

 1
0


(1− ) + 1

2
(1− )2




= 1
30

 1
0
(1− 2)  = 1

30


− 1

3
3
1
0
= 1

45

47.
 1
−1
 1
2

 1−
0

(  )    =
 1
0

 1−
0

√
−√ (  )   
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49. Since  = −  and  = + ,  = 1
2
(+ ) and  = 1

2
( − ).

Thus
( )

( )
=

 12 12

−12 12

 = 1

2
and




− 

+ 
 =

 4

2

 0

−2






1

2


 = −

 4

2




= − ln 2.

51. Let  =  −  and  =  +  so  =  −  = ( − )−  ⇒  = 1
2
( − ) and  =  − 1

2
( − ) = 1

2
( + ).( )( )

 =  


− 







 = − 1
2


1
2

− 1
2


1
2

 = − 1
2

 = 1
2
.  is the image under this transformation of the square

with vertices ( ) = (0 0), (−2 0), (0 2), and (−2 2). So


  =

 2

0

 0

−2

2 − 2

4


1

2


 = 1

8

 2
0


2− 1

3
3
=0
=−2  =

1
8

 2
0


22 − 8

3


 = 1

8


2
3
3 − 8

3

2
0
= 0

This result could have been anticipated by symmetry, since the integrand is an odd function of  and  is symmetric about

the -axis.

53. For each  such that lies within the domain, () = 2, and by the Mean Value Theorem for Double Integrals there

exists ( ) in such that  ( ) =
1

2




( ) . But lim
→0+

( ) = ( ),

so lim
→0+

1

2




 ( )  = lim
→0+

( ) = ( ) by the continuity of  .
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PROBLEMS PLUS
1. Let  =

5

=1
, where

 = {( ) | +  ≥ + 2 +   + 3 1 ≤  ≤ 3 2 ≤  ≤ 5}.



[[+ ]]  =

5
=1



[[+ ]]  =

5
=1

[[+ ]]



, since

[[+ ]] = constant = + 2 for ( ) ∈ . Therefore

[[+ ]] =

5

=1
(+ 2) [()]

= 3(1) + 4(2) + 5(3) + 6(4) + 7(5)

= 3

1
2


+ 4

3
2


+ 5(2) + 6


3
2


+ 7

1
2


= 30

3. ave =
1

− 

 



()  =
1

1− 0
 1

0

 1



cos(
2
) 




=
 1
0

 1

cos(2)   =

 1
0

 
0
cos(2)   [changing the order of integration]

=
 1
0
 cos(2)  = 1

2
sin

2
1
0
= 1

2
sin 1

5. Since ||  1, except at (1 1), the formula for the sum of a geometric series gives 1

1− 
=

∞
=0

(), so

 1
0

 1
0

1
1−  =

 1
0

 1
0

∞
=0

()  =
∞
=0

 1
0

 1
0
()  =

∞
=0

 1
0
 

 1
0
 


=

∞
=0

1
+1

· 1
+1

=
∞
=0

1

(+1)2
= 1

12
+ 1

22
+ 1

32
+ · · · =∞

=1
1

2

7. (a) Since ||  1 except at (1 1 1), the formula for the sum of a geometric series gives 1

1− 
=

∞
=0

(), so

 1

0

 1

0

 1

0

1

1− 
   =

 1

0

 1

0

 1

0

∞
=0

()

   =

∞
=0

 1

0

 1

0

 1

0

()

 

=
∞
=0

 1
0
 

 1
0
 

 1
0
 


=

∞
=0

1

+ 1
· 1

+ 1
· 1

+ 1

=
∞
=0

1

(+ 1)3
=
1

13
+
1

23
+
1

33
+ · · · =

∞
=1

1

3

(b) Since |−|  1, except at (1 1 1), the formula for the sum of a geometric series gives 1

1 + 
=

∞
=0

(−), so

 1

0

 1

0

 1

0

1

1 + 
   =

 1

0

 1

0

 1

0

∞
=0

(−)    =
∞
=0

 1

0

 1

0

 1

0

(−)   

=
∞
=0

(−1)
 1
0
 

 1
0
 

 1
0
 


=

∞
=0

(−1) 1

+ 1
· 1

+ 1
· 1

+ 1

=
∞
=0

(−1)
(+ 1)3

=
1

13
− 1

23
+
1

33
− · · · =

∞
=0

(−1)−1
3 [continued]
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To evaluate this sum, we first write out a few terms:  = 1− 1

23
+
1

33
− 1

43
+
1

53
− 1

63
≈ 08998. Notice that

7 =
1

73
 0003. By the Alternating Series Estimation Theorem from Section 11.5, we have |− 6| ≤ 7  0003.

This error of 0003 will not affect the second decimal place, so we have  ≈ 090.

9. (a)  =  cos ,  =  sin ,  = . Then



=








+








+








=




cos  +




sin  and

2

2
= cos 


2

2



+

2

 




+

2

 






+ sin 


2

2



+

2






+

2

 







=
2

2
cos2  +

2

2
sin2  + 2

2

 
cos  sin 

Similarly



= −


 sin  +




 cos  and

2

2
=

2

2
2 sin2  +

2

2
2 cos2  − 2 2

 
2 sin  cos  − 


 cos  − 


 sin . So

2

2
+
1






+
1

2
2

2
+

2

2
=

2

2
cos2  +

2

2
sin2  + 2

2

 
cos  sin  +





cos 


+





sin 



+
2

2
sin2  +

2

2
cos2  − 2 2

 
sin  cos 

−



cos 


− 



sin 


+

2

2

=
2

2
+

2

2
+

2

2

(b)  =  sin cos ,  =  sin sin ,  =  cos. Then




=








+








+








=




sin cos  +




sin sin  +




cos, and

2

2
= sin cos 


2

2



+

2

 




+

2

 






+ sin sin 


2

2



+

2






+

2

 






+ cos


2

2



+

2






+

2

 






= 2

2

 
sin2  sin  cos  + 2

2

 
sin cos cos  + 2

2

 
sin cos sin 

+
2

2
sin2  cos2  +

2

2
sin2  sin2  +

2

2
cos2 

Similarly



=




 cos cos  +




 cos sin  − 


 sin, and
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2

2
= 2

2

 
2 cos2  sin  cos  − 2 2


2 sin cos cos 

− 2 2

 
2 sin cos sin  +

2

2
2 cos2  cos2  +

2

2
2 cos2  sin2 

+
2

2
2 sin2 − 


 sin cos  − 


 sin sin  − 


 cos

And



= −


 sin sin  +




 sin cos , while

2

2
= −2 2

 
2 sin2  cos  sin  +

2

2
2 sin2  sin2 

+
2

2
2 sin2  cos2  − 


 sin cos  − 


 sin sin 

Therefore

2

2
+
2






+
cot

2



+
1

2
2

2
+

1

2 sin2 

2

2

=
2

2


(sin2  cos2 ) + (cos2  cos2 ) + sin2 


+

2

2


(sin2  sin2 ) + (cos2  sin2 ) + cos2 


+

2

2


cos2 + sin2 


+






2 sin2  cos  + cos2  cos  − sin2  cos  − cos 

 sin


+






2 sin2  sin  + cos2  sin  − sin2  sin  − sin 

 sin


But 2 sin2  cos +cos2  cos − sin2  cos − cos  = (sin2 +cos2 − 1) cos  = 0 and similarly the coefficient of

 is 0. Also sin2  cos2  + cos2  cos2  + sin2  = cos2  (sin2 + cos2 ) + sin2  = 1, and similarly the

coefficient of 22 is 1. So Laplace’s Equation in spherical coordinates is as stated.

11.
 
0

 
0

 
0
()    =



()  , where

 = {(  ) | 0 ≤  ≤ , 0 ≤  ≤ , 0 ≤  ≤ }.

If we let be the projection of  on the -plane then

 = {( ) | 0 ≤  ≤ ,  ≤  ≤ }. And we see from the diagram

that  = {(  ) |  ≤  ≤ ,  ≤  ≤ , 0 ≤  ≤ }. So 
0

 
0

 
0
()    =

 
0

 


 

()    =

 
0

 

( − ) () 




=
 
0


1
2
2 − 


()

= 

= 
 =

 
0


1
2
2 − − 1

2
2 + 2


() 

=
 
0


1
2
2 − + 1

2
2

()  =

 
0


1
2
2 − 2+ 2


() 

= 1
2

 
0
(− )2 () 
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13. The volume is  =



 where  is the solid region given. From Exercise 15.10.21(a), the transformation  = ,

 = ,  =  maps the unit ball 2 + 2 +2 ≤ 1 to the solid ellipsoid

2

2
+

2

 2
+

2

2
≤ 1 with (  )

( )
= . The same transformation maps the

plane +  + = 1 to



+




+




= 1. Thus the region  in -space

corresponds to the region  in -space consisting of the smaller piece of the

unit ball cut off by the plane +  + = 1, a “cap of a sphere” (see the figure).

We will need to compute the volume of , but first consider the general case

where a horizontal plane slices the upper portion of a sphere of radius  to produce

a cap of height . We use spherical coordinates. From the figure, a line through the

origin at angle  from the -axis intersects the plane when cos = ( − ) ⇒

 = ( − ) cos, and the line passes through the outer rim of the cap when

 =  ⇒ cos = ( − ) ⇒  = cos−1 (( − )). Thus the cap

is described by

(  ) | ( − ) cos ≤  ≤  0 ≤  ≤ 2 0 ≤  ≤ cos−1 (( − ))


and its volume is

 =
 2
0

 cos−1((−))
0

 
(−) cos 2 sin

=
 2
0

 cos−1((−))
0


1
3
3 sin

=
=(−) cos 

=
1

3

 2

0

 cos−1((−))

0



3
sin− ( − )3

cos3 
sin




= 1
3

 2
0

−3 cos− 1
2
( − )3 cos−2 

=cos−1((−))
=0



=
1

3

 2

0


−3


 − 




− 1

2
( − )

3


 − 



−2
+ 

3
+
1

2
( − )

3




= 1
3

 2
0
( 3
2
2 − 1

2
3)  = 1

3
( 3
2
2 − 1

2
3)(2) = 2( − 1

3
)

(This volume can also be computed by treating the cap as a solid of revolution and using the single variable disk method;

see Exercise 5.2.49 [ET 6.2.49].)

To determine the height  of the cap cut from the unit ball by the plane

+  + = 1, note that the line  =  =  passes through the origin with

direction vector h1 1 1i which is perpendicular to the plane. Therefore this line
coincides with a radius of the sphere that passes through the center of the cap and

 is measured along this line. The line intersects the plane at

1
3
 1
3
 1
3


and the

sphere at


1√
3
 1√

3
 1√

3


. (See the figure.)

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



CHAPTER 15 PROBLEMS PLUS ¤ 301

The distance between these points is  =


3


1√
3
− 1

3

2
=
√
3


1√
3
− 1

3


= 1− 1√

3
. Thus the volume of  is

 =




 =




 (  )( )

  = 




 =   ()

=  · 2( − 1
3
) =  · 


1− 1√

3

2 
1− 1

3


1− 1√

3


= 


4
3
− 2√

3


2
3
+ 1

3
√
3


= 


2
3
− 8

9
√
3


≈ 0482
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16 VECTOR CALCULUS

16.1 Vector Fields

1. F( ) = 03 i− 04 j
All vectors in this field are identical, with length 05 and

parallel to h3−4i.

3. F( ) = − 1
2
i+ ( − ) j

The length of the vector− 1
2
i+ ( − ) j is

1
4
+ ( − )2. Vectors along the line  =  are

horizontal with length 1
2
.

5. F( ) =
 i+  j
2 + 2

The length of the vector
 i+  j
2 + 2

is 1.

7. F(  ) = k

All vectors in this field are parallel to the -axis and have

length 1.

9. F(  ) = k

At each point (  ), F(  ) is a vector of length ||.
For   0, all point in the direction of the positive -axis,

while for   0, all are in the direction of the negative

-axis. In each plane  = , all the vectors are identical.
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304 ¤ CHAPTER 16 VECTOR CALCULUS

11. F( ) = h−i corresponds to graph IV. In the first quadrant all the vectors have positive -components and negative
-components, in the second quadrant all vectors have negative - and -components, in the third quadrant all vectors have

negative -components and positive -components, and in the fourth quadrant all vectors have positive - and -components.

In addition, the vectors get shorter as we approach the origin.

13. F( ) = h  + 2i corresponds to graph I. As in Exercise 12, all vectors in quadrants I and II have positive -components
while all vectors in quadrants III and IV have negative -components.Vectors along the line  = −2 are horizontal, and the
vectors are independent of  (vectors along horizontal lines are identical).

15. F(  ) = i+ 2 j+ 3k corresponds to graph IV, since all vectors have identical length and direction.

17. F(  ) =  i+  j+ 3k corresponds to graph III; the projection of each vector onto the -plane is  i+  j, which points

away from the origin, and the vectors point generally upward because their -components are all 3.

19.

The vector field seems to have very short vectors near the line  = 2.

For F( ) = h0 0i we must have 2 − 2 = 0 and 3 − 62 = 0.
The first equation holds if  = 0 or  = 2, and the second holds if

 = 0 or  = 2. So both equations hold [and thus F( ) = 0] along

the line  = 2.

21. ( ) =  ⇒
∇( ) = ( ) i+  ( ) j = (

 ·  + ) i+ ( · ) j = ( + 1) i+ 2 j

23. ∇(  ) = (  ) i+ (  ) j+ (  )k =


2 + 2 + 2
i+


2 + 2 + 2

j+


2 + 2 + 2
k

25. ( ) = 2 −  ⇒ ∇( ) = 2 i− j.

The length of∇( ) is√42 + 1. When  6= 0, the vectors point away
from the -axis in a slightly downward direction with length that increases

as the distance from the -axis increases.

27. We graph∇( ) = 2

1 + 2 + 22
i+

4

1 + 2 + 22
j along with

a contour map of  .

The graph shows that the gradient vectors are perpendicular to the

level curves. Also, the gradient vectors point in the direction in

which  is increasing and are longer where the level curves are closer

together.
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29. ( ) = 2 + 2 ⇒ ∇( ) = 2 i+ 2 j. Thus, each vector∇( ) has the same direction and twice the length of
the position vector of the point ( ), so the vectors all point directly away from the origin and their lengths increase as we

move away from the origin. Hence,∇ is graph III.

31. ( ) = (+ )2 ⇒ ∇( ) = 2(+ ) i+ 2(+ ) j. The - and -components of each vector are equal, so all

vectors are parallel to the line  = . The vectors are 0 along the line  = − and their length increases as the distance from
this line increases. Thus,∇ is graph II.

33. At  = 3 the particle is at (2 1) so its velocity isV(2 1) = h4 3i. After 0.01 units of time, the particle’s change in
location should be approximately 001V(2 1) = 001 h4 3i = h004 003i, so the particle should be approximately at the
point (204 103).

35. (a) We sketch the vector field F( ) =  i−  j along with

several approximate flow lines. The flow lines appear to

be hyperbolas with shape similar to the graph of

 = ±1, so we might guess that the flow lines have

equations  = .

(b) If  = () and  = () are parametric equations of a flow line, then the velocity vector of the flow line at the

point ( ) is 0() i+ 0 () j. Since the velocity vectors coincide with the vectors in the vector field, we have

0() i+ 0() j =  i−  j ⇒  = ,  = −. To solve these differential equations, we know
 =  ⇒  =  ⇒ ln || = +  ⇒  = ±+ =  for some constant , and

 = − ⇒  = − ⇒ ln || = −+ ⇒  = ±−+ = − for some constant . Therefore

 = − =  = constant. If the flow line passes through (1 1) then (1) (1) = constant = 1 ⇒  = 1 ⇒
 = 1,   0.

16.2 Line Integrals

1.  = 3 and  = , 0 ≤  ≤ 2, so by Formula 3




3
=

 2

0


3






2
+






2
 =

 2

0


3

(32)2 + (1)2  =

 2

0


3

94 + 1 

= 1
36
· 2
3


94 + 1

322
0
= 1

54
(14532 − 1) or 1

54


145

√
145− 1

3. Parametric equations for  are  = 4cos ,  = 4 sin , −
2
≤  ≤ 

2
. Then


4 =

 2
−2(4 cos )(4 sin )

4

(−4 sin )2 + (4 cos )2  =  2−2 4

5 cos  sin4 

16(sin2 + cos2 ) 

= 45
 2
−2(sin

4  cos )(4)  = (4)6

1
5
sin5 

2
−2 =

2 · 46
5
= 16384
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5. If we choose  as the parameter, parametric equations for  are  = ,  =
√
 for 1 ≤  ≤ 4 and





23 −

√


 =

 4
1


2 · (

√
 )3 −

√

 1

2
√

 = 1

2

 4
1


3 − 1 

= 1
2


1
4
4 − 

4
1
= 1

2


64− 4− 1

4
+ 1

= 243

8

7.  = 1 + 2

On 1:  = ,  = 1
2
 ⇒  = 1

2
, 0 ≤  ≤ 2.

On 2:  = ,  = 3−  ⇒  = −, 2 ≤  ≤ 3.

Then 

(+ 2) + 2  =


1
(+ 2) + 2  +


2
(+ 2) + 2 

=
 2
0


+ 2


1
2


+ 2


1
2


+

 3
2


+ 2(3− ) + 2(−1) 

=
 2
0


2+ 1

2
2

+

 3
2


6− − 2




=

2 + 1

6
3
2
0
+

6− 1

2
2 − 1

3
3
3
2
= 16

3
− 0 + 9

2
− 22

3
= 5

2

9.  = 2 sin ,  = ,  = −2 cos , 0 ≤  ≤ . Then by Formula 9,



  =

 
0
(2 sin )()(−2 cos )





2
+





2
+




2


=
 
0
−4 sin  cos 


(2 cos )2 + (1)2 + (2 sin )2  =

 
0
−2 sin 2


4(cos2 + sin2 ) + 1 

= −2√5  
0
 sin 2  = −2√5 − 1

2
 cos 2+ 1

4
sin 2


0


integrate by parts with
 = ,  = sin 2 


= −2√5 −

2
− 0 = √5

11. Parametric equations for  are  = ,  = 2,  = 3, 0 ≤  ≤ 1. Then



  =

 1
0
(2)(3)

√
12 + 22 + 32  =

√
14
 1
0
6

2

 =
√
14

1
12
6

2
1
0
=
√
14
12
(6 − 1).

13.


  =

 1
0
()(2)(

2)(3) · 2  =  1
0
24

5

 = 2
5

5
1
0
= 2

5
(1 − 0) = 2

5
(− 1)

15. Parametric equations for  are  = 1 + 3,  = ,  = 2, 0 ≤  ≤ 1. Then

2 + 2  + 2  =

 1
0
(2)2 · 3 + (1 + 3)2 + 2 · 2  =  1

0


232 + 6+ 1




=

23
3
3 + 32 + 

1
0
= 23

3
+ 3 + 1 = 35

3

17. (a) Along the line  = −3, the vectors of F have positive -components, so since the path goes upward, the integrand F ·T is

always positive. Therefore

1
F · r = 

1
F ·T  is positive.
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(b) All of the (nonzero) field vectors along the circle with radius 3 are pointed in the clockwise direction, that is, opposite the

direction to the path. So F ·T is negative, and therefore 
2
F · r = 

2
F ·T  is negative.

19. r() = 114 i+ 3 j, so F(r()) = (114)(3) i+ 3(3)2 j = 117 i+ 36 j and r0() = 443 i+ 32 j. Then

F · r =  1

0
F(r()) · r0()  =  1

0
(117 · 443 + 36 · 32)  =  1

0
(48410 + 98)  =


4411 + 9

1
0
= 45.

21.


F · r =  1

0


sin 3 cos(−2) 4 · 32−2 1 

=
 1
0
(32 sin 3 − 2 cos 2 + 4)  =

− cos 3 − sin 2 + 1
5
5
1
0
= 6

5
− cos 1− sin 1

23. F(r()) = ()

−

2

i+ sin


−

2

j = −

2

i+ sin

−

2

j, r0() =  i− 2−2 j. Then




F · r=
 2

1

F(r()) · r0()  =
 2

1



−2



+ sin



−2

·

−2−2




=

 2

1



2−2 − 2−2 sin



−2


 ≈ 19633

25.  = 2,  = 3,  = 4 so by Formula 9,

 sin( + ) =

 5
0
(2) sin(3 + 4)


(2)2 + (32)2 + (43)2 

=
 5
0
2 sin(3 + 4)

√
42 + 94 + 166  ≈ 150074

27. We graph F( ) = (− ) i+  j and the curve . We see that most of the vectors starting on  point in roughly the same

direction as , so for these portions of  the tangential component F ·T is positive. Although some vectors in the third

quadrant which start on  point in roughly the opposite direction, and hence give negative tangential components, it seems

reasonable that the effect of these portions of  is outweighed by the positive tangential components. Thus, we would expect

F · r = 


F ·T  to be positive.

To verify, we evaluate


F · r. The curve  can be represented by r() = 2 cos  i+ 2 sin  j, 0 ≤  ≤ 3

2
,

so F(r()) = (2 cos − 2 sin ) i+ 4 cos  sin  j and r0() = −2 sin  i+ 2cos  j. Then

F · r=  32

0
F(r()) · r0() 

=
 32
0

[−2 sin (2 cos − 2 sin ) + 2 cos (4 cos  sin )] 

= 4
 32
0

(sin2 − sin  cos + 2 sin  cos2 ) 
= 3 + 2

3
[using a CAS]

29. (a)


F · r =  1

0



2−1 5


· 2 32  =  1

0


2

2−1 + 37

 =



2−1 + 3

8
8
1
0
= 11

8
− 1
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(b) r(0) = 0, F(r(0)) =

−1 0


;

r


1√
2


=

1
2
 1

2
√
2


, F


r


1√
2


=

−12 1

4
√
2


;

r(1) = h1 1i, F(r(1)) = h1 1i.
In order to generate the graph with Maple, we use the line command in

the plottools package to define each of the vectors. For example,

v1:=line([0,0],[exp(-1),0]):

generates the vector from the vector field at the point (0 0) (but without an arrowhead) and gives it the name v1. To show

everything on the same screen, we use the display command. In Mathematica, we use ListPlot (with the

PlotJoined -  True option) to generate the vectors, and then Show to show everything on the same screen.

31.  = − cos 4,  = − sin 4,  = −, 0 ≤  ≤ 2 .

Then



= −(− sin 4)(4) − − cos 4 = −−(4 sin 4 + cos 4),




= −(cos 4)(4)− − sin 4 = −−(−4 cos 4+ sin 4), and 


= −−, so






2
+






2
+






2
=

(−−)2[(4 sin 4+ cos 4)2 + (−4 cos 4+ sin 4)2 + 1]

= −

16(sin2 4+ cos2 4) + sin2 4+ cos2 4+ 1 = 3

√
2 −

Therefore 

32 =

 2
0
(− cos 4)3(− sin 4)2(−) (3

√
2 −) 

=
 2
0
3
√
2 −7 cos3 4 sin2 4  = 172,704

5,632,705

√
2 (1− −14)

33. We use the parametrization  = 2 cos ,  = 2 sin , −
2
≤  ≤ 

2
. Then

 =





2
+





2
 =


(−2 sin )2 + (2 cos )2  = 2 , so =



  = 2

 2
−2  = 2(),

 = 1
2



  = 1

2

 2
−2(2 cos )2  =

1
2


4 sin 

2
−2 =

4

,  = 1

2



  = 1

2

 2
−2(2 sin )2  = 0.

Hence ( ) =

4

 0

.

35. (a)  =
1






(  )  ,  =
1






(  ) ,  =
1






(  )  where =


(  ) .

(b)  =


  = 

 2
0


4 sin2 + 4cos2 + 9  = 

√
13
 2
0

 = 2
√
13,

 =
1

2
√
13

 2

0

2
√
13 sin   = 0,  =

1

2
√
13

 2

0

2
√
13 cos   = 0,

 =
1

2
√
13

 2

0



√
13

(3)  =

3

2


2

2

= 3. Hence (  ) = (0 0 3).
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37. From Example 3, ( ) = (1− ),  = cos ,  = sin , and  = , 0 ≤  ≤  ⇒
 =



2( )  =

 
0
sin2  [(1− sin )]  = 

 
0
(sin2 − sin3 ) 

= 1
2

 
0
(1− cos 2) − 

 
0
(1− cos2 ) sin  


Let  = cos ,  = − sin  

in the second integral


= 



2
+
−1
1
(1− 2) 


= 



2
− 4

3


 =



2( )  = 

 
0
cos2  (1− sin )  = 

2

 
0
(1 + cos 2) − 

 
0
cos2  sin  

= 


2
− 2

3


, using the same substitution as above.

39.  =


F · r =  2

0
h− sin  3− cos i · h1− cos  sin i 

=
 2
0
(−  cos − sin + sin  cos + 3 sin − sin  cos ) 

=
 2
0
(−  cos + 2 sin )  =


1
2
2 − ( sin + cos )− 2 cos 2

0


integrate by parts
in the second term


= 22

41. r() = h2  1− i, 0 ≤  ≤ 1.

 =


F · r =  1

0


2− 2 − (1− )2 1− − (2)2 · h2 1−1i 

=
 1
0
(4− 22 + − 1 + 2− 2 − 1 + + 42)  =

 1
0
(2 + 8− 2)  =  1

3
3 + 42 − 21

0
= 7

3

43. (a) r() = 2 i+ 3 j ⇒ v() = r0() = 2 i+ 32 j ⇒ a() = v0() = 2 i+ 6 j, and force is mass times

acceleration: F() = a() = 2 i+ 6 j.

(b)  =


F · r =  1

0
(2 i+ 6 j) · (2 i+ 32 j)  =  1

0
(42+ 1823) 

=

222 + 9

2
24

1
0
= 22 + 9

2
2

45. Let F = 185k. To parametrize the staircase, let  = 20 cos ,  = 20 sin ,  = 90
6
 = 15


, 0 ≤  ≤ 6 ⇒

 =


F · r =  6

0
h0 0 185i · −20 sin  20 cos  15




 = (185) 15



 6
0

 = (185)(90) ≈ 167× 104 ft-lb

47. (a) r() = hcos  sin i, 0 ≤  ≤ 2, and let F = h i. Then

 =


F ·  r =  2

0
h i · h− sin  cos i  =  2

0
(− sin +  cos )  =


 cos +  sin 

2
0

= + 0− + 0 = 0

(b) Yes. F ( ) =  x = h i and
 =



F ·  r =  2

0
h cos   sin i · h− sin  cos i  =  2

0
(− sin  cos +  sin  cos )  =

 2
0
0  = 0.

49. Let r() = h() () ()i and v = h1 2 3i. Then

v · r =  


h1 2 3i · h0() 0() 0()i  =

 

[1 

0() + 2 
0() + 3 

0()] 

=

1 () + 2 () + 3 ()



= [1 () + 2 () + 3 ()]− [1 () + 2 () + 3 ()]

= 1 [()− ()] + 2 [()− ()] + 3 [()− ()]

= h1 2 3i · h()− () ()− () ()− ()i
= h1 2 3i · [h() () ()i− h() () ()i] = v · [r()− r()]
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51. The work done in moving the object is


F · r = 


F ·T. We can approximate this integral by dividing  into

7 segments of equal length∆ = 2 and approximating F ·T, that is, the tangential component of force, at a point (∗  ∗ ) on
each segment. Since  is composed of straight line segments, F ·T is the scalar projection of each force vector onto .
If we choose (∗  

∗
 ) to be the point on the segment closest to the origin, then the work done is


F ·T ≈

7
=1

[F(∗  
∗
 ) ·T(∗  ∗ )]∆ = [2 + 2 + 2 + 2 + 1 + 1 + 1](2) = 22. Thus, we estimate the work done to

be approximately 22 J.

16.3 The Fundamental Theorem for Line Integrals

1.  appears to be a smooth curve, and since∇ is continuous, we know  is differentiable. Then Theorem 2 says that the value

of


∇ · r is simply the difference of the values of  at the terminal and initial points of . From the graph, this is

50− 10 = 40.

3. (2− 3) = −3 = (−3+ 4 − 8) and the domain of F is R2 which is open and simply-connected, so by
Theorem 6 F is conservative. Thus, there exists a function  such that∇ = F, that is, ( ) = 2− 3 and

( ) = −3+ 4 − 8. But ( ) = 2− 3 implies ( ) = 2 − 3 + () and differentiating both sides of this

equation with respect to  gives ( ) = −3+ 0(). Thus −3+ 4 − 8 = −3+ 0() so 0() = 4 − 8 and

() = 22 − 8 + where is a constant. Hence ( ) = 2 − 3 + 22 − 8 + is a potential function for F.

5. ( cos ) = − sin , ( sin ) =  sin . Since these are not equal, F is not conservative.

7. ( + sin ) =  + cos  = ( +  cos ) and the domain of F is R2. Hence F is conservative so there

exists a function  such that∇ = F. Then ( ) =  + sin  implies ( ) =  +  sin  + () and

( ) =  +  cos  + 0(). But ( ) =  +  cos  so () =  and ( ) =  +  sin  + is a potential

function for F.

9. (ln +23) = 1+62 = (322 + ) and the domain of F is {( ) |   0} which is open and simply

connected. Hence F is conservative so there exists a function  such that∇ = F. Then ( ) = ln  + 23 implies

( ) =  ln  + 23 + () and ( ) =  + 322 + 0(). But ( ) = 322 +  so 0() = 0 ⇒

() =  and ( ) =  ln  + 23 + is a potential function for F.

11. (a) F has continuous first-order partial derivatives and



2 = 2 =




(2) on R2, which is open and simply-connected.

Thus, F is conservative by Theorem 6. Then we know that the line integral of F is independent of path; in particular, the

value of


F · r depends only on the endpoints of . Since all three curves have the same initial and terminal points,


F · r will have the same value for each curve.
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(b) We first find a potential function  , so that∇ = F. We know ( ) = 2 and ( ) = 2. Integrating

( ) with respect to , we have ( ) = 2 + (). Differentiating both sides with respect to  gives

( ) = 2 + 0(), so we must have 2 + 0() = 2 ⇒ 0() = 0 ⇒ () = , a constant.

Thus ( ) = 2 +. All three curves start at (1 2) and end at (3 2), so by Theorem 2,

F · r = (3 2)− (1 2) = 18− 2 = 16 for each curve.

13. (a) ( ) = 2 implies ( ) = 1
2
22 + () and ( ) = 2 + 0(). But ( ) = 2 so 0() = 0 ⇒

() = , a constant. We can take = 0, so ( ) = 1
2
22.

(b) The initial point of  is r(0) = (0 1) and the terminal point is r(1) = (2 1), so

F · r = (2 1)− (0 1) = 2− 0 = 2.

15. (a) (  ) =  implies (  ) =  + ( ) and so (  ) =  + ( ). But (  ) =  so

( ) = 0 ⇒ ( ) = (). Thus (  ) =  + () and (  ) =  + 0(). But

(  ) =  + 2, so 0() = 2 ⇒ () = 2 +. Hence (  ) =  + 2 (taking = 0).

(b)


F · r = (4 6 3)− (1 0−2) = 81− 4 = 77.

17. (a) (  ) =  implies (  ) =  + ( ) and so (  ) =  + ( ). But (  ) =  so

( ) = 0 ⇒ ( ) = (). Thus (  ) =  + () and (  ) =  + 0(). But

(  ) =  , so 0() = 0 ⇒ () = . Hence (  ) =  (taking = 0).

(b) r(0) = h1−1 0i, r(2) = h5 3 0i so 

F · r = (5 3 0)− (1−1 0) = 30 + 0 = 4.

19. The functions 2− and 2 − 2− have continuous first-order derivatives on R2 and






2−


= −2− = 




2 − 2−


, so F( ) = 2− i+


2 − 2−


j is a conservative vector field by

Theorem 6 and hence the line integral is independent of path. Thus a potential function  exists, and ( ) = 2−

implies ( ) = 2− + () and ( ) = −2− + 0(). But ( ) = 2 − 2− so

0() = 2 ⇒ () = 2 +. We can take  = 0, so ( ) = 2− + 2. Then

2− + (2 − 2−)  = (2 1)− (1 0) = 4−1 + 1− 1 = 4.

21. If F is conservative, then


F · r is independent of path. This means that the work done along all piecewise-smooth curves

that have the described initial and terminal points is the same. Your reply: It doesn’t matter which curve is chosen.

23. F( ) = 232 i+ 3

 j, =



F ·  r. Since (232) = 3√ = (3


 ), there exists a function 

such that∇ = F. In fact, ( ) = 232 ⇒ ( ) = 232 + () ⇒ ( ) = 3
12 + 0(). But

 ( ) = 3
√
 so 0() = 0 or () = . We can take = 0 ⇒ ( ) = 232. Thus

 =


F ·  r = (2 4)− (1 1) = 2(2)(8)− 2(1) = 30.
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25. We know that if the vector field (call it F) is conservative, then around any closed path ,


F · r = 0. But take  to be a

circle centered at the origin, oriented counterclockwise. All of the field vectors that start on  are roughly in the direction of

motion along , so the integral around  will be positive. Therefore the field is not conservative.

27. From the graph, it appears that F is conservative, since around all closed

paths, the number and size of the field vectors pointing in directions similar

to that of the path seem to be roughly the same as the number and size of the

vectors pointing in the opposite direction. To check, we calculate




(sin ) = cos  =




(1 +  cos ). Thus F is conservative, by

Theorem 6.

29. Since F is conservative, there exists a function  such that F = ∇ , that is,  = ,  =  , and  =  . Since  ,

, and  have continuous first order partial derivatives, Clairaut’s Theorem says that  =  =  = ,

 =  =  = , and  =  =  = .

31.  = {( ) | 0    3} consists of those points between, but not
on, the horizontal lines  = 0 and  = 3.

(a) Since does not include any of its boundary points, it is open. More

formally, at any point in there is a disk centered at that point that

lies entirely in.

(b) Any two points chosen in can always be joined by a path that lies

entirely in, so is connected. ( consists of just one “piece.”)

(c)  is connected and it has no holes, so it’s simply-connected. (Every simple closed curve in encloses only points that are

in.)

33.  =

( ) | 1 ≤ 2 + 2 ≤ 4  ≥ 0 is the semiannular region

in the upper half-plane between circles centered at the origin of radii

1 and 2 (including all boundary points).

(a)  includes boundary points, so it is not open. [Note that at any

boundary point, (1 0) for instance, any disk centered there cannot lie

entirely in.]

(b) The region consists of one piece, so it’s connected.

(c)  is connected and has no holes, so it’s simply-connected.

35. (a)  = − 

2 + 2
,



=

2 − 2

(2 + 2)
2
and  =



2 + 2
,



=

2 − 2

(2 + 2)
2
. Thus




=




.

(b) 1:  = cos ,  = sin , 0 ≤  ≤ , 2:  = cos ,  = sin ,  = 2 to  = . Then
1

F · r =
 

0

(− sin )(− sin ) + (cos )(cos )
cos2 + sin2 

 =

 

0

 =  and

2

F · r =
 

2

 = −
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Since these aren’t equal, the line integral of F isn’t independent of path. (Or notice that

3
F · r =  2

0
 = 2 where

3 is the circle 2 + 2 = 1, and apply the contrapositive of Theorem 3.) This doesn’t contradict Theorem 6, since the

domain of F, which is R2 except the origin, isn’t simply-connected.

16.4 Green's Theorem

1. (a) Parametric equations for  are  = 2cos ,  = 2 sin , 0 ≤  ≤ 2. Then

(− ) + (+ )  =

 2
0
[(2 cos − 2 sin )(−2 sin ) + (2 cos + 2 sin )(2 cos )] 

=
 2
0
(4 sin2 + 4cos2 )  =

 2
0
4  = 4

2
0
= 8

(b) Note that  as given in part (a) is a positively oriented, smooth, simple closed curve. Then by Green’s Theorem,

(− ) + (+ )  =







(+ )− 


(− )


 =



[1− (−1)]  = 2 




= 2() = 2(2)2 = 8

3. (a) 1:  =  ⇒  = ,  = 0 ⇒  = 0 , 0 ≤  ≤ 1.
2:  = 1 ⇒  = 0 ,  =  ⇒  = , 0 ≤  ≤ 2.
3:  = 1−  ⇒  = −,  = 2− 2 ⇒  = −2 , 0 ≤  ≤ 1.

Thus


 + 23  =


1 +2 +3

 + 23 

=
 1
0
0 +

 2
0
3 +

 1
0

−(1− )(2− 2)− 2(1− )2(2− 2)3 
= 0+


1
4
4
2
0
+

2
3
(1− )3 + 8

3
(1− )6

1
0
= 4− 10

3
= 2

3

(b)


 + 23  =







(23)− 


()


 =

 1
0

 2
0
(23 − )  

=
 1
0


1
2
4 − 

=2
=0

 =
 1
0
(85 − 22)  = 4

3
− 2

3
= 2

3

5. The region enclosed by  is given by {( ) | 0 ≤  ≤ 2  ≤  ≤ 2}, so

2 + 22  =







(22)− 


(2)




=
 2
0

 2

(4 − 2)  

=
 2
0


2

=2
=



=
 2
0
33  = 3

4
4
2
0
= 12

7.




 + 

√


+ (2+ cos 2)  =







(2+ cos 2)− 




 + 

√





=
 1
0

√
2
(2− 1)   =  1

0
(12 − 2)  = 1

3
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9.


3 − 3  =







(−3)− 


(3)


 =



(−32 − 32)  =  2

0

 2
0
(−32)   

= −3  2
0


 2
0
3  = −3(2)(4) = −24

11. F( ) = h cos−  sin  +  cosi and the region  enclosed by  is given by

{( ) | 0 ≤  ≤ 2 0 ≤  ≤ 4− 2}.  is traversed clockwise, so − gives the positive orientation.

F · r = − −( cos−  sin) + ( +  cos)  = − 






( +  cos)− 


( cos−  sin)




= − 

( −  sin+ cos− cos+  sin)  = −  2

0

 4−2
0

  

= −  2
0


1
2
2
=4−2
=0

 = −  2
0

1
2
(4− 2)2  = −  2

0
(8− 8+ 22)  = − 8− 42 + 2

3
3
2
0

= − 16− 16 + 16
3
− 0 = − 16

3

13. F( ) = h − cos   sin i and the region enclosed by  is the disk with radius 2 centered at (3−4).
 is traversed clockwise, so − gives the positive orientation.


F · r = − −( − cos ) + ( sin )  = −   


( sin )− 


( − cos )




= − 

(sin  − 1− sin )  = 


 = area of = (2)2 = 4

15. Here  = 1 +2 where

1 can be parametrized as  = ,  = 1, −1 ≤  ≤ 1, and
2 is given by  = −,  = 2− 2, −1 ≤  ≤ 1.
Then the line integral is
1+2

2 + 2  =
 1
−1[1 ·  + 2 · 0] 

+
 1
−1[(2− 2)2−(−1) + (−)22−2(−2)] 

=
 1
−1[

 − (2− 2)2− − 232−2 ]  = −8+ 48−1

according to a CAS. The double integral is






− 




 =

 1

−1

 2−2

1

(2
 − 2)   = −8+ 48−1, verifying Green’s Theorem in this case.

17. By Green’s Theorem, =


F · r = 


(+ ) + 2  =



(2 − )  where  is the path described in the

question and is the triangle bounded by . So

 =
 1
0

 1−
0

(2 − )   =
 1
0


1
3
3 − 

=1−
=0

 =
 1
0


1
3
(1− )3 − (1− )




=
− 1

12
(1− )4 − 1

2
2 + 1

3
3
1
0
=
− 1

2
+ 1

3

− − 1
12


= − 1

12

19. Let 1 be the arch of the cycloid from (0 0) to (2 0), which corresponds to 0 ≤  ≤ 2, and let 2 be the segment from
(2 0) to (0 0), so 2 is given by  = 2 − ,  = 0, 0 ≤  ≤ 2. Then  = 1 ∪ 2 is traversed clockwise, so − is
oriented positively. Thus − encloses the area under one arch of the cycloid and from (5) we have

 = − −   =

1

 +

2

  =
 2
0
(1− cos )(1− cos ) +  2

0
0 (−)

=
 2
0
(1− 2 cos + cos2 ) + 0 = − 2 sin + 1

2
+ 1

4
sin 2

2
0
= 3
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21. (a) Using Equation 16.2.8, we write parametric equations of the line segment as  = (1− )1 + 2,  = (1− )1 + 2,

0 ≤  ≤ 1. Then  = (2 − 1)  and  = (2 − 1) , so

 −  =

 1
0
[(1− )1 + 2](2 − 1) + [(1− )1 + 2](2 − 1) 

=
 1
0
(1(2 − 1)− 1(2 − 1) + [(2 − 1)(2 − 1)− (2 − 1)(2 − 1)]) 

=
 1
0
(12 − 21)  = 12 − 21

(b) We apply Green’s Theorem to the path  = 1 ∪ 2 ∪ · · · ∪ , where  is the line segment that joins ( ) to

(+1 +1) for  = 1, 2,   , − 1, and  is the line segment that joins ( ) to (1 1). From (5),

1
2



 −   =



, where is the polygon bounded by . Therefore

area of polygon= () =



 = 1

2



 −  

= 1
2


1

 −  +

2

 −  + · · ·+ 
−1

 −  +



 −  


To evaluate these integrals we use the formula from (a) to get

() = 1
2
[(12 − 21) + (23 − 32) + · · ·+ (−1 − −1) + (1 − 1)].

(c)  = 1
2
[(0 · 1− 2 · 0) + (2 · 3− 1 · 1) + (1 · 2− 0 · 3) + (0 · 1− (−1) · 2) + (−1 · 0− 0 · 1)]

= 1
2
(0 + 5 + 2 + 2) = 9

2

23. We orient the quarter-circular region as shown in the figure.

 = 1
4
2 so  =

1

22




2  and  = − 1

22




2.

Here  = 1 +2 + 3 where 1:  = ,  = 0, 0 ≤  ≤ ;

2:  =  cos ,  =  sin , 0 ≤  ≤ 
2
; and

3:  = 0,  = − , 0 ≤  ≤ . Then

2  =


1

2  +

2

2  +

3

2  =
 
0
0 +

 2
0

( cos )2( cos ) +
 
0
0 

=
 2
0

3 cos3   = 3
 2
0

(1− sin2 ) cos   = 3

sin − 1

3
sin3 

2
0

= 2
3
3

so  =
1

22




2  =
4

3
.



2=


1

2 +

2

2 +

3

2  =
 
0
0 +

 2
0

( sin )2(− sin ) +  
0
0 

=
 2
0

(−3 sin3 )  = −3  2
0

(1− cos2 ) sin   = −3 1
3
cos3 − cos 2

0
= −2

3
3,

so  = − 1

22




2 =
4

3
. Thus ( ) =


4

3

4

3


.

25. By Green’s Theorem, −1
3



3  = − 1

3




(−32)  =



2  =  and

1
3



3  = 1

3




(32)  =



2  =  .

27. As in Example 5, let 0 be a counterclockwise-oriented circle with center the origin and radius , where  is chosen to

be small enough so that 0 lies inside , and  the region bounded by  and 0. Here

 =
2

(2 + 2)2
⇒ 


=
2(2 + 2)2 − 2 · 2(2 + 2) · 2

(2 + 2)4
=
23 − 62
(2 + 2)

3
and
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 =
2 − 2

(2 + 2)2
⇒ 


=
−2(2 + 2)2 − (2 − 2) · 2(2 + 2) · 2

(2 + 2)4
=
23 − 62
(2 + 2)

3
. Thus, as in the example,




 + +


−0

 + =








− 




 =




0  = 0

and


F · r = 

0 F · r. We parametrize 0 as r() =  cos  i+  sin  j, 0 ≤  ≤ 2. Then


F · r=

0
F · r =

 2

0

2 ( cos ) ( sin ) i+

2 sin2 − 2 cos2 


j

2 cos2 + 2 sin2 
2 ·


−  sin  i+  cos  j




=
1



 2

0

− cos  sin2 − cos3   = 1



 2

0

− cos  sin2 − cos  1− sin2  
= −1



 2

0

cos   = −1

sin 

2
0

= 0

29. Since  is a simple closed path which doesn’t pass through or enclose the origin, there exists an open region that doesn’t

contain the origin but does contain. Thus  = −(2 + 2) and = (2 + 2) have continuous partial derivatives on

this open region containing and we can apply Green’s Theorem. But by Exercise 16.3.35(a),  = , so

F · r = 


0  = 0.

31. Using the first part of (5), we have that



  = () =




. But  = ( ), and  =



+




,

and we orient  by taking the positive direction to be that which corresponds, under the mapping, to the positive direction

along , so


 =




( )





+







=




( )



+ ( )






= ± 







( ) 



− 



( ) 




 [using Green’s Theorem in the -plane]

= ± 








+ ( ) 2

 
− 




− ( ) 2

 


 [using the Chain Rule]

= ± 









− 








 [by the equality of mixed partials] = ± 



()

()


The sign is chosen to be positive if the orientation that we gave to  corresponds to the usual positive orientation, and it is

negative otherwise. In either case, since () is positive, the sign chosen must be the same as the sign of
 ( )

( )
.

Therefore () =




  =




( )( )

 .

16.5 Curl and Divergence

1. (a) curlF = ∇×F =


i j k

  

+   +   + 


=





( + )− 


( + )


i−





( + )− 


(+ )


j+





( + )− 


(+ )


k

= (− ) i− ( − ) j+ ( − )k = 0
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(b) divF = ∇ · F = 


(+ ) +




( + ) +




( + ) = 1 + 1 + 1 = 3

3. (a) curlF = ∇×F =


i j k

  

 0 

 = ( − 0) i− ( − ) j+ (0− )k

=  i+ ( − ) j−  k

(b) divF = ∇ · F = 


() +




(0) +




() =  + 0 +  = ( + )

5. (a) curlF= ∇×F =


i j k

  


2 + 2 + 2


2 + 2 + 2


2 + 2 + 2


=

1

(2 + 2 + 2)32
[(− + ) i− (− + ) j+ (− + )k] = 0

(b) divF= ∇ · F = 






2 + 2 + 2


+








2 + 2 + 2


+








2 + 2 + 2



=
2 + 2 + 2 − 2

(2 + 2 + 2)32
+

2 + 2 + 2 − 2

(2 + 2 + 2)32
+

2 + 2 + 2 − 2

(2 + 2 + 2)32
=
22 + 22 + 22

(2 + 2 + 2)32
=

2
2 + 2 + 2

7. (a) curlF = ∇×F =


i j k

  

 sin   sin   sin

 = (0−  cos ) i− ( cos− 0) j+ (0−  cos )k

= h− cos − cos− cos i

(b) divF = ∇ · F = 


( sin ) +




( sin ) +




( sin) =  sin  +  sin  +  sin

9. If the vector field is F =  i+ j+k, then we know  = 0. In addition, the -component of each vector of F is 0, so

 = 0, hence



=




=




=




=




=




= 0.  decreases as  increases, so




 0, but  doesn’t change

in the - or -directions, so



=




= 0.

(a) divF =



+




+




= 0 +




+ 0  0

(b) curlF =





− 




i+





− 




j+





− 




k = (0− 0) i+ (0− 0) j+ (0− 0)k = 0

11. If the vector field is F =  i+ j+k, then we know  = 0. In addition, the -component of each vector of F is 0, so

 = 0, hence



=




=




=




=




=




= 0.  increases as  increases, so




 0, but  doesn’t change in

the - or -directions, so



=




= 0.

(a) divF =



+




+




= 0 + 0 + 0 = 0
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(b) curlF =





− 




i+





− 




j+





− 




k = (0− 0) i+ (0− 0) j+


0− 




k = −


k

Since



 0, −


k is a vector pointing in the negative -direction.

13. curlF = ∇×F =


i j k

  

23 23 322

 = (62 − 62) i− (322 − 322) j+ (23 − 23)k = 0
and F is defined on all of R3 with component functions which have continuous partial derivatives, so by Theorem 4,

F is conservative. Thus, there exists a function  such that F = ∇ . Then (  ) = 23 implies

(  ) = 23 + ( ) and (  ) = 23 + ( ). But (  ) = 23, so ( ) = () and

(  ) = 23 + (). Thus (  ) = 322 + 0() but (  ) = 322 so () = , a constant.

Hence a potential function for F is (  ) = 23 +.

15. curlF = ∇×F =


i j k

  

322 223 3222


= (622 − 622) i− (622 − 62) j+ (43 − 62)k
= 62(1− ) j+ 22(2 − 3)k 6= 0

so F is not conservative.

17. curlF = ∇×F =


i j k

  

  


= [ +  − ( + )] i− ( − ) j+ ( − )k = 0

F is defined on all of R3, and the partial derivatives of the component functions are continuous, so F is conservative. Thus

there exists a function  such that ∇ = F. Then (  ) =  implies (  ) =  + ( ) ⇒
(  ) =  + ( ). But (  ) =  , so ( ) = () and (  ) =  + ().

Thus (  ) =  + 0() but (  ) =  so () =  and a potential function for F is

(  ) =  +.

19. No. Assume there is such aG. Then div(curlG) =



( sin ) +




(cos ) +




( − ) = sin  − sin  + 1 6= 0,

which contradicts Theorem 11.

21. curlF =


i j k

  

() () ()

 = (0− 0) i+ (0− 0) j+ (0− 0)k = 0. Hence F = () i+ () j+ ()k

is irrotational.
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For Exercises 23–29, letF(  ) = 1 i+1 j+1 k and G(  ) = 2 i+2 j+2 k.

23. div(F+G) = divh1 + 2 1 +2 1 +2i = (1 + 2)


+

(1 +2)


+

(1 +2)



=
1


+

2


+

1


+

2


+

1


+

2


=


1


+

1


+

1




+


2


+

2


+

2




= divh1 1 1i+ divh2 2 2i = divF+ divG

25. div(F) = div( h1 1 1i) = divh1 1 1i = (1)


+

(1)


+

(1)



=



1


+ 1






+



1


+1






+



1


+1






= 


1


+

1


+

1




+ h1 1 1i ·















=  divF+F ·∇

27. div(F×G) =∇ · (F×G) =


  

1 1 1

2 2 2

=




1 1

2 2

− 



 1 1

2 2

+ 



 1 1

2 2


=


1

2


+2

1


−2

1


−1

2




−

1

2


+2

1


− 2

1


−1

2





+


1

2


+2

1


− 2

1


−1

2





=


2


1


− 1




+2


1


− 1




+2


1


− 1





−

1


2


− 2




+1


2


− 2




+1


2


− 2




=G · curlF−F · curlG

29. curl(curlF) = ∇× (∇×F) =


i j k

  

1 − 1 1 − 1 1− 1


=


21


− 21

2
− 21

2
+

21




i+


21


− 21

2
− 21

2
+

21




j

+


21


− 21

2
− 21

2
+

21




k

Now let’s consider grad(divF)−∇2F and compare with the above.

(Note that∇2F is defined on page 1119 [ET 1095].)

[continued]
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grad(divF)−∇2F =


21

2
+

21


+

21




i+


21


+

21

2
+

21




j+


21


+

21


+

21

2


k



−


21

2
+

21

2
+

21

2


i+


21

2
+

21

2
+

21

2


j

+


21

2
+

21

2
+

21

2


k



=


21


+

21


− 21

2
− 21

2


i+


21


+

21


− 21

2
− 21

2


j

+


21


+

21


− 21

2
− 22

2


k

Then applying Clairaut’s Theorem to reverse the order of differentiation in the second partial derivatives as needed and

comparing, we have curl curlF = graddivF−∇2F as desired.

31. (a) ∇ = ∇

2 + 2 + 2 =


2 + 2 + 2

i+


2 + 2 + 2
j+


2 + 2 + 2

k =
 i+  j+  k
2 + 2 + 2

=
r



(b) ∇× r =


i j k













  


=





()− 


()


i+





()− 


()


j+





()− 


()


k = 0

(c) ∇

1




= ∇


1

2 + 2 + 2



=

− 1

2

2 + 2 + 2

(2)

2 + 2 + 2
i−

1

2

2 + 2 + 2

(2)

2 + 2 + 2
j−

1

2

2 + 2 + 2

(2)

2 + 2 + 2
k

= −  i+  j+  k

(2 + 2 + 2)32
= − r

3

(d) ∇ ln  = ∇ ln(2 + 2 + 2)12 = 1
2
∇ ln(2 + 2 + 2)

=


2 + 2 + 2
i+



2 + 2 + 2
j+



2 + 2 + 2
k =

 i+  j+  k

2 + 2 + 2
=
r

2

33. By (13),


(∇) · n  = 


div(∇)  = 


[ div(∇) +∇ ·∇ ]  by Exercise 25. But div(∇) = ∇2.

Hence



∇2  =



(∇) · n − 


∇ ·∇ .

35. Let ( ) = 1. Then ∇ = 0 and Green’s first identity (see Exercise 33) says

∇2  =



(∇) · n − 


0 ·∇  ⇒ 


∇2  =



∇ · n . But  is harmonic on, so

∇2 = 0 ⇒ 

∇ · n  = 0 and 


n  =



(∇ · n)  = 0.

37. (a) We know that  = , and from the diagram sin  =  ⇒  =  = (sin ) = |w× r|. But v is perpendicular
to bothw and r, so that v = w× r.
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(b) From (a), v = w× r =


i j k

0 0 

  

 = (0 ·  − ) i+ (− 0 · ) j+ (0 ·  −  · 0)k = − i+  j

(c) curlv = ∇× v =


i j k

  

−  0


=





(0)− 


()


i+





(−)− 


(0)


j+





()− 


(−)


k

= [ − (−)]k = 2 k = 2w

39. For any continuous function  on R3, define a vector fieldG(  ) = h(  ) 0 0i where (  ) =  
0
 (  ) .

Then divG =



((  )) +




(0) +




(0) =





 
0
(  )  = (  ) by the Fundamental Theorem of

Calculus. Thus every continuous function  on R3 is the divergence of some vector field.

16.6 Parametric Surfaces and Their Areas

1.  (7 10 4) lies on the parametric surface r( ) = h2+ 3 1 + 5−  2 + + i if and only if there are values for 

and  where 2+ 3 = 7, 1 + 5−  = 10, and 2 + +  = 4. But solving the first two equations simultaneously gives

 = 2,  = 1 and these values do not satisfy the third equation, so  does not lie on the surface.

(5 22 5) lies on the surface if 2+ 3 = 5, 1 + 5−  = 22, and 2 + +  = 5 for some values of  and . Solving the

first two equations simultaneously gives  = 4,  = −1 and these values satisfy the third equation, so lies on the surface.

3. r( ) = (+ ) i+ (3− ) j+ (1 + 4+ 5)k = h0 3 1i+  h1 0 4i+  h1−1 5i. From Example 3, we recognize

this as a vector equation of a plane through the point (0 3 1) and containing vectors a = h1 0 4i and b = h1−1 5i. If we

wish to find a more conventional equation for the plane, a normal vector to the plane is a× b =


i j k

1 0 4

1−1 5

 = 4 i− j− k

and an equation of the plane is 4(− 0)− ( − 3)− ( − 1) = 0 or 4−  −  = −4.

5. r( ) =

  2 − 2


, so the corresponding parametric equations for the surface are  = ,  = ,  = 2 − 2. For any

point (  ) on the surface, we have  = 2 − 2. With no restrictions on the parameters, the surface is  = 2 − 2, which

we recognize as a hyperbolic paraboloid.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



322 ¤ CHAPTER 16 VECTOR CALCULUS

7. r( ) =

2 2 + 


, −1 ≤  ≤ 1, −1 ≤  ≤ 1.

The surface has parametric equations  = 2,  = 2,  = + , −1 ≤  ≤ 1, −1 ≤  ≤ 1.

In Maple, the surface can be graphed by entering

plot3d([uˆ2,vˆ2,u+v],u=-1..1,v=-1..1);.

In Mathematica we use the ParametricPlot3D command.

If we keep  constant at 0,  = 20, a constant, so the

corresponding grid curves must be the curves parallel to the

-plane. If  is constant, we have  = 20 , a constant, so these

grid curves are the curves parallel to the -plane.

9. r( ) =

 cos   sin  5


.

The surface has parametric equations  =  cos ,  =  sin ,

 = 5, −1 ≤  ≤ 1, 0 ≤  ≤ 2. Note that if  = 0 is constant

then  = 50 is constant and  = 0 cos ,  = 0 sin  describe a

circle in ,  of radius |0|, so the corresponding grid curves are
circles parallel to the -plane. If  = 0, a constant, the parametric

equations become  =  cos 0,  =  sin 0,  = 5. Then

 = (tan 0), so these are the grid curves we see that lie in vertical

planes  =  through the -axis.

11.  = sin ,  = cos sin 4,  = sin 2 sin 4, 0 ≤  ≤ 2, −
2
≤  ≤ 

2
.

Note that if  = 0 is constant, then  = sin 0 is constant, so the

corresponding grid curves must be parallel to the -plane. These

are the vertically oriented grid curves we see, each shaped like a

“figure-eight.” When  = 0 is held constant, the parametric

equations become  = sin ,  = cos0 sin 4,

 = sin 20 sin 4. Since  is a constant multiple of , the

corresponding grid curves are the curves contained in planes

 =  that pass through the -axis.

13. r( ) =  cos  i+  sin  j+  k. The parametric equations for the surface are  =  cos ,  =  sin ,  = . We look at

the grid curves first; if we fix , then  and  parametrize a straight line in the plane  =  which intersects the -axis. If  is

held constant, the projection onto the -plane is circular; with  = , each grid curve is a helix. The surface is a spiraling

ramp, graph IV.
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15. r( ) = sin  i+ cos sin 2 j+ sin sin 2 k. Parametric equations for the surface are  = sin ,  = cos sin 2,

 = sin sin 2. If  = 0 is fixed, then  = sin 0 is constant, and  = (sin 20) cos and  = (sin 20) sin describe a

circle of radius |sin 20|, so each corresponding grid curve is a circle contained in the vertical plane  = sin 0 parallel to the
-plane. The only possible surface is graph II. The grid curves we see running lengthwise along the surface correspond to

holding  constant, in which case  = (cos0) sin 2,  = (sin0) sin 2 ⇒  = (tan0), so each grid curve lies in a

plane  =  that includes the -axis.

17.  = cos3  cos3 ,  = sin3  cos3 ,  = sin3 . If  = 0 is held constant then  = sin3 0 is constant, so the

corresponding grid curve lies in a horizontal plane. Several of the graphs exhibit horizontal grid curves, but the curves for this

surface are neither circles nor straight lines, so graph III is the only possibility. (In fact, the horizontal grid curves here are

members of the family  =  cos3 ,  =  sin3  and are called astroids.) The vertical grid curves we see on the surface

correspond to  = 0 held constant, as then we have  = cos3 0 cos3 ,  = sin3 0 cos3  so the corresponding grid curve

lies in the vertical plane  = (tan3 0) through the -axis.

19. From Example 3, parametric equations for the plane through the point (0 0 0) that contains the vectors a = h1−1 0i and
b = h0 1−1i are  = 0 + (1) + (0) = ,  = 0 + (−1) + (1) =  − ,  = 0 + (0) + (−1) = −.

21. Solving the equation for  gives 2 = 1 + 2 + 1
4
2 ⇒  =


1 + 2 + 1

4
2. (We choose the positive root since we want

the part of the hyperboloid that corresponds to  ≥ 0.) If we let  and  be the parameters, parametric equations are  = ,

 = ,  =

1 + 2 + 1

4
2.

23. Since the cone intersects the sphere in the circle 2 + 2 = 2,  =
√
2 and we want the portion of the sphere above this, we

can parametrize the surface as  = ,  = ,  =

4− 2 − 2 where 2 + 2 ≤ 2.

Alternate solution: Using spherical coordinates,  = 2 sin cos ,  = 2 sin sin ,  = 2 cos where 0 ≤  ≤ 
4
and

0 ≤  ≤ 2.

25. Parametric equations are  = ,  = 4cos ,  = 4 sin , 0 ≤  ≤ 5, 0 ≤  ≤ 2.

27. The surface appears to be a portion of a circular cylinder of radius 3 with axis the -axis. An equation of the cylinder is

2 + 2 = 9, and we can impose the restrictions 0 ≤  ≤ 5,  ≤ 0 to obtain the portion shown. To graph the surface on a
CAS, we can use parametric equations  = ,  = 3cos ,  = 3 sin  with the parameter domain 0 ≤  ≤ 5, 

2
≤  ≤ 3

2
.

Alternatively, we can regard  and  as parameters. Then parametric equations are  = ,  = ,  = −√9− 2, where

0 ≤  ≤ 5 and −3 ≤  ≤ 3.

29. Using Equations 3, we have the parametrization  = ,  = − cos ,

 = − sin , 0 ≤  ≤ 3, 0 ≤  ≤ 2.
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31. (a) Replacing cos by sin and sin by cos gives parametric equations

 = (2 + sin ) sin,  = (2 + sin ) cos,  = + cos . From the graph, it

appears that the direction of the spiral is reversed. We can verify this observation by

noting that the projection of the spiral grid curves onto the -plane, given by

 = (2 + sin ) sin,  = (2 + sin ) cos,  = 0, draws a circle in the clockwise

direction for each value of . The original equations, on the other hand, give circular

projections drawn in the counterclockwise direction. The equation for  is identical in

both surfaces, so as  increases, these grid curves spiral up in opposite directions for

the two surfaces.

(b) Replacing cos by cos 2 and sin by sin 2 gives parametric equations

 = (2 + sin ) cos 2,  = (2 + sin ) sin 2,  = + cos . From the graph, it

appears that the number of coils in the surface doubles within the same parametric

domain. We can verify this observation by noting that the projection of the spiral grid

curves onto the -plane, given by  = (2 + sin ) cos 2,  = (2 + sin ) sin 2,

 = 0 (where  is constant), complete circular revolutions for 0 ≤  ≤  while the

original surface requires 0 ≤  ≤ 2 for a complete revolution. Thus, the new
surface winds around twice as fast as the original surface, and since the equation for 

is identical in both surfaces, we observe twice as many circular coils in the same

-interval.

33. r( ) = (+ ) i+ 32 j+ (− )k.

r = i+ 6 j+ k and r = i− k, so r × r = −6 i+ 2 j− 6k. Since the point (2 3 0) corresponds to  = 1,  = 1, a
normal vector to the surface at (2 3 0) is −6 i+ 2 j− 6k, and an equation of the tangent plane is−6+ 2 − 6 = −6 or
3−  + 3 = 3.

35. r( ) =  cos  i+  sin  j+  k ⇒ r

1 

3


=

1
2

√
3
2
 
3


.

r = cos  i+ sin  j and r = − sin  i+  cos  j+ k, so a normal vector to the surface at the point

1
2

√
3
2
 
3


is

r

1 

3

× r1 3  =  12 i+ √
3
2
j

×

−
√
3
2
i+ 1

2
j+ k


=
√
3
2
i− 1

2
j+ k. Thus an equation of the tangent plane at

1
2

√
3
2
 
3


is
√
3
2


− 1

2

− 1
2


 −

√
3
2


+ 1

 − 

3


= 0 or

√
3
2
− 1

2
 +  = 

3
.

37. r( ) = 2 i+ 2 sin  j+  cos  k ⇒ r(1 0) = (1 0 1).

r = 2 i+ 2 sin  j+ cos  k and r = 2 cos  j−  sin  k,

so a normal vector to the surface at the point (1 0 1) is

r(1 0)× r(1 0) = (2 i+ k)× (2 j) = −2 i+ 4k.
Thus an equation of the tangent plane at (1 0 1) is

−2(− 1) + 0( − 0) + 4( − 1) = 0 or −+ 2 = 1.
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39. The surface  is given by  = ( ) = 6− 3− 2 which intersects the -plane in the line 3+ 2 = 6, so is the

triangular region given by

( )

 0 ≤  ≤ 2 0 ≤  ≤ 3− 3
2


. By Formula 9, the surface area of  is

() =





1 +






2
+






2


=





1 + (−3)2 + (−2)2  = √14 


 =

√
14() =

√
14

1
2
· 2 · 3 = 3√14

41. Here we can write  = ( ) = 1
3
− 1

3
− 2

3
 and is the disk 2 + 2 ≤ 3, so by Formula 9 the area of the surface is

() =





1 +






2
+






2
 =





1 +

− 1
3

2
+
− 2

3

2
 =

√
14
3






=
√
14
3

() =
√
14
3
· √3 2 = √14

43.  = ( ) = 2
3
(32 + 32) and = {( ) | 0 ≤  ≤ 1 0 ≤  ≤ 1}. Then  = 12,  = 12 and

() =





1 + (

√
 )

2
+
√


2
 =

 1
0

 1
0

√
1 + +   

=
 1
0


2
3
(+  + 1)32

=1
=0

 = 2
3

 1
0


(+ 2)32 − (+ 1)32




= 2
3


2
5
(+ 2)52 − 2

5
(+ 1)52

1
0
= 4

15
(352 − 252 − 252 + 1) = 4

15
(352 − 272 + 1)

45.  = ( ) =  with 2 + 2 ≤ 1, so  = ,  =  ⇒

() =





1 + 2 + 2  =

 2
0

 1
0

√
2 + 1    =

 2
0


1
3
(2 + 1)32

=1
=0



=
 2
0

1
3


2
√
2− 1  = 2

3


2
√
2− 1

47. A parametric representation of the surface is  = ,  = 4+ 2,  =  with 0 ≤  ≤ 1, 0 ≤  ≤ 1.
Hence r × r = (i+ 4 j)× (2 j+ k) = 4 i− j+ 2 k.

Note: In general, if  = ( ) then r × r = 


i− j+ 


k and  () =





1 +






2
+






2
. Then

() =
 1
0

 1
0

√
17 + 42  =

 1
0

√
17 + 42 

= 1
2



√
17 + 42 + 17

2
ln
2 +√42 + 17 1

0
=
√
21
2
+ 17

4


ln

2 +

√
21
− ln√17 

49. r = h2  0i, r = h0  i, and r × r =

2−2 22. Then

() =



|r × r|  =

 1
0

 2
0

√
4 + 422 + 44   =

 1
0

 2
0


(2 + 22)2  

=
 1
0

 2
0
(2 + 22)   =

 1
0


1
3
3 + 22

=2
=0

 =
 1
0


8
3
+ 42


 =


8
3
+ 4

3
3
1
0
= 4

51. From Equation 9 we have () =





1 + ()2 + ()2 . But if || ≤ 1 and || ≤ 1 then 0 ≤ ()2 ≤ 1,

0 ≤ ()2 ≤ 1 ⇒ 1 ≤ 1 + ()2 + ()2 ≤ 3 ⇒ 1 ≤

1 + ()2 + ()2 ≤

√
3. By Property 15.3.11,


1  ≤ 




1 + ()2 + ()2  ≤




√
3  ⇒ () ≤ () ≤ √3() ⇒

2 ≤ () ≤ √32.
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53.  = ( ) = −
2−2 with 2 + 2 ≤ 4.

() =





1 +

−2−2−22 + −2−2−22  = 



1 + 4(2 + 2)−2(2+2) 

=
 2
0

 2
0


1 + 42−22    =

 2
0


 2
0


1 + 42−22  = 2

 2
0


1 + 42−22  ≈ 139783

55. (a) () =





1 +






2
+






2
 =

 6

0

 4

0


1 +

42 + 42

(1 + 2 + 2)4
 .

Using the Midpoint Rule with ( ) =


1 +

42 + 42

(1 + 2 + 2)4
, = 3,  = 2 we have

() ≈
3

=1

2
=1



 


∆ = 4 [(1 1) + (1 3) + (3 1) + (3 3) + (5 1) + (5 3)] ≈ 242055

(b) Using a CAS we have () =
 6

0

 4

0


1 +

42 + 42

(1 + 2 + 2)4
  ≈ 242476. This agrees with the estimate in part (a)

to the first decimal place.

57.  = 1 + 2+ 3 + 42, so

() =





1 +






2
+






2
 =

 4

1

 1

0


1 + 4 + (3 + 8)2   =

 4

1

 1

0


14 + 48 + 642  .

Using a CAS, we have 4
1

 1
0


14 + 48 + 642   = 45

8

√
14 + 15

16
ln

11
√
5 + 3

√
14
√
5
− 15

16
ln

3
√
5 +

√
14
√
5


or 45
8

√
14 + 15

16
ln 11

√
5+ 3

√
70

3
√
5+

√
70
.

59. (a)  =  sin cos ,  =  sin sin ,  =  cos ⇒

2

2
+

2

2
+

2

2
= (sin cos )2 + (sin sin )2 + (cos)2

= sin2 + cos2  = 1

and since the ranges of  and  are sufficient to generate the entire graph,

the parametric equations represent an ellipsoid.

(b)

(c) From the parametric equations (with  = 1,  = 2, and  = 3),

we calculate r = cos cos  i+ 2cos sin  j− 3 sink and

r = − sin sin  i+ 2 sin cos  j. So r × r = 6 sin2  cos  i+ 3 sin2  sin  j+ 2 sin cosk, and the surface

area is given by () =
 2
0

 
0
|r × r| =

 2
0

 
0


36 sin4  cos2  + 9 sin4  sin2  + 4cos2  sin2 

61. To find the region:  = 2 + 2 implies  + 2 = 4 or 2 − 3 = 0. Thus  = 0 or  = 3 are the planes where the

surfaces intersect. But 2 + 2 + 2 = 4 implies 2 + 2 + ( − 2)2 = 4, so  = 3 intersects the upper hemisphere.

Thus (− 2)2 = 4− 2 − 2 or  = 2+

4− 2 − 2. Therefore is the region inside the circle 2 + 2 + (3− 2)2 = 4,
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that is, =

( ) | 2 + 2 ≤ 3.

() =





1 + [(−)(4− 2 − 2)−12]2 + [(−)(4− 2 − 2)−12]2 

=

 2

0

 √
3

0


1 +

2

4− 2
   =

 2

0

 √
3

0

2 √
4− 2

 =

 2

0


−2(4− 

2
)
12
=√3
=0



=
 2
0
(−2 + 4)  = 2

2
0
= 4

63. Let (1) be the surface area of that portion of the surface which lies above the plane  = 0. Then () = 2(1).

Following Example 10, a parametric representation of 1 is  =  sin cos ,  =  sin sin ,

 =  cos and |r × r| = 2 sin. For, 0 ≤  ≤ 
2
and for each fixed ,


− 1

2

2
+ 2 ≤  1

2

2
or

 sin cos  − 1
2

2
+ 2 sin2  sin2  ≤ (2)2 implies 2 sin2 − 2 sin cos  ≤ 0 or

sin (sin− cos ) ≤ 0. But 0 ≤  ≤ 
2
, so cos  ≥ sin or sin

2
+ 
 ≥ sin or − 

2
≤  ≤ 

2
− .

Hence =

( ) | 0 ≤  ≤ 

2
, − 

2
≤  ≤ 

2
− 


. Then

(1) =
 2
0

 (2)−

− (2) 
2 sin  = 2

 2
0

( − 2) sin

= 2 [(− cos)− 2(− cos+ sin)]20 = 2( − 2)

Thus () = 22( − 2).

Alternate solution: Working on 1 we could parametrize the portion of the sphere by  = ,  = ,  =

2 − 2 − 2.

Then |r × r| =

1 +

2

2 − 2 − 2
+

2

2 − 2 − 2
=


2 − 2 − 2

and

(1) =


0≤ (− (2))2 + 2≤ (2)2


2 − 2 − 2

 =

 2

−2

  cos 

0

√
2 − 2

  

=
 2
−2 −(2 − 2)12

=  cos 

=0
 =

 2
−2 

2[1− (1− cos2 )12] 

=
 2
−2 

2(1− |sin |)  = 22  2
0

(1− sin )  = 22
2
− 1

Thus () = 42


2
− 1 = 22( − 2).

Notes:

(1) Perhaps working in spherical coordinates is the most obvious approach here. However, you must be careful

in setting up.

(2) In the alternate solution, you can avoid having to use |sin | by working in the first octant and then
multiplying by 4. However, if you set up 1 as above and arrived at (1) = 2, you now see your error.
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16.7 Surface Integrals

1. The faces of the box in the planes  = 0 and  = 2 have surface area 24 and centers (0 2 3), (2 2 3). The faces in  = 0 and

 = 4 have surface area 12 and centers (1 0 3), (1 4 3), and the faces in  = 0 and  = 6 have area 8 and centers (1 2 0),

(1 2 6). For each face we take the point  ∗ to be the center of the face and (  ) = −01(++), so by Definition 1,

(  )  ≈ [(0 2 3)](24) + [(2 2 3)](24) + [(1 0 3)](12)

+ [(1 4 3)](12) + [(1 2 0)](8) + [(1 2 6)](8)

= 24(−05 + −07) + 12(−04 + −08) + 8(−03 + −09) ≈ 4909

3. We can use the - and -planes to divide into four patches of equal size, each with surface area equal to 1
8
the surface

area of a sphere with radius
√
50, so∆ = 1

8
(4)

√
50
2
= 25. Then (±3±4 5) are sample points in the four patches,

and using a Riemann sum as in Definition 1, we have

(  )  ≈ (3 4 5)∆ + (3−4 5)∆ + (−3 4 5)∆ + (−3−4 5)∆

= (7 + 8 + 9 + 12)(25) = 900 ≈ 2827

5. r( ) = ( + ) i + ( − ) j + (1 + 2 + )k, 0 ≤  ≤ 2, 0 ≤  ≤ 1 and
r × r = (i+ j+ 2k)× (i− j+ k) = 3 i+ j− 2k ⇒ |r × r| =


32 + 12 + (−2)2 = √14. Then by Formula 2,


(+  + )  =



(+  + −  + 1 + 2+ ) |r × r|  =

 1
0

 2
0
(4+  + 1) ·√14 

=
√
14
 1
0


22 +  + 

=2
=0

 =
√
14
 1
0
(2 + 10)  =

√
14

2 + 10

1
0
= 11

√
14

7. r( ) = h cos   sin  i, 0 ≤  ≤ 1, 0 ≤  ≤  and

r × r = hcos  sin  0i × h− sin   cos  1i = hsin − cos  i ⇒

|r × r| =

sin2  + cos2  + 2 =

√
2 + 1. Then


  =



( sin ) |r × r|  =

 1
0

 
0
( sin ) ·√2 + 1   =  1

0

√
2 + 1 

 
0
sin  

=

1
3
(2 + 1)32

1
0
[− cos ]0 = 1

3
(232 − 1) · 2 = 2

3
(2
√
2− 1)

9.  = 1 + 2+ 3 so



= 2 and




= 3. Then by Formula 4,



2  =





2







2
+






2
+ 1  =

 3
0

 2
0
2(1 + 2+ 3)

√
4 + 9 + 1  

=
√
14
 3
0

 2
0
(2 + 23 + 322)   =

√
14
 3
0


1
2
22 + 32 + 23

=2
=0



=
√
14
 3
0
(102 + 43)  =

√
14

10
3
3 + 4

3
0
= 171

√
14

11. An equation of the plane through the points (1 0 0), (0−2 0), and (0 0 4) is 4− 2 +  = 4, so  is the region in the

plane  = 4− 4+ 2 over = {( ) | 0 ≤  ≤ 1 2− 2 ≤  ≤ 0}. Thus by Formula 4,

 =





(−4)2 + (2)2 + 1  = √21  1

0

 0
2−2   =

√
21
 1
0
[]

=0

=2−2 

=
√
21
 1
0
(−22 + 2)  = √21 − 2

3
3 + 2

1
0
=
√
21
− 2

3
+ 1

=
√
21
3
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13.  is the portion of the cone 2 = 2 + 2 for 1 ≤  ≤ 3, or equivalently,  is the part of the surface  =

2 + 2 over the

region =

( ) | 1 ≤ 2 + 2 ≤ 9. Thus





2

2
 =





2
(
2
+ 

2
)

 
2 + 2

2
+




2 + 2

2
+ 1 

=





2
(
2
+ 

2
)


2 + 2

2 + 2
+ 1  =




√
2

2
(
2
+ 

2
)  =

√
2

 2

0

 3

1

( cos )
2
(
2
)   

=
√
2
 2
0
cos2  

 3
1
5  =

√
2

1
2
 + 1

4
sin 2

2
0


1
6
6
3
1
=
√
2 () · 1

6
(36 − 1) = 364

√
2

3


15. Using  and  as parameters, we have r( ) =  i+ (2 + 2) j+  k, 2 + 2 ≤ 4. Then
r × r = (i+ 2 j)× (2 j+ k) = 2 i− j+ 2 k and |r × r| =

√
42 + 1 + 42 =


1 + 4(2 + 2). Thus


  =


2+2≤4

(2 + 2)

1 + 4(2 + 2)  =

 2
0

 2
0
2
√
1 + 42    =

 2
0


 2
0
2
√
1 + 42  

= 2
 2
0
2
√
1 + 42  


let  = 1 + 42 ⇒ 2 = 1

4
(− 1) and 1

8
 =  


= 2

 17
1

1
4
(− 1)√ · 1

8
 = 1

16

 17
1
(32 − 12) 

= 1
16


2
5
52 − 2

3
32

17
1
= 1

16


2
5
(17)52 − 2

3
(17)32 − 2

5
+ 2

3


=



60


391

√
17 + 1


17. Using spherical coordinates and Example 16.6.10 we have r( ) = 2 sin cos  i+ 2 sin sin  j+ 2cosk and

|r × r| = 4 sin. Then


(2 + 2)  =

 2
0

 2
0

(4 sin2 )(2 cos)(4 sin)  = 16 sin4 
2
0

= 16.

19.  is given by r( ) =  i + cos  j + sin  k, 0 ≤  ≤ 3, 0 ≤  ≤ 2. Then

r × r = i× (− sin  j+ cos  k) = − cos  j− sin  k and |r × r| =

cos2  + sin2  = 1, so


( + 2)  =

 2
0

 3
0
(sin  + 2 cos )(1)  =

 2
0

(3 sin  + 9 cos ) 

= [−3 cos  + 9 sin ]2
0 = 0 + 9 + 3− 0 = 12

21. From Exercise 5, r( ) = (+ ) i+ (− ) j+ (1 + 2+ )k, 0 ≤  ≤ 2, 0 ≤  ≤ 1, and r × r = 3 i+ j− 2k.
Then

F(r( )) = (1 + 2+ )(+)(−) i− 3(1 + 2+ )(+)(−) j+ (+ )(− )k

= (1 + 2+ )
2−2 i− 3(1 + 2+ )

2−2 j+ (2 − 2)k

Because the -component of r × r is negative we use −(r × r) in Formula 9 for the upward orientation:

F · S = 


F · (−(r × r))  =

 1
0

 2
0


−3(1 + 2+ )

2−2 + 3(1 + 2+ )
2−2 + 2(2 − 2)




=
 1
0

 2
0
2(2 − 2)  = 2

 1
0


1
3
3 − 2

=2
=0

 = 2
 1
0


8
3
− 22 

= 2

8
3
 − 2

3
3
1
0
= 2


8
3
− 2

3


= 4

23. F(  ) =  i+  j+ k,  = ( ) = 4− 2 − 2, and is the square [0 1]× [0 1], so by Equation 10

F · S= 


[−(−2)− (−2) + ]  =

 1
0

 1
0
[22 + 22(4− 2 − 2) + (4− 2 − 2)]  

=
 1
0


1
3
2 + 11

3
− 3 + 34

15


 = 713

180
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25. F(  ) =  i −  j +  k,  = ( ) =

4− 2 − 2 and  is the quarter disk

( )
 0 ≤  ≤ 2 0 ≤  ≤ √4− 2


.  has downward orientation, so by Formula 10,



F · S = − 




− · 1

2
(4− 2 − 2)−12(−2)− (−) · 1

2
(4− 2 − 2)−12(−2) + 




= −





2

4− 2 − 2
−

4− 2 − 2 · 

4− 2 − 2
+ 




= − 

2(4− (2 + 2))−12  = −  2

0

 2
0
( cos )2(4− 2)−12   

= −  2
0

cos2  
 2
0
3(4− 2)−12 


let  = 4− 2 ⇒ 2 = 4−  and − 1

2
 =  


= −  2

0


1
2
+ 1

2
cos 2



 0
4
− 1
2
(4− )()−12 

= −  1
2
 + 1

4
sin 2

2
0

−1
2


8
√
− 2

3
32

0
4
= −

4

− 1
2

−16 + 16
3


= − 4

3


27. Let 1 be the paraboloid  = 2 + 2, 0 ≤  ≤ 1 and 2 the disk 2 + 2 ≤ 1,  = 1. Since  is a closed
surface, we use the outward orientation.

On 1: F(r( )) = (2 + 2) j−  k and r × r = 2 i− j+ 2 k (since the j-component must be negative on 1). Then
1
F · S= 

2 + 2≤ 1

[−(2 + 2)− 22]  = −  2
0

 1
0
(2 + 22 sin2 )   

= −  2
0

 1
0
3(1 + 2 sin2 )   = −  2

0
(1 + 1− cos 2)   1

0
3 

= − 2 − 1
2
sin 2

2
0


1
4
4
1
0
= −4 · 1

4
= −

On 2: F(r( )) = j−  k and r × r = j. Then


2
F · S = 

2 + 2≤ 1
(1)  = .

Hence



F · S = − +  = 0.

29. Here  consists of the six faces of the cube as labeled in the figure. On 1:

F = i+ 2 j+ 3 k, r × r = i and


1
F · S =  1−1  1−1   = 4;

2: F =  i+ 2 j+ 3 k, r × r = j and


2
F · S =  1−1  1−1 2  = 8;

3: F =  i+ 2 j+ 3k, r × r = k and


3
F · S =  1−1  1−1 3 = 12;

4: F = −i+ 2 j+ 3 k, r × r = −i and


4
F · S = 4;

5: F =  i− 2 j+ 3 k, r × r = −j and


5
F · S = 8;

6: F =  i + 2 j − 3k, r × r = −k and


6
F · S =  1−1  1−1 3  = 12.

Hence



F · S =

6
=1



F · S = 48.

31. Here  consists of four surfaces: 1, the top surface (a portion of the circular cylinder 2 + 2 = 1); 2, the bottom surface

(a portion of the -plane); 3, the front half-disk in the plane  = 2, and 4, the back half-disk in the plane  = 0.
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On 1: The surface is  =

1− 2 for 0 ≤  ≤ 2, −1 ≤  ≤ 1 with upward orientation, so


1

F · S=
 2

0

 1

−1


−2 (0)− 

2


− 

1− 2


+ 

2


  =

 2

0

 1

−1


3
1− 2

+ 1− 
2


 

=
 2
0


−

1− 2 + 1

3
(1− 2)32 +  − 1

3
3
=1
=−1

 =
 2
0

4
3
 = 8

3

On 2: The surface is  = 0 with downward orientation, so
2
F · S =  2

0

 1
−1
−2   =  2

0

 1
−1 (0)   = 0

On 3: The surface is  = 2 for −1 ≤  ≤ 1, 0 ≤  ≤

1− 2, oriented in the positive -direction. Regarding  and  as

parameters, we have r × r = i and
3
F · S =  1−1 √1−2

0
2   =

 1
−1
√1−2
0

4   = 4 (3) = 2

On 4: The surface is  = 0 for −1 ≤  ≤ 1, 0 ≤  ≤

1− 2, oriented in the negative -direction. Regarding  and  as

parameters, we use − (r × r) = −i and
4
F · S =  1−1 √1−2

0
2   =

 1
−1
√1−2
0

(0)   = 0

Thus



F · S = 8

3
+ 0 + 2 + 0 = 2 + 8

3
.

33.  =  ⇒  =  ,  =  , so by Formula 4, a CAS gives

(2 + 2 + 2)  =

 1
0

 1
0
(2 + 2 + 22)

√
2 + 22 + 1   ≈ 45822.

35. We use Formula 4 with  = 3− 22 − 2 ⇒  = −4,  = −2. The boundaries of the region

3− 22 − 2 ≥ 0 are −


3
2
≤  ≤


3
2
and −√3− 22 ≤  ≤ √3− 22, so we use a CAS (with precision reduced to

seven or fewer digits; otherwise the calculation may take a long time) to calculate



2

2

2
 =

 √32

−
√
32

 √3− 22

−
√
3− 22


2

2
(3− 22 − 

2
)
2

162 + 42 + 1   ≈ 34895

37. If  is given by  = ( ), then  is also the level surface (  ) =  − ( ) = 0.

n =
∇(  )
|∇(  )| =

− i+ j−  k√
2 + 1 + 2

, and −n is the unit normal that points to the left. Now we proceed as in the

derivation of (10), using Formula 4 to evaluate




F · S =




F · n =




( i+ j+k)




i− j+ 


k





2
+ 1 +






2






2
+ 1 +






2


where is the projection of  onto the -plane. Therefore




F · S =









−+






.
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39.  =



  =  · 4 1

2
2

= 22; by symmetry =  = 0, and

 =



  = 

 2
0

 2
0

( cos)(2 sin)  = 23
−1

4
cos 2

2
0

= 3.

Hence (  ) =

0 0 1

2


.

41. (a)  =



(2 + 2)(  ) 

(b)  =


(2 + 2)


10−


2 + 2


 =


1≤ 2 + 2≤ 16

(2 + 2)

10−


2 + 2

√
2 

=
 2
0

 4
1

√
2 (103 − 4)   = 2

√
2

4329
10


= 4329

5

√
2

43. The rate of flow through the cylinder is the flux



v · n  = 


v · S. We use the parametric representation

r( ) = 2 cos i+ 2 sin j+  k for , where 0 ≤  ≤ 2, 0 ≤  ≤ 1, so r = −2 sin i+ 2cos j, r = k, and the
outward orientation is given by r × r = 2cos i+ 2 sin j. Then


v · S= 

 2
0

 1
0


 i+ 4 sin2  j+ 4 cos2 k

 · (2 cos i+ 2 sin j)  
= 

 2
0

 1
0


2 cos+ 8 sin3 


  = 

 2
0


cos+ 8 sin3 




= 

sin+ 8

− 1
3


(2 + sin2 ) cos

2
0
= 0 kgs

45.  consists of the hemisphere 1 given by  =

2 − 2 − 2 and the disk 2 given by 0 ≤ 2 + 2 ≤ 2,  = 0.

On 1: E =  sin cos  i +  sin sin  j + 2 cosk,

T ×T = 2 sin2  cos  i+ 2 sin2  sin  j+ 2 sin cosk. Thus
1
E · S=  2

0

 2
0

(3 sin3 + 23 sin cos2 ) 

=
 2
0

 2
0

(3 sin+ 3 sin cos2 )  = (2)3

1 + 1

3


= 8

3
3

On 2: E =  i+  j, and r × r = −k so


2
E · S = 0. Hence the total charge is  = 0



E · S = 8

3
30.

47. ∇ = 65(4 j+ 4 k).  is given by r( ) =  i+
√
6 cos  j+

√
6 sin  k and since we want the inward heat flow, we

use r × r = −
√
6 cos  j −√6 sin  k. Then the rate of heat flow inward is given by


(−∇) · S =  2

0

 4
0
−(65)(−24)  = (2)(156)(4) = 1248.

49. Let  be a sphere of radius  centered at the origin. Then |r| =  and F(r) = r |r|3 = 3 ( i+  j+  k). A

parametric representation for  is r( ) =  sin cos  i+  sin sin  j+  cosk, 0 ≤  ≤ , 0 ≤  ≤ 2. Then
r =  cos cos  i+  cos sin  j−  sink, r = − sin sin  i+  sin cos  j, and the outward orientation is given

by r × r = 2 sin2  cos  i+ 2 sin2  sin  j+ 2 sin cosk. The flux of F across  is

F · S=  

0

 2
0



3
( sin cos  i+  sin sin  j+  cosk)

· 2 sin2  cos  i+ 2 sin2  sin  j+ 2 sin cosk

 

=


3

 
0

 2
0

3

sin3 + sin cos2 


  = 

 
0

 2
0
sin  = 4

Thus the flux does not depend on the radius .
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16.8 Stokes' Theorem

1. Both and  are oriented piecewise-smooth surfaces that are bounded by the simple, closed, smooth curve 2 + 2 = 4,

 = 0 (which we can take to be oriented positively for both surfaces). Then and  satisfy the hypotheses of Stokes’

Theorem, so by (3) we know



curlF · S = 


F · r = 


curlF · S (where  is the boundary curve).

3. The paraboloid  = 2 + 2 intersects the cylinder 2 + 2 = 4 in the circle 2 + 2 = 4,  = 4. This boundary curve 

should be oriented in the counterclockwise direction when viewed from above, so a vector equation of  is

r() = 2 cos  i+ 2 sin  j+ 4k, 0 ≤  ≤ 2. Then r0() = −2 sin  i+ 2 cos  j,

F(r()) = (4 cos2 )(16) i+ (4 sin2 )(16) j+ (2 cos )(2 sin )(4)k = 64 cos2  i+ 64 sin2  j+ 16 sin  cos k

and by Stokes’ Theorem,

curlF · S= 


F · r =  2

0
F(r()) · r0()  =  2

0
(−128 cos2  sin + 128 sin2  cos + 0) 

= 128

1
3
cos3 + 1

3
sin3 

2
0
= 0

5.  is the square in the plane  = −1. Rather than evaluating a line integral around  we can use Equation 3:
1
curlF · S = 


F · r = 

2
curlF · S where 1 is the original cube without the bottom and 2 is the bottom face

of the cube. curlF = 2 i+ ( − 2) j+ ( − )k. For 2, we choose n = k so that  has the same orientation for

both surfaces. Then curlF · n = −  = +  on 2, where  = −1. Thus


2
curlF · S =  1−1  1−1(+ )   = 0

so


1
curlF · S = 0.

7. curl F = −2 i− 2 j− 2 k and we take the surface  to be the planar region enclosed by , so  is the portion of the plane

+  +  = 1 over = {( ) | 0 ≤  ≤ 1, 0 ≤  ≤ 1− }. Since  is oriented counterclockwise, we orient  upward.

Using Equation 16.7.10, we have  = ( ) = 1− − ,  = −2, = −2,  = −2, and

F · r= 


curlF · S = 


[−(−2)(−1)− (−2)(−1) + (−2)] 

=
 1
0

 1−
0

(−2)   = −2  1
0
(1− )  = −1

9. curlF = ( − 2) i− ( − ) j+ (2 − )k and we take  to be the disk 2 + 2 ≤ 16,  = 5. Since  is oriented

counterclockwise (from above), we orient  upward. Then n = k and curlF · n = 2 −  on , where  = 5. Thus

F · r = 


curlF · n = 


(2 − )  =



(10− 5)  = 5(area of ) = 5( · 42) = 80

11. (a) The curve of intersection is an ellipse in the plane +  +  = 1 with unit normal n = 1√
3
(i+ j+ k),

curlF = 2 j+ 2 k, and curlF · n = 1√
3
(2 + 2). Then



F · r = 



1√
3


2 + 2


 =


2 + 2≤ 9


2 + 2


 =

 2
0

 3
0
3   = 2


81
4


= 81

2
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(b) (c) One possible parametrization is  = 3 cos ,  = 3 sin ,

 = 1− 3 cos − 3 sin , 0 ≤  ≤ 2.

13. The boundary curve  is the circle 2 + 2 = 16,  = 4 oriented in the clockwise direction as viewed from above (since  is

oriented downward). We can parametrize  by r() = 4 cos  i− 4 sin  j+ 4k, 0 ≤  ≤ 2, and then
r0() = −4 sin  i− 4 cos  j. Thus F(r()) = 4 sin  i+ 4cos  j− 2k, F(r()) · r0() = −16 sin2 − 16 cos2  = −16, and


F · r =  2

0
F(r()) · r0()  =  2

0
(−16)  = −16 (2) = −32

Now curl F = 2k, and the projection of  on the -plane is the disk 2 + 2 ≤ 16, so by Equation 16.7.10 with

 = ( ) =

2 + 2 [and multiplying by −1 for the downward orientation] we have


curlF · S= − 


(−0− 0 + 2)  = −2 ·() = −2 · (42 ) = −32

15. The boundary curve  is the circle 2 + 2 = 1,  = 0 oriented in the counterclockwise direction as viewed from the positive

-axis. Then  can be described by r() = cos  i− sin k, 0 ≤  ≤ 2, and r0() = − sin  i− cos k. Thus

F(r()) = − sin  j+ cos k, F(r()) · r0 () = − cos2 , and 

F · r =  2

0
(− cos2 )  = − 1

2
− 1

4
sin 2

2
0
= −.

Now curlF = −i − j − k, and  can be parametrized (see Example 16.6.10) by
r( ) = sin cos  i + sin sin  j + cosk, 0 ≤  ≤ , 0 ≤  ≤ . Then

r × r = sin2  cos  i+ sin2  sin  j+ sin cosk and

curlF · S= 

2+2≤1
curlF · (r × r)  =

 
0

 
0
(− sin2  cos  − sin2  sin  − sin cos)  

=
 
0
(−2 sin2 −  sin cos)  =


1
2
sin 2− − 

2
sin2 


0
= −

17. It is easier to use Stokes’ Theorem than to compute the work directly. Let  be the planar region enclosed by the path of the

particle, so  is the portion of the plane  = 1
2
 for 0 ≤  ≤ 1, 0 ≤  ≤ 2, with upward orientation.

curl F = 8 i+ 2 j+ 2 k and

F · r= 


curlF · S = 



−8 (0)− 2  1
2


+ 2


 =

 1
0

 2
0


2 − 1

2


 

=
 1
0

 2
0

3
2
   =

 1
0


3
4
2
=2
=0

 =
 1
0
3  = 3

19. Assume  is centered at the origin with radius  and let1 and2 be the upper and lower hemispheres, respectively, of .

Then



curlF · S = 

1
curlF · S+ 

2
curlF · S = 

1
F · r+ 

2
F · r by Stokes’ Theorem. But 1 is the

circle 2 + 2 = 2 oriented in the counterclockwise direction while 2 is the same circle oriented in the clockwise direction.

Hence

2
F · r = −

1
F · r so 


curlF · S = 0 as desired.
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16.9 The Divergence Theorem

1. divF = 3 + + 2 = 3 + 3, so

divF =

 1
0

 1
0

 1
0
(3+ 3)    = 9

2
(notice the triple integral is

three times the volume of the cube plus three times ).

To compute


F · S, on

1: n = i, F = 3 i+  j+ 2 k, and


1
F · S = 

1
3  = 3;

2: F = 3 i+  j+ 2 k, n = j and


2
F · S = 

2
 = 1

2
;

3: F = 3 i+  j+ 2k, n = k and


3
F · S = 

3
2 = 1;

4: F = 0,


4
F · S = 0; 5: F = 3 i+ 2k, n = −j and


5
F · S = 

5
0  = 0;

6: F = 3 i+  j, n = −k and 
6
F · S = 

6
0  = 0. Thus



F · S = 9

2
.

3. divF = 0 + 1 + 0 = 1, so



divF =



1  =  () = 4

3
 · 43 = 256

3
.  is a sphere of radius 4 centered at

the origin which can be parametrized by r( ) = h4 sin cos  4 sin sin  4 cosi, 0 ≤  ≤ , 0 ≤  ≤ 2 (similar to
Example 16.6.10). Then

r × r = h4 cos cos  4 cos sin −4 sini × h−4 sin sin  4 sin cos  0i
=

16 sin2  cos  16 sin2  sin  16 cos sin


and F(r( )) = h4 cos 4 sin sin  4 sin cos i. Thus
F · (r × r) = 64 cos sin2  cos  + 64 sin3  sin2  + 64 cos sin2  cos  = 128 cos sin2  cos  + 64 sin3  sin2 
and 


F · S = 


F · (r × r)  =

 2
0

 
0
(128 cos sin2  cos  + 64 sin3  sin2 ) 

=
 2
0


128
3
sin3  cos  + 64

− 1
3
(2 + sin2 ) cos


sin2 

=
=0



=
 2
0

256
3
sin2   = 256

3


1
2
 − 1

4
sin 2

2
0
= 256

3


5. divF = 

() + 


(23) + 


(−) =  + 23 −  = 23, so by the Divergence Theorem,


F · S= 


divF  =

 3
0

 2
0

 1
0
23    = 2

 3
0


 2
0
 

 1
0
3 

= 2

1
2
2
3
0


1
2
2
2
0


1
4
4
1
0
= 2


9
2


(2)

1
4


= 9

2

7. divF = 32 + 0 + 32, so using cylindrical coordinates with  =  cos ,  =  sin ,  =  we have

F · S= 


(32 + 32)  =

 2
0

 1
0

 2
−1(3

2 cos2  + 32 sin2 )    

= 3
 2
0


 1
0
3 

 2
−1  = 3(2)


1
4


(3) = 9

2

9. divF = 2 sin  −  sin  −  sin  = 0, so by the Divergence Theorem,



F · S =


0  = 0.

11. div F = 2 + 0 + 2 = 2 + 2 so

F · S = 


(2 + 2)  =

 2
0

 2
0

 4
2
2 ·     =  2

0

 2
0
3(4− 2)  

=
 2
0


 2
0
(43 − 5)  = 2


4 − 1

6
6
2
0
= 32

3
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13. F(  ) = 

2 + 2 + 2 i+ 


2 + 2 + 2 j+ 


2 + 2 + 2 k, so

divF=  · 1
2
(2 + 2 + 2)−12(2) + (2 + 2 + 2)12 +  · 1

2
(2 + 2 + 2)−12(2) + (2 + 2 + 2)12

+  · 1
2
(2 + 2 + 2)−12(2) + (2 + 2 + 2)12

= (2 + 2 + 2)−12

2 + (2 + 2 + 2) + 2 + (2 + 2 + 2) + 2 + (2 + 2 + 2)


=
4(2 + 2 + 2)

2 + 2 + 2
= 4


2 + 2 + 2.

Then 


F · S =




4

2 + 2 + 2  =

 2

0

 2

0

 1

0

4

2 · 2 sin 

=
 2
0

sin
 2
0


 1
0
43  = [− cos]2

0
[]

2

0


4
1
0
= (1) (2) (1) = 2

15.



F · S = 



√
3− 2  =

 1
−1
 1
−1
 2−4− 4

0

√
3− 2    = 341

60

√
2 + 81

20
sin−1

√
3
3


17. For 1 we have n = −k, so F · n = F · (−k) = −2 − 2 = −2 (since  = 0 on 1). So if is the unit disk, we get

1
F · S = 

1
F · n  = 


(−2)  = −  2

0

 1
0
2 (sin2 )    = −1

4
. Now since 2 is closed, we can use

the Divergence Theorem. Since divF = 

(2) + 




1
3
3 + tan 


+ 


(2 + 2) = 2 + 2 + 2, we use spherical

coordinates to get


2
F · S = 


divF  =

 2
0

 2
0

 1
0
2 · 2 sin  = 2

5
. Finally


F · S = 

2
F · S− 

1
F · S = 2

5
 − − 1

4


= 13

20
.

19. The vectors that end near 1 are longer than the vectors that start near 1, so the net flow is inward near 1 and divF(1) is

negative. The vectors that end near 2 are shorter than the vectors that start near 2, so the net flow is outward near 2 and

divF(2) is positive.

21. From the graph it appears that for points above the -axis, vectors starting near a

particular point are longer than vectors ending there, so divergence is positive.

The opposite is true at points below the -axis, where divergence is negative.

F ( ) =

 + 2

 ⇒ divF = 

() + 




+ 2


=  + 2 = 3.

Thus divF  0 for   0, and divF  0 for   0.

23. Since
x

|x|3 =
 i+  j+  k

(2 + 2 + 2)32
and








(2 + 2 + 2)32


=
(2 + 2 + 2)− 32
(2 + 2 + 2)52

with similar expressions

for







(2 + 2 + 2)32


and








(2 + 2 + 2)32


, we have

div


x

|x|3

=
3(2 + 2 + 2)− 3(2 + 2 + 2)

(2 + 2 + 2)
52

= 0, except at (0 0 0) where it is undefined.

25.



a · n  = 


div a  = 0 since div a = 0.
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27.



curlF · S = 


div(curlF)  = 0 by Theorem 16.5.11.

29.



(∇) · n  = 


div(∇)  =



(∇2 +∇ ·∇)  by Exercise 16.5.25.

31. If c = 1 i+ 2 j+ 3 k is an arbitrary constant vector, we define F = c = 1 i+ 2 j+ 3 k. Then

divF = div c =



1 +




2 +




3 = ∇ · c and the Divergence Theorem says



F · S = 


divF  ⇒



F · n  = 


∇ · c  . In particular, if c = i then 


 i · n  = 


∇ · i  ⇒



1  =







 (where n = 1 i+ 2 j+ 3 k). Similarly, if c = j we have




2  =







 ,

and c = k gives




3  =







 . Then



n  =



1 


i+



2 


j+



3 


k

=










i+










j+










k =








i+




j+




k




=



∇  as desired.

16 Review

1. See Definitions 1 and 2 in Section 16.1. A vector field can represent, for example, the wind velocity at any location in space,

the speed and direction of the ocean current at any location, or the force vectors of Earth’s gravitational field at a location in

space.

2. (a) A conservative vector field F is a vector field which is the gradient of some scalar function  .

(b) The function  in part (a) is called a potential function for F that is, F = ∇ .

3. (a) See Definition 16.2.2.

(b) We normally evaluate the line integral using Formula 16.2.3.

(c) The mass is =


 ( ) , and the center of mass is ( ) where  = 1





 ( ) ,  = 1





 ( ) .

(d) See (5) and (6) in Section 16.2 for plane curves; we have similar definitions when  is a space curve

[see the equation preceding (10) in Section 16.2].

(e) For plane curves, see Equations 16.2.7. We have similar results for space curves

[see the equation preceding (10) in Section 16.2].

4. (a) See Definition 16.2.13.

(b) If F is a force field,


F · r represents the work done by F in moving a particle along the curve .

(c)


F · r = 


 + +

5. See Theorem 16.3.2.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.



338 ¤ CHAPTER 16 VECTOR CALCULUS

6. (a)


F · r is independent of path if the line integral has the same value for any two curves that have the same initial and

terminal points.

(b) See Theorem 16.3.4.

7. See the statement of Green’s Theorem on page 1108 [ET 1084].

8. See Equations 16.4.5.

9. (a) curlF =





− 




i+





− 




j+





− 




k = ∇×F

(b) divF =



+




+




= ∇ · F

(c) For curlF, see the discussion accompanying Figure 1 on page 1118 [ET 1094] as well as Figure 6 and the accompanying

discussion on page 1150 [ET 1126]. For divF, see the discussion following Example 5 on page 1119 [ET 1095] as well as

the discussion preceding (8) on page 1157 [ET 1133].

10. See Theorem 16.3.6; see Theorem 16.5.4.

11. (a) See (1) and (2) and the accompanying discussion in Section 16.6; See Figure 4 and the accompanying discussion on

page 1124 [ET 1100].

(b) See Definition 16.6.6.

(c) See Equation 16.6.9.

12. (a) See (1) in Section 16.7.

(b) We normally evaluate the surface integral using Formula 16.7.2.

(c) See Formula 16.7.4.

(d) The mass is =



(  )  and the center of mass is (  ) where  = 1





(  ) ,

 = 1




(  ) ,  = 1





(  ) .

13. (a) See Figures 6 and 7 and the accompanying discussion in Section 16.7. A Möbius strip is a nonorientable surface; see

Figures 4 and 5 and the accompanying discussion on page 1139 [ET 1115].

(b) See Definition 16.7.8.

(c) See Formula 16.7.9.

(d) See Formula 16.7.10.

14. See the statement of Stokes’ Theorem on page 1146 [ET 1122].

15. See the statement of the Divergence Theorem on page 1153 [ET 1129].

16. In each theorem, we have an integral of a “derivative” over a region on the left side, while the right side involves the values of

the original function only on the boundary of the region.
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1. False; divF is a scalar field.

3. True, by Theorem 16.5.3 and the fact that div 0 = 0.

5. False. See Exercise 16.3.35. (But the assertion is true if is simply-connected; see Theorem 16.3.6.)

7. False. For example, div( i) = 0 = div( j) but  i 6=  j.

9. True. See Exercise 16.5.24.

11. True. Apply the Divergence Theorem and use the fact that divF = 0.

1. (a) Vectors starting on  point in roughly the direction opposite to , so the tangential component F ·T is negative.
Thus



F · r = 


F ·T is negative.

(b) The vectors that end near  are shorter than the vectors that start near  , so the net flow is outward near  and

divF( ) is positive.

3.


 cos =

 
0
(3 cos ) (3 sin ) cos 


(1)2 + (−3 sin )2 + (3 cos )2  =  

0
(9 cos2  sin )

√
10 

= 9
√
10
− 1

3
cos3 


0
= −3√10 (−2) = 6√10

5.


3 + 2  =

 1
−1

3(−2) + (1− 2)2


 =

 1
−1(−4 − 22 + 1) 

=
−1

5
5 − 2

3
3 + 

1
−1 = − 1

5
− 2

3
+ 1− 1

5
− 2

3
+ 1 = 4

15

7. :  = 1 + 2 ⇒  = 2 ,  = 4 ⇒  = 4 ,  = −1 + 3 ⇒  = 3 , 0 ≤  ≤ 1.

 + 2  +   =

 1
0
[(1 + 2)(4)(2) + (4)2(4) + (4)(−1 + 3)(3)] 

=
 1
0
(1162 − 4)  =  116

3
3 − 221

0
= 116

3
− 2 = 110

3

9. F(r()) = − i+ 2(−) j+ (2 + 3)k, r0() = 2 i+ 32 j− k and

F · r =  1

0
(2− − 35 − (2 + 3))  =

−2− − 2− − 1
2
6 − 1

3
3 − 1

4
4
1
0
= 11

12
− 4


.

11. 

[(1 + )] = 2 + 2 = 




 + 2


and the domain of F is R2, so F is conservative. Thus there

exists a function  such that F = ∇ . Then ( ) =  + 2 implies ( ) =  +  + () and then

( ) =  +  + 0() = (1 + ) + 0(). But ( ) = (1 + ) , so 0() = 0 ⇒ () = .

Thus ( ) =  +  + is a potential function for F.

13. Since 

(432 − 23) = 83 − 62 = 


(24 − 322 + 43) and the domain of F is R2, F is conservative.

Furthermore ( ) = 42 − 23 + 4 is a potential function for F.  = 0 corresponds to the point (0 1) and  = 1

corresponds to (1 1), so


F · r = (1 1)− (0 1) = 1− 1 = 0.
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15. 1: r() =  i+ 2 j, −1 ≤  ≤ 1;
2: r() = − i+ j, −1 ≤  ≤ 1.
Then 


2 − 2  =

 1
−1(

5 − 25) +  1−1  
=
− 1

6
6
1
−1 +


1
2
2
1
−1 = 0

Using Green’s Theorem, we have



2
− 

2
  =








(−2)− 


(

2
)


 =




(−2 − 2)  =
 1

−1

 1

2
−4  

=
 1
−1
−22=1

=2
 =

 1
−1 (2

5 − 2)  =  1
3
6 − 2

1
−1 = 0

17.


2 − 2  =


2 + 2≤ 4




(−2)− 


(2)


 =


2 + 2≤ 4

(−2 − 2)  = −  2
0

 2
0
3   = −8

19. If we assume there is such a vector fieldG, then div(curlG) = 2 + 3 − 2. But div(curlF) = 0 for all vector fields F.
Thus such aG cannot exist.

21. For any piecewise-smooth simple closed plane curve  bounding a region , we can apply Green’s Theorem to

F( ) = () i+ () j to get


() + ()  =








()− 


()

 =



0  = 0.

23. ∇2 = 0 means that
2

2
+

2

2
= 0. Now if F =  i−  j and  is any closed path in, then applying Green’s

Theorem, we get 

F · r= 


 −   =







(−)− 


()




= − 

( + )  = −



0  = 0

Therefore the line integral is independent of path, by Theorem 16.3.3.

25.  =  ( ) = 2 + 2 with 0 ≤  ≤ 1, 0 ≤  ≤ 2. Thus

() =




√
1 + 42 + 4  =

 1
0

 2
0

√
5 + 42   =

 1
0
2
√
5 + 42  = 1

6
(5 + 42)32

1
0
= 1

6


27− 5√5 .

27.  = ( ) = 2 + 2 with 0 ≤ 2 + 2 ≤ 4 so r × r = −2 i− 2 j+ k (using upward orientation). Then

  =


2 + 2≤ 4

(2 + 2)

42 + 42 + 1 

=
 2
0

 2
0
3
√
1 + 42   = 1

60


391

√
17 + 1


(Substitute  = 1 + 42 and use tables.)

29. Since the sphere bounds a simple solid region, the Divergence Theorem applies and

F · S= 


divF  =



( − 2)  =



  − 2




= 0


odd function in 
and is symmetric


− 2 ·  () = −2 · 4

3
(2)3 = −64

3
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Alternate solution: F(r( )) = 4 sin cos  cos i − 4 sin sin  j + 6 sin cos  k,
r × r = 4 sin2  cos  i + 4 sin2  sin  j + 4 sin cosk, and

F · (r × r) = 16 sin3  cos2  cos− 16 sin3  sin2  + 24 sin2  cos cos . Then

F · S=  2

0

 
0
(16 sin3  cos cos2  − 16 sin3  sin2  + 24 sin2  cos cos ) 

=
 2
0

4
3
(−16 sin2 )  = − 64

3


31. Since curlF = 0,



(curlF) · S = 0. We parametrize : r() = cos  i+ sin  j, 0 ≤  ≤ 2 and


F · r =  2

0
(− cos2  sin + sin2  cos )  = 1

3
cos3 + 1

3
sin3 

2
0
= 0.

33. The surface is given by +  +  = 1 or  = 1− − , 0 ≤  ≤ 1, 0 ≤  ≤ 1−  and r × r = i+ j+ k. Then

F · r = 


curlF · S = 


(− i−  j− k) · (i+ j+ k)  = 


(−1)  = −(area of) = − 1

2
.

35.



divF  =


2 + 2 + 2≤ 1

3  = 3(volume of sphere) = 4. Then

F(r( )) · (r × r) = sin3  cos2  + sin3  sin2  + sin cos2  = sin and

F · S =  2

0

 
0
sin = (2)(2) = 4.

37. Because curlF = 0, F is conservative, so there exists a function  such that∇ = F. Then (  ) = 32 − 3

implies (  ) = 3 − 3 + ( ) ⇒ (  ) = 3 − 3+ ( ). But (  ) = 3 − 3, so

( ) = () and (  ) = 3 − 3 + (). Then (  ) = 3 + 0() but (  ) = 3 + 2,

so () = 2 + and a potential function for F is (  ) = 3 − 3 + 2. Hence

F · r = 


∇ · r = (0 3 0)− (0 0 2) = 0− 4 = −4.

39. By the Divergence Theorem,



F · n  = 


divF = 3(volume of ) = 3(8− 1) = 21.

41. Let F = a× r = h1 2 3i × h  i = h2 − 3 3− 1 1 − 2i. Then curl F = h21 22 23i = 2a,

and



2a · S = 


curlF · S = 


F · r = 


(a× r) · r by Stokes’ Theorem.
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1. Let 1 be the portion of Ω() between () and , and let 1 be its boundary. Also let  be the lateral surface of 1 [that

is, the surface of 1 except  and ()]. Applying the Divergence Theorem we have


1

r · n
3

 =


1

∇ · r
3

 .

But
∇ · r

3
=















·




(2 + 2 + 2)
32




(2 + 2 + 2)
32




(2 + 2 + 2)
32



=
(2 + 2 + 2 − 32) + (2 + 2 + 2 − 32) + (2 + 2 + 2 − 32)

(2 + 2 + 2)52
= 0

⇒


1

r · n
3

 =


1

0  = 0. On the other hand, notice that for the surfaces of 1 other than () and ,

r · n = 0 ⇒

0 =


1

r · n
3

 =




r · n
3

 +


()

r · n
3

 +




r · n
3

 =




r · n
3

 +


()

r · n
3

 ⇒




r · n
3

 = −


()

r · n
3

. Notice that on (),  =  ⇒ n = −r

= − r


and r · r = 2 = 2, so

that −


()

r · n
3

 =


()

r · r
4

 =


()

2

4
 =

1

2


()

 =
area of  ()

2
= |Ω()|.

Therefore |Ω()| =




r · n
3

.

3. The given line integral 1
2



(− ) + (− ) + (− )  can be expressed as



F · r if we define the vector

field F by F(  ) =  i+ j+k = 1
2
( − ) i+ 1

2
(− ) j+ 1

2
( − )k. Then define  to be the planar

interior of , so  is an oriented, smooth surface. Stokes’ Theorem says


F · r = 


curlF · S = 


curlF · n .

Now

curlF=





− 




i+





− 




j+





− 




k

=

1
2
+ 1

2


i+


1
2
+ 1

2


j+


1
2
+ 1

2


k =  i+  j+ k = n

so curlF · n = n · n = |n|2 = 1, hence 

curlF · n  = 


 which is simply the surface area of  Thus,


F · r = 1

2



( − ) + (− )  + ( − )  is the plane area enclosed by .

5. (F ·∇)G=


1




+1




+1






(2 i+2 j+2 k)

=


1

2


+1

2


+1

2




i+


1

2


+1

2


+1

2




j

+


1

2


+1

2


+1

2




k

= (F ·∇2) i +(F ·∇2) j+ (F ·∇2)k.
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Similarly, (G ·∇)F = (G ·∇1) i +(G ·∇1) j +(G ·∇1)k. Then

F× curlG =


i

1

2 − 2

j

1

2 − 2

k

1

2− 2


=


1

2


−1

2


−1

2


+1

2




i+


1

2


−1

2


− 1

2


+ 1

2




j

+


1

2


− 1

2


−1

2


+1

2




k

and

G× curlF =

2

1


−2

1


−2

1


+2

1




i+


2

1


−2

1


− 2

1


+ 2

1




j

+


2

1


− 2

1


−2

1


+2

1




k.

Then

(F ·∇)G+F× curlG=


1

2


+1

2


+1

2




i +


1

2


+1

2


+1

2




j

+


1

2


+1

2


+1

2




k

and

(G ·∇)F+G× curlF=

2

1


+2

1


+2

1




i +


2

1


+2

1


+2

1




j

+


2

1


+2

1


+2

1




k.

Hence

(F ·∇)G+F× curlG +(G ·∇)F+G× curlF

=


1

2


+ 2

1




+


1

2


+2

1




+


1

2


+2

1




i

+


1

2


+ 2

1




+


1

2


+2

1




+


1

2


+2

1




j

+


1

2


+ 2

1




+


1

2


+2

1




+


1

2


+2

1




k

= ∇(12 +12 +12) = ∇(F ·G).
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17 SECOND-ORDER DIFFERENTIAL EQUATIONS

17.1 Second-Order Linear Equations

1. The auxiliary equation is 2 −  − 6 = 0 ⇒ ( − 3)( + 2) = 0 ⇒  = 3,  = −2. Then by (8) the general solution
is  = 1

3 + 2
−2.

3. The auxiliary equation is 2 + 16 = 0 ⇒  = ±4. Then by (11) the general solution is
 = 0(1 cos 4+ 2 sin 4) = 1 cos 4+ 2 sin 4.

5. The auxiliary equation is 92 − 12 + 4 = 0 ⇒ (3 − 2)2 = 0 ⇒  = 2
3
. Then by (10), the general solution is

 = 1
23 + 2

23.

7. The auxiliary equation is 22 −  = (2 − 1) = 0 ⇒  = 0,  = 1
2
, so  = 1

0 + 2
2 = 1 + 2

2.

9. The auxiliary equation is 2 − 4 + 13 = 0 ⇒  =
4±√−36

2
= 2± 3, so  = 2(1 cos 3+ 2 sin 3).

11. The auxiliary equation is 22 + 2 − 1 = 0 ⇒  =
−2±√12

4
= −1

2
±
√
3

2
, so

 = 1
(−12+

√
32) + 2

(−12−
√
32).

13. The auxiliary equation is 1002 + 200 + 101 = 0 ⇒  =
−200±√−400

200
= −1± 1

10
, so

 = −

1 cos


1
10


+ 2 sin


1
10


.

15. The auxiliary equation is 52 − 2 − 3 = (5 + 3)( − 1) = 0 ⇒  = −3
5
,

 = 1, so the general solution is  = 1
−35 + 2

. We graph the basic

solutions () = −35, () =  as well as  = −35 + 2,

 = −35 − , and  = −2−35 − . Each solution consists of a single

continuous curve that approaches either 0 or ±∞ as → ±∞.

17. 2 − 6 + 8 = ( − 4)( − 2) = 0, so  = 4,  = 2 and the general solution is  = 1
4 + 2

2. Then

0 = 414 + 222, so (0) = 2 ⇒ 1 + 2 = 2 and 0(0) = 2 ⇒ 41 + 22 = 2, giving 1 = −1 and 2 = 3.
Thus the solution to the initial-value problem is  = 32 − 4.

19. 92 + 12 + 4 = (3 + 2)2 = 0 ⇒  = −2
3
and the general solution is  = 1

−23 + 2
−23. Then (0) = 1 ⇒

1 = 1 and, since 0 = −2
3
1

−23 + 2

1− 2

3


−23, 0(0) = 0 ⇒ − 2

3
1 + 2 = 0, so 2 = 2

3
and the solution to

the initial-value problem is  = −23 + 2
3
−23.
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346 ¤ CHAPTER 17 SECOND-ORDER DIFFERENTIAL EQUATIONS

21. 2 − 6 + 10 = 0 ⇒  = 3±  and the general solution is  = 3(1 cos+ 2 sin). Then 2 = (0) = 1 and

3 = 0(0) = 2 + 31 ⇒ 2 = −3 and the solution to the initial-value problem is  = 3(2 cos− 3 sin).

23. 2 −  − 12 = ( − 4)( + 3) = 0 ⇒  = 4,  = −3 and the general solution is  = 1
4 + 2

−3. Then

0 = (1) = 1
4 + 2

−3 and 1 = 0(1) = 414 − 32−3 so 1 = 1
7
−4, 2 = − 1

7
3 and the solution to the initial-value

problem is  = 1
7
−44 − 1

7
3−3 = 1

7
4−4 − 1

7
3−3.

25. 2 +4 = 0 ⇒  = ±2 and the general solution is  = 1 cos 2+ 2 sin 2. Then 5 = (0) = 1 and 3 = (4) = 2,

so the solution of the boundary-value problem is  = 5cos 2+ 3 sin 2.

27. 2 + 4 + 4 = ( + 2)2 = 0 ⇒  = −2 and the general solution is  = 1
−2 + 2

−2. Then 2 = (0) = 1 and

0 = (1) = 1
−2 + 2

−2 so 2 = −2, and the solution of the boundary-value problem is  = 2−2 − 2−2.

29. 2 −  = ( − 1) = 0 ⇒  = 0,  = 1 and the general solution is  = 1 + 2
. Then 1 = (0) = 1 + 2

and 2 = (1) = 1 + 2 so 1 =
− 2
− 1 , 2 =

1

− 1 . The solution of the boundary-value problem is  =
− 2
− 1 +



− 1 .

31. 2 + 4 + 20 = 0 ⇒  = −2± 4 and the general solution is  = −2(1 cos 4+ 2 sin 4). But 1 = (0) = 1 and

2 = () = 1
−2 ⇒ 1 = 2

2 , so there is no solution.

33. (a) Case 1 ( = 0): 00 +  = 0 ⇒ 00 = 0 which has an auxiliary equation 2 = 0 ⇒  = 0 ⇒  = 1 + 2

where (0) = 0 and () = 0. Thus, 0 = (0) = 1 and 0 = () = 2 ⇒ 1 = 2 = 0. Thus  = 0.

Case 2 (  0): 00 +  = 0 has auxiliary equation 2 = − ⇒  = ±√− [distinct and real since   0] ⇒

 = 1
√− + 2

−√− where (0) = 0 and () = 0. Thus 0 = (0) = 1 + 2 (∗) and

0 = () = 1
√− + 2

−√− (†).

Multiplying (∗) by 
√− and subtracting (†) gives 2



√− − −

√−

= 0 ⇒ 2 = 0 and thus 1 = 0 from (∗).

Thus  = 0 for the cases  = 0 and   0.

(b) 00 +  = 0 has an auxiliary equation 2 +  = 0 ⇒  = ±
√
 ⇒  = 1 cos

√
+ 2 sin

√
 where

(0) = 0 and () = 0. Thus, 0 = (0) = 1 and 0 = () = 2 sin
√
 since 1 = 0. Since we cannot have a trivial

solution, 2 6= 0 and thus sin
√
 = 0 ⇒

√
 =  where  is an integer ⇒  = 222 and

 = 2 sin() where  is an integer.

35. (a) 2 − 2 + 2 = 0 ⇒  = 1±  and the general solution is  =  (1 cos+ 2 sin). If () =  and () =  then

 (1 cos + 2 sin ) =  ⇒ 1 cos + 2 sin  = − and  (1 cos + 2 sin ) =  ⇒

1 cos + 2 sin  = −. This gives a linear system in 1 and 2 which has a unique solution if the lines are not parallel.

If the lines are not vertical or horizontal, we have parallel lines if cos  =  cos  and sin =  sin  for some nonzero
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constant  or
cos 

cos 
=  =

sin 

sin 
⇒ sin 

cos 
=
sin 

cos 
⇒ tan  = tan  ⇒ −  = ,  any integer. (Note that

none of cos , cos , sin , sin  are zero.) If the lines are both horizontal then cos  = cos  = 0 ⇒ −  = , and

similarly vertical lines means sin  = sin  = 0 ⇒ −  = . Thus the system has a unique solution if −  6= .

(b) The linear system has no solution if the lines are parallel but not identical. From part (a) the lines are parallel if

−  = . If the lines are not horizontal, they are identical if − = − ⇒ −

−
=  =

cos 

cos 
⇒




= −

cos 

cos 
. (If  = 0 then  = 0 also.) If they are horizontal then cos  = 0, but  =

sin 

sin 
also (and sin  6= 0) so

we require



= −

sin

sin 
. Thus the system has no solution if −  =  and




6= −

cos 

cos 
unless cos  = 0, in

which case



6= −

sin 

sin 
.

(c) The linear system has infinitely many solution if the lines are identical (and necessarily parallel). From part (b) this occurs

when −  =  and



= −

cos 

cos 
unless cos  = 0, in which case




= −

sin 

sin 
.

17.2 Nonhomogeneous Linear Equations

1. The auxiliary equation is 2 − 2 − 3 = ( − 3)( + 1) = 0 ⇒  = 3,  = −1, so the complementary solution is

() = 1
3 + 2

−. We try the particular solution () =  cos 2+  sin 2, so

0 = −2 sin 2+ 2 cos 2 and 00 = −4 cos 2− 4 sin 2. Substitution into the differential equation gives

(−4 cos 2− 4 sin 2)− 2(−2 sin 2+ 2 cos 2)− 3( cos 2+  sin 2) = cos 2 ⇒

(−7− 4) cos 2+ (4− 7) sin 2 = cos 2. Then −7− 4 = 1 and 4− 7 = 0 ⇒  = − 7
65
and

 = − 4
65
. Thus the general solution is () = () + () = 1

3 + 2
− − 7

65
cos 2− 4

65
sin 2.

3. The auxiliary equation is 2 + 9 = 0 with roots  = ±3, so the complementary solution is () = 1 cos 3+ 2 sin 3.

Try the particular solution () = −2, so 0 = −2−2 and 00 = 4−2. Substitution into the differential equation

gives 4−2 + 9(−2) = −2 or 13−2 = −2. Thus 13 = 1 ⇒  = 1
13
and the general solution is

() = () + () = 1 cos 3+ 2 sin 3+
1
13
−2.

5. The auxiliary equation is 2 − 4 + 5 = 0 with roots  = 2± , so the complementary solution is

() = 2(1 cos+ 2 sin). Try  () = −, so 0 = −− and 00 = −. Substitution gives

− − 4(−−) + 5(−) = − ⇒ 10− = − ⇒  = 1
10
. Thus the general solution is

() = 2(1 cos+ 2 sin) +
1
10
−.

c° 2012 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part.
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7. The auxiliary equation is 2 + 1 = 0 with roots  = ±, so the complementary solution is () = 1 cos+ 2 sin.

For 00 +  =  try 1() = . Then 01 = 001 =  and substitution gives  + =  ⇒  = 1
2
,

so 1() =
1
2
. For 00 +  = 3 try 2() = 3 +2 + +. Then 02 = 3

2 + 2+  and

002 = 6+ 2. Substituting, we have 6+ 2 +3 +2 ++ = 3, so  = 1,  = 0,

6+  = 0 ⇒  = −6, and 2 + = 0 ⇒  = 0. Thus 2() = 3 − 6 and the general solution is

() = () + 1() + 2() = 1 cos+ 2 sin+
1
2
 + 3 − 6. But 2 = (0) = 1 +

1
2
⇒

1 =
3
2
and 0 = 0(0) = 2 +

1
2
− 6 ⇒ 2 =

11
2
. Thus the solution to the initial-value problem is

() = 3
2
cos+ 11

2
sin+ 1

2
 + 3 − 6.

9. The auxiliary equation is 2 −  = 0 with roots  = 0,  = 1 so the complementary solution is () = 1 + 2
.

Try () = (+) so that no term in  is a solution of the complementary equation. Then

0 = (
2 + (2+)+) and 00 = (

2 + (4+)+ (2+ 2)). Substitution into the differential equation

gives (2 + (4+)+ (2+ 2)) − (2 + (2+)+) =  ⇒ (2+ (2+)) =  ⇒

 = 1
2
,  = −1. Thus () =


1
2
2 − 


 and the general solution is () = 1 + 2

 +

1
2
2 − 


. But

2 = (0) = 1 + 2 and 1 = 0(0) = 2 − 1, so 2 = 2 and 1 = 0. The solution to the initial-value problem is

() = 2 +

1
2
2 − 


 = 


1
2
2 − + 2


.

11. The auxiliary equation is 2 + 3 + 2 = ( + 1)( + 2) = 0, so  = −1,  = −2 and () = 1
− + 2

−2.

Try  =  cos+ sin ⇒ 0 = − sin+ cos, 00 = − cos− sin. Substituting into the differential

equation gives (− cos− sin) + 3(− sin+ cos) + 2( cos+ sin) = cos or

(+ 3) cos+ (−3+) sin = cos. Then solving the equations

+ 3 = 1, −3+ = 0 gives  = 1
10
,  = 3

10
and the general

solution is () = 1
− + 2

−2 + 1
10
cos+ 3

10
sin. The graph

shows  and several other solutions. Notice that all solutions are

asymptotic to  as →∞. Except for , all solutions approach either∞
or −∞ as →−∞.

13. Here () = 1
2 + 2

−, and a trial solution is () = (+) cos+ (+) sin.

15. Here () = 1
2 + 2

. For 00 − 30 + 2 =  try 1() =  (since  =  is a solution of the complementary

equation) and for 00 − 30 + 2 = sin try 2() =  cos+  sin. Thus a trial solution is

() = 1() + 2() =  + cos+  sin.

17. Since () = −(1 cos 3+ 2 sin 3) we try () = (2 ++ )− cos 3+ (2 ++  )− sin 3

(so that no term of  is a solution of the complementary equation).
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Note: Solving Equations (7) and (9) in The Method of Variation of Parameters gives

01 = − 2

 (102 − 201)
and 02 =

1

 (102 − 201)

We will use these equations rather than resolving the system in each of the remaining exercises in this section.

19. (a) Here 42 + 1 = 0 ⇒  = ± 1
2
 and () = 1 cos


1
2


+ 2 sin


1
2


. We try a particular solution of the form

() =  cos+ sin ⇒ 0 = − sin+ cos and 00 = − cos− sin. Then the equation

400 +  = cos becomes 4(− cos−  sin) + ( cos+  sin) = cos or

−3 cos− 3 sin = cos ⇒  = − 1
3
,  = 0. Thus, () = − 1

3
cos and the general solution is

() = () + () = 1 cos

1
2


+ 2 sin


1
2

− 1

3
cos.

(b) From (a) we know that () = 1 cos

2
+ 2 sin


2
. Setting 1 = cos 2 , 2 = sin


2
, we have

1
0
2 − 2

0
1 =

1
2
cos2 

2
+ 1

2
sin2 

2
= 1

2
. Thus 01 = −

cos sin 
2

4 · 1
2

= − 1
2
cos

2 · 

2


sin 

2
= − 1

2


2 cos2 

2
− 1 sin 

2

and 02 =
cos cos 

2

4 · 1
2

= 1
2
cos

2 · 

2


cos 

2
= 1

2


1− 2 sin2 

2


cos 

2
. Then

1() =
 

1
2
sin 

2
− cos2 

2
sin 

2


 = − cos 

2
+ 2

3
cos3 

2
and

2() =
 

1
2
cos 

2
− sin2 

2
cos 

2


 = sin 

2
− 2

3
sin3 

2
. Thus

() =
− cos 

2
+ 2

3
cos3 

2


cos 

2
+

sin 

2
− 2

3
sin3 

2


sin 

2
= − cos2 

2
− sin2 

2


+ 2

3


cos4 

2
− sin4 

2


= − cos 2 · 

2


+ 2

3


cos2 

2
+ sin2 

2

 
cos2 

2
− sin2 

2


= − cos+ 2

3
cos = − 1

3
cos

and the general solution is () = () + () = 1 cos

2
+ 2 sin


2
− 1

3
cos.

21. (a) 2 − 2+ 1 = (− 1)2 = 0 ⇒  = 1, so the complementary solution is () = 1
 + 2

. A particular solution

is of the form () = 2. Thus 42 − 42 +2 = 2 ⇒ 2 = 2 ⇒  = 1 ⇒ () = 2.

So a general solution is () = () + () = 1
 + 2

 + 2.

(b) From (a), () = 1
 + 2

, so set 1 = , 2 = . Then, 102 − 2
0
1 = 2(1 + )− 2 = 2 and so

01 = − ⇒ 1 () = −

  = −(− 1) [by parts] and 02 =  ⇒ 2() =


  = . Hence

 () = (1− )2 + 2 = 2 and the general solution is () = () + () = 1
 + 2

 + 2.

23. As in Example 5, () = 1 sin+ 2 cos, so set 1 = sin, 2 = cos. Then 102 − 2
0
1 = − sin2 − cos2  = −1,

so 01 = −sec
2  cos

−1 = sec ⇒ 1() =

sec = ln (sec+ tan) for 0    

2
,

and 02 =
sec2  sin

−1 = − sec tan ⇒ 2() = − sec. Hence

() = ln(sec+ tan) · sin− sec · cos = sin ln(sec+ tan)− 1 and the general solution is
() = 1 sin+ 2 cos+ sin ln(sec+ tan)− 1.
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25. 1 = , 2 = 2 and 102 − 2
0
1 = 3. So 01 =

−2
(1 + −)3

= − −

1 + −
and

1() =


− −

1 + −
 = ln(1 + 

−
). 02 =



(1 + −)3
=



3 + 2
so

2() =




3 + 2
 = ln


 + 1




− 

−
= ln(1 + 

−
) − 

−. Hence

() =  ln(1 + −) + 2[ln(1 + −) − −] and the general solution is

() = [1 + ln(1 + −)] + [2 − − + ln(1 + −)]2.

27. 2 − 2 + 1 = ( − 1)2 = 0 ⇒  = 1 so () = 1
 + 2

. Thus 1 = , 2 =  and

1
0
2 − 2

0
1 = (+ 1) −  = 2. So 01 = − · (1 + 2)

2
= − 

1 + 2
⇒

1 = −




1 + 2
 = −1

2
ln

1 + 

2

, 02 =

 · (1 + 2)

2
=

1

1 + 2
⇒ 2 =


1

1 + 2
 = tan

−1
 and

() = − 1
2
 ln(1 + 2) +  tan−1 . Hence the general solution is () = 


1 + 2− 1

2
ln(1 + 2) +  tan−1 


.

17.3 Applications of Second-Order Differential Equations

1. By Hooke’s Law (025) = 25 so  = 100 is the spring constant and the differential equation is 500 + 100 = 0.

The auxiliary equation is 52 + 100 = 0 with roots  = ±2√5 , so the general solution to the differential equation is

() = 1 cos

2
√
5 

+ 2 sin


2
√
5 

. We are given that (0) = 035 ⇒ 1 = 035 and 0(0) = 0 ⇒

2
√
5 2 = 0 ⇒ 2 = 0, so the position of the mass after  seconds is () = 035 cos


2
√
5 

.

3. (05) = 6 or  = 12 is the spring constant, so the initial-value problem is 200 + 140 + 12 = 0, (0) = 1, 0(0) = 0.

The general solution is () = 1
−6 + 2

−. But 1 = (0) = 1 + 2 and 0 = 0(0) = −61 − 2. Thus the position is

given by () = − 1
5
−6 + 6

5
−.

5. For critical damping we need 2 − 4 = 0 or = 2(4) = 142(4 · 12) = 49
12
kg.

7. We are given = 1,  = 100, (0) = −01 and 0(0) = 0. From (3), the differential equation is 
2


2
+ 




+ 100 = 0

with auxiliary equation 2 +  + 100 = 0.

If  = 10, we have two complex roots  = −5± 5√3 , so the motion is underdamped and the solution is

 = −5

1 cos


5
√
3 

+ 2 sin


5
√
3 

. Then −01 = (0) = 1 and 0 = 0(0) = 5

√
3 2 − 51 ⇒ 2 = − 1

10
√
3
,

so  = −5

−01 cos5√3 − 1

10
√
3
sin

5
√
3 

.
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If  = 15, we again have underdamping since the auxiliary equation has roots  = − 15
2
± 5

√
7

2
. The general solution is

 = −152

1 cos


5
√
7

2


+ 2 sin


5
√
7

2


, so−01 =  (0) = 1 and 0 = 0(0) = 5

√
7

2
2 − 15

2
1 ⇒ 2 = − 3

10
√
7
.

Thus  = −152

−01 cos


5
√
7

2


− 3

10
√
7
sin

5
√
7

2


.

For  = 20, we have equal roots 1 = 2 = −10, so the oscillation is critically damped and the solution is

 = (1 + 2)
−10. Then −01 = (0) = 1 and 0 = 0(0) = −101 + 2 ⇒ 2 = −1, so  = (−01− )−10.

If  = 25 the auxiliary equation has roots 1 = −5, 2 = −20, so we have overdamping and the solution is

 = 1
−5 + 2

−20. Then −01 = (0) = 1 + 2 and 0 = 0(0) = −51 − 202 ⇒ 1 = − 2
15
and 2 = 1

30
,

so  = − 2
15
−5 + 1

30
−20.

If  = 30 we have roots  = −15± 5√5, so the motion is

overdamped and the solution is  = 1
(−15+ 5

√
5 ) + 2

(−15− 5
√
5 ).

Then −01 = (0) = 1 + 2 and

0 = 0(0) =
−15 + 5√5  1 + −15− 5√5  2 ⇒

1 =
−5− 3

√
5

100
and 2 = −5+ 3

√
5

100
, so

 =

−5− 3√5

100


(−15+5

√
5) +


−5+3

√
5

100


(−15− 5

√
5).

9. The differential equation is00 +  = 0 cos0 and 0 6=  =

. Here the auxiliary equation is2 +  = 0

with roots ±

 = ± so () = 1 cos+ 2 sin. Since 0 6= , try () =  cos0+ sin0.

Then we need ()
−20( cos0+ sin0) + ( cos0+ sin0) = 0 cos0 or 


 −20


= 0 and



 −20


= 0. Hence  = 0 and  =

0

 −20
=

0

(2 − 20)
since 2 =




. Thus the motion of the mass is given

by () = 1 cos+ 2 sin+
0

(2 − 20)
cos0.

11. From Equation 6, () = () + () where () = 1 cos+ 2 sin and () =
0

(2 − 20)
cos0. Then 

is periodic, with period 2

, and if  6= 0,  is periodic with period 2

0
. If 

0
is a rational number, then we can say


0
= 


⇒  = 

0
where  and  are non-zero integers. Then



+  · 2




= 


+  · 2




+ 

+  · 2




= () + 


+ 

0
· 2



= () + 


+  · 2

0


= () + () = ()

so () is periodic.

13. Here the initial-value problem for the charge is 00 + 200 + 500 = 12, (0) = 0(0) = 0. Then

() = −10(1 cos 20+ 2 sin 20) and try () =  ⇒ 500 = 12 or  = 3
125
.

The general solution is () = −10(1 cos 20+ 2 sin 20) +
3
125
. But 0 = (0) = 1 +

3
125

and
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0() = () = −10[(−101 + 202) cos 20+ (−102 − 201) sin 20] but 0 = 0(0) = −101 + 202. Thus the charge

is() = − 1
250

−10(6 cos 20+ 3 sin 20) + 3
125

and the current is () = −10

3
5


sin 20.

15. As in Exercise 13, () = −10(1 cos 20+ 2 sin 20) but () = 12 sin 10 so try

() =  cos 10 +  sin 10. Substituting into the differential equation gives

(−100+ 200 + 500) cos 10+ (−100 − 200+ 500) sin 10 = 12 sin 10 ⇒

400+ 200 = 0 and 400 − 200 = 12. Thus  = − 3
250
,  = 3

125
and the general solution is

() = −10(1 cos 20+ 2 sin 20)− 3
250

cos 10+ 3
125

sin 10. But 0 = (0) = 1 − 3
250

so 1 = 3
250
.

Also 0() = 3
25
sin 10+ 6

25
cos 10+ −10[(−101 + 202) cos 20+ (−102 − 201) sin 20] and

0 = 0(0) = 6
25
− 101 + 202 so 2 = − 3

500
. Hence the charge is given by

() = −10

3
250

cos 20− 3
500

sin 20
− 3

250
cos 10+ 3

125
sin 10.

17. () =  cos(+ ) ⇔ () = [cos cos  − sin sin  ] ⇔ () = 
1

cos+

2


sin


where

cos  = 1 and sin  = −2 ⇔ () = 1 cos+ 2 sin. [Note that cos2  + sin2  = 1 ⇒ 21 + 22 = 2.]

17.4 Series Solutions

1. Let () =
∞
=0


. Then 0() =

∞
=1


−1 and the given equation, 0 −  = 0, becomes

∞
=1


−1 −

∞
=0


 = 0. Replacing  by + 1 in the first sum gives

∞
=0

(+ 1)+1
 −

∞
=0


 = 0, so

∞
=0

[(+ 1)+1 − ]
 = 0. Equating coefficients gives (+ 1)+1 −  = 0, so the recursion relation is

+1 =


+ 1
,  = 0 1 2   . Then 1 = 0, 2 =

1

2
1 =

0

2
, 3 =

1

3
2 =

1

3
· 1
2
0 =

0

3!
, 4 =

1

4
3 =

0

4!
, and

in general,  =
0

!
. Thus, the solution is () =

∞
=0


 =

∞
=0

0

!
 = 0

∞
=0



!
= 0

.

3. Assuming () =
∞

=0


, we have 0() =

∞
=1


−1 =

∞
=0

(+ 1)+1
 and

−2 = −
∞

=0


+2 = −

∞
=2

−2. Hence, the equation 0 = 2 becomes
∞

=0

(+ 1)+1
 −

∞
=2

−2 = 0

or 1 + 22+
∞

=2

[(+ 1)+1 − −2] = 0. Equating coefficients gives 1 = 2 = 0 and +1 =
−2
+ 1

for  = 2 3,    . But 1 = 0, so 4 = 0 and 7 = 0 and in general 3+1 = 0. Similarly 2 = 0 so 3+2 = 0. Finally

3 =
0

3
, 6 =

3

6
=

0

6 · 3 =
0

32 · 2! , 9 =
6

9
=

0

9 · 6 · 3 =
0

33 · 3! ,   , and 3 =
0

3 · ! . Thus, the solution

is  () =
∞

=0


 =

∞
=0

3
3 =

∞
=0

0

3 · !
3 = 0

∞
=0

3

3!
= 0

∞
=0


33


!

= 0
33.
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5. Let  () =
∞
=0


 ⇒ 0 () =

∞
=1


−1 and 00 () =

∞
=0

(+ 2)(+ 1)+2
. The differential equation

becomes
∞
=0

(+ 2)(+ 1)+2
 + 

∞
=1


−1 +

∞
=0


 = 0 or

∞
=0

[(+ 2)(+ 1)+2 +  + ]
 = 0


since

∞
=1


 =

∞
=0





. Equating coefficients gives (+ 2)(+ 1)+2 + (+ 1) = 0, thus the

recursion relation is +2 =
−(+ 1)
(+ 2)(+ 1)

= − 

+ 2
,  = 0 1 2    . Then the even

coefficients are given by 2 = −0

2
, 4 = −2

4
=

0

2 · 4 , 6 = −
4

6
= − 0

2 · 4 · 6 , and in general,

2 = (−1) 0

2 · 4 · · · · · 2 =
(−1)0
2 !

. The odd coefficients are 3 = −1

3
, 5 = −3

5
=

1

3 · 5 , 7 = −
5

7
= − 1

3 · 5 · 7 ,

and in general, 2+1 = (−1) 1

3 · 5 · 7 · · · · · (2+ 1) =
(−2) ! 1
(2+ 1)!

. The solution is

 () = 0
∞
=0

(−1)
2 !

2 + 1
∞
=0

(−2) !
(2+ 1)!

2+1.

7. Let  () =
∞
=0


 ⇒ 0 () =

∞
=1


−1 =

∞
=0

(+ 1)+1
 and 00 () =

∞
=0

(+ 2)(+ 1)+2
. Then

(−1)00() =
∞
=0

(+2)(+1)+2
+1−

∞
=0

(+2)(+1)+2
 =

∞
=1

(+1)+1
−

∞
=0

(+2)(+1)+2
.

Since
∞
=1

( + 1)+1
 =

∞
=0

(+ 1)+1
, the differential equation becomes

∞
=0

(+ 1)+1
 −

∞
=0

(+ 2)(+ 1)+2
 +

∞
=0

(+ 1)+1
 = 0 ⇒

∞
=0

[(+ 1)+1 − (+ 2)(+ 1)+2 + (+ 1)+1] = 0 or
∞
=0

[(+ 1)2+1 − (+ 2)(+ 1)+2] = 0.

Equating coefficients gives (+ 1)2+1 − (+ 2)(+ 1)+2 = 0 for  = 0 1 2,    . Then the recursion relation is

+2 =
(+ 1)2

(+ 2)(+ 1)
+1 =

+ 1

+ 2
+1, so given 0 and 1, we have 2 = 1

2
1, 3 = 2

3
2 =

1
3
1, 4 = 3

4
3 =

1
4
1, and

in general  =
1


,  = 1 2 3,    . Thus the solution is () = 0 + 1

∞
=1




. Note that the solution can be expressed as

0 − 1 ln(1− ) for ||  1.

9. Let () =
∞

=0


. Then −0() = −

∞
=1


−1 = −

∞
=1


 = −

∞
=0


,

00() =
∞

=0

( + 2)( + 1)+2
, and the equation 00 − 0 −  = 0 becomes

∞
=0

[(+ 2)(+ 1)+2 −  − ]
 = 0. Thus, the recursion relation is
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+2 =
 + 

(+ 2)(+ 1)
=

(+ 1)

(+ 2)(+ 1)
=



+ 2
for  = 0 1 2,    . One of the given conditions is (0) = 1. But

(0) =
∞
=0

(0)
 = 0 + 0 + 0 + · · · = 0, so 0 = 1. Hence, 2 =

0

2
=
1

2
, 4 =

2

4
=

1

2 · 4 , 6 =
4

6
=

1

2 · 4 · 6 ,    ,

2 =
1

2!
. The other given condition is 0(0) = 0. But 0(0) =

∞
=1

(0)
−1 = 1 + 0 + 0 + · · · = 1, so 1 = 0.

By the recursion relation, 3 =
1

3
= 0, 5 = 0,    , 2+1 = 0 for  = 0, 1, 2,    . Thus, the solution to the initial-value

problem is () =
∞

=0


 =

∞
=0

2
2 =

∞
=0

2

2!
=

∞
=0

(22)

!
= 

22.

11. Assuming that () =
∞

=0


, we have  = 

∞
=0


 =

∞
=0


+1, 20 = 2

∞
=1


−1 =

∞
=0


+1,

00() =
∞

=2

(− 1)−2 =
∞

=−1
(+ 3)(+ 2)+3

+1 [replace  with + 3]

= 22 +
∞

=0

(+ 3)(+ 2)+3
+1,

and the equation 00 + 20 +  = 0 becomes 22 +
∞

=0

[(+ 3)(+ 2)+3 +  + ]
+1 = 0. So 2 = 0 and the

recursion relation is +3 =
− − 

(+ 3)(+ 2)
= − (+ 1)

(+ 3)(+ 2)
,  = 0 1 2,    . But 0 = (0) = 0 = 2 and by the

recursion relation, 3 = 3+2 = 0 for  = 0, 1, 2,    . Also, 1 = 0(0) = 1, so 4 = − 21
4 · 3 = −

2

4 · 3 ,

7 = − 54
7 · 6 = (−1)

2 2 · 5
7 · 6 · 4 · 3 = (−1)

2 2
252

7!
,    , 3+1 = (−1) 2

252 · · · · · (3− 1)2
(3+ 1)!

. Thus, the solution is

() =
∞

=0


 = +

∞
=1


(−1) 2

252 · · · · · (3− 1)23+1
(3+ 1)!


.

17 Review

1. (a) 00 + 0 +  = 0 where , , and  are constants.

(b) 2 +  +  = 0

(c) If the auxiliary equation has two distinct real roots 1 and 2, the solution is  = 1
1 + 2

2. If the roots are real and

equal, the solution is  = 1
 + 2

 where  is the common root. If the roots are complex, we can write 1 = + 

and 2 = − , and the solution is  = (1 cos+ 2 sin).

2. (a) An initial-value problem consists of finding a solution  of a second-order differential equation that also satisfies given

conditions (0) = 0 and 0(0) = 1, where 0 and 1 are constants.
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(b) A boundary-value problem consists of finding a solution  of a second-order differential equation that also satisfies given

boundary conditions (0) = 0 and (1) = 1.

3. (a) 00 + 0 +  = () where , , and  are constants and is a continuous function.

(b) The complementary equation is the related homogeneous equation 00 + 0 +  = 0. If we find the general solution 

of the complementary equation and  is any particular solution of the original differential equation, then the general

solution of the original differential equation is () = () + ().

(c) See Examples 1–5 and the associated discussion in Section 17.2.

(d) See the discussion on pages 1177–1179 [ ET 1153–1155].

4. Second-order linear differential equations can be used to describe the motion of a vibrating spring or to analyze an electric

circuit; see the discussion in Section 17.3.

5. See Example 1 and the preceding discussion in Section 17.4.

1. True. See Theorem 17.1.3.

3. True. cosh and sinh are linearly independent solutions of this linear homogeneous equation.

1. The auxiliary equation is 42 − 1 = 0 ⇒ (2 + 1)(2 − 1) = 0 ⇒  = ±1
2
. Then the general solution

is  = 1
2 + 2

−2.

3. The auxiliary equation is 2 + 3 = 0 ⇒  = ±√3 . Then the general solution is  = 1 cos
√
3

+ 2 sin

√
3

.

5. 2 − 4 + 5 = 0 ⇒  = 2± , so  () = 2(1 cos+ 2 sin). Try  () = 2 ⇒ 0 = 2
2

and 00 = 4
2. Substitution into the differential equation gives 42 − 82 + 52 = 2 ⇒  = 1 and

the general solution is () = 2(1 cos+ 2 sin) + 2.

7. 2 − 2 + 1 = 0 ⇒  = 1 and () = 1
 + 2

. Try () = (+) cos+ (+) sin ⇒

0 = ( −−) sin+ (++) cos and 00 = (2 − −) cos+ (−2− −) sin. Substitution

gives (−2+ 2 − 2− 2) cos+ (2− 2+ 2 − 2) sin =  cos ⇒  = 0,  =  =  = − 1
2
.

The general solution is () = 1
 + 2

 − 1
2
cos− 1

2
(+ 1) sin.

9. 2 −  − 6 = 0 ⇒  = −2,  = 3 and () = 1
−2 + 2

3. For 00 − 0 − 6 = 1, try 1() = . Then

01() = 001 () = 0 and substitution into the differential equation gives  = − 1
6
. For 00 − 0 − 6 = −2 try
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2() = −2 [since  = −2 satisfies the complementary equation]. Then 02 = ( − 2)−2 and

002 = (4− 4)−2, and substitution gives −5−2 = −2 ⇒  = −1
5
. The general solution then is

() = 1
−2 + 2

3 + 1() + 2() = 1
−2 + 2

3 − 1
6
− 1

5
−2.

11. The auxiliary equation is 2 + 6 = 0 and the general solution is () = 1 + 2
−6 = 1 + 2

−6(−1). But

3 = (1) = 1 + 2 and 12 = 0(1) = −62. Thus 2 = −2, 1 = 5 and the solution is () = 5− 2−6(−1).

13. The auxiliary equation is 2 − 5 + 4 = 0 and the general solution is () = 1
 + 2

4. But 0 = (0) = 1 + 2

and 1 = 0(0) = 1 + 42, so the solution is () = 1
3
(4 − ).

15. 2 + 4 + 29 = 0 ⇒  = −2± 5 and the general solution is  = −2(1 cos 5+ 2 sin 5). But 1 = (0) = 1 and

−1 = () = −1−2 ⇒ 1 = 2 , so there is no solution.

17. Let () =
∞
=0


. Then 00 () =

∞
=0

(− 1)−2 =
∞
=0

(+ 2)(+ 1)+2
 and the differential equation

becomes
∞
=0

[(+ 2)(+ 1)+2 + (+ 1)]
 = 0. Thus the recursion relation is +2 = −(+ 2)

for  = 0 1 2,    . But 0 = (0) = 0, so 2 = 0 for  = 0 1 2,    . Also 1 = 0(0) = 1, so 3 = −1
3
, 5 =

(−1)2
3 · 5 ,

7 =
(−1)3
3 · 5 · 7 =

(−1)3233!
7!

,    , 2+1 =
(−1) 2 !
(2+ 1)!

for  = 0 1 2    . Thus the solution to the initial-value problem

is () =
∞
=0


 =

∞
=0

(−1) 2 !
(2+ 1)!

2+1.

19. Here the initial-value problem is 200 + 400 + 400 = 12,  (0) = 001, 0(0) = 0. Then

() = −10(1 cos 10 + 2 sin 10) and we try () = . Thus the general solution is

() = −10(1 cos 10+ 2 sin 10) +
3
100
. But 001 = 0(0) = 1 + 003 and 0 = 00(0) = −101 + 102,

so 1 = −002 = 2. Hence the charge is given by() = −002−10(cos 10+ sin 10) + 003.

21. (a) Since we are assuming that the earth is a solid sphere of uniform density, we can calculate the density  as follows:

 =
mass of earth
volume of earth

=


4
3
3

. If  is the volume of the portion of the earth which lies within a distance  of the

center, then  = 4
3
3 and =  =

3

3
. Thus  = −

2
= −

3
.

(b) The particle is acted upon by a varying gravitational force during its motion. By Newton’s Second Law of Motion,


2

2
=  = −

3
, so 00() = −2 () where 2 = 

3
. At the surface, − =  = −

2
, so

 =


2
. Therefore 2 =




.
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(c) The differential equation 00 + 2 = 0 has auxiliary equation 2 + 2 = 0. (This is the  of Section 17.1,

not the  measuring distance from the earth’s center.) The roots of the auxiliary equation are±, so by (11) in
Section 17.1, the general solution of our differential equation for  is () = 1 cos + 2 sin. It follows that

0() = −1 sin+ 2 cos . Now  (0) =  and 0(0) = 0, so 1 =  and 2 = 0. Thus () =  cos  and

0() = − sin . This is simple harmonic motion (see Section 17.3) with amplitude, frequency , and phase angle 0.

The period is  = 2.  ≈ 3960 mi = 3960 · 5280 ft and  = 32 fts2, so  =

 ≈ 124× 10−3 s−1 and

 = 2 ≈ 5079 s ≈ 85 min.

(d) () = 0 ⇔ cos  = 0 ⇔  = 
2
+  for some integer  ⇒ 0() = − sin

2
+ 


= ±. Thus the

particle passes through the center of the earth with speed  ≈ 4899 mis ≈ 17,600 mih.
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APPENDIX

Appendix H Complex Numbers

1. (5− 6) + (3 + 2) = (5 + 3) + (−6 + 2) = 8 + (−4) = 8− 4

3. (2 + 5)(4− ) = 2(4) + 2(−) + (5)(4) + (5)(−) = 8− 2+ 20− 52 = 8 + 18− 5(−1)
= 8 + 18+ 5 = 13 + 18

5. 12 + 7 = 12− 7

7.
1 + 4

3 + 2
=
1 + 4

3 + 2
· 3− 2
3− 2 =

3− 2+ 12− 8(−1)
32 + 22

=
11 + 10

13
=
11

13
+
10

13


9.
1

1 + 
=

1

1 + 
· 1− 

1− 
=

1− 

1− (−1) =
1− 

2
=
1

2
− 1

2


11. 3 = 2 ·  = (−1) = −

13.
√−25 = √25  = 5

15. 12− 5 = 12 + 15 and |12− 15| =

122 + (−5)2 = √144 + 25 = √169 = 13

17. −4 = 0− 4 = 0 + 4 = 4 and |−4| =

02 + (−4)2 = √16 = 4

19. 42 + 9 = 0 ⇔ 42 = −9 ⇔ 2 = − 9
4
⇔  = ±


− 9
4
= ±


9
4
 = ± 3

2
.

21. By the quadratic formula, 2 + 2+ 5 = 0 ⇔  =
−2±


22 − 4(1)(5)
2(1)

=
−2±√−16

2
=
−2± 4
2

= −1± 2.

23. By the quadratic formula, 2 +  + 2 = 0 ⇔  =
−1±


12 − 4(1)(2)
2(1)

=
−1±√−7

2
= −1

2
±
√
7

2
.

25. For  = −3 + 3,  =

(−3)2 + 32 = 3√2 and tan  = 3

−3 = −1 ⇒  = 3
4
(since  lies in the second quadrant).

Therefore, −3 + 3 = 3√2 cos 3
4
+  sin 3

4


.

27. For  = 3 + 4,  =
√
32 + 42 = 5 and tan  = 4

3
⇒  = tan−1


4
3


(since  lies in the first quadrant). Therefore,

3 + 4 = 5

cos

tan−1 4

3


+  sin


tan−1 4

3


.

29. For  =
√
3 + ,  =

√
3
2
+ 12 = 2 and tan  = 1√

3
⇒  = 

6
⇒  = 2


cos 

6
+  sin 

6


.

For  = 1 +
√
3 ,  = 2 and tan  =

√
3 ⇒  = 

3
⇒  = 2


cos 

3
+  sin 

3


.

Therefore,  = 2 · 2cos
6
+ 

3


+  sin



6
+ 

3


= 4


cos 

2
+  sin 

2


,

 = 2
2


cos


6
− 

3


+  sin



6
− 

3


= cos

−
6


+  sin

−
6


, and 1 = 1 + 0 = 1(cos 0 +  sin 0) ⇒
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1 = 1
2


cos

0− 

6


+  sin


0− 

6


= 1

2


cos
−

6


+  sin

−
6


. For 1, we could also use the formula that precedes

Example 5 to obtain 1 = 1
2


cos 

6
−  sin 

6


.

31. For  = 2
√
3− 2,  =


2
√
3
2
+ (−2)2 = 4 and tan  = −2

2
√
3
= − 1√

3
⇒  = −

6
⇒

 = 4

cos
−

6


+  sin

−
6


. For  = −1 + ,  =

√
2, tan  = 1

−1 = −1 ⇒  = 3
4

⇒

 =
√
2

cos 3

4
+  sin 3

4


. Therefore,  = 4

√
2

cos
−

6
+ 3

4


+  sin

−
6
+ 3

4


= 4

√
2

cos 7

12
+  sin 7

12


,

 = 4√
2


cos
−

6
− 3

4


+  sin

−
6
− 3

4


= 4√

2


cos
− 11

12


+  sin

− 11
12


= 2

√
2

cos 13

12
+  sin 13

12


, and

1 = 1
4


cos
−

6

−  sin
−

6


= 1

4


cos 

6
+  sin 

6


.

33. For  = 1 + ,  =
√
2 and tan  = 1

1
= 1 ⇒  = 

4
⇒  =

√
2

cos 

4
+  sin 

4


. So by De Moivre’s Theorem,

(1 + )
20
=
√
2

cos 

4
+  sin 

4

20
= (212)20


cos 20 ·

4
+  sin 20 ·

4


= 210(cos 5 +  sin 5)

= 210[−1 + (0)] = −210 = −1024

35. For  = 2
√
3 + 2,  =


2
√
3
2
+ 22 =

√
16 = 4 and tan  = 2

2
√
3
= 1√

3
⇒  = 

6
⇒  = 4


cos 

6
+  sin 

6


.

So by De Moivre’s Theorem,
2
√
3 + 2

5
=

4

cos 

6
+  sin 

6

5
= 45


cos 5

6
+  sin 5

6


= 1024


−
√
3
2
+ 1

2


= −512√3 + 512.

37. 1 = 1 + 0 = 1 (cos 0 +  sin 0). Using Equation 3 with  = 1,  = 8, and  = 0, we have

 = 1
18


cos


0 + 2

8


+  sin


0 + 2

8


= cos



4
+  sin



4
, where  = 0 1 2     7.

0 = 1(cos 0 +  sin 0) = 1, 1 = 1

cos 

4
+  sin 

4


= 1√

2
+ 1√

2
,

2 = 1

cos 

2
+  sin 

2


= , 3 = 1


cos 3

4
+  sin 3

4


= − 1√

2
+ 1√

2
,

4 = 1(cos +  sin) = −1, 5 = 1

cos 5

4
+  sin 5

4


= − 1√

2
− 1√

2
,

6 = 1

cos 3

2
+  sin 3

2


= −, 7 = 1


cos 7

4
+  sin 7

4


= 1√

2
− 1√

2


39.  = 0 +  = 1

cos 

2
+  sin 

2


. Using Equation 3 with  = 1,  = 3, and  = 

2
, we have

 = 1
13


cos

 
2
+ 2

3


+  sin

 
2
+ 2

3


, where  = 0 1 2.

0 =

cos 

6
+  sin 

6


=
√
3
2
+ 1

2


1 =

cos 5

6
+  sin 5

6


= −

√
3
2
+ 1

2


2 =

cos 9

6
+  sin 9

6


= −

41. Using Euler’s formula (6) with  = 
2
, we have 2 = cos 

2
+  sin 

2
= 0 + 1 = .
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43. Using Euler’s formula (6) with  =


3
, we have 3 = cos



3
+  sin



3
=
1

2
+

√
3

2
.

45. Using Equation 7 with  = 2 and  = , we have 2+ = 2 = 2(cos +  sin) = 2(−1 + 0) = −2.

47. Take  = 1 and  = 3 in De Moivre’s Theorem to get

[1(cos  +  sin )]
3
= 13(cos 3 +  sin 3)

(cos  +  sin )
3
= cos 3 +  sin 3

cos3  + 3(cos2 )( sin ) + 3(cos )( sin )2 + ( sin )
3
= cos 3 +  sin 3

cos3  + (3 cos2  sin )− 3 cos  sin2  − (sin3 )= cos 3 +  sin 3

(cos3  − 3 sin2  cos ) + (3 sin  cos2  − sin3 )= cos 3 +  sin 3

Equating real and imaginary parts gives cos 3 = cos3  − 3 sin2  cos  and sin 3 = 3 sin  cos2  − sin3 .

49.  () =  = (+) = + = (cos +  sin ) =  cos + ( sin ) ⇒

 0() = ( cos )0 + ( sin )0

= ( cos −  sin ) + ( sin +  cos )

= [(cos +  sin )] + [(− sin +  cos )]

=  + [(2 sin +  cos )]

=  + [(cos +  sin )] =  +  = (+ ) = 
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