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Chapter 1 
 

 
1-1.   Define engineering design and elaborate on each important concept in the definition. 
 
------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(Ref. 1.2) Engineering design is an iterative decision-making process that has the objective of creating and 
optimizing a new or improved engineering system or device for the fulfillment of a human need or desire, with 
regard for conservation of resources and environmental impact.  
 
The essence of engineering (especially mechanical design) is the fulfillment of human needs and desires. Whether a 
designer is creating a new device of improving an existing design, the objective is always to provide the “best”, or 
“optimum” combination of materials and geometry. Unfortunately, an absolute optimum can rarely be achieved 
because the criteria of performance, life, weight, cost, etc. typically place counter-opposing demands upon any 
proposed combination of material and geometry. 
 
Designers must not only compete in the marketplace, but must respond to the clear and growing obligation of the 
global technical community to conserve resources and preserve the environment. 
Finally, iteration, or cut-and-try pervades design methodology. Selection of the best material and geometry are 
typically completed through a series of iterations. 
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1-2.   List several factors that might be used to judge how well a proposed design meets its specified objectives. 
 
---------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
(Ref. 1.3) The following factors might be used: 
 

(1) Ability of parts to transmit required forces and moments. 
(2) Operation without failure for prescribed design life. 
(3) Inspectability of potential critical points without disassembly. 
(4) Ability of machine to operate without binding or interference between parts. 
(5) Ease of manufacture and assembly. 
(6) Initial and life-cycle costs. 
(7) Weight of device and space occupied. 
(8) Ability to service and maintain. 
(9) Reliability, safety, and cost competitiveness. 
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1.3  Define the term optimum design, and briefly explain why it is difficult to achieve an optimum solution to a 
practical design problem. 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
A dictionary definition of adequate is “sufficient for a specified requirement”, and for the word optimum is “greatest 
degree attainable under implied or specified conditions”. In a machine design context, adequate design may 
therefore be defined as the selection of material and geometry for a machine element that satisfies all of its specified 
functional requirements, while keeping any undesirable effects within tolerable ranges. In the same context, optimal 
design may be defined as the selection of material and geometry for a machine element with specific the objective of 
maximizing the part’s ability to address the most significant functional requirements, making sure that all other 
functional requirements are adequately satisfied, and that any undesirable effects are kept within tolerable ranges. 

 
Optimum design of real mechanical elements is complicated by the need to study relationships between and among 
functions that embody many variables such as performance, life, weight, cost, and safety. Unfortunately, these 
variables place counter-opposing demands upon and selected combination of materials and geometry; design 
changes that improve the part’s ability to respond to one significant performance parameter may, at the same time, 
degrade its ability to respond to another important parameter. Thus, an absolute optimum design can rarely be 
achieved. 
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1-4.   When to stop calculating and start building is an engineering judgment of critical importance. Write about 250 
words discussing your views on what factors are important in making such a judgment. 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The decision to stop calculating and start building is a crucial engineering responsibility. To meet design objectives, 
a designer must model the machine and each of its parts, make appropriate simplifying assumptions where needed, 
gather data, select materials, develop mathematical models, perform calculations, determine shapes and sizes, 
consider pertinent failure modes, evaluate results, and repeat the loop of actions just listed until a “best” design 
configuration is achieved. Questions always arise at each step in the design sequence. For example: 
 

(1) What assumptions should be made, how many, how detailed, how refined? 
(2) Are data available on loading spectra, environmental conditions, user practice, or must testing be 

conducted? 
(3) Are materials data available for the failure modes and operating conditions that pertain, and where are the 

data, or must testing be conducted? 
(4) What types of modeling and calculation techniques should be used; standard or special, closed-form or 

numerical, P-C, workstation, or supercomputer? 
(5) How important are reliability, safety, manufacturing, and/or maintainability? 
(6) What is the competition in the marketplace for producing this product? 

 
Often, the tendency of an inexperienced new engineer is to model, analyze, calculate, and refine too much, too often, 
and too long, loosing market niche or market share as a consequence. On the other hand, the “old-timer” in the 
design department often tends to avoid the analysis and build the product “right away”, risking unforeseen problems 
in performance, safety, reliability, or manufacturability at high cost. Although dependent upon the product and the 
application, the engineering decision to stop calculating and start building is always crucial to success. 
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1-5.  The stages of design activity have been proposed in 1.6 to include preliminary design, intermediate design, 
detail design, and development and field service. Write a two- or three-sentence descriptive summary of the essence 
of each of these four stages of design. 
 
------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 (1) Preliminary design is primarily concerned with synthesis, evaluation, and comparison of proposed 

machine or system concepts. The result of the preliminary design stage is the proposal of a likely-
successful concept to be designed in depth to meet specific criteria of performance, life, weight, 
cost, safety, or other aspects of the overall project. 

 (2) Intermediate design embodies the spectrum of in depth engineering design of individual 
components and subsystems for the already pre-selected machine or system. The result of the 
intermediate design stage is the establishment of all critical specifications relating to function, 
manufacturing, inspection, maintenance, and safety. 

 (3) Detail design is concerned mainly with configuration, arrangement, form, dimensional 
compatibility and completeness, fits and tolerances, meeting specifications, joints, attachment and 
retention details, fabrication methods, assemblability, productibility, inspectability, maintainability, 
safety, and estaqblishing bills of material and purchased parts. The result of the detail design stage 
is a complete set of working drawings and specifications, approved for production of a prototype 
machine. 

 (4) Development and field service activities include development of a prototype into a production 
model, and following the product into the field, maintaining and analyzing records of failure, 
maintenance procedures, safety problems, or other performance problems. 
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1-6. What conditions must be met to guarantee a reliability of 100 percent? 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
A designer must recognize at the outset that there is no way to specify a set of conditions that will guarantee a 
reliability of 100%. There will always be a finite probability of failure. 
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1-7.   Distinguish between fail safe design and safe life design, and explain the concept of inspectability, upon which 
they both depend. 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(Ref 1.5) Fail safe design is implemented by providing redundant load paths in a structure so that if failure of a 
primary structural member occurs, a secondary member is capable of carrying the load on an emergency basis until 
the primary structural failure is detected and repaired. 
 
Safe life design is implemented by carefully selecting a large enough safety factor and establishing inspection 
intervals to assure that the stress levels, the potential flaw size, and the governing failure strength levels combine to 
give crack growth rate slow enough to assure crack detection before the crack reaches its critical size. 

 
Both fail safe and safe life design depend on regularly scheduled inspections of all potential critical points. This 
implies that critical point locations must be identified, unfettered inspection access to the critical points must be 
designed into the structure from the beginning (inspectability), appropriate inspection intervals must be established 
(usually on a statistical basis), and a schedule must be established and executed to assure proper and timely 
inspections. 
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1-8.   Iteration often plays a very important role in determining the material, shape, and size of a proposed machine 
part. Briefly explain the concept of iteration, and give an example of a design scenario that may require an iterative 
process to find a solution. 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
A dictionary definition of iteration is “to do again and again.” In he mechanical design context, this may imply the 
initial selection of a material, shape, and size for a machine part, with the “hope” that functional performance 
specifications can be met and that strength, life, and safety goals will, at the same time be achieved. Then, 
examining the “hope” through the use of applicable engineering models, make changes in the initial selection of 
material, shape or size that will improve the part’s ability to meet the specified goals, and repeat the process (iterate) 
until the goals are met. 

 
For example, assume a stepped shaft needs to be designed for a newly proposed machine. Neither the material, the 
shape, nor the size are known at the outset. The loads, torques, speed, and bearing support locations are initially 
known. The iteration steps for such a case might include: 

 
(1) Select (assume) a potential material. 
(2) Establish a coordinate system and make a stick-sketch free-body diagram of the shaft, 

showing all known forces and moment and their locations. 
(3) Make a first-iteration conceptual sketch of the proposed shaft. 
(4) Using appropriate shaft design equations, calculate tentative diameters for each stepped 

section of the shaft. 
(5) By incorporating basic guidelines for creating shape and size, transform the first-iteration 

sketch into a more detailed second-iteration sketch that includes transition geometry from one 
step to another, shoulders, fillets, and other features. 

(6) Analyze the second-iteration shaft making appropriate changes (iterations) in material (to 
meet specified strength, stiffness, or corrosion resistance specifications), changes in shape (to 
alleviate stress concentrations, reduce weight, or provide for component retention), and 
changes in size (to reduce stress or deflection, or eliminate interference). 

(7) Continue iterations until a satisfactory design configuration has been achieved 
  

A more specific example of the design iteration process is discussed in Example 8-1. 
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1-9.  Write a short paragraph defining the term “simultaneous engineering” or “concurrent engineering”. 
 
------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
“Simultaneous” , or “concurrent” engineering is a technique for organizing and displaying information and 
knowledge about all design-related issues during the life cycle of a product, from the time marketing goals are 
established to the time the product is shipped. The technique depends upon an iterative computer system that allows 
on-line review and rapid update of the current design configuration by any member of the product design team, at 
any time, giving “simultaneous” access to the most current design configuration to all members. Properly executed, 
this approach prevents the need for costly “re-designs” by incorporating requirements of down-stream processes 
early in the preliminary design stage. 
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1-10.   Briefly describe the nature of codes and standards, and summarize the circumstances under which their use 
should be considered by a designer. 

 
------------------------------------------------------------------------------------------------------------------------------------- 

Solution 
 

(Ref. 1.9) Codes are usually legally binding documents, compiled by a governing agency, that are aimed at 
protecting the general welfare of its constituents and preventing loss of life, injury, or property damage. Codes tell 
the user what to do and when to do it. 
 
Standards are consensus-based documents, formulated through a cooperative effort among industrial organizations 
and other interested parties, that define good practices in a particular field. Standards are usually regarded as 
recommendations to the user for how to do the task covered by the standard. 

 
A designer should consider using applicable codes and standards in every case. If codes are not adhered to, a 
designer and their company may be exposed to litigation. If standards are not used, cost penalties, lack of 
interchangeability, and loss of market share may result and overall performance may be compromised as well. 
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1-11. Define what is meant be ethics in the field of engineering. 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
Ethics and morality are formulations of what we ought to do and how we ought to behave, as we practice 
engineering. Engineering designers have a special responsibility for ethical behavior because the health and welfare 
of the public often hangs on the quality, reliability, and safety of their designs. 
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1-12.  Explain what is meant by an ethical dilemma. 
 
---------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
An ethical dilemma is a situation that exists whenever moral reasons or considerations can be offered to support two 
or more opposing courses of action. An ethical dilemma is different from an ethical issue, which is a general 
scenario involving moral principles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 13

 
 
1-13.34  A young engineer, having worked in a multinational engineering company for about five years, has been 
assigned the task of negotiating a large construction contract with a country where it is generally accepted business 
practice, and totally legal under the country’s laws, to give substantial gifts to government officials in order to obtain 
contracts. In fact, without such a gift, contracts are rarely awarded. This presents an ethical dilemma for the young 
engineer because the practice is illegal in the United States, and clearly violates the NSPE Code of Ethics for 
Engineers [see Code Section 5(b) documented in the appendix]. The dilemma is that while the gift-giving practice is 
unacceptable and illegal in the United States, it is totally proper and legal in the country seeking the services. A 
friend, who works for a different firm doing business is the same country, suggests that the dilemma may be solved 
by subcontracting with a local firm based in the country, and letting the local firm handle gift giving. He reasoned 
that he and his company were not party to the practice of gift giving, and therefore were not acting unethically. The 
local firm was acting ethically as well, since they were abiding by the practices and laws of hat country. Is this a 
way out of the dilemma? 

 
------------------------------------------------------------------------------------------------------------------------------------------- 

Solution 
 

This appears to be exactly what some U.S. firms do on a routine basis. If you think it is a solution to the ethical 
dilemma posed, reexamine section 5 (b) of the NSPE Code shown in the appendix. It begins, “Engineers shall not 
offer, give, solicit, or receive, either directly or indirectly, ….”. Clearly, the use of a subcontractor in the proposed 
manner is indirectly giving the gift. The practice is not ethical. 
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1-14.35  Two young engineering graduate students received their Ph.D. degrees from a major university at about the 
same time.  Both sought faculty positions elsewhere, and they were successful in receiving faculty appointments at 
two different major universities. Both knew that to receive tenure they would be required to author articles for 
publication in scholarly and technical journals. 
 Engineer A, while a graduate student, had developed a research paper that was never published, but he 
believed that it would form a sound basis for an excellent journal article. He discussed his idea with his friend, 
Engineer B, and they agreed to collaborate in developing the article. Engineer A, the principal author, rewrote the 
earlier paper, bringing it up to date. Engineer B’s contributions were minimal. Engineer A agreed to include 
Engineer B’s name as co-author of the article as a favor in order to enhance Engineer B’s chances of obtaining 
tenure. The article was ultimately accepter and published in a referred journal. 
 

a. Was it ethical for Engineer B to accept credit for development of the article? 
b. Was it ethical for Engineer A to include Engineer B as co-author of the article? 

 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) Although young faculty members are typically placed under great pressure to “publish or perish”, Engineer B’s 
contribution to the article is stated to be minimal, and therefore seeking credit for an article that they did not author 
tends to deceive the faculty tenure committee charged with the responsibility of reviewing his professional progress. 
Section III.3.C of the Code (see appendix) reads, in part, “… such articles shall not imply credit to the author for 
work performed by others.” Thus, accepting co-authorship of the paper, to which his contribution was minimal, is at 
odds with academic honesty, professional integrity, and the Code of Ethics . Engineer B’s action in doing so is not 
ethical. 
 
 (b) Engineer A’s agreement to include Engineer B as co-author as a favor, in order  to enhance Engineer B’s 
chances of obtaining tenure, compromises Engineer A’s honesty and integrity. He is professionally diminished by 
this action. Collaborative efforts should produce a high quality product worthy of joint authorship, and should not 
merely be a means by which engineering faculty expand their list of achievements. Engineer A’s action is not 
ethical. 
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1-15.  If you were given the responsibility for calculating the stresses in a newly proposed “Mars Lander,” what 
system of units would you probably choose? Explain. 

 
 
----------------------------------------------------------------------------------------------------------------------------------------- 

Solution 
 
The best choice would be an absolute system of units, such as the SI system. Because the mass is the base unit and 
not dependent upon local gravity. 
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1-16. Explain hoe the lessons-learned strategy might be applied to the NASA mission failure experienced while 
attempting to land the Mars Climate Orbiter on the Martian surface in September 1999. The failure event is briefly 
described in footnote 31 to the first paragraph of 1.14. 

 
----------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

As noted in footnote 31, the mission failure was caused by poor communication between two separate engineering 
teams, each involved in determining the spacecraft’s course. One team was using U.S units and the other team was 
using metric units. Apparently units were omitted from the numerical data, errors were made in assuming what 
system of units should be associated with the data, and, as a result, data in U.S. units were substituted directly into 
metric-based thrust equations, later embedded in the orbiter’s guidance software. 
 
As discussed in 1.7, the lessons-learned strategy may be implemented by making an organized effort to observe in-
action procedures, analyze them in after-action reviews, distill the reviews into lessons learned, and disseminate the 
lessons learned so the same mistakes are not repeated. 
 
In the case of the Mars Climate Orbiter, little effort was required to define the overall problem: the Orbiter was lost. 
A review by NASA resulted in discovery of the incomplete units used in performing the Orbiter’s guidance 
software. A proper next curse of action would be to define ways of reducing or preventing the possibility of using 
inconsistent units in making performance calculations. Perhaps by a requirement to always attach units explicitly to 
numerical data. Perhaps by an agreement that would bind all parties to use of a single agreed-upon system of units. 
Perhaps by mandating an independent quality assurance review of all inter-group data transmission. Whatever 
remedial actions are decided upon, to be effective, must be conveyed to all groups involved, and others that may be 
vulnerable to error caused by the use of inconsistent units. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 17

 
1-17.  A special payload package is to be delivered to the surface of the moon. A prototype of the package, 
developed, constructed, and tested near Boston, has been determined to have a mass of 23.4 kg. 
 

a. Estimate the weight of the package in newtons, as measured near Boston. 
b. Estimate the weight of the package in newtons on the surface of the moon, if  217.0 m/smoong = at the 

landing site. 
c. Reexpress the weights in pounds. 

 
---------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The weight of the package near Boston and on the moon are 
 

                              2 229.6 N(23.4 kg)(9.81 m/s ) 229.6 N 51.6 lb
4.448 N/lbBostonW F ma= = = = = =  

                              2 39.8 N(23.4 kg)(1.70 m/s ) 39.8 N 8.95 lb
4.448 N/lbmoonW F ma= = = = = =  
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1-18.  Laboratory crash tests of automobiles occupied by instrumented anthropomorphic dummies are routinely 
conducted by the automotive industry. If you were assigned the task of estimating the force in newtons at the mass 
center of the dummy, assuming it to be a rigid body, what would be your force prediction if a head-on crash 
deceleration pulse of 60 g’s (g’s are multiples of the standard acceleration of gravity) is to be applied to the dummy? 
The nominal weight of the dummy is 150 pounds. 
 
 
------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

             
( )( )

2

150 lb 4.448 N/lb
68 kg

9.81 m/s
Wm
g

= = =  

            2(68 kg)(9.81 m/s -g)(60 g) 40 kNF ma= = =  
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1-19.  Convert a shaft diameter of 2.25 inches into mm. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
                    ( )2.25 in 25.4 mm/in 57.2 mmsD = =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 20

 
1-20.  Convert a gear-reducer input torque of 20,000 in-lb to N-m. 
 
 
-------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

                         0.1138 N-m(20,000 in-lb) 2276 N-m
in-bgT ⎛ ⎞= =⎜ ⎟

⎝ ⎠
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1-21.  Convert a tensile bending stress of 869 MPa to psi. 
 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

                          3
1 psi(876 MPa) 127,050 psi

6.895 10  MPabσ −
⎛ ⎞= ≈⎜ ⎟×⎝ ⎠
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1-22. It is being proposed to use a standard W10 45× (wide-flange) section for each of four column supports for 
an elevated holding tank. (See Appendix Table A.3 for symbol interpretation and section properties.) What would be 
the cross-sectional area in 2mm  of such a column cross section? 
 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
           Using Appending Table A-3 and Table 1.4 
 

                        
2

2 2
2

645.16 mm(13.3 in ) 8580.6 mm
inWA

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
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1-23.  What is the smallest standard equal-leg angle-section that would have a cross-sectional area at least as large as 
the W10 45× section of problem 1-22? (From Table A.3, the W10 45× section has a cross-sectional area of 

213.3 in .) 
 
 
------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For a W10 45× , 213.3 inA = . From Appendix Table A-6, the minimum area, LA , for a structural equal-leg angle 

section requires that nothing smaller than 18 8 1
8

L × ×  be used. 
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Chapter 2 
 

 
2-1.  In the context of machine design, explain what is meant by the terms failure and failure mode. 
 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Mechanical failure may be defined as any change in the size, shape, or material properties of a structure, 
machine, or machine part that renders it incapable of satisfactorily performing its intended function.  
 
Failure mode may be defined as the physical process or processes that take place or combine their effects to 
produce failure. 
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2-2.  Distinguish the difference between high-cycle fatigue and low-cycle fatigue, giving the characteristics of 
each. 
 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
High-cycle fatigue is the domain of cyclic loading for which strain cycles are largely elastic, stresses 
relatively low, and cyclic lives are long. 
 
Low-cycle fatigue is the domain of cyclic loading for which strain cycles have a significant plastic 
component, stresses are relatively high, and cyclic lives are short. 
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2-3.  Describe the usual consequences of surface fatigue. 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 Surface Fatigue is as failure phenomenon usually resulting from rolling surfaces in contact, in which 
cracking, pitting, and spalling occur. The cyclic Hertz contact stresses induce subsurface cyclic shearing 
stresses that initiate subsurface fatigue nuclei. Subsequently, the fatigue nuclei propagate, first parallel to the 
surface then direct to the surface to produce dislodged particles and surface pits. The operational results may 
include vibration, noise, and/or heat generation. This failure mode is common in bearings, gear teeth, cams, 
and other similar applications. 
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2-4. Compare and contrast ductile rupture and brittle fracture. 
 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
  
Brittle Fracture manifests itself as the very rapid propagation of a crack, causing separation of the stressed 
body into two or more pieces after little or no plastic deformation. In polycrystalline metals the fracture 
proceeds along cleavage planes within each crystal, giving the fracture surface a granular appearance.  
 
Ductile rupture, in contrast, takes place as a slowly developing separation following extensive plastic 
deformation. Ductile rupture proceeds by slow crack growth induced by the formation and coalescence of 
voids, giving a dull and fibrous appearance to the fracture surface. 
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2-5.  Carefully define the terms creep, creep rupture, and stress rupture, citing the similarities that relate 
these three failure modes and the differences that distinguish them from one another. 
 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Creep is the progressive accumulation of plastic strain, under stress, at elevated temperature, over a period of 
time. 
 
Creep Rupture is an extension of the creep process to the limiting condition where the part separates into two 
pieces. 
 
Stress Rupture is the rupture termination of a creep process in which steady-state creep has never been 
reached. 
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2-6. Give a definition for fretting, and distinguish among the related failure phenomena of fretting fatigue, 
fretting wear, and fretting corrosion. 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Fretting is a combined mechanical and chemical action in which the contacting surfaces of two solid bodies 
are pressed together by a normal force and are caused to execute oscillatory sliding relative motion, wherein 
the magnitude of normal force is great enough and the amplitude of oscillatory motion is small enough to 
significantly restrict the flow of fretting debris away from the originating site.  Related failure phenomena 
include accelerated fatigue failure, called Fretting-Fatigue, loss of proper fit or significant change in 
dimensions, called Fretting wear, and corrosive surface damage, called Fretting-corrosion. 
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2-7.  Give a definition of wear failure and list the major subcategories of wear. 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 Wear failure may be defined as the undesired cumulative change in dimensions brought about by the gradual 
removal of discrete particles from contacting surfaces in motion (usually sliding) until dimensional changes 
interfere with the ability of the part to satisfactorily perform its intended function. The major subcategories of 
wear are: 
 
 (a) Adhesive wear  (d) Surface fatigue wear  (g) Impact wear 
 (b) Abrasive wear  (e) Deformation wear    
 (c) Corrosive wear  (f) Fretting wear    
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2-8.  Give a definition for corrosion failure, and list the major subcategories of corrosion. 
 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Corrosion failure is said to occur when a machine part is rendered incapable of performing its intended 
function because of the undesired deterioration of a material through chemical or electrochemical interaction 
with the environment, or destruction of materials by means other than purely mechanical action. The major 
subcategories of corrosion are: 
 
 (a) Direct chemical attack  (e) Intergranular corrosion  (i) Hydrogen damage 
 (b) Galvanic corrosion  (f) Selective leaching  (j) Biological corrosion 
 (c) Crevice corrosion  (g) Erosion corrosion  (k) Stress corrosion cracking 
 (d) Pitting corrosion  (h) Cavitation corrosion    
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2-9.  Describe what is meant by a synergistic failure mode, give three examples, and for each example 
describe how synergistic interaction proceeds. 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
Synergistic failure modes are characterized as a combination of different failure modes which result in a 
failure more serious than that associated with either constituent failure mode. Three examples are 
 
 1. Corrosion wear; a combination failure mode in which the hard, abrasive corrosion product 

accelerates wear, and the wear-removal of “protective” corrosion layers tends to accelerate 
corrosion. 

 2. Corrosion Fatigue;  a combination failure mode in which corrosion-produced surface pits and 
fissures act as stress raisers that accelerate fatigue, and the cyclic strains tend to “crack” the brittle 
corrosion layers to allow a to atmospheric penetration and accelerated rates of corrosion. 

 3. Combined Creep and Fatigue; a combination failure mode in which details of the synergistic 
interaction are not well understood but data support the premise that the failure mode is 
synergistic. 
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2-10. Taking a passenger automobile as an example of an engineering system, list all failure modes you think 
might be significant, and indicate where in the auto you think each failure mode might be active. 
 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
A list of potential failure modes, with possible locations might include, but  not be limited to 
 
 Possible Failure Mode  Possible Location 
 Brinnelling  Bearings, cams. gears 
 High-cycle fatigue  Connecting rods, shafts, gears, springs, belts 
 Impact fatigue  Cylinder heads, valve seats, shock absorbers 
 Surface fatigue  Bearings, cams, gears 
 Corrosion fatigue  Springs, driveshaft 
 Fretting fatigue  Universal joints, bearing pads, rocker arm bearings 
 Direct chemical attack (corrosion)  Body panels, frame, suspension components 
 Crevice corrosion  Body panels, joints, frame joints 
 Cavitation corrosion  Water pump 
 Adhesive wear  Piston rings, valve lifters, bearings, cams, gears, brakes 
 Corrosion-wear  Brakes, suspension components 
 Fretting wear  Universal joints, rocker arm bearings 
 Thermal relaxation  Engine head bolts, exhaust manifold bolts 
 Galling seizure  Nuts on bolts, piston rings, bearings, valve guides, hinges 
 Buckling  Body panels, hood, springs 
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2-11. For each of the following applications, list three of the more likely failure modes, describing why each 
might be expected: (high-performance automotive racing engine, (b) pressure vessel for commercial power 
plant, (c) domestic washing machine, (d)  rotary lawn mower, (e) manure spreader, (f) 15-inch oscillating fan. 
 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 (a) High-performance automotive engine: 
  1. High cycle fatigue; high speed, high force, light weight. 
  2. Adhesive wear; high sliding velocity, high contact pressure, and elevated temperature. 
  3.  Galling and seizure; high sliding velocity, high contact pressure, elevated temperature, 

potential lubricant breakdown. 
 (b) Pressure vessel for commercial power plant: 
  1. Thermal relaxation; closure bolts lose preload to violate pressure seal. 
  2. Stress corrosion; impurities in feed water, elevated temperature and pressure. 
  3. Brittle fracture; thick sections, high pressure, growing flaw size due to stress corrosion 

cracking. 
 (c) Domestic washing machine: 
  1. Surface fatigue; gear teeth, heavy loading, potential impact, many cycles. 
  2. Direct chemical attack (corrosion); lubricants attack seals and belts, detergent-bearing 

water may infiltrate bearings. 
  3. Impact fatigue; spin-cycle imbalance induces impact, many cycles 
 (d) Rotating lawn mowers: 
  1. Impact deformation; high rotary blade speed, objects in blade path. 
  2. Yielding; high rotary blade speed, immovable object in blade path. 
  3. High cycle fatigue; high speed, many cycles 
 (e) Manure spreader: 
  1. Direct chemical attack (corrosion); corrosive fluids and semisolids of barnyard manure, 

exposed and constantly abraded surfaces of transport chains, slats, distribution augers, 
beaters, and supports. 

  2. Abrasive wear; mixture of manure, dirt and sand, constant sliding between mixture and 
surfaces, minimal lubrication. 

  3. High-cycle fatigue; high speeds, many cycles 
 (f) Fifteen-inch oscillation electric fan: 
  1. Adhesive/abrasive wear; minimal lubrication, high rotary bearing speed, many cycles 
  2. Force-induced elastic deformation; rotary blade elastic deformation. 
  3. Impact wear; reversing drive linkage, high forces, many cycles. 
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2-12.  In a tension test of a steel specimen having a 6-mm-by-23-mm rectangular net cross section, a gage 
length of 20 mm was used.  Test data include the following observations: (1) load at the onset of yielding was 
37.8 kN, (2) ultimate load was 65.4 kN, (3) rupture load was 52 kN, (4) total deformation in the gage length 
at 18 kN load was 112 mµ . Determine the following: 
 

a. Nominal yield strength 
b. Nominal ultimate strength 
c. Modulus of elasticity 

 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Given:   20 cmol = , 52 kNrP = , 37.8 kNypP = ,  65.4 kNuP = , ( ) 18 kN 112 mPl µ

=
∆ =  

         

         (a) 2
37.8 kN 252 MPa
6(25) mm

yp
yp

o

P
S

A
= = =    

               

         (b) 2
65.4 kN 436 MPa
6(25) mm

u
u

o

P
S

A
= = =  

 

         (c) 
( )

( )
18 kN

23
18 kN

18 /150 kN 214 GPa
mm112 10 / 200

E
σ
ε

= = =
×
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 Load, lb Elongation, in 
 1000 0.0003 
 2000 0.0007 
 3000 0.0009 
 4000 0.0012 
 5000 0.0014 
 6000 0.0020 
 7000 0.0040 
 8000 0.0850 
 9000 0.150 
 10,000 0.250 
 11,000 0.520 
   
   
   
   

2-13.  A tension test on a 0.505-inch diameter specimen of circular 
cross section was performed, and the data shown were recorded 
during the test. 
 

a. Plot the engineering stress-strain curve for the material. 
b. Determine the nominal yield strength. 
c. Determine the nominal ultimate strength. 
d. Determine the approximate modulus of elasticity. 
e. Using the available data and the stress-strain curve, make 
your best guess as to what type of material the specimen was 
manufactured form. 
f. Estimate the axially applied tensile load that would 
correspond to yielding of a 2-inch diameter bar of the same 
material. 
g. Estimate the axially applied load that would be required to 
produce ductile rupture of the 2-inch bar. 
h. Estimate the axial spring rate of the 2-inch bar if it is 2 feet 
long.    

--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 P (kip) (ksi)σ    (in)L∆   ( in/in)ε µ  
 1 5  0.0003 150 
 

(a) 2
4 5

(0.505)o

P P P
A

σ
π

= = =  

2 10  0.0007 350 
 3 15  0.0009 450 
 4 20  0.0012 600 
 

    0.5
2.0o

L L L
L

ε ∆ ∆
= = = ∆  

5 25  0.0014 900 
  6 30  0.0020 1000 
  7 35  0.0040 20,000 
  8 40  0.0850 43,000 
  9 45  0.1500 75,000 
  10 50  0.2500 125,000 
  11 55  0.5200 260,000 
 
We plot two stress-strain curves using different scales 
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Problem 2.13 (continued) 
 
 
(b) Using figure (A) we find  30 ksiyp ypSσ = =  
 
 (c) Using figure (B) we find 55 ksiult utSσ = =  
               
(d) From figure (A) we find  630 10  psiE = ×  
        
(e) 630 10  psiE = ×  is characteristic of steel 
 

 (f)  
2(2)30 94.25 kip

4yp yp oP A πσ= = =  

 

(g) 
2(2)55 172.79 kip

4ult ult oP A πσ= = =  

  

 (h)  
( )

2
6

6

(2) 30 10
4 3.93 10  lb/in

2(12)
oA E

k
L

π
×

= = = ×  
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2-14.  An axially loaded straight bar of circular cross section will fail to perform its design function if the 
applied static axial load produces permanent changes in length after the load is removed. The bar is 12.5 mm 
in diameter, has a length of 180 cm, and is made from Inconel 601. The axial required for this application is 
25 kN. The operating environment is room-temperature air. 
 

a. What is the probable governing failure mode? 
b. Would you predict that failure does take place? Explain your logic 

 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
  (a) For Inconel  601, from Chapter 3 =35 ksiypS , 102 ksiuS = , 50% in 2 ine = . Since  50% in 2 ine = , 
the material is ductile and the failure mode is yielding. 
  
   (b) FIPTOI  ypSσ ≥  

                         
( )3

2 2

4 25 104  = 200 MPa
(0.0125)o

F F
A d

σ
π π

×
= = ≈  

 
                FIPTOI  ( )( )3200 35,000 6.895 10 241−≥ × = . Therefore failure by yielding is not predicted. 
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2-15.  A 1.25-inch diameter round bar of material was found in the stock room, but it was not clear whether 
the material was aluminum, magnesium, or titanium. When a 10-inch length of this bar was tensile-tested in 
the laboratory, the force-deflection curve obtained was as shown in Figure P2.15. It is being proposed that a 
vertical deflection-critical tensile support rod made of this material, having a 1.128-inch diameter and 7-foot 
length, be used to support a static axial load of 8000 pounds. A total deflection of no more than 0.04 inch can 
be tolerated. 
 

a. Using your best engineering judgment, and recording your supporting calculations, what type of 
material do you believe this to be? 
b. Would you approve the use of this material for the proposed application? Clearly show your analysis 
supporting your answer. 

 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

 (a) 
2(1.25) 0.123

4(10)
oA E Ek E
L

π
= = ≈ . From Fig P2.15 516,000slope 8 10

0.02
k = = = × . Equating both 

                  5 60.123 8 10 6.5 10  psiE E= × ⇒ ≈ ×  
 
                    Reviewing Table 3.9, the material is probably magnesium. 
 

(b) For the proposed support rod 
2 6

8000 0.103"
(1.128) 6.5 10

4 7(12)

F
rod

rod

F F
k A E

L

δ
π

= = = ≈
⎛ ⎞ ⎛ ⎞⎛ ⎞×
⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

 

         
                    FIPTOI  ( )0.103 0.040F F allowδ δ= ≥ = . So failure is predicted. Do not use this material. 
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2-16.  A 304 stainless-steel alloy, annealed, is to be used in a deflection-critical application to make the 
support rod for a test package that must be suspended near the bottom of a deep cylindrical cavity. The solid 
support rod is to have a diameter of 20 mm and a precisely machined length of 5 m. It is to be vertically 
oriented and fixed at the top. The 30 kN test package is to be attached at the bottom, placing the vertical rod 
in axial tension. During the test, the rod will experience a temperature increase of o80 C . If the total 
deflection at the end of the rod must be limited to a maximum of 8 mm, would you approve the design? 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
The potential failure modes include force- and temperature-induced elastic deformation and yielding. From 
the material property tables in Chapter 3 we find 
 
           586 MPauS = , 241 MPaypS = , 378.71 kN/mw = , 193 GPaE = 6 o17.3 10  m/m/ Cα −= × , 
            and e = 60% in 50 mm. 
 
 Check first for yielding, and assume the o80 C  temperature rise has no effect on material properties. FIPTOI 

/ ypP A Sσ = ≥ . The axial force at the fixed end is equal to the applied load plus the weight of the rod. 
 

                            
( ) ( )( )

20.02
30 5 78.71 30 0.123 30.123 kN

4test rod
pkg

P W W π
⎡ ⎤
⎢ ⎥= + = + = + =
⎢ ⎥⎣ ⎦

 

                              
( )2 2

4 4(30.123) 95.9 MPa
0.02

P
d

σ
π π

= = =  

 
Since 95.9 241< , no yielding is predicted. 
 
The total deformation is a combination of the force-induced ( Fδ ) and temperature-induced ( Tδ ) 
deformations. The total deformation is F Tδ δ δ= +  and FIPTOI 8 mmδ ≥ . 
 

                       
( )

( )( )
3

3 9

30.123 10 (5)
0.002484 m

0.3142 10 193 10
F

PL
AE

δ
−

×
= = =

× ×
 

 
                       ( ) ( )( )65 17.3 10 80 0.00692 mT Lδ α −= ∆Θ = × =  

                
                       0.002484 0.00692 0.0094 m 9.4 mmδ = + = =  
 
Since 9.4 8> , failure is predicted and therefore you do not approve the design. 
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2-17. A cylindrical 2024-T3 aluminum bar, having a diameter of 25 mm and length of 250 mm is 
vertically oriented with a static axial load of 100 kN attached at the bottom. 
 

a. Neglect stress concentrations and determine the maximum normal stress in the bar and identify 
where it occurs 
b. Determine the elongation of the bar. 
c. Assume the temperature of the bar is nominally o20 C when the axial load is applied. Determine the 
temperature change that would be required to bring the bar back to its original 250 mm length. 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From Chapter 3 we find 71 GPaE =  and 6 o23.2 10  m/m/ Cα −= ×  
 
(a) Given the magnitude of the applied load, we can safely assume that the weight of the bar does not 
contribute to the axial force in the bar, so the tensile stress is uniform everywhere.  
 

                                 
( )2 2

4 4(100) 203.7 MPa
0.025

P
d

σ
π π

= = =                                               203.7 MPaσ =  

 

(b)        
( )

( )( )
3

2 9

100 10 (0.25)
0.000717 m 0.717 mm

(0.025) / 4 71 10
F

PL
AE

δ
π

×
= = = =

×
          0.717 mmFδ =  

 
(c) To return the bar to its original length T Fδ δ= − , where                                                                                           

( ) ( )( ) ( )6 60.25 23.2 10 5.8 10T Lδ α − −= ∆Θ = × ∆Θ = × ∆Θ  

                     o
6

0.000717 123.6 C
5.8 10−

∆Θ = − = −
×

                                                                    o123.6 C∆Θ = −  
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2-18. A portion of a tracking radar unit to be used in an antimissile missile defense system is sketched in 
Figure P2.18. The radar dish that receives the signals is labled D and is attached by frame members A, B, C, 
and E to the tracking structure S. Tracking structure S may be moved angularly in two planes of motion 
(azimuthal and elevational) so that the dish D can be aimed at an intruder missile and locked on the target to 
follow its trajectory. 
 Due to the presence of electronic equipment inside the box formed by frame members A, B, C, and 
E, the approximate temperature of member E may sometimes reach o200 F  while the temperature of member 
B is about o150 F . At other times, Members B and E will be about the same temperature. If the temperature 
difference between members B and E is o50 F , and joint resistance to bending is negligible, by how many 
feet would the line of sight of the radar tracking unit miss the intruder missile if it is 40,000 feet away, and 
 

a. the members are made of steel? 
b. The members are made of aluminum? 
c. The members are made of magnesium? 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 Elongation of E causes a small angle δ relative to the desired line of sight. 
Assuming small angles 
 

                1tan
15 15

E EL L
δ − ∆ ∆⎛ ⎞= ≈⎜ ⎟

⎝ ⎠
 

              20 (50)     66.67
15 15

E
E E

LL L α αα δ α∆Θ
∆ = ∆Θ ⇒ = = =   

 
             At  40,000 feet is 640,000(66.67 ) 2.67 10misss Rδ α α= = = ×  
 

Using Table 3.8 for α gives  Part Material ( )oin/in/ Fα  (ft)misss  

  a Steel 66.3 10−×  16.8 
  b Aluminum 612.9 10−×  34.4 
  c magnesium 616.0 10−×  42.7 
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2-19.   Referring to Figure P2.19, it is absolutely essential that the assembly slab be precisely level before use. 
At room temperature, the free unloaded length of the aluminum support bar is 80 inches, the free unloaded 
length of the nickel-steel support bar is 40 inches, and the line through A-B is absolutely level before 
attaching slab W. If slab W is then attached, and the temperature of the entire system is slowly and uniformly 
increased to o150 F  above room temperature, determine the magnitude and direction of the vertical 
adjustment support “C” that would be required to return slab A-B to a level position. (For material properties, 
see Chapter 3) 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

          / 2 1500A BP P W= = = ,  F Tδ δ δ= + , F
PL
AE

δ =  , T Lδ α= ∆Θ  

 

                 ( )( ) ( )( ) ( )6
2 6

1500(80) 12.9 10 80 150
(0.625) / 4 10.3 10

     0.038 0.1548 0.1928"

Aδ
π

−= + ×
×

= + =

 

                                                                                                                    

              
( )( ) ( )( )( )6

2 6

1500(40) 7.6 10 40 150 0.0099 0.0456 0.0555"
(0.50) / 4 31 10

Bδ
π

−= + × = + =
×

 

 
                              0.1928 0.0555 0.1373"A BC δ δ∆ = − = − = ↓  
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2-20.  Referring to the pinned mechanism with a lateral spring at point B, shown in Figure 2.5, do the 
following: 
 

a. Repeat the derivation leading to (2-23) using the concepts of upsetting moment and resisting 
moment, to find an expression for critical load. 
b. Use an energy method to again find an expression for critical load in the mechanism of Figure 2.5, 
by equating changes in potential energy of vertical force aP  to strain energy stored in the spring. (Hint: 
Use the first two terms of the series expansion for cosα to approximate cosα .) 
c. Compare results of part (a) with results of part (b). 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a)  The value of aP  that satisfies the condition that the maximum available resisting moment, rM , exactly 
equals the upsetting moment uM , or r uM M= . From Figure 2.5(c)                                                                                         
 

                  
2

cos 2
cos 2

a
u a

P LM P
L
δ

α δ
α

⎛ ⎞= =⎜ ⎟
⎝ ⎠

     and    ( ) cos
2r
LM kδ α=  

 

                         ( ) ( )cos 2 cos
2 4a cr acr cr

k L kLP P Pδ α δ α= ⇒ = =  

 
                  or small angles cos 1α ≈ , so                                                                   / 4crP kL=  
 
(b) Setting the change in potential energy PE∆ of aP  equal to the stored strain energy of the spring, SE, and 
noting that 
 

                    ( )2 cos 1 cos
2 2a a
L LPE P P Lα α

⎡ ⎤⎛ ⎞∆ = − = −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 and    
2

21 1 sin
2 2 2

LSE k kδ α⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 

 

For small angles sinα α≈ , so 
2 2 2 21

2 4 8
L kLSE k α α

= = . A series expansion of cosα is 

                               
2 4

cos 1 .....
2! 4!
α αα = − + −  

Using the first 2 terms with ( )a a crP P=  gives ( )
2

1 1
2a crPE P L α⎛ ⎞⎡ ⎤

∆ = ⎜ − − ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
 

                             ( )
2 2 2

2 8a cr
kLP Lα α

= ⇒                                   / 4crP kL=  

 
(c)  The results are identical 
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2-21. Verify the value of  2eL L=  for a column fixed at one end and free at the other [see Figure 2.7 (b)] by 
writing and solving the proper differential equation for this case, then comparing the result with text equation 
(2-35). 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

Start with  
2

2
d vEI M
dx

= − , where ( ) ( )u crcrM M P v x= = . Defining 

                2 /crk P EI=  results in ,  2 2 2/ 0d v dx k v+ =  
 
        The general solution to this is ( ) ( )cos sinv A kx B kx= + . The boundary        condition (0) 0 v = gives 

( )0 1 0A A= ⇒ =  and the boundary condition / 0 at dv dx x L= =  gives ( )0 cosB kL= . The non-
trivial solution for this is 

        / 2kL π= . Therefore  
 

              
2

  and /
2 2 crk P EI

L L
π π⎛ ⎞= =⎜ ⎟

⎝ ⎠
   or   

2
crP

L
EI

π
= or  

( ) ( )

2 2

2 22
cr

e

EI EIP
L L

π π
= =  

 
         Therefore                               2eL L=  
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2-22.    A solid cylindrical steel bar is 50 mm in diameter and 4 meters long. If both ends are pinned, estimate 
the axial load required to cause the bar to buckle. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
   2 2/cr eP EI Lπ= .  From the data, 207 GPaE = , 4 6 4(0.05) /64 0.307 10  mI π −= = × , 4 meL L= =  
 

                       
( )( )2 9 6

2

207 10 0.307 10
39.2 kN

(4)crP
π −× ×

= =                         39.2 kNcrP =  
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2-23.  If the same amount of material used in the steel bar of problem 2-22 had been formed into a hollow 
cylindrical bar of the same length and supported at the ends in the same way, what would the critical buckling 
load be if the tube wall thickness were (a) 6 mm, (b) 3 mm, and (c) 1.5 mm. What conclusion do you draw 
from these results? 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

   
( )

( )
2 9

11
2

207 10
1.277 10

(4)cr

I
P I

π ×
= ≈ ×  

 
For a solid rod with a 50 mm diameter ( )2 20.05 / 4 0.001963 mA π= = .  For a 
hollow cross section with a mean diameter mD  
 

                 
( )2 2

0.01963 0.000625 /
4 2 2

o i o i o i
m m

D D D D D D
A D t D t

π
π π

− − +⎛ ⎞⎛ ⎞= = = = ⇒ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
t (m) (m)mD  (m)oD  (m)iD  4(m )I   (kN)crP  

0.006 0.1042 0.1072 0.1012 61.333 10−×  170 
0.003 0.2083 0.2098 0.2068 65.324 10−×  679.9 

0.0015 0.4167 0.41745 0.41595 621.31 10−×  2721 
 
The critical buckling load can be dramatically increased by moving material away from the center of the cross 
section (increasing the area moment of inertia). 
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2-24.    If the solid cylindrical bar of problem 2-22 were fixed at both ends, estimate the axial load required to 
cause the bar to buckle. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
   2 2/cr eP EI Lπ= , 207 GPaE = , 4 6 4(0.05) /64 0.307 10  mI π −= = × , 0.5 2 meL L= =  
 

                       
( )( )2 9 6

2

207 10 0.307 10
156.8 kN

(2)crP
π −× ×

= =                  156.8 kNcrP =  
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2-25.  A steel pipe 4 inches in outside diameter , and having 0.226-inch wall thickness, is used to support a 
tank of water weighing 10,000 pounds when full. The pipe is set vertically in a heavy, rigid concrete base, as 
shown in Figure P2.25. The pipe material is AISI 1060 cold-drawn steel with 90,000 psiuS =  and 

70,000 psiypS = . A safety factor of 2 on load is desired. 
 

a. Derive a design equation for the maximum safe height H above the ground level that should be used 
for this application. (Use the approximation 3 / 8I D tπ≈ .) 
b. Compute a numerical value for ( )max pipeH . 

c. Would compressive yielding be a problem in this design? Justify your answer. 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a)  2eL = , 
2

2(2 )cr
EIP

L
π

= , 
3

8
D tI π

≈ , 2n = , H L=  

                        
( ) ( )2 3 3

2 2

/ 8

2(2 ) 64
cr

d

E D t D EtP
P

n H H

π π π
= = =                                  

( )3
max 64 d

D Et
H H

P
π

= =  

 

 (b)   
( ) ( )( )3 6

max

4 30 10 0.226
144.99

64(10,000)
H

π ×
= =                                    max 145 in 12.08 ftH = =  

 

 (c)   ( ) ( ) ( )(70,000) (4)(0.226)
99399.99

2 2
yp yp

yp d

S A S Dt
P

n
π π

= = = =       ( ) 99, 400yp d
P =  

                
                 ( )10,000 99,400d yp d

P P= << =    Compressive yielding is not a problem 
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2-26. Instead of using a steel pipe for supporting the tank of problem 2-25, it is being proposed to use a 
W6 25× wide-flange beam for the support, and a plastic line to carry the water. (See Appendix Table A.3 for 
beam properties.)  Compute the maximum safe height ( )max beamH  above ground level that this beam could 

support and compare the result with the height ( )max 145 inchespipeH = , as determined in problem 2-25. 

 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 2eL L= . From Table A-3 for a W6 x 25 wide flange beam, 453 inxxI = , 417 inyyI = , 25 lb/ftW = ,  

  27.3 inA =  
 

                 
( )( )2 62 6

min
2 2 2

30 10 17 1258.4 10
(2 ) (2 )cr

EIP
L H H

ππ × ×
= = =  

 

                   
6 6

2 2
1258.4 10 629.2 10 10,000

2
cr

d
P

P
n H H

× ×
= = = =  

                    ( )
6

max
629.2 10 250.8 in

10,000beamH H ×
= = =  

 
     The chosen beam allows for a greater height. 
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2-27. A steel pipe is to be used to support a water tank using a configuration similar to the one shown in 
Figure P2.25. It is being proposed that the height H be chosen so that failure of the supporting pipe by 
yielding and by buckling would be equally likely. Derive an equation for calculating the height eqH , that 
would satisfy the suggested proposal. 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

       2 2eL L H= = ,  
2 2 2

2 2 2( ) (2 ) 4cr
e

EI EI EIP
L H H
π π π

= = =  

 
  For yielding yp ypP S A= . For both to be equally likely to occur, cr ypP P=  
 

                                             
2

24 yp
EI S A

H
π

=  

 
   Setting eqH H=  
 

                                           
2

4eq
yp

EIH
S A
π

=  
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2-28. A steel pipe made of AISI 1020 cold-drawn material (see Table 3.3) is to have an outside diameter of 

15 cmD = , and is to support a tank of liquid fertilizer weighing 31 kN when full, at a height of 11 meters 
above ground level, as shown in Figure P2.28. The pipe is set vertically in a heavy rigid concrete base. A 
safety factor of 2.5n = on load is desired. 
 

a. Using the approximation ( )3 / 8I D tπ≈ , derive a design equation, using symbols only, for the 

minimum pipe wall thickness that should be used for this application. Write the equation explicitly for t 
as a function of H, W, n, and D, defining all symbols used. 
b. Compute the numerical value for thickness t. 
c. Would compressive yielding be a problem in this design? Justify your answer. 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 

(a)  2 2eL L H= =  , 
2 2

2 2( ) 4cr
e

EI EIP
L H
π π

= =  ,  
3

8
D tI π

≈  ,  cr
d

PP W
n

= =  

 

                         
( ) ( )2 3 32

2 2 2

/ 8

4 4 32

E D t D EtEIW
nH nH nH

π π ππ
= = =                                

( )

2

min 3
32nH Wt t

D Eπ
= =  

 (b)   
( )

2 3

min 3 9

32(2.5)(11) (31 10 ) 0.01385 m
0.15 (207 10 )

t t
π

×
= = =

×
                   min 1.4 cmt ≈  

 
(c)  From Table 3.3, for 1020 CD steel, 352 MPaypS ≈ . Using 2.5n = , / 140.8 MPad ypS nσ = =  
 

                 
( ) ( )

3

2 2 2 2

4 4(31 10 ) 5.23 MPa
(0.15) (0.1223)

act
o i

W W
A D D

σ
π π

×
= = = =

− −
 

                                                                                                        act dσ σ<  - no yielding is expected 
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2-29. A connecting link for the cutter head of a rotating mining machine is shown in Figure P2.29. The 
material is to be AISI1020 steel, annealed. The maximum axial load that will be applied is service is 

max 10,000 poundsP =  (compressive) along the centerline, as indicated in Figure P2.29. If a safety factor of at 
least 1.8 is desired, determine whether the link would be acceptable as shown. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From Table 3.3 43 ksiypS = , 57 ksiuS = . Because of the combination of end conditions and section moduli, 
it is not obvious whether buckling is more critical about axis a-a or c-c in the figure. Therefore buckling about 
both axes is checked, as well as compressive yielding.  
 

            Yielding:  
( ) [ ]max

43,000 2.15
/ 10,000 /(1.0)(0.5)

yp yp
yp

actual

S S
n

P Aσ
= = = =  

 
                               Since this is larger than the specified 1.8, yielding is not expected 
 

            Buckling:  
2 2 6

6
2 2 2

(30 10 ) 296 10
( ) ( )cr

e e e

EI I IP
L L L
π π ⎛ ⎞×

= = = × ⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
                       Section a-a:  3 41(0.5) /12 0.0104 ina aI − = = . For both ends fixed, ( ) 0.5(20) 10 ine a aL

−
= =  

                                                ( ) 6
2

0.0104296 10 30,784 lb
(10)cr a aP

−

⎛ ⎞
= × =⎜ ⎟⎜ ⎟

⎝ ⎠
 

                                                  
( )

max

30,784 3.08 
10,000

cr a a
a a

P
n

P
−

− = = ≈  

 
                         Section c-c:  3 40.5(1.0) /12 0.04167 inc cI − = = , ( ) 20 ine c cL

−
=  

                                                ( ) 6
2

0.04167296 10 30,835 lb
(20)cr a aP

−

⎛ ⎞
= × =⎜ ⎟⎜ ⎟

⎝ ⎠
 

                                                  
( )

max

30,835 3.08 
10,000

cr c c
a a

P
n

P
−

− = = ≈  

 
                        The link is acceptable 
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2-30.   A steel wire of 2.5-mm-diameter is subjected to torsion. The material has a tensile strength of 

690 MPaypS =  and the wire is 3 m long. Determine the torque at which it will fail and identify the failure 
mode. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Both buckling and yielding are possible failure modes. From the given data, 207 GPaE = ,  
 4 12 4(0.0025) /64 1.917 10  mI π −= = × . 12 42 3.834 10  mJ I −= = × .  
 

              ( )
( )( )9 122 207 10 1.917 102 0.831 N-m

3t cr
EIM

L

ππ
−× ×

= = =  

 
 
  Checking for yielding 
 

               ( )
( ) ( )( )6 12(690 / 2) 10 3.834 10/ 2

1.058 N-m
/ 2 0.00125

ypyp
t yp

S JJ
M

a d
τ −× ×

= = = =  

 
 
  Therefore, buckling governs and  
 
                                      ( ) 0.831 N-mf t crM M= =                           ( ) 0.831 N-mt crM =  
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2-31.  A sheet-steel cantilevered bracket of rectangular cross section 0.125 inch by 4.0 inch is fixed at one end 
with the 4.0-inch dimension vertical. The bracket, which is 14 inches long, must support a vertical load, P, at 
the free end. 
 

a. What is the maximum load that should be placed on the bracket if a safety factor of 2 is desired? The 
steel has a yield strength of 45,000 psi. 
b. Identify the governing failure mode. 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

  (a)   2
e y

cr

K GJ EI
P

L
=  

 
            Where 6 611.5 10  psi , 30 10  psi , 14 in , 4.013 (from Table 2.2)G E L K= × = × = =  

                       
3 3

34.0(0.125) 2.60 10
3 3e

dtJ −= = ≈ ×  , 
3 3

44.0(0.125) 6.51 10
12 12y
dtI −= = ≈ ×  

 

                
( )( )( )( )6 3 6 4

2

4.013 11.5 10 2.60 10 30 10 6.51 10
494.76 495 lb

(14)crP
− −× × × ×

= = ≈  

 
         For yielding   
 

                           
( )( )

3 2

/ 2 6

/12
yp yp

b

P L d P LMc
I bd bd

σ = = =  

 

         Setting b ypSσ = ,  
2 245,000(0.125)(4) 1071 lb

6 6(14)
yp

yp
S bd

P
L

= = =  

 
      (b)    cr ypP P< , so buckling governs failure and / 495 / 2 247.5d crP P n= = =                  247.5 lbdP =  
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2-32.  A hollow tube is to be subjected to torsion. Derive an equation that gives the length of this tube for 
which failure is equally likely by yielding or by elastic instability. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

  Start with ( ) 2
t cr

cr

EIM
L
π

=  and note that for yielding yp
yp

T a
J

τ = .  Setting ( )yp t crT M=   

 

                          2yp

cr

J EI
a L

τ π
=  

 

  Setting  2J I=  and / 2oa D=                                              
2

o
cr

yp

EDL π
τ

=  
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2-33.   A steel cantilever beam 1.5 m long with a rectangular cross section 25 mm wide by 75 mm deep is 
made of steel that has a yield strength of 276 MPaypS = . Neglecting the weight of the beam, from what 
height, h, would a 60 N weight have to be dropped on the free end of the beam to produce yielding. Neglect 
stress concentrations. 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From the given data, 207 GPaE = , 3 6 4(0.025)(0.075) /12 0.879 10  mI −= = × . The potential energy for the 

falling mass is ( )maxEE W h y= + , where 3
max / 3y FL EI= (from Table 4.1, case 8). 

 
The maximum stress, at the fixed end, is max / /Mc I FLc Iσ = = . Combining this with the equation for maxy  
results in  
 

                                       
22 2

max max
max 3 3 3

LFL L Ly
I E c E Ec

σ σ⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 

The potential energy can now be expressed as 
2

max

3
L

EE W h
Ec

σ⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
.  The strain energy stored in the beam 

at maximum deflection is  
 
2-33. (continued) 

                               
2 2

max max max max
max max 2

0
2 2 3 6ave
F I L IL

SE F y y
Lc Ec Ec

σ σ σ⎛ ⎞+⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
 

 
Equating the potential and strain energy 
 

                                     
2 2

max max
23 6

L IL
W h

Ec Ec
σ σ⎛ ⎞

+ =⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
Solving this quadratic and considering only the positive root  
 

                                  max 3
61 1WLc hEI

I WL
σ

⎡ ⎤
= + +⎢ ⎥

⎢ ⎥⎣ ⎦
 

 
To produce yielding max 276 MPaypSσ = = . Noting that 60 NW = , 1.5 mL = , 207 GPaE = , 

0.075 / 2 0.0375 mc = = , and 6 40.879 10  mI −= ×  results in 
 

                 
( )( )9 6

6
6 3

6 207 10 0.879 1060(1.5)(0.0375)276 10 1 1 70.88 1 5391.6
0.879 10 60(1.5)

h
h

−

−

⎡ ⎤× ×⎢ ⎥× = + + ⇒ = +⎢ ⎥× ⎢ ⎥⎣ ⎦

 

                    
 
Solving for h,          0.932 myph h= =                                                               932 mmyph =  
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2-34.   A utility cart used to transport hardware from a warehouse to a loading dock travels along smooth, 
level rails. At the end of the line the cart runs into a cylindrical steel bumper bar of 3.0-inch diameter and 10-
inch length, as shown in Figure P2.34. Assuming a perfectly “square” contact, frictionless wheels, and 
negligibly small bar mass, do the following: 

 
a. Use the energy method to derive an expression for maximum stress in the bar. 
b. Calculate the numerical value of the compressive stress induced in the bar if the weight of the loaded 
cart is 1100 lb and it strikes the bumper bar at a velocity of 5 miles per hour. 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 

(a)  The kinetic energy of a moving mass is 
2

21
2 2

WvKE Mv
g

= =  

 
                     max maxF Aσ=   and   max max max max max/ /E Ey L y L Eσ ε σ= = ⇒ =  
 
                   The strain energy stored in the bar at max deflection is  
 

                                         
2

max max max max
max max

0
2 2 2avg
F A L AL

SE F y y
E E

σ σ σ+⎛ ⎞ ⎛ ⎞⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
                    Equating the strain energy to the kinetic energy 
 

                                  
22
max

2 2
ALWv

g E
σ

=                     or                        
2

max
W v E
A gL

σ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

     
(b)  5 mph 88 in/secv = = , 6 230 10  lb/inE = × , 2/ 1100 / 7.07 155.59 lb/inW A = = , 2386.4 in/secg = , 

10 inL =  
 
 

                       ( ) ( )2 6 2
2

max 2

88 in/sec (30 10  lb/in )
155.59 lb/in 96.7 ksi

(386.4 in/sec )(10 in)
σ

×
= =            max 96.7 ksiσ =  
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2-35.  If the impact factor, the bracketed expression in (2-57) and (2-58), is generalized, it may be deduced 
that for any elastic structure the impact factor is given by ( )max1 1 2 / statich y −

⎡ ⎤+ +⎣ ⎦ . Using this concept, 

estimate the reduction in stress level that would be experienced by the beam of Example 2.7 if it were 
supported by a spring with 390 lb/ink = at each end of the simple supports, instead of being rigidly 
supported. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The spring rate, by definition, is /k F y= . For the beam of Example 2.7 with / 2F W= ,         
       

                                            ( ) 78 0.10"
2 2(390)st spring
Wy

k
= = =  

 
Using identical springs at each end, the beam does not rotate about its centroid, so the equation above 
is valid at the beam’s midspan as well as at the support springs. The midspan beam-deflection due to 
its own elasticity is 
 

                     ( )
3 3

3
6

78(60) 0.0052"
48 1.0(3.0)48(30 10 )

12

st beam
WLy

EI
= = =

⎛ ⎞
× ⎜ ⎟⎜ ⎟

⎝ ⎠

 

 
                     ( ) ( ) ( ) 0.10 0.0052 0.1052"st st sttotal spring beamy y y= + = + =  
 
Using a drop height of 6.57"h =  from Example 2.7, and the expression for impact factor (IF) given in 
the problem statement 
 

                                 
max

max

2(6.57)1 1
0.1052 12.22 0.238

51.282(6.57)1 1
0.0052

with

without

σ

σ

⎡ ⎤
+ +⎢ ⎥

⎢ ⎥⎣ ⎦= = =
⎡ ⎤
+ +⎢ ⎥

⎢ ⎥⎣ ⎦

 

 
Thus, if spring are added as suggested, the maximum impact stress in the beam at midspan is reduced 
by approximately 24% of the stress when there are no springs. 
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2-36.   A tow truck weighing 22 kN is equipped with a 25 mm nominal diameter tow rope that has a metallic 
cross-sectional area of 2260 mm , an elastic modulus of 83 GPa, and an ultimate strength of 1380 MPauS = . 
The 7-m-long tow rope is attached to a wrecked vehicle and the driver tries to jerk the wrecked vehicle out of 
a ditch. If the tow truck is traveling at 8 km/hr when the slack in the rope is taken up, and the wrecked vehicle 
does not move, would you expect the rope to break? 
 

 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

From (2-53) we can write 
2
max

2 r

AL
SE

E
σ

= . The kinetic energy is 
2

21
2 2

WvEE Mv
g

= = . Equating  

                                        
2 22
max

max2 2
r

r

AL E WvWv
g E gAL

σ
σ= → =  

 

                          
( )( )

( )
9 3 2

max 3

83 10 22 10 (8000 / 3600)
711 MPa

(9.81) 0.260 10 (7)
σ

−

⎡ ⎤× × ⎣ ⎦= =
×

 

 
          Since 711 < 1380, the rope would not be expected to break 
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2-37.  An automobile that weighs 14.3 kN is traveling toward a large tree in such a way that the bumper 
contacts the tree at the bumper’s midspan between supports that are 1.25 m apart. If the bumper is made of 
steel with a rectangular cross section 1.3 cm thick by 13.0 xm deep, and it may be regarded as simply 
supported, how fact would the automobile need to be traveling to just reach the 1725 MPa yield strength of 
the bumper material? 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 

For the beam loaded as shown 
3

48
FLy

EI
=  and max

( / 2)( / 2)
4

Mc F L c FLc
I I I

σ = = =  

 

                      
( ) 2 22

max max
max

4
4(12) 4(12) 12
FL L I LLy

EI c EI Ec
σ σ⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

 
The strain energy stored in the bar at max deflection is  
                                                                     

               
2 2 2

max max max max
max max 2

40
2 2 12 2 12 6avg

L I L LIF FSE F y y
Ec Lc Ec Ec

σ σ σ σ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ ⎛ ⎞⎛ ⎞ ⎛ ⎞= = = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 

             The kinetic energy is 
2

21
2 2

WvEE Mv
g

= = . Equating  

 

                                   
22
max max

22 36
LIWv ILgv

g c EWEc
σ σ⎛ ⎞

= ⇒ =⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
            Setting max ypSσ =  and substituting 
 

                     

( )( ) ( )( )

( )( )

3

6

9 3

0.13 0.013
1.25 9.81

121725 10 1.52
0.013 3 207 10 14.3 10

2

v

⎡ ⎤
⎢ ⎥
⎢ ⎥× ⎣ ⎦= =

⎛ ⎞ × ×
⎜ ⎟
⎝ ⎠

                    1.52 m/sv =  
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2-38.  a. If there is zero clearance between the bearing and the journal (at point B in Figure P2.38), find the 

maximum stress in the steel connecting rod A-B, due to impact, when the 200-psi pressure is suddenly 
applied. 

 
b. Find the stress in the same connecting rod due to impact if the bearing at B has a 0.005-inch 
clearance spece between bearing and journal and the 200-psi pressure is suddenly applied. Compare 
the results with aprt (a) and draw conclusions. 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
    (a) The connecting rod is a solid cylindrical pinned-end two-force  
          member made of steel. The axial  force acting on the rod is  
 

                    
( ) ( )2 2

o o o

/ 4 200 (3.0) / 4
1504 lb

cos 20 cos 20 cos 20
v

a

p dF
F

π π
= = = =  

                    

                       ( )max
15042 2 3008 psi
1.0

a
suddenlt
applied rod

F
A

σ = = =  

 
    (b)  If a 0.005 inch clearance space exists in the bearing we can use 

equation (2-57) with the drop height being 0.005"h =  
 

                    ( )
6

max 0.005
1504 2(0.005)(30 10 )(1.0)1 9533 psi
1.0 (1504)(7)hσ

=

⎡ ⎤×⎢ ⎥= + ≈
⎢ ⎥⎣ ⎦

 

 
 
 Since ( ) ( )max max0.005 / 3.17suddenlth applied

σ σ
=

≈ , the new bearing would produce an impact factor of about 2, while 

the worn bearing would produce an impact factor of about 6.4. A clearance space of only a few thousandths 
of an inch more than triples the connecting rod stress due to impact. 
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2-39.   Clearly define the terms creep, creep rupture, and stress rupture, citing the similarities that relate these 
failure modes and the differences that distinguish them from one another. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
Creep is the progressive accumulation of plastic strain, under stress, at elevated temperature, over a period of 
time.   
 
Creep Rupture is an extension of the creep process to the limiting condition where the part separates into two 
pieces.   
 
Stress Rupture is the rupture termination of a creep process in which steady-state creep has never been 
reached.  
 
All three failure modes are functions of stress, temperature, and time. Creep is a deformation based failure 
mode as contrasted to creep rupture and stress rupture, which are rupture based. 
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2-40. List and describe several methods that have been used for extrapolating short-term creep data to long-
term applications. What are the potential pitfalls in using these methods? 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Three common methods of extrapolating short-time creep data to long-term applications are: 
 

a. Abridged method:  Test are conducted at several different stress levels, all at a constant 
temperature, plotting creep strain versus time up to the test duration, then extrapolating 
each constant-stress to the longer design life. 

b. Mechanical acceleration: Test stress levels are significantly higher than the design 
application stress level. Stress is plotted versus time for several different creep strains, all at 
a constant temperature, up to the test duration, then extrapolating each constant-strain curve 
to the longer design life. 

c. Thermal acceleration: Test temperatures are significantly higher than the design application 
temperature. Stress is then plotted versus time for several different temperatures, up to the 
test duration, the extrapolating each constant-temperature curve to the longer design life. 
The creep strain is constant for the whole plot. 

 
The primary pitfall in all such creep-prediction extrapolation procedures is that the onset of stress rupture may 
intervene to invalidate the creep extrapolation by virtue of rupture 
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2-41.    A new high-temperature alloy is to be used for a 3-mm diameter tensile support member for an 
impact-sensitive instrument weighing 900 N. The instrument and its support are to be enclosed in a test vessel 
for 3000 hours at o871 C .  A laboratory test on the new alloy used a 3 mm diameter specimen loaded by a 900 
N weight. The specimen failed due to stress rupture after 100 hours at o982 C . Based on the test results, 
determine whether the tensile support is adequate for the application. 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Using equation (2-69) for a stress rupture failure assessment we note that this equation is expressed in terms 
of o F  instead of o C . Expressing the temperatures as o o871 C 1600 F=  and o o982 C 1800 F= . In addition, we 
need the test and required times, which are 100 hrtestt = and 3000 hrreqt = . For the lab test, (2-109) results 
in 
 
                  ( )( ) ( )( )10 10460 20 log 1800 460 20 log 100 49,720P t= Θ+ + = + + = . 
 
 For the application at o o871 C 1600 F= ;  ( )( )1049,720 1600 460 20 log 13,675 hrsapp appt t= + + ⇒ =  

            
 Since 13,675 > 3000, the support is adequate. 
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2-42. From the data plotted in Figure P2.42, evaluate the constants B and N of (2-72) for the material tested. 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
In order to evaluate the constants B and N  in equation (2-71) for the material given we can approximate (2-
71) as / Nt Bδ δ σ≈ ∆ ∆ ≈& , where / tδ∆ ∆  may be evaluated by estimating the slopes of the steady-state 
branches of  constant stress curves shown below in Fig.1. These strains are then plotted for each stress level 
using a log-log coordinate system (Fig. 2). The slope of the “best fit” curve through the six data points can 
then be approximated as 5.36N ≈ , so 5.36Bδ σ≈& . 
                                                                                                  

 
 
The approximation for B is obtained form the data using a table 
 

 (psi)σ  (in/in/hr)δ&  5.36/B δ σ= &  
3700 0.10 217.49 10−×  
4500 0.17 214.46 10−×  
5200 0.33 213.99 10−×  
5750 0.55 213.88 10−×  
6500 1.39 215.01 10−×  
7200 2.47 215.22 10−×  

   
 Average 215.0 10−×  

 
                                                            ( )21 5.365.0 10δ σ−≈ ×&  
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2-43. Give a definition of wear failure and list the major subcategories of wear. 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Wear failure may be defined as the undesired cumulative change in dimensions brought about by the gradual 
removal of discrete particles from contacting surfaces in motion (usually sliding) until the dimensional 
changes interfere with the ability of the machine part to satisfactorily perform its intended function. The 
major subcategories of wear are: 
 
                         (a) adhesive wear                              (b) abrasive wear                         (c) corrosive wear 
                         (d) surface fatigue wear                    (e) deformation wear                   (f) fretting wear 
                         (g) impact wear 
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2-44. One part of the mechanism in a new metering device for a seed-packaging machine is shown in Figure 
P2.44. Both the slider and the rotating wheel are to be made of stainless steel, with a yield strength of 275 
MPa. The contact area of the shoe is 25 cm long by 1.3 cm wide. The rotating wheel is 25 cm in diameter and 
rotates at 30 rpm.  The spring is set to exert a constant normal force at the wearing interface of 70 N. 
 

a.   If no more that 1.5-mm wear of the shoe surface can be tolerated, and no lubricant may be used, 
estimate the maintenance interval in operating hours between shoe replacements. (Assume that adhesive 
wear predominates.) 
b. Would this be an acceptable maintenance interval? 
c. If it were possible to use a lubrication system that would provide “excellent” lubrication to the contact 
interface, estimate the potential improvement in maintenance interval, and comment on its acceptability. 
d. Suggest other ways to improve the design from the standpoint of reducing wear rate. 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a) Since no lubrication is permitted, adhesive wear is the probable governing failure mode. From equation 
(2-77) adh adh m sd k p L= . From Table 2.6, 321 10k −= × , so from (2-76) 
 

             
( )

3
12

6

21 10 8.48 10
9 9 275 10

adh
yp

kd
S

−
−⎛ ⎞ ×

= = = ×⎜ ⎟⎜ ⎟ ×⎝ ⎠
  and  

( )( )
70 0.215 MPa

0.025 0.013m
a

Wp
A

⎛ ⎞
= = =⎜ ⎟
⎝ ⎠

 

 
Setting maxadh allowabled d −=  
 

                    
( )( )6 12

0.0015 822.7 823 m
0.215 10 8.48 10

adh
s

adh m

d
L

k p −
= = = ≈

× ×
 

 

   At 30 rpmn =  the failure time is, ( ) ( )( )
823 34.9 min 0.58 hr

0.25 30
s

f m

L
t

Dnπ π
= = = ≈         ( ) 0.58 hrf m

t =                            

                                                                                                                                
(b) Maintenance every ½ hour is clearly unacceptable 
 
(c) From Table 2.7 the ration of “k” values for “excellent lubrication” to “unlubricated” like metal-on- 
  metal is 

                                
6 7

4 4
3 3

2 10 10 to 4 10  to 2 10
5 10 5 10

R
− −

− −
− −

×
= = × ×

× ×
 

 
Since ft is proportional to 1/ R  

                                   ( ) ( )( ) lublub
2500 to 50,000 60 days to 3.3 yearsexcellentf f un ricatedrication

t t= ≈  

                                                                                                    ( )
lub

60 days to 3.3 yearsexcellentf
rication

t =  

 
        Thus, “excellent lubrication” would improve the required maintenance interval. 
 
(d)  A good possibility would be to select a better combination of material pairs, e.g. Table 17.2 indicates that 
unlubricated non-metal on metal should be about 1000 times better on maintenance interval. 
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2-45. In a cinder block manufacturing plant the blocks are transported from the casting machine on rail carts 
supported by ball-bearing-equipped wheels. The carts are currently being stacked six blocks high, and 
bearings must be replaced on a 1-year maintenance schedule because of ball-bearing failures. To increase 
production, a second casting machine is to be installed, but it is desired to use the same rail cart transport 
system with the same number of carts, merely stacking blocks 12 high. What bearing-replacement interval 
would you predict might mecessary under this new procedure? 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
Using equation (2-82), bearing life in revolutions, N, is ( )3.33/N C P= .  The basic load rating, C , does not 
change since the bearings are the same in both cases. The ratio of new bearing life for the double load, 2PN , 
to the original bearing life under the original load, PN , is 
 

                                             
3.33 3.33

2 1
2 10

P

P

N C C
P PN

⎛ ⎞ ⎛ ⎞= ≈⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Since the original life was about 1 year (365 days), the replacement interval under double load would be 
about 37 days, or about 1 month. 
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2-46. Give the definition of corrosion failure and list the major subcategories of corrosion. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Corrosion failure is said to occur when a machine part is rendered incapable of performing its intended 
function because of the undesired deformation of a material through chemical or electrochemical interaction 
with the environment, or the destruction of material by means other than purely mechanical action. The major 
subcategories of corrosion are: 
 

(a) Direct chemical attack (b) Galvanic corrosion (c) Crevice corrosion 
(d) Pitting corrosion (e) Intergranular corrosion (f) Selective leaching 
(g) Erosion corrosion (h) Cavitation corrosion (i) Hydrogen damage 
(j) Biological corrosion (k) Stress corrosion cracking 
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2-47. It is planned to thread a bronze valve body into a cast-iron pump housing to provide a bleed port. 
 

a. From the corrosion standpoint, would it be better to make a bronze valve body as large as possible or 
as small as possible? 
b. Would it be more effective to put an anticorrosion coating on the bronze valve or on the cast-iron 
housing? 
c. What other steps might be taken to minimize corrosion of the unit? 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The probable governing corrosion failure mode is galvanic corrosion. From Table 3.14, it may be  found that 
the bronze valve body is cathodic with respect to the cast iron pump housing. 
 

(a) It is desirable to have a small ratio of cathodic area to anode area to reduce the corrosion rate. 
Hence the bronze valve body should be as small as possible 

(b) When coating only one of the two dissimilar metals (in electrical contact) for corrosion 
protection, the more cathodic (more corrosion-resistant) metal should be coated. Therefoire, the 
bronze valve should get the anti-corrosion coating. 

(c) Selection of  alternative materials (closer together in the galvanic series) or use of cathodic 
protection (e.g. , use of a sacrificial anode such as Mg) might be tried. 
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2-48.   Give a definition for fretting and distinguish among the failure phenomena of fretting fatigue, fretting 
wear, and fretting corrosion. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Fretting is a combined mechanical and chemical action in which the contacting surfaces of two solid bodies 
pressed together by a normal force and are caused to execute oscillatory sliding relative motion, wherein the 
magnitude of the normal force is great enough and the amplitude of the oscillatory motion is small enough to 
significantly restrict the flow of fretting debris away form the originating site.  Related failure phenomena 
include accelerated fatigue failure, called fretting-fatigue, loss of proper fit or change in dimensions, called 
fretting-wear, and corrosive surface damage, called fretting-corrosion. 
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2-49.   List the variables thought to be of primary importance in fretting-related failure phenomena. 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The eight variables though to be of primary importance in the fretting process are: 
 

(1) Magnitude of the relative sliding motion. 
(2) Contact pressure, both magnitude and distribution. 
(3) State of stress in the region of the contacting surfaces, including magnitude, direction, and 

variation with time. 
(4) Number of fretting cycles accumulated. 
(5) Material composition and surface condition of each member of the fretting pair. 
(6) Frequency spectrum of the cyclic fretting motion. 
(7) Temperature in the fretting region. 
(8) Environment surrounding the fretting pair. 
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2-50.  Fretting corrosion has proved to be a problem in aircraft splines of steel on steel. Suggest one or more 
measures that might be taken to improve the resistance of the splined joint to fretting corrosion. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Measures that might improve the steel-on-steel aircraft spline fretting problem would include: 
 

(1) Change one member to a different material. 
(2) Plate one of the members with an appropriate material. 
(3) Introduce an appropriate lubricant. 
(4) Utilize a solid shear layer between members in contact. 
  
In practice, it has been found that silver plating and use of molybdenum disulfide (a solid lubricant) 
significantly improves fretting resistance of aircraft splines. 
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2-51.   List several basic principles that are generally effective in  minimizing or preventing fretting. 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
Basic principles that are generally effective in minimizing or preventing fretting include: 
 

(1) Separation of contacting surfaces. 
(2) Elimination of relative sliding motion. 
(3) Superposition of a large unidirectional motion. 
(4) Provision for a residual compressive stress field at the fretting surface. 
(5) Judicious selection of material pairs. 
(6) Use of interposed low-modulus shim material or plating; e.g. silver or lead. 
(7) Use of solid lubricant coatings; e.g. moly-disulfide. 
(8) Use of surface grooves or roughening in some cases. 
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2-52.  Define the term “design-allowable stress,” write an equation for design-allowable stress, define each 
term in the equation, and tell how or where a designer would find values for each term. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The “design-allowable stress” is the largest stress that a designer is willing to permit at the most critical point 
in the machine or structure under consideration. An equation for design allowable stress may be written as 

/d Fm dS nσ =  
 

where dσ =  Design allowable stress 
 FmS =  Failure strength of the selected material corresponding to the governing failure mode 
 dn =  Selected design factor of safety 

 
 The design allowable stress is calculated form /d Fm dS nσ = . The failure strength is found in tables of 
Uniaxial strength data by selecting a table that corresponds to the governing failure mode(s) identified for the 
application. The design factor of safety is selected by the designer, either based on experience, by using 
empirical calculation as shown in (2-87) or (2-88), or by using code-mandated values as discussed in section 
1.9. 
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2-53. Your company desires to market a new type of lawn mower with an “instant-stop” cutting blade (For 

more details about the application, see Example 16.1). You are responsible for the design of the 
actuation lever. The application may be regarded as “average” in most respects, but the material 
properties are known a little better than for the average design case, the need to consider threat to 
human health is regarded as strong, maintenance is probably a little poorer than average, and it is 
extremely important to keep the cost low. Calculate a proper safety factor for this application, clearly 
showing details of your calculation. 

 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
Based on the information given, the rating number assigned to each of the eight rating factors might be 
 

  
Rating Factor 

Selected Rating 
Number (RN) 

1. Accuracy of loads knowledge 0 
2. Accuracy of stress calculations 0 
3. Accuracy of strength knowledge -1 
4. Need to conserve -4 
5. Seriousness of failure consequences +3 
6. Quality of manufacture 0 
7. Condition of operation 0 
8. Quality of inspection/maintenance +1 

 Summation , t =  -1 

                                    Since 6t ≥ − , 
( )210 1

1 1.8
100dn
−

= + =                                    1.8dn =  
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2-54.  You are asked to review the design of the shafts and gears that are to be used in the drive mechanism 
for a new stair-climbing wheelchair for quadripelegic users. The wheelchair production rate is about 1200 per 
year. From the design standpoint the application may be regarded as “average” in many respects, but the need 
to consider threat to human health is regarded as extremely important, the loads are known in a little better 
than for the average design project, there is a strong desire to keep weight down, and a moderate desire to 
keep the cost down.  Calculate a proper safety factor for this application, clearly showing all details of how 
you arrive at your answer. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
Based on the information given, the rating number assigned to each of the eight rating factors might be 
 

  
Rating Factor 

Selected Rating 
Number (RN) 

1. Accuracy of loads knowledge -1 
2. Accuracy of stress calculations 0 
3. Accuracy of strength knowledge 0 
4. Need to conserve -3 
5. Seriousness of failure consequences +4 
6. Quality of manufacture 0 
7. Condition of operation 0 
8. Quality of inspection/maintenance 0 

 Summation , t =  0 

                                     Since 6t ≥ − , 
( )210 0

1 2.0
100dn
−

= + =                                2.0dn =  
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2-55. A novel design is being proposed for a new attachment link for a chair lift at a ski resort. Carefully 
assessing the potential importance of all pertinent “rating factors,” calculate a proper safety factor for this 
application, clearly showing the details of how you arrive at your answer. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
For this case we must assess the importance of each rating factor in the chair lift attachment link. The 
judgment of this designer is that loads are probably known a little better than for the average design case, 
threat to human health is a strong consideration, and there is a moderate need to keep coast low. Based on 
these judgments, the rating numbers assigned to each of the eight rating factor might be 
 

  
Rating Factor 

Selected Rating 
Number (RN) 

1. Accuracy of loads knowledge -1 
2. Accuracy of stress calculations 0 
3. Accuracy of strength knowledge 0 
4. Need to conserve -2 
5. Seriousness of failure consequences +3 
6. Quality of manufacture 0 
7. Condition of operation 0 
8. Quality of inspection/maintenance 0 

 Summation , t =  0 

                                     Since 6t ≥ − , 
( )210 0

1 2.0
100dn
−

= + =                              2.0dn =  
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2-56. Stainless-steel alloy AM 350 has been tentatively selected for an application in which a cylindrical 
tension rod must support an axial load of 10,000 lb. The ambient temperature is known to be o800 F . If a 
design factor of safety of 1.8 has been selected for the application, what minimum diameter should the 
tension rod have? (Hint: Examine “materials properties” charts given in Chapter 3.) 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
The most probable failure mode is yielding. For the specified material we find ( )800

186 ksiypS =  . With 

1.8dn = , 186 /1.8 103.33 ksidσ = = .  
 

                       2
2 2

4 4(10,000) 103,330         0.12322d act
P d
d d

σ σ
π π

= = = = ⇒ =                    0.351"d =  
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2-57.  It has been discovered that for the application described in problem 5-56, an additional design 
constraint must be satisfied, namely, the creep strain rate must not exceed 61 10  in/in/hr−×  at the ambient 
temperature of  o800 F . To meet the 1.8 safety factor requirement for this case, what minimum diameter 
should the tension rod have? (Hint: Examine “materials properties” charts given in Chapter 3.) 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
The most probable failure mode is creep strain in which  610  in/in/hrδ −=& . For the specified material we find 
( )max 800 91 ksicrS − =  . With 1.8dn = , 91/1.8 50.56 ksidσ = ≈ .  
 

                       2
2 2

4 4(10,000) 50,560         0.2518d act
P d
d d

σ σ
π π

= = = = ⇒ =                    0.50"d ≈  
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2-58.   A design stress of 220 MPadσ = is being suggested by a colleague for an application in which 2024-
T4 aluminum alloy has tentatively been selected. It is desired to use a design safety factor of 1.5dn = . The 
application involves a solid cylindrical shaft continuously rotating at 120 revolutions per hour, simply 
supported at the ends, and loaded at midspan, downward, by a static load P. To meet design objectives, the 
aluminum shaft must operate without failure for 10 years. For 2024-T4 aluminum 469 MPauS = and 

331 MPaypS = . In addition, we know that at 710 cycles, the fatigue failure strength is 710 158 MPaNS = = . 

Would you agree with your colleague’s suggestion that 220 MPadσ = ? Explain. 
 
-------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The shaft is loaded as a simply supported beam with a midspan load that produces bending in the shaft. Since 
the shaft is rotating slowly, any given point on the surface cycles form a maximum tensile bending stress, 
through zero to a minimum compressive bending stress, then back through zero to the maximum tensile 
bending stress. This repeats for every shaft rotation. Therefore both yielding and fatigue are potential 
governing failure modes, and should be investigated. For yielding, using (6-2), the yield based design stress is 
 

                                                        331 221 MPa
1.5

yp
d

d

S
n

σ = = =  

 
 For fatigue, the shaft rotating at 120 revolutions per hour over the 10 year design life produces 
 

                                ( ) 7rev hr days120 24 365 10 yaers 1.05 10  cycles
hr day yeardN

⎛ ⎞⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

 
  Knowing that 710 158 MPaNS = = , the fatigue based design stress may be calculated as 
 
                                                       710 / 158 /1.5 105 MPad dNS nσ == = =  
 
The fatigue design stress ( ) 105 MPad fatigueσ = is much lower than the yielding design stress 

( ) 221 MPad yieldσ = and should be the one considered for analysis. The suggestion is not valid.  
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2-59.  A 304 stainless-steel alloy, annealed, has been used in a deflection-critical application to make the 
support rod for a test package suspended near the bottom of a deep cylindrical cavity. The solid stainless-steel 
support rod has a diameter of 0.750 inch and a precisely manufactured length of 16.000 feet. It is oriented 
vertically and fixed at the top end. The 6000-pound test package is attached at the bottom, placing the vertical 
bar in axial tension. The vertical deflection at the end of the bar must not exceed a maximum od 0.250 inch. 
Calculate the existing safety factor. 
 
-------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The existing factor of safety is based on deflection and max/ex allow fn δ δ −= , where 0.25"allowδ = .  
                

                            
( ) ( )

max max max
max 2 2 6

4 4(6000)(16 12) 0.093"
/ (0.75) 28 10

f
P P L P L

AE L AE d E
δ

π π
−

×
= = = = =

×
 

 

                                                           0.25 2.68 2.7
0.093exn = = ≈                              2.7exn =  
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2-60.  A very wide sheet of aluminum is found to have a single-edge crack of length 25 mma = . The 
material has a critical stress intensity factor (a fracture mechanics measure of the material’s strength) of 

27 MPa mIcK = . For the sheet in question, the stress intensity factor is defined as 1.122  IK aσ π= , 
where the expected stress is 70 MPaσ = . Estimate the existing factor of safety, defined as /e Ic In K K= . 
 
-------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The existing safety factor may be defined as max/ex crn P P= .From text Table 2.1, for a pinned--pinned 
condition, 4 meL L= = . The critical load is 
 

                       
( )

4
2 9

2

2 2

(0.05)207 10
64

39.2 kN
4cr

e

EIP
L

ππ
π

⎛ ⎞
× ⎜ ⎟⎜ ⎟

⎝ ⎠= = =  

 

Therefore     39.2 1.74
22.5exn = =                                                                   1.74exn =  
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2-61.   A vertical solid cylindrical steel bar is 50 mm in diameter an 4 meters long. Both ends are pinned and 
the top pinned end is vertically guided, as for the case shown in Figure 2.7 (a). If a centered static load of 

22.5 kNP = must be supported at the top end of the vertical bar, what is the existing safety factor? 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
           

               6 3

1

1 1ˆ 13.895 10 397 10  cycles
35

n

i
i

x
n

µ
=

⎡ ⎤= = × = ×⎣ ⎦∑  

 

              ( ) ( )2 2 3 3

1 1

1 1ˆ ˆ ˆ 11.67 10 11.7 10  cycles
1 35 1

n n

i i
i i

x x
n

σ µ µ
= =

⎛ ⎞ ⎛ ⎞= − = − = × ≈ ×⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠∑ ∑  

                                                                                                                        3ˆ 11.7 10  cyclesσ = ×  
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2-62.   A supplier of 4340 steel material has shipped enough material to fabricate 100 fatigue-critical tension 
links for an aircraft application. As required in the purchase contract, the vendor has conducted uniaxial 
fatigue tests on random specimens drawn from the lot of material, and has certified that the mean fatigue 
strength corresponding to a life of 610  cycles is 470 MPa , that the standard deviation on strength 
corresponding to 610  cycles is 24 MPa , and that the distribution of strength at a life of 610  cycles is normal. 
 

a. Estimate the number of tensions links in the lot of 100 that may be expected to fail when operated 
for 610  cycles if the applied operating stress amplitude is less than 415 MPa . 
b. Estimate the number of tensions links that may be expected to fail when operated for 610  cycles at 
stress levels between 415 MPa  and 470 MPa . 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
           
Since the fatigue strength distribution corresponding to a life of 610  cycles has been certified to be normal, 
Table 2.9 is applicable. 
 
a. The standard normal variable X  at a stress amplitude of 415 MPa is 
 

                                        415
415 470 2.29

24
X −

= = −  

 
From Table 6.1 with reference to Figure 6.2 (b) and (6-13) 

 
                                 { } { }415 415 415( ) 1F X P X X P X X= ≤ = − ≤  
 

so [ ] [ ]60 602.29 2.29( ) 1 ( ) 1 0.9890 0.011X XF X F X
=− =

= − = − = .  Therefore, the number of links in a lot of 
100 that would fail at 415 MPa  would be 
 
                             610 100(0.011) 1.1failn < = =    links 

 
b. At a load level of 470 MPa  
 

                                      470
470 470 0

24
X −

= =  

 
 From Table 6.1, 470( ) 0.500F X = and the number of failed links is 610 100(0.50) 50failn < = = . 

Therefore, if operating between 415 MPa  and 470 MPa  
 
                        610 100(0.500 0.011) 48.9 49failn < = − = ≈  links 
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2-63.  A lot of 4340 steel material has been certified by the supplier to have fatigue strength distribution at a 
life of 710 cycles of 
 

                               ( )710 68,000 psi, 2500 psi
d

NS N= =  
 
Experimental data collection over a long period of time indicates that operating stress levels at the critical 
point of an important component with a design life of  710 cycles have a stress distribution of 
 

                                  ( )60,000 psi, 5000 psi
d

op Nσ =  
 
Estimate the reliability level corresponding to a life of 710 cycles for this component. 
  
-------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 

      .        
( ) ( )

415 2 2

68,000 60,000 1.431
2500 5000

X −
= − = −

+
 

 
   Since 1R P= −  and ( ) ( )1.43 1.431X XF X F X

=− =
= − ,  

 
                                             0.924R =  
 
Therefore, you would expect 92.4% of all installations to function properly, but about 18 of every 1000 
installations would be expected top fail earlier than 710 cycles. 
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2-64.  It is known that a titanium alloy has a standard deviation on fatigue strength of 20 MPa over a wide 
range of strength levels and cyclic lives. Also, experimental data have been collected that indicate that the 
operating stress levels at the critical point of an important component with a design life of 75 10× cycles have 
a stress distribution of 
 

                           (345 MPa, 28 MPa)
d

op Nσ =  
 
If a reliability level of “five-times” (i.e., 0.99999R = ) is desired, what mean strength would the titanium 
alloy need to have? 
 
------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Assuming a normal fatigue strength distribution at 75 10×  cycles, Table 6.1 is appropriate. For  0.99999R = , 
we find 4.27X = . Using (6.17) 
 

                        
( ) ( )2 2

ˆ ˆ
4.27

ˆ ˆ
s

s

X σ

σ

µ µ

σ σ

−
= = −

+
 

 
            Since 1R P= −  and  4.27 4.27( ) 1 ( )X XF X F X=− == −  
 
                             ( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ ˆ4.27 4.27 20 28 345 492s s σ σµ σ σ µ= + + = + + =  
                                                          
                                                                   ( )ˆ 492 MPas requiredµ =  
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2-65.   Using the tabulated normal cumulative distribution function given in Table 2.9, verify the strength 
reliability factors given in Table P2.67, knowing that the Table P2.65 is based on 1 0.08Xrk = − . 
 
              Table P2.65  Strength Reliability Factors 
 

Reliability 
R (%) 

Corresponding Standard 
Normal Value X 

Strength Reliability 
Factor rk  

90 1.282 0.90 
95 1.645 0.87 
99 2.326 0.81 

99.9 3.090 0.75 
99.995 3.891 0.69 

 
----------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Using 90R = , with X 1.828= , we get 1 0.08(1.282) 0.8974 0.90rk = − = ≈  
            
 Similarly, for 95R = , with X 1.645= , we get 1 0.08(1.645) 0.868 0.87rk = − = ≈  
           
Similar results are obtained for 99R =  and 99.9R =  
             
Finally, for 99.995R = , with X 3.981= , we get 1 0.08(3.891) 0.6887 0.69rk = − = ≈  
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2-66.  The main support shaft of a new 90 kN hoist design project is under consideration. Clearly, if the shaft 
fails, the falling 90 kN payload could inflict serious injuries, or even fatalities. Suggest a design-acceptable 
probability of failure for this potentially hazardous failure scenario. 
 
-------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Referring to the reliability-based design goals, established primarily on the basis of industry experience,  
presented in Table 2.9, for “Hazardous” applications, a design-acceptable probability of failure would be 
 
                                                       { } 7 910  to 10  P failure − −=  
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2-67.  A series-parallel arrangement of components consists of a series of n subsystems, each having p 
parallel components. If the probability of failure for each component is q, what would be the system 
reliability for the series-parallel arrangement described? 
 
-------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
A series-parallel arrangement of components is a series of sub-systems, each having components in parallel. 
For a subsystem of p parallel components, with each component having reliability ( )1 q− , the equivalent 

subsystem reliability eqR is  1 p
eqR q= − . For a series of n such subsystems, each having reliability eqR , the 

system reliability is  
         

                                        { } ( ){ }1 1 1 1 1
nn p

sp eqR R q⎡ ⎤⎡ ⎤= − − = − − −⎣ ⎦ ⎢ ⎥⎣ ⎦
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2-68.   A series-parallel arrangement of components consists of p parallel subsystems, each having  n 
components in series. If the probability of failure for each component is q, what would be the system 
reliability for the series-parallel arrangement described? 
 
-------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
A parallel-series arrangement of components is a parallel set of sub-systems, each having components in 
series. For a subsystem of n series components, with each component having reliability ( )1 q− , the 

equivalent subsystem reliability eqR is  ( )1 n
eqR q= − . For a set of p such subsystems, each having reliability 

eqR , the system reliability is  
         

                                        ( )1 1 1 1 1
pp n

ps eqR R q⎡ ⎤⎡ ⎤= − − = − − −⎣ ⎦ ⎢ ⎥⎣ ⎦
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2-69. A critical subsystem for an aircraft flap actuation assembly consists of three components in series, each 
having a component reliability of 0.90. 
 

a. What would the subsystem reliability be for this critical three-component subsystem? 
b. If a second (redundant) subsystem of exactly the same series arrangement were placed in parallel 
with the first subsystem, would you expect significant improvements in reliability? How much? 
c. If a third redundant subsystem of exactly the same arrangement as the first two were also placed in 
parallel with them, would you expect significant additional improvements in reliability? Make any 
comments you think appropriate. 
d. Can you think of any reason why several redundant subsystems should not be used in this 
application in order to improve reliability? 

 
 
-------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
(a) Using (2-102), the subsystem reliability would be 
 
                                ( )31 0.10 0.729ssR = − =  
 
 (b) Using the results of (a) and (2-105), ( )22 1 1 0.729 0.927pR = − − ≈ . Thus, the addition of a parallel 

(redundant) subsystem improves the system reliability from 0.729 to 0.927 (27% improvement). 
 
(c)  Using the results of (a) and (2-105), ( )33 1 1 0.729 0.980pR = − − ≈ . Thus, the addition of a parallel 

(redundant) subsystem improves the system reliability from 0.927 to 0.980 (6% improvement). It is obvious 
that adding redundancy improves reliability, but the benefit diminishes as more systems are added. 
 
(d) Cost and weight penalties grow larger. 
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2-70. A machine assembly of four components may be modeled as a parallel-series arrangement similar to 
that shown in Figure 2.18 (d). It has been determined that a system reliability of 95 percent is necessary to 
meet design objectives. 
 

a. Considering subsystems A-C and B-D, what subsystems reliability is required to meet the 95 percent 
reliability goal of the machine? 
b. What component reliabilities would be required for A, B, C, and D to meet the 95 percent reliability 
specification for the machine? 

 
-------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
To meet the 95% goal for system reliability ( )1/ 20.95 0.975reqR = ≈ . For subsystem A-C, components A and 
C are is series, so   
 
                                20.975 0.987AC i iR R R= = ⇒ =  
 
The system reliability goal can be met if each component in the parallel-series arrangement specified has a 
reliability of at least 0.987. 
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Chapter 3 
 
 
3-1.  A newly graduated mechanical engineer has been hired to work on a weight-reduction project to redesign the 
clevis connection (see Figure 4.1A) used in the rudder-control linkage of a low-cost high-performance surveillance 
drone. This “new hire” has recommended the use of titanium as a candidate material for this application. As her 
supervisor, would you accept the recommendation or suggest that she pursue other possibilities? 
 
----------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Since this is a “redesign” project, the specification statement need only include the newly emphasized specifications. 
Therefore, the specification statement may be written as: In addition to the original specifications, the clevis 
connection should be low-cost and capable of high production rates. The “special needs” column of Table 3.1 may 
be filled in as shown 
  

 Potential Application Requirement  Special Need? 
1. Strength/volume ratio   
2. Strength/weight ratio   
3. Strength at elevated temperature   
4. Long term dimensional stability at elevated temperature   
5. Dimensional stability under temperature fluctuation   
6. Stiffness   
7. Ductility   
8. Ability to store energy elastically   
9. Ability to dissipate energy plastically   
10. Wear resistance   
11. Resistance to chemically reactive environment   
12. Resistance to nuclear radiation environment   
13 Desire to use specific manufacturing process  Yes 
14. Cost constraints  Yes 
15. Procurement time constraints   

 
Special needs have been identified for 2 items. From Table 3.2, we identify the corresponding evaluation indices as 
follows; 
 

 Special Need  Evaluation Index 
13 Manufacturability  Suitability for specific process 
14. Cost  Cost/unit weight; machinability 

 
Materials data for these indices are given in Tables 3.18 and 3.19. From these two tables we note that for the special 
needs identified, titanium is dead-last on machinability index and unit material cost. This translates into high-cost 
and low production rate, both of which are at odds with the redesign objective. Other possibilities should be 
suggested. 
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3-2.  It is desired to select a material for a back-packable truss-type bridge to be carried in small segments by a party 
of three when hiking over glacial fields. The purpose of the bridge is to allow the hikers to cross over crevasses of 
up to 12 feet wide. Write a specification statement for such a bridge. 
 
 
----------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
The specification statement for a back-packable bridge might be written as; The bridge should have low weight, low 
volume, high static strength, high stiffness, and high corrosive resistance. 
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3-3.  A very fine tensile support wire is to be used to suspend a 10-lb sensor package from the “roof’ of an 
experimental combustion chamber operating at a temperature of o850 F . The support wire has a diameter of 0.020 
inch. Creep of the support wire is acceptable as long as the creep rate does not exceed 54 10  in/in/hr−× . Further, 
stress rupture must not occur before at least 1000 hours of operation have elapsed. Propose one or two candidate 
materials for the support wire. 
 
----------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The specification statement for the tensile support wire  might be written as; The support wire should have good 
strength at elevated temperature, low creep rate and good stress rupture resistance at elevated temperatures. The 
“special needs” column of Table 3.1 may be filled in as shown 
  

  Potential Application Requirement  Special Need? 
 1. Strength/volume ratio   
 2. Strength/weight ratio   
 3. Strength at elevated temperature  Yes 
 4. Long term dimensional stability at elevated temperature  Yes 
 5. Dimensional stability under temperature fluctuation   
 6. Stiffness   

  
  Potential Application Requirement  Special Need? 
 7. Ductility   
 8. Ability to store energy elastically   
 9. Ability to dissipate energy plastically   
 10. Wear resistance   
 11. Resistance to chemically reactive environment   
 12. Resistance to nuclear radiation environment   
 13 Desire to use specific manufacturing process   
 14. Cost constraints   
 15. Procurement time constraints   

 
Special needs have been identified for 2 items. From Table 3.2, we identify the corresponding evaluation indices as 
follows; 
 

 Special Need  Evaluation Index 
3. Strength at elevated temperature  Strength loss/degree of temperature 
4. Long term dimensional stability at 

elevated temperature 
 Creep rate at operating temperature 

 
 Based on the 10 lb tensile force on the support wire and its 0.020"d =  diameter, the tensile stress is 
 

                          2
4(10) 31,830 psi

(0.020)
P
A

σ
π

= = =  

 
Materials data for the evaluation indexes above may be found in Tables 3.5, 3.6, and 3.7.  Making a short list of 
candidate materials from each of these tables, keeping in mind that the stress in the wire must not exceed 31,830 psi, 
that the creep rate must not exceed 5 o4 10  in/in/hr at 850 F−× , and that stress rupture life must be at least 1000 hr, 
the following array may be identified 
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Problem 3.3 (cnntinued) 
 

               
Ultra high strength steel (4340)

For high yield strength at
Stainless steel (AM 350)

elevated temperature (Table 3.5)
Titanium (Ti-6Al-4V)

⎧
⎪
⎨
⎪
⎩

 

 

             
Stainless steel (AM 350)

For high stress rupture strength at
Iron-base superalloy (A-286)

elevated temperature (Table 3.6)
Cobalt base superalloy (X-40)

⎧
⎪
⎨
⎪
⎩

   

 

                                
Stainless steel (AM 350)

For high creep
Chromeium steel (13% Cr)

resistance (Table 3.7)
Manganese steel (17% Mn)

⎧
⎪
⎨
⎪
⎩

 

 
From these three lists, the only materials contained in all of them is AM 350 stainless steel. 
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3-4.  For an application in which ultimate strength-to-weight ratio is by far the dominant consideration, a colleague 
is proposing to use aluminum. Do you concur with his selection, or can you propose a better candidate for the 
support wire. 
 
----------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The specification statement for this simple case  might be written as; The part should have a high ultimate strength-
to-weight ratio.  The only “special needs” column of Table 3.1 which would contain a “yes” would be item 2, for 
which the evaluation index is “ultimate strength/density”. From Table 3.4, there is a short list of candidate materials, 
which include 
 
                                      Graphite-epoxy composite, Ultra high strength steel, Titanium  
 
Since aluminum is not in this list, a suggestion to investigate the materials listed above should be made. 
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3-5.  You have been assigned the task of making a preliminary recommendation for the material to be used in the 
bumper of a new ultra-safe crash-resistant automobile. It is very important that the bumper be able to survive the 
energy levels associated with low-velocity crashes, without damage to the bumper of the automobile. Even more 
important, for high energy levels associated with severe crashes, the bumper should be capable of deforming 
plastically over large displacements without rupture, thereby dissipating crash pulse energy to protect the vehicle 
occupants. It is anticipated that these new vehicles will be used throughout North America, and during all seasons of 
the year. A 10-year design life is desired. Cost is also a very important factor, Propose one or a few candidate 
materials suiotable for this application. (Specific alloys need not be designated.) 
 
----------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The specification statement for the bumper might be written as; The bumper should have good ability to store and 
release energy within the elastic range, good ability to absorb and dissipate energy in the plastic range, resistance to 
ductile rupture, ability to allow large plastic deformation, high stiffness if possible, good corrosion resistance, and 
have a low to modesty cost. The “special needs” column of Table 3.1 may be filled in as shown 
  

 Potential Application Requirement  Special Need? 
1. Strength/volume ratio  Yes 
2. Strength/weight ratio   
3. Strength at elevated temperature   
4. Long term dimensional stability at elevated temperature   
5. Dimensional stability under temperature fluctuation   
6. Stiffness  Perhaps 
7. Ductility  Yes 
8. Ability to store energy elastically  Yes 
9. Ability to dissipate energy plastically  Yes 
10. Wear resistance   
11. Resistance to chemically reactive environment  Yes 
12. Resistance to nuclear radiation environment   
13 Desire to use specific manufacturing process   
14. Cost constraints  Yes 
15. Procurement time constraints   

 
Special needs have been identified for multiple items. From Table 3.2, we identify the corresponding evaluation 
indices as follows; 
 

 Special Need  Evaluation Index 
1. Strength/volume ratio  Ultimate or yield strength 
6. Stiffness  Modulus of elasticity 
7. Ductility  Percent elongation in 2” 
8. Ability to store energy elastically  Energy/unit volume at yield 
9. Ability to dissipate energy plastically  Energy/unit volume at rupture 
11. Resistance to chemically reactive environment  Dimensional loss in op. environment 
14. Cost constraints  Cost/unit weight and machinability 

 
Materials data for these evaluation indexes may be found in Tables. 3.3, 3.9, 3.10, 3.11, 3.12, 3.14, 3.18, and 3.19. 
Making a short list of candidate materials from each of these tables, the following may be established: 
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Problem 3.5 (continued) 
 

Ultra-high strength steel
For high strength/vol. Stainless steel (age-hardened)

  
(Table 3.3) High carbon steel

Graphite-epoxy composite

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

 Tungsten carbide
For high stiffness Titanium carbide

 
a desire - (Table 3.9) Molybdenum

Steel

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

   
Phosphor Bronze

Inconel
Stainless steel

For high ductility Copper
 

 (Table 3.10) Silver
Gold

Aluminum
Steel

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

 

 Ultra-high strength steel
Stainless steel

For high resilience Titanium
  

(Table 3.11) Aluminum
Magnesium

Steel

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

 

   
Inconel

For high toughness Stainless steel 
  

(Table 3.12) Phosphor Bronze
Ultra-high strength steel

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

 Gray cast iron 
For low material cost Low carbon steel 

  
(Table 3.18) Ultra-high strength steel

Zinc alloy

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

   
    For corrosion resistance – refer to Table 3.14 

 
  

   
Gray cast iron 

For low material cost Low carbon steel 
  

(Table 3.18) Ultra-high strength steel
Zinc alloy

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

 Magnesium alloy
Aluminum alloy 

For good machinability Free machining gsteel
  

(Table 3.19) Low carbon steel
Medium carbon steel

Ultra-high strength steel

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

 

   
 
                               

From this list, no material is common to all. However, except for corrosion resistance, ultra-high strength steel 
shows high ratings and carbon steel also has good ratings. Corrosion-resistant coatings can be used with either. 
Therefore, it is recommended that plated ultra-high strength steel be selected. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 102

 
3-6.  A rotor disk to support the turbine blades in a newly designed aircraft gas turbine engine is to operate in a flow 
of  o1000 F  mixture of air and combustion product. The turbine is to rotate at a speed of 40,000 rpm. Clearance 
between rotating and stationary parts must be kept as small as possible and must not change very much when the 
temperature changes. Disk vibration cannot be tolerated either. Propose one or a few candidate materials for this 
operation. (Specific alloys need not be designated.) 

 
----------------------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
 

The specification statement for the gas turbine rotor disk might be written as; The rotor disk should be strong, light, 
compact, have good high temperature properties, good corrosion resistance, and high stiffness. The “special needs” 
column of Table 3.1 may be filled in as shown 
  

 Potential Application Requirement  Special Need? 
1. Strength/volume ratio  Yes 
2. Strength/weight ratio  Yes  
3. Strength at elevated temperature  Yes 
4. Long term dimensional stability at elevated temperature  Yes 
5. Dimensional stability under temperature fluctuation  Yes 
6. Stiffness  Yes 
7. Ductility   
8. Ability to store energy elastically   
9. Ability to dissipate energy plastically   
10. Wear resistance   
11. Resistance to chemically reactive environment  Yes 
12. Resistance to nuclear radiation environment   
13 Desire to use specific manufacturing process   
14. Cost constraints   
15. Procurement time constraints   

 
Special needs have been identified for multiple items. From Table 3.2, we identify the corresponding evaluation 
indices as follows; 
 

 Special Need  Evaluation Index 
1. Strength/volume ratio  Ultimate or yield strength 
2. Strength/weight ratio  Ultimate or yield strength/weight 
3. Strength at elevated temperature  Strength loss/degree of temperature 
4. Long term dimensional stability at elevated temp.  Creep rate at operating temperature 
5. Dimensional stability under temperature fluctuation  Strain/deg. Of temp. change 
6. Stiffness  Modulus of elasticity 
11. Resistance to chemically reactive environment  Dimensional loss in op. environment 

 
Materials data for these evaluation indexes may be found in Tables. 3.3, 3.4, 3.5, 3.7, 3.8 3.9, and  in a limited way, 
in 3.14 (for which the corrosive environment is sea water, not combustion produced in air; corrosion testing will 
ultimately be required). Making a short list of candidate materials from each of these tables, the following may be 
established: 
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Problem 3-6 (continued) 
 

Ultra-high strength steel
Stainless steel (age-hardened)

High carbon steel
For high strength/vol.

  Graphite-epoxy composite
(Table 3.3)

Titanium
Ceramic

Nickel based alloy

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

 

 Graphite-epoxy composite
Ultra-high strength steel

For high strength/weight
Titanium

(Table 3.4)
Stainless steel (age-hardened)

Aluminum

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 

   
Ultra-high strength steel

Stainless steel (age-hardened)
For resistance to thermal

 Titanium
 weakening (Table 3.5)

Titanium carbide
Inconel

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 

 Stainless steel (age-hardened)
For creep resistance Chromium steel

 
 (Table 3.7) Manganese steel

Carbon steel

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

   
Ceramic
Titanium

For low thermal expansion Gray cast iron
 

(Table 3.8) Steel
Stainless steel

Nickel base alloy

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

 

 Tungsten carbide
Titanium carbide

For high stiffness 
 Molybdenum

(Table 3.9)
Steel

Stainless steel

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 

   
            
    

          
For corrosion resistance (no vaild data Refer directly to Table 3.14;

are available in this textbook; as a crude  search out more applicable
guideline, consult sewater data in Table 3.14 corrosion dqata if possible

⎧
⎪
⎨
⎪
⎩

 

 
 
From these results, only stainless steel and ultra-high strength steel are common to all lists. Ultra-high strength steel 
is very low on corrosion resistance. Select stainless steel 
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3-7.  A material is to be selected for the main landing-gear support for a carrier-based navy airplane. Both weight 
and size of the support are important considerations, as well as minimal deflection under normal landing conditions. 
The support must also be able to handle impact loading, both under normal landing conditions and under extreme 
emergency controlled-crash-landing conditions. Under crash-landing conditions permanent deformations are 
acceptable, but separation into pieces is not acceptable. What candidate materials would you suggest for this 
application? 
 
----------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The specification statement for the main landing gear support might be written as;The main landing gear support 
should be light, compact, be able to store high impact energy in the elastic regime, to dissipate high impact energy in 
the plastic regime without rupture, be stiff, be ductile, and be corrosion resistant in seawater. The “special needs” 
column of Table 3.1 may be filled in as shown 
 

  Potential Application Requirement  Special Need? 
 1. Strength/volume ratio  Yes 
 2. Strength/weight ratio  Yes  
 3. Strength at elevated temperature   
 4. Long term dimensional stability at elevated temperature   
 5. Dimensional stability under temperature fluctuation   
 6. Stiffness  Yes 
 7. Ductility  Yes 
 8. Ability to store energy elastically  Yes 
 9. Ability to dissipate energy plastically  Yes 
 10. Wear resistance   
 11. Resistance to chemically reactive environment  Yes 
 12. Resistance to nuclear radiation environment   
 13 Desire to use specific manufacturing process   
 14. Cost constraints   
 15. Procurement time constraints   

 
Special needs have been identified for multiple items. From Table 3.2, we identify the corresponding evaluation 
indices as follows; 
 

 Special Need  Evaluation Index 
1. Strength/volume ratio  Ultimate or yield strength 
2. Strength/weight ratio  Ultimate or yield strength/weight 
6. Stiffness  Modulus of elasticity 
7. Ductility  Percent elongation in 2” 
8. Ability to store energy elastically  Energy/unit volume at yield 
9. Ability to dissipate energy plastically  Energy/unit volume at rupture 
11. Resistance to chemically reactive environment  Dimensional loss in op. environment 

 
Materials data for these evaluation indexes may be found in Tables. 3.3, 3.4, 3.9, 3.10, 3.11, 3.12, and 3.14. Making 
a short list of candidate materials from each of these tables, the following may be established: 

               
Ultra-high strength steel

For high strength/vol Stainless steel (age-hardened)
.  

(Table 3.3) High carbon steel
Graphite-epoxy composite

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

 Graphite-epoxy composite
For high strength/weight Ultra-high strength steel

 
(Table 3.4) Titanium

Stainless steel

⎧
⎪
⎪
⎨
⎪
⎪⎩
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Problem 3-7 (continued) 
 

  

Tungsten carbide
 Titanium carbide

For high stiffness
  Molybdenum

(Table 3.9)
Steel

Stainless steel

⎧
⎪
⎪⎪
⎨
⎪
⎪
⎪⎩

 

 Phosphor Bronze
Inconel

Stainless steel
For high ductility Copper

 
(Table 3.10) Silver

Gold
Aluminum

Steel

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪⎩

 

   
Ultra-high strength steel

Stainless steel
For high resilience Titanium

  
(Table 3.11) Aluminum

Magnesium
Steel

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

 

 Inconel
For high toughness Stainless steel 

  
(Table 3.12) Phosphor Bronze

Ultra-high strength steel

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

   
 
                                     For corrosion resistance – refer to Table 3.14 

 
 

Surveying these lists, the candidate materials with best potential appear to be ultra-high strength steel, stainless 
steel, or carbon steel, noting that corrosion protective plating would have to be applied for either ultra-high 
strength steel or stainless steel. It is recommended that all three materials be investigate more fully. 
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3-8. A job shop manager desires to have a rack built for storing random lengths of pipe, angle iron, and other 
structural sections. No special considerations have been identified, but the rack should be safe and the cost 
should be low. What material would you suggest? 
 

----------------------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
Based on the recommendation included in step (1) of text section 3.4, because specification information is sketchy, 
it is suggested that 1020 steel be tentatively selected because of its good combination of strength, stiffness, ductility, 
toughness, availability, cost, and machinability. 
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3-9. The preliminary specification statement for a new-concept automotive spring application has been written as 
follows: 
 The spring should be stiff and light. 
 Using this specification statement as a basis, special needs have been identified form Table 2.1 as items 2 
and 6. From Table 3.2, the corresponding performance evaluation indices have been determined to be low density 
and light. 
 With these two indices identified, the project manager has requested a report on materials exhibiting values 
of Young’s modulus, E, of more than about 200 GPa and values of density, ρ, less than about 32 Mg/m . Using 
Figure 3.1, establish a list of candidate materials that met these criteria. 
 
----------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Based on the recommended use of Figure 3.1, a search pattern is established, as shown below, by marking the 
bounds of 200 GPaE >  and 32 Mg/mρ < . 
 
Material candidates within the search region are 
BE and CFRP. These “short-name” identifiers 
may be interpreted from Table 3.21 as : 

 
       Beryllium alloys      
 
     and             
 
       Carbon fiber reinforced plastics  
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3-10. By examining Figure 3.3, determine whether the plane strain fracture toughness IcK , of common engineering 
polymers such as PMMA (Plexiglas) is higher or lower than for engineering ceramics such as silicon carbide (SiC). 
 
 
----------------------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
 

 Based on the recommended use of Figure 3.3, boundaries may be marked for the minimum plain strain fracture 
toughness for SIC and the maximum plain strain fracture toughness for PMMA, as shown. 
 
 
Since the minimum for SiC exceeds the 
maximum for PMMA, we conclude that the 
fracture toughness for SiC is higher than for 
PMMA. 
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3-11.  It is desired to design a pressure vessel that will leak before it breaks. The reason for this is that the leak can 
be easily detected before the onset of rapid crack propagation that might cause an explosion of the pressure vessel 
due to brittle behavior. To accomplish the leak-before-break goal, the vessel should be designed so that it can 
tolerate a crack having a length, a, at least equal to the wall thickness, t, of the pressure vessel without failure by 
rapid crack propagation. A specification statement for design of this thin-walled pressure vessel has been written as 
follows: 
 The pressure vessel should experience slow through-the-thickness crack propagation to cause a leak before 
the onset of gross yielding of the pressure vessel wall. 
 From evaluation of this specification statement using Tables 3.1 and 3.2, the important evaluation indices 
have been deduced to be high fracture toughness and high yield strength. 
 By combining (5-51) and (9-5), keeping in mind the “separable” quality of the materials parameter 

3 ( )f M discussed in Example 3.2, the materials-based performance index for this case has been found to be 
 

3 ( ) C

yp

K
f M

S
=  

 
 
It is also desired to keep the vessel wall as thin as possible (corresponding to selecting materials with yield strength 
as high as possible). 
 

a. Using the Ashby charts shown in Figures 3.1 through 3.6, select tentative material candidates for this 
application. 
b. Using the rank-ordered-data tables of Table 5.2 and Tables 3.3 through 3.20, select tentative material 
candidates for this application. 
c. Compare results of parts (a) and (b). 

 
----------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a) Based on the given performance index 
 

                                             3 ( ) C

yp

K
f M

S
=  

 
Figure 3.5 may be chosen to mark boundaries based on 
the equation above and the high yield strength materials, 
as shown. 
 
Material candidates within the search region are steels, 
Cu alloys, and Al alloys. Theses “short-name” identifiers 
may be interpreted from Table 3.21 as; 
 
        Steels 
        Copper alloys 
        Aluminum alloys 
 
 
(b) For the performance-evaluation indices high fracture 
toughness and high yield strength, as identified in the 
problem statement, materials data for these evaluation 
indices may be found in Tables 2.10, 3.3, and 3.12. 
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Making a short list of candidate materials from each of these tables, the following array may be established: 
 

o

o

A-538 steel
For high plain strain  Ti-6Al-4V titanium
fracture toughness

D6AC steel (1000 F temp.) 
(Table 2.10 

4340 steel (800 F temp.) not rank-ordered)
18 Ni maraging steel (300)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

 

 

o

o

18 Ni maraging steel (300)
A-538 steelFor high yield strength

(Table 2.10) 4340 steel (500 F temp.)

D6AC steel (1000 F temp.)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

 

   
For high yield strength Ultra-high strength steel

 
(Table 3.3) Stainless steel

⎧
⎨
⎩

 
 Ni based alloys

For high toughness Stainless steel
 

(Table 3.12) Phosphor Bronze
Ultra-high strength steel

⎧
⎪
⎪
⎨
⎪
⎪⎩

 

   
                                                                                                             
 

Surveying the four lists, the best candidate materials appear to be ultra-high strength steel and nickel based alloys. 
 
(c)   The procedures of (a) and (b) agree upon ultra-high strength steel as a primary candidate. Secondary choices 
differ and would require a more detailed comparison. 
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Chapter 4 
 
4-1.  For the pliers shown in Figure P4.1, construct a complete free-body diagram for the pivot pin. Pay particular 
attention to moment equilibrium. 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
Referring to section A-A, the pivot pin can be extracted as a separate free body and sketched as shown below. 
Following the approach of Example 4-1, it might first be argued that the forces shown as pivotF , placed on the pivot-
pin by the two handle-press, 
are distributed along bearing 
contact region “A” at the 
top and “B” at the bottom. 
Likewise, these forces 
would be distributed around 
the half circumference in 
each of these locations. The 
resultant magnitude of 

pivotF may be calculated as  

                     pivot
aF F
b

=  

 
The effective lines of action for pivotF  could reasonably be assumed to pass through the mid-length of “A” and “B”. 
If these were the only forces on the free body, and if the above assumptions were true, it is clear that the moment 
equilibrium requirements would not be satisfied. The question then becomes “what is the source of the 
counterbalancing moment, or how should the assumptions be modified to satisfy the equilibrium requirement by 
providing a more accurate free body diagram?” 

 
The question of moment equilibrium complicates the seemingly simple task of constructing a free body diagram. 
Additional information may be required to resolve the issue. One argument might be that if both the pivot pin and 
the hand-pieces were absolutely rigid, and a small clearance 
existed between the pin and the hand-pieces, the pin would tip 
slightly, causing the forces pivotF  at both “A” and “B” to 
concentrate at the inner edges and become virtually collinear 
counter-posing forces in equilibrium as shown. 

 
Another argument might be that if the fit between the pivot pin and 
the handle piece were perfect, but elastic deformations were 

recognized, 
moment 
equilibrium might be established by an opposing deflection-based 
force couple in one of the hand pieces to support the work piece. 
For example, first considering the distributed pivotF  force acting 
along region “B” only, the deflection-based resisting force couple 
would be generated as shown. Superposition of region “A” 
loading consequences the would result in a complicate force 
distribution on the free body, but would provide the required 
equilibrium.  
 
The lesson is that assumptions made when constructing free body 
diagrams must be carefully considered. 
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4-2.  For the bolted bracket assembly shown in Figure P4.2, construct a free-body diagram for each component, 
including each bracket-half, the bolts, the washers, and the nuts. Try to give a qualitative indication of relative 
magnitudes of force vectors you show,. 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
Free body of  upper bracket-half: 

 
 

 
 
 
 
 
 
 
 
 
 

Free body diagram of bolt (typical):  
 
 
 
 
 
 
 
 
 
 

 Free body of  lower bracket-half: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Free body diagram of washer (typical): 
 
 

 
 
 

                                                                          Free body diagram of nut (typical): 
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4-3.  For the simple short-shoe block brake shown in Figure P4.3, construct a free-body diagram for the actuating 
lever and short block, taken together as the free body. 

 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
 

Free body diagram of integral shoe and lever: 
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4-4.  A floor-supported beam or rectangular cross section supports a uniformly distributed load of  lb/ftw  over its 
full length, and its ends may be regarded as fixed. 
 

a. Construct a complete free-body diagram for the beam. 
b. Construct shear and bending moment diagrams for the beam. 

 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The solution is given in Case 9 of Table 4.1 of the text.  
 
 
  (a)     The free-body diagram is a shown             
 
 
 
 
 
 
(b) Refer to Case 9 of Table 4.1 
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4-5.  The toggle mechanism shown in Figure P4.5 is used to statically load a helical coil spring so that it may be 
inspected for cracks and flaws while under load. The spring has a free length of 3.5 inches when unloaded, and a 
spring rate of 240 lb/in. When the static actuating force is applied, and the mechanism is at rest, the spring is 
compressed as shown in Figure P4.5, with dimensions as noted. Determine all the forces acting on link 3, and neatly 
draw a free-body diagram of link 3. Clearly show the numerical magnitudes and actual directions for all forces ob 
link 3.  Do only enough analysis to determine the forces on link 3, not the entire mechanism. 
 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The spring force on link 4 (in the x direction) will be 4 240(3.5 1.5) 480 lbExF kx= = − = . The free body diagram for 
link 4 (the block) and ling 3 (member BC) are shown below 
            

 
 
 Noting the member BC is a two-force member we can write 
 

      1 o2.1tan 11.31
10.5

φ − ⎛ ⎞= =⎜ ⎟
⎝ ⎠

   and   

  
tan 0.2

      0.2 0.2(480) 96 lb

Cy

Cx

Cy Cx

F
F

F F

φ= =

= = =

 

 
Since BC is a two-force member, we can model 
the force as each point as shown. 
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4-6. A simply supported beam is to be used at the 17th floor of a building under construction to support a high-speed 
cable hoist, as shown in Figure P4.6. This hoist brings the 700-pound payload quickly from zero velocity at ground 
level to a maximum velocity and back to zero velocity at any selected floor between the 10th and 15th floor levels. 
Under the most severe operating conditions, it has been determined that the acceleration of the payload from zero to 
maximum velocity produces a dynamic cable load of 1913 lb. Perform a force analysis of the beam under the most 
severe operating conditions. Dhow final results, including magnitudes and actual directions of all forces, no a neat 
free-body diagram of the beam. 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 Using the free body diagram shown we note 

 

       15088 1100 lb
12

W ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

      700 1913 2613 lbCF = + =  
 

      Satisfying equilibrium    0 :     0x xF A= =∑  
                                             0 :     1100 2613 0        3713y y y y yF A B A B= + − − = ⇒ + =∑  
 
                              0 :     150 1100(75) 2613(100) 0        2292 lb  ,  1421 lbA y y yM B B B= − − = ⇒ = =∑  
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4-7.   Two steel bars are pin-connected as shown in Figure P4.7.  If the cross-sectional area of the steel bars is  
50 mm2 and the allowable stress is 300 MPa, what value of P can be carried by the bars? 
 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Consider the free body diagram .  Applying the equations of static equilibrium gives 
 

( ) 50 :    2 cos       2 4 / 5             
8vertF F P F P F Pθ= = = =∑  

     

The stress is given as
( )
5:        300                   24kN

8 50
F P P
A

σ = = =  
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4-8.  (a)  Determine the maximum shear stress due to torsion in the steel shaft shown in Figure P4.8.  (b)  Determine 
the maximum tensile stress due to bending in the steel shaft. 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 The torque due to F1 and F2 is given as 
 

( )
( )( )

1 2

  1200 400 0.120 96 N m

T F F R= −

= − = ⋅
 

 
Based on the torque value FH becomes 
 

( )2 962 1600 N
0.120H

TF
D

= = =  

 
Look at shaft in the horizontal and vertical 
directions.  The loads and moments are as follows: 
 

       

( ) ( )

A

0 :     3200

0 :    

          0.600 0.200 1600 0.480 1600
1088 1813.3N                
0.600

                          R 1386.7 N

Vert A B

A

B

B

F R R

M

R

R

= + =

=

= +

= =

=

∑
∑

 

 
 
The forces and moments in the vertical direction 
are: 
 

( ) ( )

0 :     800 580 0               

                            220
0 :     

            0.600 580 0.480 800 0.200 0        

                         197.3 N , 417.3N

V V
Vert A B

V V
A B

A

V
B

V V
B A

F R R

R R
M

R

R R

= − + − =

− =

=

− + =

= =

∑

∑

 
The maximum moment occurs at C and is 
 

        ( ) ( )2 2
max 277.3 83.5 289.6 N mM = + = ⋅  
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( )
( )
( )
( )

3 3

b 3 3

16 9616The stresses are:   7.6 MPa
0.40

32 289.632                           46.0MPa
0.40

T
Tr T
J D

MC M
I D

τ
π π

σ
π π

= = = =

= = = =

 

 
4-9. Consider the circular bent rod with diameter 20 mm shown in Figure P4.9.  The free end of the bent is subjected 
to a vertical load of 800 N and a horizontal load of 400 N.  Determine the stress at locations a-a and b-b. 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
At section a-a, we have the free body diagram shown. Summing 
forces and moments gives 
 

( )
( )

( )

y

z

400 , 800 ,  

800 0.200 160 N m,  

400 0.200 80 N m

400 0.200 80 N m

y zF N F N

M

M

T

= − =

= = ⋅

= = ⋅

= = ⋅

 

 
At section a-awe have the loads and moment shown below.  

 
 
 

The stresses are:     Top:  Bending stress           
( )

( )3 3

32 16032 204MPa
0.020

b
Mc M
I d

σ
π π

= = = =  

      

                                          Torsional Stress         
( )

( )3 3

16 8016 51MPa
0.020

t
Tr T
J d

τ
π π

= = = =  

 

                                        Direct Shear              
( )
( )2 2

16 4004 16 1.7 MPa
3 3 3 0.02

d
F F
A d

τ
π π

= = = =  

 
                          Bottom:  Bending Stress     204MPabσ = −  
                                          Torsional Stress    51MPatτ =  
                                           Direct Shear            1.7 MPadτ =  
 
The torsional stress and the direct shear add on the bottom and subtract on the top. 
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Left Side:  Bending Stress        
( )

( )3 3

32 8032 102 MPa
0.020

b
M
d

σ
π π

= = = −  

                  Torsional Stress       51MPatτ =  

                  Direct Shear             
( )
( )2 2

16 80016 3.4 MPa
3 3 0.02

d
F
d

τ
π π

= = =  

 
Problem 4-9 (continued) 
 

Right Side:  Bending Stress        
( )

( )3 3

32 8032 102MPa
0.020

b
M
d

σ
π π

= = =  

                  Torsional Stress       51MPatτ =  

                  Direct Shear              
( )
( )2 2

16 80016 3.4MPa
3 3 0.02

d
F
d

τ
π π

= = =  

 
The torsional stress and the direct shear add on the right and subtract on the left. 
      
At section b-b we have summing forces and moments: 
 

z400 , 800 ,  80 320 400 N m,   80 N m, 160 N my z xF N F N M M T= = = + = ⋅ = ⋅ = ⋅  
 
At section b-b we have the loads and moments shown.  The stresses 
are: 
    

Axial stress           
( )
( )2

4 400
1.3MPa

0.020
yF

A
σ

π
= = =  

 

Top:  Bending stress           
( )

( )3 3

32 40032 509MPa
0.020

b
Mc M
I d

σ
π π

= = = =  

          Torsional Stress         
( )

( )3 3

16 16016 102MPa
0.020

t
Tr T
J d

τ
π π

= = = =  

 
Bottom:  Bending Stress     509MPabσ = −  
               Torsional Stress    102MPatτ =  
             

Left Side:  Bending Stress        
( )

( )3 3

32 8032 102 MPa
0.020

b
M
d

σ
π π

= = =  

                  Torsional Stress       102MPatτ =  

                  Direct Shear             
( )
( )2 2

16 80016 3.4 MPa
3 3 0.02

d
F
d

τ
π π

= = =  

 

Right Side:  Bending Stress        
( )

( )3 3

32 8032 102MPa
0.020

b
M
d

σ
π π

= = = −  

                  Torsional Stress       102MPatτ =  
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                  Direct Shear              
( )
( )2 2

16 80016 3.4MPa
3 3 0.02

d
F
d

τ
π π

= = =  

The torsional stress and the direct shear add on the right and subtract on the left. 
 
 
 
 
 
 
 
 
4-10.  Determine the bearing reactions and draw the bending moment diagram for the shaft in Figure P4.10.  
Determine the location and magnitude of the maximum moment. 
 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The loads transferred to the 
shaft are as shown. Summing 
forces and moments yields: 
 

0 :

500lb
horz

x
A

F

R

=

=
∑  

 
 
Note:  The axial load can only be reacted at one bearing.  Usually, the bearing with the least radial load is used. 
 

0 :     300 400 0             700y y y y
vert A B A BF R R R R= − + + + = + = −∑  

 
( ) ( )

y
A

0 :        300 10 30 3000 400 40 0            30 3000 3000 16,000
16,000 533.3lb           R 100 100 533.3 433.3lb

30

y y
A B B

y y
B B

M R R

R R

= + − + = = − + −

−
= = − = − − = − + =

∑
 

 
The bending moment diagram is given as: 
 

 
 

 
The maximum moment is 3000 in-lb and occurs at bearing A and at the location of the gear. 
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4-11.   A bar of steel is 600 mm long.  It has a diameter of 25 mm at one end and 30 mm at the other.  Each has a 
length of 150 mm.  The remaining central section has a 20 mm diameter and is 300 mm in length as shown in Figure 
P4.11.  When the bar is subjected to a tensile load of 110 kN determine the length of the bar.  Take E for steel to be 
207 GPa. 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The axial deformation of a bar is given as 
 

2

4PL PL
AE d E

δ
π

= =  

 
Thus, the axial deformation of each section is 
given as follows: 
 
            

( )
( )

( )
( )

( )
( )1 2 32 2 2

4 110000 150 4 110000 300 4 110000 150
0.1624 mm       0.5075mm          0.1128mm

25 207000 20 207000 30 207000
δ δ δ

π π π
= = = = = =  

     
 The total elongation is   1 2 3 0.7827 mmTδ δ δ δ= + + =  
 
 Thus, the length of the bar is:   600 600 0.7827 600.7827 mmTL δ= + = + =  
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4-12.  Two vertical rods are both attached rigidly at the upper ends to a horizontal bar as shown in Figure P4.12.  
Both rods have the same length of 600 mm and 10 mm diameter.  A horizontal cross bar whose weight is 815 kg 
connects the lower ends of the rods and on it is placed a load of 4 kN.  Determine the location of the 4 kN load so 
that the cross member remains horizontal and determine the stress in each rod.  The left rod is steel and the right rod 
is aluminum. 207 GPasE =  and 71 GPaalE = . 
 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Let PS be the force in the steel rod and PA the force in the 
aluminum rod. Summing moments gives: 
 

          

( ) ( ):   800 8000 400 4000 800
              8000 5

:   800 4000 8000(400)
             5 4000

B S

S

A A

A

M P x
P x

M P x
P x

= + −

= −
= +
= +

∑

∑
 

 
  Elongation of rods: 
 

                           
( ) ( )8000 5 5 4000

          
207000 71000

s sS S A A
S A

S S S A A A

x L x LP L P L
A E A A E A

δ δ
− +

= = = =  

 

We have that LS = LA = 600 mm and AS = AA = 
2

278.54mm
4
dπ

= .  Since the cross member is to remain horizontal, 

 
8000 5 5 4000:             9.58 3662       187 mm
207000 71000S A

x x x xδ δ − +
= = ⇒ = ⇒ =  

 
 

       

( )
( )

    Stresses in rods:     8000 5 187 7065 N

                                5 187 4000 4935 N
7065                               90MPa
78.54
4935                              63MP
78.54

S

A

s
S

s

A
A

A

P

P
P
A
P
A

σ

σ

= − =

= + =

= = =

= = = a
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4-13.  Determine the maximum deflection of the steel cantilever shaft shown in Figure P4.13. 
 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Summing forces and moments gives: 
 

400lb

53.3lb

53.3lb

x
B

y
A

y
B

R P
MR
a

MR
a

= = =

= − = −

= =

 

 
The deflection equations are as follows: 
 

( )
1

2

0 y
A

y y y
A A A

x a EIy R x

a x L EIy R x R x a M R a M

′′≤ ≤ = −

′′≤ ≤ = − + − + = − +
 

 
Where y

BR has been replaced by y
AR .  Integrating once gives: 

 
2

1 1

2 3

2

y
A

y
A

R x
EIy C

EIy R ax Mx C

−′ = +

′ = − + +
 

 

The boundary condition at x = a requires that 1 2y y′ ′= , thus 
2

3 12

y
AR a

C Ma C= − +  

3

1 1 2

2 22

2 1 4

Therefore,             
6

                             
2 2 2

y
A

y y
A A

R xEIy C x C

R ax R a xMxEIy Max C x C

−
= + +

= − + + − + +

 

 

At x = 0, y1 = 0, thus C2 =0.  At x = a, y1 = 0, and y2 = 0, hence 
2

1 6

y
Aa R

C =  and 
32

4 2 6

y
AR aMaC = −  

 
We have for the beam the following deflection equations 
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( )

( ) ( ) ( )( ) ( )

3 2
3 2

1

22 2 3 2 2
2

6 6 6

3 4 2 3
6 2 6 2

y y y
A A A

y y
A A

R x a R R
EIy x x a x

R R aM MEIy ax a x a x ax a x a x a x a

−
= + = −

= − − + + − + = − − − + −

 

 
The maximum deflection between the supports occurs at 
 

( )2 21 3 0
6 3

y
Ady R aEI x a x

dx
= − = ⇒ =  

 
 
 
4-14.  For the square, 20mm x 20mm, aluminum beam shown in Figure P4.14 determine the slope and deflection at 
B.  Take E = 71 GPa. 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Consider a section of the beam measuring x 
from the free end. Summing moments gives: 
 

3
0

0
1
2 3 6

q xx xM x q
L L

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 
  Thus, the deflection equation is 
 

                
3

0

6
q x

EIy M
L

′′ = =  

   Integrating twice gives 
 

4 5
0 0

1 1 2                      
24 120
q x q xEIy C EIy C x C

L L
′ = + = + +  

 

Applying the boundary conditions:  At x = L 0y′ = and y = 0, this gives 
3 4

0 0
1 2  and

24 30
q L q LC C= − =  

Therefore, 
4 3 5 3 4

0 0 0 0 0   ,   
24 24 120 24 30
q x q L q x q L q LEI y EIy x

L L
θ ′= = − = − +  

 

At x = 0, we have   
3 4

0 0   ,  
24 30
q L q Ly

EI EI
θ = − =  

 

Taking q0 = 500 kN/m, L = 500 mm, and 
( )43 4

420
13333 mm

12 12 12
bh hI = = = =  yields 

 
( )

( )( )
( )

( )( )

3 45 500 5 500
0.0275 rad    ,    y 11 mm

24 71000 13333 30 71000 13333
θ = − = − = =  
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4-15.  A simply supported beam subjected to a uniform load over a portion of the beam as shown in Figure P4.15.  
The cross section of the beam is rectangular with the width 4 inches and a height of 3 inches. Determine the 
maximum deflection of the beam.  Take E to be 30 x 106 psi. 
 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 Summing forces and moments gives: 
 

2

0 : 2

0 : 4 4

   ,   

A B

A B

B A

F R R aw

M aR a w

R wa R wa

= + =

= =

= =

∑
∑  

 
The moment in terms of singularity functions is given as 
 

2 23
2 2A
w wM R x x a x a= − − + −  

 
  The deflection equation then becomes 
 

2 23
2 2A
w wEIy M R x x a x a′′ = − = − + − − −  

 

    

2 3 3
1

3 4 4
1 2

Integrating gives            3
2 6 6

                                    3
6 24 24

A

A

R w wEIy x x a x a C

R w wEIy x x a x a C x C

′ = − + − − − +

= − + − − − + +
 

 

 Applying the boundary conditions:  y = 0 at x = 0 and x = L gives  3
2 1

110 and
6

C C wa= = . The deflection 

equation becomes 
 

3 4 4 31 1 113
6 24 24 6

w ay x x a x a a x
EI

⎡ ⎤= − − − + − −⎢ ⎥⎣ ⎦
 

 
 The maximum deflection occurs at the center where x = 2a 
 



 127

4

2
19

8x L
waw
EI= =  

 

 Substituting the given values yields: 
( )33

44 3
9in.

12 12
bhI = = =  

 
( )( )
( )( )

4

max 6

19 8.333 36
0.1231 in.

8 30 10 9
y = =

×
 

 
 
4-16.  Consider the cantilever beam shown in Figure P4.16.  The beam has a square cross-section with 160 mm on a 
side.  Determine the slope at B and the deflection at C.  The material is steel with E = 207 GPa. 
 
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Summing forces and moments gives: 
 

2

   and   
2A A

waR wa M= =  

 
The moment in terms of singularity functions 
is 
 

0 2 2

2 2A A
w wM M x R x x x a= − + − + −  

 
The deflection equation is  

0 2 2

2
0 2 2

2 2

2 2 2

A A
w wEIy M M x R x x x a

wa w wx wa x x x a

′′ = − = − + − −

= − + − −
 

     
 Integrating yields 
 

2
1 2 3 3

1

2
2 3 4 4

1 2

2 2 6 6

4 6 24 24

wa wa w wEIy x x x x a C

wa wa w wEIy x x x x a C x C

′ = − + − − +

= − + − − + +

 

 
The boundary conditions are: At x = 0, 0y′ = which implies that C1 = 0 and at x = 0, y = 0 which implies that C2 = 0.  
Thus we have 
 

2
1 2 3 3

2
2 3 4 4

2 2 6 6

4 6 24 24

wa wa w wEI EIy x x x x a

wa wa w wEIy x x x x a

θ ′= = − + − −

= − + − −
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The slope at B, x = a we have 
3

6B
wa

EI
θ =  

 
( )43 4

6 4160
54.613 10 mm

12 12 12
bh hI = = = = ×  

 
( )

( )( )
3

6

2.4 2400
0.00049 radians

6 207000 54.613 10Bθ = =
×

 

 
Problem 4-16 (continued)    
 
The deflection at A, x = L is  
 

( ) ( ) ( )
2 3

42 3 4 3 41 4 4
4 6 24 24

wa wa w w w way L L L L a a L a L a
EI EI EI

⎡ ⎤
= − + − − = − = −⎢ ⎥

⎣ ⎦
 

 
  and 

( ) ( )
( )( )

3

6

2.4 2400 4 3600 2400
1.467 mm

24 207000 54.613 10
y

−⎡ ⎤⎣ ⎦= =
×
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4-17. A horizontal steel cantilever beam is 10 inches long and has a square cross section that is one-inch on each 
side. If a vertically downward load of 100 pounds is applied at the mid-length of the bem, 5 inched from the fixed 
end, what would be the vertical deflection at the free end if transverse shear is neglected. Use Castigliano’s theorem 
to make your estimate. 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 Apply a dummy load Q at the free end and define the moment for 
sections AB and BC of the beam. 
 

                 ( )
2AB
LM P x Q x L⎛ ⎞= − + −⎜ ⎟

⎝ ⎠
 

                 ( )BCM Q x L= −  
 
 Using Castigliano’s theorem 
 

                           
/ 2

0 / 2

1 L L
BCAB

C AB BC
L

MMUy M dx M dx
Q EI Q Q

⎡ ⎤⎛ ⎞ ⎛ ⎞∂∂∂
= = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦∫ ∫  

 

  From the definitions of ABM  and BCM ,   ( )BCAB MM x L
Q Q

∂∂
= = −

∂ ∂
. Therefore 

 
 

                  ( ) ( ) ( )( )( )
/ 2

0 / 2

1
2

L L

C
L

U Ly P x Q x L x L dx Q x L x L dx
Q EI

⎡ ⎤∂ ⎛ ⎞⎛ ⎞= = − + − − + − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠⎣ ⎦∫ ∫  

 
      Since the dummy load is zero, we set 0Q =  and this reduces to 
 
 
 
 

                  

( )
2/ 2 / 2

2

0 0

/ 23 2 2 3

0

1 3
2 2 2

3 5               
3 4 2 48

L L

C

L

U L P L Ly P x x L dx x x dx
Q EI EI

P x Lx L x PL
EI EI

⎡ ⎤ ⎛ ⎞∂ ⎛ ⎞⎛ ⎞= = − − = − +⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤
= − + =⎢ ⎥

⎣ ⎦

∫ ∫
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      For the beam specified 630 10  psiE = ×  and 3 41(1) /12 0.0833 inI = = . Therefore 
 

                             
3

3
6

5(100)(10) 4.17 10  0.00417 in
48(30 10 )(0.0833)Cy −= ≈ × =

×
 

 
 
 
 
 
 

 
4-18.  a. Using the strain energy expression for torsion in Table 4.7, verify that if a prismatic member has a uniform 

cross section all along its length, and if a constant torque T is applied, the stored strain energy in the bar is 
properly given by (4-61). 
b. Using Castigliano’s method, calculate the angle of twist induced by the applied torque T. 

 
 

----------------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
 

(a) From Table 4.7,  
2

0 2

L TU dx
KG

= ∫ . Since K and G are constants 

 

                                
2

2

0

1
2 2

L T LU T dx
KG KG

= =∫  

 
             Which confirms (4-61) 
 

(b) The angle of twist is given by   U TL
T KG

θ ∂
= =
∂
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4-19.  The steel right-angle support bracket, with leg lengths 1 10 inchesL =  and 2 5 inchesL = , as shown in Figure 
P4.19, is to be used to support the static load 1000 lbP = . The load is to be applied vertically downward at the free 
end of the cylindrical leg, as shown. Both bracket-leg centerlines lie in the same horizontal plane. If the square leg 
has sides 1.25 inchess = , and the cylindrical leg has diameter 1.25 inchesd = , use Castigliano’s theorem to find 
the deflection oy  under the load P. 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
 

Using the model to the right, we note that there is a bending moment in section 
2 and a bending moment plus a torque is section 1.  
 

Section 1:  ( )1M P x= , 1 2T PL=  

Section 2:  ( )2 2M P L z= −  
 
 Applying Castigliano’s theorem 
 

         
2 1 1

2 1 1
2 1 1

0 0 02 2 1 1 1 1

1 1 1L L LM M TUy M dz M dx T dx
P E I P E I P G K P

∂ ∂ ∂∂ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫ ∫ ∫  

 
Noting that ( )2 2/M P L z∂ ∂ = − , 1 /M P x∂ ∂ = , and 1 2/T P L∂ ∂ =  , and substituting into the equation above gives 
 
 

           ( )( )( ) ( ) ( )
2 1 1

2 2 2 2
0 0 02 2 1 1 1 1

1 1 1L L LUy P L z L z dz Px x dx PL L dx
P E I E I G K

∂
= = − − + +
∂ ∫ ∫ ∫  

                         
( )

2 1 12
2 2 2 2
2 2

0 0 02 2 1 1 1 1
3 3 2
2 1 1 1

2 2 1 1 1 1

2

3 3

L L LPLP PL L z z dz x dx dx
E I E I G K
PL PL PL L
E I E I G K

= − + + +

= + +

∫ ∫ ∫
 

 
          Section 1:  6

1 30 10  psiE = × , 3 4
1 (1.25)(1.25) /12 0.2035 inI = = , 6

1 11.5 10  psiG = × , and  
                       4 4

1 (1.25 / 2) (2.25) 0.3433 inK = =  
         Section 2:  6

2 30 10  psiE = × , 4 4
2 (1.25) / 64 0.1198 inI π= =  
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3 3 2

66 6

5 5 5 5

(5) (10) (5) (10)
11.5 10 (0.3433)3 30 10 (0.1198) 3 30 10 (0.2035)

  1.159 10 5.46 10 6.332 10 1000(12.951 10 ) 0.1295

y P

P − − − −

⎡ ⎤
⎢ ⎥= + +

×⎡ ⎤ ⎡ ⎤× ×⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
⎡ ⎤= × + × + × = × =⎣ ⎦

 

 
                                                                                                                                                           0.13"y ≈  
 
 
 
 
 
4-20.  The bevel gear shown in Figure P4.20 carries an axial load of 2.4 kN.  Sketch the bending moment diagram 
for the steel shaft and calculate the deflection due to P in the axial direction using Castigliano’s theorem.  Neglect 
energy stored in the system between the gear and bearing B. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
Summing forces and moments gives: 
 

y
A

y
B
x
B

0.16 384 N m
0.160R 0.2667 640 N
0.600

R 0.2667 640 N

R 2.4kN

M P
M P P
L

P

P

= = ⋅

= = = =

= =

= =  
 
The bending moment diagram is given as 
shown. The deflection due to P using 
Castigliano’s theorem is given as 
 

0

L

P
U PL M M dx
P AE EI P

δ ∂ ∂
= = +
∂ ∂∫  

 
    The axial load and moment are given by 

      2.4kN, 0.2667 , 0.2667y
A

MP M R x Px x
P

∂
= = = =

∂
 

   Therefore, we have 
 

    ( )( )
3 3

0 0

1 0.071129 0.02370.2667 0.2667
3

LL

P
PL PL P x PL PLPx x dx
AE EI AE EI AE EI

δ
⎡ ⎤

= + = + = +⎢ ⎥
⎣ ⎦

∫  

 
   Thus, we have 
 

( ) ( )

( )
( )

( )( )
( )

2 42 4
2 4

33

50 50
1963.5mm , 306796.2mm

4 4 64 64
2400 600 0.0237 2400 6000.0237

1963.5 207000 306796.2 207000
0.00354 0.19346 0.197 mm

P

D DA I

PL PL
AE EI

π ππ π

δ

= = = = = =

= + = +

= + =
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                                                                                                                                     0.197 mmPδ =  
 
 
 
 
 
 
 
 
 
 
 
4-21.  Using Castiligano’s theorem determine the deflection of the steel shaft, shown in Figure P4.21 at the location 
of the gear.  Take E to be 207 GPa. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
  
 
Summing forces and moments gives: 

 

          

0 :      

0 :       

           , and

vert A B

A B

B A

F R R P

M R L aP
aP bPR R
L L

= + =

= =

= =

∑
∑  

 
We have for the shaft the following: 
 

For 0 :

For 0 :

x
x A

z
z B

MPb bx a M R x x x
L P L

MPa az b M R z z z
L P L

∂
≤ ≤ = = =

∂
∂

≤ ≤ = = =
∂

 

 
Castigliano’s theorem gives the deflection at the gear location as 
 

( )

0 0 0 0

2 2 3 2 2 3 2 2
2 2

2 2 2 2 2
0 0

2 2

1 1 1 1

3 3 3

3

a b a b
x z

P x z

a b

M MU Pb b Pa aM dx M dz x x dx z z dz
P EI x EI z EI L L EI L L

Pb Pa Pa b Pa b Pa bx dx z dz a b
EIL EIL EIL EIL EIL

Pa b
EIL

δ
∂ ∂∂ ⎛ ⎞ ⎛ ⎞= = + = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎝ ⎠ ⎝ ⎠

= + = + = +

=

∫ ∫ ∫ ∫

∫ ∫  

 
Substituting the values: L = 800 mm, a = 520 mm, b = 280mm we find 
 

( )

( ) ( )
( )( )( )

44
4

2 22 2

25
19174.76mm

64 64
3200 520 280

7.12mm
3 3 207000 19174.76 800P

DI

Pa b
EIL

ππ

δ

= = =

= = =
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                                                                                                                            7.12mmPδ =  
 
 
 
 
 
 
 
 
 
 
 
4-22. A beam of square cross-section 2 in. x 2 in. is fixed at both ends is subjected to a concentrated load of 2400 lb 
and a uniform load of 400 lb/ft as shown in Figure P4.22.  Determine: 

a. The beam reactions 
b. The deflection at the location of the concentrated load P. 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
  Using the principle of superposition we have 
 

 
 
Case I: 

           
( ) ( )

2

2
2

, ,
2 12

24

I I I I
A B A B

I

wL wLR R M M

wxy x L x
EI

= = = =

= −
 

 
Case II: 
 

( ) ( )

( ) ( )

2 2

3 3

2 2

2 2

2 2

3

3 , 3

,

For 0 3 3
6

II II
A B

I I
A B

II

Pb PaR a b R b a
L L
Pab Pa bM M

L L
Pb xx a y x x a b aL

EIL

= + = +

= =

≤ ≤ = − + −⎡ ⎤⎣ ⎦

 

 
Superposing Cases I and II gives: Using a = L/4 and b = 3/4L 
 
(a)  Beam reactions 



 135

( ) ( )

( ) ( ) ( ) ( )

2 2

3 3

2 2 2 2 2 2

2 2

2 2 2
2

3

27 53           3
2 2 32 2 2 32

9 3              
12 12 64 12 12 64

24 6

I II I II
A A A B B B

I II I II
A A A B B B

I II

wL Pb wL P wL Pa wL PR R R a b R R R b a
L L

wL Pab wL PL wL Pa b wL PLM M M M M M y
L L

wx Pb xy x y x y x L x
EI EIL

= + = + + = + = + = + + = +

= + = + = + = + = + = +

= + = − + ( ) ( ) ( )
2 2

2 93 3 2
24 128
wx Pxx a b aL L x x L

EI EI
+ − = − − −⎡ ⎤⎣ ⎦

 

                                                                                                               ( ) ( ) ( )
2 2

2 9 2
24 128
wx Pxy x L x x L

EI EI
= − − −  

 
 
 
 
Problem 4-22 (continued) 
 
(b)  Deflection at x = L/4 

( ) ( ) ( )

( )( )
( )( )

( )( )
( )( )

3 4 4
4

2 2 4 3
2

4 3

6 6

2 1.333in.
12 12 12

9 3 924 24 128 2048 4096
3 33.333 120 9 2400 120

2048 30 10 1.333 4096 30 10 1.333

0.2531 0.2279 0.481in.

bh hI

wx Px wL PLLy L x x L
EI EI EI EI

= = = =

= − + − = +

= +
× ×

= + =

 

                                                                                                                                    ( ) 0.481in.4
Ly =  
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4-23.  Consider a beam that is supported at the left end and fixed at the right end and subjected to a uniform load of 
4 kN/m as shown in Figure P4.23.  Determine the beam reactions and the maximum deflection of the beam. Take E 
= 200 GPa. 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
 

Since the problem is statically indeterminate take RB as the 
redundant force.  Apply Castigliano’s theorem: 
 

0
2

,
2

L

B
B B

B
B

U M M dx
R EI R

wx MM R x x
R

δ ∂ ∂
= =
∂ ∂

∂
= − =

∂

∫
 

                  
3 32 4 4

0 0

1 1 1
2 3 8 3 8

LL
B B

B B
R x R Lwx wx wLR x x dx

EI EI EI
δ

⎡ ⎤ ⎡ ⎤⎛ ⎞
= − = − = −⎜ ⎟ ⎢ ⎥ ⎢ ⎥

⎝ ⎠ ⎣ ⎦ ⎣ ⎦
∫  

 

Since the beam is supported at B, 0Bδ = , therefore, 3
8B
wLR = . Summing force and moments gives: 

         3 50 :                              
8 8Vert A B A B
wL wLF R R wL R wL R wL= + = = − = − =∑  

        
2 2 2 250 :     0             

2 2 8 2 8B A A A A
wL wL wL wL wLM R L M M R L= − − = = − = − =∑  

 
Using the values, w = 4 kN/m, L = 5 m we find 
 

( ) ( ) ( )( )

( )22

5 4000 5 3 4000 55 312.5kN           7.5kN        
8 8 8 8

4000 5
12.5kN m

8 8

A B

A

wL wLR R

wLM

= = = = = =

= = = ⋅

 

 
The deflection of the beam is given by the following: 
Note: x is now measured from end A.  The deflection equation 
can be written as 
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0 1 2

2A A
wEIy M x R x x′′ = − +  

 
Integrating yields: 

1 2 3 2 3 4
1 1 2   and   

2 6 2 6 24
A A A

A
R M Rw wEIy M x x x C EIy x x x C x C′ = − + + = − + + +  

 
The boundary conditions are: x = 0, 0y′ = and y = 0, this implies that C1 = C2 =0.  Thus, the deflection equation is 
 

 
 
Problem 4-23 (continued) 
 

2
2 3 4 2 3 45

2 6 24 16 48 24
A AM R w wL wL wEIy x x x x x x= − + = − +  

 
Since all the x values will be positive we can write the above equation as 
Problem 4-23 (continued) 
 

2
2 23 5 2

48
wxEIy L Lx x⎡ ⎤= − +⎣ ⎦  

 
The location of the maximum deflection can be found from 
 
 

2 30 6 15 8
48

dy wEI Lx Lx x
dx

⎡ ⎤= = − +⎣ ⎦    or    ( )2 28 15 6 0x x Lx L− + =  

 
The solutions are x = 0, or ( )0.9375 0.3591x L= ± .  The only valid solution is x = 0.5784L.  Thus, the maximum 
deflection is: 
 

( ) ( ) ( )
2 4

2 2 20.33455 0.005423 5 0.5784 2 0.33455           
48

w L wLEIy L L L y
EI

⎡ ⎤= − + ⇒ =⎣ ⎦  

 
The cg and moment of inertia of the cross-section is  
 
 

( )( ) ( )( )
( ) ( )

240 40 20 160 40 260
176mm

160 40 240 60
y

+
= =

+
 

 
( ) ( )( ) ( ) ( )( )

3 3
2 2

6 4

40 240 160 40
240 40 176 120 160 40 260 176

12 12
122.2 10 mm

I = + − + + −

= ×

 

 

   
 

 
 

Thus, the maximum deflection is    
( )( )
( )

4

max 6

0.00542 4 5000
0.5544mm

200000 122.2 10
y = =

×
               max 0.5544mmy =  
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4-24.  Consider a steel beam on three supports subjected to a uniform load of 200 lb/ft as shown in Figure P4.24.  
Determine the maximum deflection and the slope at B. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
Take RA as the redundant force.  Thus, obtain RB and RC in terms 
of RA by summing forces and moments. 
 

2

0 :      3

0 :      3 2
2

Vert A B C

B C A

F R R R wL

LM R L w LR

= + + =

= = − +

∑

∑
 

                             3 92                   3 3
2 2C A B A C A

wLR R wL R wL R R R= − = − − = −  

 
   Apply Castigliano’s theorem using the model shown:  
       
    The deflection at A is given by 
 

2

0 0

L L
BC CBAB AB

A
A A

M MM M dx dz
EI R EI R

δ
∂∂

= +
∂ ∂∫ ∫  

 
   The moments are: 
 

2

2 2

,
2

32 , 2
2 2 2

AB
AB A

A

CB
CB C A

A

MwxM R x x
R
Mwz wLz wzM R z R z z
R

∂
= − =

∂

∂
= − = − − =

∂

 

 
Substituting  
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2 3 2 3
2 2

0 0

23 34 4
3

0 0

3 34 4
4

3 4

1 1 6 24
2 2 2

41 1
3 8 3 4

8 41 16
3 8 3 4

121 13
3 4

L L

A A A

L L

A A

A A

A

wx wLz wzR x dx R z dz
EI EI

R x R zwx wzwLz
EI EI

R L R LwL wLwL
EI

R L wL
EI

δ
⎛ ⎞ ⎛ ⎞

= − + − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − + − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= − + − −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∫ ∫

 

 

Since A is supported 0Aδ = and we find that 13
16AR wL= . Thus, 

9 33 33                            2
2 16 2 8B A C A

wL wLR wL R R R wL= − = = − =  

 
Problem 4-24 (continued) 
 
The deflection of the beam can be found from the following equation using singularity function s 
 

2 2
2A B
wEIy R x x R x L′′ = − + − −  

Integrating yields 

                                        

2 3 2
1

3 4 3
1 2

2
2 6 2

2
6 24 6

A B

A B

R RwEIy x x x L C

R RwEIy x x x L C x C

′ = − + − − +

= − + − − + +
 

or 

                                      

2 3 2
1

3 4 3
1 2

13 33 2
32 6 32

13 33 2
96 24 96

wL w wLEIy x x x L C

wL w wLEIy x x x L C x C

′ = − + − − +

= − + − − + +
 

Apply the boundary conditions 0 at 0,2y x L= = , we find
3

2 1
50 and

24
wLC C= = . Thus, 

 
3

2 3 2

3
3 4 3

13 33 52
32 6 32 24

13 33 52
96 24 96 24

wL w wL wLEIy x x x L

wL w wL wLEIy x x x L x

′ = − + − − +

= − + − − +
 

 
The slope at B (x = 2L) is 

( ) ( )
3 3

2 31 13 52 2
32 6 24 12
wL w wL wLy L L

EI EI
θ

⎡ ⎤
′= = − + + = −⎢ ⎥

⎣ ⎦
 

 
The maximum deflection is found from 
 

( ) ( )
3

2 313 50 3 4 0
96 24 24

dy wL w wLEI x x
dx

= = − + + =     or     3 2 312 26 15 0x Lx L− + =  
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Using Maple gives x = 1.0654L or 4.26 ft, thus, the maximum deflection is given as 
 

( ) ( ) ( )
3 4

3 41 13 5 10.7411.0654 1.0654 1.0654
96 24 24 96
wL w wL wLy L L L

EI EI
⎡ ⎤

= − + + =⎢ ⎥
⎣ ⎦

 

 

Substituting the given values yields: 
3 4 4 4

44 2 20in.
12 12 12 12
bh hI = = = − =  

 
( )

( ) ( )
( )( )

( )( )

33
4

6

44

6

16.667 48
2.56 10 radians

12 12 30 10 20

10.741 16.667 4810.741 0.0165 in.
96 96 30 10 20

B

Max

wL
EI

wLy
EI

θ −= − = − = − ×
×

= = =
×

 

 
                                    4 o2.56 10 radians ( 0.01466 ) , 0.0165 in.B Maxyθ −= − × − =  
 
 
4-25.  The steel shaft shown in Figure P4.25 is fixed at one end and simply supported at the other and carries a 
uniform load of 5 kN/m as shown.  The shaft is 120 mm in diameter.  Determine the equation for the deflection of 
the shaft and the location and magnitude of the maximum deflection. 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The deflection equation for the given loading can be written in 
terms of singularity functions as 
 

0 2

2A A
wEIy R x M x x′′ = − + +  

      Integrating yields 
2 3

1

3 2 4
1 2

2 6

6 2 24

A
A

A A

R wEIy x M x x C

R M wEIy x x x C x C

′ = − + + +

= − + + + +
 

 
  Applying the boundary conditions: 
 

1

2

At 0, 0, 0
At 0, 0, 0

x y C
x y C

′= = ⇒ =
= = ⇒ =

 

 
    Also, we have the condition that at x = L, y = 0, which gives the condition 
 

3 2 4

0
6 2 24
A AR L M L wL

− + + =  

 
     This equation along with the equilibrium of forces and moments, which are given by 
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2

0 :           0

0 :           0
2

Vert A B

A A B

F R R wL

wLM M R L

= + − =

= + − =

∑

∑
 

 
gives three equations which can be solved for RA, RB, and MA.  Thus, 
 

2 2 2 2

5
8

5 3
8 8

3
2 2 8 8

A

B

A B

wLR

wL wLR wL

wL wL wL wLM R L

=

= − =

= − = − =

 

 
The deflection equation now becomes 
 

2
3 2 45

48 16 24
wL wL wEIy x x x= − + +  

 
The maximum deflection occurs at 
Problem 4-25 (continued) 
 

2
2 315 2 4 0

48 16 24
dy wL wL wEI x x x
dx

= − + + =  or  ( )2 215 6 8 0wx Lx L x− − − =  

 
 
Solving this equation for x gives 
 

( )0.9375 0.3590x L= ±    or    0.5785x L=  
 

Thus, the maximum deflection is 
 

( ) ( ) ( )
2 4

4 3 21 5 0.2600.5785 0.5785 0.5785
24 48 16 48Max
w wL wL wLy L L L

EI EI
⎡ ⎤

= − + =⎢ ⎥
⎣ ⎦

 

 
Substituting yields 
 

( )

( )( )
( )( )

44
4

44

120
10178760mm

64 64
0.260 5 50000.260 8mm

48 48 207000 10178760Max

DI

wLy
EI

ππ
= = =

= = =

 

 
 
                                                                                                                          8mmMaxy =  
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4-26.  Consider the beam fixed at one end and simply supported at the other as shown in Figure P4.26. 
 

a. Using Castiglano’s theorem determine the redundant reaction at the simple support. 
b. Assume that P = 4000 lb, L = 10 ft, a = 4 ft, E = 30 x 106 psi and I = 100 in.4.  Using Castigliano’s theorem 

determine the deflection at the location of P. 
 
 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
(a)  Taking RA as the redundant reaction we have for the 
deflection at A: 
 

0

L

A
A A

U M M dx
R EI R

δ ∂ ∂
= =
∂ ∂∫  

 
   The moment is given as: 
 

( )

1
1

2
2

0A
A

A
A

M
M R x x x a

R
M

M R x P x a x a x L
R

∂
= = ≤ ≤

∂
∂

= − − = ≤ ≤
∂

 

    Thus, we have 
 



 143

( )
3 3 3 2

2 2 2

0 0 0

3 3 33 2 3 3

3 3 2 3

1 1 1 1
3 3 3 2

1
3 3 3 2 3 3 2

1
3 3 2 3

LaL L
A A

A A A

a

A A A

A

R x R x x axR x dx R x P x ax dx P
EI EI EI EI

R a R L R aL aL a aP P
EI

R L L aL aP
EI

δ
⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤= + − − = + − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠⎝ ⎠ ⎣ ⎦

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= + − − − − −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞⎪ ⎪= − − +⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

∫ ∫

 

 
    Since L = a + b we have 

( )
3

3 2 31 2 3
3 6
A

A
R L P L aL a

EI
δ

⎧ ⎫
= − − +⎨ ⎬

⎩ ⎭
 

 
    Since 0Aδ = we have 

( )

( ) ( ) ( )

3
3 2 3

23 2 3
3 3

2 3 0
3 6

2 3 2
2 2

A

A

R L P L aL a

P PR L aL a L a L a
L L

− − + =

= − + = − +
 

 
     (b)  The deflection at P is given as 
 

1 2
1 2

0

1 1a L

P
a

M M
M dx M dx

EI P EI P
δ

∂ ∂
= +

∂ ∂∫ ∫  

 
Problem  4-26. (continued) 
   
The moments are given as: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
2 1

1 3 3

2
2 2

2 3 3

2
2 0

2 2
2

2
2 2

L a L a xMPM L a L a x x a
PL L

L a L a xMPM L a L a x P x a x a a x L
PL L

− +∂
= − + = ≤ ≤

∂

− +∂
= − + − − = − − ≤ ≤

∂

 

 

     Let 
( ) ( )2

3

2
2

L a L a
Q

L
− +

= , then 

 
 

( ) ( ) ( )

( )

( ) ( )

0

22 2

0

2 3 2 3 3 2 3
2 2

0

2 3 3 2 3 3 3

1 1

1 1

1
3 3 3 2 3

2 2 3 2
6

a L

P
a

a L

a

La

a

PQx Qx dx PQx P x a Qx x a dx
EI EI

PQ x dx P Qx x a dx
EI EI

PQ x Q x x ax xP Q ax ax
EI

P Q L Q L aL a L a
EI

δ = + − − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= + − −⎡ ⎤⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪= + − − + − +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

⎡ ⎤= − − + + −⎣ ⎦

∫ ∫

∫ ∫
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           Since 
( ) ( )2

3

2
2

L a L a
Q

L
− +

=  

 

( ) ( )2 3 3 3 3 3 32 2 2
6 3P

P PQ L L Q L a L a
EI EI

δ ⎡ ⎤= − + − = −⎣ ⎦  

 
             Substituting gives 
 

        ( ) ( )( )
( )3 3 3 3

6

4000 120 48 0.719 in.
3 3 30 10 100P
P L a
EI

δ = − = − =
×

          0.719 in.Pδ =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4-27.  Determine the force at support B for the steel beam such that the deflection at point B is limited to 5 mm.  The 
cross section is a rectangle with width 30 mm and height 20 mm.   
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
Use the principle of superposition: 
 
 

 
 

 
 
 

3 2 3
1 2

24
way L La a

EI
⎡ ⎤= − +⎣ ⎦  

 

 
 
 
 

 
 
 

2
2 2 2

2
2

6 6
Rbx Rab xy L a b
EIL EIL

⎡ ⎤= − − =⎣ ⎦  
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The total deflection is 1 2y y y= + , or 

2
3 2 3 22

24 6
wa Rab xy L La a

EI EIL
⎡ ⎤= − + −⎣ ⎦  

 
Solving for R yields 
 

3 2 3
2 2

32
8
wL yEILR L La a
b x ab x

⎡ ⎤= − + −⎣ ⎦  

 

We have the following properties 
( )33

430 20
20000mm

12 12
bhI = = = , / 4 2ma L= = , 3 / 4 6mb L= = , 

8m , 5000 N, and 5mm (0.005m)L w y= = =  
 
Thus, 

( )
( ) ( )

( )( )
( )( )( )( )

( ) ( )

3 2 3
2 2

9 8
23 3

2 2

32
8

3 0.020 207 10 8 20 105000 8
8 2 8 2 2

8 6 2 2 6 2
31530 N

wL yEILR L La a
b x ab x

−

⎡ ⎤= − + −⎣ ⎦

× ×
⎡ ⎤= − + −⎣ ⎦

=

 

 
                                                                                                                             31530 NR =  
 
 
 
4-28.  The two span beam shown in Figure P4.28 supports a uniform load of 1000 lb/ft over the central portion of 
the beam.  Determine the various reactions using Castigliano’s theorem. 
 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
Since the beam and loading are symmetric we need only to look at half the 
beam.  In addition we have that RA = RC.  Take RA as the redundant 
reaction, thus we find 
 

2

0

2
L

A
A A

U M M dx
R EI R

δ ∂ ∂
= =
∂ ∂∫  

 
  The moment is 

                
( )2

2A
A

w x a MM R x x
R

− ∂
= − =

∂
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 Thus the deflection is given as 
 

                    

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 22 2
2

0 0

2 3 4 3 223 4 3 2 2

0

2 2

2 2
2 2

2 2 2 2 22 2 2
3 4 3 2 3 4 3 2

2 2 2 2 22 2
3 4 3 2 3

a a

A A A

a

AA

A A

w x a wx x a
R x x dx R x dx

EI EI

R a a a a a aR x x ax a xw w
EI EI

R a a a a R aa ww
EI EI

δ
⎡ ⎤ ⎡ ⎤− −

= − = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − + = − − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟= − − + + −

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫ ∫

2

6
a⎡ ⎤

⎢ ⎥
⎣ ⎦

 

Since the deflection at A is zero, we have, 
4A

waR = .  Summing forces in the vertical direction yields 

 

                              2A B CR R R aw+ + =      3                    
4 2A C B

wa waR R R= = =  

 
Hence 
 

( ) ( )( )1000 12 3 1000 1233000lb                     18,000lb
4 4 2 2A C B

wa waR R R= = = = = = =  

 
3000lb ,  18,000lbA C BR R R= = =  

 
 
 
 
 
 
 
 
4-29.  Consider a steel beam fixed at one end and simply supported at the other carrying a uniformly varying load as 
shown in Figure P4.29.  Determine the moment at the fixed support. 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
  Summing moments about B yields 
 

2

0 :      0
16B A A
wLM R L M= − − =∑  

 
      The differential equation for the deflection is 
 

0 3

6A B
wEIy R x M x x
L

′′ = − −  

    Integrating gives 
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2 4
1

3 2 5
1 2

2 24

6 2 120

A
B

A B

R wEIy x M x x C
L

R M wEIy x x x C x C
L

′ = − − +

= − − + +
 

 
The boundary conditions are:  At x = 0, y = 0y′ = which implies 1 2 0C C= = , thus we have 
 

3 2 5

6 2 120
A BR M wEIy x x x

L
= − −  

 

The third boundary condition is y = 0 at x = L, which gives  
2

0
6 2 120
A AR L M wL

− − =  

 
From the equilibrium equation and the third boundary condition we have 
 

2 2

0                      0
16 6 2 120

A A
A A

R L MwL wLR L M− − = − − =  

and 
29 7,

40 120A A
wL wLR M= =  

 
Summing forces in the vertical direction gives 
 

11                 
2 40A B B

wL wLR R R+ = =  

11 , 
2 40A B B

wL wLR R R+ = =  
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4-30.  An S-hook, as sketched in Figure P4.30, has a circular cross section and is being proposed as a means of 
hanging unitized dumpster bins in a new state-f-the-art dip-style painting process. The maximum weight of a 
dumpster is estimated at be 1.35 kN and two hooks will typically be used to support the weight, equally split 
between two lifting lugs. However, the possibility exists that on some occasions the entire weight may have to be 
supported by a single hook. The proposed hook material is commercially polished AM350 stainless steel in age-
hardened condition (see Table 3.3). Preliminary considerations indicate that yielding is the most likely mode of 
failure. Identify the critical points in the S-hook, determine the maximum stress at each critical point, and predict 
whether the loads can be supported without failure. 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For the AM stainless steel used 1420 MPauS = ,  1193 MPaypS = , and e (50 
mm) = 13%. Since there is a possibility that the entire bucket must be supported 
by one hook, the applied load is 1.35 kNP = . The critical points are shown in 
the figure 
 
Curved beam analysis is appropriate, so we  use (4-116) and examine the stress 
at the inner radius at points A and B using 1.35 kNP = . 
 
Point A: 

                      ( ) A iA
i A

A iA

M c P
e Ar A

σ = +  

 
where 1350(0.025) 33.75 N-mA cAM Pr= = =  
 
Knowing that iA i n ic c r r= = −  and n cr r e= − , determine  e from 
 

                                                   c
Ae r
dA
r

= −

∫
 

where  
2 2

2(7.5) 44.179 mm
4 4

wd
A

π π
= = =  and from Table 4.8, case 4 

 

                  
1/ 22 2

2
2 2 4
w w w

i i
d d ddA r r

r
π
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= + − + −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∫  

 
Determining that 25 7.5 / 2 21.25 mmir = − =  we determine 
 

                    
( ) ( )

( ) ( )

1/ 22
2

1/ 22

7.52 21.25 3.75 21.25 3.75
4

        2 25 25 14.0625 1.777

dA
r

π

π

⎧ ⎫⎡ ⎤⎪ ⎪= + − + −⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤= − − =⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∫
 

 

                        44.17925 0.1384 mm
1.777Ae e= = − =  
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Problem 4-30 (continued) 
 

25 0.1384 24.862 mmn cr r e= − = − =  and   24.862 21.25 3.612 mmiA n ic r r= − = − =  
 
Therefore at point A 
 

                 
( ) ( )( ) 66

33.75(0.003612) 1350
44.179 10(0.0001384) 44.179 10 .02125

         938.2 30.6 969 MPa

A iA
i A

A iA

M c P
e Ar A

σ
−−

= + = +
××

= + =

 

 
Since 969 1193 MPaypS< =  the hook should not yield at A. 
 

 Point B:    ( ) B iB
i B

B iB

M c P
e Ar A

σ = +  

 
 where  1350(0.035) 47.25 N-mB cBM Pr= = = .Since 35 7.5 / 2 31.25 mmir = − =  
 

                      
( ) ( )

( ) ( )

1/ 22
2

1/ 22

7.52 31.25 3.75 31.25 3.75
4

        2 35 35 14.0625 1.2659

dA
r

π

π

⎧ ⎫⎡ ⎤⎪ ⎪= + − + −⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤= − − =⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

∫
 

 

                               44.17935 0.1007 mm
1.2659Be e= = − =  

 
                    35 0.1007 34.9 mmnr = − =  and   34.9 31.25 3.65 mmiB n ic r r= − = − =  
Therefore at point B 
 

                 
( ) ( )( ) 66

47.25(0.00365) 1350
44.179 10(0.0001007) 44.179 10 .03125

         1240 30.6 1271 MPa

B iB
i B

B iB

M c P
e Ar A

σ
−−

= + = +
××

= + =

 

 
 
Since 1271 1193 MPaypS> =  the hook is expected to yield at B. 
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4-31. The support (shackle) at one end of a symmetric leaf spring is depicted in Figure P4.31. The cross section at A-
B is rectangular, with dimensions of 38 mm by 25 mm thickness in andout of the paper. The total vertical force at 
the center of the leaf spring is 18 kN up on the spring. 
       a.  Find the maximum stress at the critical point in the support. 
       b. Would it be reasonable to select ASTM A-48 (class 50) gray cast iron as a potential material candidate for the 

support? (See Table 3.5 for properties). 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 (a) Link CD is a two-force member and, since an 18 kN force is applied at the center of the 
leaf spring, each support will react a 9 kN force. The force at point C will be as shown. The 
horizontal force at C will be 
 
                                    9 tan(22.5) 3.73 kNhP = =  
 
Three stress components exist at points A and B, which result from (a) direct stress due to 

vP , (b) bending stress due to ( )v v vM M P a= − = − , and (c) bending stress due to 

h h hM M P a= = . 
 
 Point A:  ( ) /

v
A vP P Aσ = − , where 4 20.025(0.038) 9.5 10  mA −= = × . Therefore 

 

                                            ( )
3

4
9 10 9.47 MPa

9.5 10v
A Pσ

−

×
= − = −

×
 

 

                           ( )
v

v iA
A M

i

M c
eAr

σ = − , where ( )39 10 0.025 0.038 0.019 738 N-mvM− = − × + + = −  

               
                                           ( )iA n i c ic r r r e r= − = − −  

                        ( ) 0.00950.076 0.019 .057 0.0549 0.00209
0.0760.025ln
0.038

c
Ae r
dA
r

= − = − − = − =
⎛ ⎞
⎜ ⎟
⎝ ⎠∫

 

                             
                                   ( )0.057 0.00209 0.038 0.01691iAc = − − =  
 

                                  ( ) 738(0.01691) 165.4 MPa
(0.00209)(0.00095)(0.038)v

A Mσ = − = −  

 
The bending stress due to hM is 
 

                                  ( )
h

h iA
A M

i

M c
eAr

σ =  where 3730(0.057) 212.6 N-mhM = =  

 

                                  ( ) 212.6(0.01691) 47.6 MPa
(0.00209)(0.00095)(0.038)h

A Mσ = =  

 
 
Problem 4-31 (continued) 
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                ( ) ( ) ( ) 9.47 165.4 47.6 122.3 MPa

v v h
A A A AP M Mσ σ σ σ= + + = − − + = −  

                                                                                                                                              122.3 MPaAσ = −  
 
 
Point B: ( ) 9.47 MPa

v
B Pσ = −  

 

                                 ( )
v

v oB
B M

o

M c
eAr

σ = −  where ( )0.076 0.057 0.00209 0.02109oB o nc r r= − = − − =  

 

                                 ( ) 738(0.02109) 103.2 MPa
(0.00209)(0.00095)(0.076)v

B Mσ = − =  

 

                                ( )
0

212.6(0.02109) 29.7 MPa
(0.00209)(0.00095)(0.076)h

h oB
B M

M c
eAr

σ = − = − = −  

 
                                    ( ) ( ) ( ) 9.47 103.2 29.7 64.0 MPa

v v h
B B B BP M Mσ σ σ σ= + + = − + − =  

                                                                                                                                                     64.0 MPaBσ =  
 
                    If the material properties are the same in tension and compression, point A is critical 
 
 
  (b)  From Table 3.3 for ASTM A-48 gray cast iron ( ) 345 MPau tensS =   
 
                              345 /123.3 2.8An = ≈             345 / 64 5.4Bn = ≈  
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4-32. A 13 kN hydraulic press for removing and reinstalling bearings in small to medium size electric motors is to 
consist of a commercially available cylinder mounted vertically in a C-frame, with dimensions as sketched in Figure 
P4.32. It is being proposed to use ASTM A-48 (Class 50) gray cast iron for the C-frame material. Prdict whether the 
C-frame can support the maximum load without failure. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
 From case 5 of Table 4.3 
 

            1
1 2

1
ln lni o

i i

r h rdA b b
r r r h

+
= +

+∫  

 

        38 10 6625ln 10ln 9.025
38 38 10
+

= + =
+

 

 

         250(43) 180(57) 48.86 mm
250 180cr r +

= = =
+

 

 

          2250 180 430 mmA = + = , 43048.86 1.2146 mm
9.025

e = − =  

 
         ( )313 10 48.86 90 1805 kN-mm 1.805 kN-mM = × + = =  
 
          48.86 1.2146 47.645 mmn cr r e= − = − =  and   47.645 38 9.645 mmi n ic r r= − = − =  
 

         
( )( )6

1805(0.009645) 877 MPa
(0.0012146) 430 10 0.038

i
i

i

Mc
eAr

σ
−

= = =
×

 

 
        For Class 50 gray cast iron the probable failure mode is brittle fracture. Knowing that 345 MPauS =  we see 

that 877 345 MPauS> = . Therefore the maximum load of 13 kN will cause failure. 
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4-33. Consider the thin curved element shown in Figure P4.33.  Determine the horizontal displacement of the curved 
beam at location A.  The cross section is square being 5mm x 5mm.  Use E = 200 GPa. 
 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 Look at a free body diagram: Since we want the horizontal deflection at A the fictitious force Q has been added.  
The horizontal deflection using Castigliano’s theorem is given as 
 

2

00
A

Q

U M M R d
Q EI Q

π

δ θ
=

∂ ∂
= =
∂ ∂∫  

 

      The moment equation is ( )1 cos sin ,M PR Qθ θ= − − and sinM
Q

θ∂
= −

∂
. Therefore 

( ) ( ) ( )( )
2 3

2

0

1 1 cos sin sin cos 1 sin sinA
PRPR Q R R d Q

EI EI

π

δ θ θ θ θ θ θ θ= − − − = − +⎡ ⎤⎣ ⎦∫
2

0

23 3
2

0

1 sin cos
2 2

d

PR PR
EI EI

π

π

θ

θ θ

⎡ ⎤
⎣ ⎦

⎡ ⎤= + =⎢ ⎥⎣ ⎦

∫
 

 

      Since
3 4 4

45 52.1mm
12 12 12
bh hI = = = =  , the horizontal deflection at A is 

 
( )

( )( )

33 300 100
14.4 mm

2 2 200000 52.1A
PR

EI
δ = = =  
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4-34.      A snap-ring type of leaf spring is shown in Figure P4.34. Determine the following: 

a. The bending moment equation at location B. 
b. The total amount of deflection (change in distance AD) caused by the loads acting at the ends using 

Castigliano’s second theorem.  Take R = 1 in., the width b = 0.4 in., h = 0.2 in., E = 30 x 106 psi, P = 10 
lb, and 0 10φ = o . 

c. Plot the deflection as a function of 0φ  from 0φ = 1º to αo = 45º 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
At location B we have The free body diagram shown 
 

(a) Considering bending only gives 
   

( )0cos cosM PR φ θ= −  
 
       (b)  Applying Castigliano’s theorem gives 
 

      ( )
0

02 and cos cosAD
M M MR d R
EI P P

π

φ

δ θ φ θ∂ ∂
= = −

∂ ∂∫  

 
        Substituting yields 
 

( )

( )

( )

( ) ( )

0

0

0

0

22
0

3
2 2

0 0

3
2

0 0

3
2

0 0 0 0 0 0

3

2

2 cos cos

2 cos 2cos cos cos

2 1 1cos 2cos sin sin 2
2 2

2 1 1cos 2cos sin sin 2
2 2

AD

AD

M M R d
EI P

PR R d
EI

PR d
EI

PR
EI

PR
EI

PR
EI

π

φ

π

φ

π

φ

π

φ

δ θ

δ φ θ θ

φ φ θ θ θ

φ θ φ θ θ θ

φ π φ φ φ π φ φ

π

∂
=

∂

= −

= − +

⎧ ⎫⎛ ⎞= − + +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞= − − − + − −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

=

∫

∫

∫

( )( ){ }2
0 0 01 2cos 1.5sin 2φ φ φ− + +

 

 
         Substituting the numerical values given yields 
 

( )( )
( ) ( ) ( )

3
2

6 4

2 10 1 10 1 2cos 10 1.5sin 2 10
18030 10 2.667 10

     0.0205 in.

AD
πδ π

−

⎧ ⎫⎛ ⎞= − + +⎨ ⎬⎜ ⎟× × ⎝ ⎠⎩ ⎭

=

o o

 

 
         
 
 
Problem 4-34. (continued) 
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  (c)  To plot the equation from (b) form the following 
 

( )( ){ }2
0 0 03 1 2cos 1.5sin 2AD EI

PR
δ

π φ φ φ= − + +  

 

                   Now we can plot ( )( ){ }2
0 0 03 verses 1 2cos 1.5sin 2AD EI

PR
δ

π φ φ φ− + +  

 
 

0 5 10 15 20 25 30 35 40 45
6
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7.5

8
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9

9.5

φ0(Degrees)

E
I δ

AD
/P

R
3
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4-35.  Your group manager tells you that she has heard that a sphere of AISI 1020 (HR) steel will produce plastic 
flow in the region of contact  due to its own weight if placed on a flat plate of the same material. Determine whether 
the allegation may be true, and, if true, under what circumstances. Use SI material properties to make your 
determination. 
 
 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 From the appropriate tables we note that 379 MPauS = , 207 MPaypS = , 376.81 kN/mw = ,  207 GPaE = , 

0.30ν = , and ( )50 mm 15%e = . The failure mode of interest is yielding.  Since ( )50 mm 15%e = , the material is 
considered ductile. Since the state of stress at the contact point is tri-axial, the D.E. theory of failure will be used. 
Therefore 
 
 

                     FIPTOI   ( ) ( ) ( )2 2 2 2
1 2 2 3 3 1

1
2 ypSσ σ σ σ σ σ⎡ ⎤− + − + − ≥⎢ ⎥⎣ ⎦

 

 
  The principal stresses are given by (4-66) and (4-67). At the contact surface 0z = , so 
 

                    ( ) [ ]1 2 max max max
11 1.3 0.5 0.8
2

p p pσ σ ν⎡ ⎤= = − + − = − − = −⎢ ⎥⎣ ⎦
 and  3 maxpσ = −  

 

            FIPTOI   ( ) ( ) ( )2 2 2 2 2 2 2
max max

1 0.8 0.8 0.8 1 1 0.8 0.040
2 yp ypp S p S⎡ ⎤− + + − + + − + ≥ → ≥⎢ ⎥⎣ ⎦

 

 

   From (4-65) max 2
3

2
Fp
aπ

= ,  where  ( )
3 34

3 2 6
s s

sphere sphere
d d w

F W V w w
π

π ⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

 
The radius of the circular contact area, a, is given by (4-64). Since the material is the same for both the sphere and 
the plate and the radius of curvature of the plate is infinite; 1 2E E E= = , 1 2ν ν ν= = , 1 sd d= , and 2d = ∞ . 
Therefore (4-64) reduces to 
 
 

                
( ) ( ) ( )

32
2

2 4 2
3

3 3
3

1 3 13 (2) 3 1 16

4 4 818 0

s
s

s s

s

d wdF d F d wE
a

E E E
d

πν νν π ν
⎛ ⎞⎛ ⎞− − ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠= = = =

⎛ ⎞
+⎜ ⎟

⎝ ⎠

 

 
Using the material properties for 1020 (HR) steel 
 

                         
( )4 3 2

3 4/33
9

(76.81 10 ) 1 0.3
5.099 10

8(207 10 )
s

s

d
a d

π
−

× −
== = ×

×
 

 

                         
3 3 3

3 3(76.81 10 )
40.22 10

6 6
s s

s
d w d

F d
π π ×

= = = ×  

 
Problem 4-35. (continue) 
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( )
( )

( )
3 3 1

6 3max 2 23 4/3

3 40.22 103 738.6 10
2 2 5.099 10

s
s

s

dFp d
a dπ π −

×
= = = ×

×
 

 
Therefore,  
 

  FIPTOI   ( ) ( ) ( )
22 22 2 6 63max0.040 0.040 738.6 10 379 10yp sp S d≥ → × ≥ ×  

                                                                 
( )
( )

3/ 226

26

379 10
16.88 m

0.040 738.6 10
sd

⎡ ⎤×⎢ ⎥≥ =⎢ ⎥
×⎢ ⎥⎣ ⎦

 

 
The allegation is true for a very large sphere ( 16.88 msd ≥ ), but for all practical purposes it is not true. 
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4-36.  Two mating spur gears (see Chapter 15) are 25 mm wide and the tooth profiles have radii of curvature at the 
line of contact of 12 mm and 16 mm, respectively. If the transmitted force between them is 180 N, estimate the 
following: 

a. The width of the contact zone. 
b. The maximum contact pressure 
c. The maximum subsurface shearing stress and its distance below the surface. 

 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 (a) Two spur gears in contact may be approximated as two cylinders in contact, so the contact width can be 
approximate  from (4-69), noting that 1 2E E E= = , and 1 2ν ν ν= = . 
 

           
2 2

5

9 3
3 3

1 2

4 (1 ) 4(180)(1 0.3 ) 1.66 10
1 11 1 (207 10 )(25 10 )

12 10 16 10

Fb
EL

d d

ν

ππ

−

−
− −

− −
= = = ×

⎛ ⎞ ⎛ ⎞× × ++ ⎜ ⎟⎜ ⎟ × ×⎝ ⎠⎝ ⎠

 

 
                                                                                                         0.017 mmb ≈  

(b) From (4-70) 
( )

max 5 3

2 180
276 MPa

(1.66 10 )(25 10 )
p

π − −
= =

× ×
 

 
 (c)  From Fig 4.17 1max max0.3 0.3(276) 82.8 MPapτ ≈ = =  and it occurs at a distance below the surface of 
                                           
                                                    0.8 0.8(0.017) 0.014 mmd b= = =  
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4-37.  The preliminary sketch for a device to measure the axial displacement (normal approach) associated with a 
sphere sandwiched between two flat plates is shown in Figure P4.37. The material to be used for both the sphere and 
the plates is AISI 4340 steel, heat treated to a hardness of 56cR  (see Tables 3.3, 3.9, and 3.13). Three sphere 
diameters are of interest: 0.500 inchsd = , 1.000 inchsd = , and 1.500 inchssd = . 

a. To help in selecting a micrometer with appropriate measurement sensitivity and range, estimate the range of 
normal approach for each sphere size, corresponding to a sequence of loads from 0 to 3000 pounds, in 
increments of 500 pounds. 
b. Plot the results. 
c. Would you classify these force-deflection curves as linear, stiffening, or softening? (See Figure 4.21). 

 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
From the figure we note that the total displacement is the sum of the displacements s∆  defined by (4-77) for two 
contact sites between the sphere and the two planar plates. Therefore 

 

                                     
22 2

2 1 23

1 2

1 112 2(1.04) 0total s
s

F
d E E

ν ν⎡ ⎤⎛ ⎞ − −
∆ = ∆ = + +⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠ ⎣ ⎦
 

 
With 6

1 2 30 10E E= = ×  and 1 2 0.30ν ν= = , this becomes 
 

                               
22 2 2

53 3
6

4 1 0.302 2(1.04) 3.21 10
30 10total s

s s

F F
d d

−⎡ ⎤−
∆ = ∆ = = ×⎢ ⎥

×⎢ ⎥⎣ ⎦
 

 
Using 0.500,1.00,  and 1.500sd =  and letting F vary between 0 and 3000 in 500 lb increments, the plot below can 
be generated. They represent stiffening 
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4-38.  Consider two cylinders of length 250 mm in contact under a load P as shown in Figure P 4.38.  If the 
allowable contact stress is 200 MPa, determine the maximum load P that can be applied to the cylinders.  Take r1 = 
200 mm, r2 = 300 mm, E = 200 GPa, and ν = 0.25. 
 
-------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Since the cylinders have the same material properties, Equation (4-124) becomes 
 

( )( )
( )

2
1 2

1 2

2 1F r r
b

EL r r

ν

π

−
=

+
 

            Since 

max
2

allow
Fp
bL

σ
π

= =  

          we have 
( )( )

( )

22
1 22

1 2

2 1 2

allow

F r r Fb
EL r r L

ν

π π σ

− ⎛ ⎞
= = ⎜ ⎟+ ⎝ ⎠

 

          Thus, 
 

 

( )
( )

22
1 2

1 2

1

2
allow

r rL
F

E r r

νπ σ ⎡ ⎤−
⎢ ⎥=

+⎢ ⎥⎣ ⎦
 

 
                Substituting yields 
 

( ) ( ) ( ) ( )
( )

2 2200 300 1 0.25250 200
8.84 kN

2 200000 200 300
F

π ⎡ ⎤−
⎢ ⎥= =

+⎢ ⎥⎣ ⎦
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4-39.  It is being proposed to use a single small gas turbine power plant to drive two propellers in a preliminary 
concept for a small vertical-take-off-and-landing (VSTOL) aircraft. The power plant is to be connected to the 
propellers through a “branched” system of shafts and gears, as shown in Figure P4.39. One of many concerns about 
such a system is that rotational vibrations between and among the propeller masses and the gas turbine mass may 
build up their vibrational amplitudes to cause high stresses and/or deflections that might lead to failure. 

a. Identify the system elements (shafts, gears, etc.) that might be important “springs” in analyzing this rotational 
mass-spring system. Do not include the gas turbine of the propellers themselves. 
b. For each element identified in (a), list the types od springs (torsional, bending, etc.) that might have to be 
analyzed to determine vibrational behavior of the rotational vibrating system. 

 
 
-------------------------------------------------------------------------------------------------------------------- 
Solution 
 
They types of springs are identified below 
 

System Element  Types of springs to be analyzed 
Turbine output drive shaft  Torsion 
Branched speed reducer  Bending (gear teeth) 

Hertz contact (gear tooth contacts; bearings) 
Torsion springs (gear shafts) 

Branch shaft (left & right)  Torsion springs 
Right-angle gear boxes  (left & right)  Bending springs (gear teeth) 

Hertz contact (gear tooth contacts; bearings) 
Torsion springs (gear shafts) 

Drive box shafts  (left & right)  Torsion springs 
Drive gear boxes  (left & right)  Bending springs (gear teeth) 

Hertz contact (gear tooth contacts; bearings) 
Torsion springs (gear shafts) 

Propeller drive shafts  (left & right)  Torsion springs 
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4-40.  a. A steel horizontal cantilever beam having the dimensions shown in Figure P4.40(a) is to be subjected to a 

vertical end-load of 100 lbF = . Calculate the spring rate of the cantilever beam referred to its free end (i.e. at 
the point of load application). What vertical deflection at the end of the beam would you predict? 
b. The helical coil spring shown in Figure P4.40(b) has been found to have a linear spring rate of 

300 lb/in.spk =  If an axial load of 100 lbF =  is applied to the spring, what axial (vertical) deflection would 
you predict? 
c. In Figure P4.40(c), the helical coil spring of (b) is placed under the end of the cantilever beam of (a) with 
no clearance of interference between them, so that the centerline of the coil spring coincides with the end of 
the cantilever beam. When a vertical load of 100 lbF =  is applied at the end of the beam, calculate the spring 
rate of the combined beam (i.e. at the point of load application). What vertical deflection of the end of the 
beam would you predict?  
d. What portion of the 100-lb force F is carried by the cantilever beam, and what portion is carried by the 
spring? 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 

(a)  From case 8 of Table 4.1   

3
6

3 3

2(0.5)3(30 10 )
123 457.8 lb/in

(16)
cb

cb
cb

F EIk
y L

⎡ ⎤
× ⎢ ⎥

⎣ ⎦= = = =  

                                        

                                                   
3 3

3
6

(100)(16) 0.2185 in
3 2(0.5)3(30 10 )

12

cb
cb

F L
y

EI
= = =

⎡ ⎤
× ⎢ ⎥

⎣ ⎦

 

 

(b)   100 0.333 in
300

cb
cb

cb

Fy
k

= = =  

 

(c)   Spring are in parallel, so   457.8 300 757.8 lb/inc cb spk k k= + = + = , 100 0.132in
757.8

c
c

c

Fy
k

= = =  

 
 (d)  Since springs are in parallel  c cb spy y y= = . In addition 100 lbc cb spF F F= + =  
 
                                 100 100cb c sp sp sp cF F F F k y= − = − = −  
                                 100 300(0.132) 100 39.6 60.4 lbcbF = − = − =  
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4-41.  To help assess the influence of bearing stiffness on lateral vibration behavior of a rolling steel shaft with a 
100-lb steel flywheel mounted at midspan, you are asked to make the following estimates: 

a. Using the configuration and the dimensions shown in Figure P4.41(a), calculate the static midspan deflection 
and spring rate, assuming that the bearing are infinitely stiff radially (therefore they have no vertical deflection 
under load), but support no moment (hence the shaft is simply supported). 
b.  Using the actual force-deflection bearing data shown in Figure P4.41(b) (supplied by the bearing 
manufacturer), calculate the static midspan spring rate for the shaft bearing system. 
c. Estimate the percent change in system stiffness attributable to the bearings, as compared to system stiffness 
calculated by ignoring the bearings. Would you consider this to be a significant change? 

 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
(a) Assuming the bearings have infinite stiffness (no vertical deflection under load), all deflection at mid-span is due 
to shaft bending, so from case 1 of Table 4.1 
 

                                 
3 3

4
4

6

(1000)(6) 6.04 10  in
48 (1.5)48(30 10 )

64

disk
sh

W L
y

EI π
−= = ≈ ×

⎡ ⎤
× ⎢ ⎥

⎣ ⎦

 

                                  6
4

1000 1.657 10  in
6.04 10

disk
sh

sh

Wk
y −= = ≈ ×

×
 

 
(b) Using the force-deflection curve for a single bearing given in the problem statement, and noting that for a 

symmetric mounting geometry the 1000 lb disk weight is evenly distributed by each bearing (500 lb each), 
each bearing deflects vertically by 

 
                                         43.00 10  inby −= ×  
 
               The total system deflection is 
 
                                ( ) 4 46.04 3.00 10 9.04 10  insys sh by y y − −= + = + × = ×  
 
              The system spring rate is 
 

                              6
4

1000 1.106 10  in
9.04 10

disk
sys

sys

Wk
y −= = ≈ ×

×
 

 
    [ Note that the non-linear force-deflection curve for the bearings has been treated as linear. For 

small vibration amplitudes about the 49.04 10  in−× deflection operating point, this procedure 
gives reasonable results. However, in general, when non-linear springs are used is a system, 
caution must be exerciosed with predicting system stiffness] 

 
(c) Using 61.657 10  inshk = ×  and 49.04 10  insysy −= × , the percent change in the calculated value 

of the system stiffness when bearing compliance (stiffness) is included, as compared to the 
system stiffness calculated by ignoring the bearings is estimated as 

 

                             1.657 1.106 0.3325 33%
1.657
−⎛ ⎞∆ = = ≈⎜ ⎟

⎝ ⎠
 - this is significant 
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4-42. For the system shown in Figure P 4.42, determine the deflection for a load of 10 kN.  The beam has a length L 
of 600 mm and a rectangular cross-section with a width of 20 mm and height 40 mm.  The column has a length l of 
450 mm and a diameter of 40 mm.  Take E = 200 GPa for both. 
 
 
---------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For a beam fixed at its ends we know that the maximum deflection occurs at the mid span and is given by 
 

3
/ 2 /192Ly PL EI=  

 
The stiffness is then given by 3/ 192 /bk P y EL L= = .The stiffness of the column is given by /ck EA L=  
 

Thus we have   ( )2
640

200000 251.327 10 N
4cEA

π⎛ ⎞
⎜ ⎟= = ×
⎜ ⎟
⎝ ⎠

 

                    ( )3
10 220 40

200000 2.1333 10 N-mm
12bEI

⎛ ⎞
⎜ ⎟= = ×
⎜ ⎟
⎝ ⎠

 

 

The stiffness of the beam and column are  
( )
( )

10

3

192 2.1333 10
18962.67 N/mm

600
bk

×
= =  

                  
6251.327 10 558504.44 N/mm

450ck ×
= =  

 
The column and lower beam are in series (they have the same force acting on them), the stiffness is then given as 
 

51 1 1 1 1 5.45256 10
18962.67 558504.44

18339.98 N/mm
c b b c

c b

k k k
k

−

+

+

= + = + = ×

=
 

 
Now, notice that the top beam is in parallel with 
the column plus the lower beam (they have the same 
deflection) 
 
 

        18962.67 18339.98
                   37302.65 N/mm

b b ck k k += + = +
=

 

 
           Thus, the deflection is given as 
 

5000 0.134 mm
37302.65

P
k

δ = = =
10000 0.268 mm

37302.65
P
k

δ = = =  
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4-43. A notched rectangular bar is 1.15 inches wide, 0.50 inch thick, and is symmetrically notched on 
both sides by semicircular notches with radii of 0.075 inch.r =  The bar is made of a ductile steel with 
yield strength of 50,000 psiypS = . Sketch the stress distribution across the minimum section for each of 
the following circumstances, assuming elastic-perfectly plastic behavior. 

a. A tensile load of 10,000 lbaP = is applied to the bar. 
b. The 10,000-lb tensile load is released. 
c. A tensile load of 20,000 lbaP = is applied to a new bar of the same type. 
d. The 20,000-lb load is released 
e. A tensile load of 30,000 lbaP =  is applied to another new bar of the same type. 
f. Would the same or different results be obtained if the same bar were used for all three loads in 
sequence? 

 
---------------------------------------------------------------------------------------------------------------------- 
Solution 
 

 (a) 10,0002.5 2.5 50 ksi
1.0(0.5)act aveσ σ
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

.  

                 Therefore, at the root of the notch  
50 ksiact ypSσ = = and the stress 

distribution shown results 
 
 
 
(b) There is no local yielding in (a), so no residual stresses 
remain when the load is released. 
 
 
(c) For a tensile load of  20 kipcP P= = and    

20,0002.5 2.5 100 ksi
1.0(0.5)act aveσ σ
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

 
At the root of the notch  100 ksi 50 ksiact ypSσ = > =  and plastic flow occurs locally at the notch root. 
The stresses may be sketched as shown 
 

 
 
 
(d) Because of local plastic flow, when the  load 
in (c)  is released, The elastic core material pulls 
the plastically deformed notch root material into a 
state of compression. The resulting residual 
stresses may be sketched as shown. 
Problem 4-43 (continued) 
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(e)  For a tensile load of  30 kipeP P= =  
 

                   30,000 60 ksi
1.0(0.5)aveσ = =      30,0002.5 2.5 150 ksi

1.0(0.5)act aveσ σ
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

 
In this case both aveσ  and actσ  exceed ypS . Therefore the entire cross section goes into the plastic flow 
regime, and because of the assumed elastic-perfectly plastic behavior, the bar flows unstably into 
separation by ductile rupture. 
 
 
(f)  If the same bar were used for all three loads, the following observation could be made; 

 
(1) Applying and releasing aP  would leave the bar unstressed as shown in part (b). 
(2) Next, applying and releasing cP  would leave the same residual stresses pattern shown in 

part (d). 
(3) Finally, the process of applying eP  to the bar containing the residual stresses of part (d), the 

transitional stress pattern as eP  is increased form zero would differ from the transitional 
pattern in a new bar (because of built-in residual stresses) but because the average stress 
exceeds  ypS , all residual stresses would be overpowered by plastic flow of the entire cross 
section. 

 
 The conclusion is that the same results would be obtained. 
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4-44. An initially straight and stress-free beam is 5.0 cm high and 2.5 cm wide. The beam is made of a 
ductile aluminum material with yield strength of 275 MPaypS = . 

a. What applied moment is required to cause yielding to a depth of 10.0 mm if the material behaves 
as if it were elastic-perfectly plastic? 
b. Determine the residual stress pattern across the beam when the applied moment of (a) is released. 

 
---------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a)  Following Example 4-18 we find that ( ) 10p

a d
M

=
 required to 

produce yielding to a depth of  10 mmpd = .  Since 
275 MPaypS = , we can determine the plastic ( pF ) and elastic 

( eF ) forces to be 
 
        6275 10 (0.010)(0.025) 68.75 kNpF = × =  

        ( )61 275 10 (0.025 0.010)(0.025) 51.56 kN
2pF = × − =  

 
 By satisfying moment equilibrium 
 

( ) ( ) ( )3 3
10

0.01 2 0.012 68.75 10 0.025 51.56 10 0.025 4.125 kN-m
2 3 2p

a d
M

=

⎡ ⎤⎛ ⎞ ⎛ ⎞= × − + × − ≈⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 

 
 
(b) Applying ( ) 10

4.125 kN-m
p

a d
M

=
=  results in 

the stress distribution shown.  Application of a 
moment equal to  ( ) 10

4.125 kN-m
p

a d
M

=
− = −  

and assuming elastic behavior, we obtain a virtual 
stress distribution, which is defined by 
 

      
( ) ( )10 10

max 2

( ) 6
p p

a ad d
e

M c M

I bd
σ = =

− = − = −  

 

               ( )3

2

6 4.125 10
396 MPa

(0.025)(0.050)

×
= − = −  

 
This gives the stress distribution to the right. 
Combining the two distributions results in the stress 
distribution shown below. 
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Problem 4-44 (continued) 
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Chapter 5 
 
 
 
5-1.  As shown in Figure P5.1, abeam of solid rectangular cross section is fixed at one end, subjected to a 
downward vertical load (along the z-axis) of  8000 lbV =  at the free end, and at the same time subjected to a 
horizontal load (along the y-axis) to the right, looking directly at the free end of the beam, of 3000 lbH = . 
For the beam dimensions shown, do the following: 

a. Identify the precise location of the most serious critical point for this beam. Explain your logic clearly. 
b. Calculate the maximum stress at the critical point. 
c. Predict whether failure by yielding should be expected if the beam is made of AISI 1020 annealed 
carbon steel. 

 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
 (a) Superposition is used. Both the vertical and horizontal forces at the free end produce maximum moments 
at the fixed end. The maximum tensile stresses due to the vertical and 
horizontal forces ( ( )t V

σ  and ( )t H
σ , respectively) occur along the sides 

indicated in the figure.  As a result, the maximum stress is at the 
intersection of the two lines (at the upper left hand corned). 
 
(b) The normal stresses due to the vertical and horizontal forces are 
 

                ( ) [ ]
3

8000(80) (3.5)
26.122 ksi

3(7) /12
y z

t V
y

M c
I

σ = = =  

                ( ) [ ]
3

3000(80) (1.5)
22.857 ksi

7(3) /12
z y

t H
z

M c
I

σ = = =  

 
 
By superposition 
 
                       ( ) ( ) ( )max . .

26.122 + 22.857 48.979 ksit tc p V H
σ σ σ= + = =  

 
(c)  From Table 3.3, the yield stress is 43 ksiypS = . For this uniaxial state of stress 
 
                         ( )max . . 48.979 ksi 43 ksiypc p Sσ = > =  

                  
               Failure by yielding would be expected. 
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5-2. A rectangular block shown in Figure P.5.2 is free on its upper end and fixed at its base.  The rectangular 
block is subjected to a concentric compressive force of 200 kN together with a moment of 5.0  kN-m as 
shown. 

a. Identify the location of the most critical point on the rectangular block.   
b. Determine  the maximum  stress  at  the  critical  point  and  determine  if  yielding will  take 

place.  The material is AISI 1060 (HR) steel. 

------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
The tensile force P produces a tensile stress that is uniform over the 
entire surface of the rectangular block.  This tensile stress is 

( )
200000 160 MPa
25 50z

P
A

σ = = =  

The moment M Produces a tensile stress on the right hand side of the 
rectangular block and the maximum value occurs at the edge where x 
= 25 mm.  The maximum bending stress is  
 

( )

( )( )3

5000 .025
480 MPa

1 0.025 .050
12

z
Mc
I

σ ′ = = =  

The total resultant tensile stress is ( )z zσ σ ′+ at the edge of the 
rectangular block x = 25 cm is 
 

max 160 480 640 MPaσ = + =  
 
Yielding will occur if max ypSσ ≤ , where Syp = 372 MPa.  Since maxσ is 
greater than Syp yielding will take place. 
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5-3.  Consider the bent circular rod shown in Figure P5.3.  The rod is loaded as shown with a transverse load 
P of 1000  lb.  Determine the diameter d in order to limit the tensile stress to 15,000 psi. 

 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
 A free body diagram of the circular bent rod is as shown. The axial 
stress due to the load P is 
 

( )
2 2 2

4 10004 1273
A

P P
A d d d

σ
π π

= = = =  

 
The bending stress is given as 
 

( ) ( )
4 3 3 3

2 32 400032 40744
64B

M dMc M
I d d d d

σ
π π π

= = = = =  

 
The maximum stress is 

max 2 3

1273 40744
A B d d

σ σ σ= + = +  

 
Since the maximum allowed stress is 15,000 psi we find 

 
315000 1273 40744d d− =  

 
Solving the above equation using Maple or Matlab yields 

 
d = 1.42 inches 
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5.4 Consider the cylindrical bent shown in Figure P5.4. 
 

a. Determine the maximum bending stress at point A. 
b. Calculate the following stresses at point B: 

i. Torsional shear 
ii. Direct shear 

 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
At location A the torsion acting on the rod is ( )0.200 0.200 700 140 N-mT P= = =  and the moment is 

( )0.325 0.325 700 227.5 N-mM P= = = .At B the moment is zero, the torque is 140 N-m and the transverse 

shear is 700 N. 
 
(a) The maximum bending stress at A is 

 

                                   x
Mc
I

σ =  

 

   where 
( )4 4

, and
2 64

id ddc I
π −

= = .  Since di = 20 mm 

 

                     
( )4 4

8 4
0.030 0.020

3.19 10 m
64

I
π

−
−

= = ×  

hence 

   
( )

8

227.5 0.015
107 MPa

3.19 10xσ −= =
×

 

 
(b)  The torsional shear at point B is 

 

                                
( )

( )8

170 0.015
40 MPa

2 2 3.19 10xy
Tr Tr
J I

τ
−

= = = =
×

 

 
and the direct shear is   

 

                                           
( ) ( )

( )
( )

2 2 2 2

2 2

82 2
4

8 700
2.64 MPa

0.030 0.015

xy d
i i

i

P P P
A d d d d

τ
π π

π

− = = =
− −

= =
−
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5-5.  The electronic detector package for monitoring paper thickness in a high-speed paper mill scans back 
and forth along horizontal precision guide rails that are solidly supported at 24-inch intervals, as shown in 
Figure P5.5. The detector package fails to make acceptable thickness measurements if its vertical 
displacement exceeds 0.005 inch as it moves along the guide rails during the scanning process. The total 
weight of the detector package is 400 lb and each  of the two guide rails is a solid AISI 1020 clod drawn steel 
cylindrical bar ground to 1.0000 inch in diameter. Each of the support rails may be modeled as a beam with 
fixed ends and a midspan concentrated load. Half the dector weight is supported by each rail. 

a.  At a minimum, what potential failure modes should be considered in predicting whether the support 
rails are adequately designed? 
b.  Would you approve the design of the rails as proposed? Clearly show each step of your supporting 
analysis, and be complete in what you do. 
c.  If you do approve the design, what recommendations would you make for specific things that might 
be done to design specifications? Be as complete as you can. 

 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
(a) At a minimum, potential failure modes to be considered include: (1) yielding, (2) Force-induced elastic 
deformation. 
 

(b) Based on yielding, FIOTOI max
max yp

M c S
I

σ = ≥ .  The guide rail may be 

modeled as a fixed-fixed beam with a concentrated load at midspan. This is 
Case 8 of Table 4.1, which is sketched as shown. The maximum bending 
moment, occurring at A, B, and C is 
 

                                             max
200(24) 600 in-lb

8 8
WLM = = =  

 
For the solid 1.0-inch diameter rails, 4 4 4/ 64 (1) / 64 0.0491 inI dπ π= = = , and / 2 0.5 inc d= = . So, FIPTOI 
 

                                          max
600(0.5) 6110 51,000 (from Table 3.3)
0.0491

σ = = ≥  

  
So failure by yielding is not predicted. 
 
Based on force-induced elastic deformation: FIPTOI max cry δ≥ , where crδ  has been specified as 

0.005 inchcrδ = . From Table 4.1 
 

                                             
3 3

max 6

200(24) 0.0098"
192 192(30 10 )(0.0491)
WLy

EI
= = =

×
 

 
Since max 0.0098" 0.005"cry δ= > = , failure by force-induced elastic deformation is predicted. Do not approve 
the design. 
 
(c) To improve the design based on deflection, 
 

(1) Shorten the span, L, by moving the supports closer together. 
(2) Increase the rail diameter, d. 
(3) Select a material with a larger modulus of elasticity, but this is not practicqal because it would 
require an expensive “exotic” material. 
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5-6.  A shaft having a 40 mm diameter carries a steady load F of 10,000 N and torque T of 5000,000 N-mm is 
shown in Figure E5.4A.  The shaft does not rotate. Locate the critical location and determine the principal 
stresses at the critical location using Mohr’s circle. 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
The critical location will be located at the 
midsection of the shaft.  At this location the 
bending moment is a maximum.  The reactions 
are  
 

10,000 5000 N
2 2A B
FR R= = = =  

 
The maximum bending moment is  
 

max 150 750000 N-mmAM R= =  
 
The maximum bending stress is given as 
 

( )
( )3 3

32 75000032 119.37 MPa
40

x
Mc M
I d

σ
π π

= = = =  

 
The torsional stress is given as 
 

( )
( )3 3

16 50000016 39.79 MPa
40

xy
Tr T
J d

τ
π π

= = = =  

 
Using Mohr’s circle analogy to find the principal stresses in the xy plane, the critical stress is shown below 
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Problem 5-6 (continued) 
 
Mohr’s circle of stress is plotted as 
shown.  
 

 

     ( )
2

2
1 2

119.37 39.79
2

     71.73 MPa

R −
⎛ ⎞= +⎜ ⎟
⎝ ⎠

=

 

 
 
    Hence, 
 

1

2

119.37 71.73
2

               131.42 MPa
119.37 71.73

2
                12.05 MPa

C R

C R

σ

σ

= + = +

=

= − = −

= −

 

 
and  3 0σ = .  The maximum shear 
stress is  
 
                           max 71.73 MPaτ =  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 176

 

5-7. At a point in a body, the principal stresses are 10 and 4 MPa. Determine: 
 

(a) The resultant stress on a plane whose normal makes an angle of o25  with the normal to the plane of 
maximum principal stress. 

(b) The direction of the resultant stress. 
 

------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
 (a) From Mohr’s circle, Figure 5.1 we have 

                          1 2 1 2 cos 2
2 2n

σ σ σ σ
σ θ

+ −
= +         and           1 2 sin 2

2s
σ σ

τ θ
−

=  

 
Substituting for σ1 and σ2 yields 

 

( )10 4 10 4 cos 2 25 8.93 MPa
2 2nσ
+ −

= + =o  

                                                    ( )10 4 sin 2 25 2.3 MPa
2sτ
−

= =o  

 
Thus, the resultant stress is 

 

( ) ( )2 22 2 8.93 2.3 9.22 MPan sR σ τ= + = + =  
 

(b)  The direction is  

1 1 2.3tan tan 14.4
8.93

s

n

τ
α

σ
− −⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
o  
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5-8.  A newly designed “model” is to be tested in a hot flowing gas to determine certain response 
characteristics. It is being proposed that the support for the model be made of Ti-6Al-4V titanium alloy. The 
titanium support is to be a rectangular plate, as shown in Figure P5.8, 3.00 inches in the flow direction, 20.00 
inches vertically (in the load-carrying direction), and 0.0625 inch thick. A vertical load of 17,500 pounds 
must be carried at the bottom end of the titanium support, and the top end of the support is fixed for all test 
conditions by a special design arrangement. During the test the temperature is expected to increase fro 
ambient ( o75 F ) to a maximum of o400 F . The vertical displacement of the bottom end of the titanium 
support must not exceed 0.125 inch, or the test will be invalid. 

a. What potential failure modes should be considered in predicting whether this support is adequately 
designed? 
b. Would you approve the proposed design for the titanium support? Support your response with clear, 
complete calculations. 
 

------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
(a) At a minimum, potential failure modes to be considered include: (1) yielding, (2) Force-induced elastic 
deformation, and (3) Temperature-induced elastic deformation. 
 

 (b) Based on yielding, FIPTOI ( ) omax 400 Fyp
F S
A

σ = ≥ .  From Table 3.5 ( ) o400 F
101 ksiypS = .  

 

                          
( )( )max

17,500 93,333 101,000
0.0625 3.00

σ = = <   So failure by yielding is not predicted. 

 
So failure by yielding is not predicted. 
  
Based on force-induced elastic deformation: FIPTOI  f crδ δ≥ , where by specification 0.1250"crδ = . The 
force-induced elastic deformation is 

 

                    ( )max
6

93,333 20.0 0.1167"
16 10f f o oL L

E
σ

δ ε ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟⎜ ⎟ ×⎝ ⎠⎝ ⎠
 

 
Since  0.1167" 0.1250"f crδ δ= < = , failure by force-induced elastic deformation alone is not predicted. 
 
Based on temperature-induced elastic deformation FIPTOI t crδ δ≥ , where ( )t oL Tδ α= ∆ . From Table 3.8, 

6 o5.3 10  in/in/ Fα −= × . In addition we determine o400 75 325 FT∆ = − = . Thus 
 

                                              ( )( )620 5.3 10 325 0.0345"tδ
−= × =  

 
Since  0.0345" 0.1250"t crδ δ= < = , failure by temperature-induced elastic deformation alone is not 
predicted. 
 
 In order to predict failure, we must note that both force-induced and temperature-induced elastic deformation 
occur at the same time. Therefore, the total deformation will be 

 
                                   0.1167 0.0345 0.1512"total f tδ δ δ= + = + =  
 

Since 0.1512" 0.1250"total crδ δ= > = , failure by elastic deformation (force and temperature combined) is 
predicted. The support is not adequately designed. 
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5-9.  A polar exploration team based near the south pole is faced with an emergency in which a very 
important “housing and supplies” module must be lifted by a special crane, swung across a deep glacial 
crevasse, and set down is a safe location on the stable side of the crevasse. The only means of supporting the 
450-N module during the emergency move is a 3.75-m-long piece of steel with a rectangular cross section of 
4 cm thick by 25 cm deep with two small holes. The holes are both 3 mm in diameter, and are located at 
midspan 25 mm from the upper and lower edges, as shown in Figure P5.9. These holes were drilled for some 
earlier use, and careful inspection has shown a tiny through-the-thickness crack, approximately 1.5 mm long, 
emaneating from each hole, as shown. The support member may be modeled for this application as a 3.75-m-
long simply supported beam that symmetrically supports the module weight at two points, located 1.25 m 
from each end, as shown. The material is known to be D6AC steel ( o1000 F  temper). Ambient temperature is 
about o54 C− . 
 If the beam is to be used only once for this purpose, would you approve its use? Support your answer 
with clearly explained calculations based on the most accurate techniques that you know. 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
For the material given at an ambient temperature of o54 C−  , we use Table 5.2 to determine 1570 MPaypS =  

and 62 MPa mICK = . Using Figure P5.9 we can also determine 225 kNL RR R= = . Over the central 1.25 
m span of the beam the bending moment is constant and the transverse shear force is zero (this is a beam in 
four-point bending). 
 

                             225(3.75) 281.25 kN-m
3 3

PLM = = =               0V =  

 
The upper half of the beam is in compression and the lower half is in tension. Therefore, the crack at the 
lower hole is in tension and governs failure. The crack tip in the enlarged view of Figure P5.9 is 3.0 mm  
below the center of the hole. The distance from the neutral bending axis to the crack tip is  
 

                                      25 2.5 0.3 10.3 cm 103 mm
2cty = − + = =  

 
The nominal tensile bending stress at the crack tip is 
 

                                      
( )( )3

281.25(0.103) 556 MPa
0.04 0.025 /12

ct
ct

My
I

σ = = =  

 
The maximum tensile bending stress within the central span of the beam is 

 

                           
( )( )max 3

281.25(0.125) 675 MPa
0.04 0.025 /12

Mc
I

σ = = =  

 
 
Both yielding and brittle fracture should be checked as possible failure modes. For yielding we note that the 
existing factor of safety is max/ 1570 / 675 2.3yp ypn S σ= = ≈ . Therefore, the beam is safe from yielding. For 
brittle fracture we check the plane strain condition using (5-53) 

 

                                     
2624.0 2.5 0.39

1570
B ⎛ ⎞= ≥ =⎜ ⎟

⎝ ⎠
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Problem 5-9 (continued) 

 
Since the condition is satisfied, plane strain conditions prevail and ICK may be used. Calculating IK  using 

I ctK C aσ π=  requires engineering judgment, since no charts for C that match the case at hand (a beam 
with through-holes, subjected to bending) are included in this text. The most applicable available chart is 
probably Figure 5.21, with  

 

                       0λ =      and      1.5 0.5
3.0 1.5
2

a
R a

= =
+ ⎡ ⎤+⎢ ⎥⎣ ⎦

 

 
This results in 1.38oF ≈ , o 1(1 ) 1.38C F Fλ λ= − + = , and subsequently 

  
                                    ( ) ( )6 31.38 556 10 1.5 10 52.7 MPa mIK π −= × × =  

 
Based on fracture, the existing factor of safety is 
 

                                        62 1.2
52.7

Ic
yp

I

Kn
K

= = ≈  

 
       The beam may be approved for use in this one-time emergency. 
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5-10.  The support towers of a suspension bridge, which spans a small estuary on a tropical island,a re 
stabilized by anodized aluminum cables. Each cabe is attached to the end of a cantilevered support bracket 
made of D6AC steel (tempered at o1000 F ) that is fixed in a heavy concrete foundation, as shown in Figure P 
5.10. The cable load, F , may be regarded as static and has been measured to be about 20,000 lb, but under 
hurricane conditions may reach 500,000 lb due to wind loading. 
 Inspection of the rectangular cross-section brackets has turned up a crack, with dimensions and 
location as shown in Figure P5.10. Assuming that fatigue is not a potential failure mode in this case, would 
you recommend that the cracked support bracket be replaced (a very costly procedure) or allow it to remain is 
service? (Repair procedures such as welding of the crack are not permitted by local construction codes.) 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
For the material given at an ambient temperature of o70 F  , we use 
Table 5.2 to determine 217 ksiypS =  and 93 ksi inICK = .  The 
vertical and horizontal components of the applied force produce tensile 
stresses due to bending (from V) and  a P/A direct stress (from P). Since 
the crack is shallow, the gradient in bending stress is neglected and we 
assume a uniform tensile stress due to P. The normal stress is 
 

               
[ ]

3

cos 60(5) sin 60
/12cr b p

F cMc P F
I A bdbd

σ σ σ= + = + = +  

                     [ ]3

cos 60(5)(6) sin 60500,000 500,000 0.0521 0.0361 26,050 18,050 44.1 ksi
2(12)2(12) /12

⎡ ⎤
= + = + = + =⎢ ⎥

⎣ ⎦
 

 
Both yielding and fracture should be checked. For yielding, the bending stress is maximum at the wall, where 
the moment arm is 8” instead of 5”. This results in a maximum normal stress at the wall of 
 
                               26,050(8 / 5) 18,050 59.7 ksiwσ = + =  
 
The existing factor of safety is / 217 / 59.7 3.6yp yp wn S σ= = ≈ . Therefore, the beam is safe from yielding. 
For brittle fracture we check the plane strain condition using (5-53) 

 

                                     
2932.0 2.5 0.46

217
B ⎛ ⎞= ≥ =⎜ ⎟

⎝ ⎠
 

 
Since the condition is satisfied, plane strain conditions prevail and ICK may be used.  For a thumbnail crack, 
(5-52) may be used with / 2 0.070 / 0.35 0.2a c = =  and  / 44.1/ 217 0.20cr ypSσ = = . The value of Q is 
estimated form Figure 5.22 as 1.3Q ≈ . Using (5-52) 
 

                                        1.12 1.12 (44.1) (0.07) 20.3 ksi in
1.3IK a

Q
σ π π= = =  

 
Based on fracture, the existing factor of safety is 
 

                                        93 4.6
20.3

Ic
yp

I

Kn
K

= = ≈  

 
        Recommendation: Allow bracket to remain in service, but inspect regularly for crack growth. 
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5-11.  A horizontal cantilever beam of square cross section is 250 mm long, and is subjected to a vertical 
cyclic load at its free end. The cyclic load varies from a downward force of  4.5 kNdownP =  to an upward 
force of 13.5 kNupP = . Estimate the required cross-sectional dimensions of the square beam if the steel 

material has the following properties: 655 MPauS = , 552 MPaypS = , and 345 MPafS =  (note that 

345 MPafS =  has already been corrected for the influencing factors). Infinite life is desired. For this 
preliminary estimate, the issues of safety factor and stress concentration may both be neglected. 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Critical points A and B are identified at the fixed end of the beam. Point B will experience a tensile non-zero 
mean stress and point A a compressive non-zero mean stress. Since a tensile mean stress is potentially more 
serious, point A governs the design. The maximum and minimum bending moment and the mean and 
alternating moments are 
 
             max max 13.5(0.25) 3.375 kN-mM P L= = =                min min 4.5(0.25) 1.125 kN-mM P L= = − = −   

             ( ) ( )m max min
1 1 3.375 ( 1.125) 1.125 kN-m
2 2

M M M= + = + − =  

             ( ) ( )max min
1 11 3.375 ( 1.125) 2.25 kN-m
2 2aM M M= = − − =  

 

The section modulus is
4 3/12

/ 2 6
I s sZ
c s

= = = . The maximum, mean, and alternating stresses are 

 

                   3 3max max
max 3 3

6 6(3.375) 20.25 10 /
M M

s
Z s s

σ = = = = ×  

                   3 3m m
m 3 3

6 6(1.125) 6.75 10 /M M s
Z s s

σ = = = = ×  

                    3 3
3 3

6 6(2.25) 13.5 10 /a a
a

M M
s

Z s s
σ = = = = ×  

 
Neglecting the safety factor by assuming 1.0dn = , the equivalent completely reversed cyclic stress is 
 

               
3 3 3 3 3

3 3 6 3 6

6 3

13.5 10 / 13.5 10 / 13.5 10
6.75 10 / 10.31 10 10.31 101 1 1

655 10

a
eq cr

m

u

s s
s s

S s

σ
σ

σ− − −

× × ×
= = = =

× × − ×− − −
×

 

 
Setting 6345 10eq cr fSσ − = = ×  results in 
            

                
3

6 3 6 6 6
3 6

13.5 10345 10 385.7 10 10.31 10 396 10
10.31 10

s
s

− − −
−

×
× = → = × + × = ×

− ×
 

 
Therefore 0.0734 m 73.4 mms = = .Checking for yielding 
 

                                      
3

max 3
20.25 10 51.2 MPa 552 MPa
(0.0734) ypSσ ×

= = < =              No yielding 
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5-12.  A short horizontal cantilever bracket of rectangular cross section is loaded vertically downward (z-
direction) by a force 85,000 lbF = , as shown in Figure P5.12. The beam cross section is 3.0 inches by 1.5 
inches, as shown, and the length is 1.2 inches. The beam is made of hot-rolled AISI 1020 steel. 

a. Identify potential critical points other than the point directly under the force F. 
b. For each identified critical point, show a small volume element including all nonzero stress 
components. 
c. Calculate the magnitude of each stress component shown in (b). Neglect stress concentration effects. 
d. Determine whether failure by yielding will occur, and if it does, state clearly where it happens. Neglect 
stress concentration effects. 

 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
(a)  Potential critical points are at the wall, including all points along boundaries 1 and 2 
(due to bending) and along axis 3-3 (due to transverse shear) 
 
  (b) Volume elements may be sketched as shown below 
 

 
 
(c) The stress components are 
 

                             
[ ]

3

85(1.2) (1.5)
45.3 ksi

1.5(3) /12x
Mc Flc
I I

σ = = = =  

                            3 851.5 28.3 ksi
2 1.5(3)yz

F
A

τ = = =  

 
(d)  For uniaxial tensile stresses, based on yielding as a failure mode, we identify AISI hot-rolled 1020 steel 
as ductile (from Table 3.10), and 30 ksiypS = (from Table 3.3).  Since we identify the principal stress as 

1 45.3 ksix ypSσ σ= = > , yielding is predicted.  
    

For transverse shear we identify the principal stresses as 1 28.3 ksiyzσ τ= = ,  2 0σ =  , 3 28.3 ksiyzσ τ= − = −  
 
For yielding due to transverse shear FIPTOI 
 

                       { }2 2 2 21 (28.3 0) (0 28.3 ) ( 28.3 28.3)
2 ypS⎡ ⎤− + − − + − − ≥⎣ ⎦  

                                        ( )22400 30 900≥ =  
  
Therefore, yielding due to transverse shear is predicted along axis 3-3. 
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5-13.  The stubby horizontal cantilevered cylindrical boss shown in Figure P5.13 is loaded at the free end by a 
vertically downward force of 575 kNF = . The circular cross section has a diameter of 7.7 cm and a length 
of just 2.5 cm. The boss is made of cold-rolled AISI 1020 steel. 

a. Identify clearly and completely the locations of all potential critical points that you believe should be 
investigated, and clearly explain why you have chosen these particular points. Do not consider the point 
where force F is concentrated on the boss. 
b. For each potential critical point identified, neatly sketch a small-volume element showing all pertinent 
stress components. 
c. Calculate a numerical value for each stress component shown in (b) 
d. At each of the critical points identified, determine whether yielding should be expected to occur. Show 
calculation details for each case. 
 

------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
(a)  Potential critical points are at the wall, including points 1 and 2 (due to bending) and 
along axis 3-3 (due to transverse shear) 
 
  (b) Volume elements may be sketched as shown below 
 

 
 

 
 
 
 
 
 
 
 

(c) The stress components are 
 

                             
[ ]

4

575(0.025) (0.0375)
347 MPa

(0.075) / 64x
Mc Flc
I I

σ
π

= = = =  

                            2
4 5751.33 173 MPa
3 (0.075) / 4yz

F
A

τ
π

= = =  

 
(d)  For uniaxial tensile stresses, based on yielding as a failure mode, we identify AISI cold-rolled 1020 steel 
as ductile (from Table 3.10), and 352 MPaypS = (from Table 3.3).  Since we identify the principal stress as 

1 347 352xσ σ= = < , yielding is not predicted.  
    

For transverse shear we identify the principal stresses as 
 
                               1 173 MPayzσ τ= = ,  2 0σ =  , 3 173 MPayzσ τ= − = −  
 
For yielding due to transverse shear FIPTOI 
 

                       { }2 2 2 21 (173 0) (0 173 ) ( 173 173)
2 ypS⎡ ⎤− + − − + − − ≥⎣ ⎦     or  ( )289,787 352 123,904≥ =  

                                         
Therefore, yielding due to transverse shear is not predicted along axis 3-3. 
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5-14.  The short tubular cantilever bracket shown in Figure P5.14 is to be subjected to a transverse end-load 
of 30,000 lbF = . Neglecting possible stress concentration effects, doe the following: 

a. Specify precisely and completely the location of all potentially critical points. Clearly explain why you 
have chosen these particular points. Do not consider the point where the force F is applied to the bracket. 
b. For each potential critical point identified, sketch a small-volume element showing all no0nzero 
components of stress. 
c. Calculate numerical values for each of the stresses shown in (b). 
d. If the material is cold-drawn AISI 1020 steel, would you expect yielding to occur at any of the critical 
points identified in (a)? Clearly state which ones. 

 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
(a)  Potential critical points are at the wall, including points 1 and 3 (due to bending) 
and 2 and 4(due to transverse shear) 
 
(b) Volume elements may be sketched as shown below 
 

 
(c) The stress components are 
 

                             
[ ]

4 4

30(1.5) (1.625)
48.736 ksi

(3.25) (3.00)

64

x
Mc Flc
I I

σ
π

= = = =
⎡ ⎤−⎣ ⎦

 

                            
2 2

302 2 48.892 ksi
(3.25) (3.00)

4

yz
F
A

τ
π

= = =
⎡ ⎤−⎣ ⎦

 

 
(d)  For uniaxial tensile stresses, based on yielding as a failure mode, we identify the material as ductile (from 
Table 3.10), and 51 ksiypS = (from Table 3.3).  Since we identify the principal stress as 1 48.7 51xσ σ= = < , 
yielding is not predicted.  

    
For transverse shear we identify the principal stresses as 
 
                               1 48.892 ksiyzσ τ= = ,  2 0σ =  , 3 48.892 ksiyzσ τ= − = −  
 
For yielding due to transverse shear FIPTOI 
 

                       { }2 2 2 21 (48.892 0) (0 48.892 ) ( 48.892 48.892)
2 ypS⎡ ⎤− + − − + − − ≥⎣ ⎦     or  ( )27131 51 2601≥ =  

                                         
Therefore, yielding due to transverse shear is predicted at points 2 and 4. 
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5-15.  It is being proposed to use AISI 1020 cold-drawn steel for the shaft of a 22.5-horsepower electric 
motor designed to operate at 1725 rpm. Neglecting possible stress concentrations effects, what minimum 
diameter should the solid steel motor shaft be made if yielding is the governing failure mode? Assume the 
yield strength in shear to be one-half the tensile yield strength. 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
The required torque for this application is 
 

                            63,025(22.5) 822 in-lb
1725

T = =  

 
The maximum shearing stress is 
 

                            max 4 3 3 3
( / 2) 16 16(822) 4186.4

32

Ta T d T
J d d d d

τ
π π π

= = = = =  

 
Based on yielding as a failure mode, and assuming / 2 51/ 2 25.5 ksiyp ypSτ = = =  as suggested, the shaft 
diameter is determined from  
 

                              3
4186.4 25,500 0.5475"d

d
= ⇒ =                                         0.55"d =  

 
Note that no factor of safety has been included, so a larger shaft would probably be used in this application. 
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5-16. It is desired to us a solid circular cross section for a rotating shaft to be used to transmit power from one 
gear set to another. The shaft is to be capable of transmitting 18 kilowatts at a speed of 500 rpm. If yielding is 
the governing failure mode and the shear yield strength for the ductile material has been determined to be 900 
MPa, what should the minimum shaft diameter be to prevent yielding? 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
The required torque for this application is 
 

                            9549(18) 312.5 N-m
550

T = =  

 
The maximum shearing stress is 
 

                            max 4 3 3 3
( / 2) 16 16(312.5) 1591.5

32

Ta T d T
J d d d d

τ
π π π

= = = = =  

 
The shear yield strength has been given as 900 MPa, so 
 

                          6
3

1591.5 900 10 0.0121 md
d

= × ⇒ =   or                             12.1 mmd =  

 
Note that no factor of safety has been included, so a larger shaft would probably be used in this application 
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5.17. A solid steel shaft of square cross section is to be made of annealed AISI 1020 steel. The shaft is to be 
used to transmit power between two gearboxes spaced 10.0 inches apart. The shaft must transmit 75 
horsepower at a rotational speed of 2500 rpm. Based on yielding as the governing failure mode, what 
minimum dimension should be specified for the sides of the square shaft to just prevent yielding? Assume the 
yield strength in shear to be one-half the tensile yiely strength. There are no axial or lateral forces on the 
shaft. 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
The noncircular shaft transmits pure torque. The critical points (c.p.) are located 
at the midpoints of each side of the square, as shown.  The torque transmitted is 
 

                              63,025(75) 1891 in-lb
2500

T = =  

 
The maximum shearing stress is given by (4-42) as max / 1891/  T Q Qτ = = . For 
the material selected , 43 ksiypS =  and / 2 21.5 ksiyp ypSτ = = .  Using this we 
determine 
 
                               1891/ 21,55 0.088Q = ≈  
 
The expression for Q from Table 4.5 for a square is 
 

                                   
2 2 4

38 8 1.67 0.088
3 1.8 4.8

a b aQ a
a b a

= = = =
+

 

 
Solving for a gives 0.375a = .  Since the length of each side is 2a, we end up with the length of each side 
being 
 
                                                        2 0.75"a =  
 
Note that no factor of safety has been included, so a larger shaft would probably be used in this application. 
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5-18.   It is necessary to use a solid equilateral triangle as the cross-sectional shape for a rotating shaft to 
transmit power from one gear reducer to another. The shaft is to be capable of transmitting 4 kilowatts at a 
speed of 1500 rpm.  Based on yielding as the governing failure mode, if the shear yield strength for the 
material has been determined to be 241 MPa, what should the minimum shaft dimensions be to just prevent 
yielding. 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
The critical points of the non-circular shaft are located as shown. The torque 
which must be transmitted is 
 

                        9549(4) 25.5 N-m
1500

T = =  

 
The maximum shear stress is  max /T Qτ = , where from Table (4.5)  

3 / 20Q a= , meaning 
 

                                            max 3 3 3
20 20(25.5) 510T
a a a

τ = = =  

 
The shear yielding strength is max 241 MPaτ = , so 
 

                                   3
6

510 0.0128 m
241 10

a = =
×

 

 
Note that no safety factor has been included, so a larger shaft would probably be used 
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5-19. a. Find the torque required to produce first yielding in a box-section torsion-bar build up from two 

equal-leg L-sections (structural angles), each 1 1 12 2
2 2 4
× ×  inch, welded together continuously at two 

places all along their full length of 3 feet. The material is hot-rolled ASIS 1020 steel. Assume the yield 
strength in shear to be one-half the tensile yield strength. Neglect stress concentration effects. 
b. For the box-section torsion-bar of (a), what torque would cause first yielding if the welder forgot to 
join the structural angles along their length? Compare with the results from (a). 

 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 (a)  The welded box-section will transmit pure torque. Based 
on the shape of the section we deduce that the critical points are 
likely to be at the midpoint of each side. The expression for Q 
from Table 4.5 for a square is 
 

                           
2 2 4

38 8 1.67
3 1.8 4.8

a b aQ a
a b a

= = =
+

 

 

For the 12
2

-inch angles, the outside and inside dimensions are 

 

      2.5 / 2 1.25oa = =        2.5 2(0.25) 1.0
2ia −

= =  

 
For the hollow square tube we have 
 
                          ( )3 3 3 31.67 1.67 (1.25) (1.0) 1.592o iQ a a ⎡ ⎤= − = − =⎣ ⎦  

 
The maximum shearing stress and torque are related by max max1.592T Qτ τ= = .  For the material selected , 

30 ksiypS =  and / 2 15 ksiyp ypSτ = = .  The torque required to reach the yield point in the weld material is 
therefore 
 
                                    ( ) 1.592(15,000) 23,865 in-lbyp weld

T = =                          ( ) 23,865 in-lbyp weld
T =  

 
(b) If the welder fails to execute the weld correctly, the section no longer behaves as a box. Instead is will 
behave as two thin rectangles in parallel. The dimensions of each rectangle will be 2 5a =  and 2 0.25b = . 
This results in 
 

                               
2 2 2 28 8(2.5) (0.125) 0.10

3 1.8 3(2.5) 1.8(0.125)
a bQ

a b
= = ≈

+ +
 

 
Since there are two parallel rectangular plates, we use 0.20Q = to determine 
 
                           ( ) 0.2(15,000) 3000 in-lbyp weld

T = =                                 ( ) 3000 in-lbyp weld
T =  

 
 
 Comparing the two solutions, it is obvious that if the welder fails to perform correctly, the resulting section 
would carry about 12% as much torque as a correctly welded section. 
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5-20. A hollow square tube is to be used as a shaft to transmit power from an electric motor/dynamometer to 
an industrial gearbox which requires an input of 42 horsepower at 3400 rpm, continuously. The shaft material 
is annealed AISI 304 stainless steel. The dimensions of the square shaft cross section are 1.25 inch outside, 
the wall thickness is 0.125 inch, and the shaft length is 20 inches. There are no significant axial or lateral 
loads on the shaft. 

a. Based on yielding as a failure mode, what existing factor of safety would you calculate for this shaft 
when it is operating under full power? Assume the yield strength in shear to be one-half the tensile yield 
strength. 
b. Want angle of twist would you predict for this shaft when operating under full power? 

 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 (a) The critical points are at the midpoint of each side as shown. Knowing the 
dimensions, we use Table 5.4 to determine 
 

                                
2 2 4

38 8 1.67
3 1.8 4.8

a b aQ a
a b a

= = =
+

 

 
Since the section is hollow 

                            
3 31.25 1.001.67 0.199

2 2o iQ Q Q
⎡ ⎤⎛ ⎞ ⎛ ⎞= − = − =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 
The torque and maximum shearing stress are  

 

             63,025(42) 778.5 in-lb
3400

T = =              max
778.5 3912 psi
0.199

T
Q

τ = = =  

            
For the material selected , 35 ksiypS =  and / 2 17.5 ksiyp ypSτ = = . The existing factor of safety is 
 

                               
max

17.5 4.47 
3.912

yp
exn

τ
τ

= = =                                         4.47 exn =  

 
 
(b)  The angle of twist is given by /TL KGθ = , where, for a square section 
 

                                   
4

3 4
4

16 3.36 1 2.25
3 12

b bK ab a
a a

⎡ ⎤⎛ ⎞
= − − =⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

       
Since the section is hollow 
 

                            
4 41.25 1.002.25 0.2027

2 2o iK K K
⎡ ⎤⎛ ⎞ ⎛ ⎞= − = − =⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 
The shear modulus is, from Table 3.9, is 610.6 10G = × . The angle of twist is therefore 
 

                                 6
778.5(20) 0.00725 rad

0.2027(10.6 10 )
θ = =

×
                        ( )o0.00725 rad 0.42θ = ≈  
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5-21. Compare and contrast the basic philosophy of failure prediction for yielding failure with failure by 
rapid crack extension. As a part of your discussion, carefully define the terms stress-intensity factor, critical 
stress intensity, and fracture toughness. 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
The basic philosophy of failure prediction is the same, no matter what the governing failure mode may be. 
That is, failure is predicted to occur when a well-selected, calculable measure of the seriousness of loading 
and geometry exceed the value of a critical strength parameter that is a function of material, environment, and 
governing failure mode. Thus, for yielding 
 
                                 Failure is predicted to occur if  ypSσ ≥  
 
where σ is the applied stress and ypS  is the uniaxial yield strength of the material. Similarly, for brittle 
fracture by rapid crack extension 
 
                                Failure is predicted to occur if  CK K≥  
 
where K is the stress intensity factor and CK  is the critical stress intensity factor, or fracture toughness. These 
three terms may be defined as follows: 
 

Stress intensity factor – a factor representing the strength of the stress field surrounding the tip 
of the crack, as a function of external loading, geometry, and crack size. 

 
Critical intensity factor – the value of the stress intensity associated with the onset of rapid crack 
extension. 

 
Fracture toughness – a material strength parameter that gives a measure of the ability of a 
material to resist brittle fracture; this parameter has a lower limiting value under conditions of 
plane strain, that may be regarded as a material property, namely IcK , plane strain fracture 
toughness. 
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5-22.  Describe the three basic crack-displacement modes, using appropriate sketches. 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
There are three basic crack displacement modes: I, II, and III (as shown).  Mode I is the crack opening mode 
and the crack surfaces are moved directly apart. Mode II is the sliding mode and the crack surfaces slide over 
each other in a direction perpendicular to the leading edge. Mode II is the tearing  mode and the crack 
surfaces are caused to slide parallel to the leading edge. 
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5-23. Interpret the following equation, and carefully define each symbol used. Failure is predicted of occur if: 
 

IcC a Kσ π ≥  
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
Failure is predicted to occur if  IcC a Kσ π ≥  would be used by a designer to predict potential brittle fracture 
by rapid crack extension, for “thick” sections, where 
 

IcK = plane strain fracture toughness (a material property) 
a =  crack length 
σ =  gross section nominal stress 
C = parameter dependent upon the type of loading, far-field geometry, temperature, and strain 

rate. 

The minimum thickness required to regard a section as “thick” is given by
2

2.5 Ic

yp

K
B

S

⎛ ⎞
≥ ⎜ ⎟⎜ ⎟

⎝ ⎠
, where 

B =  thickness of section 
ypS =  yield strength 
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5-24.  A very wide sheet of 7075-T651 aluminum plate, 8 mm thick is found to have a single-edge through-
the-thickness crack 25 mm long. The loading produces a gross nominal tension stress of 45 MPa 
perpendicular to the plane of the crack tip. 
 

a. Calculate the stress intensity factor at the crack tip. 
b. Determine the critical stress-intensity factor 
c. Estimate the factor of safety ( /Ic In K K= ) 

 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Given:  very wide / 0b a b= ∴ → , 
 material: 7075-T651 aluminum plate 
 8 mmB = , 25 mma = , 45 MPaσ =  
 ( )min 27 MPa mIcK =  (from Table 5.2) 
 
 (a)  K C aσ π= .  From Figure 5.19 for / 0a b →  
 

           ( )
3/ 2

3/ 21 1 0 1.122 1.122aC C C
b

⎛ ⎞− = − = → =⎜ ⎟
⎝ ⎠

 

 
           1.122(45) 0.025 14.15 MPa mIK K C aσ π π= = = =  
 
 
(b) Checking for plane strain  
  

           
2 2270.008 2.5 2.5 0.0069

515
Ic

yp

K
B

S

⎛ ⎞ ⎛ ⎞= ≥ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
         Plane strain condition is satisfied 
 

 (c)  27/ 1.91
14.15Ic In K K= = =  
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5-25.  Discuss all parts of 5-24 under conditions that are identical to those stated, except that the sheet 
thickness is 3 mm. 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
  Given:  very wide / 0b a b= ∴ → , material: 7075-T651 aluminum plate 

3 mmB = , 25 mma = , 45 MPaσ = , ( )min 27 MPa mIcK =  (from Table 5.2) 
 
 (a)  K C aσ π= .   From Figure 5.19 for / 0a b →  
 

             ( )
3/ 2

3/ 21 1 0 1.122 1.122aC C C
b

⎛ ⎞− = − = → =⎜ ⎟
⎝ ⎠

 

 
               1.122(45) 0.025 14.15 MPa mIK K C aσ π π= = = =  
 
 
(b) Checking for plane strain  
  

               
2 2270.003 2.5 2.5 0.0069

515
Ic

yp

K
B

S

⎛ ⎞ ⎛ ⎞= ≥ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
            Plane strain condition are not satisfied 
 

                  
4 4

2 2
1.4 1.4 271 27 1 29.85

515(0.0069)
Ic

c Ic
yp

K
K K

SB

⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= + = + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦

 

 

(c)  29.85/ 2.11
14.15c In K K= = =  
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5-26.  A steam generator in a remote power station is supported by two straps, each one 7.5 cm wide by 11 
cm thick by 66 cm long. The straps are made of A%#* steel. When in operation, the fully loaded steam 
generator weighs 1300 kN, equally distributed to the two support straps. The load may be regarded as static. 
Ultrasonic inspection has detected a through-the-thickness center crack 12.7 mm long, oriented perpendicular 
to the 66-cm dimension (i.e. perpendicular to the lensile load). Would you allow the plant to be put into 
operation? Support your answer with clear, complete engineering calculations. 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 Given: 1300 kNW = ; equally split between 2 supports. material: A538 steel 
 From Table 5.2 1772 MPaypS = , ( )min 111 MPa mIcK =  
 
Both yielding and brittle fracture should be checked as possible failure 
modes. One approach is to calculate the existing factor of safety.  

 
For yielding we use the neat area to define σ  
 

                  
( )

31300 10 / 2 948.8 MPa
0.075 0.0127 (0.011)net

P
A

σ ×
= = =

−
 

 

                  1722 1.82
948.8

yp
yp

S
n

σ
= = =  

 
This is an acceptable factor of safety. For brittle fracture;  we begin by checking the plane strain criteria  
 

                         
2 21110.011 2.5 2.5 0.0104

1722
Ic

yp

K
B

S

⎛ ⎞ ⎛ ⎞= ≥ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
Since the condition is satisfied, plane strain conditions hold and IcK is the proper failure strength parameter to 

use. We calculate the IK C aσ π= . From the mode I curve of Figure 5.17, with / 12.7 / 75 0.17a b = = , we 
estimate 

 
                               1 0.17 0.93 1.02C C− = ⇒ =  

 
Using the nominal area ( 20.075(0.011) 0.000825 mA = = ) to determine the normal stress 

650 / 788 MPaAσ = = The gives 
 

                                       1.02(788) (0.0127 / 2) 113.5 MPa mIK π= =  
 
and 

                                  111 0.98
113.5

Ic

I

K
n

K
= = =  

 
        Based on this safety factor, do not restart the plant. 
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5-27. A pinned-end structural member in a high-performance tanker is made of a 0.375-inch-thick-by-5-inch-
wide, rectangular cross-section, titanium 6Al-4V bar, 48 inches long. The member is normally subjected to a 
pure tensile load of 154,000 lb. Inspection of the member has indicated a central through-the-thickness crack 
of 0.50-inch length, oriented perpendicular to the applied load. If a safety factor (see 2.13) of 1.7n = is 
required, what reduced load limit for the member would you recommend for safe operation (i.e. to give 

1.7n = )? 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Given:; 154.4 kipP =  , material: 6Al-4v titanium 
From Table 5.2 119 ksiypS = , ( )min 96 ksi inIcK =  
 
Both yielding and brittle fracture should be checked as possible failure modes. One 
approach is to calculate the existing factor of safety.  

 
For yielding we use the neat area to define σ  
 

                  
( )

154.4 91.5 ksi
5 0.5 (0.375)net

P
A

σ = = =
−

 

 

                  119 1.3
91.5

yp
yp

S
n

σ
= = =  

 
This is an acceptable factor of safety. For brittle fracture;  we begin by checking the plane strain criteria  
 

                         
2 2960.375 2.5 2.5 1.63

119
Ic

yp

K
B

S

⎛ ⎞ ⎛ ⎞= ≥ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
Since the condition is not satisfied, plane strain conditions do not apply and we have to assume plane stress. 
In order to determine the plane stress critical stress intensity factor we use (5-54)  

 

           

1/ 2 1/ 24 4

2 2
1.4 1.4 961 96 1 219.3 ksi in

119(0.375)
Ic

c Ic
yp

K
K K

SB

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= + = + =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

 

 
Next , IK C aσ π= . From the mode I curve of Figure 5.17, with / 0.5 / 5 0.10a b = = , we estimate 

1 0.10 0.96 1.01C C− = ⇒ = . Using the nominal area ( 25(0.375) 1.875 inA = = ) to determine the 
normal stress 154.4 / 82.3 ksiAσ = = . The gives 
 
                                       1.01(82.3) (0.5 / 2) 73.7 ksi inIK π= =  
 
and 
                                  / 219.3 / 73.7 2.98Ic In K K= = =  
 
The required factor of safety criteria is met and no reduced load limit is required.  
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5-28. An engine mount on an experimental high-speed shuttle has been inspected, and a thumbnail surface 
crack of 0.05 inch deep and 0.16 inch long at the surface has been found in member A, as shown in Figure 
P5.28. The structure is pin-connected at all joints. Member A is 0.312 inch thick and 1.87 inches wide, of 
rectangular cross section, and made of 7075-T6 aluminum alloy. If full power produces a thrust load P of  
18,000 lb at the end of member B, as shown in Figure P5.28, what percentage of full-power thrust load would 
you set as a limit until part A can be replaced, if a minimum safety factor (see 2.13) of 1.2 must be 
maintained? 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Material: 7075-T6 aluminum; from Table 5.2 

75 ksiypS = , ( )min 26 ksi inIcK = . Noting that member 1-2 
is a two-force member, we use the free body diagram shown to 
determine the force in member “A”. 
 
            2 0 :M =∑   o15(18,000) 10( cos 45 ) 0AF− =  
                                      38,184 lbAF ≈  
 
At full power the stress in member “A” will be 
 

                 38,184 65,446 psi
0.312(1.87)

AF
A

σ = = =  

 
Both yielding and brittle fracture should be checked. For 
yielding 
 
 

                   75 1.15 1.2
65.45

yp
yp

S
n

σ
= = = ≈  

 
This is considered to be equal to the required factor of safety, so we conclude that for full power, the bracket 
will not fail due to yielding. For brittle fracture we first check the plane strain condition 
 

                       
2 2260.312 2.5 2.5 0.30

75
Ic

yp

K
B

S

⎛ ⎞ ⎛ ⎞= ≥ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
 Since the plane strain condition is satisfied we use (5-52) 
 

                                      1.12
IK a

Q
σ π=  

 
From Figure 5.22 with / 2 0.05 / 0.16 0.3125a c = = and / 65.45 / 75 0.873A ypSσ = =  we can estimate 

1.45Q ≈ , which gives 
 

                          1.12 (65.45) (0.05) 24.13 ksi in
1.45IK π= =  
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Problem 5-28 (continued) 
 
  The factor of safety is 
 

                               26 1.08
24.13

Ic

I

K
n

K
= = ≈  

 
This does not satisfy the factor of safety requirement, so the power must be reduced.  The maximum reduced 
power would be 

 

                                   ( )max
1.08 (100) 90%
1.2reducedP = ≈  of full power 

 
                                                                                                            ( )max 90%reducedP =  
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5-29.  A 90-cm-long structural member of 7075-T6 aluminum has a rectangular cross section 8 mm thick by 
4.75 cm wide. The member must support a load of 133 kN static tension. A thumbnail surface crack 2.25 mm 
deep and 7 mm long at the surface has been found during an inspection. 

a. Predict whether failure would be expected. 
b. Estimate the existing safety factor under these conditions. 

 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Material: 7075 T-6 aluminum.  From Table 5.2 440 MPaypS = , 31 MPa mIcK =  
 
Both yielding and brittle fracture should be checked as possible failure modes. One approach is to calculate 
the existing factor of safety.  

 
For yielding we use the neat area to define σ  
 

                  
( )

133 350 MPa
0.008 (0.0475)

P
A

σ = = =  

 

                   440 1.26
350

yp
yp

S
n

σ
= = =  

 
For brittle fracture;  we begin by checking the plane strain criteria  
 

                         
2 2310.008 2.5 2.5 0.0124

440
Ic

yp

K
B

S

⎛ ⎞ ⎛ ⎞= ≥ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
Since the condition is not satisfied, plane strain conditions do not apply and we have to assume plane stress. 
In order to determine the plane stress critical stress intensity factor we use (5-54)  

 

           

1/ 2 1/ 24 4

2 2
1.4 1.4 311 31 1 38.46 MPa m

440(0.008)
Ic

c Ic
yp

K
K K

SB

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥= + = + =⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦

 

 
We calculate  IK   using ( )1.12 /IK Q aσ π=  .  From Figure 5.22 with 

/ 2 0.00225 / 0.007 0.321a c = = and / 1/1.26 0.794A ypSσ = =  we can estimate 1.6Q ≈ , which gives 
 

                          1.12 (350) (0.00225) 26.1 MPa m
1.6IK π= =  

 
  The factor of safety is 
 

                               38.46 1.47
26.1

Ic

I

K
n

K
= = ≈  
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5-30.  A transducer support to be used in a high-flow-rate combustion chamber is to be made of hot-pressed 
silicon carbide with tensile strength of 110,000 psi, compressive strength of 500,000 psi, fracture toughness 
of 3.1 ksi inIcK = , and nil ductility. The dimensions of the silicon-carbide support, which has a rectangular 
cross section, are 1.25 inches by 0.094 inch thick by 7.0 inches long. Careful inspection of many such pieces 
has revealed through-the-thickness edge cracks up to 0.060 inch long, but none longer. If this part is loaded in 
pure uniform tension parallel to the 7.0-inch dimension, approximately what maximum tensile load would 
you predict the part could withstand before fialing? 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Material: Hot-pressed silicon carbide. 

100 ksiutS = , 500 ksiucS = , 3.1 ksi inIcK = , 
 nile = . Since the ductility is nil, the potential failure 

mode is brittle fracture, for which FIPTOI 

I I IcK C a Kσ π= ≥ . The dimensions given are 
shown in the sketch. Checking the plane strain 
criterion results in 
 

     
2 23.10.094 2.5 2.5 0.00198

110
Ic

yp

K
B

S

⎛ ⎞ ⎛ ⎞= ≥ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
Since the plane strain condition is met we use the Mode I curve from Figure 5.19 with 

/ 0.06 /1.25 0.048a b = =  and ( )3/ 21 0.048 1.12IC − ≈  to estimate 1.21IC ≈ . The failure stress is determined 
from 
 

                                     3.1 5.9 ksi
1.21 0.060

Ic
f

I

K
C a

σ σ
π π

= = = =  

 
The failure load is therefore 

 
                 5900(0.094)(1.25)  693 lbf fP Aσ= = =                             693 lbfP =  
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5-31.  A newly installed cantilever beam of D6AC steel ( o1000 F  temper) has just been put into use as a 
support bracket for a large outdoor tank used in processing synthetic crude oil near Ft. McMurray, Alberta, 
Canada, near the Arctic Circle. As shown in Figure P5.31, the cantilever beam is 25 cm long and has a 
rectangular cross section 5.0 cm deep by 1.3 cm thick. A large fillet at the fixed end will allow you to neglect 
stress concentration there. A shallow through-the-thickness crack has been found near the fixed end, as 
shown, and the crack depth has been measured as 0.75 mm. The load P is static and will never exceed 22 kN. 
Can we get through the winter without replacing the defective beam, or should we replace it now? 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Material:D6AC steel., o1570 MPa @ 54 CypS = − , o1495 MPa @ 21 CypS = , 

o62 MPa m  @ 54 CIcK = − , o102 MPa m  @ 21 CIcK = . From Figure P5.31, the crack has been initiated 
at the fixed end of a cantilever beam, on the tension side (top) and bending stress governs at that critical point. 
 

                               
[ ]

2 2

6 (22)(0.25)6 1015 MPa
0.013(0.05)b

Mc M
I tb

σ = = = =  

 
Both yielding and brittle fracture will be checked. One approach is to calculate the existing factor of safety. 
For yielding we note that ypS  is more critical at warmer temperatures.  

 

                     1495  1.47
1015

yp
yp

b

S
n

σ
= = =  

 
For brittle fracture, we check the plane strain criterion  
 

                            
2 2620.013 2.5 2.5 0.0039

1570
Ic

yp

K
B

S

⎛ ⎞ ⎛ ⎞= ≥ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
Since the plane strain condition is met we use  Figure 5.20 with / 0.00075 / 0.050 0.015a b = =  and 

( )3/ 21 0.015 1.12IC − ≈  to estimate 1.15IC ≈ . The failure stress is determined from 
 
                                     1.15(1015) 0.00075 56.7 MPaIK π= =  
 
The existing factor of safety is 

 

                             62 1.09 1.1
56.7

Ic
yp

I

K
n

K
= = = ≈                              

 
The governing failure mode is therefore brittle fracture. Although the existing safety factor is low, we can 
probably wait for warmer weather, but frequent inspection of the crack is suggested. 
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5-32. Identify several problems a designer must recognize when dealing with fatigue loading as compared to 
static loading. 
 
---------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(1) Calculations of life are generally less accurate and less dependable than strength calculations. 
 (2) Fatigue characteristics can not be deduced from static material properties; fatigue properties must 

be measured directly. 
 (3) Full scale testing is usually necessary. 
 (4)  Results of different but “identical” tests may differ widely; statistical interpretation is therefore 

required. 
 (5)  Materials and design configurations must often be selected to provide slow crack growth. 
 (6)  Reliable crack detection methods of must be identified and employed. 
 (7)  Fail-safe design techniques, including design for inspectability, must of be implemented. 
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5-33. Distinguish the difference between high-cycle fatigue and low-cycle fatigue. 
 
 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
 
High-cycle fatigue is the domain of cyclic loading for which strain cycles are largely elastic, stresses are 
relatively low, and cyclic lives are long. Low-cycle fatigue is the domain of cyclic loading for which strain 
cycles have a significant plastic component, stresses are relatively high, and cyclic lives are short 
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5-34. Carefully sketch a typical S – N curve, use it to define and distinguish between the terms fatigue 
strength and fatigue endurance limit, and briefly indicate how a designer might use such a curve in practice. 
 
 
--------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 A typical S-N curve has the appearance shown. 
 
  Defining terms:  
               

1 1N N NS S == =  fatigue strength corresponding to 

1N cycles of life. 
 e NS S =∞= =  fatigue endurance limit; corresponding 

to strength asymptote (if one exists) to 
the S – N curve. 

 
A designer might use an S –N curve as follows: 
 

       (1) Select an appropriate design life, say 1dN N= . 
(2)  Read up from 1N  and left to 

1NS , which is the fatigue strength corresponding to the selected 
design life. 
(3) Determine the design stress as 

1
/d N dS nσ = , where dn  is the design factor of safety. 

(4) Configure the part so that the stress at the most critical location in the part does not exceed the 
design stress dσ . 
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5-35. Make a list of factors that might influence the S – N curve, and indicate briefly what the influence might 
be in each case. 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The following factors may influence an S-N curve: 
 

(a) Material composition – Two types of material responses are observed: (1) ferrous and titanium 
alloys exhibit fatigue endurance limits, and (2) all other materials exhibit no horizontal asymptote 
(no fatigue endurance limit). 

(b) Grain size and grain direction – fine grained materials generally exhibit superior fatigue 
properties. Fatigue strength in the grain direction is typically higher than in the transverse 
direction. 

(c) Heat treatment – Fatigue properties are significantly influenced by heat treatment. 
(d) Welding – Generally, welded joints have inferior fatigue strength as compared to a monolithic part 

of the same base material. 
(e) Geometrical discontinuities – Changes in shape result in stress concentrations that may greatly 

reduce fatigue strength, even for ductile materials. 
(f) Surface conditions – surface conditions are extremely important since nearly all fatigue failures 

initiate at the surface. Smooth is better than rough, cladding and plating generally lower the 
fatigue strength (but corrosion prevention usually more than offsets the deficit).  

(g) Size effect – Large parts generally exhibit lower fatigue strength than smaller specimens of the 
same material. 

(h) Residual surface stresses – These are extremely important since nearly all fatigue failures initiate 
at the surface. Residual stresses add directly to operating stresses. Generally, compressive residual 
stresses are good and tensile are bad, 

(i) Operating temperature – Fatigue strength generally diminishes at  elevated temperatures and is 
somewhat enhanced at lower temperatures. The fatigue endurance limit of ferrous and titanium 
alloys disappears at elevated temperatures. 

(j) Corrosion – A corrosive environment lowers fatigue strength and eliminates the fatigue endurance 
limit of ferrous and titanium alloys in many cases. 

(k) Fretting – In many cases fretting action results in a large reduction of fatigue strength. 
(l) Operating speed – Generally, from about 2000 cpm to about 7000 cpm, no effect. Below 200 cpm, 

a small decrease in fatigue strength. Above 7000 cpm, significant increase in fatigue strength, 
except around 60,000 – 90,000 cpm, some materials show a sharp decrease in fatigue strength. 

(m) Configuration of stress-time pattern – Not much sensitivity of fatigue strength to shape of stress 
wave along time axis. 

(n) Non-zero mean stress – Extremely important and must be accounted for, especially when tensile. 
(o) Damage accumulation – Extremely important and must be evaluated as a function of cycles at 

each level, e.g. by Palmgrin-Miner rule. 
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5-36.  Sketch a family of S – N – P curves, explain the meaning and utility of these curves, and explain in 
detail how such a family of curves would be produced in the laboratoty.  
 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The S-N-P curve sketched here is a family of 
“constant probability of failure” curves on a graph of 
stress versus life. The plot shown is the simplest 
version, i.e. aσ  versus N for the case of completely 
reversed loading ( 0mσ = ). To produce such a plot, 
the following experimental and plotting procedures 
would be used. 
 

1. Select a group of about 100 specimens 
from the population of interest, carefully 
prepared and polished. Divide the group 
into 4 or 5 subgroups of at least 15 
specimens each. 

2. Select 4 or 5 stress levels that span the stress range of the S – N curve. 
3. Run an entire subgroup at each selected stress level, following the procedures outlined below. 
4. To run each test, carefully mount the specimens in the machine, align to avoid bending stresses, 

set the desired load amplitude (stress amplitude), and zero the cycle counter. 
5. Run test at the desired constant stress amplitude until the specimen fails, or the machine reaches a 

pre-selected “run-out” life, often taken to be 75 10× cycles. 
6. Record the stress amplitude and the cycle count at the time of failure or run-out. 
7. Repeat the procedure until all specimens in the subgroup have been tested. 
8. Starting with a new subgroup, repeat the process again, and continue until all subgroups have 

been tested. 
9. From the data for each subgroup, compute a sample mean and variance. Plot the resulting failure 

data, together with a mean S – N curve, on a plot of stress versus failure life, as shown in Figure 
5.27. The failure life axis is usually chosen to be a logarithmic scale, and the stress axis may be 
either linear or logarithmic. 

10. Additional data may be taken at a “constant life” to generate a stress-wise distribution , using the 
“up-and-down” method presented in reference 1 from Chapter 9. Calculate stress-wise mean and 
variance for this special subgroup and estimate population mean and variance. 

11. Establish selected probability coordinates for each subgroup, say for P = 0.99, 0.90, 0.50, and 
0.10, and/or others, and connect points of constant probability. This results in a family of S –N- P 
curves as shown above, or as shown in text Figure 5.29. 
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5-37.   a.  Estimate and plot the S-N curve for AISI 1020 cold-drawn steel, using the static properties of 
            Table 3.3 (use SI units). 

b. Using the estimated S-N curve, determine the fatigue strength at 610 cycles. 
c. Using Figure 5.31, determine the fatigue strength of 1020 steel at 610 cycles and compare it with the 
estimate of (b). 

 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a)  From Table 3.3; 421 MPauS = , 352 MPaypS = . From text Section 5.6 

                      ' 421 MPaN uS S= =  at N = 1 cycle 

                        ( )' 0.5 0.5 421 211 MPaf uS S= = =  at 610N =  cycles since 1379 MPauS <  
 
                 The resulting S-N curve is shown below 
 

 
 
 
 (b)   From the plot 6

'
10 211 MPaNS = ≈ (estimated) 

 
(c)   From Figure 5.31 we estimate 6

'
10 35 ksi 241 MPaNS = ≈ ≈  (actual) 

                 

                                 241 211 100 12.4%
241
−

× =   higher estimate 
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5-38.  a. Estimate and plot the S – N curve for 2024-T3 aluminum alloy, using the static properties given in 

Table 3.3. 
b. What is the estimated magnitude of the fatigue endurance limit for this material? 

 
----------------------------------------------------------------------------------------------------------- 
Solution 
 
(a)  From Table 3.3; 70 ksiuS = , 50 ksiypS = . From text Section 5.6 

                      ' 70 ksiN uS S= =  at N = 1 cycle 

                        ( )' 0.4 0.4 70 28 ksif uS S= = =  at 610N =  cycles since 1379 MPauS <  
 
                     The resulting S-N cure is shown below. 
 

 
 
(b) This material does not exhibit a fatigue endurance limit. 
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5-39.  a.  Estimate and plot the S-N curve for ASTM A-48 (class 50) gray cast iron, using the static  
           properties of Table 3.3 (use SI units). 

b. On average, based on the estimated S-N curve, what life would you predict for parts made from this 
cast iron material if they are subjected to completely reversed uniaxial cyclic stresses of 210 MPa 
amplitude.  

 
 

---------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a)  From Table 3.3; 345 MPauS = , ypS = − − − . From text Section 5.6 

                 ' 345 MPaN uS S= =  at N = 1 cycle 

                 ( )' 0.4 0.4 345 138 MPaf uS S= = =  at 610N =  
 
                The resulting S-N curve is shown below 
 
 

 
 
(b) Reading from the S-N curve, at 210 MPa, a life of  35.2 10N ≈ ×  cycles is predicted. 
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5-40. It has been suggested that AISI 1060 hot-rolled steel (see Table 3.3) be used for a power plant 
application in which a cylindrical member is subjected to an axial load that cycles from 78,000 pounds 
tension to 78,000 pounds compression, repeatedly. The following manufacturing and operating conditions are 
expected: 

a. The part is to be lathe turned. 
b. The cycle rate is 200 cycles per minute. 
c. A very long life is desired. 
d. A strength reliability factor of 99 percent is desired. 
 

 Ignoring the issues of stress concentration and safety factor, what diameter would be required for 
this cylindrical cast iron bar? 
 
----------------------------------------------------------------------------------------------------------------- 
Solution 
 
From Table 3.3; 98 ksiuS = , 54 ksiypS = . From text section 5.6 

             ' 0.5 0.5(98) 49 ksif uS S= = = , since 200 ksiuS <  

The fatigue endurance limit is determined from (5-55); '
f FS k S∞= , where          

                        ( )gr we f sr sz rs fr cr sp rk k k k k k k k k k k∞ =  

       
From Table 5.3 
 

1.0grk =  (from Table 5.3) 

1.0wek =  (no welding specified) 
1.0fk =  (by specification) 

0.70srk =  (see Figure 5.34) 
0.9szk =  (size unknown; use Table 5.3) 
1.0rsk =  (no information available; later review essential) 
1.0frk =  (no fretting anticipated) 

1.0crk = (no information available; later review essential) 
1.0spk =  (conservative estimate for specified operating speed) 

0.81rk =  (from Table 5.3 for R =99)) 
 
                           ( )( )( )( )( )( )( )( )( )( )1.0 1.0 1.0 0.7 0.9 1.0 1.0 1.0 1.0 0.81 0.51k∞ = =  
 
                          0.51(49) 25 ksifS = ≈  
 
Ignoring the issue of safety factor 
 

                    max
max 2 2

4 4(78,000)P
d d

σ
π π

= =  

 
Setting max 25 ksifSσ = =  
 

                      2
2

4(78,000) 4(78,000)25,000 3.973
25,000

d
d ππ

= ⇒ = =                      1.99"d =  
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5-41.  A solid square link for a spacecraft application is to be made of Ti-Al-4V titanium alloy (see Table 
3.3). The link must transmit a cyclic axial load that ranges form 220 kN tension to 220 kN compression, 
repeatedly. Welding is to be used to attach the link to the supporting structure. The link surfaces are to be 
finished by using a horizontal milling machine. A design life of 510  cycles is required. 
 

a. Estimate the fatigue strength of the part used in this application. 
b. Estimate the required cross-sectional dimensions of the square bar, ignoring the issues of stress 

concentration and safety factor. 
 
------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From Table 3.3; 1034 MPauS = , 883 MPaypS = . 

                            ' 1034 MPaN uS S= =  at N = 1 cycle 

                            ( )' 0.55 0.55 1034 569 MPaf uS S= = =  at 610N =  cycles where the factor 0.55 is the  
                                                                                                                                             midrange value. 
 
The resulting S-N curve is shown below 

 
 
Reading the cure, at the specified design life of 510  cycles 
 
                                           5

'
10 610 MPaNS = ≈  

 
From (5-56); ( )5 510 10gr we f sr sz rs fr cr sp rk k k k k k k k k k k=  

 
Based on the data provided 
 

1.0grk =  (no information available) 

0.8wek =  (welding specified) 
1.0fk =  (no information available) 

0.70srk =  (see Figure 5.34, assuming steel data applies) 
0.9szk =  (size unknown; use Table 5.3) 
1.0rsk =  (no information available; later review essential) 
1.0frk =  (no fretting anticipated) 

1.0crk = (no information available; later review essential) 
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Problem 5-41 (continued) 
 

1.0spk =  (moderate; use Table 5.3) 

0.69rk =  (high reliability required for spacecraft) 
 

Now we evaluate k∞ as 
 
         ( )( )( )( )( )( )( )( )( )( )510 1.0 0.8 1.0 0.7 0.9 1.0 1.0 1.0 1.0 0.69 0.3478 0.35k = = =  

 
The fatigue limit is therefore 

 
                           ( )5 5 5

'
10 10 10 0.35(610) 214 MPaN NS k S= == = =  

 
Ignoring stress concentration and safety factor issues 

 

                                    max
max 2

220 000P
A s

σ = =  

 
Equating this to 510 214 MPaNS = =  

 

                                             
3 3

6
2 6

220 10 220 10214 10 0.032 m
214 10

s
s
× ×

× = → = =
×

 

 
                                                32 mms =  on each side 
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5-42.  An old “standard” design for the cantilevered support shaft for a biclcle bedal has a history of fatigue 
failure of about one pedal for every 100 pedals installed. If management desires to reduce the incidence of 
failure to about one pedal shaft for every 1000 pedals installed, by what factor must the operating stress at the 
critical point be reduced, assuming that all other factors remain constant? 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 Based on historic data, the probability of failure for the “standard” pedal design is 
 

                                     { } 1P 0.010
100stdF = =  

 
         This gives an estimated reliability of 
 
                                      R (1 0.010)100 99%std = − =  
 
         The desired probability of failure and corresponding reliability are 
 

                                      { } 1P 0.0010
1000desF = =             R (1 0.0010)100 99.9%des = − =  

 
Based on concepts leading to (5-55), and assuming that the only factor that changes when going from 
the standard to the desired scenario is strength reliability, the stress reduction ratio must be, using 
Table 5.3 

 

                                   
( )
( )

R=99.9 desired 99.9

R=99 99standard

' 0.75 0.926 0.93
' 0.81

R

R

K S
K S

σ

σ
=

=
= = = ≈  

 
The operating stress at the critical point must be reduced to 93% of what it is currently for the standard 
design. 
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5-43.  An axially loaded actuator bar has a solid rectangular cross section 6.0 mm by 18.0 mm, and is made of 
2024-T4 aluminum alloy. The loading on the bar may be well approximated as constant-amplitude axial 
cyclic loading that cycles between a maximum load of 20 kN tension and a minimum load of 2 kN 
compression. The static properties of 2024-T4 are 469 MPauS = , 324 MPaypS = , and e (50 mm) = 20 
percent. Fatigue properties are shown in Figure 5.31. Estimate the total number of cycles to failure for this 
bar. Neglect stress concentration effects. Assume that buckling is not a problem. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The material properties are 469 MPauS = , 324 MPaypS = , 20%  in 50 mme = .  Since this is a non-zero 
mean loading condition we use (5-72). 
 

                        max  for 0 and 
1

a
eq CR m yp

m

u

S

S

σ
σ σ σ

σ− = > ≤
−

 

 
The cross-sectional area of the bar is 6 26(18) 108 10  mA −= = × . The mean, alternating, and maximum 
stresses are 
 

                      
[ ] 3

6

1 20 ( 2) 10
2 83.3 MPa

108 10
m

m
P
A

σ
−

⎛ ⎞ + − ×⎜ ⎟
⎝ ⎠= = =

×
 

                      
[ ] 3

6

1 20 ( 2) 10
2 101.9 MPa

108 10
a

a
P
A

σ
−

⎛ ⎞ − − ×⎜ ⎟
⎝ ⎠= = =

×
 

                       
                      max 83.3 101.9 185.2 MPam aσ σ σ= + = + =  
 
Since max 185.2 324 and 0yp mSσ σ= < = >  
 

                          101.9 123.9 MPa
83.31
469

eq CRσ − = =
−

 

 
Since Figure 5.31 is plotted in English units, we convert 123.9 MPa  17.96 ksi≈ . From Figure 5.31 for 
2024-T4 aluminum, we read 810N >>>  cycles to failure. Therefore 
 
                                                                             N ≈ ∞  cycles to failure. 
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5-44. A tie-bar is to be used to connect a reciprocating power source to a remote shaking sieve in an open-pit 
mine. It is desired to use a solid cylindrical cross section of 2024-T4 aluminum alloy for the tie-bar 
( 68 ksiuS = , 47 ksiypS = , and 20%  in 2 in.e = ) .  The applied axial load fluctuates cyclically from a 
maximum of 45,000 pounds tension to a minimum of 15,000 pounds compression. If the tie-bar is to be 
designed for a life of 710 cycles, what diameter should the bar be made? Ignore the issue of safety factor. 
 
---------------------------------------------------------------------------------------------------------------------------- 
 
The material properties are 68 ksiuS = , 47 ksiypS = , 20%  in 2 ine = , and from Figure 5.31, 

710 23.5 ksiNS = ≈ . The loading cycle is max 45 kipP = , min 15 kipP = − . This is a non-zero loading case and 
the mean load is 
 

                                   45 15 15 kip
2mP −

= =  

 

Since this is a tensile load, (5-70) is valid, giving max 1
N

N
t t

S
S

m R− =
−

, where 

                        68 23.5 0.654
68

u N
t

u

S S
m

S
− −

= = =   and  
max max

15 0.333
45

m m
t

P
R

P
σ
σ

= = = =  

 
Therefore 
 

                                       max
23.5 30.04 ksi

1 0.654(0.333)NS − = =
−

 

 
Ignoring the safety factor, the design stress dσ  is set equal to max NS −  to give 

 

               max max max
max 22

4
30,040

4

d N
P P P

S
A dd

σ
ππ

−= = = = =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

               2 4(45,000) 1.907
30,040

d
π

= =  

                                                                                                                  1.38"d =  
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5-45.  A 1-meter-long, simply supported horizontal beam is to be loaded at midspan by a vertical cyclic load 
P that ranges between 90 kN down and 270 kN down. The proposed beam cross section is the be rectangular, 
50 mm wide by 100 mm deep. The material is to be Ti-6Al-4V titanium alloy. 
 

a. What is (are) the governing failure mode(s), and why? 
b. Where is (are) the critical point(s) located? How do you come to this conclusion? 
c. How many cycles would you predict that the beam could sustain before it fails? 

 
-------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 From Table 3.3; 1034 MPauS = , 883 MPaypS = , and ( )50 mm 10%e =  
 
(a) Since the loading is cyclic, the probable failure mode is fatigue. 
(b) Since the beam cross section is uniform in size, and the maximum bending moment is at midspan, the 
critical section is midspan. Since tension is more critical than compression under fatigue loading, the critical 
point will be at the bottom of the beam (the tension side). 
(c) This is a non-zero mean loading case. 
 

                 
1

a
eq cr

m

uS

σ
σ

σ− =
−

   for 0mσ ≥ and max ypSσ ≤  

 
   Note that  
 

                           a
a

M c
I

σ =   and   m
m

M c
I

σ =  

 

    where   3 2
/ 2 6
/12

c d
I bd bd
= =  

 
    At the critical point 
 

                         ( )max min0.5 0.125 270 90 22.5 kN-m
2 2 2 2
a

a
P P PLM

−⎛ ⎞ ⎛ ⎞⎛ ⎞= = = − =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

                         ( )max min0.5 0.125 270 90 45 kN-m
2 2 2 2
m

m
P P PLM

+⎛ ⎞ ⎛ ⎞⎛ ⎞= = = + =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

     Therefore 
 

               2 2
6 6(22.5) 270 MPa

(0.050)(0.10)
a

a
M

bd
σ = = =        2 2

6 6(45) 540 MPa
(0.050)(0.10)

m
m

M
bd

σ = = =  

 

                270 565 MPa
5401

1034

eq crσ − = =
−
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Problem 5-45 (continued) 
 
Noting that ' 1034 MPaN uS S= =  at N = 1 cycle, and ( )' 0.55 0.55 1034 569 MPaf uS S= = =  at 610N =  
cycles where the factor 0.55 is the midrange value, the resulting S-N curve is shown below 
 
 

 
 
Since 565 MPaeq crσ − = is below the ' 569 MPafS = level, we could assume infinite life, but eq crσ − is not 

much below '
fS , so caution must be exercised.  
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5-46.  Explain how a designer might use a master diagram, such as the ones shown in Figure 5.39. 
 
------------------------------------------------------------------------------------------------------------------------ 
 
If a designer is engaged in designing a part subjected to non-zero-mean cyclic stressing, and can find a master 
diagram such as Figure 5.39 for the material, design calculations may be made directly from the data-based 
master diagram without resorting to any approximating  relationships such as Goodman’s, Soderberg’s, etc.  
For example, if the loading cycle is known, and it is desired to determine dimensions that will provide a 
specified design life, the designer could calculate R for the load cycle, find the intersection of the R “ray” 
with the pertinent life curve, and read out the corresponding maximum stress from the master diagram, divide 
it by an appropriate safety factor, and calculate design dimensions. If required, additional adjustments could 
be made to account for other factors, such as those listed in the solution to problem 5-35. (all this assumes a 
uniaxial state of stress.) 
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5-47.  a. An aluminum bar of solid cylindrical cross section is subjected to a cyclic axial load that ranges form 
5000 pounds tension to 10,000 pounds tension. The material has an ultimate tensile strength of 100,000 
psi, a yield strength of 40,000 psi, and an elongation of 8 percent in 2 inches. Calculate the bar 
diameter that should be used to just produce failure at 510  cycles, on average. 
b. If, instead of the loading specified in part (a), the cyclic axial load ranges form 15,000 pounds 
tension to 20,000 pounds tension, calculate the bar diameter that should be used to produce failure at 

510  cycles, on average. 
c. Compare the results of parts (a) and (b), making any observations you think appropriate. 

 
-------------------------------------------------------------------------------------------------------------------- 
 
The material properties are 100 ksiuS = , 80 ksiypS = , 8%  in 2 ine = , and from Figure 5.31, 

510 40 ksiNS = ≈ . 
 
(a) The maximum and minimum loads are max 10 kipP = and min 5 kipP = . The mean and alternating loads 
are 
 

                                  10 5 7.5 kip
2mP +

= =      10 5 2.5 kip
2aP −

= =  

 
Expanding (5-72) 
 

                         
/ 2.5 7.5 0.1375

/ 40 1001

a a m
eq CR

m eq CR u

u

P A P P
A

P A S
S

σ
σ−

−
= ⇒ = + = + =

−
 

 
For a circular cross section  
 

                                      
2

2 4(0.1375)0.1375 0.175
4
dA dπ

π
= = ⇒ = =  

                                                                                                        510 0.418 0.42"d d= = ≈  

 

(b) With max 20 kipP = and min 15 kipP = , 20 15 17.5 kip
2mP +

= =  and 20 15 2.5 kip
2aP −

= = . This results 

in 
 

                                   
/ 2.5 17.5 0.2375

/ 40 1001

a a m
eq CR

m eq CR u

u

P A P P
A

P A S
S

σ
σ−

−
= ⇒ = + = + =

−
 

                                    
2

2 4(0.2375)0.2375 0.302
4
dA dπ

π
= = ⇒ = =  

 
                                                                                                                        510 0.549 0.55"d d= = ≈  

 
(c) Although the alternating stress is the same for both cases, the higher tensile mean stress requires a larger 
diameter because max a mσ σ σ= +  is higher. 
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5-48.  The S-N data from a series of completely reversed fatigue tests are shown in the chart below.  The 
ultimate strength is 1500 MPa, and the yield strength is 1380 MPa. Determine and plot the estimated S-N 
curve for the material if its application can be well characterized as having a mean stress of 270 MPa. 
 

S (MPa) N (cycles) 
1170 42 10×  
1040 45 10×  
970 51 10×  
880 52 10×  
860 55 10×  
850 61 10×  
840 62 10× → ∞  

 
-------------------------------------------------------------------------------------------------------------------------- 
 
The plotting parameter of interest is ( )max Nσ . Using (5-64) we can write 
 

                                          ( )max 1 N
N mN

u

S
S

S
σ σ

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
                                                                       (1) 

 
Using the zero-mean date given in the problem statement we know that 42 10 1170 MPaNS = × = , and we know 

270 MPamσ = . Using (1) we have 
 

                           ( ) 4max 2 10
11701170 270 1 1176 Mpa
1500Nσ

= ×
⎡ ⎤= + − =⎢ ⎥⎣ ⎦

 

 
Using this sane technique for all other data given in the problem statement we generate the table below 
 

N (cycles) S (MPa) ( )max (MPa)Nσ  
42 10×  1170 1176 
45 10×  1040 1123 
51 10×  970 1065 
52 10×  880 992 
55 10×  860 975 
61 10×  850 967 

62 10× → ∞  840 959 

 
 
The curve is shown below. 
 
 
 
 
 
 
 
 
Problem 5-48 (continued) 
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5-49.  The max Nσ − data for direct stress fatigue teste, in which the mean stress was 25,000 psi tension for all 
tests, are shown in the table. 
 

max  (psi)σ  (cycles)N  
150,000 42 10×  
131,000 45 10×  
121,000 51 10×  
107,000 52 10×  
105,000 55 10×  
103,000 61 10×  
102,000 62 10×  

 
       The ultimate strength is 240,000 psi, and the yield strength is 225,000 psi. 

a. Determine and plot the max Nσ −  curve for this material for a mean stress of 50,000 psi, tension. 
b. Determine and plot, on the same graph sheet, the max Nσ −  curve for this material for a mean stress 
of 50,000 psi, compression. 

 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
The plotting parameter of interest is ( )max Nσ . Using (5-64) we can write 
 

                                          ( )max 1 N
N mN

u

S
S

S
σ σ

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
 

 
For a life of 42 10N = ×  cycles, the data table developed for 25 ksimσ = + , 240 ksiuS = and 

225 ksiypS = we write the above equation as  [ ]150 (25) 1 / 240N NS S= + − .  Solving for NS ,   
 

                             42 10
150 25 139.5 ksi

251
240

NS = ×
−

= =
⎛ ⎞−⎜ ⎟
⎝ ⎠

 

 
 NS , ksi N, cycles 
 139.5 42 10×  
 118.3 45 10×  
 107.1 51 10×  
 91.5 52 10×  
 89.3 55 10×  
 87.0 61 10×  

Using the same technique , the other 
tabulated values of ( )max Nσ  may be used to 

construct the table to the right for NS . 
 

 85.9 62 10×  
 

(a) For the case of 50 ksimσ = + , ( ) 4max 2 10
139.5139.5 50 1 160.4 ksi
240Nσ

= ×
⎡ ⎤= + − =⎢ ⎥⎣ ⎦

. Using the same 

technique , the other tabulated values of NS  may be used to construct a table for ( )max Nσ  with 

50 ksimσ = + . 
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Problem 5-49 (continued) 
 
(b) For the case of 50 ksimσ = − , the previous approach is not valid since 0mσ < . Instead we use 

 
                                   ( )max m N m NN Sσ σ σ σ= + = +  

 
                                             ( ) 4max 2 10 50 139.5 89.5 ksiNσ

= ×
= − + =  

 
Using the same technique , the other tabulated values of NS  may be used to construct the table shown for 

( )max Nσ  with 50 ksimσ = −  
 
 

50 ksimσ = +   50 ksimσ = −  

( )max Nσ , ksi N, cycles  ( )max Nσ , ksi N, cycles 

160.4 42 10×   89.5 42 10×  
143.7 45 10×   68.3 45 10×  
134.8 51 10×   57.1 51 10×  
122.4 52 10×   41.5 52 10×  
120.7 55 10×   39.3 55 10×  
118.9 61 10×   37.0 61 10×  
118.0 62 10×   35.9 62 10×  

 
The result are plotted below along with the case for 0mσ =  
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5-50.  Discuss the basic assumptions made in using a linear damage rule to assess fatigue damage 
accumulation, and note the major “pitfalls” on might experience in using such a theory. Why, then, is a linear 
damage theory so often used? 
 
------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The basic assumptions made when using a liner damage rule include: 
 

(i) The damage fraction at any stress level is linearly proportional to the ratio of the number of cycles 
of operation to the number of cycles required to produce failure in a damage-free element. 
(ii) When the damage fractions sum to unity, failure occurs, whether operating at only one stress level, 
or at many stress levels in sequence. 
(iii) No influence of the order of stress levels applied in a sequence. 
(iv) No effect of prior cyclic stress history on the rate of damage accumulation. 

 
The most significant shortcomings of a linear damage rule are that assumptions (iii) and (iv) above are often 
violated. A linear damage theory is often used because of its simplicity. Further, non-linear damage theories 
do not show consistent superiority. 
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5-51. The critical point in the main rotor shaft of a new VSTOL aircraft, of the ducted-fan type has been 
instrumented, and during a “typical” mission the equivalent completely reversed stress spectrum has been 
found to be 50,000 psi for 15 cycles, 30,000 psi for 100 cycles, 60,000 psi for 3 cycles, and 10,000 psi for 
10,000 cycle. 

Ten missions of this spectrum have been “flown”. It is desired to overload the shaft to 1.10 times the 
“typical” loading spectrum. Estimate the number of additional “overload” missions that can be flown without 
failure, if the stress spectrum is linearly proportional to the loading spectrum. An S – N curve for the shaft 
material is shown in Figure P5.51. 

 
---------------------------------------------------------------------------------------------------------------- 
Solution 
 
 A “typical” mission block contains the spectrum of completely reversed stresses shown. 
 

   50 ksi for 15 cyclesAσ = , 30 ksi for 100 cyclesBσ = , 60 ksi for 3 cyclesCσ = , and           
10 ksi for 10,000 cyclesDσ =  

 
The accumulated damage during a “typical” mission, typD , is given by (5-79) 

 

                     
4

1

i CA B D
typ

i A B C Di

n nn n nD
N N N N N=

= = + + +∑  

 
where iN is read from Figure P5.51 for each stress level. The damage accrued after 10 missions is 
 

                         
4

10 6
15 100 3 1010 10 0.429 0.43

2500 52,000 120 10typD D
⎡ ⎤

= = + + + = ≈⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
For 1.10 “overload” spectrum of completely reversed stresses: 55 ksi for 15 cyclesAσ = , 

33 ksi for 100 cyclesBσ = , 66 ksi for 3 cyclesCσ = , and   11 ksi for 10,000 cyclesDσ = . The values of  

iN are read from Figure P5.51. The damage accumulated during each “overload” block is 
 

                 
4

5
15 100 3 10 0.78

1500 35,000 4 8.5 10ovD = + + + ≈
×

 

 
 The total damage after one overload block is 
 
                            10 0.43 0.78 1.21 1.0T ovD D D= + = + = >  
 
The obvious conclusion is that no additional “overload” missions should be attempted. 
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5-52.  A hollow square tube with outside dimensions of 32 mm and wall thickness of 4 mm is to be made of 
2024-T4 aluminum, with fatigue properties as shown in Figure 5.31. This tube is to be subjected to the 
following completely reversed axial force amplitudes: First, 90 kN for 52,000 cycles; next 48 kN for 948,000 
cycles; then, 110 kN for 11,100 cycles. 
 After this loading sequence has been imposed, it is desired to change the force amplitude to 84 kN, 
still in the axial direction. How many remaining cycles of life would you predict for the tube at this final level 
of loading? 
 
--------------------------------------------------------------------------------------------------------------- 
Solution 
 
For this cumulative damage problem we say FIPTOI 
 

                                     31 2 4

1 2 3 4
1

nn n n
N N N N

+ + + =  

 
Since the applied forces are axial, the normal stress on the section is given by 
 

               2 2 2874
(0.032) (0.026)

P P P
A

σ = = ≈
−

 

 
From Figure 5.?? We convert the stress levels given into SI units and 
approximate the number of cycles to failure at each load level. The results are tabulated as shown 
 
 

Load  
Level 

 
P (kN) 

 
 (MPa)σ  

 
(ksi)σ≈  

 
n (cycles) 

 
N (cycles) 

1 90 259 38 45.2 10×  54 10×  
2 48 138 20 59.48 10×  ∞  
3 110 316 46 41.11 10×  48 10×  
4 84 241 35 ? 51.8 10×  

 
 

                             
4 5 4

4
5 4 5

5.2 10 9.48 10 1.11 10 1
4 10 8 10 1.8 10

n× × ×
+ + + =

∞× × ×
 

                            ( )54
450.13 0 0.14 1 1.8 10 1 0.27

1.8 10
n n+ + + = → = × −
×

 

                                                                                                    5
4 1.31 10n = ×  
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5-53.  A solid cylindrical bar of 2024-T4 aluminum alloy (see Figure 5.31) is to be subjected to a duty cycle 
that consists of the following spectrum of completely reversed axial tensile loads: First, 50 kN for 1200 
cycles; next, 31 kN for 37,000 cycles; then 40 kN for 4300 cycles. Approximate static properties of 2024-T4 
aluminum alloy are 470 MPauS = and 330 MPaypS = . 

What diameter would be required to just survive 50 duty cycles before fatigue failure takes place? 
 
--------------------------------------------------------------------------------------------------------------------- 
Solution 
 
In this problem FIPTOI ( )1 1 2 2 3 3/ / / 1n N n N n N+ + = . Since the applied forces are axial and the bar has a 
solid circular cross section, the stress at each load level may be calculated as /i iP Aσ = . Since the area A is 
unknown, a trial value is assumed or estimated to make the calculation iσ  possible. One estimation, based on 
a trial area that would give a maximum stress of about 2/3 the yield strength is 
 

                                        
3

4 2max
6

50 10 2.26 10  m
(2 / 3) 0.67(330 10 )yp

P
A

S
−×

≈ = = ×
×

 

 
Using this area, the stresses at each load level are 4425i iPσ ≈ , or: 1 221 MPa (32.1 ksi)σ = , 

2 137 MPa (19.9 ksi)σ = , and 3 177 MPa (25.7 ksi)σ = . The failure lives at these stress levels may be 
approximated form Figure 5.31. The results are summarized below. Note that each value of in  is multiplied 
by 50 to account for the required number of duty cycles. 

 
Load 
Level 

 
P, kN 

 
σ , MPa (ksi) 

 
in  cycles 

 
iN  cycles 

1 50 221 (32.1) 1200(50) 56 10×  
2 31 137 (19.9) 37,000(50) 82.5 10×  
3 40 177 (25.7) 4300(50) 63.5 10×  

 
Based on a trail area of 4 22.26 10  mA −= × , the data above results in 

 

                  5 8 6
1200(50) 37,000(50) 4300(50) 0.169 0.17 1

6 10 2.5 10 3.5 10
+ + = ≈ <

× × ×
 

 
The trial are used is obviously too large. As a second approximation we arbitrarily select the area to be 80% 
of the original. This provides an area of 4 4 2

2 0.8(2.26 10 ) 1.81 10  mA − −= × = × . The resulting date at each 
load level is 

 
 

Load 
Level 

 
P, kN 

 
σ , MPa (ksi) 

 
in  cycles 

 
iN  cycles 

1 50 277 (40.2) 1200(50) 51.7 10×  
2 31 171 (24.8) 37,000(50) 65 10×  
3 40 221 (32.1) 4300(50) 58 10×  

 
Based on a trail area of 4 21.81 10  mA −= × , the data above results in 
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Problem 5-53 (continued) 
 
 

                  5 6 5
1200(50) 37,000(50) 4300(50) 0.992 1
1.7 10 5 10 8 10

+ + = ≈
× × ×

 

 
This is considered close enough. The resulting diameter is 

 

                  
44 4(1.81 10 ) 0.0152 mAd

π π

−×
= = =                                15.2 mmd =  
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5-54.  The stress-time pattern shown in Figure P5.54(a) is to be repeated in blocks until failure of a test 
component occurs. Using the rain flow cycle counting method, and the S – N curve given in Figure P5.54(b), 
estimate the hours of life until failure of this test component occurs. 
 
---------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Start the count at a minimum valley, as 
shown, by shifting the block along the 
time axis. Data for each numbered 
raindrop in the table below. Values for 

eq CRσ −  are calculated from 
 

           ; 0
1

a
eq CR m

m

uS

σ
σ σ

σ− = ≥
−

 

 
          ; 0eq CR a mσ σ σ− = ≤  
 
We note that 62 ksiuS = and N is read 
form Figure P-54(b) 
 
 
 
 

 
Rain Drop No. 

n 
(cycles) 

max

(ksi)
σ

 min

(ksi)
σ

 
(ksi)

mσ  
(ksi)

aσ  
(ksi)

eq CRσ −  
N 

(cycles) 

1, 4@1/ 2 .ea  1 40 -50 -5 45 45 36 10×  
2,3@1/ 2 .ea  1 20 -10 5 15 16.3 ∞  
5,8@1/ 2 .ea  1 35 10 22.5 12.5 19.6 ∞  
6,7@1/ 2 .ea  1 30 20 25 5 8.4 ∞  
9,10@1/ 2 .ea  1 30 0 15 15 19.8 ∞  

 
FIPTOI / 1i in N ≥∑ . With only 1 non-zero cycle ratio, defining the number of blocks to failure is simplified 
to 
 

                           3
3

1 1 6 10  blocks to failure
6 10f fB B⎛ ⎞ = ⇒ = ×⎜ ⎟×⎝ ⎠

 

 
At a rate of one block per minute 
 

                    ( )3 1 hr6 10  min 100 hours
60 minfH ⎛ ⎞= × =⎜ ⎟

⎝ ⎠
                               100 hoursfH =  

 
 
 
 



 231

5-55.  The stress-time pattern shown in Figure P5.55(a) is to be repeated in blocks until failure of the 
component occurs on a laboratory test stand. Using the rain flow cycle counting method, and the S – N curve 
given in Figure P5.54(b), estimate the time  hours of testing that would be required to produce failure.  
 
---------------------------------------------------------------------------------------------------- 
Solution 
 
Start the count at a minimum valley, as shown, by 
shifting the block along the time axis. Data for 
each numbered raindrop in the table below. 
Values for eq CRσ −  are calculated from 
 

           ; 0
1

a
eq CR m

m

uS

σ
σ σ

σ− = ≥
−

 

 
          ; 0eq CR a mσ σ σ− = ≤  
 
We note that 62 ksiuS = and N is read form 
Figure P-54(b) 
 
 
 
 
 
 

 
Rain Drop No. 

n 
(cycles) 

max

(ksi)
σ

 min

(ksi)
σ

 
(ksi)

mσ  
(ksi)

aσ  
(ksi)

eq CRσ −  
N 

(cycles) 

1,6@1/ 2 .ea  1 50 -50 0 50 50 32 10×  
2,3@1/ 2 .ea  1 40 20 30 10 19.4 ∞  
4,5@1/ 2 .ea  1 20 -30 -5 25 25 52.6 10×  
7,8@1/ 2 .ea  1 0 -20 -10 10 10 ∞  
9,10@1/ 2 .ea  1 20 10 15 5 6.6 ∞  

 
FIPTOI / 1i in N ≥∑ . With 2 non-zero cycle ratio, defining the number of blocks to failure is  
 

                      3 5
1 1 1 1985

2 10 2.6 10f fB B⎡ ⎤+ = ⇒ =⎢ ⎥× ×⎣ ⎦
 

 
The time to failure is 
 

                    1 hr1985 sec 0.55 hr
3600 secfH ⎛ ⎞= =⎜ ⎟

⎝ ⎠
                                       0.55 hrfH =  
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5-56.  In “modern” fatigue analysis, three separate phases of fatigue are defined. List the three phases, and 
briefly describe how each one is currently modeled and analysed. 
 
---------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The three phases are: 
 

(1) Crack initiation 
(2) Crack propagation 
(3) Final Fracture 

 
The crack initiation phase may be modeled using the “local stress-strain” approach. See section 5.6 for 
details. 
 
The crack propagation phase nay be modeled using a fracture mechanics approach in which the crack 
propagation rate is empirically expressed as a function of the stress intensity factor range. See section 5.6 for 
details. 
 
The final fracture phase may be modeled by using linear elastic fracture mechanics (LEFM) to establish the 
critical size that a growing crack should reach before propagating spontaneously to failure. See section 5.6 for 
details. 
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5-57.  For the equation / nda dN C K= ∆ , define each term, describe the physical phenomenon being modeled, 
and tell what the limiting conditions are on the magnitude of K∆ . What are the consequences of exceeding 
the limits of validity? 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
This equation models fatigue crack growth rate as a function of stress intensity factor range. The terms may 
be defined as 
 

              da
dN

= fatigue crack growth rate 

K∆ = stress intensity factor range 
C =  empirical parameter dependent upon material properties, fretting, and mean load 
n =  slope of log( / )da dN vs log( )K∆ plot 
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5-58.  Experimental values for the properties of an alloy steel have been found to be 1480 MPauS = , 

1370 MPaypS = , 81.4 MPa mIcK = , 2 percent in 50 mme = , ' 1070 MPak = , ' 0.15n = , ' 0.48fε = , 
' 2000 MPafσ = , 0.091b = − , and 0.060c = − . A direct tension member made of this alloy has a single 

semicircular edge notch that results in a fatigue stress concentration factor of 1.6. The net cross section of the 
member at the root of the notch is 9 mm thick by 36 mm wide. A completely reversed cyclic axial force of 72 
kN amplitude is applied to the tension member. 

a. How many cycles would you estimate that it would take to initiate a fatigue crack at the notch root? 
b. What length would you estimate this crack to be at the time it is “initiated” according to the calculation 
of part (a)? 

 
----------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a) The normal stress amplitude, aS , may be calculated as 
 

                                   72 222.2 MPa
0.009(0.036)

a
a

F
S

A
= = =  

 
The nominal stress range, S∆ , is 2 444.4 MPaaS S∆ = = . Using (5-81) 
 

                                   

26
6

9

1.6(444.4 10 )
2.44 10

207 10
σ ε

⎡ ⎤×⎣ ⎦∆ ∆ = = ×
×

 

 
Next, from (5-82) 
 

                                 

1
0.15

9 9

1
6 6 0.15

9 9

2 2(207 10 ) 2(1070 10 )

2.44 10 2.44 10     
414 10 2140 10

ε σ ε σ ε
ε ε

ε ε

⎡ ⎤∆ ∆ ∆ ∆ ∆⎛ ⎞ ⎛ ⎞= + ⎢ ⎥⎜ ⎟ ⎜ ⎟∆ ∆× ×⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤× ×
= + ⎢ ⎥

× ∆ × ∆⎢ ⎥⎣ ⎦

 

or 
 

                                 
( ) 12 1

6 20 0.155.89 10 2.40 10
2
ε

ε
⎛ ⎞−⎜ ⎟− − ⎝ ⎠∆

= × + × ∆  

 
or 
 
                                      ( )2 6 20 5.6711.78 10 4.80 10ε ε− − −∆ = × + × ∆  
 
Solving for ε∆ gives 33.8 10  cm/cmε −∆ ≈ × . Then, from (5-83) 
 
 

                ( ) ( )
3 6

0.091 0.60
9

3.8 10 2000 10 2 0.48 2
2 207 10 i iN N

−
− −× ×

= +
×

 

 
 



 235

Problem 5-58 (continued) 
 
 
or 
 

                                
1

0.6 0.0910.21 80.5i iN N
−−⎡ ⎤= −⎣ ⎦  

 
Solving 
 
                               73.2 10  cycles to initiationiN ≈ ×  
 

 
(b)  There is no known method for calculating the length of a newly formed fatigue crack. The length must 
either be measured from an experimental test or estimated from experience. Often, if no other information is 
available, a newly initiated fatigue crack is assumed to have a length of about 1.5 mm. 
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5-59. Testing an aluminum alloy has resulted in the following data: 483 MPauS = , 345 MPaypS = , 

28 MPa mIcK = , ( )50 mm 22%e = , ' 655 MPak = , ' 0.065n = , ' 0.22fε = , ' 1100 MPafσ = , 0.12b = − , 
0.60c = − , and 71 GPaE = . A direct tension member made of this alloy is to be 50 mm wide, 9 mm thick, 

and have a 12 mm diameter hole, through the thickness, at the center of the tension member. The hole will 
produce a fatigue stress concentration factor of 2.2fk = . A completely reversed axial force of 28 kN 
amplitude is to be applied to the member. Estimate the number of cycles required to initiate a fatigue crack at 
the edge of the hole. 
 
---------------------------------------------------------------------------------------------------------------- 
Solution 
 
The nominal stress amplitude aS  may be calculated as 
 

                                                 28000 62.2 MPa
(0.009)(0.050)

a
a

F
S

A
= = =  

 
Hence the nominal stress range S∆  is given by   2 2(62.2) 124.4 MPaaS S∆ = = = .   Using (5-81) 

 

                                 
( ) 2

6

9

2.2 124.4 10
1.05 MPa

71 10
σ ε

⎡ ⎤×
⎣ ⎦∆ ∆ = =

×
                                                               (1) 

 
Next, from (5-82), using the results from (1) 

 

                               
( ) ( )

1/ 0.065

9 62 2 71 10 2 655 10
ε σ ε σ ε

ε ε

⎡ ⎤
∆ ∆ ∆ ∆ ∆⎛ ⎞ ⎛ ⎞⎢ ⎥= +⎜ ⎟ ⎜ ⎟⎢ ⎥∆ ∆⎝ ⎠ ⎝ ⎠× ×⎢ ⎥⎣ ⎦

 

                                
( ) ( )

1/ 0.065
6 6

9 6
1.05 10 1.05 10

2 142 10 1310 10
ε

ε ε

⎡ ⎤∆ × ×
= + ⎢ ⎥

× ∆ × ∆⎢ ⎥⎣ ⎦
 

                          ( ) ( )
2

14.386 487.39 10 2.41 10
2
ε

ε −− −∆
= × + × ∆  

                          ( ) 14.385 481.48 10 4.82 10ε ε −− −∆ = × + × ∆  
 

This can be iterated to the solution 
 
                                       33.64 10  m/mε −∆ ≈ ×  
 

Then, from (5-83) 
 

                            ( ) ( )
3 6

0.12 0.6
9

3.64 10 1100 10 2 0.22 2
2 71 10 i iN N

−
− −× ×

= +
×

 

                        ( ) ( )0.12 0.63 31.82 10 14.3 10 0.145i iN N− −− −× = × +  
 

This can be iterated to 
 

                                           1310iN >  cycles to initiation                   
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5-60.  A Ni-Mo-V steel plate with yield strength of 84,500 psi, plane strain fracture toughness of 
33,800 psi in , and crack growth behavior shown in Figure P5.60, is 0.50 inch thick, 10.0 inches wide, and 
30.0 inches long. The plate is to be subjected to a released tensile load fluctuating from 0 to 160,000 lb, 
applied in the longitudinal direction (parallel to 30-inch dimension). A through-the-thickness crack of length 
0.075 inch has been detected at one edge. How many more cycles of this released tensile loading would you 
predict could be applied before catastrophic fracture would occur? 
 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
This crack propagation problem may be started by assess whether the plane strain condition holds. 
 

                    
2 233.82.5 2.5 40 in

84.5
Ic

yp

K
B

S

⎛ ⎞ ⎛ ⎞≥ = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
Since the 0.50-inch plate meets the condition for plane strain, the critical crack size is determined from 
 

                                                
2

1 max

1 Ic
cr

t

K
a

Cπ σ −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

 
With / 0.075 /10 0.008ia b = = we use Figure 5.19 to determine [ ]3/ 2

1 1 0.008 1.11C − = , which results in 

1 1.12C = . Because 1C  is a function of crack size, it changes value as the crack grows. If the crack were to 
grow to 0.3"a = , we would find / 0.03a b = , and eventually 1 1.13C = .The maximum tensile stress is 

[ ]max / 160 / 0.5(10.0) 32 ksit P Aσ − = = = . This gives 
 

                                         
2

1 33.8 0.278 0.28"
1.13(32)cra

π
⎡ ⎤

= = ≈⎢ ⎥
⎣ ⎦

 

 
The empirical crack growth law for this material, from Figure P5.60 is 19 3/ 1.8 10da dN K−= × ∆ . Using  
(5-85) and (5-86) 
 

                         
3 319 19

3/ 21.8 10 1.13(32,000) 1.8 10 1.13(32,000)da daa dN
dN a

π π− −⎡ ⎤ ⎡ ⎤= × ⇒ = ×⎣ ⎦ ⎣ ⎦  

 
Integrating both sides from 0.075ia = to 0.28cra =  
 

                           
0.28 319

3/ 20.075 0
1.8 10 1.13(32,000)

pN N

N

da dN
a

π
= −

=

⎛ ⎞ ⎡ ⎤= ×⎜ ⎟ ⎣ ⎦⎝ ⎠∫ ∫  

 
or 

                              52 2 4.74 10
0.28 0.075 pN−− + = ×  

 
Solving 

 

                   57.3 3.78 10 74, 260 cycles
4.75pN −

= × =                    74, 260 cyclespN =  
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5-61. A helicopter-transmission support leg (one of three such members) consists of a flat plate of rectangular 
cross section. The plate is 12 mm thick, 150 mm wide, and 200 mm long. Strain gage data indicate that the 
load is cycling between 450 N and 100 kN tension each cycle at a frequency of about 5 times per second. The 
load is applied parallel to the 200-mm dimension and is distributed uniformly across the 300-mm width. The 
material is Ni-Mo-V alloy steel with an ultimate strength of 758 MPa, yield strength of 582 MPa, plane strain 
fracture toughness of 37.2 MPa m , and crack-growth behavior is approximated as 

( )327/ 4.8 10da dN K−≈ × ∆  , where /da dN is measured in m/mµ and K∆ is measured in MPa m .      
 If a through-the-thickness crack at one edge, with a crack length of 1  mm, is detected during an 
inspection.  Estimate the number of cycles before the crack length becomes critical 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
To begin, we assess whether the plane strain condition is applicable. 
 

                      
2 237.22.5 2.5 0.0102 m 10.22 mm

582
Ic

yp

K
B

S

⎛ ⎞ ⎛ ⎞≥ = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

Since 12 mm 10.22 mmB = > , plane strain prevails and 37.2 MPa mc IcK K= = ..The initial crack size is 
1 mmia = . The critical crack length, from (5-??) is 

 

                                          
2

1 max

1 Ic
cr

t

K
a

Cπ σ −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

 
where 
 

                                      
3

max
max

100 10 55.6 MPa
0.012(0.150)t

P
A

σ −
×

= = =  

 
Since 1C is a function of crack length, its value changes as the crack grows. For an initial crack length of 

1 mmia = , / 1/ 75 0.01333a b = = , and 
 
                                                   [ ]3/ 2

1 11 0.0133 1.12 1.14C C− ≈ → =  
 
Therefore we estimate 
 

                                                 
26

6
1 37.2 10 0.109 m 109 mm

1.14(55.6 10 )cra
π
⎡ ⎤×

= = =⎢ ⎥
×⎢ ⎥⎣ ⎦

 

 
Using the average 1 1.14C =   
 

            ( )
3327 27 6 3/ 2 3/ 24.8 10 4.8 10 1.14(55.6 10 ) 0.0068da K a a

dN
π− − ⎡ ⎤≈ × ∆ = × × =⎣ ⎦  

 
or 
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Problem 5-61(continued) 
 

                
0.109.109

3/ 20.001 0 0.001

20.0068 0.0068
pN

p
da dN N

a a
= → − =∫ ∫  

 

             1 12 0.0068 57.19 / 0.0068 8410
0.109 0.001 p pN N

⎛ ⎞
− − = → = =⎜ ⎟

⎝ ⎠
 

 
                                                                                                                            8410pN =  cycles 
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5-62. Make two neat, clear sketches illustrating two ways of completely defining the state of stress at a point. 
Define all symbols used. 
 
------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

 
 

 

(a) Arbitrary x-y-z coordinate system with three 
normal stress components ( , ,x y zσ σ σ ) and 

three shear stress components  ( , ,xy yz xzτ τ τ ). 

(b) Principal axes 1-2-3 with three peincipal 
stresses ( 1 2 3, ,σ σ σ ). 
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5-63.  A solid cylindrical bar is fixed at one end and subjected to a pure torsional moment tM  at the free end, 
as shown in Figure P5.63. Find, for this loading, the principal normal stresses and the principal shearing 
stresses at the critical point, using the stress cubic equation. 
 
-------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For pure torsion all points on the surface of the cylindrical bar are equally 
critical. The state of stress at each point is illustrated in the sketch. The stress is  
 

                          4 3
2

/ 2
t t t

xy
M a M a M

J a a
τ

π π
= = =  

 
The stress cubic equation reduces to 3 2( ) 0xyσ σ τ+ − = . This may be solved to 
obtain the roots, which are the principal stresses. 
 

                     1 3
2 t

xy
M
a

σ τ
π

= =  , 2 0σ =  , 3 3
2 t

xy
M
a

σ τ
π

= − = −  

 
The principal shearing stresses are 
 

              2 3
1 32

tM
a

σ σ
τ

π
−

= =  ,  3 1
2 3

2
2

tM
a

σ σ
τ

π
−

= =  , 1 2
3 32

tM
a

σ σ
τ

π
−

= =  
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5-64.  Solve problem 5-63 using Mohr’s circle analogy. 
 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
In solving 5-63 using Mohr’s circle we note that the 
three-dimensional state of stress can be reduced to a 
state of stress in the x-y plane as illustrated. In 
constructing Mohr’s circle we plot the two 
diametrically points A and B, with coordinates 
 
 

              3
2

: 0, t
x xy

M
A

a
σ τ

π
⎛ ⎞= =⎜ ⎟
⎝ ⎠

    and    3
2

: 0, t
y xy

M
B

a
σ τ

π
⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 

 
Mohr’c circle is plotted as shown and the principal stresses are as indicated 

 

            1 3
2 t

xy
M
a

σ τ
π

= =  , 2 0σ = , 3 3
2 t

xy
M
a

σ τ
π

= − = −  

            2 3
1 32

tM
a

σ σ
τ

π
−

= =  , 3 1
2 3

2
2

tM
a

σ σ
τ

π
−

= =   

            1 2
3 32

tM
a

σ σ
τ

π
−

= =  
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5-65.  A solid cylindrical bar of diameter d is fixed at one end and subjected to both a pure torsional moment 
tM  and a pure bending moment bM  at the free end. Using the stress cubic equation (5-1), find the principal 

normal stresses and principal shearing stresses at the critical point for this loading, in terms of applied 
moments and bar dimensions. 
 
---------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The pure torsional moment, tM , results in a shear stress that is equally critical 
at all points on the surface. This stress is 
 

                4 3
( / 2) 16

/ 32
t t t

xy
M c M d M

J d d
τ

π π
= = =  

 
The pure bending moment, bM , results in a normal stress that is maximum at 
the furthest distance from the neutral bending axis. Assuming the tensile and compressive normal stresses to 
be equally as critical, we model the tensile stress. The magnitude of this stress is 

 

        4 3
( / 2) 32

/ 64
b b b

x
M c M d M

I d d
σ

π π
= = =  

 
The stress cubic equation reduces to 3 2 2( ) ( ) 0x xyσ σ σ σ τ− + − = or 2 2( ) 0x xyσ σ σσ τ− − = . This can be solved 
to obtain 

 

     ( )
2 2 2

2 2 2
1 3 3 3 3

16 16 16 16
2 2

x x b b t
xy b b t

M M M
M M M

d d d d
σ σ

σ τ
π π π π

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎡ ⎤= + + = + + = + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

     2 0σ =  

     ( )
2 2 2

2 2 2
3 3 3 3 3

16 16 16 16
2 2

x x b b t
xy b b t

M M M
M M M

d d d d
σ σ

σ τ
π π π π

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − + = − + = − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
The principal shearing stresses are 

 

                  2 22 3
1 3

8
2 b b tM M M

d
σ σ

τ
π

− ⎡ ⎤= = − + +⎢ ⎥⎣ ⎦
 

                  2 23 1
2 3

16
2 b tM M

d
σ σ

τ
π

− ⎡ ⎤= = +⎢ ⎥⎣ ⎦
  

       2 21 2
3 3

8
2 b b tM M M

d
σ σ

τ
π

− ⎡ ⎤= = + +⎢ ⎥⎣ ⎦
 

 
 
 
 
 
 
 
 
 
 
 



 244

5-66.  Solve problem 5-65 using the Mohr’s circle analogy. 
 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The original three dimensional state of stress is 
represented as a state of plane stress as shown in the 
sketch. The stresses are represented as 
 

           4 3
( / 2) 16

/ 32
t t t

xy
M c M d M

J d d
τ

π π
= = =  

           4 3
( / 2) 32

/ 64
b b b

x
M c M d M

I d d
σ

π π
= = =  

 
The two diametrically opposite points used to construct Mohr’s circle are 
 

                 3 3
32 16

: ,b t
x xy

M M
A

d d
σ τ

π π
⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

    and    3
16

: 0, t
y xy

M
B

d
σ τ

π
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 

The center of the circle is located at  / 2xC σ=  and the radius is ( ) ( )22
1 2 / 2x xyR σ τ− = + . The circle is as 

shown and principal stresses are 
 
 

       

( )
2

2
1 1 2

2 2

3 3 3

2 2
3

2 2

16 16 16
                    

16                    

x x
xy

b b t

b b t

C R

M M M
d d d

M M M
d

σ σ
σ τ

π π π

π

−
⎛ ⎞= + = + +⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤= + +⎢ ⎥⎣ ⎦

 

        2 0σ =  
 

       

( )
2

2
3 1 2

2 2

3 3 3

2 2
3

2 2

16 16 16
                    

16                    

x x
xy

b b t

b b t

C R

M M M
d d d

M M M
d

σ σ
σ τ

π π π

π

−
⎛ ⎞= − = − +⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎡ ⎤= − +⎢ ⎥⎣ ⎦

 

 
The principal shearing stresses are   

         

        2 22 3
1 3

8
2 b b tM M M

d
σ σ

τ
π

− ⎡ ⎤= = − + +⎢ ⎥⎣ ⎦
             2 23 1

2 3
16

2 b tM M
d

σ σ
τ

π
− ⎡ ⎤= = +⎢ ⎥⎣ ⎦

      

                  2 21 2
3 3

8
2 b b tM M M

d
σ σ

τ
π

− ⎡ ⎤= = + +⎢ ⎥⎣ ⎦
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5-67.  From the stress analysis of a machine part at a specified critical point, it has been found that 

6 MPazσ = , 2 MPaxzτ = , and 5 MPayzτ = . For this state of stress, determine the principal stresses and the 
maximum shearing stress at the critical point. 
 
-------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
For the state of stress shown the stress cubic equation reduces to 

3 2 2 2( ) 0z xz yzσ σ σ σ τ τ− + − − = . This can be factored to yield 
2 2 2( ) 0z xz yzσ σ σσ τ τ⎡ ⎤− − + =⎣ ⎦ . Solving for the principal stresses 

  

            

( )

( )

2 2 2

1

2 2 2

4

2

6 (6) 4 (2) (5) 6 12.3    9.15 MPa
2 2

z z xz yzσ σ τ τ
σ

+ + +
=

+ + + +
= = ≈

 

 
            2 0σ =  

           
( ) ( )2 2 2 2 2 2

3

4 6 (6) 4 (2) (5) 6 12.3 3.15 MPa
2 2 2

z z xz yzσ σ τ τ
σ

− + + − + + −
= = = ≈ −  

 
The maximum shearing stress is 
 

                                 max min
max

9.15 ( 3.15) 6.15 MPa
2 2

σ σ
τ

− − −
= = =  
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5-68.  A solid cylindrical bar of 7075-T6 aluminum is 3 inches in diameter, and is subjected to a torsional 
moment of 75,000 in-lbxT = , a bending moment of  50,000 in-lbyM = , and a transverse shear force of 

90,000 lbzF = , as shown in the sketch of Figure P6.68. 
a. Clearly establish the location(s) of the potential critical point(s), giving logic and reasons why you 
have selected the point(s). 
b. Calculate the magnitudes of the principal stresses at the selected point(s). 
c. Calculate the magnitude(s) of the maximum shearing stress(es) at the critical point(s). 

 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 (a) The system of applied moments 
and forces will produce three stress 
components. There will be a 
bending stress due to the moment 
( b xσ σ= ) and two components of 
shearing stress: one due to torsion 
( Tτ ) and one due to transverse shear 
( . .t sτ ). Four points (A, B, C, and D). 
Points A and C have a normal stress  
( b xσ σ= ) and a shear stress due to 
torsion ( Tτ ). Points B and D have 
two components of shear stress, 
which add at point D and subtract at 
point B. We note that points A and C 
are equally critical, but since A has a 
tensile normal stress, we select A for 
detailed analysis. Since the shearing 
stresses add at point D, we also 
select that point for detailed 
analysis. 
 
(b) The normal and shearing stresses are 
 

            4 3 3
( / 2) 32 32(50) 18.863 ksi

/ 64 (3)
b b b

x b
M c M d M

I d d
σ σ

π π π
= = = = = =  

                        4 3 3
( / 2) 16 16(75) 14.147 ksi

/ 32 (3)
t t t

T
M c M d M

J d d
τ

π π π
= = = = =  

                          . . 2 2 2
164 4 16(90) 16.977 ksi

3 3 / 4 3 3 (3)
z z z

t s
F F F
A d d

τ
π π π

= = = = =  

 
The state of stress at point A is as shown in the figure. The principal stresses at this point are 
 
 

                    ( ) ( ) ( )
2

2 2 2
1 9.4315 9.4315 14.147

2 2
    9.4315 17.003 26.43 ksi

x x
xy

σ σ
σ τ⎛ ⎞= + + = + +⎜ ⎟

⎝ ⎠
= + ≈
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Problem 5-68 (continued) 
 
                                2 0σ =  

                              ( )
2

2
3 9.4315 17.003 7.57 ksi

2 2
x x

xy
σ σ

σ τ⎛ ⎞= − + = − ≈ −⎜ ⎟
⎝ ⎠

 

 
 
The state of stress at point D is as shown in the figure to the right. 
The principal stresses at this point are 
 
 
                              1 31.124 ksiσ τ= =  
                              2 0σ =  
                               3 31.124 ksiσ τ= − = −  
                               
(c)  The maximum shearing stress at each point is 
 

                                         ( ) max min
max

26.43 ( 7.57) 17 ksi
2 2A

σ σ
τ

− − −
= = =  

                                         ( ) max min
max

31.124 ( 31.124) 31.124 ksi
2 2B

σ σ
τ

− − −
= = =  
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5-69.  The square cantilever beam shown in Figure P5.69 is subjected to pure bending moments yM and zM , 
as shown. Stress concentration effects are negligible. 

a. For the critical point, make a complete sketch depicting the state of stress. 
b. Determine the magnitudes of the principal stresses at the critical point. 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a) Referring to Figure P5.69, the pure bending moment yM produces a uniform 

tensile stress ( )
y

x Mσ along the top surface of the beam. The pure bending 

moment zM produces a uniform tensile stress ( )
z

x Mσ along the left edge of the 

beam. These two stresses add at the upper left corner of the beam, producing the 
maximum normal stress ( ) ( )

y z
x x xM Mσ σ σ= + . This state of stress is shown in 

the sketch. 
 
(b) Based on the uniaxial state of stress at the critical point, the principal stresses are 
 
                         ( ) ( )1

y z
x x xM Mσ σ σ σ= = + , 2 3 0σ σ= =  

 
where  

                                         ( ) 4 3

( / 2) ( / 2) 6

/12y

y y y
x M

y

M a M a M
I a a

σ = = =  

                                          ( ) 4 3
( / 2) ( / 2) 6

/12z

z z z
x M

z

M a M a M
I a a

σ = = =  

 
Therefore 

                                                        ( )1 3
6

y zM M
a

σ = +  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 249

 
 
5-70.  Equations (5-15), (5-16), and (5-17) represent Hooke’s Law relationships for a triaxial state of stress. 
Based on these equations: 

a. Write the Hooke’s Law relationships for a biaxial state of stress. 
b. Write the Hooke’s Law relationships for a uniaxial state of stress. 
c. Does a uniaxial state of stress imply a uniaxial state of strain? Explain 

 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a) To obtain the biaxial Hooke’s law equations from (5-15), (5-16), and (5-17),  set 0zσ = , giving 
 

                    ( )1
x x yE

ε σ νσ= − , ( )1
y y xE

ε σ νσ= − , ( )z x yE
νε σ σ= − +  

 
(b) To obtain the uniaxial Hooke’s law equations from (5-15), (5-16), and (5-17),  set 0y zσ σ= = , giving 
 

                    x
x E

σ
ε = , y z xE

νε ε σ= = −   

 
(c) Since all three component of strain in (b) are non-zero, the state of strain is not uniaxial for a state of 
uniaxial stress. 
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5-71.   It has been calculated the the critical point in a 4340 steel part is subjected to a state of stress in which 

6000 psixσ = , 4000 psixyτ = , and the remaining stress components are all zero. For this state of stress, 
determine the sum of the normal strains in the x, y, and z directions; that is, determine the magnitude of 

x y zε ε ε+ + . 
 
---------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
Since the only non-zero stresses are 6 ksixσ = and 4 ksixyτ = , and for this material 630 10E = ×  and 

0.3ν = , we get 
 

                   6
6000 200 in/in

30 10
x

x E
σ

ε µ= = =
×

  and  6
6000(0.30) 60 in/in

30 10
x

y z E
νσ

ε ε µ= = − = − = −
×

 

 
 
Thus 
 
                                    200 60 60 80 in/inx y zε ε ε µ+ + = − − =  
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5-72.  For the case of pure biaxial shear, that is, the case where xyτ is the only nonzero component of stress, 
write expressions for the principal normal strains. Is this a biaxial state of strain? Explain. 
 
---------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For pure biaxial shear  0x y zσ σ σ= = = , so 0x y zε ε ε= = = . In addition, 0yz xzτ τ= = , and equation (5-
14) reduces to  
 

                                     3 21( ) 0
4 xyε ε γ+ − =  

or 

                                   0
2 2
xy xyγ γ

ε ε ε
⎡ ⎤⎛ ⎞⎛ ⎞

− + =⎢ ⎥⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 

 
The roots (principal normal strains) of this equation are 
 

                             1 2
xyγ

ε =  , 2 0ε =  , 3 2
xyγ

ε = −  

 
Since two of the principal strains are non-zero and the third principal strain is zero, this is a case of biaxial 
strain. 
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5-73. Explain why it is often necessary for a designer to use a failure theory. 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
In contrast to a uniaxially stresses machine part, for which an accurate failure prediction may be obtained 
from one or a few simple tests, if the machine part is subjected to a biaxial or triaxial state of stress. A large 
number of complex multiaxial tests is required to make a failure prediction. Such complicated testing 
programs are costly and time consuming. Hence, a designer often finds it necessary to save time and money 
by using a failure prediction theory when faced with Multiaxial states of stress. 
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5-74.  What are the essential attributes of any useful failure theory? 
 
-------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Any useful failure theory must: 
 

1. Provide an applicable model that relates external loads to stresses, strains, or other pertinent 
parameters, at the critical point in the Multiaxial state of stress. 

2. Be based on measurable critical physical material properties. 
3. Relate stresses, strains, or other calculable parameters of the uniaxial state of stress to the 

measurable properties corresponding to failure in a simple uniaxial test. 
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5-75. What is the basic assumption that constitutes the framework for all failure theories. 
 
---------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
The basic assumption is as follows: Failure is predicted to occur when the maximum value of the selected 
mechanical modulus, in the Multiaxial state of stress becomes equal to or exceeds the value of the same 
modulus that produces failure in a simple uniaxial stress test, using the same material. 
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5-76. a. The first strain invariant may be defined as 1 1 2 3I ε ε ε= + + . Write in words a “first strain invariant” 

theory of failure. Be complete and precise. 
b. Derive a complete mathematical expression for your “first strain invariant” theory of failure, 
expressing the final result in terms of principal stresses and material properties. 
c. How could one establish whether or not this theory of failure is valid? 

 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a) Failure is predicted to occur in the multiaxial state of stress when the first strain invariant becomes equal 
to or exceeds the first strain invariant at the time of failure in a simple uniaxial test using a specimen of the 
same material. 
 
(b) Mathematically, the “first strain invariant” theory of failure may be expressed as IFPTOI 1 1 fI I≥ . In this 

expression 1 1 2 3I ε ε ε= + + . Using Hooke’s law in the form 
 

                              ( )1
i i j kE
ε σ ν σ σ⎡ ⎤= − +⎣ ⎦  

 
we can write 1 1 2 3I ε ε ε= + +  as 

 

                                      ( )1 1 2 3
1 2I

E
ν σ σ σ−

= + +  

 
By setting 1 fσ σ=  and 2 3 0σ σ= =  for the uniaxial state of stress at failure 

 

                                   ( )1
1 2

f fI
E
ν σ−

=  

As a result, we can write 
 
                              FIPTOI  ( )1 2 3 fσ σ σ σ+ + ≥  

 
(c) The validity of this theory, as for any theory, could only be established by comparing its predictive 
capability with a spectrum of experimental evidence. (There is no evidence that the hypothesized first-strain-
invariant theory is valid.) 
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5-77. The solid cylindrical cantilever bar shown in Figure P5.77 is subjected to a pure torsional moment T 
about the x-axis, a pure bending moment bM  about the y-axis, and a pure tensile force P along the x-axis, all 
at the same time. The material is a ductile aluminum alloy. 

a. Carefully identify the most critical point(a), neglecting stress concentrations. Give detailed reasoning 
for your selection(a). 
b. At the critical point(a), draw a cubic volume element, showing all stress vectors. 
c. Carefully explain how you would determine whether of not to expect yielding at the critical point. 

 
---------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
(a) The pure torsional moment T produces maximum shearing stress at the surface; all surface points are 
equally critical. The pure bending moment bM produces maximum normal stresses all along the top and 
bottom surface elements in Figure P5-77. (Both elements lie in the plane containing the z-axis). The tensile 
force P produces a uniform normal stress over the whole cross section. The most critical combination of these 
three stress component occurs along the top surface of the cylinder where the stresses caused by T, bM , and 
P are all at their maximum values, and tensile components add. Any point along the top element may be 
selected as a “typical” point. 
 
(b) A volume element representing any “typical” critical point is shown in 
the figure to the right. 
 
(c) Since a Multiaxial state of stress exists, a failure theory is the best tool for 
prediction of potential yielding. Since the specified aluminum alloy is 
ductile, the best choice for a failure theory would be the distortional energy 
failure theory, with the maximum shearing stress theory an acceptable 
second choice. The procedure would be: 
 

(1) Calculate the principal stresses 
(2) Use the chosen failure theory to predict whether yielding should be expected. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 257

 
 
5-78.  In the tiraxial state of stress shown in Figure P5.78, determine whether failure would be predicted. Use 
the maximum normal stress theory for brittle materials and both the distortional energy theory and the 
maximum shearing stress theory for ductile materials: 

a. For an element stressed as shown, made of 319-T6 aluminum ( 248 MPauS = , 165 MPayS = , 

2 percent in 50 mme = ). 
b. For an element made of 518.0 aluminum, as cast ( 310 MPauS = , 186 MPayS = , 

8 percent in 50 mme = ). 
 
 
-------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Since all shearing stress components are zero on the element shown in Figure P5.78, it is a principal element 
and the principal stresses are 1 290 MPaσ = , 2 70 MPaσ = , 3 35 MPaσ = −  
 
(a) Since 2%e = , the aluminum alloy is regarded as brittle, so the maximum normal stress theory is used 
and FIPTOI max fail uSσ σ≥ = . Thus 
                                                
                                             max 1 290 248uSσ σ= = ≥ =  
 
                   Failure is predicted by brittle fracture. 
 
(b)  Since 8%e = , the aluminum alloy is regarded as ductile, so both the distortional energy and maximum 
shearing stress theories will be used. From the distortional energy theory, FIPTOI 
 

                                ( ) ( ) ( )2 2 2 2
1 2 2 3 3 1

1
2 failσ σ σ σ σ σ σ⎡ ⎤− + − + − ≥⎢ ⎥⎣ ⎦

 

                 or 

                                ( ) ( ) ( )2 2 2 21 290 70 70 [ 35] 35 290 (186)
2
⎡ ⎤− + − − + − − ≥⎢ ⎥⎣ ⎦

 

                                           4 48.25 10 3.459 10× ≥ ×  
 
Since the inequality is satisfied, failure is predicted (by yielding). From the maximum shearing stress theory,  
FIPTOI 
 

                                       max min
max max2 2

yp
fail

Sσ σ
τ τ

−
= ≥ =  

 
                 or 
                                              1 3 290 ( 35) 186 325 186ypSσ σ− ≥ ⇒ − − ≥ ⇒ ≥  
 
Since the inequality is satisfied, failure is predicted (by yielding).  
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5-79.  The axle of an electric locomotive is subjected to a bending stress of 25,000 psi. At the critical point, 
torsional stress due to the transmission of power is 15,000 psi and a radial component of stress of 10,000 psi 
results form the fact that the wheel is pressed onto the axle. Would you expect yielding at the selected critical 
point if the axle is made of AISI 1060 steel in the “as-rolled” condition? 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The state of stress at the critical 
point is as shown in the sketch. 
For this state of stress the stress 
cubic equation reduces to 
 

           

( )
( )

( )

3 2

2

2 0

x z

x z xy

z xy

σ σ σ σ

σ σ σ τ

σ τ

− +

+ −

− − =

 

 
Substituting numerical values, we 
get 
 

           

( )
( )

( )

3 2

2

2

25 10

25( 10) (15)

( 10)(15) 0

σ σ

σ

− −

+ − −

− − − =

 

 
           or 
 
                                        3 215 475 2250 0σ σ σ− − − =  
 
Since the shearing stress is zero on the z-plane, it is by definition a principal plane. The principal stresses are 
determined to be 
 
                                   1 32 ksiσ = , 2 7 ksiσ = − , 3 10 ksiσ = −  
 
For the material used, 54 ksiypS = . Using the distortional energy theory, FIPTOI 
 

                                ( ) ( ) ( )2 2 2 2
1 2 2 3 3 1

1
2 failσ σ σ σ σ σ σ⎡ ⎤− + − + − ≥⎢ ⎥⎣ ⎦

 

                                ( ) ( ) ( )2 2 2 21 32 ( 7) 7 ( 10) 10 32 (54)    or   1647 2916
2
⎡ ⎤− − + − − − + − − ≥ ≥⎢ ⎥⎣ ⎦

 

                              
Since the condition is not satisfied, failure by yielding is not predicted. 
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5-80. A hollow tubular steel bar is to be used as a torsion spring subjected to a cyclic pure torque ranging 
from -60 N-m to +1700 N-m. It is desirable to use a thin-walled tube with wall thickness t equal to 10% of the 
outside diameter d. The steel material has an ultimate strength of 1379 MPa, a yield strength of 1241 MPa, 
and an elongation of ( )50 mm 15%e = . The fatigue limit is 655 MPa.  Find the minimum tube dimensions 
that should just provide infinite life. The polar moment of inertia for a thin-walled tube may be approximated 
by the expression 3 / 4J d tπ= . 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Since 0.10t d= , 3 4 4/ 4 0.1 / 4 0.0785J d t d dπ π= = = . The shear stress due to the pure torsion load is 
 

                            4 3 3
( / 2) 6.366

0.0785 0.1571xy
Tr T d T T
J d d d

τ τ ⎛ ⎞= = = = = ⎜ ⎟
⎝ ⎠

 

 
Since the only nonzero stress is the shear stress, the equivalent stress is given by 2 33 11.026 /eq xy T dσ τ= = .  

For the specifications given, the non-zero mean and alternating torques are ( )1700 60 / 2 820 N-mmT = − =   
and  ( )1700 60 / 2 880 N-maT = + = . The equivalent mean and alternating stresses are  
 
             3 311.026 / 9703/eq a aT d dσ − = ≈               3 311.026 / 9041/eq m mT d dσ − = ≈  
 
The equivalent completely reversed stress is 
 

                  
3

3 3 6

6

9703/ 9703
9041/ 6.56 101 1

1379 10

eq a
eq cr

eq m

u

d
d d

S

σ
σ

σ
−

− −
−

= = =
− ×− −

×

 

 
Equating the fatigue strength to the equivalent completely reversed stress 655 MPaeq cr fσ σ− = =  gives 

                    6
3 6

9703 655 10
6.56 10d −

= ×
− ×

 

 
This gives 

                    3 6 6
6

9703 6.56 10 21.4 10 0.0278 m
655 10

d d− −= + × = × → =
×

, or 27.8 mm, 2.78 mmd t= =  

 
Using these results 
 

            3
9703 451.6 MPa

(0.0278)eq aσ − = =       and          3
9041 420.8 MPa

(0.0278)eq mσ − = =  

 
Therefore 
 
                  max 451.6 420.8 874.2 MPa 1241 MPaypSσ = + = ≤ =  
 
We can therefore use 27.8 mmd =  and 2.78 mmt =  
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5-81. Using the “force-flow” concept, describe how one would assess the relative severity of various types of 
geometrical discontinuities in a machine part subjected to a given set of external loads. Use a series of clearly 
drawn sketches to augment your explanation. 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Visualizing the lies of force flow (dashed lines in the sketch below) as fluid-flow path-lines, it may be noted 
that higher stresses exist where force flow lines are closer together. Thus, when comparing two geometric 
discontinuities, the better geometry from the standpoint of stress concentration is the one which the lines of 
force flow are less crowded. On this basis, in the sketches below, Figure b is better than Figure a, Figure d is 
better than Figure c, and Figure f is better than Figure e. Any change in geometry that tends to smooth and 
separate the locally crowded force flow lines reduces the stress concentration. The use of a larger fillet radius 
in Figure f as compared to the small radius in Figure e, is a good example. The addition of “more” holes or 
notches, when properly placed and contoured as in Figure b or d, is also sometimes helpful, contrary to “first 
intuition”. 
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5-82. The support bracket shown in Figure P5.82 is made of permanent-mold cast-aluminum alloy 356.0, 
solution-treated and aged (see Tables 3.3 and 3.10), and subjected to a static pure bending moment of 850 in-
lb. Would you expect the part to fail when the load is applied? 
 
---------------------------------------------------------------------------------------------------------------- 
Solution 
 
From Table 3.3 38 ksiuS = , 27 ksiypS = , and 5%e = . Since the elongation in 2 inches is 5%, the material 
is on the boundary between brittle and ductile behavior. Examining Figure P5-82, may stress concentration 
sites require consideration as potential critical points. These include: (1) the 0.25 inch diameter hole, (2) the 
0.15 inch radius fillet, and (3) the 0.125 inch radius fillet. Considering each of these potential critical points: 
 

(1) The hole is at the neutral bending axis so the nominal stress is near aero, and even with a stress 
concentration the actual stress will also be near zero. The hole may be ignored. 

 
(2) Referring to Figure 5.7(a), at the 0.15 inch radius fillet 

 

                                    0.15 0.10
1.5

r
h
= =     and    4.5 3.0

1.5
H
h
= =  

 
            From Figure 5.7(a) we establish 1.9tK ≈ . Calculating the actual stress 
 

                  3
850(0.75)1.9 22.97 ksi

0.1875(1.5) /12act t nom t
McK K
I

σ σ
⎡ ⎤

= = = =⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Comparing 22.97 ksiactσ = with the material properties listed above, neither brittle fracture nor 
yielding would be predicted. 

 
(3) Referring to Figure 5.7(a), at the 0.125 inch radius fillet 

 

                                       0.125 0.10
1.25

r
h
= =     and    1.5 1.2

1.25
H
h
= =  

 
From Figure 5.7(a) we establish 1.7tK ≈ . Calculating the actual stress 

 

                                    3
850(0.625)1.7 29.59 ksi

0.1875(1.25) /12act t nom t
McK K
I

σ σ
⎡ ⎤

= = = =⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Comparing 29.59 ksiactσ = with the material properties listed above, brittle fracture would not be predicted, 
but yielding at this fillet is predicted. Whether one would predict failure is clouded by the fact that ductility of 
the material is on the boundary of brittle versus ductile behavior and the question about consequences of local 
yielding at the fillet. As a practical matter, it would probably be wise to redesign the part. 
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5-83. The machine part shown in Figure P5.83 is subjected to a completely reversed (zero mean) cyclic 
bending moment of 4000 in-lb± , as shown. The material is annealed 1020 steel with 57,000 psiuS = , 

43,000 psiypS = , and an elongation in 2 inches of 25 percent. The S – N curve for this material is given in 
Figure 5.31. How many cycles of loading would you estimate could be applied before failure occurs? 
 
---------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The cyclically loaded machine part has three potentially critical points; one at the 1/8”-diameter hole, one at 
the 0.25” radius fillet, and one at the 0.18” radius fillet. Since the part is subjected to cyclic pure bending, and 
the hole is at the neutral bending axis the nominal stress there is zero and even with a stress concentration the 
actual stress there will be nearly aero. The hole is therefore ignored. Comparing the two fillets, it may be 
observed that for the 0.25”-radius fillet the ratio of H/h is smaller and the ratio of r/h is larger than for the 
0.18”-radius fillet. Examining Figure 5.7(a)  we conclude that the stress concentration factor at the 0.18”-
radius fillet is larger and the nominal bending stress is larger. Therefore we focus on the 0.18"r =  fillet, 
where 
 

                                     0.18 0.11
1.64

r
h
= =     and    2.0 1.22

1.64
H
h
= =  

 
From Figure 5.7(a) we establish 1.7tK ≈ . Since the loading is cyclic, a fatigue stress concentration factor is 
needed. From Figure 5.46, for a steel with 57 ksiuS = and a fillet radius of 0.18"r = , we determine 0.8q ≈ . 
Using (5-92) we determine the fatigue stress concentration factor to be 
 
                                              ( ) ( )1 1 0.8 1.7 1 1 1.56f tK q K= − + = − + =  
 
The maximum normal stress is therefore 
 

                            3
4000(1.64 / 2)1.56 37.12 ksi

0.375(1.64) /12act t nom t
McK K
I

σ σ
⎡ ⎤

= = = ≈⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
From Figure 5.31, the estimated life would be 610failN ≈ cycles. 
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5-84.  a.  The mounting arm shown in Figure P5.84 Is to be made of Class 60 gray cast iron with ultimate 
strength of 414 MPa in tension and elongation in 50 mm less than 0.5%. The arm is subjected to a 
static axial force of 225 kNP = and a static torsional moment of 2048 N-mT = , as shown. For the 
dimensions shown, could the arm support the specific loading without failure? 
 
 b.  During a different mode of operation the axial force P cycles repeatedly from 225 kN tension to 
225 kN compression, and the torsional moment remains zero at all times. What would you estimate the 
life to be for this cyclic mode of operation?  

 
----------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 (a)   Due to the fillet, there is a stress concentration factor. Using Figures ?.?? (b) and (c) with 

/ 3 / 50 0.06r d = = and / 56 / 50 1.12D d = = , we approximate the stress concentration factors due to the axial 
load and the torsional moment as 

 
                            ( ) 1.8t PK ≈    and    ( ) 1.15t TK ≈  
 

The normal and shear stresses at the root of the fillet are 
 

                  ( )
( )
( )

3

2

4 225 10
1.8 206 MPa

0.05
x t P

PK
A

σ
π

⎛ ⎞×⎛ ⎞ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟
⎝ ⎠

 

                   ( ) ( )
( )4

32 2048 (0.025)
1.15 96 MPa

0.05
xy t T

TrK
J

τ
π

⎛ ⎞⎛ ⎞ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
The stress cubic equation for this state of stress is ( )3 2 2 0x xyσ σ σ σ τ− + − = , which gives principal stresses of 

 

           
2

2
1 2 2

x x
xy

σ σ
σ τ⎛ ⎞= + +⎜ ⎟

⎝ ⎠
,   2 0σ = ,   

2
2

3 2 2
x x

xy
σ σ

σ τ⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

 
Since the material is brittle, FIPTOI 

 

                                   
2

2
1 2 2

x x
xy uS

σ σ
σ τ⎛ ⎞= + + ≥⎜ ⎟

⎝ ⎠
 

                                   
2

2
1

206 206 (96) 244 MPa 414 MPa
2 2 uSσ ⎛ ⎞= + + = < =⎜ ⎟

⎝ ⎠
 

 
Failure under static loading will not occur. 
 

(b)  For cast irons with 88 ksi (607 MPa)uS < , ' 0.4f uS S= at 610N =  cycles. Therefore, for Class 60 gray 
cast iron 
 
                                               ' 0.4(414) 166 MPafS = =  
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Problem 5-84 (continued) 
 
This should be corrected for influence functions by using '

f fS k S∞= , but the information given is not 

sufficient to determine k∞ . Therefore 
 
                                ' 166 MPaf fS S= =  
 

For the mode of operation now being considered 0xyτ =  since 0T = . In addition, since P is completely 
reversed 

 
                                206 MPaa xσ σ= =   
 

From the S-N curve below, we can approximate the life as 
 
                                      45.2 10N ≈ ×  cycles 
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5-85. An S-hook, as sketched in Figure P5.85, is being proposed as a means of hanging unitized dumpster 
bins in a new state-of-the-art dip-style painting process. The maximum weight of a dumpster bin is estimated 
to be 300 pounds, and two hooks will typically be used to support the weight, equally split between two 
lifting lugs. However, the possibility exists that on some occasions the entire weight may have to be 
supported by a single hook. It is estimated that each pair of hooks will be loaded, unloaded, then reloaded 
approximately every 5 minutes. The plant is to operate 24 hours per day, 7 days per week. The proposed hook 
material is commercially polished AM 350 stainless steel in age-hardened condition (see Table 3.3). 
Preliminary considerations suggest that both yielding and fatigue may be potential failure modes. 

a. To investigate potential yielding failure, identify critical points in the S-hook, determine maximum 
stresses at each critical point, and predict whether the loads can be supported without failure by 
yielding. 
b. To investigate potential failure by fatigue, identify critical points in the S-hook, determine pertinent 
cyclic stresses at each critical point, and predict whether a 10-year design life could be achieved with 
99 percent reliability. 

----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a) Since the entire load can occasionally be placed on a single hook, to 
investigate yielding, the applied static load on the hook must be taken to 
be  
 
                                     300 lbyieldP =  
 
The material properties, taken form Tables 3.5 and 3.10 are 

206 ksiuS = , 173 ksiypS = , and 13%e = . The potential critical points 
are A and B as shown in the sketch. The stress at the inner radius of point 
A is 
 

                                 ( ) yieldA iA
i A

A iA

PM c
e Ar A

σ = +  

 
where 300(1) 300 in-lbA yield cAM P r= = =  
 
Knowing that iA i n ic c r r= = −  and n cr r e= − , determine  e from 
 

                                                   c
Ae r
dA
r

= −

∫
 

where  
2 2

2(0.31) 0.0755 in
4 4

wdA π π
= = =  and from Table 4.8, case 4 

 

                                   
1/ 22 2

2
2 2 4
w w w

i i
d d ddA r r

r
π
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= + − + −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∫  

 
Determining that 1 0.31/ 2 0.845 inir = − =  we determine 
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Problem 5-85 (continued) 
 

                         ( ) ( ) { }
1/ 22

2 0.312 0.845 0.31/ 2 0.845 0.31/ 2 2 1.00 0.9879 0.0760
4

dA
r

π π
⎧ ⎫⎡ ⎤⎪ ⎪= + − + − = − =⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∫  

 

                                 0.07551 0.0066 in
0.0760Ae e= = − =  

 
         1 0.0066 0.9934 inn cr r e= − = − =  and   0.9934 0.845 0.1484 iniA n ic r r= − = − =  

 
Therefore at point A 
 

                 ( ) ( )( )
300(0.1484) 300 105.732 3.974 109.706 ksi

(0.0066) 0.0755 0.845 0.0755
A iA

i A
A iA

M c P
e Ar A

σ = + = + = + =  

 
To check for yielding 
 
                                           ( ) 109.706 173i ypA Sσ = ≤ =  
 
                               The static load can be supported without yielding at point A. 

 
At critical point B:    
 

                                    ( ) B iB
i B

B iB

M c P
e Ar A

σ = +  

 
where  300(1.5) 450 in-lbB yield iBM P r= = = .Since 35 7.5 / 2 31.25 mmir = − =  
 

                      ( ) ( ) { }
1/ 22

2 0.312 1.345 0.31/ 2 1.345 0.31/ 2 2 1.500 104920 0.0505
4

dA
r

π π
⎧ ⎫⎡ ⎤⎪ ⎪= + − + − = − =⎢ ⎥⎨ ⎬

⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∫  

 

                               0.07551.500 0.0036 in
0.0505Be e= = − =  

 
                    1.5 0.0036 1.4964 innr = − =  and   1.4964 1.345 0.1514 iniB n ic r r= − = − =  
 
Therefore at point B 
 

                 ( ) ( )( )
450(0.1514) 300 171.484 ksi

(0.0036) 0.0755 1.4964 0.0755
yieldB iB

i B
B iB

PM c
e Ar A

σ = + = + =  

 
To check for yielding 
 
                                           ( ) 171.484 173i ypB Sσ = ≤ =  
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Problem 5-85 (continued) 
 
The static load can also be supported without yielding at point B. The margin of safety at this point is fairly 
small. Clearly critical point B governs the failure. An alternative calculation could have been made at point B 
using (4-15) and Table 4.3, Case 4. Noting that / 2 0.31/ 2 0.155wc d= = = , we find 

/ 1.5 / 0.155 9.68cr c = = . From Case 4 of Table 4.3 we determine ik  to be 
 

                                            ( ) ( )1.681.103 1.103 1.080 1.084
2.0i Bk = − − =  

 
The stress at point B is 
 

                      ( ) ( ) ( ) ( ) 4
450(0.31/ 2) 3001.084

0.0755(0.31) / 64
yield yieldB B

i i nom iB B B
B

P PM ck k
A I A

σ σ
π

⎛ ⎞⎛ ⎞
= + = + = +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

                       ( ) 170.71 ksii Bσ ≈  
 
                      This is reasonably close to the previous result for ( )i Bσ . 
 
(b) From a fatigue standpoint, the cyclic design life is estimated to be 
 

                        ( ) 6wk day hr min 1 cycle10 yr 52 7 24 60 1.048 10  cycles
yr wk day hr 5 mindN

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞= = ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
The critical point for fatigue loading is also point B. For fatigue loading the 300 lb total load is equally shared 
by each hook, so ( )max 300 / 2 150 lbfatigueP = = . We not that this is a non-zero-mean load ranging from 

min 0P =  to max 150 lbP = .  
 

Since fatigue properties are not readily available, the methods of 5.6 are used to estimate the S – N curve for 
the material, then modify the curve to account for various factors including reliability in the actual hook 
application. Using the methods of 5.6 we start with 

 
                      '

1 206 ksiN uS S= = =    and    6
'

10 100 ksi (since 200 ksi)uNS S= = >  
 
Using Table 5.4, and Figure 5.33; 0.81 (Table 5.4)rk = and 0.83 (Fig. 5.33)spk = .  From (5-57) 
 
                                                (0.83)(0.81) 0.67 k∞ = =  
 
From (5-55), 6

'
10(R 99) 0.67(100) 67 ksif NS k S∞ == = = = . This results in the approximate S-N curve shown 

below. 
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Problem 5-85 (continued) 
 

 
 
 
The stress level at critical point B, under fatigue loading, is proportional to the loading ratio 
( )max / 150 / 300 0.5yieldfatigueP P = = . Therefore 

 
                                           ( )max 0.5(171.484) 85.742 ksiiB fatigueσ − = =  

 
Since the cyclic loading is released, we determine eq CRσ − , which is 

                                                 
1

a
eq CR

m

uS

σ
σ

σ− =
−

 

 

Where max min 85.742 0 42.871 ksi
2 2a

σ σ
σ

− −
= = = , max min 85.742 0 42.871 ksi

2 2m
σ σ

σ
+ +

= = =  

 
Therefore 
 

                                    42.871 54.14 ksi
42.8711

206

eq CRσ − = =
−

 

 
From the S-N curve above it may be seen that 54.14 ksieq CRσ − = lies below the curve. We therefore 
conclude that the 10-year design life can be achieved at the 99% reliability level. 
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5-86. A  11 ton
2
− hydraulic press for removing and reinstalling bearings in small to medium-size electric 

motors is to consist of a commercially available hydraulic cylinder mounted vertically in a C-frame, with 
dimensions as sketched in Figure P5.86. It is being proposed to use ASTM A-48 (Class 50) gray cast iron for 
the C-frame material. (See Table 3.3 for properties.) Predict whether the C-frame can support the maximum 
load without failure. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From case 5 of Table 4.3 
 

            

1
1 2

1
ln ln

1.5 0.4 2.6       (1.0) ln (0.4) ln 0.362
1.5 1.5 0.4

i o

i i

r h rdA b b
r r r h

+
= +

+

+⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

∫
 

       
             2(1.0)(0.4) (0.7)(0.4) 0.68 inA = + =  

             0.4(1.7) 0.28(2.25) 1.926 in
0.68cr r +

= = =  

             0.681.926 0.0475 in
0.362

e = − =  

            ( )3.5 3000(1.926 3.5) 16.278 kip-incM P r= + = + =  
 
             1.926 0.0475 1.8785 inn cr r e= − = − =           1.8785 1.5 0.3785 ini n ic r r= − = − =  
 

              
( )( )

16.278(0.3785) 127.2 ksi
(0.0475) 0.68 1.5

i
i

i

Mc
eAr

σ = = =  

 
From Table 3.3,  50 ksiuS = . Since 127.2 50uS> = , failure by brittle fracture will occur and the load can 
not be supported..  
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5-87. A bolted joint of the type shown in Figure P5.87A employs a “reduced-body” bolt to hold the two 
flanged members together. The area of the reduced-body steel bolt at a critical cross section A is 20.068 in . 
The steel bolt’s static material properties are 60,000 psiuS = and 36,000 psiypS = . The external force P 
cycles from zero to 1200 lb tension. The clamped flanges of the steel housing have been estimated to have an 
effective axial stiffness (spring rate) of three times the axial bolt stiffness over its effective length 

1.50L = inches. 
a. Plot the cyclic force-time pattern in the reduced-body bolt if no preload is used. 
b. Using the S - N curve of Figure P5.87B, estimate bolt life for the case of no preload. 
c. Plot the cyclic force-time pattern in the reduced-body bolt if the nut is initially tightened to induce a 
preload force of 1 1000 lbF = in the bolt body (and a preload force of -1000 lb in the clamped flanges).  A 
separate analysis has determined that when the 1000-lb preload is present, the peak external force of 1200 lb 
will not be enough to cause the flanges to separate. (See Example 13.1 for details.) 
d. Estimate the bolt life for the case of an intial preload force of 1000 lb in the bolt, again using the S - N 
curve of Figure P5.87B. 
e. Comment on the results. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a) With no preload, the reduced-body bolt is subjected to the full 
operational cyclic force, ranging from min 0P =  to max 1200 lbP =  
as shown in the sketch to the right. 
 
(b) Since the cyclic force produces a tensile non-zero mean cyclic 
stress we can calculate an equivalent completely reversed stress as 
 

                              max

1

m
eq CR

m

uS

σ σ
σ

σ−
−

=
−

 

 

where max
max

1200 17,647 17650 psi
0.068b

P
A

σ = = = ≈  and  min 0σ = . Accordingly 

                                     

                                             17,650 0 8825 psi
2mσ
+

= =  

 

Thus, 17,650 8825 10,347 10,350 psi
88251

60,000

eq CRσ −
−

= = ≈
−

 

 
Reading from the bolt S-N curve of Figure P5.87B with a value of 10,350 psieq CRσ − = , the estimated life of 

the non-preloaded bolt may be read as approximately 53 10×  cycles. 
 
 
(c)  When the bolted joint in Figure P5.87A is initially preloaded by tightening the nut, the bolt is stretched 
and the flanges are compressed so the tensile force in the bolt is equal to the compressive force in the flanged 
members. This constitutes a statically indeterminate system in which the bolt “spring” and flange “spring” are 
in parallel. The spring rates of the bolt and the flange (member) are 
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Problem 5-87(continued) 
 

                              
6

60.068(30 10 ) 1.36 10  lb/in
1.5

b b
b

b

F A E
k

y L
×

= = = = ×  

                              ( )6 63 3 1.36 10 4.08 10  lb/inm
m b

m

F
k k

y
= = = × = ×  

 
Since the springs are in parallel b mP F F= + . As long as the operational forces do not separate the flanges 
(guaranteed by the problem statement),  b my y= . Thus we can write /m m b bF k F k= , which results in 
 

                                   1m m
b b b

b b

k k
P F F F

k k
⎛ ⎞

= + = +⎜ ⎟
⎝ ⎠

  or  b
b

b m

k
F P

k k
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 

 
The force on the preloaded bolt, pF , due to the operating force P and the preload, iF  is  

                              
( )

6

6
1.36 101000 1000 0.25

1.36 4.08 10
b

p i b i
b m

k
F F F F P P P

k k

⎛ ⎞⎛ ⎞ ×⎜ ⎟= + = + = + = +⎜ ⎟ ⎜ ⎟+ + ×⎝ ⎠ ⎝ ⎠
 

 
When min 0P = , ( )min 1000 lbbF =  and when max 1200P = , 

( )max 1300 lbbF = . The force-time response is as shown in the figure to 
the right. 
 
 
(d) Since the cyclic force produced in this figure is a tensile non-zero 
mean cyclic stress, 
 

                                max

1

m
eq CR

m

uS

σ σ
σ

σ−
−

=
−

 

where   
max

max
1300 19,118 19,120 psi
0.068b

P
A

σ = = = ≈  and 

 

                             min
min

1000 14,705 14,710 psi
0.068b

P
A

σ = = = ≈  

 
Therefore ( )19,120 14,710 / 2 16,915 psimσ = + = . This results in 
 

                                        19,120 16,915 3070 psi
16,9151
60,000

eq CRσ −
−

= =
−

 

 
Reading from the bolt S-N curve of Figure P5.87B with a value of 3070 psieq CRσ − = , the estimated life of 
the non-preloaded bolt is infinite. 
 
 
(e) The result of preloading in this case is to improve bolt life fro about 300,000 cycles to infinite life. 
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5-88.  Examining the rotating bending fatigue test date for o60 V-notched specimens depicted in Figure 4.22, 
respond to the following questions: 

a. For notched specimens that have not been prestressed, if they are subjected to rotating bending tests 
that induce an applied alternating stress amplitude of 20,000 psi at the notch root, what mean life might 
reasonably be expected? 
b. If similar specimens are first subjected to an axial tensile static preload level that produces local 
stresses of 90 percent of notch ultimate strength, then released and subjected to rotating bending tests 
that induce an applied alternating stress amplitude of 20,000 psi at the notch root, what mean life might 
reasonably be expected? 
c. If similar specimens are first subjected to an axial compressive static preload level that produces 
local stresses of 90 percent of notched ultimate strength, then released and subjected to rotating 
bending tests that induce an applied alternating stress amplitude of 20,000 psi ate the notch root, what 
mean life might reasonably be expected? 
d. Do these results seem to make sense? Explain. 

 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 (a) Reading the S-N curve for “specimen not prestressed”, for an alternating stress amplitude of 20 ksi the 
mean life expected is about 51.8 10  cycles×  . 

 
(b)  Reading the S-N curve for for a specimen initially subjected to a momentary axial static tensile preload 
level that produces local stresses of 90% of notched ultimate strength, when an alternating stress amplitude of  
20 ksi is subsequently imposed, the mean life expected is infinite. 
 
(c) Reading the S-N curve for for a specimen initially subjected to a momentary axial static compressive 
preload level that produces local stresses of 90% of notched ultimate strength, when an alternating stress 
amplitude of  20 ksi is subsequently imposed, the mean life expected is about 410  cycles . 

 
(d)  These results make sense because the initial tensile preload, when released, leaves a favorable residual 
compressive stress field at the notch root, imp[roving life expectancy. In the same vein, the initial 
compressive preload, when released, leaves an unfavorable residual tensile stress field at the notch root, 
diminishing life expectancy. 
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Chapter 6 
 
 
6-1.  List the basic principles for creating the shape of a machine part and determining its size. Interpret these 
principles in terms of the five common stress patterns discussed in 4.4. 
 
-------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From 6.2, the basic principles to be applied are 
 

(1) Create a shape that will, as nearly as possible, result in a uniform stress distribution throughout all 
of the material in the part. 

(2) For the shape chosen, find dimensions that will produce maximum operating stresses equal to the 
design stress. 

 
Interpreting these principles in terms of five common stress patters discussed in Chapter 4, the designer 
should, if possible, select shapes and arrangements that will produce direct axial stress (tension or 
compression), uniform shear, or fully conforming contact. And avoid bending, Hertzian contact geometry. 
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6-2.  List 10 configurational guidelines for making good geometric choices for shapes and arrangements of 
machine parts. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Configurational guidelines for making good geometric choices and arrangements include 
 
        (1) Use direct load paths. 
        (2) Tailor element shape to loading gradient. 
        (3)  Incorporate triangular ort tetrahedral shapes or arrangements. 
        (4)  Avoid buckling-prone geometry. 
        (5)  Utilize hollow cylinders and I-beams to achieve near-uniform stress. 
        (6)  Provide conforming surfaces at mating interfaces. 
        (7)  Remove lightly stresses or “lazy” material. 
        (8)  Merge different shapes gradually from on the another. 
        (9)  Match element surface strains at joints and contacting surfaces. 
      (10)  Spread loads at joints. 
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6-3.  In Proposal 1 shown in Figure 6.1(a), a “U-shaped” link is suggested for transferring direct tensile force 
F from joint A to joint B. Although the direct load path guideline clearly favors Proposal 2 shown in Figure 
6.1(b), it has been discovered that a rotating cylindrical drive shaft, whose center lies on a virtual line 
connecting joints A and B, requires that some type of U-shaped link must be used to make space for the 
rotating drive shaft. Without making any calculations, identify which of the configurational guidelines of 6.2 
might be applicable in determining an appropriate geometry for the U-shaped ling, and, based on these 
guidelines, sketch an initial proposal for the overall shape of the link. 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Reviewing the list of configurational guidelines in 6.2, the potentially applicable guidelines for the “U-
shaped” link of Figure 6.11 (a) would include: 
 
        (2) Tailor element shape to loading gradient. 
        (5)  Utilize hollow cylinders and I-beams to achieve near-uniform stress. 
        (6)  Provide conforming surfaces at mating interfaces. 
        (7)  Remove lightly stresses or “lazy” material. 
        (8)  Merge different shapes gradually from on the another. 
        (10)  Spread loads at joints. 
 
 
Incorporating these guidelines to refine the shape of the “U-shaped link”, one initial proposal might take the 
form shown below. Obviously, many variations are possible. 
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6-4. Referring to Figure 16.4, the brake system shown is actuated by applying a force aF  at the end of the 
actuating lever, as shown. The actuating lever is to be pivoted about point C. Without making any 
calculations, identify which of the congigurational guidelines of 6.2 might be applicable in determining an 
appropriate shape for the actuating lever, and based on these guidelines, sketch an initial proposal for the 
overall shape of the lever. Do not include the shoe, but provide for it. 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Reviewing the list of configurational guidelines in 6.2, the potentially applicable guidelines for the actuating 
lever of Figure 6.14 would include: 
 
        (2) Tailor element shape to loading gradient. 
        (5)  Utilize hollow cylinders and I-beams to achieve near-uniform stress. 
        (6)  Provide conforming surfaces at mating interfaces. 
        (7)  Remove lightly stresses or “lazy” material. 
        (8)  Merge different shapes gradually from on the another. 
        (10)  Spread loads at joints. 
 
 
Incorporating these guidelines to refine the shape of the actuating lever, one initial proposal might take ther 
form shown below. Obviously, many variations are possible. For example, a hollow rectangular tubular cross 
section might be used instead of an I-section, tapered height might be used instead of tapered width, etc. 
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6-5.  Figure P6.5 shown a sketch of a proposed torsion bar spring, clamped at one end to a rigid support wall, 
supported by a bearing at the free end, and loaded in torsion by an attached lever arm clamped to the free end. 
It is being proposed to use a split-clamp arrangement to clamp the torsion bar to the fixed support wall and 
also to use a split-clamp configuration to attach the lever arm to the free end of the torsion bar. Without 
making any calculations, and concentrating only on the torsion bar, identify which of the configurational 
guidelines of 6.2 might be applicable in determining an appropriate shape for this torsion bar element. Based 
on the guidelines listed, sketch an initial proposal for the overall shape of the tosion bar. 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Reviewing the list of configurational guidelines in 6.2, the potentially applicable guidelines for the torsion bar  
of Figure P6.5 would include: 
 
        (5)  Utilize hollow cylinders and I-beams to achieve near-uniform stress. 
        (6)  Provide conforming surfaces at mating interfaces. 
        (7)  Remove lightly stresses or “lazy” material. 
        (8)  Merge different shapes gradually from on the another. 
        (10)  Spread loads at joints. 
 
 
Incorporating these guidelines to refine the shape of the torsion bar, one initial proposal might take the form 
shown below. Obviously, many variations are possible. 
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6-6.  a. Referring to the free-body diagram of the brake actuating lever shown in Figure 16.4(b), identify 

appropriate critical sections in preparation for calculating dimensions and finalizing the shape of the part. 
Give your rationale. 
b. Assuming that the lever will have a constant solid circular cross section over the full length of the 
beam, select appropriate critical points in each critical section. Give your reasoning. 

 
-------------------------------- ---------------------------------------------------------------------------------------------- 
Solution 
 
 
 (a) From the free body diagram at shown in Figure 16.4 (b), we deduce that the actuation force, aF  at the end 
of the lever is reacted by normal (N) and friction ( Nµ ) forces at the brake shoe and pin reactions hR and vR . 
These produce primarily bending of the lever arm as a simply supported beam. Transverse shear is also 
present in the lever arm (beam) and an axial compressive force over the length b of the arm. 

The lever arm has a solid circular cross section (see problem statement), constant over its entire length 
(probably a poor choice as per the solution to problem 6-5). From Table 4.1, case 2, the maximum bending 
moment occurs at section B (where N and Nµ  are applied). The transverse shear acts over the entire length 
of the arm, but is largest over length b. Axial compression occurs over length b. Since the length b includes 
section B, we conclude that the critical section is B. 
 
(b)  At section B we indicate critical points as shown. The normal compression 
is uniform over the entire section. The transverse shear is maximum a C and D 
and zero at A and B. Point A sees tension due to bending and point B sees 
compression due to bending.  Since some failure modes are more sensitive to 
tension we conclude that A and B are the most critical points. 
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6-7. a. Figure P6.7 shows a channel-shaped cantilever bracket subjected to an end load of  8000 lbP = , 

applied vertically downward as shown. Identify appropriate critical sections in preparation for checking 
the dimensions shown. Give your rationale. 
b. Select appropriate critical points in each critical section. Give your reasoning. 
c. Can you suggest improvements on shape or configuration for this bracket? 
 

---------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a)  Three types of stress patterns occur for a channel oriented with its web vertical as in Figure P6-7. They 
are: 
 

(1) Bending stress, which reaches a maximum at the extreme upper and lower fibers of the wall. 
(2) Transverse shearing stress, which is maximum at the neutral bending axis, all along the length of the 

channel. 
(3) Torsional shearing stress because the applied load does not pass through the shear center of the 

channel (see case 1 of Table 4.5). These reach a maximum in the upper and lower flanges, along the 
entire length. 

 
Based on these observations, the bracket section at the wall is more critical than any other section. 
 
(b) Based on the reasoning above, the critical points due to bending and torsion  
occur along AA in the figure shown. The critical points due to transverse shear 
occur along BB. Therefore, two critical points should be considered. These are 
points A and B. 
 
(c)  The torsional shearing stress can be eliminated by moving the load P to the 
left so that it passes through the line of action of the shear center. This is 
recommended. 
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6-8. The short tubular cantilever bracket shown in Figure P6.8 is to be subjected to a transverse end load of 

130 kNF = vertically downward. Neglecting possible stress concentration effects, do the following: 
 

a. Identify appropriate critical sections in preparation for determining the unspecified dimensions. 
b. Specify precisely and completely the location of all potential critical points in each critical section 
identified. Clearly explain why you chose these particular points. Do not consider the point where the 
force F is applied to the bracket. 
c. For each critical point identified, sketch a small volume element showing all nonzero components of 
stress. 
d.  

If cold-drawn AISI 1020 steel has been tentatively selected as the material to be used, yielding has been 
identified as the probable governing failure mode, and a safety factor of 1.20dn = has been chosen, calculate 
the required numerica 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 (a)   Bending is the most critical at the wall, and 
transverse shear is constant along the length. Therefore 
the cross section at the wall is the critical section. 
 
(b) and (c)  The critical points and state of stress at each 
are shown in the sketch.  Points 1 and 3 experience 
maximum tensile and compressive bending stresses, 
and points 2 and 4  experience the maximum transverse 
shear stress. 
 
(d)  For cold-drawn AISI 1020 steel 352 MPaypS = . 

Since the design safety factor is 1.20dn = , the design 
stress is 
 

                  352 293 MPa
1.2

yp
d

d

S
n

σ = = =  

 
At points 1 and 3 the normal stress is uniaxial and 

293 MPax dσ σ= = . The stress due to bending at point 
1 is 

 

                   
( )( )( )

( ) ( )
6

4 44 4
1 1

130000 0.04 0.08 / 2 4237293 10
0.08 / 64 0.08

x
d d

σ
π

= × = =
⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

                  5 4 5
1 1 14.096 10 1.446 10 71.7 mm 72 mmd d d− −× − = × → = → =  

 
Next we check points 2 and 4 to see if the safety factor is met. The transverse shear at these points is 
 

                        
( ) 2 22 2

4 4(130000)2 2 2 272 MPa
(0.08) (0.072)

yz
o i

F F
A d d

τ
ππ

⎛ ⎞ ⎛ ⎞
⎛ ⎞ ⎜ ⎟ ⎜ ⎟= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎡ ⎤⎝ ⎠ ⎜ ⎟⎜ ⎟ −− ⎣ ⎦⎝ ⎠⎝ ⎠

 

 
For transverse shear stress, a multiaxial design equation is required. Choosing the distortional energy theory 
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Problem 6-8 (continued) 
 

                            ( ) ( ) ( )
2

2 2 22 2
1 2 2 3 3 1

1
2

yp
eq d

e

S
n

σ σ σ σ σ σ σ σ
⎛ ⎞⎡ ⎤= − + − + − = = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

 

 
where en is the existing safety factor. Since the state of stress is pure shear, the principal stresses are 1 yzσ τ= , 

2 0σ = , and 3 yzσ τ= − . Therefore 
 

                          ( ) ( ) ( )
2

2 2 21 352272 272 544
2 en

⎛ ⎞⎡ ⎤+ − + − = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
 

                                               0.75 1.2e dn n= < =  
 
This means that the tube thickness must be increased, meaning  1d  must be decreased. Using a simple 
spreadsheet we can generate the date below 
 

1d  A  τ  eqσ  en  
0.072 0.000955 272.2387 222341.8 0.746504 

0.0715 0.001011 257.0703 198255.4 0.7905514 
0.071 0.001067 243.5926 178012 0.8342919 

0.0705 0.001123 231.5386 160830.3 0.8777254 
0.07 0.001178 220.6949 146118.7 0.920852 

0.0695 0.001233 210.8885 133421.9 0.9636716 
0.069 0.001287 201.9782 122385.6 1.0061843 

0.0685 0.001341 193.847 112730 1.04839 
0.068 0.001395 186.3977 104232.3 1.0902888 

0.0675 0.001448 179.5484 96712.83 1.1318806 
0.067 0.001501 173.2299 90025.76 1.1731654 

0.0665 0.001553 167.3833 84051.48 1.2141434 
0.066 0.001605 161.9581 78691.24 1.2548143 

0.0655 0.001657 156.9107 73862.87 1.2951783 
0.065 0.001708 152.2033 69497.58 1.3352354 

0.0645 0.001759 147.8032 65537.38 1.3749855 
0.064 0.00181 143.6815 61933.16 1.4144287 

0.0635 0.00186 139.813 58643.04 1.4535649 
 
From this we can select the inner diameter to be 1 66.5 mmd =  
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6-9.  The cross-hatched critical section in a solid cylindrical bar of 2024-T3 aluminum, as shown in the sketch 
of Figure P6.9, is subjected to a torsional moment 8500 N-mxT = , a bending moment of  5700 N-myM = , 

and a vertically downward transverse force of 400 kNzF = . 
a. Clearly establish the location(s) of the potential critical point(s), giving logic and reasons why you 
have selected the point(s). 
b. IF yielding has been identified as the possible governing failure mode, and a safety factor of 1.15 has 
been chosen, calculate the required numerical value of diameter d. 

 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
(a)  Bending ( bσ ), torsion ( Tτ ), and 
transverse shear stresses ( tsτ ) all exits. Based 
on the figure showing how each of these 
stresses acts, we conclude that point 1 (since 

bσ is tensile) and point 4 (since Tτ  and tsτ  
add) are the most critical points. 
 
(b) For 2024-T3 aluminum 345 MPaypS = .   

Since the design safety factor is 1.15dn = , 
the design stress is 
 

                  345 300 MPa
1.15

yp
d

d

S
n

σ = = =  

 
Each stress component can be defined as 

                               
4

3 3 3
32 32(5700) 5.81 10y

b
M c M

I d d d
σ

π π
×

= = = =

                
4

3 3 3
16 16(8500) 4.33 10

T
Tc T
J d d d

τ
π π

×
= = = =

 

            
3 5

2 2 2
44 4 16(400 10 ) 6.79 10

3 3 3
z z

ts
F F
A d d d

τ
π π

× ×⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

 
 
At point 1 the state of stress is such that 2 0σ =  , while 
 

          ( )
2 22 4 4 4 4

2
1 3 3 3 3

2.91 10 2.91 10 4.33 10 8.13 10
2 2
b b

T d d d d
σ σ

σ τ
⎛ ⎞ ⎛ ⎞× × × ×⎛ ⎞= + + = + + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

          ( )
2 22 4 4 4 4

2
3 3 3 3 3

2.91 10 2.91 10 4.33 10 2.31 10
2 2
b b

T d d d d
σ σ

σ τ
⎛ ⎞ ⎛ ⎞× × × ×⎛ ⎞= − + = − + = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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Problem 6-9 (continued) 
 
Since the material is ductile we use the distortional energy theory 
 

           ( ) ( ) ( )2 2 2 2
1 2 2 3 3 1

1
2 dσ σ σ σ σ σ σ⎡ ⎤− + − + − =⎢ ⎥⎣ ⎦

 

            ( )
2 2 24 4 4 4 26

3 3 3 3
1 8.13 10 2.31 10 2.31 10 8.13 100 0 300 10
2 d d d d

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞× − × × ×⎢ ⎥− + − + − − = ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

          
10

18
6

90.2 10 9 10
d
×

= ×      or      0.0682 m 68.2 mmd = =  

 
We now use this diameter to determine the existing factor of safety at critical point 4. Using 68.2 mmd = we 
determine 
 

          
( )

4

3
4.33 10 137 MPa
0.0682

Tτ
×

= ≈  and  
( )

5

2
6.79 10 146 MPa
0.0682

tsτ
×

= ≈  

 
Since the state of stress at this point is pure shear, we know that 1 283 MPaT tsσ τ τ= + = , 2 0σ = , and 

( )3 283 MPaT tsσ τ τ= − + = − . In order to determine if the design factor of safety is met we can use (6-14) 
 

                
2

2 yp
eq

e

S
n

σ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

   or     
( ) ( ) ( )2 2 2

345 0.704
1 283 283 566
2

yp
e

eq

S
n

σ
= = =

⎡ ⎤+ + −⎢ ⎥⎣ ⎦

 

 
 
This existing factor of safety does not meet the requirement of 1.15dn = , and since 1en < , we expect 
yielding to occur at point 4. As a result of this, we need to recalculate the diameter at point 4 based on the 
state of stress there.  At point 4 we have 4 34.33 10 /T dτ = × and  5 26.79 10 /ts dτ = × , which results in 
principal stresses of 
 

            
4 4

1 3 2
4.33 10 67.9 10

T ts d d
σ τ τ × ×

= + = + , 2 0σ = , and  
4 4

3 3 2
4.33 10 67.9 10

T ts d d
σ τ τ × ×

= − = −  

 
 The equivalent stress is 
 

              ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
1 2 2 3 3 1 1 3 3 1

1 1
2 2eqσ σ σ σ σ σ σ σ σ σ σ⎡ ⎤ ⎡ ⎤= − + − + − = + − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

                             
A simple spreadsheet can be used to estimate the diameter based on the existing factor of safety, which must 
be greater than 1.15en = . Beginning with the original diameter, a spreadsheet similar to that shown can be 
generated. 
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Problem 6-9 (continued) 
 
 

d  (m) 1σ  (MPa) 3σ  (MPa) eqσ  en  
0.0682 282483243.3 -282483243.3 489275329.7 0.705124455 
0.0692 272462023.3 -272462023.3 471918067.5 0.731059105 
0.0702 262946144.3 -262946144.3 455436081.5 0.757515739 
0.0712 253903008.5 -253903008.5 439772910.9 0.784495796 
0.0722 245302559 -245302559 424876495.4 0.812000672 
0.0732 237117048.6 -237117048.6 410698775.6 0.840031723 
0.0742 229320833.1 -229320833.1 397195334.1 0.868590264 
0.0752 221890185.1 -221890185.1 384325074.3 0.897677573 
0.0762 214803127.2 -214803127.2 372049929.9 0.927294893 
0.0772 208039281.1 -208039281.1 360334604.8 0.95744343 
0.0782 201579731.9 -201579731.9 349146337.5 0.988124356 
0.0792 195406905.5 -195406905.5 338454688.5 1.019338812 
0.0802 189504457.3 -189504457.3 328231348.3 1.051087904 
0.0812 183857171.9 -183857171.9 318449963.1 1.083372712 
0.0822 178450872 -178450872 309085977 1.116194281 
0.0832 173272335.6 -173272335.6 300116488.8 1.149553633 
0.0842 168309220.4 -168309220.4 291520121.2 1.183451758 
0.0852 163549995.9 -163549995.9 283276902.5 1.217889623 

 
Based on this table, we select a diameter of   
 
                                                     0.084 m 84 mmd = =  
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6-10. A fixed steel shaft (spindle) is to support a rotating idler pulley (sheave) for a belt drive system. The 
nominal shaft diameter is to be 50 mm. The sheave must rotate in a stable manner on the shaft, at relatively 
high speeds, with the smoothness characteristically required of accurate machinery. Write an appropriate 
specification for the limits on shaft size and sheave bore, and determine the resulting limits of clearance. Use 
the basic hole system. 
 
------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Referring to Table 6.4, the specifications in the problem statement would appear to be best satisfied by 
selecting a medium running fit, RC 5. 
 
Since the tables in the text are only in English units, we will work in these units and convert to SI once a 
selection is made. Therefore we note that 50 mm 2.0 in≈ . From Table 6.5, under RC 5, for a n nominal 2.00-
inch size 
 
                   2.000 0.0018 2.0018 in 50.85 mm+ = = (largest) 
                   2.000 0.0000 2.000 in 50.84 mm+ = = (smallest) 
 
For the shaft diameter 
 
                   2.000 0.0025 1.9975 in 50.74 mm− = = (largest) 
                   2.000 0.0037 1.9963 in 50.70 mm− = = (smallest) 
 
One appropriate specification for hole and shaft diameter would be  
 

                50.84  (hole)
50.85hd =     50.74 (hole)

50.70sd =  

 
Note that the smaller diameter hole diameter is placed in the numerator because it is the first of the 

limiting dimensions reached in the metal removal process (drilling, reaming, boring), while the largest 
diameter shaft is placed in the numerator because it is the first of the limiting dimensions in the metal removal 
process (turning, grinding) 
 The limits of clearance may be found by combining the smallest allowable shaft diameter with the 
largest allowable hole and the largest allowable shaft diameter with the smallest diameter hole. Thus 
 
                    2.0018 1.9963 0.0055 in 0.1397 mm− = = (largest clearance) 
                    2.000 1.9975 0.0025 in 0.0635 mm− = = (smallest clearance) 
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6-11. A cylindrical bronze bearing sleeve is to be installed into the bore of a fixed cylindrical steel housing. 
The bronze sleeve has an inside diameter of 2.000 inches and a nominal outside diameter of 2.500 inches. The 
steel housing has a nominal bore diameter of 2.500 inches and an outside diameter of 3.500 inches. To 
function properly, without “creep” between the sleeve and the housing, it is anticipated that a “medium drive 
fir” will be required. Write an appropriate specification for the limits on sleeve outer diameter and housing 
bore diameter, and determine the resulting limits of interference. Use the basic hole system. 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From Table 6.6, it may be noted that a “medium drive fit” is a class FN2 fit. From Table 6.7, under class 
FN2, for a nominal 2.500-inch size, the limits on hole size are +0.0012 inch and -0 inch. The standard limits 
on shaft size are +0.0027 inch and +0.0020 inch. Thus the specifications for hole and shaft diameter would be 
 

                  2.5000  (hole)
2.5012hd =    and    2.5027 (shaft)

2.5020sd =  

 
Note that the smaller hole diameter is is in the numerator because it is the first of the limiting dimensions 
reached in the metal removal process (drilling, reaming, boring). Similarly, the largest shaft diameter is 
placed in the numerator because it is the first of the limiting dimensions reached in the metal removal process 
(turning, grinding). 
 The limits of interference are calculated by combining the smallest allowable shaft with the largest 
allowable hole, and by combining the largest allowable largest allowable shaft with the smallest allowable 
hole. Similarly, one can read the “limits of interference” from Table 6.7.  In either case, the limits of 
interference are 

 
0.0027 in.  (largest interference) 
0.0008 in. (smallest interference) 
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6-12.  For a special application, it is desired to assemble a phosphor bronze disk to a hollow steel shaft, using 
an interference fir for retention. The disk is to be made of C-52100 hot-rolled phosphor bronze, and the 
hollow steel shaft is to be made of cold-drawn 1020 steel. As shown in Figure P6.12, the proposed nominal 
dimensions of the disk are 10 inches for outer diameter and 3 inches for the hole diameter, and the shaft, at 
the mounting pad, has a 3-inch outer diameter and a2-inch inner diameter. The hub length is 4 inches. 
Preliminary calculations have indicated that in order to keep stresses within an acceptable range, the 
interference between the shaft mounting pad and the hole in the disk must not exceed 0.0040 inch.  Other 
calculations indicate that to transmit the required torque across the interference fit interface the interface muts 
be at least 0.0015 inch. What class fit would you recommend should be written for the shaft mounting pad 
outer diameter and for the disk hole diameter? Use the basic hole system for your specifications. 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From the problem statement, the maximum and minimum allowable interferences are specified as 

max 0.0040 inch∆ = and min 0.0015 inch∆ = . From Table 6.7 with the nominal shaft size of 3.00 inches, it 
may be deduced that a Class FN3 fir satisfies both of these requirements since 
 
                                       ( )max 3 0.0037 0.0040 FN∆ = <  

                                       ( )min 3 0.0018 0.0015FN∆ = >  
 
Hence, a Class FN3 fir is recommended. 
 Under the Class FN3 fits in Table 6.7, the standard limits for hole size of 3.000 inches are +0.0012 
inch and -0. For the shaft, the limits are +0.0037 inch and 0.0030 inch. Thus the sprcifications for hole 
diameter and shaft diameter should be 
 
 

                                   3.0000  (hole)
3.0012hd =    and    3.0037 (shaft)

3.0030sd =  
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6-13. It is desired to design a hydrodynamically lubricated plain bearing (see Chapter 11) for use in a 
production line conveyor to be used to transport industrial raw materials.  It has been estimated that for the 
operating conditions and lubricant being considered, a minimum lubricant film thickness of  

0 0.12 mmh = can be sustained. Further, it is being proposed to finish-turn the bearing journal (probably 
steel) and ream the bearing sleeve (probably bronze). An empirical relationship has been found in the 
literature (see Chapter 11) that claims satisfactory wear levels can be achieved if 
 
                                                        ( )0 0.5 j bh R R≥ +  

 
where jR = arithmetic average asperity peak height above mean bearing journal surface (mm) 

           bR =  arithmetic average asperity peak height above mean bearing sleeve surface (mm) 
 
Determine whether bearing wear levels in this case would be likely to lie within a satisfactory range. 
 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From Figure 6.11, reading the mid-range values of average roughness height for finish turning (journal) and 
reaming (bearing sleeve) 
 
                          1.8 mjR µ=  

                          1.8 mbR µ=  
 
Using the criteria above 
 
                   ( ) 6

0 0.12 mm 0.5 1.8 1.8 10  m 0.0018 mmh −= ≥ + × =  
 
Since the criteria is satisfied, wear is acceptable. 
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6-14.  You have been assigned to a design team working on the design of a boundary-lubricated plain bearing 
assembly (see Chapter 10) involving a 4340 steel shaft heat-treated to a hardness of Rockwell C 40 (RC 40), 
rotating in an aluminum bronze bushing. One of your colleagues has cited data that might be achieved by 
grinding the surface of the steel shaft at the bearing site, as opposed to a finish-turning operation, as currently 
proposed. Can you think of any reasons not to grind the shaft surface? 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
One might ask what the cost penalty, if any, would be to grind the surface of the steel shaft. Figure 6.10 
provides some data for making an evaluation. Comparing the increase in cost to finish-turn the shaft from as-
received stock (100%) with the increase in cost to finish-turn and grind the shaft (249%), it is obvious that 
grinding add a significant amount to the cost of the shaft. The question then becomes, “is it worth a cost 
increase of 140% to achieve a 20% improvement in wear life?” The answer depends on specific 
circumstances, but cost increase is certainly one potential reason not to grind the shaft. 
 



 290

Chapter 7 
 
 
 
7-1.  Define the term “concurrent engineering” and explain how it is usually implemented. 
 
---------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The objective of “concurrent engineering” or “concurrent design” is to organize the information flow among 
all project participants, from the time marketing goals are established until the product is shipped. 
Information and knowledge about all of the design-related issues is made as available as possible at all stages 
of the design process. It is usually implemented by utilizing an interactive computer system, including 
computer-aided design and solid modeling software that allows on-line review and updating by any team m 
ember at any time. 
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7-2.  List the five basic methods for changing the size or shape of a work piece during the manufacturing 
process and give two examples of each basic method. 
 
---------------------------------------------------------------------------------------------------- 
Solution 
 
From Table 7.1, the five basic methods for changing size or shape of a piece during the manufacturing 
process, with two examples of each method, may be listed as follows: 
 

Method Examples 
Flow of molten material Sand casting 

Permanent mold casting 
Fusion of component parts Arc welding 

Gas welding 
Plastic deformation Hammer forging 

Rolling 
Chip-forming action Turning 

Milling 
Sintering Diffusion bonding 

Hot isostatic processing 
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7-3. Explain what is meant by “near net shape” manufacturing. 
 
------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 “Near net shape manufacturing” is a philosophy based on the recognition that each machining and finishing 
process cost time and money. It is therefore important to minimize the need for secondary machining and 
finishing processes. To this end, it is efficient to try to select net shapes and sizes that are as near as possible 
to standard stock raw material available, and utilize secondary processing only where needed. 
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7-4. Basically, all assembly processes may be classified as either manual, dedicated automatic, or flexible 
automatic assembly. Define and distinguish among these assembly processes, and explain why it is important 
to tentatively select a candidate process at an early stage in the design of a product. 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
Basic assembly processes may be defined as follows: 
 
Manual assembly – a process performed by humans, either by assembling a complete machine at a single 
station (bench assembly) or by assembling only a small portion of the the complete unit as it moves from 
station to station (line assembly). 
Dedicated automatic assembly – a process performed by a series of single-purpose machines, in line, each 
dedicated to only one assembly activity. 
Flexible automatic assembly – a process performed by one or more machines that have the capability of 
performing many activities, simultaneously or sequentially, as directed by computer managed control 
systems. 
 
It is important to select which assembly process is most suitable early in the design because parts typically 
should be configured to accommodate the selected assembly process. 
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7-5. Explain how “design for inspectability” relates to the concepts of fail-safe design and safe life design 
described in 1.8. 
 
------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
Referring to 1.5, the fail safe design technique provides redundant load paths in the structure so that if failure 
of a primary structural member occurs, a secondary member picks up the load on an emergency basis and 
carries it temporarily until the primary structural failure is detected and a repair made. The safe life design 
technique involves selection of a large enough safety factor and establishing inspection intervals that assure 
that a growing crack will be detected before reaching a critical size that will cause unstable propagation to 
fracture. 
 
To implement either of these design techniques, it is clear that any priomary structural failure or any growing 
crack must be observable. Therefore it is imperative that designers, from the beginning, configure machine 
components, subassemblies, and fully assembled machines so that critical points are inspected. 
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7-6. Give three examples from your own life-experience in which you think that “design for maintenance” 
could have been improved substantially by the designer of manufacturer of the part or machine being cited. 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Based on over sixty years of engineering design and analysis experience, J. A. Collins recalls three cases in 
which maintenance procedures were more complex than necessary: 
 

(1) A used “five-foot cut” tractor-pulled power-take-off driven agricultural combine purchased in the 
1940’s. The main-drive V-belt failed and required replacement. In the process, it required the 
removal of secondary drive belts, pulleys, sprockets, and some structural supports. The belt 
replacement effort required about 8 hours. A better configuration could have saved time and effort. 

(2) A new 1954 red convertible with numerous accessories, including a relatively new concept, power 
steering. When the oil and filter were changed for the first time, it was observed that because of the 
power steering actuation system, the only way to replace the oil filter was to raise the car on a lift, 
set in place a separate jack to raise the body of the car away from the chassis, turn the wheels hard to 
the right, and “wiggle” the filter between the power steering actuator and the engine block. 
Obviously a better configuration would have reduced maintenance time. 

(3) A 1965 four-door family sedan subjected to the heat of the Arizona sun. The replacement of all 
critical rubber products every couple of years was a wise idea. Most components were very simple to 
change. The one major exception was the replacement of one 3-inch long length of heater-hose in 
the engine coolant loop. This change required the removal of the right front fender. Obviously, a 
better configuration would improve maintenance. 
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7-7. The gear support shaft depicted in Figure 8.1(a) is to be made of AISI 1020 steel. It is anticipated that 
20,000 of these shafts will be manufactured each year for several years. Utilizing Tables 7.1 and 7.2, 
tentatively select an appropriate manufacturing process for producing the shafts. 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Evaluating each of the characteristics listed in Table 7.2 as related to the gear support shaft depicted in Figure 
8.1(a), and using the “process category” symbols defined in Table 7.1, the following table may be 
constructed. 
 

 
Characteristic 

Application 
Description 

Applicable Process 
Category 

Shape Uniform, simple M , F , S 
Size Small M , F , S 
Number to be produced Low mass production M , F , C, S , W 
Strength required Average M , F , W 

 
The frequency of citation for “applicable process categories” is 
 
                         M: 4 times  ,  F: 4 times  ,  C: 1 time  ,  S: 3 times  , W: 2 times 
 
Machining and forming are each cited 4 times, but because of the “stepped” shape and need for precision, 
machining would appear to be the most appropriate manufacturing process. From Table 3.17, this choice is 
compatible with 1020 steel. 
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7-8. It is being proposed to use AISI 4340 steel as the material for a high-speed flywheel such as the one 
depicted in Figure 18.10. It is anticipated that 50 of these high-speed flywheels will be needed to complete an 
experimental evaluation program. It is desired to achieve the highest practical rotational speeds. Utilizing 
Tables 7.1 and 7.2, tentatively select an appropriate manufacturing process for producing these high-speed 
rotors. 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
Evaluating each of the characteristics listed in Table 7.2 as related to the high-speed flywheel depicted in 
Figure 18.10, and using the “process category” symbols defined in Table 7.1, the following table may be 
constructed. 
 

 
Characteristic 

Application 
Description 

Applicable Process 
Category 

Shape Uniform, simple M , F , S 
Size Medium M , F , C , W 
Number to be produced A few M , W 
Strength required Maximum available F  

 
The frequency of citation for “applicable process categories” is 
 
                         M: 3 times  ,  F: 3 times  ,  C: 1 time  ,  S: 1 time  , W: 2 times 
 
Machining and forming (forging) are each cited 3 times, but because it is desired to obtain the “maximum 
strength available”, forging would appear to be the most appropriate manufacturing process. From Tables 
3.17 and 3.10, this choice appears to be compatible with 4340 steel (in annealed condition). 
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7-9.  The rotating power screw depicted in Figure 12.1 is to be made of AISI 1010 carburizing-grade steel. A 
production run of 500,000 units is anticipated. Utilizing Tables 7.1 and 7.2, tentatively select an appropriate 
manufacturing process for producing the power screw. 
 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Evaluating each of the characteristics listed in Table 7.2 as related to the power screw depicted in Figure 12.1, 
and using the “process category” symbols defined in Table 7.1, the following table may be constructed. 
 

 
Characteristic 

Application 
Description 

Applicable Process 
Category 

Shape Uniform, simple M , F , S 
Size Medium M , F , C , W 
Number to be produced A few M , F , C,  S , W 
Strength required Average F  , M , W 

 
The frequency of citation for “applicable process categories” is 
 
                         M: 4 times  ,  F: 4 times  ,  C: 3 times  ,  S: 2 times  , W: 3 times 
 
Machining and forming are each cited 4 times, but because of the need for precision, machining would be 
chosen. From Table 3.17, this is compatible with 1010 steel. 
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7-10.  Figure 8.1(c) depicts a flywheel drive assembly. Studying this assembly, and utilizing the discussion of 
7.5, including Table 7.3, suggest what type of assembly process would probably be best. It is anticipated that 
25 assemblies per week will satisfy market demand. The assembly operation will take place is a small 
Midwestern farming community. 
 
---------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
Studying Figure 8.1(a), the guidelines of Table 7.3 may be summarized for this application as follows, 
 

 
Characteristic 

Application 
Description 

Applicable Process 
Category 

Number of parts per assembly Medium M , D , F 
Production volume Low M , F  
Labor cost Low M  
Difficulty handling/inspecting Moderate M , D , F 

 
M = manual assembly , D = dedicated automatic assembly , F = flexible automatic assembly 

 
The frequency of citation for  “best-suited assembly method” is 
 

M: 4 times  ,  D: 3 times  ,  F: 3 times 
 
Manual assembly is cited 4 times, therefore the preliminary recommendation would be for manual assembly. 
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Chapter 8 
 
 
8-1.  A drive shaft for a new rotary compressor is to be supported by two bearings, which are 200 mm apart. 
A V-belt system drives the shaft through a V-sheave (see Figure 17.9) mounted at midspan, and the belt is 
pretensioned to oP  kN, giving an vertically downward force of 2 oP  at midspan. The right end of the shaft is 
directly coupled to the compressor input shaft through a flexible coupling. The compressor requires a steady 
input torque of 5700 N-m. Make a first0cut conceptual sketch of a shaft configuration that would be 
appropriate for this application. 
 
---------------------------------------------------------------------------------------------------------------------------------- 
Solution 
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8-2.  The drive shaft of a rotary coal grinding miss is to be driven by a gear reducer through a flexible shaft 
coupling, as shown in Figure P8.2. The main shaft of the gear reducer is to be supported on two bearings 
mounted 10 inches apart at A and C, as shown. A 1:3 spur gear mesh drives the shaft. The o20 spur gear is 
mounted on the shaft at midspan between the bearings, and has a pitch diameter of 9 inches. The pitch 
diameter of the drive pinion is 3 inches. The grinder is to be operated at 600 rpm and requires 100 horsepower 
at the input shaft. The shaft material is to be AISI 1060 cold-drawn carbon steel (see Table 3.3). Shoulders for 
gears and bearings are to be a minimum of 1/8 inch (1/4 inch on the diameter). A design safety factor of 1.5 is 
desired. Do a first-cut design of the shaft, including a second-cut sketch showing principal dimensions. 
 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 (1) A first-cut conceptual sketch of the 
shaft may be made based on Figure P8-2 
and the pattern of Figure 8.2. The result 
is shown in the sketch to the right. 
 
 (2) Shaft material: AISI 1060 CD steel, 
with (from Tables 3.3 and 3.10)  

90 ksiuS = , 70 ksiypS = , and 

( )2" 10%e = . 
 

(3)  Assuming infinite life, we estimate the fatigue endurance limit as ' 0.5 45 ksif uS S= =  
 

(4)  Using the notation shown to the right, we 
begin by noting that the transmitted torque from 
B to C is 
 

       
63,025( ) 63,025(100)

600
          10,504 in-lb

C
hpT T

n
= = =

=
 

 
The forces are calculated as 
 

                       10,504 2334 10,504 lb (tangent, down)
( / 2) 4.5Bz

p

TF
D

= = =  

 
 Since for this gear o20ϕ =  
 
                        otan 2334 tan 20 850 lb (radially, toward gear center)Bx BzF F ϕ= = ≈  
 
Next:  ( ) 0 :   5 10 0 5( 2334) 10 0 1167 lbC Bz Az Az AzxM F R R R= − − = → − − − = ⇒ =∑  

           ( ) 0 :   5 10 0 5( 850) 10 0 425 lbC Bx Ax Ax AxzM F R R R= + = → − + = ⇒ =∑  
 
Now: 0 :   0 425 ( 850) ( 850) 0 425 lbx Ax Bx Cx Cx CxF R F R R R= + + = → + − + − + = ⇒ =∑  
          0 :   0 1167 ( 2334) 0 1167 lbz Az Bz Cz Cz CzF R F R R R= + + = → + − + = ⇒ =∑  
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Problem 8-2 (continued) 
 
                                         
(5)  A simplified free-body diagram of 
the shaft with force magnitudes and 
directions is as shown. 
 
(6) The bending and torsional moments 
are 
 
                0A BT − =  ,            10,504 in-lbB CT − =   

               ( ) ( ) 0b bA CM M= = , ( ) 2 25 (1167) (425) 6210 in-lbb BM = + ≈  
 
(7) The shaft diameter is determined using (8-8). The fatigue strength will be taken to be approximately 85% 
of the endurance limit ( ' 45 ksifS = ). Later revisions should be review this assumption by using equations (5-

37) and (5-39). A stress concentration factor of  1.7tK = will be assumed for the first iteration, and a value of 
0.8q = will be assumed. We now determine 
 
                            ( )1 1 0.8(1.7 1) 1 1.6fb tK q K= − + = − + ≈  
 

We note that the bending moment and torque are zero at point A. Therefore, we consider the transverse shear 
at this point (see Example 8.1).  Therefore, at point A 

 

               
[ ]

2 216 3(1.5) (1167) (425)16 3
0.386 0.40"

3 3 0.85(45,000)
d

A
f

n F
d

Sπ π
+

= = = ≈  

 
 
 

Next we apply (8-11)  to both points B and C . We note that 0a mT M= = at each point. Therefore, at point B 
 

                                3 16 16 6210 10,5042 ( ) 3 2(1.7)(1.5) 3 5.25
0.85(45,000) 90,000

a m
B fb d

N u

M T
d K n

S Sπ π
⎧ ⎫ ⎧ ⎫

= + = + =⎨ ⎬ ⎨ ⎬
⎩ ⎭⎩ ⎭

 

 
                                                                   1.738" 1.75"Bd = ≈  
 
At point C the moment is zero, but the torque exists. Therefore 
 

                            3 16 16 10,5042 ( ) 3 3 1.03 1.0"
90,000

a m
C fb d C

N u

M T
d K n d

S Sπ π
⎧ ⎫ ⎧ ⎫

= + = = ⇒ =⎨ ⎬ ⎨ ⎬
⎩ ⎭⎩ ⎭

 

 
 
Based on this, the first-cut sketch can be 
updated. Using the shoulder restrictions 
specified in the problem statement, the 
second-cut approximation can be made as 
shown in the sketch to the right. 
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8-3. A belt-drive jack-shaft is sketched schematically in Figure P8.3. 

a. Construct load, shear, and bending moment diagrams for the shaft in both the horizontal and the 
vertical plane. 
b. Develop an expression for the resultant bending moment on the shaft segment between the left pulley 
and the right bearing. 
c. Find the location and magnitude of the minimum value of bending moment on the shaft segment 
between the left pulley and the right bearing. 
d. Calculate the torque in the shaft segment between pulleys. 
e. If the shaft is to be made of hot-rolled 1020 steel (see Figure 5.31), is to rotate at 1200 rpm, and a 
design safety factor of 1.7 is desired, what diameter would be required to provide infinite life? 
 

------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
(a)  Using figure P8.3, we transfer all of the 
forces to the centerline of the shaft. Using the 
coordinates shown in the sketch to the right, 
we determine the reactions at each bearing. 
                

              
0 :   9900 0

                              9900
x Ax Cx

Ax Cx

F R R
R R

= − + =
+ =

∑  

 
              0 :   900 9900 0 10,800z Az Cz Az CzF R R R R= − + − = ⇒ + =∑  
 
             ( ) 0 :   0.45(9900) - 0.9( ) 0 4950 N 4950 NA Cx Cx AxzM R R R= = ⇒ = ⇒ =∑  

              
( ) 0 :   0.45(900) - 0.9( ) 1.125(9900) 0 12,825 N

                                                                                               2025 N
A Cz Czx

Az

M R R

R

= + = ⇒ =

= −

∑
 

 
The shear force and bending moment diagrams in the y-x and y-z planes are as shown below. The coordinate q 
in the starting at point C in the y-x load diagram is used is part b. 

 
 

 
 
 



 304

Problem 8-3 (continued) 
 
(b) Using the coordinate q in the load diagram above, we can write an expression for the bending moment 
between B and C for moments about the x and the z axes. For bending about the x axis we have 

  
                                           ( ) -911.3 - 2925  x B CM q

−
=  

 
For the moment about the z axis we have 
 
                                          ( ) 2227.5 - 4950  z B CM q

−
=  

 
The resultant moment between B and C is 
 

                     ( ) ( ) ( ) [ ] [ ]
2 2 2 22227.5 - 4950  911.3- 2925  R z xB C B C B CM M M q q

− − −
⎡ ⎤ ⎡ ⎤= + = + −⎣ ⎦ ⎣ ⎦  

 
 
(c) Differentiating with respect to q , setting the derivative equal to zero, and solving for q 
 

                              
( ) [ ] [ ]

[ ] [ ]2 2

2 2227.5 - 4950  2 911.3- 2925  
0

2 2227.5 - 4950  911.3- 2925  

R B Cd M q q
dq q q

− + −
= =

+ −
 

 
                                          7875 1316.2 0 0.167q q− + = ⇒ =  
 

                               ( ) [ ] [ ]2 22227.5 - 4950(0.167) 911.3 - 2925(0.167) 1980 N-mR B CM
−

= + − =  
 
                                                                                          ( )min 1980 N-mRM =  
 
(d) The torque in the shaft segment between the pulleys is (between B and D) is 
 

                            6750(0.380) 2250(0.380) 1710 N-mBDT = − =  
 

(e)   The maximum bending moment occurs at B and is 
 

                                  2 2(911.3) (2227.5) 2407 N-mBM = + ≈  
 
Knowing the torque is 1710 N-mBDT = , using 1.7dn = , reading ' 33 ksi 228 MPafS ≈ ≈  from Figure 5.31 

and assuming 0.85k∞ = , which results in 0.85(228) 194 MPaNS = ≈ . In addition, 379 MPauS ≈ . 
Therefore 
 

                       3
6 6

16 16 2407 17102 ( ) 3 2(1.7) 3 0.000255
194 10 379 10

a m
B fb d

N u

M T
d K n

S Sπ π
⎧ ⎫ ⎧ ⎫⎛ ⎞= + = + ≈⎨ ⎬ ⎨ ⎬⎜ ⎟× ×⎝ ⎠⎩ ⎭⎩ ⎭

 

 
                                                                                                               0.0633 m 63 mmBd = ≈  
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8-4.   Repeat problem 8-3, except that the shaft is to be made of AISI 1095 steel, quenched and drawn to 
Rockwell C 42 (see Table 3.3) 
 
 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
The solution is identical to that of 8-3, except for part (e), where 1379 MPauS ≈  and 952 MPaypS ≈ . 

Estimating the S-N curve, ' 0.5(1379) 690 MPafS = ≈ and 0.85(690) 587 MPaNS = ≈  
 
 

                            3
6 6

16 2407 17102(1.7) 3 0.000082
587 10 1379 10Bd

π
⎧ ⎫⎛ ⎞= + ≈⎨ ⎬⎜ ⎟× ×⎝ ⎠⎩ ⎭

 

 
                                                                                                            0.0434 m 43 mmBd = ≈  
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8-5.   A pinion shaft for a helical gear reducer (see Chapter 15) is sketched in Figure P8.5, where the reaction 
forces on the pinion are also shown. The pinion shaft is to be driven at 1140 rpm by a motor developing 14.9 
kW. 

a. Construct load, shear , and bending moment diagrams for the shaft, in both the horizontal and vertical 
plane. Also make similar diagrams for axial load and for torsional moment on the shaft, assuming that the 
bearing at the right end (nearest the gear) supports all thrust (axial) loading. 
b. If the shaft is to be made of 1020 steel (see Figure 5.31), and a design factor of safety of 1.8 is desired, 
what diameter would be required at location B to provide infinite life? 

 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Starting with the sketch 
shown, we transfer all 
forces (and associated 
moments) to the centerline 
of the shaft. This results in 
the figure below. 
 
 
 
 
 

 
 
Note that the moments applied at point C come from taking moments of the three active force components 
about point C. 
 

              0 :   0 0 0.035 72 125
3571 2047 1502

C CM = × = − ≈ − +
− −

∑
i j k

r F i j  

 
Next we apply the equations of static equilibrium 

 
               0 :   3571 0 3571x Ax Bx Ax BxF R R R R= + − = ⇒ + =∑  
              0 :  2047 0 2047y By ByF R R= − = ⇒ =∑  

              0 :   1502 0 1502z Az Bz Az BzF R R R R= + + = ⇒ + = −∑  
        

             

0 :   

                    0 0.140 0 0 0.205 0 72 125 0
2047 3571 2047 1502

A AB B AC C m

m

Bx Bz

M T

T
R R

= × + × +

= + + − + =
− −

∑ r R r F j
i j k i j k

j i j
 

                               
 



 307

Problem 8-5 (continued) 
 

                           
0.140 0.140 236.3 125 732 0

1688 N , 5229 N , 125 N-m
186 N , 1658 N

Bz Bx m

Bz Bx m

Az Ax

R R T
R R T
R R

− + + + + =
= − = =
= = −

i k i j k j
 

 
The shear force and bending moment diagrams are 
 

 
 
 
In addition, the axial force ( yF ) and torque ( yT M= ) variations along the shaft are 
 

 
 
 

The maximum bending moment occurs at B and is 
 

                                  2 2(26) ( 232) 233.5 234 N-mBM = + − = ≈  
 
For hot rolled 1020 steel, reading ' 33 ksi 228 MPafS ≈ ≈  from Figure 5.31 and assuming 0.85k∞ = , which 

results in 0.85(228) 194 MPaNS = ≈ . In addition, 379 MPauS ≈ . Therefore 
 
 

                       3
6 6

16 234 1252(1.8) 3 0.000025
194 10 379 10Bd

π
⎧ ⎫⎛ ⎞= + ≈⎨ ⎬⎜ ⎟× ×⎝ ⎠⎩ ⎭

 

 
                                                                                                       0.0292 m 29 mmBd = ≈  
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8-6.  A power transmission shaft of hollow cylindrical shape is to be made of hot-rolled 1020 steel with 

65,000 psiuS = , 43,000 psiypS = ,  e = 36 percent elongation in 2 inches, and fatigue properties as shown 
for 1020 steel in Figure 5.31.  The shaft is to transmit 85 horsepower at a rotational speed of  1800 rpmn = , 
with no fluctuations in torque or speed. At the critical section, midspan between bearings, the rotating shaft is 
also subjected to a bure bendign moment of 2000 in-lb, fixed in a vertical plane by virtue of a system of 
symmetrical external forces on the shaft. If the shaft outside diameter is 1.25 inches and the incide diameter is 
0.75 inch, what operating life would be predicted before fatigue failure occurs?  
 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
The torque is  
 

                        63,025( ) 63,025(85) 2976 in-lb (steady)
1800

hpT
n

= = =  

 
From the problem statement, the bending moment is completely reversed (due to shaft rotation) and is 

 
             2000 in-lb (completely reversed)M =  
 

The state of stress at the outside surface is as shown. The stresses are expressed 
in terms of the shaft diameters as 
 

            
( ) ( )4 4 4 4

16 16(2976)(1.25) 8916 psi
(1.25) (0.75)

o
xy

o i

TdTa
J d d

τ
π π

= = = =
− −

 

            
( ) ( )4 4 4 4

32 32(2000)(1.25) 11,983 psi
(1.25) (0.75)

o
x

o i

MdMc
I d d

σ
π π

= = = =
− −

 

 

The equivalent stress for this state of stress is expressed as 2 23eq x xyσ σ τ= +  

From the loading conditions, the mean and alternating torque and moment are 2976 , 0m aT T= = and 
0 , 2000m aM M= = . As a result the mean and alternating shear and normal stresses are 

8916 psi , 0xy m xy aτ τ− −= =  and 0 , 11,983 psix m x aσ σ− −= = . Therefore 
 

                              2 2 2 23 (0) 3(8916) 15,443 psieq m x m xy mσ σ τ− − −= + = + =  

                              2 2 2 23 (11,983) 3(0) 11,983 psieq a x a xy aσ σ τ− − −= + = + =  

 
       max 11,983 15,443 27,426 psi 43,000 psiypSσ = + = < = . Therefore 
 

                  11,983 15,717 psi 
1 / 1 15, 443/ 65,000

a
eq CR

m uS
σ

σ
σ− = = =

− −
 

 
From Figure 5.31, using 15,717 psi eq CRσ − = ,  we estimate infinite life ( N = ∞ ). 
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8-7. A solid cylindrical power transmission shaft is to be made of AM 350 stainless steel for operation in an 
elevated temperature air environment of o540 C (see Table 3.5). The shaft is to transmit 150 kW at a 
rotational speed of 3600 rpm, with no fluctuation in torque or speed. At the critical section, midspan between 
bearings, the rotating shaft is also subjected to a pure bending moment of 280 N-m , fixed in the vertical 
plane by a system of symmetrical external forces on the shaft. If the shaft diameter is 32 mm, predict a range 
within which the mean operational life would be expected to fall. 
 
-------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
The torque applied to the shaft is 
 

                              
( ) ( )9549 9549 150

398 N-m
3600

kw
T

n
= = =  

 
The bending moment, 280 N-mM = is completely reversed due to 
shaft rotation. Since the maximum shearing stress due to torsion is 
at the surface, and the cyclic bending stress is at the surface with 
each rotation, we have a state of stress as shown. 
 
The shearing stress and flexural (bending) stress are given by 
 

                   3
16

xy
Tr T
J d

τ
π

= =    and  3
32

x
Mr M
I d

σ
π

= =  

 
This is a relatively simple state of stress and the principal stress can be determined from either the stress cubic 

equation or Mohr’s circle. Since it is a state of plane stress, we know that 2 23eq x xyσ σ τ= + , so 

2 23eq a x a xy aσ σ τ− − −= +  and 2 23eq m x m xy mσ σ τ− − −= + . 

                                    
Noting that max min m 398 N-mT T T= = = , 0aT = . With max 280 N-mM = + , and min 280 N-mM = − , we 
determine 0mM = and 280aM = . Therefore 
 

             3
32(280) 87 MPa
(0.032)x aσ

π− = =  and 0x mσ − =  

            0xy aτ − =  and 3
16(398) 61.9 MPa
(0.032)xy mτ

π− = =  

 
Therefore 
 

        ( ) ( )2 22 23 87 3 0 87 MPaeq a x a xy aσ σ τ− − −= + = + =  

         ( ) ( )2 22 23 0 3 61.9 107 MPaeq m x m xy mσ σ τ− − −= + = + =  
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Problem 8-7 (continued) 
 
From Table 3.5 we approximate the o540 C  material properties as ( )540 C 821 MPaouS =  and 

( )540 C
572 MPaoypS = . In addition, ( )50 mm 13%RTe = , so the material is considered ductile.  The 

maximum normal stress is 
 
       max 87 107 194 MPaeq a eq mσ σ σ− −= + = + =  
 
The equivalent completely reversed stress is  
 

     ( )540 C

87 100 MPa
10711
821

o
a

eq CR
m

uS

σ
σ

σ− = = =
−−

 

 
The S-N curve for AM 350 stainless steel at o540 C  is not readily available, so we will approximate the 
fatigue failure stress. Assume the guidelines given for nickel based alloys are applicable, giving 
 
                       ' 80.3  to 0.5  @ 10  cyclesf u uS S S=  
 
For the ultimate strength we are using ' 80.3(821) to 0.5(821) @ 10  cyclesfS = , so  
 
                     ' 8246 to 411 MPa @ 10  cyclesfS =  
 
Comparing this to ( )540 C

100 MPaoeq CRσ − = we conclude that infinite life is expected. A more accurate 

answer involves considering the strength-influencing factors. 
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8-8. A shaft of square cross section 2.0 inches by 2.0 inches, is being successfully used to transmit power in a 
application where the shaft is subjected to constant steady pure torsion only. If the same material is used and 
the same safety factor is desired, and for exactly the same application, what diameter should a solid 
cylindrical shaft be made for equivalent performance? 
 
-------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For equivalent performance, with the same power 
transmitted, the torque on she square shaft will be the 
same as that on the round shaft. For the same safety 
factor, if the material is the same for each shaft, 

maxτ must be the same for each shaft. The square shaft is 
a special case of the rectangular shaft, so from Table 4.5 
with 1.0"a b= =  
 

               ( ) . . .
max .. 2 2 2 2

.
0.6

8 8(1) (1)
3 1.8 3(1) 1.8(1)

rect rect rect
rectrect

rect

T T T
T

Q a b
a b

τ = = = =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

 

 
For the circular shaft 
 

                       ( ) . . .
max 3. 3

.

2

2

circ circ rect
circ

circ

T T T
Q rr

τ
ππ

= = =
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
Since ( ) ( )max max. .circ rectτ τ=  and . .circ rectT T=  
 

                       3
3

2 0.6 1.061r
rπ

= ⇒ =                   

                                                                                                                                      1.02"r =  
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8-9.  A shaft with a raised bearing pad, shown in Figure P8.9 must transmit 75 kW on a continuous basis at a 
constant rotational speed of 1725 rpm. The shaft material is annealed AISI 1020 steel. A notch-sensitivity 
index of 0.7q = may be assumed for this material. Using the most accurate procedure you know, estimate the 
largest vertical midspan bearing force P that can be applies while maintaining a safety factor of 1.3 based on 
an infinite life design. 
 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For this material we determine 393 MPauS = , 296 MPaypS = , 

and  ( )50 mm 25%e = . The fatigue endurance limit can be 
approximated from as 33 ksi 228 MPaN fS S= ≈ ≈ . We have 
not considered the strength-influencing parameters since the 
problem statement did not specify conditions that would warrant 
their use. Due to the symmetry of the shaft loading we note that 
 

                           
2L R
PR R= =  

 
Similarly, the maximum bending moment will be  
 

                         0.125
2 2 2 4L
L P L PLM R P⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
Since the shaft is rotating at a constant rate we know that mT T=  and 0aT = . Similarly, since the bearing 
force is constant the bending stress is completely reversed, resulting in / 4aM M PL= = and 0mM = . We 
can apply (9-8) to determine the allowable bearing force P. 
 

                       ( ) ( )3 16 16 0.1252 3 2 3a m
fb d fb d

N u N u

M T P Td K n K n
S S S Sπ π

⎧ ⎫ ⎧ ⎫
= + = +⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
 

 
Rearranging this 
 

                             
( )

34
3

16
N

fb d u

S d TP
K n S

π⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

                                                                                        
 
From the given dimensions we establish / 2 / 32 0.0625r d = =  and / 38 / 32 1.1875D d = = . From Chapter 5  
we approximate 2.00tK ≈ , which results in 
 
                       ( )1 1 0.7(2.0 1.0) 1.0 1.7fb tK q K= − + = − + =  
 
The torque we determine form 
 

               
( ) ( )9549 9549 75

415 N-m
1725m

kw
T T

n
= = = =  
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Problem 8-9 (continued) 
 
Using the data; 0.032 md = , 0.50 mL = , 1.7fbK = , 1.3dn = , 6393 10uS = × , 6228 10  NS = × , and 

415 N-mmT = and (1) 
 

                                 
( )

( )

6 3

6

4 228 10 (0.032) 4153 3667 N
1.7 1.3 16 293 10

P π× ⎛ ⎞
= − =⎜ ⎟×⎝ ⎠

 

 
                                                                                                        3700 NP ≈ (maximum load) 
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8-10.  A solid circular cross-section shaft made of annealed AISI 1020 steel (see Figure 5.31) with an ultimate 
strength of 57,000 psi and a yield strength of 43,000 psi is shouldered as shown in Figure P8.10. The 
shouldered shaft is subjected to a pure bending moment , and rotates at a speed of 2200 rpm. How many 
revolutions of the shaft would you predict before failure takes place? 
 
-------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
The actual stress is ( )/act f nom fK K Mc Iσ σ= = , where ( )1 1f tK q K= − + . We determine tK  from Figure 

5.4 (a) using / 0.025 /1 0.025r d = = and / 1.5 /1 1.5D d = = , which results in 2.25tK ≈ . For annealed 
aluminum with 57 ksiuS = , @ 0.025r = ,  we use Figure 5.47 and get 0.53q ≈ . Therefore 
 
                                       ( )0.53 2.25 1 1 1.66fK = − + ≈  
 
Next 
 

                           4
1600(0.5)1.66 1.66 27,053 27 ksi

(1) / 64act
Mc
I

σ
π

= = = ≈  

   
From Figure 5.31 we determine N = ∞ , so fatigue failure is not predicted. 
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8-11. A rotating solid cylindrical shaft must be designed to be as light as possible for use in an orbiting space 
station. A safety factor of 1.15 has been selected for this design, and the tentative material selection is Ti-
150a titanium alloy. This shaft will be required to rotate a total of 200,000 revolutions during its design life. 
At the most critical section of the shaft, it has been determined from force analysis that the rotating shaft will 
be subjected to a steady torque of 1024 rpm and a bending moment of 1252 N-m. It is estimated that the 
fatigue stress concentration factor for this critical section will be 1.8 for bending and 1.4 for torsion. Calculate 
the required minimum shaft diameter at this critical section. 
 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
 
8-11.  For Ti 150a, for a design life of 52 10×  cycles, we get 52 10 69 ksi 476 MPaNS = × ≈ ≈ . Approximating 

1000 MPauS ≈ , the diameter is approximated from 
 

                    ( ) ( )3
6 6

16 16 1252 10242 3 2(1.8) 1.15 3 0.0000645
476 10 1000 10

a m
fb d

N u

M T
d K n

S Sπ π
⎧ ⎫ ⎧ ⎫= + = + =⎨ ⎬ ⎨ ⎬

× ×⎩ ⎭⎩ ⎭
 

                                                                                                                
                                                                                                                         0.040 m 40 mmd = =  
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8-12.  The sketch in Figure P8.12 shows a shaft configuration determined by using a now-obsolete ASME 
shaft code equation to estimate several diameters along the shaft. It is desired to check the critical sections 
along the shaft more carefully. Concentrating attention on critical section E-E, for which the proposed 
geometry is specified in Figure P8.12, a force analysis has shown that the bending moment at E-E will be 
100,000 in-lb, and the torsional moment is steady at 50,000 in-lb. The shaft rotates at 1800 rpm. Tentatively, 
the shaft material has been chosen to be AISI 4340 ultra-high strength steel (see Table 3.3). A factor of safety 
of 1.5 is desired. Calculate the minimum diameter the shaft should have at location E-E if infinite life is 
desired. 
 
--------------------------------------------------------------------------------------------------------------- 
Solution 
 
From Tables 3.3 and 3.10 287 ksiuS = , 270 ksiypS = , and (2") 11%e = . Estimating the S –N curve, since 

200 ksiuS > , we have ' 100 ksifS = . Since no information is available for calculating k∞ , we assume 

1k∞ = , which results in ' 100 ksif fS S= = . 
 
From the problem statement we have a steady torque and completely reversed bending .  Using Figure 5.5 (a) 
with  / 0.25 / 3.5 0.07r d = = and / 4 / 3.5 1.14D d = = . This gives 2.1tK ≈ . With 287 ksiuS = , @ 0.25r = ,  
we use Figure 5.47 and get 1.0q ≈ . Therefore 
 
                                   ( )1 1 1(2.1 1) 1 2.1f tK q K= − + = − + =  
 
The diameter is determined from 
 

                ( )3 16 16 100 502 3 2(2.1)(1.5) 3 33.62
100 287

a m
fb d

N u

M T
d K n

S Sπ π
⎧ ⎫ ⎧ ⎫= + = + =⎨ ⎬ ⎨ ⎬

⎩ ⎭⎩ ⎭
 

 
                                                                                                               3.22 ind =  
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8-13.  One of two identical drive shafts for propelling a 600 N radio controlled robot is shown in Figure 
P8.13.  The shaft is supported by bearings at A and C and driven by gear B.  The chains attached to sprockets 
D and E drive the front and rear wheels (not shown). The tight side chain tensions on sprockets D and E make 
an angle o5θ =  with the horizontal z axis.  The gear and sprocket forces are as shown. The shaft is to be 
made of  AISI cold-drawn medium carbon steel  with ultimate and yield strengths of 621 MPa and 483 MPa, 
respectively. The robot is being designed for a yearly competition, so long term fatigue is not a primary 
consideration. However, since the robotic competition generally involves multiple incidents of high impact, 
you decide to include fatigue considerations and assume 300 MPaNS = and 1.5dn = . Neglecting stress 
concentration factors, calculate an appropriate shaft diameter.      
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
We begin by transferring the forces from gear B and 
sprockets D and E to the center of the shaft.  This results in 
both horizontal and vertical forces as well a torque at points 
B, D, and E along the shaft center line. The resulting loads 
are shown below 
 
             3600 NByF = ↑  

             3200 NBzF = ←  
             3600(0.020) 72 N-mBT = =  

           o1200cos5 1195 NDzF = ≈ →  

           o1200sin 5 105 NDyF = ≈ ↑  

           o1200cos5 1195 NEzF = ≈ ←  

           o1200sin 5 105 NEyF = ≈ ↓  

          1200(0.030) 36 N-mD ET T= = =  
 

 
The forces and torques acting on the centerline of the shaft 
are as shown. The reactions at bearings A and C are 
determined from the equations for static equilibrium.  
 

0 : 3600 105 105 0y y yF A C= + + + − =∑  

                      3600y yA C+ = −  

0 : 3200 1195 1195 0z z zF A C= + + − + =∑  
                     3200z zA C+ = −  

( ) 0 : 3200(0.03) (0.06)

                         1195(0.08) 1195(0.10) 0
A zyM C= − −

+ − =

∑
                                                   

0.06 119.9 1998 N 
                                    1202 N

z z

z

C C
A

= − ⇒ ≈ −
≈ −

 

( ) 0 : 3600(0.03) (0.06)

                        105(0.08) 105(0.10) 0
A yzM C= +

+ − =

∑       

                             1765 NyC ≈ −  , 1835 NyA ≈ −  
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Problem 8-13 (continued) 

 
 Since no axial forces exist, an axial force diagram is not required. The torque diagram and approximate shear 
force and bending moment diagrams for the xy and xz planes are shown below 
 

 
 

From the moment diagrams it is obvious that the maximum moment occurs at point B. This is also the 
location of the maximum torque and represents the critical point along the shaft.  Since the shaft is rotating 
in order to drive the wheels, this moment is the alternating moment, with a magnitude of  

 

( ) ( ) ( ) ( )2 2 2 255.05 36.06 65.81 65.8 N-ma y zM M M M= = + = − + − = ≈  

 
 The torque at B is the mean torque and has a magnitude of 72 N-m . The maximum bending moment is. 
Knowing that 621 MPauS = , 300 MPaNS = , 1.5dn = and by neglecting stress concentrations , 1fbK =  , 
the shaft diameter is  approximated using 
 

        ( )3
6 6

16 16 65.8 722 3 2(1)(1.5) 3 0.0000044
300 10 621 10

a m
fb d

N u

M T
d K n

S Sπ π
⎧ ⎫ ⎧ ⎫= + = + =⎨ ⎬ ⎨ ⎬

× ×⎩ ⎭⎩ ⎭
 

    
                                                                                                              0.0164 m 16.4 mmd = =  
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8-14.  At a weekly design review meeting someone suggests that perhaps the shaft in problem 8.13 will 
undergo too much deflection at end E. Therefore it is suggested that an addition bearing support be placed 20 
mm to the right of the sprocket at E, thus extending the shaft length to 120 mm. Assuming the same material 
and design constrains as in Problem 8.13, determine the required diameter for this shaft 
 
---------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
We begin by transferring the forces from gear B and 
sprockets D and E to the center of the shaft.  This 
results in both horizontal and vertical forces as well 
a torque at points B, D, and E along the shaft center 
line. The resulting loads are shown below 
 
             3600 NByF = ↑  

             3200 NBzF = ←  
             3600(0.020) 72 N-mBT = =  

           o1200cos5 1195 NDzF = ≈ →  

           o1200sin 5 105 NDyF = ≈ ↑  

           o1200cos5 1195 NEzF = ≈ ←  

           o1200sin 5 105 NEyF = ≈ ↓  

          1200(0.030) 36 N-mD ET T= = =  
 

The forces and torques acting on the centerline of 
the shaft are as shown. With the addition of a new 
bearing 20 mm to the right of point E, the shaft 
becomes statically indeterminate. The 
reactions at bearings A , C , and F can not 
be determined from the equations for static 
equilibrium. Although they can not be 
solved, the equations of static equilibrium 
supply useful equations which can be used 
to eventually solve the problem. 
 

0 : 3600

                               105 105 0
y y y yF A C F= + + +

+ − =

∑                                         

                                                                                                     
3600y y yA C F+ + = −                (1)                       

 
( ) 0 : 3600(0.03) (0.06)

                       105(0.08) 105(0.10)
                       (0.12) 0

A yz

y

M C

F

= +

+ −
+ =

∑
 

0.06 0.12 105.9 2 1765y y y yC F C F+ = − → + = −               (2) 
 
Using superposition with the models below and Table 4.1 
cases 1 and 2 we note that four models are required and in 
each case we need to determine the deflection at point C. 
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Problem 8-14 (continued) 
 

( )2 2 2
1 6C

Pbxy L b x
EIL− = − −  

( )2 2 2
1

3600(0.03)(0.06) (0.12) (0.03) (0.06)
6 (0.12)Cy

EI− = − −  

1
0.0891

Cy
EI− =  

 
 

( )2 2 2
2 6C

Pbxy L b x
EIL− = − −  

( )2 2 2
2

105(0.04)(0.06) (0.12) (0.04) (0.06)
6 (0.12)Cy

EI− = − −  

2
0.00322

Cy
EI− =  

 

( )2 2 2
3 6C

Pbxy L b x
EIL− = − −  

( )2 2 2
3

105(0.02)(0.06) (0.12) (0.02) (0.06)
6 (0.12)Cy

EI−
−

= − −  

3
0.00182

Cy
EI− = −  

 
 
 

33

4
(0.12)

48 48
y

C
CPLy

EI EI− = =  

4
0.000036 y

C
C

y
EI− =  

 
 
Combining these displacements we get 
 

        1 2 3 4
10 0.0891 0.0032 0.00182 0.000036C C C C C yy y y y y C

EI− − − − ⎡ ⎤= + + + = = + − +⎣ ⎦        2514yC ≈ −  

                                                                                                 
From (1) and (2) above 
 
                   2514 2 1765 375y yF F− + = − → ≈  

            2514 375 3600 1461y yA A− + = − → = −  
 
 
For the xz plane we use the model shown and follow the 
same procedures as before. The equations of equilibrium 
yield 
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Problem 8-14 (continued) 
 

0 : 3200 1195 1195 0z z z zF A C F= + + + + − =∑  
                                   3200z z zA C F+ + = −               (3)  
                      

( ) 0 : 3200(0.03) (0.06) 1195(0.08) 1195(0.10) (0.12) 0A zyM C Fz= + + − + =∑  

                                                       0.06 0.12 72.1 2 1202z z z zC F C F+ = − → + ≈ −               (4) 
 
Using Superposition again we get 
 

( )2 2 2
1 6C

Pbxz L b x
EIL− = − −  

( )2 2 2
1

3200(0.03)(0.06) (0.12) (0.03) (0.06)
6 (0.12)Cz

EI− = − −  

1
0.0792

Cz
EI− =  

 
                                                                                           

( )2 2 2
2 6C

Pbxz L b x
EIL− = − −  

( )2 2 2
2

1195(0.04)(0.06) (0.12) (0.04) (0.06)
6 (0.12)Cz

EI−
−

= − −  

2
0.0366

Cz
EI− = −  

 
 
 

( )2 2 2
3 6C

Pbxz L b x
EIL− = − −  

( )2 2 2
3

1195(0.02)(0.06) (0.12) (0.02) (0.06)
6 (0.12)Cz

EI− = − −  

3
0.0207

Cz
EI− =  

 
 

33

4
(0.12)

48 48
z

C
CPLz

EI EI− = =  

4
0.000036 z

C
Cz

EI− =  

 
Combining these displacements we get 
 

        [ ]1 2 3 4
10 0.0792 0.0366 0.0207 0.000036C C C C C zz z z z z C
EI− − − −= + + + = = − + +           1758zC ≈ −  
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Problem 8-14 (continued) 
 
From (3) and (4) above 
 
                                                 1758 2 1202 278z zF F− + = − → =  
                                                    1758 278 3200 1720z zA A− + = − → = −  
 
The approximate shear force and bending moment for the xy and xz planes, as well as the torque distribution 
are shown below. 
 

 
 
 

From the moment diagrams it is obvious that the maximum moment occurs at point B. This is also the 
location of the maximum torque and represents the critical point along the shaft.  Since the shaft is rotating 
in order to drive the wheels, this moment is the alternating moment, with a magnitude of  

 

( ) ( ) ( ) ( )2 2 2 243.83 39.66 59.1 N-ma y zM M M M= = + = − + − =  

 
 The torque at B is the mean torque and has a magnitude of 72 N-m . The maximum bending moment is. 
Knowing that 621 MPauS = , 300 MPaNS = , 1.5dn = and by neglecting stress concentrations , 1fbK =  
, the shaft diameter is  approximated using 
 

        ( )3
6 6

16 16 59.1 722 3 2(1)(1.5) 3 0.00000403
300 10 621 10

a m
fb d

N u

M T
d K n

S Sπ π
⎧ ⎫ ⎧ ⎫= + = + =⎨ ⎬ ⎨ ⎬

× ×⎩ ⎭⎩ ⎭
 

    
                                                                                                              0.01592 m 15.92 mmd = =  
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8-15. To obtain a quick-and-dirty estimate for the maximum slope and deflection of the steel shaft shown in 
Figure P8.15. it is being proposed to approximate the stepped shaft by an “equivalent” shaft of uniform 
diameter 100 mmd = . The shaft may be assumed to be simply supported by bearings at locations A and G, 
and loaded as shown. Estimate the maximum deflection of the equivalent-uniform-diameter shaft and the 
slopes at bearing locations A and G. 

 
---------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Bending deflections and slopes may be calculated using 
case 2 of Table ?.?? twice. For both cases considered we 
use  
 
    1 mL =  

   
( )49 6 20.1

207 10 1.016 10  N-m
64

EI
π⎡ ⎤
⎢ ⎥= × = ×
⎢ ⎥⎣ ⎦

 

 
For 36 kNP = − , 0.275 ma = and 0.725 mb = the slopes are 
 

( )
3 3 3

6

36 10 (0.725)0.725(1.0) 0.00203 rad
6 1.06 1.016 10

A
P bbL
EI L

θ
⎛ ⎞ ⎛ ⎞− ×

= − = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

( )
3 3 3

2 2
6

36 10 (0.725)2 3 2(0.725)(1.0) 3(0.725) 0.00150 rad
6 1.06 1.016 10

G
P bbL b
EI L

θ
⎛ ⎞ ⎛ ⎞− ×

= + − = + − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

 
Deflections are determined based on information in the table. Using 0.725 ma = and 0.275 mb = ; 
 

     

( ) ( )

( )( )( )( ) ( )

( )

max

3

6

2 3 2

27
36 10 0.725 0.275 0.725 0.55 3(0.725) 0.725 0.55

       0.000555 m
27 1.016 10

Pab a b a a b
y

EI

+ +
=

− × + +
= = −

×

 

At 
 

( ) ( )2 0.725 0.725 0.55
0.5551 m

3 3
a a b

x
+ +

= = = from the right end, or 0.4449 m from the right end 

 
For 9 kNP = , 0.6 ma = and 0.4 mb = the slopes are 
 

( )
3 3 3

6

9 10 (0.4)0.4(1.0) 0.000496 rad
6 1.06 1.016 10

A
P bbL
EI L

θ
⎛ ⎞ ⎛ ⎞×

= − = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

( )
3 3 3

2 2
6

9 10 (0.4)2 3 2(0.4)(1.0) 3(0.4) 0.000567 rad
6 1.06 1.016 10

G
P bbL b
EI L

θ
⎛ ⎞ ⎛ ⎞×

= + − = + − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠
 

 
The deflection is determined using the same properties as for the slopes; 9 kNP = , 0.6 ma = and 0.4 mb =  
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Problem 8-15 (continued) 
 
 

( ) ( ) ( )( )( )( ) ( )

( )
3

max 6

9 10 0.6 0.4 0.6 0.8 3(0.6) 0.6 0.82 3 2
0.000175 m

27 27 1.016 10

Pab a b a a b
y

EI

× + ++ +
= = =

×
 

at 
( ) ( )2 0.6 0.6 0.8

0.5292 m
3 3

a a b
x

+ +
= = = from the left end 

 
Since the location of the maximum deflection for both cases is relatively close, the results are superposed and 
the location is averaged. 
 
                  max 0.000555 0.000175 0.0005375 m 0.5375 mmy == − + = − = −  
 

at ( )1 0.4449 0.5292 0.4871 m
2

x = + =     

 
The slopes at A and G are determined by adding the result above                
 
                 0.00203 0.000496 0.001534 radAθ = − + = −   
                 0.00150 0.000567 0.000933 radGθ = − + = −  
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8-16. For the stepped steel shaft of problem 8-15, use integration to determine the maximum displacement 
and the slope of the shaft at A and G. 
 
---------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
In order to integrate the moment equation to define 
slope and displacement we first determine the 
reactions at A and G. Using the free body diagram 
shown 
 

0 : 9 36 0y L RF R R= + + − =∑  

                               27L RR R+ =  
 

0 : 1.0 0.6(9) (0.275)36 0A RM R= + − =∑  
                           4.5 kNRR =  
                           22.5 kNLR =  
 
Next, we set up a moment expression for the beam. Since singularity functions are simple to set up and use, 
that approach will be used here. Using the free body diagram shown and singularity functions, we write 
 

( ) 36 0.275 9 0.6 0LM x R x x x− + − − − =  
 
Therefore 
 

   
2

2 ( ) 36 0.275 9 0.6L
d yEI M x R x x x
dx

= = − − + −  

 

Integrating twice;    2 2 2
1

36 9( ) 0.275 0.6
2 2 2
LRdyEI EI x x x x C

dx
θ= = − − + − +  

                              3 3 3
1 2

36 9( ) 0.275 0.6
6 6 6
LREIy x x x x C x C= − − + − + +  

 
Using the boundary condition (0) 0y = , 2 0C = . Using the boundary condition (1) 0y =  
 

    ( ) ( ) ( )3 3 3
1 1

22500 36000 9000(1) 0 1 1 0.275 1 0.6 (1) 1559.5
6 6 6

EIy C C= = − − + − + = = −  

 
The slope and deflection at any point are therefore given as 
 
        2 2 2( ) 11250 18000 0.275 4500 0.6 1559.5EI x x x xθ = − − + − −                              (1) 

         3 3 3( ) 3750 6000 0.275 1500 0.6 1559.5EIy x x x x x= − − + − −                                (2) 
 
The stepped shaft results in different EI products for various sections of the shaft. 
 

         ( )
4

9 6(0.075)207 10 0.3215 10
64AB EGEI EI π⎛ ⎞

= = × = ×⎜ ⎟⎜ ⎟
⎝ ⎠
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Problem 8-16 (continued) 
 

        ( )
4

9 6(0.100)207 10 1.0161 10
64BDEI π⎛ ⎞

= × = ×⎜ ⎟⎜ ⎟
⎝ ⎠

         ( )
4

9 6(0.125)207 10 2.481 10
64DEEI π⎛ ⎞

= × = ×⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
Plotting equations (1) and (2) results in the slope and displacement curves shown. The maximum 
displacement is max 1.15 mmy ≈  .The slopes at A and G are  0.00499 radAθ = −   and   0.00304 radGθ = . 
 

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1

x (m)

Di
sp

la
ce

m
en

t (
m

m
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0 0.2 0.4 0.6 0.8 1

x (m)
S

lo
pe

 (r
ad

)



 327

 
 
8-17.  A rotating shaft having 5.00-cm outside diameter and a 6.0-mm-thick wall is to be made of AISI 4340 
steel. The shaft is supported at its ends by bearings that are very stiff, both radially and in their ability to resist 
angular deflections caused by shaft bending moments. The support bearings are spaced 60 cm apart. A solid-
disk flywheel weighing 450 N is mounted at midspan, between the bearings. What limiting maximum shaft 
speed would you recommend for this application, based on the need to avoid lateral vibration of the rotating 
system? 
 
-------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From the problem statement, noting that bearings are 
stiff to both radial displacement and bending moment, 
the shaft flywheel system may be modeled as abeam 
with both ends fixed, loaded by two forces; the 
flywheel ( fwW ) and the shaft  ( shW ). 
 
From Table 4.1  
 

              
3

max 192
PLy

EI
=  

In addition, we can determine  
 

          
( ) ( ) ( )2 22 2

4
1

0.05 0.038
(0.60)(7.68 10 ) 38.22 N

4 4
o i

sh

d d
W Lw

ππ ⎡ ⎤−− ⎢ ⎥⎣ ⎦= = × =  

 
Therefore we use 450 38.22 488.2P = + = . In addition, we know that 207 GPaE = , and we calculate 
 

                                  
( ) ( ) ( )4 44 4

7 4
0.05 0.038

2.04 10  m
64 64
o id d

I
ππ

−
⎡ ⎤−− ⎢ ⎥⎣ ⎦= = = ×  

 
The maximum deflection is therefore 
 

                         
( )( )

3
5

max 9 7

488.2(0.6) 1.3 10  m
192 207 10 2.04 10

y −
−

= = ×
× ×

 

 
Noting that 29.81 m/sg =  and that 5

max 1.3 10  msh fwy y y −= = = × we determine 
 

                               
5

5 2
60 488.2(1.3 10 )9.81 8295 rpm
2 488.2(1.3 10 )crn
π

−

−

⎡ ⎤×
= =⎢ ⎥

×⎢ ⎥⎣ ⎦
 

 
Since it is recommended that the operating speed should be no more that 1/3 to 1/2 of crn , we suggest 
 
                                                             3300 rpmcrn ≈  
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8-18.  Repeat problem 8-17 using a solid shaft of the same outside diameter instead of the hollow shaft. 
 
-------------------------------------------------------------------------------------------------------------- 
Solution 
 
From the problem statement, noting that bearings are 
stiff to both radial displacement and bending moment, 
the shaft flywheel system may be modeled as abeam 
with both ends fixed, loaded by two forces; the 
flywheel ( fwW ) and the shaft  ( shW ). 
 
From Table 4.1  
 

              
3

max 192
PLy

EI
=  

In addition, we can determine  
 

          
( )22

4
1

0.05
(0.60)(7.68 10 ) 90.48 N

4 4
o

sh
d

W Lw
ππ

= = × =  

 
Therefore we use 450 90.48 540.5P = + ≈ . In addition, we know that 207 GPaE = , and we calculate 
 

                                  
( )44

7 40.05
3.07 10  m

64 64
odI

ππ −= = = ×  

 
The maximum deflection is therefore 
 

                         
( )( )

3
6

max 9 7

540.5(0.6) 9.57 10  m
192 207 10 3.07 10

y −
−

= = ×
× ×

 

 
Noting that 29.81 m/sg =  and that 6

max 9.57 10  msh fwy y y −= = = × we determine 
 

                               
6

6 2
60 540.5(9.57 10 )9.81 9670 rpm
2 540.5(9.57 10 )crn
π

−

−

⎡ ⎤×
= =⎢ ⎥

×⎢ ⎥⎣ ⎦
 

 
Since it is recommended that the operating speed should be no more that 1/3 to 1/2 of crn , we suggest 
 
                                                             3900 rpmcrn ≈  
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8-19.  A 2-inch-diameter solid cylindrical 1020 steel shaft is supported on identical rolling-element bearings 
(see Chapter 11) spaced 90 inches apart, as sketched in Figure P8.19. A rigid coupling weighing 80 lb is 
incorporated into the shaft at location A, 30 inches form the left bearing, and a small solid-disk flywheel 
weighing 120 lb (see Chapter 18) is mounted on the shaft at location B, 70 inches from the left bearing. The 
shaft is to rotate at 240 rpm. The bearings are not able to resist any shaft bending moments. 
a. Neglecting any radial elastic deflection in the support bearings, and neglecting the mass of the shaft, 
estimate the critical speed for lateral vibration of the rotating system shown. If this estimate of critical speed 
is correct, is the proposed design acceptable? 
b. Reevaluate the critical speed estimate of (a) by including the mass of the shaft in the calculation. If this 
new estimate of critical speed is correct, is the proposed design acceptable? 
c.  Reevaluate the critical speed estimate of (b) if the radial elastic deflections of the bearings (the spring rate 
of each bearing has been provided by the bearing manufacturer as 55 10  lb-in× ) are included in the 
calculation. Does this new estimate of ctiotical speed, if correct, support the postulate that the system is 
adequately designed from the standpoint of lateral vibration? 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
(a) The critical speed for lateral vibration of the shaft may be estimated from (8-18). From the problem 
statement, shaft weight and bearing stiffness effects will be neglected for this estimate. We need the 
displacement at points A and B.  We treat each load independently and add the results. For the shaft we know 

630 10  psiE = × , 4 4(2) / 64 0.785 inI π= = , and 90 in.L = The product 623.55 10  lb-inEI = × . 
 
Coupling: At point A we use Case 2 of Table 4.1 directly, 
with 30" , 60"a b= =  
                     

          ( ) ( )( )

2 2 2 2

6

80(30) (60) 0.04076"
3 3 23.55 10 90
A

A c
P a by

EIL
= = =

×
 

 
At point B we work from right to left using 60" , 30" , 20"a b x= = =   
 

            ( ) ( ) ( )( )
2 2 2 2 2 2

6

80(30)(20) (90) (30) (20) 0.00257"
6 6 23.55 10 90

A
B c

P bxy L b x
EIL

⎡ ⎤= − − = − − =⎣ ⎦×
 

                    
Flywheel: At point B we use 70" , 20"a b= =  
 

             ( ) ( )( )

2 2 2 2

6

120(70) (20) 0.03699"
3 3 23.55 10 90
B

B fw
P a by

EIL
= = =

×
 

 
At point A we use 70" , 20", 30"a b x= = =  

 

           ( ) ( ) ( )( )
2 2 2 2 2 2

6

120(20)(30) (90) (20) (30) 0.00381"
6 6 23.55 10 90

B
A fw

P bxy L b x
EIL

⎡ ⎤= − − = − − =⎣ ⎦×
 

 
Combining there results 
 
                       ( ) ( ) 0.04076 0.00381 0.04457"A A Ac fwy y y= + = + =  

                       ( ) ( ) 0.00257 0.03699 0.03956"B B Bc fwy y y= + = + =  
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Problem 8-19 (continued) 
 

                  2 2
80(0.04457) 120(0.03956) 8.313187.7 187.7 919 rpm

0.346780(0.04457) 120(0.03956)crn
⎡ ⎤+ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥+ ⎣ ⎦⎢ ⎥⎣ ⎦

 

 
                    / 919 / 240 3.83cr opn n = =  
 

The current design exceeds the specifications of 2 or 3 times cr opn n= . 
 
 
(b) If the shaft weight is included, we must add a third 
term to the calculations. We model the weight as 
being concentrated at the center of the shaft (Case 1 of 
Table 4.1). The shaft weight is 
 

            
3(2) (90)(0.283) 80 lb

4shW π
= ≈  

 
The case of a concentrated load at the center is used. For a concentrated load in the center of the 

shaft ( ) ( )2 23 4
48

sh
A sh

W x
y L x

EI
= − . Using 30"x =  

 

                   ( ) ( )
2 2

6

80(30) 3(90) 4(30) 0.04395"
48 23.55 10

A shy ⎡ ⎤= − =⎣ ⎦×
 

 
For point B we use 30"x = (working from right to left along the shaft) 
 

                  ( ) ( )
2 2

6

80(20) 3(90) 4(20) 0.03213"
48 23.55 10

B shy ⎡ ⎤= − =⎣ ⎦×
 

 
We also need to determine the mid-span deflection due to the shaft weight, which is 
 

                    ( ) ( )
3 3

6

80(90) 0.05159"
48 48 23.55 10

sh
C sh

W L
y

EI
= = =

×
 

 
We also need the deflection at C due to the collar and the flywheel. For the collar 70" , 20",a b= =  
and 45"x = . 
 

        ( ) ( ) ( )( )
2 2 2 2 2 2

6

80(20)(45) (90) (20) (45) 0.03213"
6 6 23.55 10 90

sh
C c

W bx
y L b x

EIL
⎡ ⎤= − − = − − =⎣ ⎦×

 

 
For the flywheel, 70" , 20", 45"a b x= = = , and 
 

        ( ) ( ) ( ) ( )
2 2 2 2 2 2

6

120(20)(45) (90) (20) (45) 0.04820"
6 6 23.55 10 90

sh
C fw

W bx
y L b x

EIL
⎡ ⎤= − − = − − =⎣ ⎦×
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Problem 8-19 (continued) 
 
The new displacements at A and B are 

 
              ( )0.04457 0.04457 0.04395 0.08852"A A shy y= + = + =  

               ( )0.03956 0.03956 0.04395 0.08351"B A shy y= + = + =  
 

At point C:   ( ) ( ) ( ) 0.03212 0.04820 0.05159 0.13191"C C C Cc fw shy y y y= + + = + + =  

 
The critical speed is therefore 
 

     2 2 2
80(0.04457) 80(0.13191) 120(0.03956) 18.866187.7 187.7 618 rpm

1.738780(0.04457) 80(0.13191) 120(0.03956)crn
⎡ ⎤+ + ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥+ + ⎣ ⎦⎢ ⎥⎣ ⎦

 

 

        618 2.68
240

cr

op

n
n

= =  

 
This is within the specifications of 2 or 3 times cr opn n= . 
 

(c) A crude estimate for the contribution of bearing 
deflection may be made by calculating the bearing 
reactions at the left and right ends of the shaft. 

 
    0 : 280 0y L RF R R= − − =∑  

    
0 : 90 80(30) 80(45) 120(70) 0

                      160 lb , 120 lb
L R

R L

M R
R R

= − − − =
= =

∑  

 
Each bearing has a spring stiffness of  5/ 5 10k F y= = × .  The deflection at each bearing is therefore 

5120 / 5 10 0.002"
LRy = × =  and 5160 / 5 10 0.003"

RRy = × = . We approximate the effect of bearing 
displacement by averaging the displacement and adding it to the existing displacements. Using 

(0.002 0.003) / 2 0.0025"avgy = + = results in 
 
                0.08852 0.08852 0.0025 0.091"A avgy y= + = + ≈  

               0.08351 0.08351 0.0025 0.0860"B avgy y= + = + =  

                0.13191 0.13191 0.0025 0.1344"C avgy y= + = + =  
 

The critical speed is therefore 
 

     2 2 2
80(0.091) 80(0.1344) 120(0.0860) 28.352187.7 187.7 578 rpm

2.99580(0.091) 80(0.1344) 120(0.0860)crn
⎡ ⎤+ + ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥+ + ⎣ ⎦⎢ ⎥⎣ ⎦

 

 

               578 2.41
240

cr

op

n
n

= =  

 
The design still meets the guidelines. 
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8-20.  For the proposed coupling sketched in Figure P8.20, evaluate the folloeing aspects of the proposed 
configuration if a design safety factor of 2.0 is desired. 

a. Shear and bearing in the keys. 
b. Shear and bearing in the flange attachment bolts. 
c. Bearing on the flange at attachment bolt interfaces. 
d. Shear in the flange at the hub. 

 
 The input shaft has a nominal diameter of 2.25 inches, and supplies a steady input of 50 hp at 150 
rpm. The bolt circle diameter is 6.0 inchesbd = . Cold-drawn AISI 1020 steel is being proposed as the 
material for the coupling components, including the bolts, and also the material for the key (see Table 3.3). Is 
the coupling design acceptable as proposed? 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
For the material specified, 61 ksiuS = , 51 ksiypS = , (2") 22%e = . 

 

(a) The torque is  63,025(50) 21,000 in-lb
150

T = ≈ . For a 2” diameter shaft, a 1/2" square key is recommended 

(Table 8.1).  Since the load does not fluctuate 1.0tK τ = and 
 

                                           (2.25) 3.5"
2(1.0)eq strL π

− = ≈  

 
The average shearing stress is  
 

                                         2 2(21,000) 10,666 10,670 psi
2.25(0.5)(3.5)s

T
DwL

τ = = = ≈  

 
 Based on distortional energy, 0.577 0.577(51) 29,430 psiyp ypSτ = = = . The existing factor of safety is 
 

                                           29, 430 2.76 2.8 2   - acceptable
10,670

yp
ex d

s
n n

τ
τ

= = = ≈ > =  

 
The compressive bearing stress is 
 

                                           4 4(21,000) 21,333 21,330 psi
2.25(0.5)(3.5)c

T
DwL

σ = = = ≈  

 

                                           51,000 2.39 2.4 2   - acceptable
21,330

yp
ex d

c

S
n n

σ
= = = ≈ > =  

 
(b) The area of each 0.5” diameters bolt is 2 2(0.5) / 4 0.1963 0.196 inbA π= = ≈ . The total shear area is 

26 1.176 insb bA A= = . The torque-induced force at the bolt circle is 
 

                                          2 2(21,000) 7000 lb
6B

B

TF
d

= = =  
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Problem 8-20 (continued)  
 
 Each bolt in the pattern supports a force of / 6 1167 lbb BF F= = . The shear stress in each bolt is 
 

                                            1167 5954 5950 psi
0.196

b
b

b

F
A

τ = = = ≈  

 

                                             29, 430 4.95 5 2   - acceptable
5950

yp
ex d

b
n n

τ
τ

= = = ≈ > =  

 
The compressive bearing stress is 
 

                                           1167 3734 3730 psi
0.5(0.625)cσ = = ≈  

 

                                           51,000 13.66 2   - acceptable
3730

yp
ex d

c

S
n n

σ
= = = >> =  

 
(c)  Since the flange and bolt material are the same, the existing factors of safety for flange and bolt bearing 
are acceptable. 
 
(d) At the edge of the hole, the force in the flange is 

 

                         2 2(21,000) 9882 9880 lb
4.25h

h

TF
d

= = = ≈  

 
The flange shear area at the edge of the hub is 2(4.25)(0.625) 8.345 inshA π= = .  The shaer stress and 
existing factor of safety are 
 

                                            9880 1184 psi
8.345

h
sf

sh

F
A

τ = = =  

 

                                             29, 430 24.85 2   - acceptable
1184

yp
ex d

sh
n n

τ
τ

= = = > =  

 
 The complete design is acceptable. 
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8-21.  As a new engineer, you have been assigned the task of recommending an appropriate shaft coupling for 
connecting the output shaft of an  8.95 kW gear-motor drive unit, operating at 600 rpm, to the input shaft of a 
newly designed seed-corn cleaning machine ordered by a farm-supply depot. Based on the capabilities within 
your company’s production facility, it has been estimated that the parallel centerline misalignment between 
the motor drive shaft and the input shaft of the seed cleaning machine may be as much as 0.8 mm, and the 
angular misalignment between shafts may be as much as o2 . What type of coupling would you recommend? 
 

 
-------------------------------------------------------------------------------------------------------------- 
Solution 
 
In this application torque to be transmitted is  
 

                          
( ) ( )9549 9549 8.95

142 N-m(1250 in-lb)
600

kw
T

n
= = =  

 
Referring to Figure 8.4, and reading “flexible couplings” in Section 8.9, the following table is made 
 

 
Max. Allowable Offset 

Max. Allowable 
Angular Misalignment 

 
Other Limitations 

Coupling 
Shown in 
Figure 9.4 in mm degrees  

(a) 0.25 6.35 0.5 Low speed 
(b)   1 – 3  
(c) 0.01 0.25 1.5  
(d) 0.125 3.18 4  
(e) 0.0625 1.59 1  
(f) 0.25 6.35 9 Low torque only 
(g)   1  
(h)    Low torque only 
(i) 0.25 6.35 1  
     

 
Comparing the information in the problem statement; Moderate torque capacity, 0.8 mm parallel alignment 
and o2 angular misalignment, We conclude that coupling (d), a spring coupling, is appropriate. 
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8-22.  a. A chain drive (see Chapter 17) delivers 110 horsepower to the input shaft of an industrial blower in a 

paint manufacturing plant. The drive sprocket rotates at 1700 rpm, and has a bore diameter of 2.50 
inches and a hub length of 3.25 inches. Propose an appropriate geometry for a standard square key, 
including width and length dimensions, if the key is to be made of 1020 cold-drawn steel having 

61,000 psiuS = and 51,000 psiypS = . The key material may be assumed to be weaker than either the 
mating shaft material or hub material. A design safety factor of 3 is desired. 
b. Would it be possible to use a standard Woodruff key of the same material in this application? 

 
----------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For the material specified, 61 ksiuS = , 51 ksiypS = , (2") 22%e = . 

 

(a) The torque is  63,025(110) 4078 in-lb
1700

T = ≈ . For a 2.5” diameter shaft, a 5/8" square key is 

recommended (Table 8.1).  Since the load does not fluctuate 1.0tK τ = and 
 

                                           (2.5) 3.93"
2(1.0)eq strL π

− = ≈  

 
The hub length is only 3.25”, so the longest key that can be used is 3.25”.  Actually, a 3.0” key would give 
end clearance, so we will assume the key length to be 3.0”. The shear stress is 
 

                                         2 2(4078) 1739.9 1740 psi
2.5(0.625)(3.0)s

T
DwL

τ = = = ≈  

 
Based on distortional energy, 0.577 0.577(51) 29, 430 psiyp ypSτ = = = . The existing factor of safety is 
 

                                           29, 430 16.9 3   - acceptable
1740

yp
ex d

s
n n

τ
τ

= = = > =  

 
The compressive bearing stress is 
 

                                           4 4(4078) 3479.9 3480 psi
2.5(0.625)(3.0)c

T
DwL

σ = = = ≈  

 

                                           51,000 14.6 3   - acceptable
3480

yp
ex d

c

S
n n

σ
= = = > =  

 
Based on these safety factors a smaller key would work. Rearranging the equation for cσ  and replacing cσ  
with an allowable stress, ( ) / 51/ 3 17 ksic yp dallow S nσ = = = , the key width resulting is a factor of safety of 
3.0 can be determined 
 
 

                                     
( )

4 4(4078) 0.1279 0.13"
2.5(3.0)(17,000)c allow

Tw
DL σ

= = = ≈  
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Problem 8-22 (continued) 
 
An appropriate key recommendation would be 
 
                                                  3/16” square key, 3.0” long 
 
 
(b)  To investigate the possible use or a Woodruff key, Figure 8.6 (d) and Table 8.2 provide the information 
needed. For a design safety factor of 3.0, / 29, 430 / 3 9810 psid yp dnτ τ= = = . Setting d sτ τ=  
 

                                                  22 2(4078) 0.3326 in
2.5(9810)d

TwL
Dτ

= = =  

 
Using Table 8.2, we check selected values of the product wL  
 
                                   ( ) 2 2

#1212 0.375(1.5) 0.5625 in  > 0.3326 inwL = =  

                                   ( ) 2 2
#809 0.25(1.125) 0.28125 in  < 0.3326 inwL = =  

 
Based on this we select #1212 key that could be used for this application. 
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8-23. Repeat problem 8-22,except that the drive perocket rotates at 800 rpm. 
 
-------------------------------------------------------------------------------------------------------------- 
Solution 
 
For the material specified, 61 ksiuS = , 51 ksiypS = , (2") 22%e = . 

 

(a) The torque is  63,025(110) 8666 in-lb
800

T = ≈  

 
With a design factor of safety of 3.0dn = , the design stresses are 
 

              51 17 ksi
3

yp
d

d

S
n

σ = = =              
0.577 0.577(51) 9.81 ksi

3
yp

d
d

S
n

τ = = =  

 
 
The hub length is only 3.25”, so the longest key that can be used is 3.25”.  Actually, a 3.0” key would give 
end clearance, so we will assume the key length to be 3.0”. Setting d sτ τ=  
 

                                         2 2(8666) 0.2356 0.24"
2.5(9810)(3.0)s

Tw
D Lτ

= = = ≈  

 
Setting d cσ σ=  
 

                                        4 4(8666) 0.2718 0.27"
2.5(17,000)(3.0)c

Tw
D Lσ

= = = ≈  

                                    
The larger width ( 0.27"w = ) governs. An appropriate key recommendation would be 
 
                                                  5/16” square key, 3.0” long 
 
 
(b)  To investigate the possible use or a Woodruff key, Figure 8.6 (d) and Table 8.2 provide the information 
needed. Setting d cσ τ=  
 

                                                  24 4(8666) 0.8156 0.82 in
2 2.5(17,000)d

D TwL h L
Dσ

⎛ ⎞= − = = = ≈⎜ ⎟
⎝ ⎠

 

 
Using Table 8.2, for a #1212 key, 0.641"h =  and 1.5"L = , so 
 

                                    2 22.5 0.641 (1.5) 0.9135 in 0.82 in
2

⎛ ⎞− = >⎜ ⎟
⎝ ⎠

 

       
                 Based on this we select #1212 key that could be used for this application. 
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8-24.  For the chain drive specifications given in problem 8.22, and for the same sprocket dimensions, select 
the minimum size of grooved pin that could be used to attach the sprocket to the shaft, assuming the grooved 
pin to be made of 1095 steel quenched and drawn to Rockwell C 42 (see Table 3.3) 
 
------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For the material specified, 61 ksiuS = , 51 ksiypS = , (2") 22%e = . The torque is 

 

                                   63,025(110) 4078 in-lb
1700

T = ≈  

 
Assuming the shear force is equally distributed between the two shear areas, the shear force sF  is 

 

                      4078 1631 lb
2.5s

TF
D

= = =  

 
Since 3.0dn =  
 
                               3(1631) 4893 lbd d sF n F= = =  
 
From Table 8.6, the smallest “grooved” pin with a capacity of 4893 lb is 
 
                              3/16” (0.188”) diameter pin 
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8-25.  The hub of a gear is keyed to an 80-mm diameter shaft using a 30 mm long square key. The shaft is 
required to operate at 1800 rpm. The shaft and key are made from the same alloy steel, with 350 MPayS =  

and 140 MPaallτ = .  
a. Determine the power that can be transmitted by the key. 
b. Determine the power capacity of the shaft assuming 1.8tK τ = . 

 
-------------------------------------------------------------------------------------------------------------- 
Solution 
 
For a square key / 4 80 / 4 20 mmw d≈ = =  
 
(a) The force transmitted through the interface of the hub and shaft is related to the toque by 

/ 2T Fr Fd= = , where F Aτ= .   For a shear failure of the key 
 
           ( ) ( ) ( )( )6/ 2 2 / 2 140 10 0.020 0.030 84 kN-mshear all all all allT A d A A wlτ τ τ τ= = = = = × =  
                                      
 Failure could also result from bearing stress. The torque in this case is defined by 
 

( ) ( ) ( ) ( )( )6/ 2 2 / 2 / 2 350 10 0.020 / 2 0.030 105 kN-mbearingT A d A w lσ σ σ= = = = × =  
 
The maximum allowable torque is therefore max 84 kN-mshearT T= = . Therefore the power that can be 
transmitted through the key is determined from 
 

3
max 84 10 (1800) 15 834 kw

9549 9549
T n

kw ×
= = ≈  

 
 
(b)   The horsepower capacity of the shaft is determined by first defining the allowable torque in the shaft  
 based on its shear strength, 140 MPaallτ = . The maximum torque supported by the shaft is related to the 
maximum shear stress in the shaft by  

 
( ) ( )

( )
3max max

max3

16 ( )
16

shaft shaftall all
shaft

t t

T r T d
T

K J Kdτ τ

τ π τ
π

= = ⇒ =  

( ) ( )3 6

max
0.08 (140 10 )

7.82 kN-m
16(1.8)shaftT

π ×
= =  

 
The allowable horsepower for the shaft is therefore 

 

                                            
3

max 7.82 10 (1800) 1474 kw
9549 9549
T n

kw ×
= = =  

 
 
Since this is significantly smaller than the power that the key will withstand, we conclude that the shaft will 
fail before the key. 
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8-26. a. A V-pulley is to be mounted on the steel 1,0-inch-diameter engine drive-shaft of a lawn tractor. The 
pulley must transmit 14 horsepower to the drive-shaft at a speed of 1200 rpm. If a cup point setscrew 
were used to attach the pulley hub to the shaft, what size setscrew would be required? A design safety 
factor of 2 is desired. 
b. What seating torque would be recommended to properly tighten the setscrew so that it will not slip 
when power is being transmitted? 

 
---------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
(a) The rules of thumb in 8.8 suggest that selection is nominally chosen to be almost 1/4 of the shaft diameter, 
and set screw length chosen to be about 1/2 the shaft diameter. For a 1” diameter shaft 
 
                        1/ 4 inchssd ≈  and  1/ 2 inchssl ≈  
 
  The torque is 
 

                                  63,025(14) 735.29 735 in-lb
1200

T = = ≈  

 
The shear force on the set screw is 

 

                               2 2(735) 1470 lb
1.0s

TF
d

= = =  

 
Using the specified design safety factor of 2.0dn =  

 
                        2(1470) 2940 lbd d sF n F= = =  
 

From Table 8.5, a 1/2" set screw is needed. This size seems too large for the shaft-hub size. It will be 
suggested that 2 set smaller screws be used, which support a load of 2940 / 2 1470 lbdF = =  each. The 
recommendations is: 

 
                       Use two 5/16” set screws that are 1/2" long and spaced o90  apart 
 

(b) From Table 8.5, the seating torque is 165 in-lbT =  
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Chapter 9 

 
 
 
9-1. When stresses and strains in a machine element or a structure are investigated, analyses are based on either a 
“strength of materials” approach or a “theory of elasticity” model. The theory of elasticity model facilitates 
determining the distributions of stresses and strains within the body rather than assuming the distributions are 
required by the strength of materials approach. List the basic relationships from elasticity theory needed to 
determine the distributions of stress and strains within elastic solids subjected to externally applied forces and 
displacements. 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
The basic relationships from elasticity theory needed to determine the distributions of stresses and strains within 
elastic solids subjected to externally applied forces and displacements include;  
 

(1) Differential equations of force equilibrium 
(2) Force-displacement relationships (e.g. Hooke’s Law) 
(3) Geometrical compatibility relationships 
(4) Boundary conditions 
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9-2.  Equations for stresses in thin-walled cylinders are less complicated that equations for stress in thick-walled 
cylinders because of the validity of two simplifying assumptions made when analyzing thin-walled cylinders. What 
are these two assumprtions? 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
The thin-walled cylindrical assumptions that must be satisfier are; 
 

(1) The wall must be thin enough to satisfy the assumption that the radial stress component ( rσ ) at the wall is 
negligibly small compared to the tangential ( tσ ) stress component. 

(2) The wall must be thin enough that tσ is uniform across it. 
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9-3.  a.  A thin-walled cylindrical pressure vessel with closed ends is to be subjected to an external pressure op with 

an internal pressure of zero. Starting with the generalized Hooke’s Law equations, develop expressions for 
radial, transverse (hoop), and longitudinal (axial) strain in the cylindrical vessel wall as a function of pressure  

op , diameter d, wall thickness t, Young’s modulus E, and Poisson’s ratio ν  .             
b. Assume the vessel is made from AISI 1018 HR steel [ 400 MPauS = , 220 MPaypS = , 0.30ν = , 

207 GPaE = , and ( )50 mm 25%e = ] and if the external pressure is 20 MPaop = . If the vessel has an outer 
diameter of 125 mm, wall thickness of 6 mm, and length of 400 mm, determine if the vessel length increases or 
decreases and by how much.  
c. Determine if the vessel thickness changes (increase or decrease) and by how much. 
d. Would you predict yielding of the vessel wall? (Neglect stress concentrations and clearly support your 
prediction with appropriate calculations.) 

 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
(a)  Given radial  ( rσ ) , transverse  ( tσ ) , and longitudinal  ( lσ )  stress components, the radial, transverse, and 
longitudinal strains according to generalized Hooke’ Law are  
 

                ( )1
r r t lE
ε σ ν σ σ⎡ ⎤= − +⎣ ⎦ ,  ( )1

t t r lE
ε σ ν σ σ⎡ ⎤= − +⎣ ⎦ , ( )1

l l t rE
ε σ ν σ σ⎡ ⎤= − +⎣ ⎦  

 
For a thin-walled pressure vessel 0rσ = . Since the pressure is external (as opposed to the internal pressure for 
which the stress-pressure relationships were developed) 
 

                                     
2
o

t
p d

t
σ = − , 

4
o

l
p d

t
σ = −  

 
Substituting into the Hooke’s Law 
 

                                  3
2 4 4
o o o

r
p d p d p d

E t t E t
ν νε ⎡ ⎤ ⎛ ⎞= − − − = ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

 

                                  1 2
2 4 4
o o o

t
p d p d p d

E t t E t
ν νε
− −⎡ ⎤ ⎛ ⎞⎡ ⎤= − − = ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎝ ⎠

 

                                  1 2 1
4 2 4
o o o

l
p d p d p d

E t t E t
ν νε
− −⎡ ⎤ ⎛ ⎞⎡ ⎤= − − = ⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎝ ⎠

 

                                   
(b)    The change in length of the vessel is determined by o lL l ε∆ = . Using the date given 
 

                                
6

9
2(0.3) 1 20 10 (0.125)0.4 0.816 mm

4(0.006)207 10
L

⎧ ⎫⎛ ⎞− ×⎪ ⎪∆ = = −⎜ ⎟⎨ ⎬⎜ ⎟×⎪ ⎪⎝ ⎠⎩ ⎭
      The length shortens 

 
(c)  The change in wall thickness is determined by o rt t ε∆ = . Using the date given 
 
                           

                     
6

9
2(0.3) 20 10 (0.125)0.006 1.81 mm

4(0.006)207 10
t µ

⎧ ⎫⎛ ⎞×⎪ ⎪∆ = =⎜ ⎟⎨ ⎬⎜ ⎟×⎪ ⎪⎝ ⎠⎩ ⎭
    The thickness increases 
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Problem 9-3 (continued) 
 
(d)  The material is ductile and the state of stress is biaxial. The principal stresses are 
 

             
6

1
20 10 (0.125) 208 MPa

2 2(0.006)
o

t
p d

t
σ σ ×

= = − = − = −  

             2 0rσ σ= =  

              
6

3
20 10 (0.125) 104 MPa

4 4(0.006)
o

t
p d

t
σ σ ×

= = − = − = −  

 

  Using distortional energy, FIPTOI  ( ) ( ) ( ) ( )22 2 2
1 2 2 3 3 1 2 ypSσ σ σ σ σ σ− + − + − ≥  

 
                        ( ) ( ) ( ) ( )2 2 2 2208 0 0 ( 104) 104 ( 208) 2 220− − + − − + − − − ≥  
                        64 896 96 800<  
 
  Therefore yielding is not predicted. 
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9-4.  A thin- walled, closed end pressure vessel has an outer diameter of 200 mm, a wall thickness of 10 mm, and 
length of 600 mm. The vessel is subjected to an internal pressure of 30 MPa and an external tensile axial force F. 
Assume the vessel is made form a steel alloy with 460 MPauS = , 270 MPaypS = , 0.30ν = , 207 GPaE = , and 

( )50 mm 25%e = . Determine the largest force F that can be applied before yielding occurs. 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
The state of stress is biaxial as shown. The longitudinal and transverse 
stresses are 
 

          
630 10 (0.2) 300 MPa

2 2(0.01)
o

t
p d

t
σ ×

= = − =  

         
630 10 (0.2) 150 MPa

4 4(0.01)
o

t
p d

t
σ ×

= = =  

 
The additional axial stress due to F (assuming F is in kN) is approximated as 
 
 

                         0.159  MPa
(0.2)(0.01)

F F F F
A dtπ π
≈ = ≈  if F is in kN 

 
Therefore we have 
 
                           300tσ =                   150 0.159t Fσ = +  
 
The principal stresses will be 1 300σ = , 2 0σ = , and 3 150 0.159Fσ = + , provided 150 / 0.159 943F < = .  
Assuming that 943F <  and using the distortional energy failure theory   
 

                   ( ) ( ) ( ) ( )22 2 2
1 2 2 3 3 1 2 ypSσ σ σ σ σ σ− + − + − ≥  

                ( ) ( ) ( ) ( )2 2 2 2300 150 0.159 150 0.159 300 2 270F F+ − − + + − ≥  

                                                                         20.0506 10800 462 kNF F≥ → ≥  
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9-5.  Based on the concepts utilized to derive expressions for the stresses in the wall of a thin-walled cylindrical 
pressure vessel, derive expressions for the stress in the wall of a thin-walled spherical pressure vessel. 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Considering any thin-walled hemisphere with diameter d and wall thickness t, the 
stresses in the wall can be modeled as σ . The force due to pressure acting on the 
back wall ( pxF ) must balance the force due to the stress (σ ). We can write 
 
                   ( )0 :     0x pxF dt Fσ π= − =∑  
 

Since 
2

4px i i
dF p A p π⎛ ⎞

= = ⎜ ⎟⎜ ⎟
⎝ ⎠

 

 

                                        ( )
2

0        
4 4

i
i

p dddt p
t

πσ π σ
⎛ ⎞

− = ⇒ =⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
This hoop stress is uniform throughout the spherical vessel wall. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 347

9-6. A steel hydraulic cylinder, closed at the ends, has an inside diameter of 3.00 inches and an outside diameter of 
4.00 inches. The cylinder is internally pressurized by an oil pressure of 2000 psi. Calculate (a) the maximum 
tangential stress in the cylinder wall, (b) the maximum radial stress in the cylinder wall, and (c ) the maximum 
longitudinal stress in the cylinder wall. 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
 (a)  Using (9-30) 

                              
2 2

max 2 2
(2.0) (1.5) 6.252000 2000 7143 psi

1.75(2.0) (1.5)tσ −
⎛ ⎞+ ⎛ ⎞= = ≈⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 

 
(b) Using (9-29) 
                               max 2000 psitσ − = −  
 
(c) Using (9-31) 

                              
2

max 2 2
(1.5) 2.252000 2000 2571 psi

1.75(2.0) (1.5)lσ −
⎛ ⎞ ⎛ ⎞= = ≈⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
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9-7.  A cylindrical pressure vessel made of AISI hot-rolled steel plate is closed at the ends. The cylinder wall has an 
outside diameter of 12.0 inches and an inside diameter of 8.0 inches. The vessel is internally pressurized to a gage 
pressure of 15,000 psi. 
 

a. Determine, as accurately as you can, the magnitudes of maximum radial stress, maximum tangential stress, 
and maximum longitudinal stress in the cylindrical pressure vessel. 
b. Making the “usual” thin-walled assumptions, and using a mean cylindrical wall diameter of 10.0 inches, for 
your calculations, again determine the magnitude of the maximum radial stress, the maximum tangential stress, 
and the maximum longitudinal stress in the cylindrical pressure vessel wall. 
c. Compare the results of (a) and (b) by calculating the percentage errors as appropriate, and comment on the 
results of your comparison. 

 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
(a) The maximum radial stress is at 4.0"r a= =  and is max 15,000 psir ipσ − = − = − . The maximum tangential 
stress is at 4.0"r a= =  and is  
 

                       
2 2

max 2 2
(6.0) (4.0) 5215,000 15,000 39,000 psi

20(6.0) (4.0)tσ −
⎛ ⎞+ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 

 
The maximum longitudinal stress is 
 

                               
2

max 2 2
(4.0) 1615,000 15,000 12,000 psi

20(6.0) (4.0)lσ −
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠

 

 
(b)  For the thin-walled assumption max 0rσ − = ,  
 

                             max
15,000(10.0) 37,500 psi

2(2.0)tσ − = =           max
15,000(10.0) 18,750 psi

4(2.0)lσ − = =  

 
(c) Comparing the thin-wall results with the more accurate thick-wall results, we construct the following table 

 
 (psi)rσ  (psi)tσ  (psi)lσ  
Thick-walled -15,000 39,000 12,000 
Thin-walled 0 37,500 18,750 
Differenct 15,000 1500 6750 
% error 100 4 56 

 
Comments: There are significant and intolerable errors in the thin-walled estimates of rσ  and lσ . The estimates for 

tσ  not too bad. 
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9-8.  A closed end cylindrical pressure vessel made form AISI 1018 HR steel [ 400 MPauS = , 220 MPaypS = , 

0.30ν = , 207 GPaE = , and ( )50 mm 25%e = ] has in inside diameter of 200 mm and a wall thickness of 100 mm. 
It is required to operate with a design factor of safety of 2.5dn = . Determine the largest internal pressure that can 
be a applied before yielding occurs. 
 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
Since 2 200 mmid a= = , and 100 mmt =  we know 100 mma = and 200 mmb = , which results in 
 

                    
( )

( ) ( )
( )2 22 2

2 2 2 2 2 2 2

0.1 0.2 0.041 1 1
30.2 0.1

ii i
r

pa p pb
b a r r r

σ
⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥= − = − = −⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎣ ⎦⎢ ⎥ −⎣ ⎦ ⎣ ⎦

 

                     
( )

( ) ( )
( )2 22 2

2 2 2 2 2 2 2

0.1 0.2 0.041 1 1
30.2 0.1

ii i
t

pa p pb
b a r r r

σ
⎡ ⎤⎡ ⎤ ⎡ ⎤⎢ ⎥= + = + = +⎢ ⎥ ⎢ ⎥⎢ ⎥− ⎣ ⎦⎢ ⎥ −⎣ ⎦ ⎣ ⎦

 

                       
( )

( ) ( )

22

2 2 2 2

0.1
30.2 0.1

i
i i

pap pr b a
σ

⎛ ⎞⎛ ⎞
⎜ ⎟= = =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

 
 
The largest stresses occur on the inside surface, where 0.1 mr a= = . This gives 
 

           2
0.041

3 (0.1)
i

r i
p

pσ
⎡ ⎤

= − = −⎢ ⎥
⎢ ⎥⎣ ⎦

                   2
0.04 51

3 3(0.1)
i

t i
p

pσ
⎡ ⎤

= + =⎢ ⎥
⎢ ⎥⎣ ⎦

                    
3

ip
rσ =  

 

From this we note 1
5
3t ipσ σ= = , 2 3

ip
rσ σ= = , and 3 r ipσ σ= = − .  The design stress is 

/ 220 / 2.5 88 MPad yp dS nσ = = = . Applying the distortional energy theory 
 
                          ( ) ( ) ( ) ( )2 2 2 2

1 2 2 3 3 1 2 dσ σ σ σ σ σ σ− + − + − ≥  

                       ( )
2 2 2

25 1 1 5( ) 2 88
3 3 3 3i i i i i ip p p p p p⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − − + − − ≥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

                         ( )2296 2 88 38.1 MPa
9 i ip p≥ → =                                                 38.1 MPaip =  
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9-9.  Calculate the maximum tangential stress in the steel hub of a press fit assembly when pressed upon the 
mounting diameter of a hollow steel shaft. The unassembled hub dimensions are 3.00 inches for the inside diameter 
and 4.00 inches for the outside diameter, and the unassembled dimensions of the shaft at the hub mounting site are 
3.030 inches outside diameter and 2.00 inches for the inside diameter. Proceed by first calculating the interfacial 
pressure at the mating surfaces caused by the press fit, then calculating the hub tangential stress caused by the 
pressure. 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Both the hub and the shaft are steel with 630 10  psiE = ×  , 0.30ν = , and 
 
        3.030 3.000 0.030"∆ = − =  
 
The contact pressure is determined using (9-48) 
 
 

                                      
2 2 2 2

2 2 2 22 h s
h s

p
a b a d d c

E Eb a d c
ν ν

∆
=

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +
+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

                    

 

                     
2 2 2 2

6 2 2 6 2 2

0.030 48,928 psi
1.5 (2.0) (1.5) 1.515 (1.515) (1.0)2 0.30 0.30

30 10 (2.0) (1.5) 30 10 (1.515) (1.0)

p = =
⎡ ⎤⎛ ⎞ ⎛ ⎞+ +

+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟× − × −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
 
The tangential stress in the hub is 
 

                       
2 2 2 2

2 2 2 2
(2.0) (1.5)48,928 174,743 psi
(2.0) (1.5)th

b ap
b a

σ
⎛ ⎞ ⎛ ⎞+ +

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
 

 
The tangential stress in the hub is very high, and the design should be carefully reevaluated. 
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9-10.  The hub of an aluminum [ 186 MPauS = , 76 MPaypS = , 0.33ν = , 71 GPaE = ] pulley has an inside 
diameter of 100 mm and an outside diameter of 150 mm. It is pressed onto a 100.5-mm-diameter hollow steel 
[ 420 MPauS = , 350 MPaypS = , 0.30ν = , 207 GPaE = ] shaft with an unknown inner diameter. Determine the 

allowable inside diameter of the steel shaft assuming a design factor of safety of 1.25dn = . 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
Since 0.1005 0.100 0.0005 m∆ = − = , the contact pressure between the hub and the shaft is 
 

                           
2 2 2 2

2 2 2 22 h s
h s

p
a b a d d c

E Eb a d c
ν ν

∆
=

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +
+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

 
Knowing that 0.05a = , 0.075b = , unknownc = , 0.0505d = , 71 GPahE = , 0.33hν =  , 207 GPasE = , and 

0.3sν = , the contact pressure is 
 

              
2 2 2 2

9 2 2 9 2 2

0.0005

0.05 (0.075) (0.05) 0.05025 (0.05025)2 0.33 0.30
71 10 (0.075) (0.05) 207 10 (0.05025)

p
c
c

=
⎡ ⎤⎛ ⎞ ⎛ ⎞+ +

+ + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟× − × −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

                    
2

12 12
2

0.00025

0.0025252.063 10 0.243 10 0.30
0.002525

p
c
c

− −

=
⎡ ⎤⎛ ⎞+

× + × +⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

                                               (1) 

 
 
The radial and tangential stresses on the solid shaft are  
 

                    
2 2 2 2 2

2 2 2 2 2
(0.05025) 0.002525
(0.05025) 0.002525ts

d c c cp p p
d c c c

σ
⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + +

= − = − = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠
          rs pσ = −  

 
This yields principal stresses of 
 

                   1 0σ = , 2 rs pσ σ= = −  
2

3 2
0.002525
0.002525ts

cp
c

σ σ
⎛ ⎞+

= = − ⎜ ⎟⎜ ⎟−⎝ ⎠
 

 
 
 
Since the shaft is ductile, we use distortional energy with / 350 /1.25 280 MPad yp dS nσ = = =  
 
                           ( ) ( ) ( ) ( )2 2 2 2

1 2 2 3 3 1 2 dσ σ σ σ σ σ σ− + − + − ≥  

                       ( )
2 2

2 2
2 15

2 2
0.002525 0.0025250 ( ) 0 156.8 10
0.002525 0.002525

c cp p p p
c c

⎛ ⎞⎧ ⎫ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ +⎪ ⎪⎜ ⎟− − + − − − + ⎜− − ⎟ ≥ ×⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭ ⎝ ⎠⎝ ⎠
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Problem 9-10 (continued) 
 

                      
2 22 2

2 15
2 2

0.002525 0.002525 156.8 10
0.002525 0.002525

c cp p p p
c c

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ +
+ ⎜− + ⎟ + ⎜− ⎟ ≥ ×⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

                            
22 2

2 15
2 2

0.002525 0.0025252 1 156.8 10
0.002525 0.002525

c cp
c c

⎧ ⎫⎛ ⎞ ⎛ ⎞+ +⎪ ⎪+ + ≥ ×⎜ ⎟ ⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟− −⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
                                                       (2) 

 
Substituting (1) into (2) and iterating to a solution we find that failure is not predicted until 0.0325 mc ≈ . Therefore 
we can have a hollow steel shaft with an inside diameter of 
 
                                                       32.5 mmid =  
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9-11.  In the design of a jet cargo aircraft, the tail stabilizer, a horizontal flight-control surface, is to be mounted high 
up on the tail rudder structure, and it is to be controlled by two actuator units. The aft unit is to provide the major 
large-amplitude movement, while the forward unit is to provide the trim action. The forward actuator consists 
essentially of a power-screw (see Chapter 12) driven by an electric motor, with , for dual-unit safety purposes, an 
alternative drive consisting of a hydraulic motor that can also drive the screw. In addition, a hand drive is provided 
in case both the electric drive and the hydraulic drive unit fail. 
 The screw consists of a hollow tube of high-strength steel with threads turned on the outer surface, and, for 
fail-safe dual-load-path purposes, a titanium tube is to be shrink-fitted inside of the hollow steel tube. For 
preliminary design purposes, the screw may be considered to be a tube of 4 inches inside diameter and ½-inch wall 
thickness. The proposed titanium tube would have a 4-inch nominal outside diameter and 1-inch-thick wall. The 
tubes are to be assembled by the hot-and-cold shrink assembly method. The linear coefficient of thermal expansion 
for the steel material is 6 o6.5 10  in/in/ F−× , and for linear coefficient of thermal expansion for the titanium is 

6 o3.9 10  in/in/ F−× . 
a. Determine the actual dimensions at o70 F that should be specified if the diametral interference must never, 

at any temperature within the expected range, be less than 0.002 inch. Expected temperatures range 
between the extremes of o60 F−  and o140 F . Also, the steel tube must not exceed a tangential stress level 
of 120,000 psi at either temperature extreme. 

b. Determine the temperature to which the screw must be heated for assembly purposes if the titanium tube is 
cooled by liquid nitrogen to o310 F− , and if the diametral clearance distance between tubes for assembly 
purposes should be about 0.005 inch. 

 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From the problem statement we have 
 
Steel outer tube:  2.0 in , 2.5 ina b= =  

6 o 6
s6.5 10  in/in/ F , 30 10  psi , 0.30s sEα ν−= × = × =  

 
Titanium inner tube:  1.0 in , 2.0 inc d= =  

6 o 6
t3.9 10  in/in/ F , 16 10  psi , 0.30t tEα ν−= × = × =  

 
(a) Specified temperatures are o o o

min max60 F , 145 F, 70 FroomT T T= − = + = + . By problem specification, for al l 
temperatures within the stated range 0.002"∆ ≥  and the stress in the steel tube at all temperatures in the range must 
satisfy the relation 120 ksi.t steelσ − ≤  Because s tα α> , the “loss of fit” problem is most serious at o

max 145 FT = + . 
Thus 
 
          o700.002i steel o tiD D− −∆ − ∆ + = ∆    or   ( ) ( ) ( )o70 min

0.002i steel s o ti tD T D Tα α− −∆ − ∆ + = ∆  

 
Since 4.0"i steel o tiD D− −= ∆ =  and  o145 70 75 FT∆ = − = , we have  
 
                 ( ) ( )o o

6
70 70min min

4(75)(6.5 3.9) 10 0.002     0.00278"−− × + = ∆ ⇒ ∆ =  

 
Therefore, the actual dimensions should be 4.0028" and 4.0000"o ti i steelD D− −∆ = ∆ = . 
 
Next, the tangential stress level must be checked in the steel outer tube for the most severe case, which occurs at 

o
min 60 FT = − . The diametral interference at this temperature is calculated as 

 
                   ( ) ( )o o60 70 i steel s o ti sD T D Tα α− −−∆ = ∆ + ∆ − ∆  
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Problem  9-11. (continued) 
 
 Using o70 ( 60) 130 FT∆ = − − =  we get 
 
                       ( )o

6
60 0.0028 4(130) 6.5 3.9 10 0.004152 0.0042"−
−∆ = + − × = ≈  

 

                  

2 2 2 2

6 2 2 6 2 2

6 6

0.0042

2.0 (2.5) (2.0) 2.0 (2.0) (1.0)2 0.30 0.30
30 10 (2.5) (2.0) 16 10 (2.0) (1.0)

0.0042   =
10.25 52 0.333 10 0.30 0.125 10 0.30
2.25 3

0.0042   
2 0.32

p

− −

=
⎡ ⎤⎛ ⎞ ⎛ ⎞+ +

+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟× − × −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞× + + × −⎜ ⎟ ⎜ ⎟⎢ ⎥
⎝ ⎠ ⎝ ⎠⎣ ⎦

=
6 6

4247 4250 psi
37 10 0.1708 10− −

= ≈
⎡ ⎤× + ×⎣ ⎦

 

 

                       ( ) o

2 2

2 260
(2.5) (2.0)4250 19,361 psi
(2.5) (2.0)thσ

−

⎛ ⎞+
= =⎜ ⎟⎜ ⎟−⎝ ⎠

 

 
                                    
                                    This is well below the limiting stress of 120,000 psi 
 
 
(b) The change in outer diameter of the titanium tube from room temperature ( o70 F ) to o310 F−  is 
 
                       ( )( )64.0028 3.9 10 310 70 0.0059"o tiD −

−∆ = × − − = −  

 
The outer diameter of the titanium tube at o310 F−  is therefore 
 
                            ( ) o310 4.0028 0.0059 3.9969"o tiD − −

= − =  
 
The clearance between the o310 F−  titanium diameter and the o70 F  steel inner diameter is 
 
                               4.0000 3.9969 0.0031"c∆ = − =  
 
Since the required clearance in 0.005”, the steel diametral increase required is 
 
                                 0.005 0.0031 0.0019"s∆ = − =  
 
Therefore 
 

                                ( ) o
6

0.0019 73.03 F
4.0000(6.5 10 )

s
req

i steel s
T

D α −
−

∆
∆ = = =

×
 

 
 
The steel tube must be heated to a temperature of 
 
                               o70 73 143 FT = + =  
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9-12.  A component in a machine used to assure quality control consists of several disks mounted to a shaft. As parts 
pass under the disks, the acceptable parts pass through, while the unacceptable parts do not. The disks themselves 
are subject to wear and require frequent replacement. Replacement time has typically been a lengthy process which 
affects productivity. In order to decrease replacement time you have been asked to investigate the feasibility of a 
“quick change” shaft in which the disks are slid onto a shaft, which is then subjected to internal pressure, causing it 
to expand and create a tight fit with the disk. The disk is required to support a friction torque of 100 N-m. The disks 
are made of brass [ 510 MPauS = , 414 MPaypS = , 0.35ν = , 105 GPaE = ] and the shaft is made of aluminum 

[ 186 MPauS = , 76 MPaypS = , 0.33ν = , 71 GPaE = ]. The hub of the brass disks have an inside diameter of 25 
mm and an outside diameter of 50 mm, and a hub length of 25 mm. We initially assume a coefficient of friction 
between brass and aluminum to be 0.25µ = and an outside shaft diameter of 24.5 mm. Perform a “first pass” 
assessment of the feasibility of this design idea. 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
 
In order to perform the “quick change” the outside diameter of the shaft must be small enough to allow the disks to 
able to freely slide. We begin by assuming the outside diameter of the shaft is 24.5 mm before it is pressurized. 
Once pressurized, the expansion must be sufficient to create enough pressure that the friction torque requirement is 
met.  The problem becomes one of noting that the hub is modeled as a thick-walled cylinder subjected to internal 
pressure and the shaft is a thick-walled cylinder subjected to both internal and external pressure. The contact 
pressure required to create a friction torque of 100 N-m is 
           

          
2

2
s h

f
p d lT µ π

=  

20.25 (0.0245) (0.025)100 17 MPa
2

p pπ
= → ≈  

 
Using this information, we can determine a relation between 
the contact pressure and the interference, ∆  
 

6
2 2 2 2

2 2 2 2

17 10

2 h s
h s

p
a b a d d c

E Eb a d c
ν ν

∆
= × =

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +
+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

6
2 2 2 2

9 2 2 9 2 2

17 10
0.0125 (0.025) (0.0125) 0.01225 (0.01225)2 0.35 0.33

105 10 (0.025) (0.0125) 71 10 (0.01225)
c
c

∆
× =

⎡ ⎤⎛ ⎞ ⎛ ⎞+ +
+ + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟× − × −⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

6
2

12 12
2

17 10
0.000152 0.240 10 0.173 10 0.33
0.00015

c
c

− −

∆
× =

⎡ ⎤⎛ ⎞+
× + × −⎢ ⎥⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦

 

 

                    
2

6 6
2

0.000158.16 10 5.88 10 0.33
0.00015

c
c

− − ⎛ ⎞+
∆ = × + × −⎜ ⎟⎜ ⎟−⎝ ⎠

                                                                              (1) 

 
For the hub, ( ) /th th h rh lh hEε σ ν σ σ⎡ ⎤= − +⎣ ⎦ , where 
 

            
2 2 2 2

2 2 2 2
(0.025) (0.0125) 1.667 1.667(17) 28.3 MPa
(0.025) (0.0125)th

b ap p p
b a

σ
⎛ ⎞ ⎛ ⎞+ +

= = = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
, 17 MParh pσ = − = − , 0lhσ =  
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Problem 9-12. (continued) 
 
This results in 
 

                        ( )6 6
9

1 28.3 10 0.35 17 10 326.2 m/m
105 10thε µ⎡ ⎤= × − − × =

⎣ ⎦×
                                                     (2) 

 
 
From (9-46) we know ( )2 th tsa dε ε∆ = + .  Begin by assuming the 326.2 m/mth tsε ε µ= = , which results in 

( ) ( )6 62 2(326.2 10 ) 0.025 0.0245 32.3 10  mth tsa dε ε − −∆ = + = × + = × . From (1) we now have  
 

              
2

6 6 6
2

0.0001532.3 10 8.16 10 5.88 10 0.33
0.00015

c
c

− − − ⎛ ⎞+
× = × + × −⎜ ⎟⎜ ⎟−⎝ ⎠

 

            
2

2
0.000154.105 0.33 0.00973 m 9.73 mm
0.00015

c c
c

⎛ ⎞+
= − → = =⎜ ⎟⎜ ⎟−⎝ ⎠

 

 
 
For the shaft, we use (10-25) and (10-26) to define the stress components rsσ  and tsσ . We also set 0lsσ =  
 

       
( )

2
2 2

2 2

0.01225(0.01225)

(0.01225)

i i

rs

cp c p p p
r
c

σ

⎛ ⎞− + −⎜ ⎟
⎝ ⎠=

−
         

( )
2

2 2

2 2

0.01225(0.01225)

(0.01225)

i i

ts

cp c p p p
r
c

σ

⎛ ⎞− − −⎜ ⎟
⎝ ⎠=

−
 

 
Since we are interested in the strains at the interface between the shaft and hub, we set 0.01225r = , resulting in 
 

                
( )2 2 2 2 2

2 2 2 2

(0.01225) (0.00973) (0.0125) 1.1
(0.01225) (0.01225) (0.00973)

i i
rs

p c p c p p
p p

c
σ

− + − −
= = = −

− −
 

              

( ) ( ) ( ) ( )2 2 2
2 2 2

2 2 2 2

2 0.00973 0.01225 0.00973(0.01225)
3.418 4.418

(0.01225) (0.01225) (0.00973)

ii i
ts i

p pp c p c p p
p p

c
σ

⎡ ⎤− +− − − ⎢ ⎥⎣ ⎦= = = −
− −

 

 
This results in 
 

                        ( ) [ ]6
1 1 3.418 4.418 0.33( 1.1 )

71 10ts ts s rs ls i
s

p p p
E

ε σ ν σ σ⎡ ⎤= − + = − − −⎣ ⎦ ×
            

                        6
3.418 4.055

71 10
i

ts
p p

ε
−

=
×

                                                                                    (3) 

 
Having previously assumed that 2 326.2 m/mth tε ε µ= = , we can solve (3)  
 

      6 6
6

3.418 4.055
326.2 10 3.418 23160 4.055(17 10 )

71 10
i

i
p p

p− −
× = → = + ×

×
 

                          20.175 MPaip =  
 
This pressure produces stresses of 3 22.2 MParsσ σ= = − , 2 6.15 MPatsσ σ= = − , and 1 0lsσ σ= ≈ at the shaft/hub 
interface.  Using distortional energy 
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Problem 9-12. (continued) 
 

                           ( ) ( ) ( ) ( )22 2 2
1 2 2 3 3 1 2 ypSσ σ σ σ σ σ− + − + − ≥  

                            ( ) ( ) ( ) ( )2 2 2 20 ( 6.15) 6.15 ( 22.2) 22.2 0 2 76− − + − − − + − − ≥  
 
                                1334 11 552≥  
 
Since the failure condition is not met, we initially conclude that the proposed “quick change” shaft idea is feasible. 
Additional refinement of the design is required. 
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9-13.  A steel gear is to be shrink-fitted over a mounting diameter on a solid steel shaft, and its hub abutted against a 
shoulder to provide axial location. The gear hub has a nominal inside diameter of 1 ½ inches and a nominal outside 
diameter of 3 inches. The nominal shaft diameter is 1 ½ inches. To transmit the torque, it has been estimated that a 
class FN5 force fit (see Table 6.7) will be required. Stresses in the hub must not exceed the yield strength of the hub 
material, and a design safety factor of at least 2, based on yielding, is desired. 
 Two ductile candidate steel materials have been proposed for the gear: AISI 1095 steel quenched and 
drawn to a hardness of Rockwell C 42, and AISI 4620 hot-rolled steel (with case-hardened teeth). Evaluate these 
two materials for the proposed application, and decide which material to recommend (see Table 3.3) 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
             

 Material  (ksi)uS  (ksi)ypS  

 AISI 1095 @ RC 41 200 138 

Using Table 3.3, we find the material properties shown 
for the two candidate materials. From Table 6.7 we find 
that for a class FN5 force fit 0.0014 0.0040≤ ∆ ≤ .  AISI 4620 HR 87 63 
 
Since we are interested in the larges stress, we use 0.0040∆ =  
 

                             
( )62 2

2 2

30 10 0.0040 (0.75)1 1 30,000 psi
4 4(0.75) (1.5)
E ap

a b

⎡ ⎤ ⎡ ⎤×∆
= − = − =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 

 
Both thσ and rhσ are maximum at the inner hub, where 1.5b = and 0.75a =  
 

                    
2 2

2 2
(1.5) (0.75)30,000 50,000 psi
(1.5) (0.75)thσ

⎛ ⎞+
= =⎜ ⎟⎜ ⎟−⎝ ⎠

   and    30,000 psirhσ = −  

 
For this multiaxial state of stress 
 
        1 50 ksiσ = , 2 0σ = , and 3 30 ksiσ = −  
 
Using a factor of safety of 2.0, FIPTOI 
 

                  ( ) { }( ) ( ) ( )
2

222 21 50 0 0 30 30 50 19,600
2 2

yp
yp

S
S

⎛ ⎞⎡ ⎤− + − − + − − ≥ ⇒ ≥⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠
 

 
This gives 140 ksiypS = . Neither candidate material meets this requirement, but AISI 1095 @ RC 4 is quite close.  
 
                                            Tentatively select AISI 1095 @ RC 4 
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9-14. A steel gear has a hub with a nominal bore diameter of 1.0 inch, outer hub diameter of 2.0 inches, and hub 
length of 1.5 inches. It is being proposed to mount the gear on a steel shaft of 1.0-inch diameter using a class FN4 
force fit (see Table 6.7). 
 

a. Determine the maximum tangential and radial stresses in the hub and the shaft for the condition of loosest 
fit. 
b. Determine the maximum tangential and radial stresses in the hub and the shaft for the condition of tightest 
fit. 
c. Estimate the maximum torque that could be transmitted across the press fit connection before slippage 
would occur between the gear and the shaft. 

 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From Table 6.7 we find that for a class FN4 force fit and a 
1” nominal shaft diameter, 0.0010 0.0023≤ ∆ ≤ . 
 
 
(a) For a loose fit 0.0010∆ =  
 
 

         
( )6 2

2

30 10 0.0010 (0.5)1 11, 250 psi
4(0.5) (1.0)

p
⎡ ⎤×

= − =⎢ ⎥
⎢ ⎥⎣ ⎦

 

 

       
2 2

2 2
(1.0) (0.5)11,250 18,750 psi
(1.0) (0.5)thσ

⎛ ⎞+
= =⎜ ⎟⎜ ⎟−⎝ ⎠

               11, 250 psirh rs ts pσ σ σ= = = − = −  

 
(b) For a tight fit 0.0023∆ =  
 

              
( )6 2

2

30 10 0.0023 (0.5)1 25,875 psi
4(0.5) (1.0)

p
⎡ ⎤×

= − =⎢ ⎥
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2 2

2 2
(1.0) (0.5)25,875 43,125 psi
(1.0) (0.5)thσ

⎛ ⎞+
= =⎜ ⎟⎜ ⎟−⎝ ⎠

          25,875 psirh rs ts pσ σ σ= = = − = −  

 
 
(c)  For the maximum dependable torque that can be transmitted across the press fit by friction, without slip, the 
tightest fit should be used. From appendix Table A-1, for lubricated mild steel on steel 0.11µ =  
 

                                 
2 20.11(25,875) (1.0) (1.5) 6700 in-lb

2 2
s h

f
p d L

T
µ π π

= = ≈  
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9-15.  The 60-mm-long hub of a steel [ 420 MPauS = , 350 MPaypS = , 0.30ν = , 207 GPaE = ]  pulley has a 

rectangular strain gage rosette applied. Strain gages A and C are perpendicular and gage B is at o45 to the other two 
gages as illustrated in Figure P9.15. The outside diameter of the hub is 50 mm and the inside diameter is 25 mm.  
Each strain gage is zeroed prior to the pulley being press fit to the shaft. The pulley is fit onto a solid steel shaft 
made from the same material as the pulley with a diametral interference of 0.04 mm∆ = . Determine the strains 
indicated by each strain gage after the shaft and pulley are assembled.  
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Since the shaft is solid and is the same material as the pulley, the contact pressure between the pulley and shaft is 
approximated by 
 

               
( )9 52 2207 10 4 10 0.01251 1 124 MPa

4 4(0.0125) 0.025
E ap
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The stress components on the outside surface ( 0.025 mr b= = ) of the hub are  
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Since the strain gages are surface mounted, they can only measure the tangential and longitudinal strain components. 
These two strain are determined to be 
   

                    ( )6
9

1 82.7 10 0.3 0 0 399.5 m/m 400 m/m
207 10tε µ µ⎡ ⎤= × − + = ≈⎣ ⎦×

 

                    ( )6
9

1 0 0.3 82.7 10 0 118.8 m/m 120 m/m
207 10lε µ µ⎡ ⎤= − × + = − −⎣ ⎦×

 

 
The strains measured by gages A and C are easy to determine based on the strain 
gage orientations. These are   
 
           120 m/mA lε ε µ= = −  
            400 m/mC tε ε µ= =  
 
For strain gage B we can use strain transformation equations or Mohr’s circle of 
strain to identify the fact that gage B will measure a normal strain that is o90  from 
the planes defining Aε  and Cε . In addition, we note that Aε  and Cε  are the 
principal strains.  From Mohr’s circle we determine 
 
 
                140 m/mBε µ=  
 
 



 361

Chapter 10 
 
 
 
10-1.   Plain bearings are often divided into four categories, according to the prevailing type of lubrication at the 
bearing interface.  List the four categories, and briefly describe each one. 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
The four main categories are: 

1.  Hydrodynamic lubrication 
2. Boundary Lubrication 
3. Hydrostatic lubrication 
4. Solid film lubrication 

 
Hydrodynamic lubrication is characterized by a rotating shaft in an annular journal bearing so configured that a 
viscous lubricant may be “pumped” into the wedge-shaped clearance space by the shaft rotation to maintain a stable 
thick fluid film through which asperities of the rotating shaft cannot contact surface asperities of the journal. 
 
 
Boundary lubrication may be characterized by a shaft and journal bearing configuration in which the surface area is 
too small or too rough, or if the relative velocity is too low, or if temperatures increase too much (so the velocity is 
lowered too much), or if loads become too high, asperity contacts may be induced through the (thin) oil film. 
 
 
Hydrostatic lubrication may be characterized by a pair of sliding surfaces in which a thick lubricant film is 
developed to separate the surfaces by an external source of pressurized lubricant. 
 
 
Solid film lubrication may is characterized by bearing for which dry lubricants, such as graphite or molybdenum 
disulfide, or self-lubricating polymers, such as Teflon or nylon are used.  
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10-2.  From a strength-based shaft design calculation, the shaft diameter at on of the bearing sites on a steel shaft has 
been found to be 38 mm. The radial load at this bearing site is 675 N, and the shaft rotates at 500 rpm. The operating 
temperature of the bearing has been estimated to be about o90 C . It is desired to use a length-to-diameter ratio of 1.5 
for this application. Based on environmental factors, the material for the bearing sleeve has been narrowed down to 
a choice between nylon and filled Teflon. Which material would you recommend? 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
This is a case of continuous rotation, so the sliding velocity contV  is 
 
                                      (0.038)(500) 59.7 m/mincontV dNπ π= = =  
 
From Table 11.1, ( )max 182.9 m/minnylonV =  and ( )max 304.8 m/minTeflonV = - both meet velocity criteria.  

 

                                     2
675 0.312 MPa

(1.5 ) 1.5(0.038)
W WP
dL d d

= = = =  

 
From Table 11.1, ( )max 13.8 MPanylonP = and ( )max 17.2 MPaTeflonP = - both meet the velocity criteria. 

 
                                     0.312(59.7) 18.6 MPa-m/minPV = =  
 
From Table 11.1, ( )max 6.3 MPa-m/minnylonPV = - does not work, ( )max 21.0 MPa-m/minTeflonPV =  - acceptable 

 
                                                       Filled Teflon is selected 
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10-3.   It is being proposed to use a nylon bearing sleeve on a fixed steel shaft to support an oscillating conveyor tray 
at equal intervals along the tray, as shown in Figure P10.3. Each bearing bore is top be 12.5 mm, bearing length is to 
be 25 mm, and it is estimated that the maximum load to be supported by each bearing is about 2 kN. Each bearing 
rotates o10± per oscillation on its fixed steel journal, at a frequency of 60 oscillations per minute. Would the 
proposed nylon bearing sleeve be acceptable for this application? 
 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
This is a case of continuous rotation, so the sliding velocity oscV  is 
 

                           20 (60)(0.0125) 0.262 m/min
180oscV fd πϕ ⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

 

                           2000 6.4 MPa
0.0125(0.025)

WP
dL

= = =  

                  
                          ( )max6.4(0.262) 1.68 MPa-m/min< nylonPV PV= =  

 
                      Nylon bearing sleeve is acceptable 
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10-4.   A local neighborhood organization has become interested in replicating a waterwheel-driven grist mill of the 
type that had been used in the community during the nineteenth century, but they have not been able to locate any 
detailed construction plans.  One of their concerns is with the bearings needed to support the rotating waterwheel.  
To give an authentic appearance, they would like to use an oak bearing on each side of the waterwheel to support a 
cast-iron waterwheel shaft.  The waterwheel weight, including the residual weight of the retained water, is estimated 
to be about 12,000 lb, and the wheel is to rotate at about 30 rpm.  It has been estimated on the basis of strength that 
the cast-iron shaft should be no less than 3 inches in diameter.  The bearings need to be spaced about 36 inches 
apart.  Propose a suitable dimensional configuration for each of the two proposed oak bearings so that bearing 
replacement will rarely be needed.  It is anticipated that 68˚F river water will be used for lubrication. 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
 
 
The proposed waterwheel shaft and 
support bearings may be sketch as 
shown.  Since this is a case of 
continuous rotation, the sliding 
velocity Vcont is given as 
 

( )( )3 30
12 12

24 fpm

cont
dNV

ππ
= =

=
 

 
Checking Table 10.1 we see that for 
wood Vmax = 2000 fpm, thus it meets 
the velocity criterion. 
 
Also, from Table 10.1 we find for 
wood 

 
 

 
 

( )max

psi-ft12,000
min

PV = , thus 

 
12,000 5,000 psi

24
PVP
V

= = =  

 
Checking Table 10.1 we see for wood that Pmax = 2000 psi and thus meets the unit load criterion.  Since 
 

( )
6,000 4.0 inches

500 3
RL

Pd
= = =  

then 
4 1.333
3

L
d
= =  

 
which meets the guidelines 
 

1 2
2

L
d

≤ ≤  

 
The temperature should not be a problem since 68˚F river water is to be used as the lubricant.  Therefore, it should 
be satisfactory to use two oak bearings, each nominally 3 inches in bore diameter by 4 inches long. 
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10-5.   The shaft shown in Figure P10.5 is part of a transmission for a small robot. The shaft supports two spur gears 
loaded as indicated, is supported by bearings at A and D, and rotates at 1200 rpm. A strength based analysis has been 
performed and it has been determined that a shaft diameter of 10 mm would be adequate for the steel shaft.  You are 
considering the use of boundary-lubricated bearings for which 1.5L d=  .  A porous bronze bearing sleeve has been 
proposed. Determine if this bearing selection is adequate. 
 
 
 
 
 
Figure P10.5 
Steel shaft supporting two spur 
gears 
 
 
 
 
 
 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
The reactions at A and D are required in order to 
determine the radial load in each bearing. Using the free 
body diagram shown we can deter mine the reactions. 
 
   0 : 200y y yF A D= + =∑  

  ( ) 0 : 50 30(300) 20(500) 0A yzM D= + − =∑  

                             20 NyD = , 180 NyA =  
 
   0 : 550z z zF A D= + = −∑  
  ( ) 0 : 50 30(750) 20(200) 0A zyM D= + − =∑  

                           370 NzD = − , 180 NzA = −  
 
 

The radial force R supported by each bearing is ( ) ( ) ( ) ( )2 2 2 2180 180 255 NA y zR A A= + = + − ≈  

                                                                             ( ) ( ) ( ) ( )2 2 2 220 370 370 ND y zR D D= + = + − ≈  

 
Using the maximum bearing reaction force, we now determine 
 

                            2 2
370 370 370 2.5 MPa
(1.5 ) 1.5 1.5(0.01)

DRP
dL d d d

= = = = ≈  

 
The sliding velocity for this continuous rotation application is  
 
                           (0.010)(1200) 37.7 m/mincontV dNπ π= = =  
                           (2.5)(37.7) 94.25 MPa-m/minPV = =  
 
From Table 10.2 we determine 
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                                            max2.5 13.8P P= < =  
                                            max37.7 365.8V V= < =  
                                            ( )max94.25 105.1PV PV= < =  
 
Therefore the porous bronze bearing sleeve is adequate for this application 
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10-6.   From a strength-based analysis, a shaft diameter at one of its support bearing sites must be at least 1.50 
inches.  The maximum radial load to be supported at this location is estimated to be about 150 lb.  The shaft rotates 
at 500 rpm.  It is desired to use a Nylon bearing sleeve at this location.  Following established design guidelines for 
boundary-lubricated bearings, and keeping the bearing diameter as near to the 1.50-inch minimum as possible, 
propose a suitable dimensional configuration for the bearing. 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
 
Solution 
 
For continuous rotation the sliding velocity is 
 

( )1.5 500
196 fpm

12 12cont
dNV

ππ
= = =  

 
We see from Table 10.1 that Nylon (Vmax = 600 fpm) meets the velocity criterion.  Try a “square bearing” 
configuration with L = d = 1.5 inches.  Thus, 
 

( )
150 67 psi

1.5 1.5
WP
dL

= = =  

 
Again checking Table 10.1 we note that Nylon (Pmax = 2000 psi) meets the unit load criterion.  For PV we have 
 

( )( ) psi-ft67 196 13,130
min

PV = =  

 
We note that from Table 10.1 that Nylon does not meet the unit load criterion.  Try the maximum recommended 
bearing length L = 2d = 3.0 inches.  Thus, we find 
 

( )
150 33 psi

1.5 3.0
WP
dL

= = =  

 
and 

( )( ) psi-ft33 196 6480
min

PV = =  

 
We again see that this still does not meet the (PV)max = 3000 requirement for Nylon.  Therefore, it will be necessary 
to increase the bearing diameter.  Start with the upper limiting value L = 2d, thus 
 

22
W WP
dL d

= =  

and 

2 12 242
W dN WNPV

dd
π π⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
Solving for the required diameter gives 
 

( )
( )

( )'
max

150 500
3.27 inches

24 24 3000req d
WNd
PV

ππ
= = =  

 
 
If a Nylon bearing is used, it dimensions must be at least 3.3 in. bore by 6.6 in. in length. 
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10-7.   A preliminary result obtained as a possible solution for problem 10-6 indicates that the smallest acceptable 
bearing diameter for the specifications given is about 3.3 inches.  Engineering management would prefer to have a 
bearing diameter of about 1.50 inches (the minimum based on shaft strength requirements), and they are asking 
whether it would be possible to find another polymeric bearing material that might be satisfactory for this 
application.  Using Table 10.1 as your resource, can you find a polymeric bearing material other than Nylon that will 
meet established design guidelines and function properly with a diameter of 1.50 inches? 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For Problem 10-6 we had 
 

( )

( )

( )( )

1.5 500
196 fpm

12 12
150 33 psi

1.5 3.0
psi-ft33 196 6480
min

cont
dNV

WP
dL

PV

ππ
= = =

= = =

= =

 

 
From Table 10.1 we see that the potential candidates are based on allowable (PV)max: 
 
    Phenolics (PV)max  = 15,000 
    Filled Teflon (PV)max = 10,000 
    Teflon Fabric (PV)max = 25,000 
 
Checking allowable unit loads Pmax, all three candidates qualify.  Checking the allowable sliding velocity Vmax , 
Phenolics and filled Teflon qualify but Teflon Fabric does not meet the velocity criterion.  Thus, either Phenolics or 
filled Teflon would be acceptable.  Cost would probably govern the choice (Phenolics would probably win). 
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10-8.   A plain bearing is to be designed for a boundary-lubricated application in which a 75-mm-diameter steel 
shaft rotating at 1750 rpm must support a radial load of 1 kN. Using established design guidelines for boundary-
lubricated bearings and Table 10.1 as your resource, select an acceptable bearing material for this application. 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
This is a case of continuous rotation, so the sliding velocity contV  is 
 
                                      (0.075)(1750) 412.3 m/mincontV dNπ π= = =  
 
Using L d=  
 

                                        1000 0.178 MPa
0.075(0.075)

WP
dL

= = =  

 
                                      0.178(412.3) 73.4 MPa-m/minPV = =  
 
Checking Table 10.1, Porous lead-bronze appears appropriate. 
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10-9.    A plain bearing is to be designed for boundary-lubrication applications in which a 0.5-inch-diameter steel 
shaft rotating at 1800 rpm must support a radial load of 75 lb.  Using established design guidelines for boundary-
lubricated bearings, and using Table 10.1 as your resource, select an acceptable bearing material for this application 
if the operating temperature is estimated to be about 350˚F. 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
Since this is a case of continuous rotation the sliding velocity is 
 

( )( )

( )( )

0.5 1800
236 fpm

12 12
75 300 psi

0.5 0.5

cont
dNV

WP
dL

ππ
= = =

= = =
 

 
We have that  

( )( ) psi-ft300 236 70,800
min

PV = =  

 
Checking Table 10.1, we see that no material meets the (PV)max criterion.  Therefore, make a new assumption on the 
L/d ratio using the upper limit, L = 2d.  Thus, 
 

( )( )

( )( )

75 150 psi
0.5 1.0

psi-ft150 236 35,400
min

WP
dL

PV

= = =

= =

 

 
Checking Table 10.1, materials now meeting all three criteria include: 
 

1. Porous bronze 
2. Porous lead-bronze 
3. Porous lead-iron 
4. Porous aluminum 

 
 
However, we see from Table 10.1 that Porous aluminum does not meet the specified operating temperature of 300˚F.  
Thus, a selection would be made among the first three candidates based on cost. 
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10-10.  A proposed flat belt drive system (see Chapter 17) is being considered for an application in which the driven 
steel shaft is to rotate at a speed of 1440 rpm, and the power to be transmitted is 800 W.  As shown in Figure P10.10, 
the power is transmitted to the 10-mm-diameter (driven) shaft by a flat belt running on a shaft-mounted pulley.  The 
pulley has a nominal pitch diameter of 60 mm, as sketched in Figure P10.10.  It is desired to support the driven shaft 
using two grease-lubricated plain bearings, one adjacent to each side of the pulley (see Figure P10.10).  The two 
bearings share the belt load equally.  It has been determined that the initial belt tension, T0, should be 150 N ( in 
each side of the belt) to achieve optimum performance, and it may reasonably be assumed that the sum of tight side 
and slack side belt tension will remain approximately equal to 2T0 for all operating conditions.  Select satisfactory 
plain bearings for this application, including their diameter, their length, and an acceptable material from which to 
make them (see Table 10.1). 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
Since this is a case of continuous rotation, the sliding velocity is  
 

( )( )

( )

( )( )

m0.010 1440 45
min

150 1.5 MPa
10 10

MPa-m1.5 45 67.5
min

contV dN

WP
dL

PV

π π= = =

= = =

= =

 

 
Checking Table 10.1, materials meeting all three criteria include: 
 

1. Porous bronze 
2. Porous lead-bronze 
3. Porous bronze-iron 
4. Porous lead-iron 
5. Aluminum 

 
 
The final selection would be based on cost (probably porous bronze).  The preliminary recommendation will be: 
 
Use porous bronze bearings, both sides, with bore diameter of 10 mm and length of 10 mm. 
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10.11.    It is desired to use a hydrodynamically lubricated o360  babbit-metal plain bearing for use in supporting the 
crankshaft  (see Chapter 19) of an automotive-type internal combustion engine for an agricultural application. Based 
on strength and stiffness calculations, the minimum nominal journal diameter is 50 mm, and a length-to-diameter 
ratio of 1.0 has been chosen. The maximum radial load on the bearing is estimated to be 3150 N and the journal 
rotates in the bearing sleeve at 1200 rpm. High load-carrying ability is regarded as much more important than low 
friction. Tentatively, an SAE 30 oil has been chosen, and the average bearing operating temperature has been 
determined to be about o65 C . Estimate the power loss due to bearing friction. 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 

o360  bearing with 25 mmr = , / 1.0L d = , 3150 NW = , 1200 rpm 20 rev/secn = =  
 
                     (0.050)(1200) 188.5 m/mincontV dNπ π= = =  
 
From Table 11.2 for a 50 mm diameter bearing, 338.1 10  mmc −= ×  and / 0.0381/ 25 0.00152c r = = .  
 
From Figure 11.14 with / 1.0L d = , for maximum loading, max 0.47loadε − ≈ . 
 

From Figure 11.9 with / 1.0L d =  and 0.47ε = , 
1

1 7.4F
F cf
U rη
⎛ ⎞= ≈⎜ ⎟
⎝ ⎠

. Using this 

 

                                             1
7.4

/
UF

c r
η

=  

 
                                        2 2 (0.025)(20) 3.142 m/secU rnπ π= = =  
 
From Figure 10.3, with o o65 C 150 F≈ and SAE grade 30, we get 63.4 10  rehnsη −≈ × . Converting 
 
                            ( )63.4 10  rehn 6895 Pa-s/rehn 0.02344 Pa-sη −≈ × =  
 

                                  1
7.4(0.02344)(3.142) 385.6 Pa-m 385.6 N/m

0.00152
F = = =  

 
The tangential friction force is  
 
                                1 385.6(0.05) 19.28 NtF F L= = =  
 
The friction torque is 
 
                                19.28(0.025) 0.488 N-mf tT F r= = =  
 
Therefore the power is 
 

                                    0.488(1200) 0.258 kw
9549 9549
Tnkw = = =  
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10.12.   Text  In an automobile crankshaft application, a hydrohydynamic full 360˚ journal bearing must be 2 inches 
in nominal diameter based on strength requirements, and the bearing length being considered is 1.0 inch.  The 
journal is to be made of steel and the bearing sleeve is to be made of a copper-lead alloy (see Table 10.2).  The 
bearing must support a radial load of 1000 lb, and the journal rotates at 3000 rpm.  The lubricant is to be SAE 20 oil, 
and the average operating temperature at the bearing interface has been estimated to be about 130˚F.  Load-carrying 
ability and low friction loss are regarded as about equally important.   
 

a. Find the minimum film thickness required for this application. 
b. What manufacturing processes would you recommend for finishing the journal and the sleeve 

to provide hydrodynamic lubrication at the bearing interface?  Justify your recommendations.  
(Hint: Examine Figure 6.11). 

c. Estimate the power loss resulting from bearing friction. 
d. What oil flow rate must be supplied to the bearing clearance space? 

 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
 

(a)   
 

2.0000 1.0000 inch
2 2

rev3000 rpm 50
sec

dr

n

= = =

= =
 

 
From Table 10.2, for an automotive crankshaft application using a copper-lead alloy bearing sleeve and a steel 
journal, for a 2-inch diameter bearing 
 

0.0014 inch
0.0014 0.0014
1.0000

c
c
r

=

= =
 

 
From Figure 10.4, for L/d = 0.5, read ε corresponding to minimum friction drag and maximum load carrying ability 
as 

max

max

0.57
0.89

load

friction

ε
ε

−

−

=
=

 

 
Since these values are regarded as being of equal importance select a midrange value of ε = 0.7.  Then 
 

( ) ( )
( )1 2

1 0.0014 1 0.7 0.0004 inch

5.0

0.0004 84 µ-inch
5

o

o j b j b

j b

h c

h R R R R

R R

ε

ρ ρ

= − = − =

= + ≥ +

+ ≤ =

 

 
If the sleeve were reamed, then from Figure 6.11 Rb = 63 µ-inch and the journal roughness should be  
 

84 63 21 µ-inch or lessjR = − =  
 
The minimum film thickness required is 
 

( )5.0 63 16 0.0004 inchoh ≥ + =  
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(b)  Recommendations for acceptable manufacturing are based on the values for Rj and Rb 
 

1.  Ream the sleeve to 63 µ-inch or less 
2. Grind the journal to 16 µ-inch or less 

 
 

(c)  From Figure 10.3, for SAE 20 oil at 130˚F  
 

63.8 10 rehnsη −= ×  
 
 From Figure 10.9, for L/d = 0.5 and ε = 0.7 
 

( )( )

( )( )

1

1

6

1

9.4

in2 2 1.0000 50 314
sec

9.4 3.8 10 314 lb8.0
0.0014 in

F
F cf
U r

U rn

F

η

π π

−

⎛ ⎞= =⎜ ⎟
⎝ ⎠

= = =

×
= =

 

 
The tangential force, friction torque, and power loss is 
 

( )
( )

( ) ( )

1 8.0 1.0 8.0 lb

8.0 1.0 8.0 in-lb

8.0 3000
0.38 horsepower

63,025 63,025

t

f t

f
f

F F L

T F r

T n
hp

= = =

= = =

= = =

 

 
(d)  From Figure 10.11, with L/d = 0.5 and ε = 0.7 

 

( ) ( )( )( )( )
3

5.1

in5.1 5.1 1.0 0.0014 50 1.0 0.36
sec

Q
Qf

rcnL

Q rcnL

= =

= = =
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10-13.   A hydrodynamic journal bearing rotates at 3600 rpm.  The bearing sleeve has a 32 mm-diameter and is 32 
mm long.  The bearing radial clearance is to be 20 µm, and the radial load on the bearing is said to be 3 kN.  The 
lubricant chosen is SAE oil supplied at an average temperature of 60˚C.  Estimate the friction-generated heating rate 
for this bearing if the eccentricity ratio has been determined to be 0.65. 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 

1
J N-m, or Watts
s sgH F LU=  

 
We have 

( )( )0.032 3600 m6.0
60 60 s
dnU

ππ
= = =  

 
From Figure 10.9, with L/d = 1 and ε = 0.65, 
 

1

1

1

9.2

9.2

F
F cf
U r

UF
c
r

η
η

⎛ ⎞= =⎜ ⎟
⎝ ⎠

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
From Figure 10.3, for SAE 10 oil at 140˚F 
 

( )

( )( )

6

3

1 6

2.7 10 rehn 18.6 mPa s

9.2 18.6 10 6.0 N821
m20 10

0.016
J821 0.032 6.0 157
sg

F

H

η −

−

−

= × = ⋅

×
= =

⎛ ⎞×
⎜ ⎟
⎝ ⎠

= =
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10-14.   It is desired to design a hydrodynamically lubricated 360˚ plain bearing for a special factory application in 
which a rotating steel shaft must be at least 3.0 inches nominal diameter and the bushing (sleeve) is to be bronze, 
reamed to size.  The radial bearing load is to be 1000 lb.  The desired ratio of length to diameter is 1.5.  The shaft is 
to rotate at a speed of 1000 rpm.  It has been estimated that an eccentricity ratio of 0.5 should be a good starting 
point for designing the bearing, based on an evaluation of the optimal design region of Figure 10.14 for a length-to-
diameter ration of 1.5. 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
From Table 10.2, for “general machine practice-continuous rotation motion”, and 3.0d ≥ in., then 
 

0.004 to 0.007

0.003 0.005

c
c to
r

=

=
 

 
Initially select c/r = 0.003.  Using Table 6.11, and initially deciding to grind the steel journal, (sleeve is reamed), 
 

63 µ-in.
16 µ-in.

b

j

R
R

=

=
 

Writing all pertinent expressions as functions of d gives: 
 

( )

( )

1

2 2

1.5

1000 667 lb
1.5 in

1000 in16.67
60 60 sec

8 12 in

0.003 0.0015
2 2

h h p

LL d d
d
WW
L d d

ddnU d

A C A dL d

c d dc d
r

ππ π

π π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

= = =

= = =

= = =

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Use Figures 10.7 and 10.9 to evaluate

1 1
andW Ff f .  Note however that there is no curve presented for the specified 

value of L/d = 1.5.  Thus, it will be necessary to utilize the interpolation equation to find value of 
1 1

andW Ff f for L/d 
= 1.5.  Hence, 
 

( )
( )( )( ) ( )( )

( )( ) ( )( )

1.03

0.5 0.25

1.0 0.5 0.25

1 1 11 1.5 1 2 1.5 1 4 1.5 1 2 1.5 1 4 1.5
8 31.5

1 11 1.5 1 4 1.5 1 1.5 1 2 1.5
4 24

0.185 0.987 0.185 0.012

f f f

f f

f f f f f

∞

∞

⎡= − − − × − × + − × − ×⎢⎣

⎤− − − × + − − × ⎥⎦
= + − −

 

 
From Figure 10.7 with ε = 0.5, values of 

1Wf at L/d ratios of ∞, 1.0, 0.5, and 0.25 are 
 

1.0

0.5

0.25

7.0
1.8
0.69
0.18

f
f
f
f

∞ =
=
=

=

 

 
Thus,  
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( ) ( ) ( ) ( ) ( )
1 1.5

0.185 7.0 0.987 1.8 0.185 0.69 0.012 0.18 2.94LW
d

f
=

= + − − =  

 
From Figure 10.9 with ε = 0.5, values of 

1Ff  at L/d ratios of ∞, 1.0, 0.5, and 0.25 are 

1.0

0.5

0.25

8.5
7.8
7.5
7.3

f
f
f
f

∞ =
=
=
=

 

and 
( ) ( ) ( ) ( ) ( )

1 1.5
0.185 8.5 0.987 7.8 0.185 7.5 0.012 7.3 7.79LF

d

f
=

= + − − =  

 
Thus, 

( )
( ) ( )

( )
( )

2
1

2

2 5

2.94

667
0.003 2.94

16.67

667 0.003 3.89 10
2.94 16.67

W c
U r

d
d

d

η

η π

π η η

−

⎛ ⎞ =⎜ ⎟
⎝ ⎠

=

×
= =

 

 
Combining equations and assuming that the ambient air is 75 FaΘ = o we have 
 

( ) ( )
( )( ) ( )

4 2

1 3
1

752.31 10 12 9336
2 8.62 10 75

60 60 16.67 1.5

o

h s a
o

dk A J
F

UL d d

π

π

−

Θ −

Θ −⎛ ⎞× ⎜ ⎟Θ −Θ ⎝ ⎠= = = × Θ −  

 
We have also that 
 

( )

1

5
1

7.79

7.79 16.67 lb1.36 10
0.003 in

F c
U r

d
F d

η
η π

η

⎛ ⎞ =⎜ ⎟
⎝ ⎠

⎛ ⎞= = × ⎜ ⎟
⎝ ⎠

 

 
Equating yields 
 

( )

( )

3 5

8

8.62 10 75 1.35 10

6.39 10 75

o

o

d

d

η

η

−

−

× Θ − = ×

×
= Θ −

 

 
Now equating the expressions for the diameter yields 
 

( )

( )

5 8

210

3.89 10 6.39 10 75

1.05 10 75 rehns

o

o

η η

η

− −

−

× ×
= Θ −

= × Θ −

 

 
From Figure 10.3 

( ),oil rehnsgraph ofη = Θ  
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Solve these by trial and error.  As a first try select SAE 10 oil. 
 
 
 

Oil Spec. o
oΘ , F  .η, rehns from eq  η, rehns from Fig 10.3  Comment 

SAE 10 175˚ 1.04x10-6 1.0x10-6 Close 
SAE 10 176˚ 1.06x10-6 1.05x10-6 Adequate 

 
 
Thus,  
 

( )
8

6

6.39 10 176 75 6.14 inch
1.05 10

d
−

−

×
= − =

×
 

 
Tentatively, the following dimensions and parameters would be recommended: 
 
    d = 6.14  inch 
    L = 9.2    inch 
    Oil; SAE 10 
    Θo = 176˚F 
 
Checking Table 10.2 for this larger shaft we see that it may be desired to increase the clearance.  However, we shall 
keep c = 0.003 in. for now.  Checking the minimum film thickness gives 
 

( ) ( ) ( )
( ) ( )( )6

1 0.003 1 0.5 0.0015 inch

5.0 63 16 10 0.0004 inch

o existing

o required

h c

h

ε
−

= − = − =

= + =
 

 
The existing film thickness is about four times the required film thickness, therefore the recommendations should 
hold for a ground journal. 
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10-15.  For the design result you found in solving problem 10-14, 
a.  Find the friction drag torque. 
b. Find the power dissipated as a result of friction drag. 

 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
 
From Problem 10-14 the following parameters are pertinent: 
 

d = 6.14  inch 
    L = 9.2    inch 
    Oil; SAE 10 
    Θo = 176˚F 
    ( )3

1 8.62 10 75oF −= × Θ −  
 
Based on these results: 

(a) The friction drag torque is 
 

( ) ( )1
6.140.87 9.2 24.6 in-lb

2f tT F r F L r ⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

 

 
(b) The power dissipated by the friction drag is 

 

( ) ( )24.6 1000
0.39 horsepower

63,025 63,025
f

f

T n
hp = = =  
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10-16.  A hydrodynamically lubricated 360˚ plain bearing is to be designed for a machine tool application in which a 
rotating steel spindle must be at least 1.00 inch nominal diameter, the bushing is to be bronze, and the steel spindle 
is to be lapped into the bronze bushing.  The radial bearing load is 40 lb, and the spindle is to rotate at 2500 rpm.  
The desired ratio of length to Diameter is 1.0.  Conduct a preliminary design study to determine a combination of 
dimensions and lubricant parameters for this application. 
 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
The steel spindle is to be lapped into the bronze bushing and the bearing has a 360˚ configuration.  The sliding 
surface velocity is 
 

( )( )

( )

1.00 2500 ft654
12 12 min

40 40 psi
1.00 1.0

cont
dNV

Wp
dL

ππ
= = =

= = =
 

 
From Table 10.2 we see that for precision spindle practice, with hardened and ground spindle lapped into a bronze 
bushing and for diameters under 1 inch; with velocity above 500 ft/min and pressure under 500 psi that the data are 
split between the first two lines of the table.  As a start let’s pick c = 0.0015 inch.  In addition, from Figure 6.11, 
lapping produces a finish of Rj = Rb = 8 µ-in.  Also, c/r = 0.0015/0.50 = 0.003. 
 
From Figure 10.14, for L/d = 1.0, we read the values of ε corresponding to maximum load carrying ability and 
maximum friction drag, respectively as 
 

max

max

0.47
0.70

load

friction

ε
ε

−

−

=

=
 

 
Since no specification is given for ε, a midrange value will be assumed, i.e., ε = 0.6.  From Figure 10.9, for L/d = 1.0 
and ε = 0.6 
 

1

1

1

8.5

8.5

F
F cf
U r

UF
c
r

η
η

⎛ ⎞= =⎜ ⎟
⎝ ⎠

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Writing all pertinent expressions as a function of d gives: 
 

( )

( )

1

2 2

inch

40 lb
in

2500 in41.67
60 60 sec

8 8 in

0.003 0.0015
2 2

h h p

LL d d
d
WW
L d

ddnU d

A C A dL d

c d dc d
r

ππ π

π π

⎛ ⎞= =⎜ ⎟
⎝ ⎠

= =

= = =

= = =

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Combining and assuming ambient air is Θa = 70˚F 
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( ) ( )
( )( ) ( )

4 2

1 3
1

702.31 10 8 9336
lb2 3.45 10 70

60 60 41.67 in

o

h s a
o

dk A J
F

UL d d

π

π

−

Θ −

Θ −⎛ ⎞× ⎜ ⎟Θ −Θ ⎝ ⎠= = = × Θ −  

 
Also, we have 
 

( ) 5
1

8.5 41.67 lb3.71 10
0.003 in

d
F d

η π
η= = ×  

 
Equating the two values gives 
 

( )

( )

3 5

9

3.45 10 70 3.71 10

9.30 10 70

o

o

d

d

η

η

−

−

× Θ − = ×

×
= Θ −

 

 
From Figure 10.7, using L/d = 1.0 and ε = 0.6 
 

( )( )
( )

( )
( )

( )

( )

1

2
1

2

2 6

6 9

211

2.7

40 0.003
2.7

41.67

40 0.003 1.02 10 in.
2.7 41.67

1.02 10 9.30 10 70

8.48 10 70 rehns

W

o

o

W cf
U r

d
d

d

η

η π

π η η

η η

η

−

− −

−

⎛ ⎞= =⎜ ⎟
⎝ ⎠

=

×
= =

× ×
= Θ −

= × Θ −

 

 
From Figure 10.3 ( ),oil in rehnsgraph ofη = Θ .  Solve by trial and error.  As a first try select SAE 10 oil. 
 
 
 

Oil Spec. o
oΘ , F  .η, rehns from eq  η, rehns from Fig 10.3  Comment 

SAE 10 175˚ 9.35x10-7 1.1x10-6 Close 
SAE 10 180˚ 1.03x10-6 1.0x10-6 Adequate 

 
 
Thus,  
 

( )
9

6

9.30 10 180 70 1.02 inch
1.0 10

d
−

−

×
= − =

×
 

 
Tentatively, the following dimensions and parameters would be recommended: 
 
    d = 1.00  inch 
    L = 1.00  inch 
    Oil; SAE 10 
    Θo = 180˚F 
 
Checking the minimum film thickness gives 
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( ) ( ) ( )
( ) ( )( )6

1 0.0015 1 0.6 0.0006 inch

5.0 8 8 10 0.00008 inch

o existing

o required

h c

h

ε
−

= − = − =

= + =
 

 
The existing film thickness is about seven times the required film thickness, therefore the recommendations should 
hold for a lapped bearing pair. 
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10-17.  For your proposed design result found in solving problem 10-16 
 

(a)  Find the friction drag torque 
(b) Find the power dissipated as a result of friction drag. 

 
  
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
 
The following results for problem 10-16 which are pertinent are; 
 

d = 1.00  inch 
    L = 1.00  inch 
    Oil; SAE 10 
    Θo = 180˚F 

    ( )3
1

lb3.45 10 70 0.38
inoF −= × Θ − =  

 
(a)  Friction drag torque 

 

( ) ( )1
1.00.38 1.0 0.19 in-lb
2f tT F r F L r ⎛ ⎞= = = =⎜ ⎟

⎝ ⎠
 

 
(b) Power dissipated by friction is 

 

( ) ( )0.19 2500
0.008 horsepower

63,025 63,025
f

f

T n
hp = = =  
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10-18.   A hydrodynamically lubricated 360˚ plain bearing is to be designed for a conveyor-roller support 
application in which the rotating cold-rolled steel shaft must be at least 100 mm nominal diameter and the bushing is 
to be made of poured Babbitt, reamed to size.  The radial bearing load is to be 18.7 kN.  The desired ratio of length 
to diameter is 1.0.  The shaft is to rotate continuously at a speed of 1000 rpm.  Low friction drag is regarded as more 
important than high load-carrying capacity.  Find a combination of dimensions and lubricant parameters suitable for 
this conveyor application. 
 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
The spindle is cold rolled steel and the bushing is poured Babbitt, reamed to size.  From table 10.2, for general 
machine practice, continuous rotation, cold rolled steel journal in poured Babbitt bushing reamed to size, and for a 
100 mm diameter select a clearance as 0.005 inches or 0.127 mm.  We have that c/r  = 0.127/50 = 0.0025.  From 
Figure 10.14, for L/d = 1.0, read values of ε corresponding to minimum friction drag and maximum load carrying 
capacity as 
 

max

ma

0.47
0.70

load

friction

ε
ε

−

−

=
=

 

 
We note that for this application that low friction drag is regarded as more important than high load carrying 
capacity.  Thus, select ε = 0.65. 
 

( ) ( ) ( )
( ) ( )

1 0.127 1 0.65 0.04445 mm

5.0

o existing

o j brequired

h c

h R R

ε= − = − =

≥ +
 

 
Using Figure 6.11 for a cold rolled journal Rj = 1.6 µm and for a reamed bushing Rb = 1.6 µm.  Thus,  
 

( ) ( )5.0 1.6 1.6 µm 16 µm 0.016 mmo required
h = + = =  

 
It is noted that (ho)existing exceeds (ho)required by a factor of about 3 which is an acceptable margin.  From Figure 10.7 
and 10.9, for L/d = 1.0 and ε = 0.65 we have 
 

( )( )

( )
( )

1

1

1

2
1

3
5

1

22 5
1

9.3

3.5

18.7 10 N1.87 10
0.100 m

0.100 1000 m5.24
60 60 s

1.87 10 0.0025
0.64 Pa s

3.5 3.5 5.24

F

W

F cf
U r

W cf
U r

WW
L
dnU

W c
U r

η

η

ππ

η

⎛ ⎞= =⎜ ⎟
⎝ ⎠

⎛ ⎞= =⎜ ⎟
⎝ ⎠

×
= = = ×

= = =

×⎛ ⎞= = = ⋅⎜ ⎟
⎝ ⎠

 

 
Using 1 rehn = 6895 Pa-s, the required viscosity is 
 

60.064 9.28 10 rehns
6895

η −= = ×  

 
From Figure 10.3, one of several oil selections that would be satisfactory is SAE 50 oil operating at about 152˚F or 
67˚C. 
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In summary we have: 
     d = 100 mm 
     L = 100 mm 
     Oil: SAE 50 
     Θo = 67˚C 
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10-19.   For your proposed design result found in solving problem 10-18, find the friction drag torque. 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
From problem 10-18 we had 
 

d = 100 mm 
     L = 100 mm 
     Oil: SAE 50 
     Θo = 67˚C 
     η = 0.064 Pa-s = 9.28x10-6 rehns 
     U = 5.24 m/s 
     c/r = 0.0025 

     
1

1 9.3F
F cf
U rη
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 
Based on these results the friction drag torque is 
 

( ) ( )( )

( )( )( )( )

1
9.3

9.3 0.064 5.24 0.100 0.050
6.24 N-m

0.0025

f t
UT F r F L r L r

c
r

η
= = =

⎛ ⎞
⎜ ⎟
⎝ ⎠

= =
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Chapter 11 

 
 
11-1.   For each of the following applications, select two possible types of rolling element bearings that might make 
a good choice. 

(a)  High-speed flywheel (see Chapter 18) mounted on a shaft rotating about a horizontal centerline. 
(b) High-speed flywheel mounted on a shaft rotating about a vertical centerline. 
(c) Low-speed flywheel mounted on a shaft rotating about a vertical centerline. 

 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Utilizing Table 11.1, and deducing primary design requirements from problem statements, the following potential 
bearing types may be selected: 
 

(a)  Design requirements:  moderate to high radial capacity, moderate to low thrust capacity, high limiting 
speed, moderate to high radial stiffness, moderate to low axial stiffness.  Bearing candidates: 

(1)  Maximum capacity ball bearing 
(2) Spherical roller bearing 

 
(b)  Design requirements:  moderate radial capacity, moderate –one-direction thrust capacity, high limiting 

speed, and moderate radial stiffness, moderate to high axial stiffness.  Bearing candidates: 
(1)  Angular contact ball bearings 
(2) Single-row tapered roller bearings 

 
         (c)  Design requirements:  low to no radial capacity, moderate  to high thrust capacity- one direction, limiting 

speed low, radial stiffness low to none, moderate to high axial stiffness.  Bearing candidates: 
   (1)  Roller thrust bearing 
   (2)  Tapered roller thrust bearing 
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11-2.  A single-row radial ball bearing has a basic dynamic load rating of 11.4 kN for an L10 life of 1 million 
revolutions.  Calculate its L10 life if it operates with an applied radial load of 8.2 kN. 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

( )

3

6

3
6 6

10 8.2

10

11.4 10 2.69 10 rev
8.2

d

kN

CL
P

L

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= × = ×⎜ ⎟
⎝ ⎠
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11-3.  a.  Determine the required basic dynamic load rating for a bearing mounted on a shaft rotating at 1725 rpm if 
it must carry a radial load of 1250 lb and the desired design life is 10,000 hours. 
 
b.  Select a single-row radial ball bearing from table 11.5 that will be satisfactory for this application if the outside 
diameter of the bearing must not exceed 4.50 inches. 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

(a)  From (11-1) 
 

[ ]

( )( )( )

[ ] ( )

1
3

6

4 9

1
9 3

6

10

10 1725rev min 60min hr 1.04 10 rev

1.04 10 1250 12,700 lb
10

d
d dreq

d

d req

L
C P

L hr

C

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= = ×

⎛ ⎞×
= =⎜ ⎟
⎝ ⎠

 

 
(b)  Selecting Bearing No. 6310 

 
Cd = 13,900 Lb > 12,700 lb 
do = 4.3307 in. < 4.50 in. 
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11-4.    A single-row radial ball bearing must carry a radial load of 2250 N and no thrust load. If the shaft that the 
bearing is mounted to rotates at 1175 rpm, and the desired 10L life of the bearing is 20,000 hr, select the smallest 
bearing from Table 11.5 that will satisfy the design requirements. 
 
              
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From (11-1) 
 

                                      [ ]
1/ 3

610
d

d dreq
L

C P⎡ ⎤= ⎢ ⎥⎣ ⎦
 

 
and 
 
                             ( )( ) ( ) 920,000 hr 1175 rev/min 60 min/hr 1.41 10  revdL = = ×  
 
So 
 

                                         [ ]
1/39

6
1.41 10 (2250) 25.23 kN

10d reqC
⎡ ⎤×

= =⎢ ⎥
⎢ ⎥⎣ ⎦

 

  
From Table 11.5, the smallest bearing with 25.23 kNdC = is bearing # 6306, while bearing #6207 is the next 
smallest. 
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11-5.   In a preliminary design calculation, a proposed deep-groove  ball bearing had been tentatively selected to 
support one end of a rotating shaft.  A mistake has been discovered in the load calculation, and the correct load turns 
out to be about 25 percent higher than the earlier incorrect load used to select the ball bearing.  To change to a larger 
bearing at this point means that a substantial redesign of all the surrounding components will probably be necessary.  
If no change is made to the original bearing selection, estimate how much reduction in bearing life would be 
expected. 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

From (11-1)  
3

610
dCL

P
⎛ ⎞= ⎜ ⎟
⎝ ⎠

.  Setting correct load Pc equal to incorrect load Pi, then 

 

( ) ( )

3 3

6 6

3 3 6 3 3 6

3 3

3 3

3 3 3

10 10

10 10

1 0.51
1.25 1.25

c d i d

c i

c c d i i d

c c i i

c i i

i c i

L C L C
P P

L P C L P C

L P L P

L P P
L P P

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
= × = ×

=

= = = =

 

 
Thus, life would be reduced by approximately 50 %. 
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11-6.   A number 6005 single-row radial deep-groove ball bearing is to rotate at a speed of1750 rpm.  Calculate the 
expected bearing life in hours for radial loads of 400, 450, 500, 550, 600, 650, and 700 lb, and make a plot of life 
versus load.  Comment on the results. 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From Table 11.5, the basic dynamic load rating for a 6005 single-row radial deep groove ball bearing is Cd = 2520 
lb.  From (11-1) 
 

( ) ( )3 63 6 16

3 3 3

2520 1010 1.6 10d
rev

C
L

P P P
×× ×

= = =  

 
At n = 1750 rpm, the life in hours is 
 

( ) ( )
( )( ) ( )( )

16 11

3 3

1.6 10 1.52 10 hr
1750 60 1750 60

rev
hr

L
L

P P
× ×

= = =  

 
so for the specific loads: 
 

P, lb P3 (L)hr 
400 6.4 x 107 2375 
450 9.1 x 107 1670 
500 1.3 x 108 1170 
550 1.7 x 108 890 
600 2.2 x 108 690 
650 2.7 x 108 545 
700 3.4 x 108 450 

 

 
 
Note how rapidly the expected life decreases even for relatively small increases in load. 
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11-7.   Repeat problem 11-6, except use a number 205 single-row cylindrical roller bearing instead of the 6005 
radial ball bearing. 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From Table 11.6, the basic dynamic load rating for a 205 single-row cylindrical roller bearing is Cd = 6430 lb. 
 

( ) ( )3 63 6 17

3 3 3

6430 1010 2.66 10d
rev

C
L

P P P
×× ×

= = =  

 
At n = 1750 rpm, the life in hours is 
 

( ) ( )
( )( ) ( )( )

17 12

3 3

2.66 10 2.53 10 hr
1750 60 1750 60

rev
hr

L
L

P P
× ×

= = =  

 
so for the specific loads: 
 

P, lb P3 (L)hr 
400 6.4 x 107 39,531 
450 9.1 x 107 27,800 
500 1.3 x 108 19,460 
550 1.7 x 108 14,900 
600 2.2 x 108 11,500 
650 2.7 x 108 9,035 
700 3.4 x 108 7,440 

 

 
 
 
Note how rapidly the expected life decreases even for relatively small increases in load. 
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11-8.   A number 207 single-row cylindrical roller bearing has tentatively been selected for an application in which 
the design life corresponds to 90 percent reliability (L10 life) is 7500 hr.  Estimate what the corresponding lives 
would be for reliabilities of 50 percent, 95 percent, and 99 percent. 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Using (11-2), for the 207 roller bearing, 
 

10p RL K L=  
 
From Table 11.2, 
 

50

95

99

5.0
0.62
0.21

K
K
K

=

=
=

 

 
The L10 life is given as 7500 hours, so from the above 
 

( )
( )
( )

50

95

99

5.0 7500 35,000 hr

0.62 7500 4,650 hr

0.21 7500 1,575 hr

L

L

L

= =

= =

= =
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11-9.   Repeat problem 11-8, except use a number 6007 single-row radial ball bearing instead of the 207 roller 
bearing. 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Using (11-2), for the 6007 ball bearing, 
 

10p RL K L=  
 
From Table 11.2, 
 

50

95

99

5.0
0.62
0.21

K
K
K

=

=
=

 

 
The L10 life is given as 7500 hours, so from the above 
 

( )
( )
( )

50

95

99

5.0 7500 35,000 hr

0.62 7500 4,650 hr

0.21 7500 1,575 hr

L

L

L

= =

= =

= =
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11-10.   A solid steel spindle shaft of circular cross section is to be used to support a ball bearing idler pulley as 
shown in Figure P11.10.  The shaft may be regarded as simply supported at the ends and the shaft does not rotate.  
The pulley is to be mounted at the center of the shaft on a single-row radial ball bearing.  The pulley must rotate at 
1725 rpm and support a load of 800 lb, as shown in the sketch.  A design life of 1800 hours is required and a 
reliability of 90 percent is desired.  The pulley is subjected to moderate shock loading conditions. 

(a) Pick the smallest acceptable bearing from Table 11.5 if the shaft at the bearing site must be at least 1.63 
inches in diameter. 

(b) Again using Table 11.5, select the smallest bearing that would give an infinite operating life, if you can find 
one.  If you find one, compare its size with the 1800-hour bearing. 

 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

(a) The design life is to be 
 

( ) 8rev min1725 60 1800 hr 1.86 10 rev
min hrdL ⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

 
And moderate shock loading exists.  A single row radial ball bearing is to be selected.  From (11-3) 
 

e d r d aP X F Y F= +  
 
From Table 11.4, for a single row radial ball bearing: 
 

1 1

2 2

1, 0

0.55, 1.45
d d

d d

X Y

X Y

= =

= =
 

 
Hence, 
 

( ) ( ) ( )
( ) ( ) ( )

1

2

1 800 0 0 800 lb

0.55 800 1.45 0 440 lb
e

e

P

P

= + =

= + =
 

 
Since (Pe)1 > (Pe)2, Pe = (Pe)1 = 800 lb.  Calculating the basic dynamic radial load rating requirement from (11-4), 
 

( ) ( ) ( )

1
3

6'
90

10
d

d ereq d
R

L
C IF P

K

⎡ ⎤
⎢ ⎥=⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 
From Table 11.3, IF = 1.75 and from Table 11.2 KR = 1.0 for R = 90.  Thus, we find 
 

( ) ( ) ( )( )

1
38

6'

1.86 1090 1.75 800 7990 lb
1.0 10d req d

C
⎡ ⎤×⎢ ⎥= =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦

 

 
The smallest acceptable bearing, with a bore of at least 1.63, from Table 11.5 is bearing No. 6309 (limiting speed 
ok).  Checking the static load rating Pse, using (11-5) and Table 11.4 
 

Pse = 800 lb 
 
From Table 11.5, for bearing No. 6309, Cs = 7080 lb.  Since Pe < Cs the static load rating is also acceptable.  
Therefore select bearing No. 6309 and locally increase the shaft diameter at the bearing site to d = 1.7717 inches, 
with appropriate tolerances.  
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(b)  From Table 11.5, looking for 
 

( )( ) ( )800 1.75 1400e fP IF P= = ≤  
 
the infinite life requirement is satisfied by bearing No. 6040.  Comparing sizes: 
 

 No. 6309 No. 6040 
Bore 1.77 in. 7.87 in. 
Outside Diameter 3.94 in. 12.20 in. 
Width 0.98 in. 2.01 in. 
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11-11.   A helical idler gear (see Chapter 15) is to be supported at the center of a short hollow circular shaft using a 
single-row radial ball bearing.  The inner race is presses on the fixed non-rotating shaft, and the rotating gear is 
attached to the outer race of the bearing. The gear is to rotate at 900 rpm. The forces in the gear produce a resultant 
radial force on the bearing of 1800 N and a resultant thrust force on the bearing if 1460 N. The assembly is subjected 
to light shock loading conditions. Based on preliminary stress analysis of the shaft, it must have at least a 50-mm              
outside diameter. It is desired to use a bearing that will have a life of 3000 hours with 99% reliability. Select the 
smallest acceptable bearing (bore) from Table 11.5. 
 
 
---------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
 Given ( )min 50 mmbored ≥ , 1800 NrF = , 1460 NaF = , 900 rpmn = , and 99%R = , the design life is 
 
                         ( )( )( ) 83000 hr 900 rev/min 60 min/hr 1.62 10  revdL = = ×  
 
  Moderate shock exists and a single-row ball bearing is to be selected. From (11-3) 
 
                              e d r d aP X F Y F= +  
 
From Table 11.4;  

1 1
1.0 , 0d dX Y= =  and 

2 2
0.55 , 1.45d dX Y= = . Therefore 

                           
                                      ( )1 1.0(1800) 0(1460) 1800 NeP = + =  

                                      ( )2 0.55(1800) 1.45(1460) 3107 NeP = + =  
 
Since ( ) ( )2 1e eP P> , ( )2 3107 Ne eP P= = . The radial load rating is 
 

                                ( ) ( ) ( )
1/3

6
99

10
d

d ereq
R

L
C IF P

K

⎡ ⎤
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
From Tables 11.2 and 11.3: 0.21RK =  and 1.4IF = . Therefore 
 

                          ( ) ( )( )
1/38

6
1.62 1099 1.4 3107 28.5 kN
0.21 10d req

C
⎡ ⎤×⎡ ⎤ = ≈⎢ ⎥⎣ ⎦ ×⎢ ⎥⎣ ⎦

 

 
From Table 11.5, the smallest acceptable bearing with ( )min 50 mmbored ≥ a #6210, where the limiting speed is 
acceptable (7000 – 8500 rpm).  Checking static load 
 
                                         es s sr s saP X F Y F= +  
 
From Table 11.4;  

1 1
1.0 , 0s sX Y= =  and 

2 2
0.60 , 0.50s sX Y= = . Therefore 

                           
                                      ( )1 1.0(1800) 0(1460) 1800 NseP = + =  

                                      ( )2 0.60(1800) 0.50(1460) 1810 NseP = + =  
 
Since ( ) ( )2 1se seP P> , ( )2 1810 Nse seP P= = . From Table 11.4, 23.2 kNsC = for a #6210 bearing 
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11-12.   An industrial punching machine is being designed to operate 8 hours per day, 5 days per week, at 1750 rpm.  
A 10-year design life is desired.  Select an appropriate Conrad type single-row ball bearing to support the drive shaft 
if bearing loads have been estimated as 1.2 kN radial and 1.5 kN axial, and light impact conditions prevail.  Standard 
L10 bearing reliability is deemed to be acceptable for this application. 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
The design life is to be 
 

( ) 8rev min hr days1750 60 8 5 52 wk 2.18 10 rev
min hr day wkdL

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = ×⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
And light impact loading exists.  and a single-row ball bearing is to be selected  From (11-3) 
 

e d r d aP X F Y F= +  
 
From Table 11.4;  

1 1
1.0 , 0d dX Y= =  and 

2 2
0.55 , 1.45d dX Y= = . Therefore 

                           
( )1 1.0(1.2) 0(1.5) 1.2 kNeP = + =  

                                                             ( )2 0.55(1.2) 1.45(1.5) 2.84 kNeP = + =  
 
Since ( ) ( )2 1e eP P> , ( )2 2.84 kNe eP P= = .  The basic dynamic radial load rating is 
 

( ) ( ) ( )

1
3

6
90

10
d

d ereq
R

L
C IF P

K

⎡ ⎤
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
From Tables 11.2 and 11.3: 1.0RK = for R = 90% and 1.4IF = . Therefore 
 

( )
( )( ) ( )( )

1/3
8

6

2.81 1090 1.4 2.84 23.93 kN
1.0 10

d req
C

⎡ ⎤
×⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

 

 
From Table 11.5, an appropriate bearing would be bearing 6306, having a bore of 30 mm, outside diameter of 72 
mm, and width of 19 mm.  Limiting speed of 9000 rpm is ok.  Checking static load rating Pse using (11-5) and Table 
11.4, 
 

es s sr s saP X F Y F= +  
 
From Table 11.4;  

1 1
1.0 , 0s sX Y= =  and 

2 2
0.60 , 0.50s sX Y= = . Therefore 

                           
                                      ( )1 1.0(1.2) 0(1.5) 1.2 kNseP = + =  

                                      ( )2 0.60(1.2) 0.50(1.5) 1.47 kNseP = + =  
 
Since ( ) ( )2 1se seP P> , ( )2 1.47 kNse seP P= = . From Table 11.5 we find 16 kNsC = for a No. 6306 bearing.  
Assuming that the 30 mm bore is large enough to accommodate the strength-based shaft diameter requirement, the 
final selection is bearing No. 6306. 
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11-13.   The shaft shown in Figure P11.13 is to be supported by two bearings, one at location A and the other 
location B.  The shaft is loaded by a commercial-quality driven helical gear (see Chapter 15) mounted as shown.  
The gear imposes a radial load of 700 lb and a thrust load of 2500 lb applied at a pitch radius of 3 inches.  The thrust 
load is to be fully supported by bearing A (bearing B takes no thrust load).  It is being proposed to use a single-row 
tapered roller bearing at location A, and another one at location B.  The devise is to operate at 350 rpm, 8 hours per 
day, 5 days per week, for 3 years before bearing replacement is necessary.  Standard L10 reliability is deemed 
acceptable.  A strength-based analysis has shown that the minimum shaft diameter must be 1.375 inches at both 
bearing sites.  Select suitable bearings for both location A and location B. 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Before proceeding with bearing selection, the bearing reactions must be found at both A and B using equilibrium 
concepts.  Thus, 
 

 
 

Summing moments about A and B yield: 
 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

10 6 7000 3 2500 0

42,000 7,500 4,950 lb (up)
10

10 4 7000 3 2500 0

28,000 7,500 2,050 lb (up)
10

B r

B r

A r

B r

R

R

R

R

+ − − =

+
= =

− + =

−
= =

 

 
Summing forces horizontally gives 
 

( )
( )

2500 0

2500 lb (left)
A a

A a

R

R

+ =

= −
 

 
 
 
Thus we have for bearings A and B: 
 

Bearing A: Bearing A:
2050 lb 4950 lb
2500 lb 0 lb

350 rpm 350 rpm
90 percent 90 percent

r r

a a

F F
F F
n n
R R

= =
= =

= =
= =
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For both bearings the design life is to be 
 

( ) 8rev min hr days wk350 60 8 5 52 3 yr 1.31 10 rev
min hr day wk yrdL

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= = ×⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
From Table 11.3, for commercial gearing IF = 1.2  and from Table 11.2, for R = 90% , 1.0RK = .  For bearing A 
then, from (11-3) 
 

e d r d aP X F Y F= +  
 
From Table 11.4, for single row roller bearing (α ≠ 0), which is a good assumption for tapered roller bearings; 

1 1
1.0 , 0d dX Y= =  and 

2 2
0.4 , 0.4cotd dX Y α= = . Since α is not known till the bearing is selected, first assume 

that
2

1.5dY ≈ , and revise later when α becomes known.  Hence, 
                           

( )1 1.0(2050) 0(2500) 2050 lbeP = + =  

                                                             ( )2 0.4(2050) 1.5(2500) 4570 lbeP = + =  
 
Since ( ) ( )2 1e eP P> , ( )2 4570 lbe eP P= = .  The basic dynamic radial load rating from (11-4) is 
 

( ) ( ) ( )

1

6
90

10

a
d

d ereq
R

L
C IF P

K

⎡ ⎤
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Using a = 10/3 for roller bearings, we find 
 

( )
( ) ( ) ( )( )

3/10
8

6

1.3 1090 1.2 4570 23,620 lb
1.0 10

d req
C

⎡ ⎤
×⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

 

 
From Table 11.7, tentatively select bearing No. 32307, which has a value of Cd = 24,100 lb.  However, it must be 
noted that this bearing has a value of 

2
1.9dY =  which is significantly different from the value assumed before.  

Using this value and recalculating ( )2e eP P= as 
 

( )2 0.4(2050) 1.9(2500) 5570 lbeP = + =  
 
and 
 

( )
( )( ) ( )( )

3/10
8

6

1.3 1090 1.2 5570 28,800 lb
1.0 10

d req
C

⎡ ⎤
×⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

 

 
Looking again at Table 11.7, an appropriate selection appears to be bearing No.  32309.  Note that for this bearing 
that

2
1.74dY = .  This value is close to the value 1.9 and a little smaller so that this bearing selection is satisfactory.  

Further, the bore diameter is 1.7717 inches, greater than the minimum shaft size of 1.375 inches.  Thus, the 
recommendation for bearing site A is: 
 
    Bearing No.  32309 
     Bore:   1.7717 inches 
     Outside diameter:  3.937 inches 
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     Width:   1.5059 inches 
 
 
  Checking static capacity, from Table 11.7 Cs = 38,600 lb is an acceptable value. 
 
Repeating the procedure just completed for bearing B.  From (11-3) 

 
( )1 1.0(4950) 0(2500) 4950 lbeP = + =  

( )2 0.4(4950) 1.5(0) 1980 lbeP = + =  
                                       
Since ( ) ( )1 2e eP P> , ( )1 4950 lbe eP P= = . Calculating the basic dynamic radial load rating requirement from (11-4), 
using a = 10/3,  
 

( )
( )( ) ( )( )

3/10
8

6

1.3 1090 1.2 4950 25,600lb
1.0 10

d req
C

⎡ ⎤
×⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

 

 
From Table 11.7, tentatively select bearing No. 32308 which has a value of Cd = 27,700 lb, and Cs = 33,700 lb, both 
acceptable values.  The recommendation for bearing site B is 
 

Bearing No.  32309 
     Bore:   1.5748 inches 
     Outside diameter:  3.150  inches 
     Width:   0.7776  inches 
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11-14.   From a stress analysis of a rotating shaft, it has been determined that the shaft diameter at one particular 
bearing site must be at least 80 mm.  Also, from a force analysis and other design specifications, a duty cycle is well 
approximated by three segments, each segment having the characteristics defined in Table P11.14. 
 
 The total design life for the bearing is to be 40,000 hours and the desired reliability is 95 percent.  A single-
row deep groove ball bearing is preferred. 
 

a. Select an appropriate bearing for this application, using the spectrum loading procedure. 
b. Compare the result of (a) with bearing selection for this site using the steady load procedure, 

assuming that a constant radial load (and corresponding axial load) is applied to the bearing 
throughout all segments of its operation. 

 
 
 
Table P11.14 Duty Cycle Definition 
Variable Segment 1 Segment 2 Segment 3 
Fr, kN 7 3 5 
Fa, kN 3 0 0 
IF light impact heavy impact moderate impact 
ni per duty cycle 100 500 300 
Nop, rpm 500 1000 1000 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

(a)  Following the approach of Example 11.2, the following table may be constructed (for single-row deep-
groove ball bearing) 

 
Variable Segment 1 Segment 2 Segment 3 
Fr, kN 7 3 5 
Fa, kN 3 0 0 

1dX  1 1 1 

1dY  0 0 0 

2dX  0.55 0.55 0.55 

2dY  1.45 1.45 1.45 

1s
X  1 1 1 

1s
Y  0 0 0 

2xX  0.6 0.6 0.6 

2sY  0.5 0.5 0.5 

( )1e rP F=  7 3 5 

( )2
0.55 1.45e r aP F F= +  8.2 1.65 2.75 

Pe, kN 8.2 3 5 
( )1se rP F=  7 3 5 

( )2
0.6 0.5se r aP F F= +  5.7 1.8 3 

Pse, kN 7 3 5 
duty cyclein  100 500 300 

900i inα =  0.11 0.56 0.33 
IF 1.35 3.5 1.75 
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Also, from table 11.2, for R = 95%, KR = 0.62 and therefore the design life is, by problem specification Hd  = 40,000 
hr.  To find Ld, first find the duration of one cycle, as follows: 
 
 For segment 1, 100 revolutions at 500 rpm give time t1 for segment 1 as 
 

1
1000 rev 0.2 min

rev500
min

t = =
 

 
Similarly, 

2

3

500 rev 0.5 min
rev1000
min

300 rev 0.3 min
rev1000
min

t

t

= =

= =
 

 
So the time for one duty cycle is 
 

1 2 3 0.2 0.5 0.3 1 mincyclet t t t= + + = + + =  
 
Hence the design life in revolutions is 
 

( ) 9min cycle rev40,000 60 1 900 2.16 10 rev
hr min cycledL hr

⎛ ⎞⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 

 
From (11-5), for a ball bearing (a = 3) 
 

( )
( )( ) ( ) ( ) ( )

( )

1
39 3 3 33

6

3

2.16 1095 0.11 1.35 1.8 0.056 3.5 3 0.33 1.75 5
0.62 10

95 15.16 149.2 648.3 221.1 152.5 kN

d req

d req

C

C

⎡ ⎤
×⎢ ⎥⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤ = + + =⎣ ⎦

 

 
From Table 11.5, the smallest acceptable bearing is No. 6320.  This bearing has 
 
    dbore    = 100 mm 
    doutside = 215 mm 
    width  =   47mm 
 
Checking limiting speed for bearing No. 6320, 3000 rpm is acceptable.  The basic static load rating of 140 kN > 7 
kN is acceptable. 
 
Also, the bore diameter of 100 mm is acceptable because it will govern the strength-based minimum shaft diameter 
of 80 mm. 
 

(b) Using the simplified method, choosing segment 2 loading data from the table above, (11-4) gives 
 

( )
( )( ) ( )( )

1
39

6

2.16 1095 3.5 3 159.2 kN
0.62 10

d req
C

⎡ ⎤
×⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦
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From Table 11.5, the smallest acceptable bearing is No. 6320.  In this case the simplified method selects the same 
bearing with a lot less work.  This result will not always be achieved however, as demonstrated by Example 11.2. 
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11-15.   A preliminary stress analysis of the shaft for a rapid-return mechanism has established that the shaft 
diameter at a particular bearing site must be at least 0.70 inch.  From a force analysis and other design specifications, 
one duty cycle for this device last 10 seconds, and is well approximated by two segments, each segment having the 
characteristics defined in Table P11.5. 
 
 The total design life for the bearing is to be 3000 hours.  A single-row tapered roller bearing is preferred, 
and a standard L10 reliability is acceptable. 
 

a. Select an appropriate bearing for this application, using the spectrum loading procedure. 
b. Compare the result of (a) with a bearing selection for this site using the steady load procedure, assuming 

that a constant radial load equal to the largest spectrum load (and corresponding axial load) is applied to 
the bearing throughout the full duty cycle. 

 
Variable Segment 1 Segment 2 
Fr, kN 800 600 
Fa, kN 400 0 
IF light impact steady load 
Operating time per cycle, sec 2 8 
Nop, rpm 900 1200 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

(a)  Following the approach of Example 11.2, the following table may be constructed (for single row tapered 
roller bearing). 

 
Variable Segment 1 Segment 2 
Fr, lb 800 600 
Fa, lb 400 0 

1dX  1 1 

1dY  0 0 

2dX  0.4 0.4 

2dY  0.4cotα  0.4cotα  

1s
X  1 1 

1s
Y  0 0 

2xX  0.5 0.5 

2sY  0.2cotα  0.2cotα  

( )1e rP F=  800 600 

( ) ( )2 0.4 1.5e r aP F F ∗= +  920 240 

Pe, kN 920 600 
( )1se rP F=  800 600 

( )2
0.5 0.75se r aP F F= +  700 300 

Pse, lb 800 600 
seccycle , cycleit  2 8 

Nop, rpm 900 1200 
duty cyclein  30 160 

900i inα =  0.16 0.84 
IF 1.35 (light impact) 1.0 (steady) 
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To calculate ni, for segment 1, 
 

( ) 900 rev2 sec 30 rev
60 secin ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

 
For segment 2 
 

( ) 1200 rev8 sec 160 rev
60 secin ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

 
Also, from Table 11.2, for L10 (R = 90), KR = 1.0.  The design life is, by problem specification, Hd = 3000 hr, so 
 

( ) 8min sec 1 cycle 190 rev3000 hr 60 60 2.05 10 rev
hr min 10 sec cycledL

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞= = ×⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠

 

 

From (11-15, for a roller bearing (a = 10/3) 

( )
( )( ) ( ) ( )( ){ } ( ) ( )( ){ }

( )

3 3
10 10 108 10

3 3
6

3
9 9 10

2.05 1090 0.16 1.35 920 0.84 1.0 600
1.0 10

90 4.94 3.30 10 1.53 10 3971 lb

d req

d req

C

C

⎡ ⎤ ⎡ ⎤×⎢ ⎥⎡ ⎤ = +⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤⎡ ⎤ = × + × =⎣ ⎦ ⎣ ⎦

 

From Table 11.7, the smallest acceptable bearing is No. 30204.  Actually a smaller bearing would be acceptable but 
this is the smallest bearing in the table.  Note that for this bearing 

2
1.74dY = which is higher than the value assumed  

in the tabled value of (Pe)2.  Recalculating gives 

( ) ( ) ( )

( )
( ) ( ) ( ) ( )( ){ } ( ) ( )( ){ }

( )

2
3 3

108 10 10 10
3 3

6

3
9 9 10

0.4 800 1.74 400 1016 lb

2.05 1090 0.16 1.35 1016 0.84 1.0 600
1.0 10

90 4.94 4.59 10 1.53 10 4263lb

e e

d req

d req

P P

C

C

= = + =

⎡ ⎤× ⎡ ⎤⎢ ⎥= +⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤= × + × =⎡ ⎤⎣ ⎦ ⎣ ⎦

 

so bearing 30204 remains acceptable and the bore diameter of 0.7874 will go over the maximum shaft diameter of 
0.70 inch, so it is acceptable on that basis too. 
 
The tentative selection then will be bearing No. 30204.  However, it would be advisable to search for manufacture’s 
catalogs for smaller bearings before making a final choice. 
 

(b) Using the simplified method, choosing segment 1 loading data from the table above, then (11-4) gives 
 

( )
( )( ) ( )( )

3
108

6

2.05 1090 1.35 1016 6770 lb
1.0 10

d req
C

⎡ ⎤
×⎢ ⎥⎡ ⎤ = =⎣ ⎦ ⎢ ⎥

⎢ ⎥⎣ ⎦

 

 
From Table 11.7, the smallest acceptable bearing is No. 3034.  So the simplified method results in a smaller required 
bearing. 
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11-16.   A preliminary analysis of the metric equivalent of bearing A in Figure P11.13 has indicated that a 30209 
tapered roller bearing will provide a satisfactory 10L  bearing life of 3 years (operating at 350 rpm for 8 hours per 
day, 5 days per week) before bearing replacement is necessary. A lubrication consultant has suggested that if an 
ISO/ASTM viscosity-grade-46 petroleum oil is sprayed into the smaller end of the bearing (tapered roller bearings 
provide a geometry-based natural pumping action, including oil flow from their smaller ends toward their larger 
ends), a minimum elastohydrodynamic film thickness ( minh ) of 250 nanometers can be maintained. If the bearing 
races and the tapered rollers are all lapped into a surface roughness height of 100 nanometers, estimate the bearing 
life for the 30209 tapered roller bearing under these elastohydrodynamic conditions. 
 
 
------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From 11-16 
 

                     
( ) ( )

min
2 2 2 2

250 1.77
100 100a b

h

R R
Λ = = ≈

+ +
 

 
This results in an ABMA 10L  prediction of approximately 285%. Therefore 
 
                             2.85(3) 8.55 yearselastoL = =  
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11.17.   A rotating steel disk, 40 inches in diameter and 4 inches thick, is to be mounted at midspan on a 1020 hot-
rolled solid steel shaft, having Su = 65,000 psi, e = 36 percent elongation in 2 inches, and fatigue properties as shown 
in Figure 2.19.  A reliability of 90 percent is desired for the shaft and bearings, and a design life of 5 x 108 cycles 
has been specified.  The shaft length between symmetrical bearing centers [see (b) below for proposed bearings] is 
to be 5 inches.  The operating speed of the rotating system is 4200 revolutions per minute.  When the system 
operates at steady-state full load, it has been estimated that about three horsepower of input to the rotating shaft 
required. 
 

a. Estimate the required shaft diameter and the critical speed for the rotating system, assuming that the 
support bearings and the frame are rigid in the radial direction.  The bending fatigue stress concentration 
factor has been estimated as Kfb = 1.8, and the composite strength-influencing factor, k5x10

8, used in (2-28), 
has been estimated as 0.55.  A design safety factor of 1.9 has been chosen.  Is the estimated critical speed 
acceptable? 

b. Make a second estimate for the critical speed of the rotating system, this time including the bearing 
stiffness (elasticity).  Based on the procedure outlined in Example 11.1, a separate study has suggested 
that a single-row deep-groove ball bearing number 6209 (see Table 11.5), with oil lubrication, may be 
used for this application.  In addition, an experimental program has indicated that the force-deflection data 
shown in Figures 11.8 and 11.9 are approximately correct for the tentatively selected bearing.  Is your 
second estimate of critical speed acceptable?  Comment on your second estimate, and if not acceptable, 
suggest some design changes that might make it acceptable. 

c. Make a third estimate for critical speed of the rotating system if a medium preload is included by the way 
the bearings are mounted.  Comment on your third estimate. 

 
 
------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) Using (8-11) 
 

( )
1
3216 3d fb a m

s str
N u

n K M T
d

S Sπ
⎡ ⎤⎧ ⎫

= +⎢ ⎥⎨ ⎬
⎢ ⎥⎩ ⎭⎣ ⎦

 

 
From Figure 5.31, and the problem specification 
 

( ) ( )8 8
85 105 10 5 10

0.55 33,000 18,150 psiNS S k S
×× ×
′= = = =  

 
The disk weight is 
 

( ) ( )
240

0.283 4.0 1, 423 lb
4DW

π⎡ ⎤
= =⎢ ⎥

⎢ ⎥⎣ ⎦
 

 
From Table 4.1, Case 1, the maximum moment at midspan is 
 

( )( )
max

1423 5
1779 in-lb

4 4
DW L

M = = =  

 
The (radial) reaction at each bearing site is 
 

1423 712 lb
2 2

D
R L

W
R R= = = =  

The torque on the shaft is 
( )63,025 3

45 in-lb
4200

T = =  
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Then we have using the fatigue equation 
 

( ) ( ) ( )( )
1
31.9 2 1.8 177916 453 1.51 inches

18,150 65,000s strd
π

⎡ ⎤⎧ ⎫⎪ ⎪= + =⎢ ⎥⎨ ⎬
⎪ ⎪⎢ ⎥⎩ ⎭⎣ ⎦

 

 
From Table 4.1, Case 1, the midspan (maximum) deflection is 
 

( ) ( )( )

( ) ( )

33

4
6

1423 5
0.00048 inch

48 1.51
48 30 10

64

m no pre

WLy
EI π−

= = =
⎛ ⎞
⎜ ⎟×
⎜ ⎟
⎝ ⎠

 

 
The critical shaft frequency, assuming bearing and housing to be infinitely stiff is 
 

( ) 1 rev187.7 8567
0.00048 mincr no pren

−
= =  

 
and 
 

( ) 8567 2.04
4200

cr no pre

op

n

n
− = =  

 
This is within the guidelines of section 8.6, and therefore acceptable. 
 

(b) Using Figure 11.9 as the basis, and using the radial bearing reaction of 712 lb, the radial deflection for a 
single bearing with no preload may be read as 

 
( ) 0.00048 inchbrg no pre

y
−

=  

 
so the total midspan lateral displacement of the disk center for the unloaded shaft centerline becomes 
 

( )

( )

( )

0.00048 0.00048 0.00096 inch

1 rev187.7 6058
0.00096 min

and

6058 1.44
4200

m no pre

cr no pre

cr no pre

op

y

n

n

n

−

−

−

= + =

= =

= =

 

 
This is below the recommended guideline of section 8.6, and must be regarded as a risky design, requiring 
improvement or experimental verification.  To improve, use larger shaft or preload bearings. 
 
 

(c)  Again using Figure 11.9 as a basis, when a medium preload is induced 
 

( )
( )

0.00015 inch

0.00042 0.00015 0.00057 inch
brg med

m med

y

y

=

= + =
 

 
and from (8-xx) 
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( ) 1 rev187.7 7862
0.00057 mincr lightn = =  

 
giving 
 

( ) 7862 1.87
4200

cr light

op

n

n
= =  

 
 
This is slightly below the recommended guidelines of section 8.6, but would probably be acceptable.  Note that 
preloading has significantly improved the system. 
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Chapter 12 

 
 
12-1.   Figures 12.5, 12.6, and 12.7 depict a power screw assembly in which the rotating screw and 
nonrotating nut will raise the load W when the torque TR is applied in the direction shown (CCW rotation of 
screw if viewed from bottom end).  Based on a force analysis of the power screw system shown in the three 
figures cited, the torque required to raise the load is given by (12-7). 

a. List the changes that must be made in the free-body diagrams shown in Figures 12.6 and 12.7 if 
the load is to be lowered by reversing the sense of the applied torque. 

b. Derive the torque equation for lowering the load in this power screw assembly.  Compare your 
results with (12-8). 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) Required changes are: 
(1) Reverse direction of applied torque T. 
(2) Reverse direction of collar friction force, µc W1. 
(3) Reverse direction of thread friction force, µt Fn (hence, components µt Fn cos α and (µt Fn sin 

α). 
(b) Incorporating the changes listed in (a), (12-4) may be  rewritten as: 

 
sin cos cos 0

cos sin cos 0
z n t n n

z L c c p n n p n t

F W F F

M T Wr r F r F

µ α θ α

µ θ α µ α

= − − − =

= − + − + =
∑
∑

 

and 
 

sin cos cos

cos sin cos
sin cos cos

n
t n

n t
L p c c

t n

WF

T Wr Wr

µ α θ α

θ α µ α
µ

µ α θ α

=
+

⎡ ⎤− +
= +⎢ ⎥+⎣ ⎦

 

 
This agrees with (12-8). 
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12-2.   The power lift shown in Figure P12.2 utilizes a motor drive Acme power screw to raise the platform, 
which weighs a maximum of 3000 lb when loaded.  Note that the nut, which is fixed to the platform, does 
not rotate.  The thrust collar of the power screw presses against the support structure, as shown, and the 
motor drive torque is supplied to the drive shaft below the thrust collar, as indicated.  The thread is 1 ½ -
inch Acme with 4 threads per inch.  The thread coefficient of friction is 0.40.  The mean collar radius is 2.0 
inches, and the collar coefficient of friction is 0.30.  If the rated power output of the motor drive unit is 7.5 
hp, what maximum platform lift speed (ft/min) could be specified without exceeding the rated output power 
of the motor drive unit?  (Note any approximations used in your calculations.) 
 
---------------------------------------------------------------------------------------------------------------------------------
------- 
Solution 
 
From (4-39) 
 

( ) 5

max

63,025
63,025 7.5 4.73 10 rev

min

cos sin cos
(from 12 7)

cos cos sin
3000 lb
1.50 0.75 in.

2

4
1 0.25 in.
4

0.250.75 0.688 in.
4

R R

n t
R p c c

n t

o

p o

p

Tnhp

n
T T

T Wr Wr

W

r

pr r

p

r

θ α µ α
µ

θ α µ α

=

×
= =

⎡ ⎤+
= + −⎢ ⎥−⎣ ⎦
=

= =

= −

= =

= − =

 

 
Using (12-2) 
 

( )
1 1 0.25tan tan 3.31

2 2 0.688p

p
r

α
π π

− −= = = o  

 
Since α is small, θn = θ = 14.5˚ (From Figure 12.2 c).  Thus,  
 

( ) ( )( )

5

max

cos14.5sin 3.31 0.40cos3.313000 0.688 3000 2.0 0.3
cos14.5cos3.31 0.40sin 3.31

995.9 1,800 2796 in-lb
4.73 10 rev169

2796 min

RT

n

+⎡ ⎤= +⎢ ⎥−⎣ ⎦
= + =

×
= =

 

 
The lift speed “s” in ft/min is related to the rotational speed nmax as follows: 
 

( )

max
max

in rev 1f ft
rev min 12in 12 min

0.25 169 ft3.52
12 min

pnts p n

s

⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

= =
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12-3.   A power lift similar to the one shown in Figure P12.2 uses a single-start square-thread power screw 
to raise a load of 50 kN.  The screw has a major diameter of 36 mm and a pitch of 6 mm.  The mean radius 
of the thrust collar is 40 mm.  The static thread coefficient of friction is estimated as 0.15 and the static 
collar coefficient of friction as 0.12. 

a. Calculate the thread depth. 
b. Calculate the lead angle. 
c. Calculate the helix angle. 
d. Estimate the starting torque required to raise the load. 

 
---------------------------------------------------------------------------------------------------------------------------------
------- 
Solution 
 

(a) From Figure 12.2(a), the thread depth is 
 

6 3 mm
2 2
p
= =  

 
(b) Since this is a single-start thread, the lead angle α may be determined from (12-2) 

 

( ) ( )

1

1 1

tan
2

36 6 16.5
4 2 4

6tan tan 0.058 3.31
2 16.5

p

p o

p
r

pr r mm

α
π

α
π

−

− −

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

= − = − =

⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠

o

 

 
(c) Since the helix angle ψ is the complement of the lead angle α, 

 
Ψ = 90 – 3.31 = 86.69˚ 

 
(d) The starting torque required to raise the load may be obtained from (12-7) as 

 

( ) ( )( )

cos sin cos
cos cos sin

0, so cos 1
sin 3.31 0.15cos3.3150,000 0.0165 50,000 0.040 0.12
cos3.31 0.15sin 3.31

173 240 413 N-m

n t
R p c c

n t

n n

R

T Wr Wr

T

θ α µ α
µ

θ α µ α
θ θ θ

⎡ ⎤+
= +⎢ ⎥−⎣ ⎦
= = =

+⎡ ⎤= +⎢ ⎥−⎣ ⎦
= + =
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12-4.   In a design review of the power lift assembly shown in Figure P12.2, a consultant has suggested that 
the buckling of the screw might become a problem if the lift height (screw length) becomes “excessive.”  
He also has suggested  that for buckling considerations the lower end of the steel screw, where the collar 
contacts the support structure, may be regarded as fixed, and at the upper end where the screw enters the 
nut, the screw may be regarded as pinned but guided vertically.  If a safety factor of 2.2 is desired, what 
would be the maximum acceptable lift height Ls? 
 
---------------------------------------------------------------------------------------------------------------------------------
------- 
Solution 
 
From the specifications of problem 12-2, 
 

3000 lb
1.50 0.75 in.

2
1 0.25 in.
4

o

W

r

p

=

= =

= =

 

 
From Figure 12.2(c) 
 

( )

0.250.75 0.625 .
2 2

2 0.625 1.25 .

root o

r

pr r in

d in

= − = − =

= =
 

 
Using Euler’s equation (2-36), with Le = 0.7Ls (see Figure 2.7 (d)), 
 

( )
( )

( )

( )

( ) ( ) ( )

( )

( )( )
( ) ( )

2

2

'

44
4 6

'

2

2

2 6

2

0.7
Since 2.2

2.2
1.25

0.12 in and 30 10 psi
64 64

2.2 2.2 2.2 3000 6600 lb

6600
0.7

30 10 0.12
104.8 in. (maximum acceptable lift height)

0.7 6600

cr
s

d

cr req d
d

r

cr dreq d

s

s

EIP
L

n
P

P

d
I E

P P W

EI
L

L

π

ππ

π

π

=

=

=

≈ = = = ×

= = = =

=

×
= =
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12-5.   Replot the family of efficiently curves shown in Figure 12.8, except do the plot for square threads 
instead of Acme threads.  Use the same array of friction coefficients, and again assume the collar friction to 
be negligibly small. 
 
---------------------------------------------------------------------------------------------------------------------------------
------- 
Solution 
 
Using (12-19) for a square thread (θ = 0), 
 

0
1 tan
1 cotc

t

t

eµ
µ α
µ α=

−
=

+
 

 
Calculating 0c

eµ = as a function of α (0 ≤ α ≤ 90) for each value of µt shown in Figure 12.8, the following 
table may be constructed. 
 

tµ  , degα  0t
eµ =   tµ  , degα  0t

eµ =  

0.01 0 0  0.10 0 0 
 10 0.95   10 0.63 
 20 0.97   20 0.76 
 30 0.98   30 0.80 
 40 0.99   40 0.82 
 50 0.99   50 0.81 
 60 0.98   60 0.78 
 70 0.97   70 0.70 
 80 0.94   80 0.67 
 90 -∞    90 -∞  

0.02 0 0  0.15 0 0 
 10 0.89   10 0.50 
 20 0.94   20 0.65 
 30 0.96   30 0.71 
 40 0.98   40 0.74 
 50 0.96   50 0.77 
 60 0.95   60 0.72 
 70 0.94   70 0.66 
 80 0.89   80 0.51 
 90 -∞    90 -∞  

0.05 0 0  0.20 0 0 
 10 0.77   10 0.43 
 20 0.88   20 0.58 
 30 0.89   30 0.64 
 40 0.90   40 0.67 
 50 0.90   50 0.67 
 60 0.89   60 0.63 
 70 0.85   70 0.55 
 80 0.71   80 0.36 
 90 -∞    90 -∞  

 
Using the format of Figure 12.8, these values may be plotted for square-thread screws, as shown below, 
note that negative efficiencies are undefined. 
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12-6.   A 50-mm single-start power screw with a pitch of 10 mm is driven by a 0.75 kw drive unit at a 
speed of 20 rpm. The thrust is taken by a rolling element bearing, so collar friction may be neglected. The 
thread coefficient of friction is 0.20tµ = . Determine the maximum load that can be lifted without stalling 
the drive, the efficiency of the screw, and determine if the power screw will “overhaul” under maximum 
load if the power is disconnected. 
 
---------------------------------------------------------------------------------------------------------------------------------
------- 
 
Solution 
 
            50 / 2 25 mmor = = ,    10 mmp l= =  ,  0.20tµ = ,  0.75 kwkw = , 20 rpmn =  
 
            / 4 25 10 / 4 22.5 mmp or r p= − = − =      
      

              max cos sin cos
cos cos sin

R

n t
p

n t

TW
r θ α µ α

θ α µ α

=
⎡ ⎤+
⎢ ⎥−⎣ ⎦

 

 

where 1 1 o10tan tan 4.1
2 2 (22.5)p

p
r

α
π π

− −= = = . Since α is small, o14.5nθ θ≈ = . In addition 

 

                           0.75(9549) 358 N-m
20RT = =  

 

              max o o o

o o o

358 358 56.4 kN
0.26839cos14.5 sin 4.1 0.2cos 4.1 0.02250.0225 0.95137cos14.5 cos 4.1 0.2sin 4.1

W = = =
⎡ ⎤ ⎡ ⎤+
⎢ ⎥ ⎢ ⎥⎣ ⎦−⎢ ⎥⎣ ⎦

 

                                                                                                                                              max 56.4 kNW =  
 

                   
0

o o

o o
cos tan cos14.5 0.2 tan 4.1 0.95381 0.2538
cos cot 3.75829cos14.5 0.2cot 4.1c

t

t
eµ

θ µ α
θ µ α=

− −
= = = =

+ +
 

                                                                                                                                

0
0.25 (25% efficiency)

c
eµ =

≈  
 
 
The screw will overhaul if 
 

                                  
ocos 10cos14.5 0.0685

2 2 (22.5)t
p

l
r
θµ

π π
< = =  

 
                                          
Since 0.20tµ = , it will not overhaul 
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12-7.   A standard 1 1/2 –inch rotating power screw with triple square threads is to be used to lift a 4800-lb 
load at a lift speed of 10 ft/min.  Friction coefficients for both the thread and the collar have been 
experimentally determined to be 0.12.  The mean thrust collar friction diameter is 2.75 inches. 

a. What horsepower would you estimate to be required to drive this power screw assembly? 
b. What motor horsepower would you recommend for this installation? 

 
---------------------------------------------------------------------------------------------------------------------------------
------- 
Solution 
 

(a) ro = 1.50/2 = 0.75 in., rc = 2.75/2 = 1.38 in.  For a square thread, 
4p o
pr r= − .  From Table 12.1, 

for a standard 1- ½ inch square thread should have 3 threads per inch, so p = 1/3 = 0.33 in. and 
 

( )
( )

1 1

0.330.75 0.67 .
4 4

3 0.33
tan tan 13.2

2 2 0.67

p o

p

pr r in

np
r

α
π π

− −

= − = − =

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

o

 

 
For a square thread θ = 0, so (12-7) becomes 
 

( ) ( )( )

( )

cos sin cos
cos cos sin

sin13.2 0.12cos13.24800 0.67 4800 1.38 0.12
cos13.2 0.12sin13.2

1173 795 1968 in-lb
1968

horsepower
63,025 63,025

n t
R p c c

n t

T Wr Wr

nTnhp

θ α µ α
µ

θ α µ α
⎡ ⎤+

= +⎢ ⎥−⎣ ⎦
+⎡ ⎤= +⎢ ⎥−⎣ ⎦

= + =

= =

 

 
From (12-1) l = np = 3(0.33) = 1.0 in/rev.  To find the speed n in rpm to produce a lift of 10 ft/min, then 
 

( )

rev 12 in 10 ft1.0 120 rpm
in ft min

1968 120
3.75 horsepower

63,025

n

hp

⎛ ⎞⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

= =

 

 
(b) Installed motor horsepower should incorporate a safety factor on the power required, and should 

specify a “standard” available motor probably a 5-horsepower motor in this case.  A motor 
manufactures catalog should be consulted.  In fact, a gear motor would probably be required to 
supply 5-horsepower at 120 rpm. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 420

12-8.   Repeat problem 12-7 if everything remains the same except that the power screw has double square 
threads. 
 
---------------------------------------------------------------------------------------------------------------------------------
------- 
Solution 
 

(a) ro = 1.50/2 = 0.75 in., rc = 2.75/2 = 1.38 in.  For a square thread, 
4p o
pr r= − .  From Table 12.1, 

for a standard 1- ½ inch square thread should have 3 threads per inch, so p = 1/3 = 0.33 in. and 
 

( )
( )

1 1

0.330.75 0.67 .
4 4

2 0.33
tan tan 8.9

2 2 0.67

p o

p

pr r in

np
r

α
π π

− −

= − = − =

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

o

 

 
For a square thread θ = 0, so (12-7) becomes 
 

( ) ( )( )

( )

cos sin cos
cos cos sin

sin8.9 0.12cos8.94800 0.67 4800 1.38 0.12
cos8.9 0.12sin8.9

907 795 1702 in-lb
1702

horsepower
63,025 63,025

n t
R p c c

n t

T Wr Wr

nTnhp

θ α µ α
µ

θ α µ α
⎡ ⎤+

= +⎢ ⎥−⎣ ⎦
+⎡ ⎤= +⎢ ⎥−⎣ ⎦

= + =

= =

 

 
From (12-1) l = np = 2(0.33) = 0.66 in/rev.  To find the speed n in rpm to produce a lift of 10 ft/min, then 
 

( )

1 rev 12 in 10 ft 182 rpm
0.66 in ft min
1702 182

4.91 horsepower
63,025

n

hp

⎛ ⎞⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

= =

 

 
(c) Installed motor horsepower should incorporate a safety factor on the power required, and should 

specify a “standard” available motor probably a 7.5-horsepower motor in this case.  A motor 
manufactures catalog should be consulted.  In fact, a gear motor would probably be required to 
supply 5-horsepower at 182 rpm. 
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12-9.  A 40-mm rotating power screw with triple square threads has a pitch of 8 mmp = . The screw is to 
be used to lift a 22 kN load at a speed of 4 meters/min. Friction coefficients for both the collar and threads 
have been determined to be  0.15t cµ µ= = . The mean thrust collar friction diameter is 70 mm. Determine 
the power required to drive the assembly. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
  Solution 
 
 
              40 / 2 20 mmor = = ,    8 mmp =  ,  0.15t cµ µ= = ,  70 / 2 35 mmcr = =   
 
              / 4 20 8 / 4 18 mmp or r p= − = − =  
 
For square threads, 0θ = , so  
 

                       
sin cos
cos sin

t
R p c c

t
T Wr Wr

α µ α
µ

α µ α
⎡ ⎤+

= +⎢ ⎥−⎣ ⎦
 

 

   where    1 1 o3(8)tan tan 12
2 2 (18)p

np
r

α
π π

− −= = ≈  

 
                           

( ) ( )( )
o o

o o
sin12 0.15cos1222 0.018 22 0.035 0.15 0.1484 0.1155 0.2639 kN-m
cos12 0.15sin12RT
⎡ ⎤+

= + = + =⎢ ⎥
−⎢ ⎥⎣ ⎦

 

 
With 3(8) 24 mm/revl np= = = , the rotational speed to lift the load at a rate of 4 meters/min  is 
 

                          1 rev m4 167 rpm
0.024 m min

n ⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 

                       ( ) 263.9(167) 4.62 kw
9549 9549

R
req

T nkw = = =  

 
 
You would probably specify a 5 kw motor. 
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12-10.    Find the torque required to drive a 16-mm single-start square thread power screw with a 2 mm 
pitch. The load to be lifter is 3.6 kN. The collar has a mean friction diameter of 25 mm, and the coefficients 
of collar and thread friction are 0.12cµ = and 0.15tµ = . 
 
---------------------------------------------------------------------------------------------------------------------------------
------- 
Solution 
 
 

16 / 2 8 mmor = = ,    2 mmp =  ,  0.12cµ = , 0.15tµ = ,  25 / 2 12.5 mmcr = =   
 / 4 16 2 / 4 15.5 mmp or r p= − = − =  
 
For square threads, 0θ = , so  
 

                       
sin cos
cos sin

t
R p c c

t
T Wr Wr

α µ α
µ

α µ α
⎡ ⎤+

= +⎢ ⎥−⎣ ⎦
 

 

   where    1 1 o2tan tan 1.2
2 2 (15.5)p

np
r

α
π π

− −= = ≈  

 
                

( ) ( )( )
o o

o o
sin1.2 0.15cos1.23.6 0.0155 3.6 0.0125 0.12 0.00957 .0054 .01496 kN-m
cos1.2 0.15sin1.2RT
⎡ ⎤+

= + = + =⎢ ⎥
−⎢ ⎥⎣ ⎦

 

 
                                                                                    14.96 N-m 15 N-mRT = ≈  
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12-11.   A mild-steel C-clamp has a standard single-start ½-inch Acme thread and mean collar radius of 
5/16 inch.  Estimate the force required at the end of a 6-inch handle to develop a 300-lb clamping force. 
(Hint: see Appendix Table A.1 for friction coefficients.) 
 
---------------------------------------------------------------------------------------------------------------------------------
------- 
Solution 
 
From Table A-1, for mild steel on mild steel, general application, dry sliding, the typical value is given as 
µc = µt = 0.35,  ro = 0.50/2 = 0.25 in.  From Figure 12.2(c), for an Acme thread, rp = ro –p/4.  From Table 
12.1, a standard ½-inch Acme thread has 10 threads per inch.  Thus, p = 1/10 = 0.10 in. and rp = 0.25 – 
0.10/4  = 0.225 in.  Utilizing (12-2), with n = 1 for a single thread 
 

( )

( )

1 1 0.10tan tan 4.05
2 2 0.225

For small and 14.5

cos sin cos
cos cos sin

cos14.5sin 4.5 0.35cos 4.05300 0.225 300 0.312
cos14.5cos 4.05 0.35sin 4.05

p

n

n t
R p c c

n t

np
r

T Wr Wr

α
π π

α θ θ θ

θ α µ α
µ

θ α µ α

− −
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
≈ =

⎡ ⎤+
= +⎢ ⎥−⎣ ⎦

+⎡ ⎤= +⎢ ⎥−⎣ ⎦

o

o

( )( )

( )

5 0.35

67.5 0.444 32.8 30 32.8 62.8 in-lb= + = + =

 

  
At the end of a 6-inch handle, the force F required would be approximately 
 

62.8 10.5 lb
6

F = ≈  
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12-12.  Design specifications for a power screw lifting device require a single-start square thread having a 
major diameter of 20 mm and a pitch of 4 mm. The load to be lifted is 18 kN, and it is to be lifter at a rate 
of 12 mm/s. The coefficients thread and collar friction are estimated to be 0.15t cµ µ= = , and the mean 
collar diameter is 25 mm. Calculate the required rotational speed of the screw and the power required to 
drive it. 
 
---------------------------------------------------------------------------------------------------------------------------------
--- 
  Solution 
 
 
              20 / 2 10 mmor = = ,    4 mmp =  ,  0.15t cµ µ= = ,  25 / 2 12.5 mmcr = =  , 

/ 4 9 mmp or r p= − =  
 
For square threads, 0θ = , so  
 

                       
sin cos
cos sin

t
R p c c

t
T Wr Wr

α µ α
µ

α µ α
⎡ ⎤+

= +⎢ ⎥−⎣ ⎦
 

 

   where    1 1 o4tan tan 4.1
2 2 (9)p

np
r

α
π π

− −= = ≈  

 
                 

( ) ( )( )
o o

o o
sin 4.1 0.15cos 4.118 0.009 18 0.0125 0.15 0.09362 0.03375 0.1274 kN-m
cos 4.1 0.15sin 4.1RT
⎡ ⎤+

= + = + =⎢ ⎥
−⎢ ⎥⎣ ⎦

 

 
With 4 mm/revl p= = , the rotational speed to lift the load at a rate of 12 mm/s is 
 

                          1 rev mm sec12 60 180 rpm
4 mm sec min

n ⎛ ⎞⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

                                         180 rpmn =  

 

                       ( ) 127.4(180) 2.4 kw
9549 9549

R
req

T nkw = = =                                        ( ) 2.4 kwreqkw =  
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12-13.    A 20-mm power screw for a hand-cranked arbor press is to have a single-start square thread with 
a pitch of 4mm.  The screw is to be subjected to an axial load of 5 kN.  The coefficient of friction for both 
threads and collar is estimated to be about 0.09.  The mean friction diameter for the collar is to be 30 mm. 

a. Find the nominal thread width, thread height, mean thread diameter, and the lead. 
b. Estimate the torque required to “raise” the load. 
c. Estimate the torque required to “lower” the load. 
d. Estimate the efficiency of this power screw system. 

 
---------------------------------------------------------------------------------------------------------------------------------
------- 
Solution 
 

(a) ro  = 20/2 = 10 in. and rc = 30/2 = 15 in., and / 4 10 4 4 9 mmp or r p= − = − = .  Utilizing (12-3), 
with n = 1 for a single thread, gives 

 

( )
1 1 4tan tan 4.05

2 2 9p

np
r

α
π π

− −
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

o  

 

Referring to Figure 12.2(a), Wt = p/2 = 4/2 = 2 mm and ht = p/2 = 4/2 = 2 mm.  We have that l = 
np = (1)(4) = 4 mm. 

 
(b) From (12-7), since θ = 0 for a square thread, 

 

( ) ( ) ( )

( )

sin cos
cos sin

sin 4.5 0.09cos 4.55000 0.009 5000 0.015 0.09
cos 4.5 0.09sin 4.5

45 0.17 6.75 14.4 N-m

t
R p c c

t

R

T Wr Wr

T

α µ α
µ

α µ α
⎡ ⎤+

= +⎢ ⎥−⎣ ⎦
+⎡ ⎤= +⎢ ⎥−⎣ ⎦

= + =

 

 
(c) From (12-8), since since θ = 0 for a square thread, 

 

( ) ( )( )

( )

sin cos
cos sin

sin 4.5 0.09cos 4.55000 0.009 5000 0.015 0.09
cos 4.5 0.09sin 4.5

45 0.011 6.75 7.25 N-m

t
L p c c

t

L

T Wr Wr

T

α µ α
µ

α µ α
⎡ ⎤− +

= +⎢ ⎥+⎣ ⎦
− +⎡ ⎤= +⎢ ⎥+⎣ ⎦

= + =

 

 
(d) From (12-8), noting θ = θn = 0 for a square thread 

 
1

cos0 0.09cot 4.5 150.09 cot 4.5
cos 0 0.09 tan 4.5 9

1 0.25 (25 percent)
2.16 1.91

e =
+⎡ ⎤ ⎛ ⎞+ ⎜ ⎟⎢ ⎥−⎣ ⎦ ⎝ ⎠

= =
+
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12-14.  Based on design specifications and loads, a standard single-start 2 inch Acme power screw 
with 4 threads per inch has tentatively been chosen.  Collar friction is negligible.  The screw is 
in tension and the torque require to raise a load of 12,000 lb at the specified lift speed has been 
calculated to be 2200 in-lb.  Concentrating your attention on critical point B shown in Figure 
12.9, calculate the following: 

a. Nominal torsional shear stress in the screw. 
b. Nominal direct stress in the screw. 
c. Maximum transverse shearing stress due to thread bending.  Assume that three threads carry the 

full load. 
d. Principal stresses at critical point B. 

 
---------------------------------------------------------------------------------------------------------------------------------
------- 
Solution 
 

We have ro = 2.00/2 = 1.00 in. and p = ¼ = 0.25 in.  Referring to critical point B shown in Figure 
12.9 
 

(a) From (12-21), with µc = 0 
 

( )

( )
( )

( )

3 3

3

2 0 2

0.251.00 0.875 in.
2 2

2 2200
2,100 psi 2.1 kpsi

0.875

R R
s

r r

r o

s

T T
r r
pr r

τ
π π

τ
π

−
= =

= − = − =

= =

 

 
(b) From (12-22) 

 

( )2 2

12,000 4,990 psi (4.99 kpsi)
0.875

dir
r

W
r

σ
π π

= = =  

 
(c) From (12-23) 

 
( )

( )( )( )max

3 12,0003 8,730 psi (8.73 kpsi)
2 2 0.875 0.25 3r

r e

W
r pn

τ
π π− = = =  

 
(d) Using the stress cubic equation (5-1) 

 
( ) ( )

( )
( ) ( )

3 2 2 2

3 2

2

2

1

1

2

3

4.99 2.10 8.73 0

4.99 80.62 0

4.99 80.62 0

4.99 4.99 4 80.62
2

2.50 9.32 11.82 kpsi
0
2.5 9.32 6.82 kpsi

σ σ σ

σ σ σ

σ σ σ

σ

σ
σ
σ

− + − − =

− − =

− − =

+ +
=

= + =
=
= − = −

 

 
(e) From Table 3.3, for 1020 C.D. steel, Syp = 70 ksi.  For the specified safety factor nd = 2.3, 
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70 30.4
2.3

yp
d

d

S
ksi

n
σ = = =  

 
The state of stress at critical point B will be acceptable if 

( ) ( ) ( )

( ) { }( ) ( )

1 22 2 2
1 2 2 3 3 1

1 222 2

1
2

1 11.82 0 0 6.82 6.82 11.82
2

16.34 kpsi 30.3 kpsi

e d

e

e d

σ σ

σ σ σ σ σ σ σ

σ σ

≤

⎡ ⎤= − + − + −⎣ ⎦

⎡ ⎤= − + − − + − −⎣ ⎦

= ≤ =

 

 
Based on yielding, therefore, the state of stress is acceptable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 428

12-15.  Based on design specifications and loads, a single-start 48-mm diameter Acme power screw with an 
8 mm pitch has been tentatively selected. Collar friction is negligible. The screw is in tension and the 
torque required to raise a load of 54 kN at the specified lift speed has bee calculated to be 250 N-m.  
Concentrate on point C shown in Figure 13.9and calculate: 
 

a. The torsional shear stress in the screw 
b. The direct stress in the screw 
c. The bending stress in the thread assuming 3 threads carry the full load 
d. The principal stresses at critical point C assuming stress concentration factors of 

2.5bK ≈ , 2.8dK ≈ , and 2.2sK ≈   . 
 
---------------------------------------------------------------------------------------------------------------------------------
-- 
Solution 
 
              48 / 2 24 mmor = = ,  8 mmp =  ,  0cµ = ,  / 4 22 mmp or r p= − = , / 2 20 mmr or r p= − =  

              54 kNW = , 250 N-mRT =  
 
 

    a.     3 3
4 4(250) 9.95 MPa

(0.020)
r

s
r

T
r

τ
π π

= = =  

 

    b.     2 2
54 000 39.8 MPa
(0.020)dir

r

W
r

σ
π π

= = =  

 

    c.     
( ) ( )( )

( )( )( )2 2

12 12 54 000 0.022 0.020
107.4 MPa

0.020 3 0.008

p r
b

r e

W r r

r n p
σ

π π

− −
= = =  

 
    d.     2.2(9.95) 21.89 MPas sKτ τ= = =  
            2.8(39.8) 2.5(107.4) 380 MPad d b bK Kσ σ σ= + = + ≈  
          
                From the stress cubic equation 
 
                               3 2 2380 (21.89) 0σ σ σ− + =  

                               ( )2 380 479 0σ σ σ− + =  

                                 1 379 MPaσ ≈ , 2 1.5 MPaσ ≈ , 3 0σ =  
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12-16.   A special square-thread single-start power screw is to be use to raise a 10-ton load.  The screw is 
to have a mean thread diameter of 1.0 inch, and four threads per inch.  The mean collar radius is to be 0.75 
inch.  The screw, the nut, and the collar are all to be made of mild steel, and all sliding surfaces are 
lubricated.  (See Appendix Table A.1 for typical coefficients of friction.)  It is estimated that three threads 
carry the full load.  The screw is in tension. 

a. Calculate the outside diameter of this power screw. 
b. Estimate the torque required to raise the load. 
c. Estimate the torque required to lower the load. 
d. If a rolling element bearing were installed at the thrust collar (gives negligible collar friction), 
what would be the minimum coefficient of thread friction needed to prevent overhauling of the fully 
loaded screw? 
e. Calculate, for the conditions of (d), the nominal values of torsional shearing stress in the screw, 
direct axial stress in the screw, the thread bearing pressure, maximum transverse shearing stress in the 
thread, and thread bending stress. 

 
---------------------------------------------------------------------------------------------------------------------------------
------- 
Solution 
 
We note that rp = 1.0/2 = 0.50 in. and from Table A-1, for mild steel on mild steel, lubricated, that µstatic = 
0.11 and µrunning  = 0.08. 
 

(a) From Figure 12.2(a) 
 

0.252 2 2 0.50 1.125 in.
4 4o o p
pd r r⎡ ⎤ ⎡ ⎤= = + = + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
(b) Utilizing (12-3), with n=1 for a single thread, 

 

( )
1 1 0.25tan tan 4.55

2 2 0.50p

np
r

α
π π

− −
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

o  

 
Since θ = 0 for a square thread, 

 

( ) ( )( )

( )

sin cos
cos sin

sin 4.55 0.08cos 4.5520,000 0.50 20,000 0.75 0.08
cos 4.55 0.08sin 4.55

10,000 0.16 1200 2800 in-lb

t
R p c c

t

R

T Wr Wr

T

α µ α
µ

α µ α
⎡ ⎤+

= +⎢ ⎥−⎣ ⎦
+⎡ ⎤= +⎢ ⎥−⎣ ⎦

= + =

 

 
(c) From (12-8), and since θ = 0 for a square thread, 

 

( ) ( )( )

( )

sin cos
cos sin

sin 4.55 0.08cos 4.5520,000 0.50 20,000 0.75 0.08
cos 4.55 0.08sin 4.55

10,000 0.000672 1200 1207 in-lb

t
L p c c

t

L

T Wr Wr

T

α µ α
µ

α µ α
⎡ ⎤− +

= +⎢ ⎥+⎣ ⎦
− +⎡ ⎤= +⎢ ⎥+⎣ ⎦

= + =

 

 
(d) From (12-15), the minimum value of µt to prevent overhauling (with µc = 0) is 

 

( )
cos 0.25 0.08
2 2 2 0.5t

p p

l p
r r
θµ

π π π
= = = =  
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(e) From (12-21), with µc = 0, torsional shearing stress in the screw is 

( )

( )
( )

3

0

3

2

1600 in-lb ( with 0)

0.250.50 0.4375 in.
4 4

2 1600
12,164 psi

0.4375

c

R
s

r

R R c

r p

s

T
r

T T

pr r

µ

τ
π

µ

τ
π

=

=

= =

= − = − =

= =

 

 
From (12-22), the direct axial stress in the screw is 
 

( )2 2

20,000 33, 260 psi
0.4375

dir
r

W
r

σ
π π

= = =  

 
From (12-20), the thread bearing pressure is 
 

( ) ( )( )2 2 2 2

20,000 17, 400 psi
0.56 0.4375 3B B

o i e

Wp
r r n

σ
π π

= = = =
− −

 

 
From (12-23), the maximum transverse shearing stress due to thread bending is 
 

( )
( )( )( )max

3 20,0003 29,100 psi
2 2 0.4375 0.25 3r

r e

W
r pn

τ
π π− = = =  

 
From (12-24), the thread bending stress is 
 

( ) ( )( )
( )( )( )2 2

12 12 20,000 0.50 0.4375
58, 200 psi

0.4375 3 0.25
p r

b
r e

W r r

r n p
σ

π π

− −
= = =  
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12-17.    A power screw lift assembly is to be designed to lift and lower a heavy cast-iron lid for a 10-
foot-diameter pressure cooker used to process canned tomatoes in a commercial caning factory.  The 
proposed lift assembly is sketched in Figure P12.17.  The weight of the cast iron lid is estimated to be 4000 
lb, to be equally distributed between two support lugs as shown in Figure P12.17.  It may be noted that the 
screw is in tension, and it has been decided that a standard Acme thread form should be used.  Preliminary 
calculations indicate that the nominal tensile stress in the screw should not exceed a design stress of 8000 
psi, based on yielding.  Stress concentration and safety factor have both been included in the specification 
of the 8000 psi design stress.  Fatigue may be neglected as a potential failure mode because of the 
infrequent use of the life assembly.  The rotating steel screw is supported on a rolling element bearing 
(negligible friction), as shown, and the nonrotating nut is to be made of porous bronze (see Table 10.1).  
The coefficient of friction between the screw and the nut has been estimated to be 0.08. 

a. Estimate the tentative minimum root diameter for the screw, based on yielding due to direct tensile 
load alone as the governing failure mode. 

b. From the results of (a), what Acme thread specification would you suggest as a first-iteration 
estimate for this application? 

c. What would be the maximum driving torque, Td, for Acme thread specified in (b)? 
d. What torsional shearing stress would be induced in the root cross-section of the suggested power 

screw by driving torque TR. 
e. Identify the critical points that should be investigated in the Acme thread power screw. 
f. Investigate the contact zone between screw threads and nut threads, and resize the screw if 

necessary.  Assume that the full load is carried by three threads.  If resizing is necessary, 
recalculate the driving torque for the revised screw size. 

g. What horsepower input would be required to drive the screw, as sized in (f), if it is desired to raise 
the lid 18 inches in no more than 15 seconds? 

 
---------------------------------------------------------------------------------------------------------------------------------
------- 
Solution 
 

(a) The direct stress in the body of the screw is 
 

( ) ( )
( )

2

'

4

4 40004 0.80 in.
8000

dir d
r

r req d
d

W W
A d

Wd

σ σ
π

πσ π

= = =

= = =
 

 
(b) From Figure 12.2(c), for an Acme thread do/2 = ro = rr + p/2.  Note that from Table 12.1 that the 

standard Acme screws in this size range (see (b)) have around 5 threads per inch, 
1 5 0.20 in.p ≈ =  Thus, 

 
0.80 0.202 1.00 in.

2 2od ⎛ ⎞≈ + =⎜ ⎟
⎝ ⎠

 

 
For a first iteration, select a standard 1-inch Acme thread with 5 threads per inch. 
 

(c) From Figure 12.2(c), for a standard 1-inch Acme thread rp = ro – p/4 = 0.5 – 0.20/4  = 0.45 in.  
Using (12-2), assuming a single-start thread, 

 

( )
1 1 0.20tan tan 4.05

2 2 0.45p

p
r

α
π π

− −
⎛ ⎞ ⎛ ⎞

= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

o  

 
Since α is small, 14.5nθ θ≈ = o , hence, 
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( )

( )

cos sin cos
cos cos sin

cos14.5sin 4.05 0.08cos 4.054000 0.45
cos14.5cos 4.05 0.08sin 4.05

1800 0.151 272 in-lb

n t
R p

n t

T Wr
θ α µ α
θ α µ α

⎡ ⎤+
= ⎢ ⎥−⎣ ⎦

+⎡ ⎤= ⎢ ⎥−⎣ ⎦
= =

 

 
(d) From (12-21), for µc = 0 

 
( )

( )

3 3 3

3

2 2722 173

0.200.5 0.4 .
2 2

173 2700 psi
0.4

R
s

r r r

r o

s

T
r r r

pr r in

τ
π π

τ

= = =

= − = − =

= =

 

 
(e) The critical points to be investigated are those shown as “A”, “B”, and “C” in Figure 12.9. 

 
(f) The contact zone is represented by critical point “A” of Figure 12.9.  The governing wear equation 

is given by (12-20) as 
 

( ) ( )( )2 2 2 2

4,000 4,715 psi
0.50 0.40 3B B

o i e

Wp
r r n

σ
π π

= = = =
− −

 

 
From Table 10.1, porous bronze has an allowable maximum pressure of pallow = 2000 psi.  So the 
screw must be resized to bring pB down to 2000 psi or less.  Sticking with the standard Acme 
screws (Table 12.1) we see that the next larger screw is 1 ½ -inch with 4 threads.  For this larger 
screw 

 

( )( )2 2

1.50 0.75 in.
2

1 0.25 in.
4

0.250.75 0.625 in.
2

thus
4,000 2,563 psi

0.75 0.65 3

o

p

B B

r

p

r

pσ
π

= =

= =

= − =

= = =
−

 

 
 

This is still too high compared to the 2000 psi allowable, so the next larger standard size is taken .  
A 2-inch Acme thread with 4 threads per inch.  Thus, we have 
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( )( )2 2

2.0 1.0 in.
2

1 0.25 in.
4

0.251.0 0.875 in.
2

thus
4,000 1,810 psi

1.0 0.875 3

o

p

B B

r

p

r

pσ
π

= =

= =

= − =

= = =
−

 

 
Thus, the screw to be selected is a 2-inch Acme screw with 4 threads per inch.  Using (12-7) to 
calculate the torque requires first the following for the 2-inch screw: 
 
 

( )

( )

1 1

0.251.0 0.9375 .
4 4

0.25tan tan 2.43
2 2 0.9375

cos sin cos
cos cos sin

cos14.5sin 2.43 0.08cos 2.434000 0.9375
cos14.5cos 2.43 0.08sin 2.43

p o

p

n t
R p c c

n t

pr r in

p
r

T Wr Wr

α
π π

θ α µ α
µ

θ α µ α

− −

= − = − =

⎛ ⎞ ⎛ ⎞
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎡ ⎤+
= +⎢ ⎥−⎣ ⎦

+⎡ ⎤= ⎢ ⎥−⎣ ⎦
=

o

( )3750 0.124 465 in-lb=

 

 
(g) From (12-1) 

 

( )( )

( ) ( )
'

inch1.0 0.25
rev

1 rev 18 in sec60 288 rpm
0.25 in 15 sec min

465 288
2.12 horsepower

63,025 63,025req d

l np

n

Tnhp

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞= =⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

= = =
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Chapter 13 

 
 
13-1.   You have been assigned the task of examining a number of large flood gates installed in 1931 for 
irrigation control at a remote site on the Indus River in Pakistan.  Several large steel bolts appear to have 
developed cracks, and you have decided that they should be replaced to avert a potentially serious failure of 
one or more of the flood gates.  Your Pakistani assistant has examined flood gate specifications, and has 
found that the original bolts may be well characterized as 32-mm medium carbon quenched and tempered 
steel bolts, of property class 8.8.  you have brought with you only a limited number of replacement bolts in 
this size range, some of which are ASTM Class A325, type 3.  Which, if either, of these replacement bolts 
would you recommend as a substitute for  the cracked originals?  Justify your recommendation. 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From Table 13.5, the minimum bolt properties for class 8.8 are: 
 

830 MPa (120 ksi)
660 MPa (95.7 ksi)

600 MPa (87 ksi)

u

yp

proof

S
S

S

=

=

=

 

 
From Table 13.3, for SAE Grade 7 bolts in the size range ¼ - 1 ½ inch diameter, they have the following 
minimum properties: 
 

133 ksi
115 ksi

105 ksi

u

yp

proof

S
S

S

=

=

=

 

 
From table 13.4, ASTM Class A325, type 3 bolts in the size range 1 1/8 – 1 ½ inch diameter , have the 
following minimum properties: 
 

105 ksi
81 ksi

74 ksi

u

yp

proof

S
S

S

=

=

=

 

 
Comparing properties, The SAE Grade 7 bolts exceed the original bolt strength specifications; ASTM Class 
A325 type 3 bolts fall short.  Therefore, recommend SAE Grade 7 bolts. 
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13-2.   A high-speed “closing machine” is used in a tomato canning factory to install lids and seal the cans.  
It is in the middle of the “pack” season and a special bracket has separated from the main frame of the 
closing machine because the 3/8-24 UNF-2A hex-cap screws used to hold the bracket in place have failed.  
The head markings on the failed cap screws consist of the letters BC in the center of the head.  No cap 
screws with this head marking can be found in the storeroom.  The 3/8-24 UNF-2A cap screws that can be 
found in the “high-strength” bin have five equally spaced radial lines on the heads.  Because is so important 
to get up-and-running immediately to avoid spoilage, you are being asked, as an engineering consultant, 
whether the available cap screws with head markings of five radial lines can be safely substituted for the 
broken originals.  How do you respond?  Justify your recommendation.  
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From Figure 13.6, the “BC” head marking identifies ASTM class A354 grade BC bolts, and five equally 
spaced radial lines identifies SAE grade 7 bolts. 
 
From Tables 13.3 and 13.4, the minimum strength properties for the two head markings are: 
 

 

 

 

 
125 ksiuS =  133 ksiuS =  
109 ksiypS =  115 ksiypS =  
105 ksiproofS =  105 ksiproofS =  

 
 
Thus, the substitution can be made safely. 
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13-3.   A cylindrical flange joint requires a total clamping force between two mating flanges of 45 kN. It is  
desired to use six equally spaced cap screws around the flange. The cap screws pass through clearance 
holes in the top flange and thread into tapped holes in the bottom flange. 
 

a. Select a set of suitable cap screws for this application. 
b. Recommend a suitable tightening torque for the cap screws. 

 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
(a) The force per bolt is 
        

                                45 000 7500 N
6bF = =  

     
     As a starting point, select a class 4.8 bolt with a proof strength of 310 MPa. Based on proof strength 
 

                                    
3

2
6

7.5 10 24.19 mm
310 10

b
t

proof

F
A

S
×

= = =
×

 

 
     From Table 13.2 the appropriate screw selection would be a size 8.0 
 
(b) Using 13-30 
 
 
                        0.2 0.2(7500)(0.008) 12 N-mi b bT F d= = =  
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13-4.   It is desired to use a set of four bolts to attach the bracket shown in Figure P13.4 to a stiff steel 
column.  For purposes of economy, all bolts are to be the same size.  It is desired to use ASTM Class 
A307 low-carbon steel material and standard UNC threads.  A design safety factor of 2.5 has been 
selected, based on yielding as the governing failure mode. 

 
a. What bolt-hole pattern would you suggest and what bolt specification would you recommend? 
b. What tightening torque would you recommend if it is desired to produce a preload force in each 

bolt equal to 85 percent of the minimum proof strength? 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

(a) Based on judgment, it has been decided (somewhat arbitrarily) to place bolt centerlines at 1-inch 
in from each edge of the vertical 7” x 3” plate sketched in Figure P13.4.  That is, 

 

 
 

Using (13-31) 

( ) ( )( )( )

( ) ( )( )( )
( ) ( )

( )

4

1

4max
2

1

2 2max

max

6000 1500
4

Using (13-37),assuming all bolts are the same size

6000 5 6
2, 432

2 1 2 6

2, 432

b
b b

i

k
b b

i i

b b
b b

b
b

b b

P
A AA

P a y
F A

A y

F A lb
A A

F
A A

τ

σ

= = =

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤

= =⎢ ⎥
+⎢ ⎥⎣ ⎦

= =

∑

∑
 

 
Using (x-xx), with yielding as the failure mode and nd = 2.5 (per problem specification) 
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( ) ( )

2 2

2 2

2 2

2

3

36,000 2432 15003
2.5

114400 2432 3 1500

0.247 in

b

yp
e b b

d

b

b

b

S
n

A A

A

A

σ σ τ= + =

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= +

=

 

 
The minimum bolt diameter is 

 
( )

min

4 0.2474
0.561 in.bA

d
π π

= = =  

 
From Table 13.1, using the UNC series, the above value corresponds to a nominal ¾ inch coarse 
thread.  The recommended bolt specification, therefore, would be 

 
3 10 UNC 2 ASTM Class A307
4

A− −  

 
(b) From Table 13.4, the proof strength of the bolt specified above is Sproof = 33,000 psi, so the design 

strength, specified to be 85 percent of proof strength, is 
 

( )0.85 33,000 28,000 psidS = =  
 

Using Ar = 0.3020 in2 from Table 13.1, the design load for the bolt is 
 

( )( )28,000 0.3020 8,456 lbb d rF S A= = =  
 
Using (13-30), the suggest initial tightening torque would be 
 

( )( )0.2 0.2 8456 0.7500 1,268 in-lbi b bT F d= = =  
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13-5.   Estimate the nominal size of the smallest SAE Grade 1 standard UNC bolt that will not yield under a 
tightening torque of 1000 in-lb.  Neglect stress concentration. 

 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From Table 13.3, for SAE Grade 1 material Syp = 36,000 psi.  From (13-30) 
 

2 3

0.2
1000 5000

0.2 0.2
5000 6366 (axial stress in bolt)

4

i b b

i
b

b b b

b b
b x

b b b

T F d
T

F
d d d

F d
A d d

σ σ
π

=

= = =

= = = =

 

 
The torsional shear stress in the bolt due to tightening is from (4-33) and (4-35) 
 

( ) ( )
3 3 34

2 16 100016 5093

32

i b i
b xy

b b bb

T d T
d d dd

τ τ
π ππ

= = = = =
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⎜ ⎟
⎝ ⎠

 

 
With yielding as the failure mode we have 
 

( ) ( )

2 2

2 2

3 3

2 2
3

3

6366 50933 36,000

1 6366 3 5093 36,000

0.671 in. (nominal diameter)
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e b b
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b b

b

b

S
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d d

d
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⎛ ⎞ ⎛ ⎞
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From Table 13.1, the smallest SAE Grade 1 bolt that would not yield is 
 

3 10 UNC-2A SAE Grade1
4
−  
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13-6.   A standard fine-thread metric machine screw made of steel has a major diameter of 8.0 mm and a 
head marking of 9.8.  Determine the tensile proof force (kN) for this screw.  It may be assumed that 
the coefficient of friction is about 0.15 for both the threads and the collar. 

 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From Table 13.5, for “property class” 9.8, Sproof = 650 MPa.  From Table 13.2, for a 8.0 mm, fine series 
metric screw, the tensile stress area is At = 40 mm2.  The proof force for this bolt is 
 

6
2

40650 10 26,000 N (26 kN)
1000proof proof rF S A ⎛ ⎞= = × =⎜ ⎟
⎝ ⎠
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13-7.    A standard coarse-thread metric cap screw made of steel has a major diameter of 10.0 mm.  If a 
torque wrench is use to tighten the cap screw to a torque of 35 N-m, estimate the axial preload force 
induced in the cap screw.  It may be assumed that the coefficient of friction is about 0.15 for both 
thread and collar. 

 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From (13-30) 
 

( )
35 1750 N (1.75 kN)

0.2 0.2 0.010)
i

i
b

T
F

d
= = =  
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13-8.    Engineering specifications for a machine tool bracket application call for a nonlubricated M30 x 2 
threaded fastener of property class 8.8 to be tightened to 100 percent of proof load.  Calculate the 
torque required to accomplish this.  It may be assumed that the coefficient of friction is about 0.15 for 
both the threads and the collar. 

 
 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
For a fine thread we have from Table 13.2 db = 30 mm, and At = 628 mm2.  From table 13.5, for “property 
class” 8.8, the proof stress is Sproof = 600 MPa and the proof force for the bolt is 
 

( )( )

6
2

628600 10 376,800 N (376.8 kN)
1000

0.2 376,800 0.030 2,260 N-m

proof proof t

i

F S A

T

⎛ ⎞= = × =⎜ ⎟
⎝ ⎠

= =
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13-9.    A ¾-16 SAE Grade 2 steel bolt is to be used to clamp two 1.00-inch-thick steel flanges together 
with a 1/16-inch-thick special lead-alloy gasket between the flanges, as shown in Figure P13.9.  The 
effective load-carrying area of the steel flanges and of the gasket may be taken as 0.75 sq. in.  
Young’s modulus for the gasket is 5.3 x 106 psi.  If the bolt is initially tightened to induce an axial 
preload force in the bolt of 6000 lb, and if an external force of 8000 lb is then applied as shown, 
 

a. What is the force on the bolt? 
b. What is the force on each of the steel flanges? 
c. What is the force on the gasket? 
d. If the stress concentration factor for the bolt thread root is 3.0, would local yielding at the thread 

root be expected? 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

(a) Using (13-15) 

b
b i

b m

k
F P F

k k
⎛ ⎞

= +⎜ ⎟+⎝ ⎠
 

 
The sketch shows the arrangement, dimensions, and forces 

 

 
 

The load carrying areas of steel flanges and lead gasket are Astl = Ag = 0.75 in2..  The modulii are 
Eg = 5.3 x 106 psi, Estl = Eb = 30 x 106 psi.  The spring rate of the bolt flanges and gasket are 
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0.75 5.3 10 lb63.6 10
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A E
k

L

A E
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The bolt force is then 

( )
6

6 6

6.425 10 8000 6000 9, 215 lb (tension)
6.425 10 9.56 10

b
b i

b m

k
F P F

k k
⎛ ⎞

= +⎜ ⎟+⎝ ⎠
⎛ ⎞×

= + =⎜ ⎟× + ×⎝ ⎠

 

 
(b) From (13-16) 

 

( )
6

6 6

9.56 10 8000 6000 1215 lb (compression)
6.425 10 9.56 10mF

⎛ ⎞×
= − = −⎜ ⎟× + ×⎝ ⎠

 

 
(c) The gasket is in series with the flange member so Fg = Fm =-1215 lb (compression) 

 
(d) From Table 13.1, for a standard ¾-16 bolt, Ar = 0.3513 in2 so the actual stress at the root is, using 

(5-25) 
 

92153.0 78,690 psi
0.3513act t nomKσ σ ⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

From Table 13.3, SAE Grade 2 for a ¾ inch size gives Syp = 57,000 psi.  Since σact =78,690 > Syp 
= 57,000 local yielding at the thread root would be expected. 
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13-10.  A special reduced-body bolt is to be used to clamp two ¾-inch-thick steel flanges together with a 
1/8-inch-thich copper-asbestos gasket between the flanges in an arrangement similar to the one shown 
in Figure P13.9.  The effective are for both the steel flanges and the copper-asbestos gasket may be 
taken as o.75 square inch.  Young’s modulus of elasticity for the copper-asbestos gasket is 13.5 x 106 
psi.  The special bolt has ¾-16 UNF threads but the body of the bolt is reduced to 0.4375 inch in 
diameter and generously filleted, so stress concentration may be neglected.  The bolt material is AISI 
4620 cold-drawn steel. 

a. Sketch the joint, showing the reduced-body bolt, and the loading. 
b. If the bolt is tightened to produce a preload in the joint of 5000 lb, what external force Psep could 

be applied to the assembly before the joint would start to separate? 
c. If the external load P fluctuates from 0 to 555 lb at 3600 cycles per minute, and the desired design 

life is 7 years of continuous operation, would you predict failure of the bolt by fatigue? 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 

(a) The joint configuration may be sketched as shown below.  Note the reduced body diameter of the 
bolt.  Dimensions and loading are also shown. 

 

 
 

(b) Utilizing (13-16), the joint will start to separate when Fm = 0, so separation occurs when 
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i

b m
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m

k
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k k
or when

k k
P F

k

⎛ ⎞
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⎝ ⎠

 

 
The spring rates are given by the following 
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2 6
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6
6

6
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2 0.75 in
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Combining the spring rates gives for the members 
 

( )

6

6 6

6 6

6

1 lb12.7 10
1 1 in

15.00 10 81.00 10
2.78 10 12.7 10 5000 6094 lb

12.7 10

m
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k

P
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+
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= =⎜ ⎟×⎝ ⎠

 

 
(c) Since Pmax 5555 < Psep = 6094 the joint never separates and (13-15) is valid for the whole range of 

applied cyclic loading.  Hence 
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The corresponding maximum and minimum stresses in the 0.4375-inch diameter bolt body are 
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4
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⎛ ⎞
⎜ ⎟
⎜ ⎟
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⎜ ⎟
⎝ ⎠

+
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−
= =

 

 
The bolt material is AISI 4620 cold drawn steel, so from Table 3.3, Su = 101,000 psi, and Syp = 85,000 psi.  
Thus, using (5-72) 
 

max0
1

a
eq CR m yp

m

u

for and S

S

σ
σ σ σ

σ− = ≥ ≤
−

 

 
we have 

3320 5,205
36,5801

101,000

eq CR psiσ − = =
−
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From “Estimating S-N Curves” in section xx 2.6, Sf = Se ≈ 0.5Su = 50,500 psi.  Even with adjustments of 
the type shown in (5-55) and (5-56) would suggest that the bolt would be predicted to have infinite life.  
Hence failure would not be predicted to occur after 7 years. 
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13-11.  A typical bolted joint of the type shown in Figure 13.9 uses a ½-13 UNC bolt, and the length of 
the bolt and length of the housing is the same.  The threads stop immediately above the nut.  The bolt 
is steel with Su 101,000 psi, Syp = 85,000 psi, and Sf = 50,000 psi.  The thread stress concentration 
factor is 3.  The effective area of the steel housing is is 0.88 in2.  The load fluctuates cyclically from 0 
to 2500 lb at 2000 cpm. 

 
a. Find the existing factor of safety for the bolt if no preload is present. 
b. Find the minimum required value of preload to prevent loss of compression in the housing. 
c. Find the existing factor of safety for the bolt if the preload in the bolt is 3000 lb. 

------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
The load P fluctuates cyclically from Pmin = 0 to Pmax = 2500 lb at n = 2000 cpm. 
 

(a) From Table 13.1 Ar = 0.1257 in2.  With no preload, when P is applied the joint separates and the 
bolt takes the full loading range.  The bolt thread at the inner end of the nut is the critical point, 
and has a stress concentration factor of 3, so 

 

( )

( )

max
max max

min
min min

25003 59,670 psi
0.1257

03 0
0.1257

59,670 0 29,835 psi
2

59,670 0 29,835 psi
2

act tf
r

act tf
r

m

a

P
K

A

P
K

A

σ σ

σ σ

σ

σ

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

+
= =

−
= =

 

Thus, we have 

maxfor 0 and
1

29,835 42,343 psi
29,8351

101,000
50,000 1.18 (existing safety factor)
42,343

a
eq CR m yp

m

u

eq CR

f
e

eq CR

S

S

S
n

σ
σ σ σ

σ

σ

σ

−

−

−

= ≥ ≤
−

= =
−

= = =

 

 
(b) From (13-16), the minimum preload Fi to prevent loss of compression in the housing (Fm = 0) is 

 

( ) maxmin
m

i
b m

k
F P

k k
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
 

The spring rates are given by 
 

( ) ( )

( )

( )

2 62
6

6
6

6

6 6min

0.5 30 10 lb5.89 10
4 4 in

0.88 30 10 lb26.40 10
in

26.4 10 2500 2044 lb
5.89 10 26.40 10

b
b

m m
m

i

d
k

L L

A E
k

L L

F

ππ ×
= = = ×

×
= = = ×

⎛ ⎞×
= =⎜ ⎟× + ×⎝ ⎠
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(c) If Fi = 3000 lb, from (13-15) 
 

( )

( ) ( )

6

6 6max

max min

max

min

5.89 10 2500 3000 3456 lb
5.89 10 26.40 10

3456 lb and 3000 lb

34563 82,482 psi
0.1257
30003 71,600 psi

0.1257
82, 482 71,600 77,040 psi

2
82, 482 71,600 5, 441 psi

2

b

b b

m

a

e

F

F F

σ

σ

σ

σ

σ

⎛ ⎞×
= + =⎜ ⎟× + ×⎝ ⎠
= =

⎛ ⎞= =⎜ ⎟
⎝ ⎠
⎛ ⎞= =⎜ ⎟
⎝ ⎠

+
= =

−
= =

maxfor 0 and
1

5,441 22,936 psi
77,0401
101,000

50,000 2.18 (existing safety factor)
22,936

a
q CR m yp

m

u

eq CR

f
e

eq CR

S

S

S
n

σ
σ σ

σ

σ

σ

−

−

−

= ≥ ≤
−

= =
−

= = =
 

 
Note that preloading the joint with a 3000 lb preload would nearly double the safety factor (from 1.18 to 
2.18). 
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13-12.  A ½-20 UNF-2A SAE Grade 2 steel cap screw is being considered for use in attaching a cylinder 
head to an engine block made of 356.0 cast aluminum (see Table 3.3).  It is being proposed to engage 
the cap screw into an internally threaded hole tapped directly into the aluminum block.  Estimate the 
required length of thread engagement that will ensure tensile failure of the cap screw before the 
threads are stripped in the aluminum block.  Assume that all engaged threads participate equally in 
carrying the load.  Base your estimate on direct shear of the aluminum threads at the major thread 
diameter, and the distortion energy theory of failure to estimate the shear yield strength for the 
aluminum block. 

 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Tensile failure load in the ½-20 UNF-2A steel cap screw is ( )f u tsstl

F S A= .  From Table 13.3, for SAE 

Grade 2 steel, for ½-inch diameter ( ) 74,000 psiu stl
S = and from Table 13.1, for the ½-20 UNF steel cap 

screw Ats = 0.1600 in2.  Thus, Ff = (74,000)(0.16) = 11,840 lb.  Basing housing thread shear (stripping) on 
direct shear of aluminum threads at the major thread diameter, 
 

( ) ( )10.50 20 1.57
20thd e h h hA dpn L L Lπ π ⎛ ⎞= = =⎜ ⎟

⎝ ⎠
 

 
From Table 3.3, for 356.0 cast aluminum, (Syp)356.0 = 27,000 psi, and 
 

( )

2

11,840 7541
1.57

0 3

1 0.577 0.577 27,000 15,588 psi
3

7541 15,588

0.50 in.

f
thd yz

thd h h

e yz yp

thd yp yp

h

h

F
A L L

S

S S

L
L

τ τ

σ τ

τ

= = = =

= + =

= = = =

=

=

 

 
Thus, the minimum length of thread engagement in the aluminum housing should be 0.50 inches.  To 
insure tensile failure of the cap screw before stripping the aluminum threads, introduce a safety factor of 
say 1.5 and recommend 
 

( )1.5 0.50 0.75 in.engageL = =  
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13-13.  A support arm is to be attached to a rigid column using two bolts located as shown in Figure 
P13.13. The bolt at A is to have an MS 20 2.5× thread specification and the bolt at B is to have an 
MS 10 1.5×  specification.  It is desired to use the same material for both bolts, and the probable governing 
failure mode is yielding. No significant preload is induced in the bolts as a result of the tightening process, 
and it may be assumed that friction between the arm and the column does not contribute to supporting the 
18 kN load. If a design safety factor of 1.8 has been selected, what minimum tensile yield strength is 
required for the bolt material? 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
For this joint configuration we have a direct shear and a shear due to torsion. The shear stress in each bolt 
will be defined by the vector sum of the components, defined as 
 

                ( ) ( )( )i
i T

j

P e r
J

τ =             ( ) 2

1

i P

i
i

P

A
τ

=

= ↓
∑

 

Using bolt B as the origin, the centroid of the bolt pattern is located at 
 

              0x =     100 A

A B

Ay
A A

=
+

 

where 2 2(20) 314.2 mm
4AA π

= = 2 2(10) 78.5 mm
4BA π

= =  

 

                     100(314.2) 80 mm
314.2 78.5

y = =
+

 

 
Therefore the radii from the bolt pattern c.g. to each bolt is 30 mmAr =  and 80 mmBr = , which results in 
 
         2 2 2 3 4 9 4( ) 314.2(30) 78.5(80) 785.2 10  mm 785.2 10  mJ i iJ A r −= = + = × = ×∑  
 
The components of the shear stress at each bolt are 
 

( )
( )3

9

18 10 (0.375)(0.03)
257.9 MPa

785.2 10A Tτ
−

×
= =

×
 

( )
( )

( )

3

6

18 10
45.8 MPa

314.2 78.5 10A Pτ
−

×
= =

+ ×
 

( )
( )3

9

18 10 (0.375)(0.08)
687.7 MPa

785.2 10B Tτ
−

×
= =

×
 

( )
( )

( )

3

6

18 10
45.8 MPa

314.2 78.5 10B Pτ
−

×
= =

+ ×
 

 
The total shear stress at each bolt is 
 

     ( ) ( )2 2257.9 45.8 262 MPaAτ = + ≈          ( ) ( )2 2687.7 45.8 689 MPaBτ = + ≈  
Problem 13-3 (continued) 
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Since bolt B sees the largest shear stress we use 
 
                            ( )1.8 1.8(689) 1240 MPayield Bτ τ= = =  
 
Based on the distortional energy failure theory 
 

                            ( ) 1240 2150 MPa
0.577 0.577

yield
yp req

S
τ

= = ≈  

 
From Table 3.3 we see that noting meets our needs. Therefore the joint needs to be redesigned. 
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13-14.    A steel side plate is to be bolted to a vertical steel column as shown in Figure P13.14, using ¾-10 
UNC SAE Grade 8 steel bolts. 

 
a. Determine and clearly indicate the magnitude and direction of the direct shearing stress for the 

most critically loaded bolt. 
b. Determine and clearly indicate the magnitude and direction of the torsion-like shearing stress for 

the most critically loaded bolt. 
c. Determine the existing safety factor on yielding for the most critically loaded bolt, assuming that 

no significant preload has been induced in the bolt due to tightening. 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
For the joint configuration of Figure P13-14, both direct shear and torsion-like shear must be considered.  
For direct shear, using (13-31) 
 

( )

( )

3

1
2

20.75
0.442 in

4
10,000 7541 psi (vertically down)

3 0.442

b

i
i

b

b

P

A

A

τ

π

τ

=

=

= =

= = ↓

∑

 

 
 
For torsion like shear, (13-31) and (13-32) must first be used to find the c.g. of the joint.  Using A-B as a 
reference,  
 
 
 
 

( )
( )

5 0.44
1.67 in.

3 0.44
y = =  

 
B y symmetry 

 
1.67 in.x y= =  

 

 
 
Also, from Figure P13-14, we have 11 11 1.67 12.67 in.e x= + = + =  
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By symmetry 

 
2 21.67 3.33 3.73A Cr r in= = + =  

 
and 

 

( )22 1.67 2.36 in.Br = =  
 

so 
 

( )( )22 2 40.44 2.36 2 3.73 14.69 inj i iJ A r= = + =∑  

 

 

 

 
We see that ( ) ( ) ( )t t tA C B

τ τ τ= > so bolts A and C are equally critical, and both are more critical than B.  
From (13-32), 
 

( )
( )( ) ( )

( )
( )( ) ( )

( ) ( )

( ) ( )

2 2
max

max

10,000 12.67 3.33
28,721 psi

14.69

10,000 12.67 1.67
14, 404 psi

14.69

28,721 7547 14,404 36,150 psi

For a SAE Grade 8 bolt 130,000 psi

0.577 0.577 130,000
2.1

36,150 36,150

x
t C

j

y
t C

j

yp

ypyp
e

Ty
J

Tx
J

S

S
n

τ

τ

τ

τ
τ

= = =

= = =

= + + =

=

= = = =
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13-15.    A 1020 hot-rolled steel cantilever support plate is to be bolted to a stiff steel column using four 
M16 x 2 bolts of Property Class 4.6, positioned as shown in Figure P13.15.  For the 16-kN static 
load and the dimensions given, and assuming that none of the load is supported by friction, do the 
following: 

 
a. Find the resultant shear force on each bolt. 
b. Find the magnitude of the maximum bolt shear stress, and its location. 
c. Find the maximum bearing stress and its location. 
d. Find the maximum bending stress in the cantilevered support plate, and identify where it occurs.  

Neglect stress concentration. 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

(a) For the joint configuration of Figure P13-15, both direct shear and torsion-like shear must be 
considered.  For direct shear, assuming the shear force F to be equally distributed over the 4 bolts, 
Fb = 16/4 = 4 kN ↓ (vertically down).  For torsion-like shear, (13-31) and (13-32) must first be 
used to find the c.g. of the joint.  Since the bolts are all the same, and the bolt pattern is 
symmetrical, the c.g. lies at the geometrical center of the bolt pattern as shown here. 

 
 

By symmetry, 
 

A B C Dr r r r r= = = = and 
 

2 260 75 96 mmr = + =  

 

 
 
The force on the bolts due to the offset load is 
 

( )
( )2 2

16 75 50 300 N184.5
mm4 4 96

ii
t i

rPer
F r

r
+ +

= = =  

 
The loads at A, B, C, and D are given by the following 
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The resultant shear force at A and B are given by 
 

( ) ( )

( ) ( )

( )22

184.5 60 11.1 kN

184.5 75 13.8 kN

F 11.1 4 13.8 21 kN

x
t A

y
t A

A B

F

F

F

= =

= =

= = + + =

 

 
The resultant shear force at C and D are given by 
 

( ) ( )

( ) ( )

( )22

184.5 60 11.1 kN

184.5 75 13.8 kN

F 11.1 13.8 4 14.8 kN

x
t C

y
t D

C D

F

F

F

= =

= =

= = + − =

 

 

 
 

 
(b) Assuming the bolt body supports the shearing stress  

 

( )max 2

21,000 104 MPa (at locations A and B)
0.016

4

A

b

F
A

τ
π

= = =  

 
(c) Maximum bearing stress will be at locations A and B, and is 

 

( )( )max
21,000 87.5 MPa

0.015 0.016
A

brg

F
A

σ = = =  

 
(d) Assuming the maximum bending moment occurs at the plate cross section through holes A and B 

 
 

( )( )max 16,000 0.300 0.050 5.6 kN-mM = + =  
 
Using Table 4.2, case 1, and the transfer formula 
 
( )

( ) ( )( ) ( )( )( )

( )

2

3
2

9 7 7 4

0.015 0.016
0.015 0.016 0.060

12
5.12 10 8.64 10 8.69 10 m

NA hole holehole

NA hole

NA hole

I I A d

I

I − − −

= +

= +

= × + × = ×

 

 
Thus, for the whole cross section 
 

( )( ) ( )
3

7 6 40.015 0.200
2 8.69 10 8.26 10 m

12
I −= − × = ×  

 

 

 
 
Thus, the outer fiber bending stress is 
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( )max
max 6

5600 0.100
67.8 MPa

8.26 10
M c

I
σ −= = =

×
 

 
(e) To check for yielding, the following data may be extracted from Table 3.3 and 13.5;  

 
( )
( )

1020

4.6

30,000 psi (207 MPa)

240 MPa

yp HR

yp Class

S

S

=

=
 

 
Comparing the various stresses calculated with these strength values, no yielding would be expected. 
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13-16.    For the eccentrically loaded riveted joint shown in Figure P13.16, do the following: 
 

a. Verify the location of the centroid for the joint. 
b. Find the location and magnitude of the force carried by the most heavily loaded rivet.  Assume 

that the force taken by each rivet depends linearly on its distance from the joint centroid. 
c. Find the maximum rivet shearing stress if ¾-inch rivets are used. 
d. Find the location and magnitude of the maximum bearing stress if 5/16-inch thick plate is used. 

 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

(a) Using (13-33) and (13-34), and assuming that all the rivets are the same size, and taking a 
reference line through rivets 4-5-6 and 3-4 we find 

 
( )

( ) ( )

3 2 2
2.0 in.

6
2 6 2 6 3

5.0 in.
6

r

r

r r

r

A
x

A
A A

y
A

+
= =

+ +
= =

 

 
This verifies the c.g. location shown. 
 

(b) For the joint configuration of Figure P13-16, both direct shear and torsion-like shear must be 
considered.  For direct shear, assuming that the shear force F to be equally distributed over the 6 
rivets, 

 
10,000 1667 lb (vertically down)

6rF = = ↓  

 
For the torsion-like shear, the radii from the c.g. for the 6 rivets is given as 
 

( )

( )

( )

2 2
1 6

2 2
2 5

2 2
3 4

1 3 2 4.472 .

1 2 2.236

5 2 5.385

r r in

r r in

r r in

= = + + =

= = + =

= = + =

 

 
The moment about the c.g. is  
 

( )1 1 2 2 3 3 4 4 5 5 6 6 10,000 2 3M F r F r F r F r F r F r= + + + + + = +  
 
The force taken by each rivet depends upon its distance ri from the c.g.  Hence, 
 

1 2

1 2

i

i

FF F
r r r
= = =L  

Thus, 
 

( )
( )

2 2 2 2 2 2
1 2 3 4 5 6

2 2 2

10,000 5
463

2 4.472 2.236 5.385

i
ti

i
ti i

Mr
F

r r r r r r

r
F r

=
+ + + + +

⎡ ⎤⎣ ⎦= =
+ +
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The torsion-like forces can be obtained in the x and y directions by using the appropriate x or y value for ri.  
Hence, we find 
 

( )
( )

( )
( )

( )
( )

1 6

1 6

2 5

2 5

3 4

1 6

463 4 1852 lb

463 2 926 lb

463 1 463lb

463 2 926 lb

463 5 2315 lb

463 2 926 lb

x x
t t

y y
t t

x x
t t

y y
t t

x x
t t

y y
t t

F F

F F

F F

F F

F F

F F

= = =

= − = =

= = =

= − = =

= = =

= − = =

 

 
 
Sketching the vector forces Fti and Fr at each rivet 
location, as shown, it may be observed or calculated that 
F1 and F3 are clearly larger than shear forces on all the 
other rivets.  Calculating the magnitude of F1 and F3 
gives the following: 
 

( ) ( )

( ) ( )

2 2
1

2 2
3

1852 1667 926

3186 lb

2315 1667 926

3476 lb

F

F

= + +

=

= + +

=

 

 
Thus, the most heavily loaded rivet is No. 3, with an 
applied shear force of 3476 lb. 

 

 
 

(c) From (13-41) 
 

( )
( )
( )

3
2 2

4 34764
7868 psi

1 0.75
s

r

F
D

τ
π π

= = =  

 
(d) From (13-42) 

 

( ) ( )
3 3476 14,830 psi

5 0.75 1
16

c
r r

F
D N

σ
π

= = =
⎛ ⎞
⎜ ⎟
⎝ ⎠
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13-17.  For a bracket riveted to a large steel girder, as sketched in Figure P13.17, perform a complete 
stress analysis of the riveted joint. The yield stresses are 276 MPaypS = for the plate and 345 MPaypS =  
for the rivets. Assume the rivet centerline is 1.5 times the rivet diameter away from the edge of the plate 
and protruding head rivets are used. The plate is 6 mm thick and the girder is much thicker. Determine the 
existing factors of safety on yielding for each of the potential types of failure for the riveted joint, except 
edge shear-out and edge tearing. 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
We begin by locating the centroid of the rivet pattern 
and defining the loads that act there. All rivet 
diameters and therefore rivet cross-sectional areas are 
the same. The y coordinate of the centroid lies along 
the rivet centerline. The x coordinate (using rivet 1 as 
the origin) is 
 

             
( )75 275 350 425

225 mm
5

r

r

A
x

A
+ + +

= =  

 
The loads acting at the centroid of the rivet pattern are 
as shown.  The shear force supported by each rivet 
will consist of 2 components, one due to torsion (9 
kN-m) and one due to direct shear. For defining an 
existing factor of safety we find the rivet supporting 
the largest stress. Rivets 1 and 5 are the furthest 
from the c.g and will have the largest shear stress 
due to torsion component 
 

     ( )
( ) ( )3 3

1

90 10 90 10 (0.225)i

T
j j

r

J J
τ

× ×
= =  

     ( )
( )3

5

90 10 (0.20)
T

jJ
τ

×
=  

 
where 
 

2 2 2 2 2 2( ) (0.225) (0.150) (0.050) (0.125) (0.200)J i i rJ A r A ⎡ ⎤= = + + + +⎣ ⎦∑  

       
2

2 2 2 2 2 6 4(0.020) (0.225) (0.150) (0.050) (0.125) (0.200) 41.1 10  m
4

π −⎡ ⎤= + + + + = ×⎣ ⎦  

 

    ( )
( )3

1 6

90 10 (0.225)
493 MPa

41.1 10Tτ
−

×
= = ↑

×
        ( )

( )3

5 6

90 10 (0.20)
438 MPa

41.1 10Tτ
−

×
= = ↓

×
 

 
The shear stress at each rivet due to direct shear is 
 

               ( )
( ) ( )3 3

2 2

90 10 / 5 4 90 10
57.3 MPa

(0.02) / 4 5 (0.02)i Pτ
π π

× ×
= = = ↓  

 
Combining this with the shears due to torsion gives 
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        1 493 57.3  435.7 MPaτ = ↑ + ↓ = ↑              5 438 57.3 495.3 MPaτ = ↓ + ↓= ↓  
 
With the largest shear stress having been defined, we no assess failure modes. 
 
Plate tensile failure: No hole diameter was given, so we arbitrarily assume a diameter of 22 mmhD =  
            

           
( ) ( )

90 000 40 MPa
0.075 0.20 0.075 0.075 2(1.5)(0.02) 5(0.022) (0.006)

s
t

r h

F
b N D t

σ = = =
− ⎡ ⎤+ + + + −⎣ ⎦

 

 

                 276 6.9
40en = =  

 
 
Rivet shear stress: The maximum rivet shear stress has been determined to be max 5 495.3 MPaτ τ= = ↓  
 

                  0.577(345) 0.4
495.3en = ≈   

 
                 This is unacceptable and the joint must be redesigned. 
 
 
Bearing failure between rivet and plate:  The maximum rivet shear stress has been determined to be 

max 5 495.3 MPaτ τ= = ↓ . Since each rives experiences a different shear stress, the bearing stress at each 
will be different. The shear force supported by this rivet is therefore 
 

                       
2

5 max
(0.02) (495.3) 156 kN

4s rF A πτ− = = ≈  

 

                        5 156 000 1300 MPa
0.006(0.02)

s
c

r

F
tD

σ −= = ≈  

 

                       276 0.21
1300en = ≈  

 
                   This is unacceptable and the joint must be redesigned. 
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13-18.    A simple butt-welded strap, similar to the one shown in Figure 13.20, is limited by surrounding 
structure to a width of 4 inches.  The material of the strap is annealed AISI 1020 steel (see Table 
3.3), and an E 6012 welding electrode has been recommended for this application.  The applied 
load P fluctuates from a minimum of 0 to a maximum of 25,00 lb and back, continuously. 

 
a. If a safety factor of 2.25 has been selected, k∞ is approximately 0.8 [see (5-57)], and infinite life is 

desired, what thickness should be specified for the butt-welded strap? 
b. If any fatigue failures do occur when these welded straps are placed in service, at what location 

would you expect to see the fatigue cracks initiating? 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From Table 3.3, for AISI 1020 steel (annealed); Su = 57,000 psi, Syp = 43,000 psi and from Table 13.13, for 
E6012 electrodes; Su = 62,000 psi, Syp = 50,000 psi.  From Table 13.9, for HAZ of reinforced butt weld Kf 
= 1.2. 
 

(a) From (13-45) 
 

( )
25,000 85711.2
4 0.5

f nom f
w

PK K
tL

t t

σ σ

σ

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

= =
−

 

 
(Note that 0.5 inch has been deducted from Lw to account for unsound weld at its ends) and 
 

( )

min 0
8571 0 4285

2
8571 0 4285

2
4285

42851 1
57,000

4285 0.075

m

a

a
eq CR

m

u

eq CR

t
t

t
t

t

S t

t

σ

σ

σ

σ
σ

σ

σ

−

−

=

+
= =

−
= =

= =
⎛ ⎞− − ⎜ ⎟⎜ ⎟
⎝ ⎠

= +

 

 
From Figure (5.31), for 1020 steel, S’f = 33,000 psi, so from (5-55) Sf = 0.8(33,000) = 26,400 psi and the 
design stress is 
 

26, 400 11,733 psi
2.25

thus
4285 0.075 0.44 in.

11,733

f
d

d

S
n

t

σ = = =

= + =

 

 
So t = 7/16-inch thick plate is required. 
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(b) If fatigue cracks occur, they would be expected to initiate in the HAZ. 
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13-19.    A horizontal side plate made of 1020 steel (see Figure 5.31) is to be welded to a stiff steel 
column using E 6012 electrode, as specified in Figure P13.19.  If the horizontally applied load F 
fluctuates cyclically from + 18 kN (tension) to -18 kN (compression) each cycle, k∞ is 
approximately 0.75 [see (5-57)], and a design safety factor of 2.5 is desired, what fillet weld size 
would you recommend if all fillet welds are to be the same size?  Infinite life is desired. 

 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From (13-48) 
 

( )
0.707w nom

w

F
sL

τ =  

 
From Table 13.9 
  End of parallel fillet weld: Kf = 2.7 
  Toe of transverse fillet weld: Kf = 1.5 
Using Kf = 1.9 
 

( ) ( ) ( ) ( )

( )

( )

( )

( )

max

6

max

6

min

m
6

18,0002.7
0.707 0.060 0.060 0.050

4.055 10 Pa

4.055 10 Pa

0

4.055 10 Pa

w f w nom

w

w

w

w a

K
s

s

s

s

τ τ

τ

τ

τ

τ

= =
+ +

×
=

− ×
=

=

×
=

 

 
The design stress, using the DET is τd = τf/nd = 0.577 Sf/nd .  From Figure 5.31, for 1020 steel, S’f = 33,000 
psi = 228 MPa.  Thus, 
 

( )
( )

5
6

0.75 228 171 MPa

0.577 171
39.5 MPa

2.5
4.055 10 39.5 10

0.0102 m 10.2 mm

f f

d

S k S

s
s

τ

∞ ′= = =

= =

×
= ×

= =

 

 
So a fillet weld size of 10 mm is recommended.  This is compatible with the 10 mm plate thickness. 
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13-20.    A steel side plate is to be welded to a vertical steel column according to the specifications in 
Figure P13.20.  Neglecting stress concentrations effects, calculate the magnitude and clearly 
indicate the direction of the resultant shearing stress at the critical point.  In selecting the critical 
point be sure to consider effects of both torsion-like shear and direct shear. 

 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Treating the welds as unit lines gives the following 
 

( )( ) 2

5 5 10 .

0.707 0.707 0.375 10 2.65 in
u

u u

A in

A tA sA

= + =

= = = =
 

 
To find the weld c.g., using the lines AB and BC as reference lines, yields 
 

( )

( )

5 2.5
1.25 in.

10

5 2.5
1.25 in.

10

i

i

u i

u

u i

u

A x
x

A
A y

y
A

= = =

= = =

∑

∑
 

 
The direct stress is assumed uniform over both welds, and is vertically downward, thus 
 

5000 1886 psi
0.265w

w

P
A

τ = = =  

 
For the secondary stress we need to calculate the polar moment of inertia of the weld joint.  We can again 
treat the weld as unit welds and we see that 
 
 

( ) ( )

( )
( )

3
2 2 3

3

3

4

5 5 1.25 5 1.25 26.04 in
12

26.04 in

2 26.04 52.08 in

0.707 0.375 52.08 13.8 in

u xu yu

xu

yu xu

u

u

J I I

I

I I

J

J tJ

= +

= + + =

= =

= =

= = =
 
The distance from the c.g. to A,B, and C 
are given as 
 

( )

2 2

2

1.25 3.75 3.95 in.

2 1.25 1.77 in.

A c

B

r r

r

= = + =

= =
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It is deduced by examining critical points A, B, and C that rB << rA = rC so that B is eliminated as a potential 
critical point, and although rA = rC the torsion-like shear opposes the direct shear at A and adds to it at C, so 
C is the most critical. 
 
The x and y components of the torsion-like shear stress can be obtained from  
 

i
tc

Tr
J

τ =  

 
By using the appropriate value of x or y for ri.  Thus we find 
 

( )
( )

( )

5000 4.0 1.25 26, 250 in-lb

26, 250 3.75
7,133 psi

13.8
26, 250 1.25

2,378 psi
13.8

x
tc

y
tc

T

τ

τ

= + =

= =

= =

 

 
The maximum shear stress at location C is 
 

( ) ( )22
max

7,133 1887 2378 8,310 psisτ = + + =  
 
and its direction is 
 

1 4265tan 30.9
7133

ϕ − ⎛ ⎞= =⎜ ⎟
⎝ ⎠

o  
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13-21.   A proposed double lap-joint [see Figure 13.1(f)] is to be symmetrically loaded in tension, parallel 
to the plane of the straps to be joined.  Adhesive bonding is being considered as a means of joining the 
straps.  The single center strap is titanium and the double outer straps are medium-carbon steel.  This 
aerospace application involves continuous operation at a temperature of about 350˚ F, moderate impact 
loading, and occasional exposure to moisture.  What types of structural adhesives would you recommend as 
good candidates for bonding this double lap joint? 
 
 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Based on Table 13.14, structural adhesives that provide an acceptable response to the attributes required by 
problem specifications are: 
 

1.  Temperature above 350˚F: (a) Epokies 
(b)Anaerobics 
(c)Hot Melts 
(d)Silicones  

 
2. Impact resistance:  (a)Epoxies – poor 

(b)Anaerobics – fair 
(c)Hot Melts – fair 
(d)Silicones - excellent 

 
3. Moisture resistance:  (a)Epoxies – excellent 

(b)Anaerobics – good 
(c)Hot Melts – fair to goog 
(d)Silicones – good 
 

4. Dissimilar metals:  (a)Epoxies – good 
(b)Anaerobics – ?? 
(c)Hot Melts – ?? 
(d)Silicones – excellent 
 

Based on these data, rule out epoxies for poor impact resistance and choose silicones over Hot Melts and 
Anaerobics  since Silicones are equal or better for impact resistance, moisture resistance, and applications 
involving dissimilar metals. 
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13-22.  In an adhesively bonded lap joint (see Figure 13.24) made of two sheets of metal, each having 
thickness t, it has been found from experimental testing program that the maximum shearing stress in the 
adhesive may be estimated as 
 

( )max
2

adh
L

P
bL

τ =  

 
where P = total in-plane tensile force on the joint (perpendicular to b) 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
For adhesive shear failure and metal sheet yielding failure to be equally likely Pf-adh = Pf-metal or using our 
given equation 
 

( ) ( )( ) ( ) ( )

( )

2
2

nax Ladh
yp

yp
L

nax adh

b L
S b t

S t
L

τ

τ

=

=
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13-23.  It is being proposed to use a lap joint configuration to adhesively bond two 0.9 mm thick strips of 
2024-T3 aluminum using an epoxy adhesive. Assuming a stress distribution factor of 2sK = , what bond 
overlap length would you recommend 
 
---------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From the solution to 13-22,  
 

             
( )max

s yp
L

adh

K S t
L

τ
=  

 
From Table 3.3, 345 MPaypS = , and form Table 14.16 ( )max 15 MPaadhτ =  so 
 

                  2(345)(0.0009) 0.0414 m
15LL = =                           41.4 mmLL =  
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Chapter 14 
 
 
 
14-1.   You are asked as a consultant, to determine a procedure for finding a “best estimate” for the design stress to 
be used in designing the helical-coil springs for a new off-the-road vehicle.  The only known information is: 
 

1. The spring material is a ductile high-strength ferrous alloy with known ultimate strength, Su, and known 
yield strength, Syp. 

2. Spring deflection during field operation is estimated to range from a maximum of ymax to a minimum of ymin 
= 0.30ymax. 

 
Based on the known information, write a concise step-by-step procedure for determining a “best estimate” value for 
the design stress. 
 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
To estimate the design stress based on problem specification, the following observations and actions would be 
pertinent: 
 

1. Since the spring deflection ranges from ymax to 0.30ymax, this application involves fluctuating loads; 
consequently the governing failure mode is probably fatigue. 

2. Since no fatigue properties are given in the specifications, it will be necessary to estimate fatigue properties 
from the static properties given, as discussed in 5.6.  This will result in a uniaxial S-N curve for the spring 
material, including appropriate strength influencing factors ( see (5-55) and (5-57)) since very long life 
(infinite life) is specified.  

3. From the S-N curve constructed in step 2, read the fatigue limit S’f. 
4. Since stress σ is proportional to deflection δ, and the specified deflection ranges from  ymax to 0.30ymax 

cyclically, this is a case of non-zero mean cyclic stress.  Therefore, the modified Goodman relationship (see 
(5-70)) will be required to find a zero-mean fatigue strength, Smax-N, that accounts for the non-zero mean 
state of cyclic stress. 

5. Since Smax-N is uniaxial, the primary stress τ due to torsion in a helical coil spring is multiaxial (shear stress 
is always uniaxial), and the material is ductile, the distortion energy theory will be suggested to relate τf to 
Smax-N, that is, τf = 0.577 Smax-N. 

6. A design safety factor (see 2.13), nd, appropriate to the application, must be selected. 
7. The design stress may be calculated by dividing τf by nd. 
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14-2.   An open-coil helical coil compression spring has a spring rate of 80 lb/in.  When loaded by an axial 
compressive force of 30 lb, its length was measured to be 0.75 inch.  Its solid height has been measured as 0.625 
inch. 

a. Calculate the axial force required to compress the spring from its free length to its solid height. 
b. Calculate the free length of the spring. 

 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

a. From (14-22), and deflections shown in Figure 14.5 
 

( ) ( )80 0.75 0.625 30 40 lb

s i

i s

s i s i

F FFk
y L L

F k L L F

−∆
= =
∆ −

= − + = − + =
 

 

b.  300.75 1.125 in.
80

i
f i

F
L L

k
= + = + =  
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14-3.   An open-coil helical-coil compression spring has a free length of 76.2 mm.  When loaded by an axial 
compressive force of 100 N, its length is measured as 50 .8 mm. 

(a) Calculate the spring rate of this spring. 
(b) If this spring, with a free length of 76.2 mm, were loaded by an axial tensile force of 100 N, what would 

you predict its corresponding length to be? 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

(a) From (14-22) and the definition shown in Figure 4.5 
 

( )
0 100 N3.94
0 76.2 50.8 mm

i

i

FFk
y y

−∆
= = = =
∆ − −

 

 

(b)                                          10076.2 101.6 mm
3.94t

t
F f

F
L L

k
= + = + =  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 473

14-4.   A helical-coil compression spring has an outside diameter of 1.100 inches, a wire diameter of 00.085 inch, 
and has closed and ground ends.  The solid height of this spring has been measured as 0.563 inch. 

(a) Calculate the inner coil radius. 
(b) Calculate the spring index. 
(c) Estimate the Wahl factor. 
(d) Calculate the approximate total number of coils, end-of-wire to end-of-wire, in this spring. 

 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 

(a)  From Figure 14.5 
 

( )
0

0

2
1.100 2 0.0852

0.465 in.
2 2 2

i

i
i

D D d

D D d
R

− =

−−
= = = =

 

 
(b) From (14-6) the spring index C is 

 

0
1.10 0.0852 2

2 2 2 2 11.94
0.085

dR
RC

d d

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠= = = =  

 
(c) From Table 14.5 

 
Kw = 1.12 

 
 

(d)  From (14-23) 
 

0.563 6.6 coils
0.085

s
t

L
N

d
= = =  
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14-5.   An existing helical-coil compression spring has been wound from 3.50-mm peened music wire into a spring 
having an outside diameter of 22 mm and 8 active coils.  What maximum stress and deflection would you predict if 
an axial static load of 27.5 N were applied? 
 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
We have that 
 

( )

0

0

2
22 3.50 9.25 mm

2 2
2 9.252 5.3

3.5
1.29w

R D d
D d

R

RC
d

K

= −

− −
= = =

= = =

=

 

 
From (14-120 
 

( )( )
( )max 3 3

16 27.5 0.0092516 1.29 39.0 MPa
0.0035

w
FRK
d

τ
π π

⎛ ⎞⎛ ⎞ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
Also, from (14-21), using G = 79 GPa 
 

( )( ) ( )
( ) ( )

33
4

4 4 9

64 27.5 0.00925 864 9.4 10 m or (0.94 mm)
0.0035 79 10

FR Ny
d G

−= = = ×
×
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14-6.   An existing helical-coil compression spring has been wound from unpeened music wire of 0.105-inch 
diameter into a spring with mean coil radius of 0.40 inch.  The applied axial load fluctuates continuously from zero 
to 25 lb, and a design life of 107 cycles is desired.  Determine the existing safety factor for this spring as used in this 
application. 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
From (14-1), and data for music wire from Table 14.1 
 

( ) 0.1625184,600 0.105 266, 250 psia
utS Bd −= = =  

 
From Table 14.8, for steel alloys under released loading, and for 107 cycles 
 

( )

( ) ( )

7

7

10

10

0.38

0.38 266, 250 101,175 psi

f

ut

f

S

τ

τ

=

= =

 

 
From (14-12) 

( )

( )( )
( )

max 3

max 3

16

2 0.42 7.62
0.105

1.19 (Table 14.5)

16 25 0.4
1.19 52,350 psi

0.105

w

w

FRK
d

RC
d

K

τ
π

τ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= = =

≈

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

 

 
The factor of safety is  
 

( ) 710

max

101,175 1.93
52,350

f
exn

τ

τ
= = =  
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14-7.   A round wire helical-coil compression spring with closed and ground ends must work inside a 60-mm-
diameter hole. During operation the spring is subjected to a cyclic axial load that ranges between a minimum of 650  
N and a maximum of 2400 N. The spring rate is to be approximately 26 kN/m. A life of 52 10× cycles is required. 
Initially, assume 52 10 0.85Nk = × = . A design factor of safety of 1.2dn = is desired. Design the spring.  
 
---------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Following procedures outlined in 14.6, assume a 10% diametral clearance 
 
               1.10 1.10(2 ) 60o hD R d D= + ≤ =  
                 2 54 mmoD R d= + ≈  
 
The probable failure mode is fatigue, and by specification 

52 10  cyclesdN = × . Since music wire is widely available and has good 
properties, we tentatively select piano wire. From Table 14.1 
 
                   0.16252153.5  MPautS d −=  
 
Following procedures outlined in Chapter 5, we approximate an S-N curve. 
Assume properties for steel 
 

1. Plot '  at 1 cycleN utS S=  

2. Plot 60.5  at 10  cyclesf utS S=  if 200 ksi (1380 MPa)utS < or plot 
6100 ksi (690 MPa) at 10  cyclesfS =  if 200 ksi (1380 MPa)utS >  

3. Connect points with a straight line. 
 
 
Using 0.16252153.5utS d −= , 
we find 1380 utS > when 

15 mmd ≈ . Therefore, we 
assume 15 mmd < . Plotting 
the approximate S-N curve 
for various wire diameters, 
we see that at 52 10dN = ×  
cycles, the stress is 
approximately 800 MPa for 
all diameters considered. 
Refinement is required in a 
subsequent step. 
 
With 1.2dn =  and 

52 10 0.85Nk = × = , the design 

stress at 52 10×   cycles is 
 
                
                      

( )( ) ( )( )5 5 55

5
2 10 2 10 2 102 10

2 10

' ' 0.85
0.71 '

1.2
N N NN

d N
d d

S k SS
S

n n
σ = × = × = ×= ×

= ×= = = =  
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Since shear is a multiaxial state of stress, the distortional energy theory gives 
 
                                 52 100.577 0.41 'd d NSτ σ = ×= =  
 
Begin by assuming 8c = , so we have the relation 8 54 6 mmD d d d= = − ⇒ =  
 

                                              54 6 24 mm
2

R −
= =  

 
Refining our approximations form the S-N curve we estimate 52 10' 810 MPaNS = × ≈ , so 
 
                                     0.41(810) 332 MPadτ = =  
 
For 8c = , we use Table 14-12 to get 1.18WK ≈ , which gives 
 

                max 3 3
16 16(2400)(0.024)1.18 1603 MPa

(0.006)W
FRK
d

τ
π π

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
Noting that 0.16252153.5(6) 1610 MPautS −= ≈  and form Table 15-12 max0.4(1610) 644 MPaypτ τ= = < . Therefore 

we need to change dimensions of the spring in order to lower maxτ by a factor of about 1603/ 644 2.5≈ . This can be 

accomplished by increasing the wire size to approximately 3 2.5(6) 8.14 mm= . Taking a conservative approach , 
we assume 10 mmd = (a standard size), which results in 
 

                                           54 10 22 mm
2

R −
= =  

 
For a 10 mm diameter wire, the yield stress in shear becomes ( )0.16250.4 2153.5(10) 593 MPaypτ −= ≈ . In addition, 

a 10 mm diameter wire results in 44 /10 4.4c = = , which is within the range of 4 to 12. Using this value of c, we 
find 1.36WK ≈ , meaning maxτ becomes 
 

                       max 3
16(2400)(0.022)1.36 366 MPa 593 MPa

(0.01) ypτ τ
π

⎛ ⎞
= ≈ < =⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
The dimension so far ( 22 mm, 10 mmR d= = ) are acceptable. Next we explore fatigue 
 

                                  min 3
16(650)(0.022)1.36 99 MPa

(0.01)
τ

π

⎛ ⎞
= ≈⎜ ⎟⎜ ⎟

⎝ ⎠
 

                                    max min
m

366 99 233 MPa
2 2

τ τ
τ

+ +
= = ≈  

                                    max min 366 99 134 MPa
2 2a

τ τ
τ

− −
= = ≈  

                                    
1 /

a
eq CR

m u

τ
τ

τ τ− =
−

 

 
                                ( )0.16250.577 0.577 2153.5(10) 855 MPau uSτ −= = ≈  
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                                134 184 MPa
1 233/ 855eq CRτ − = =
−

 

 
 
From a refined assessment of the S-N curve, we determine that for a wire diameter of 10 mm, 

52 10' 790 MPaNS = × ≈ .  This results in ( )0.41 790 =324 MPa 184 MPad eq CRτ τ −= < = , which is acceptable. 
 
Next we use the spring rate 26 kN/mk = and rewrite (15-22) to get 
 

                  
( )
( )

4 94

3 3 3

(0.01) 79 10
44.6

64 64(0.022) 26 10
d GN

R k

×
= = =

×
 active coils 

 
Selecting closed and ground ends, we add one active coil to each end, meaning 46.6tN = . The approximate solid 
height of the spring will be 
 
                                        46.6(10) 466 mms tL N d= = =  
 
The class allowance is 0.1clash opy y= , where 
 

                  max min
max 3

2400 650 0.0923 0.025 0.0673 m 67.3 mm
26 10op op i

F F
y y y

k−
− −

= − = = = − = =
×

 

 
                  6.73 mmclashy =  
 
The free length is 
 
                         max 92.3 6.73 466 565 mmf op clash sL y y L−= + + = + + =  
 
Checking for buckling, we have / 2 565 / 44 12.8fL R = = . For closed and ground ends (fixed ends) / 0.16cr fy L ≈ . 
Thus  
 
                                       0.16(565) 90.4 mmcry = =  
 
Since max 92.3 mmopy − =  and 90.4 mmcry = , the spring may tend to buckle. It is, however supported within a hole, 
so unless other factors arise because of buckling, the final design specs will be 
 

(1) music wire with 22 mm, 10 mmR d= =  
(2) Squared and ground ends 
(3) Wind a total of 46.6tN =  coils, end of wire to end of wire 
(4) Wind spring to a free length of 565 mmfL = . Id necessary to adjust the free length using plastic 

deformation, do so by winding the spring slightly too long, the adjust by compressive overl;oad. 
(5) Use only in a constraining hole. 

 
 
 
 
 
 
 
 



 479

14-8.   A helical-coil spring with plain ends, ground, is to be used as a return spring on the cam-driven valve 
mechanism shown in Figure P14.8.  The 1.50-inch-diameter rod must pass freely through the spring.  The cam 
eccentricity is 0.75 inch (i.e., the total stroke is 1.50 inches).  The height of the compressed spring when the cam is 
at the head-end-dead-center (HEDC) position is 3.0 inches, as shown.  The spring must exert a force of 300 lb when 
at the HEDC position shown in the sketch, and must exert a force of 150 lb when the crank-end-dead-center (CEDC) 
at the bottom of the stroke.  That is, the spring is preloaded into the machine.  The spring is to be made of a patented 
spring steel wire that has a 200,000-psi ultimate tensile strength, 190,000-psi tension yield strength, and 90,000-psi 
fatigue endurance limit.  A safety factor of 1.25 is desired, based on infinite life design.  Determine the following: 
 

a. Mean coil radius, R 
b. Wire diameter, d 
c. Number of active coils, N 
d. Spring rate, k 
e. Free length of the spring, Lf 

 
-------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Following the procedure of Section 14.6, and adopting the 10 % diametral clearance suggest in guideline 12A 
 

( ) ( )
( )

1.10 2

1.10 1.50 1.65 2
rod iD D R d

R d

= = −

= = −
 

 
Tentatively assume that C = 8, then 
 

2 8
2 1.65

1.65 8
1.65 0.236 in.

7

R d
R d

d d

d

=
= +

+ =

= =

 

 
From Table 14.2 initially select a standard wire size d = 0.250 in., then 
 

( )

( )( )
( )max 3

1.65 0.25 0.95 in.
2

2 0.95
7.6

0.25
1.20 (From Table14.5)

16 250 0.95
1.20 92,900 psi

0.25

w

R

C

K

τ
π

+
= =

= =

=

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

 

 
We have that Syp = 190,000 psi, so based on the distortion energy theory τyp = 0.577(190,000) = 109,630 psi.  We 
note therefore, that yielding does not occur at maximum load.  Thus, for minimum load we have 
 

( )( )
( )min 3

16 200 0.95
1.20 74,316 psi

0.25

92,900 74,316 9, 292 psi
2

92,900 74,316 83,608 psi
2

a

m

τ
π

τ

τ

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠
−

= =

+
= =

 

 
The equivalent completely reversed shear stress may be estimated by adapting (5-72) 
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( )

9,292 33,730 psi
83,60811

0.577 200,000

a
eq CR

m

u

τ
τ

τ
τ

− = = =
−−

 

 
The fatigue endurance limit is 90,000 psi, using the distortion energy theory τf = 0.577(90,000) = 51,930 psi.  The 
factor of safety is given as 1.25, hence 
 

51,930 41,544
1.25

f
d

d

psi
n
τ

τ = = =  

 
Comparing the shear stresses we see that the stress is acceptable for infinite life design. 
 
The required spring rate is 
 

max min 250 200 33.3 lb/in
stroke 1.5

F FFk
y

−∆ −
= = = =
∆

 

 
The number of active coils is obtained from (14-22), thus 
 

( ) ( )
( ) ( )

4 64

3 3

0.25 11.5 10
24.6 active coils

64 64 0.95 33.3
d GN

R k

×
= = =  

 
For plain ends ground, From Figure 14.9, add 0.5 inactive coils to each end, so that the total number of coils is 
 

24.6 2(0.5) 25.6 coilstN = + =  
 
Referring to Figure 14.5, the approximate solid height is 
 

( )25.6 0.25 6.4 inchess tL N d= = =  
 
From guideline 12.E, an appropriate clash allowance would be yclash = 0.10 yop and from Figure 14.5 
 

max min
max

250 200 1.50 inches
33.3

op op i
F F

y y y
k−

−
= − =

−
= =

 

 
It is noted that yop can also be determined from the specified eccentricity of the cam as yop = 2(0.75) = 1.50 inch.  We 
find the clash as yclash = 0.10(1.50) 0.15 inch.  Thus the free length of the spring should be 
 

max

250 0.15 6.4 14.1 in.
33.3

f op clash sL y y L−= + +

= + + =
 

 
Thus we find based on the above calculations 
 

(a) R = 0.95  inch 
(b) d = 0.25 inch 
(c) N = 24.6 active coils 
(d) k = 33.3 lb/in 
(e) Lf = 14.1 inch 
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14-9.   A proposed helical-coil compression spring is to be wound from standard unpeened music wire of 0.038-inch 
diameter, into a spring with outer coil diameter of 7 16  inch and 112 2 total turns from end of wire to end of wire.  

The ends are to be closed.  Do the following: 
 

a.  Estimate torsional yield strength of the music wire  
b. Determine the maximum applied axial load that could be supported by the spring without initiating yielding 

in the wire. 
c. Determine the spring rate of this spring. 
d. Determine the deflection that would be produced if the incipient yielding load calculated in (b) above were 

applied to the spring. 
e. Calculate the solid height of the spring. 
f. If no permanent change in free height of the spring can be tolerated, determine the free height that should 

be specified so that when the spring is compressed to solid height and then released, the free height remains 
unchanged. 

g. Determine the maximum operating deflection that should be recommended for this spring if no preload is 
anticipated. 

h. Determine whether buckling of this spring might be a potential problem. 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) From (14-1) 
 

( )

( )

0.1625

184,600 psi
0.1625

184,600 0.038 314,000 psi

0.4 (Table 14.7)

0.4 314,000 125,600 psi

a
ut

ut

yp

ut

yp

S Bd
B
a

S

S
τ

τ

−

=

=
= −

= ≈

=

= =

 

 
(b) From (14-12) 

 

( )

max 3

16

2

0.4375 0.038 0.20 in.
2 2 2 2
2 0.20

10.5
0.038
1.14 (Table 14.5)

w

w

FRK
d

RC
d

D dR

C

K

τ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

= − = − =

= =

=

 

 
Solving for F and setting τmax = τyp gives 
 

( ) ( )
( ) ( )

33

max

0.038 125,600
5.94 lb

16 16 1.14 0.20
yp

w

d
F

K R
π τ π

= = =  

 
(c) From (14-22) 
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( ) ( )
( ) ( )

4

3

4 6

3

64
12.5
2(1.0) 2.0 (closed ends)

12.5 2.0 10.5 coils

0.038 11.5 10
4.46 lb/in

64 0.2 10.5

t

i

t i

d Gk
R N

N
N
N N N

k

=

=
= =
= − = − =

×
= =

 

 
(d) From (14-22) 

 
max

max
5.94 1.33 in.
4.46

F
y

k
= = =  

 
(e) From Figure 14.5e 

 
( )12.5 0.038 0.475 in.s tL N d= = =  

 
(f) To avoid yielding (assume clash as 10 % maximum deflection) 

 
( ) ( )maxmax

0.475 0.10 1.33 1.33 1.94 inf s clashL L y y= + + = + + =  

 
(g) The maximum operating deflection from Figure 14.5 

 

( )

max

max

1.94 0.1 1.33 0.475 1.33 in.

f op clash s

op f clash s

L y y L

y L y L
−

−

= + +

= − −

= − − =

 

 
(h) For buckling calculate the slenderness ratio and the deflection ratio 

 

( )
max

1.94 4.85
2 2 0.2

1.33 0.685
1.94

f

f

L
SR

R
y

DR
L

= = =

= = =
 

 
From Figure 14.11, it may be observed that buckling is certainly a potential problem, depending on the details of the 
end supports.  An experimental investigation would be recommended. 
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14-10.    A helical-coil compression spring is to be designed for a special application in which the spring is to be 
initially assembled in the mechanism with a preload of 10 kN, and exert a force of 50 N when it is compressed and 
additional 140 mm.  Tentatively, it has been decided to use music wire, to use closed ends, and to use the smallest 
standard wire diameter that will give a satisfactory performance.  Also, it is desired to provide a clash allowance of 
approximately 10 percent of the maximum operating deflection. 
 

a. Find a standard wire diameter and corresponding mean coil radius that will meet the desired specifications. 
b. Find the solid height of the spring. 
c. Find the free height of the spring. 

 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) From (14-22) 
 

( )

' 3

0.1625

0.1625 0.1625

max
max 3

50 10 285.7 /
140 10

2153.5 ( , )
0.1625
2153.5

0.4 ( 14.7)

0.4 2153.5 861.4

16

req d

a
ut

ut

yp

ut

yp

w

Fk N m
y

S Bd
B For music wire d mm
a
S d

Table
S

d d MPa

F R
K

d

τ

τ

τ
π

−

−

− −

−
= = =

×

=

= =
= −

=

=

= =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
Picking a midrange value of C = 8 as an initial value, then 
 

( )( )
( )

3

max 33

max 2

8 4
2 2

1.18 for 8

16 50 4 10
1.18

10

1201.9 MPa

w

dR C d d

K C

d

d

d

τ
π

τ

−

−

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

= =

⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟= ⎜ ⎟⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠

=

 

 
Assuming that the governing failure mode is yielding we have 
 

( )

( )

0.1625
2

2 0.1625

1
1.8375

1201.9 861.4

1201.9 1.40
861.4

1.40 1.2 mm

d
d

d

d

−

−

=

= =

= =

 

 
From Table 14.2 we have d = 1.20 mm as a standard wire size, so tentatively select this wire size.  Thus, R = 4(1.20) 
= 4.80 mm 
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(b) From (14-22) 
 

( ) ( )
( ) ( )

4

3

43 9

33

285.7
64

1.20 10 79.3 10
81.3 turns

64 4.8 10 285.7

d Gk
R N

N
−

−

= =

× ×
= =

×

 

 
Based on experience this is probably too many coils.  If you have no experience check on buckling potential. (Figure 
14.11).  One way to reduce the number of coils is to make R larger.  To do this, we should cycle all the way back to 
the calculation of the maximum shear stress and repeat the calculation with a new value of R, i.e., a new (larger) 
spring index C.  The largest practical value of spring index is C = 12. 
 

( )( )
( )

( )

( )

3

max 33

max 2

0.1625
2

2 0.1625

1
1.8375

12 6
2 2

1.12 for 12

16 50 6 10
1.12

10

1711.2 MPa

1711.2 861.4

1711.2 1.99
861.4

1.99 1.45 mm

w

dR C d d

K C

d

d

d

d
d

d

d

τ
π

τ

−

−

−

−

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

= =

⎛ ⎞⎡ ⎤⎣ ⎦⎜ ⎟= ⎜ ⎟⎡ ⎤⎜ ⎟⎣ ⎦⎝ ⎠

=

=

= =

= =

 

 
 
From Table 14.2 we have d = 1.60 mm as the closest (larger) standard wire size, so tentatively select this wire size.  
Thus, R = 6(1.60) = 9.60 mm 
 
 

( ) ( )
( ) ( )

43 9

33

1.60 10 79.3 10
32.1 turns

64 9.6 10 285.7
N

−

−

× ×
= =

×
 

 
For closed ends Ni = 2(1.0) = 2.0 coils, thus, Nt = N + Ni = 32.1 + 2.0 = 34.1 coils.  Thus,  
 

Ls = Ntd = 34.1(1.60) = 54.6 in. 
 

(c) From (14-22) 
 

max
max

max

50 0.175 m 175 mm
285.7

0.10(175) 17.5 mm
175 17.5 54.6 247.1 mm

clash

f op clash s

F
y

k
y
L y y L−

= = = =

= =

= + + = + + =
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14-11.  Two steel helical-coil compression springs are to be nested about a common axial centerline. The outer 
spring is to have an inside diameter of 38 mm, a standard wire diameter of 2.8 mm and 10 active coils. The inner 
spring is to have an outside diameter of 32 mm , a standard wire diameter of 2.2 mm , and 13 active coils. Both 
springs are to have the same free length. Do the following: 
 

a. Calculate the spring rate of each spring. 
b. Calculate the axial force required to deflect the nested spring assembly a distance of 25 mm. 
c. Identify the most highly stressed spring when the assembly is deflected 25mm.spring  

 
-------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

a.   For the outer spring 
4

364
o

o
o o

d G
k

R N
=  and for the inner spring 

4

364
i

i
i i

d G
k

R N
=  

 

         ( ) ( )1 1 38 2.8 20.4 mm
2 2o i iR D d= + = + =    2.8 mmod =    10oN =  

         ( ) ( )0
1 1 32 2.2 14.9 mm
2 2i oR D d= − = − =    2.2 mmid =    13iN =  

 

             
( )4 9

3

(0.0028) 79 10
894 N/m

64(0.0204) (10)ok
×

= ≈           
( )4 9

3

(0.0022) 79 10
672 N/m

64(0.0149) (13)ik
×

= ≈  

 
b. Since the springs are in parallel 894 672 1566 N/mnest o ik k k= + = + = . Therefore 
 
                                          25 mm (0.025) 1566(0.025) 39.15 Ny nestF k= = = =  
 
c. For the inner and out springs, / 40.4 / 2.8 14.6o o oc D d= = = , 1.097W oK − = , / 29.8 / 2.2 13.6i i ic D d= = = , 

and 1.105W iK − = . Therefore 
 

                           ( )max 3
16(39.15)(0.0202)1.097 201 MPa

(0.0028)oτ
π

⎛ ⎞
= ≈⎜ ⎟⎜ ⎟

⎝ ⎠
 

                           ( )max 3
16(39.15)(0.0149)1.105 311 MPa

(0.0022)iτ
π

⎛ ⎞
= ≈⎜ ⎟⎜ ⎟

⎝ ⎠
 

 
The inner spring is the more highly stressed spring. 
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14-12.  A round wire helical-coil tension spring has end loops of the type shown in Figures 14.7 (a) and (b).  The 
wire diameter of the spring is 0.042 inch, and the mean coil radius is 0.28 inch.  Pertinent end-loop dimensions are 
(ref. Figure 14.7), riA = 0.25 inch and riB = 0.094 inch.  An applied axial static tension force of F = 5.0 lb is to be 
applied to the spring. 

(a) Estimate the maximum stress in the wire at critical point A. 
(b) Estimate the maximum stress in the wire at critical point B. 
(c) If the spring wire is ASTM A227 material, and a safety factor of 1.25 is desired, would the stresses at 

critical point A and B be acceptable? 
 
 

-------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) We have that at critical point A (14-16) 
 

( )( )
( )

( )
( )

max 3 2

max 3 2

32 4

0.0420.25 0.271 in.
2 2

0.271 1.10
0.25

32 5.0 0.28 4 5.0
1.10

0.042 0.042

211,725 3609 215,334 psi

A iA

mA
iA mA iA

iA

iA

A

FR Fk
d d

r dk r r
r

k

σ
π π

σ
π π

−

−

⎛ ⎞= +⎜ ⎟
⎝ ⎠

= = + = + =

= =

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

= + =

 

 
(b)  We have that at critical point B (14-14) 

 

( )
( )

max 3

max 3

16

0.0420.094 0.115 in.
2 2

0.115 1.22
0.094

16 5.0 0.28
1.22 117,411 psi

0.042

B iB

mB
iB mB iB

iB

iB

B

FRk
d

r dk r r
r

k

τ
π

τ
π

−

−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= = + = + =

= =

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

 

(c)  For ASTM A227 wire Su = 250,000 psi, thus we have 
 

250,000 1.16
215,234ex An − = =  

 
This does not meet the safety factor specification of nd = 1.25, therefore, it is not acceptable at A.  Checking point B, 
using the distortion energy theory gives 
 

( )0.577 250,000
1.23

117,411ex An − = =  

 
This is close but still does not meet the specification of nd = 1.25, therefore, it is not acceptable. 
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14.13.  A battery powered nail gun uses two helical coil compression springs to help propel the nail from the end of 
the gun. When the springs are in the fully extended position as shown I Figure 14.13 (a), the 2 oz hammer and nail 
are traveling at 90 ft/s. In this position, both springs are in their free length position (for the initial design, these are 
assumed to be 2.0” for the upper spring and 2.5” for the lower spring). Due to mechanical advantage, the force 
exerted on the hammer by the trigger is 40 lb and the hammer displaces the spring 1.0” when completely 
compressed as shown in Figure 14.13 (b). Neither spring can have an outside diameter greater than 3/8”.  Assuming 
that each spring has a shear modulus 612 10  psiG = × . Define an initial design the two springs, specifying for each, 
the parameters: wire type, d, D, c, and N.  Also, note any potential problems and suggest modifications that could be 
used. 
 

 
 
 
 
 

 
 
 

 
                      (a)                                                                                                               (b) 
 
 
Figure 14.13 
Schematic of a battery powered nail gun. 
 
 
-------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 Note that the following is one of many possible solutions.  
 
Begin by defining the spring rate for each spring. Knowing the exit 
velocity ( 90 ft/s 1080 ft/s= ) and weight, we can write 
 

                
2 2 2 2

2

1 1 1 2 1 1: (1080)
2 2 2 16 32.2(12) 2

              377.33 lb-in

mv kx kx

kx

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=

 

 
The springs are in parallel, so the spring rate shown above is a linear 
combination of the spring rates for each spring ( 1 2k k k= + ). The total displacement of each spring is identical 
( 1.0"x = ), therefore 
 
                         ( ) 2

1 2 1 2(1.0) 377.33 lb-in 377.33k k k k+ = ⇒ + =  
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At this point we have the option to have equal or different spring rates for each spring. The basic equation for spring 
rate can be written in different forms, as shown below. 
 

                                   
4 4

3 3 364 8 8
d G d G dGk
R N D N c N

= = =  

  
The third form of this equation is perhaps the most useful for our purposes. We can write 
 

1
1 3

1 18
d Gk
c N

=  and  2
2 3

2 28
d Gk
c N

= , so 1 2
3 3
1 1 2 2

377.33
8 8

d d G
c N c N

⎛ ⎞
+ =⎜ ⎟⎜ ⎟

⎝ ⎠
, so 61 2

3 3
1 1 2 2

252 10d d
c N c N

−+ ≈ ×  

 
On option is to assume each spring has the same spring rate, so we could write 
 

                                             61 2
3 3
1 1 2 2

126 10d d
c N c N

−= = ×  

 
Another option is to assume the springs are identical except for the number of turns. Assuming 

1 2 1 2 and  d d d c c c= = = = , which gives  
 

                                            6
3

1 2

1 1 252 10d
N Nc

−⎛ ⎞⎛ ⎞ + = ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
The latter expression will be used to define each spring. The spring index range of values is 4  12c≤ ≤ , so we begin 
by arbitrarily assuming 4c = , which yields 
 

                            6
3

1 2 1 2

1 1 1 1252 10 0.0161
4
d d

N N N N
−⎛ ⎞ ⎛ ⎞⎛ ⎞ + = × ⇒ + =⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
The outside diameter can’t be larger than 3/8”.  Assuming that buckling may become a problem we select 

0.375oD = . The mean diameter is 0.375oD D d d= − = − . Having selected / 4c D d= = , we determine 
 

                               0.375 4 0.375 5             0.075"d d d
d
−

= ⇒ = ⇒ =  

 
The closest standard wire diameter size to this is 0.076"d = . We tentatively have  
 
                                                         0.076" , 0.304" , 4d D c= = =  
 
 The number of turns is determined from 
                          

                       6
3 3

1 2 1 2 1 2

1 1 0.076 1 1 1 1252 10 0.212
4

d
N N N N N Nc

−⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ = + = × ⇒ + ≈⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

 

            
Since spring 2 (the lower spring) is longer than spring 1, we assume that there are more turns in the lower spring 
than in the upper spring. Arbitrarily assume 1 8N = . This results in 
 

                                   2
2

1 1 0.212 11.49 12
8

N
N

+ = ⇒ = ≈  

 
For now we use 1 8N =  and 2 12N = . 
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With 4c = , 1.404wK = .  Each spring will experience a force of 20 lb, so the maximum shear stress will be 
 

                                   max 3 3
16 16(20)(0.152)1.404 49,519 50 ksi

( ) (0.076)w
FRK
d

τ
π π

⎛ ⎞ ⎛ ⎞
= = = ≈⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
 
This is sufficiently small so that material selection should not be a problem. We initially assume that music wire will 
be used, resulting in 
 
                           ( ) 0.1625184.6 0.076 280.6 ksiutS −= =  
 
Approximating  ( )0.4 0.4 280.6 112.2 ksiyp utSτ = = = , we get an existing factor of safety of 112.2 / 50 2.24exn = = , 
which is adequate. 
 
 
Buckling 
 
Since the free length of each spring 1is 2.0"fL = , we determine from Figure 14.11 that for possible buckling 

analysis we have / 6.57fL D ≈  and if both ends are fixed / 0.3 0.6"cr f cry L y≈ ⇒ ≈ . Since our spring 
displacement is 1”, buckling is probably not a problem.  The free length of spring 2 is greater than that of spring 1, 
so buckling may be a problem with that spring too. The free lengths of the springs could be shortened so that /fL D  

decreases and /cr fy L  increases.  
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14-14   A conical compression spring is made from 3-mm-diameter steel wire and has an active coil diameter that 
varies from 25 mm at the top to 50 mm at the bottom. The pitch (distance between coils) is 8 mmp = throughout. 
There are four active coils. A force is applied to compress the spring and the stress always remains in the elastic 
range.  
 

a. Determine which coil (top or bottom, or one in the middle) deflects to zero pitch first as the force is 
increased. 
b. Determine the force corresponding to the deflection identified in part (a). In other words, determine the 
force causing displacement of 8 mm. 

 
 
--------------------------------------------------------------------------------------------------------------------------------------- 

Solution        
4 4

3 364 8
F d G d Gk

R N D Nδ
= = =  

 
a. The spring constant k is proportional to 4 3/d D  and d is constant. At the top of the spring 

( ) ( )34 3/ 3 3/ 25 0.005184
top

d D = = and at the bottom ( ) ( )34 3/ 3 3 / 50 0.000648
bottom

d D = = . This means that 

the largest active coil has the smallest k .  
 

                              Therefore the bottom coil deflects 8 mm to zero pitch first. 
 

 

b.    
( ) ( )( )

( )

4 94

3 3

0.003 79 10 0.008
51.2 N

8 8 0.050 (1)
d GF
D N

δ ×
= = ≈                                     51.2 NF =  
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14-15.  A helical-coil compression is made form music wire has a rectangular cross section with dimensions a b×  
as shown in Figure P14.15. Assume the maximum shear stresses due to torsion and transverse shear exist at the 
same point on the rectangular cross section. Assume dimensions a and b are related by the relationship b na= , 
where 0.25 2.5n≤ ≤ . Similarly, define a spring index for rectangular cross section springs as /c D a= . 

 
a. Develop the expression for the maximum shear stress as a  function of the applied load F, and the parameters 

a, n, and c. Reduce the equations to its simplest form. 
b.  The parameter K in Table 4.4 represents the polar moment of inertia. Beginning with equation (14-19), 
develop an expression for the stiffness of this spring in terms of the dimension a  and c. 
c.  Assuming a mid-range spring index ( 8c = ), the Whal factor for a circular wire spring is 1.184wK = .  

Assuming the cross-sectional area of a circular and rectangular spring are identical, we can show that 
2 24d naπ = .  Using this information, plot /circ rectτ τ  vs n and /circ rectk k  vs n for 0.25 2.5n≤ ≤  

 
 
Figure P14.15  
Helical coil compression spring with rectangular cross 
section. 
 
 
 
 
 
 
 
 
 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
  (a)  A free body diagram of a spring coil shows that a torque and a transverse shear are 

present. Using Table 4.3 for a rectangular section, the direct shear stress due to 
transverse shear is  

 

                        2
3 1.5 1.5
2dir

F F F
A ab na

τ = = =  

 
The shear stress due to torsion is / /T T Q FR Qτ = = . Using Table 4.4 for a rectangular section and noting the 
differences in dimensions between our problem and those given in Table 4.4, we determine 
 

                      
( ) ( )
( ) ( )

( ) ( )222 2 2 2 30.58 / 2 / 2 0.5 0.5
3 / 2 1.8 / 2 1.5 0.9 1.5 0.9 1.5 0.9

naa b ab n aQ
b a b a na a n

= = = =
+ + + +

 

 
The shear stress is therefore 
 

 
( ) ( ) ( )2 2 3 2 2 2 3

1.5 0.9 1.5 0.91.5 1.5 1.5 3 1.8 1.5
0.50.5T dir

FR n R nFR F F F F R n na
Q nana n a na na n a

τ τ τ
⎡ ⎤+ +

⎡ ⎤= + = + = + = + = + +⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦
 

    
Since / 2 /c D a R a= = , we replace R with / 2R ca=  
 

( ) ( ) [ ]2 3 2 3 2 2( / 2) 3 1.8 1.5 1.5 0.9 1.5 1.5 ( 1) 0.9F Fa Fca n na nc c n n c c
n a n a n a

τ ⎡ ⎤ ⎡ ⎤= + + = + + = + +⎣ ⎦ ⎣ ⎦  
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( )

[ ]2 1.5 ( 1) 0.9F n c c
na

τ = + +  

 
 
(b) Given   

             
4 4

3 3
4 4

16 / 2 ( / 2) 16 ( / 2)( / 2)( / 2) 3.36 1 ( / 2)( / 2) 3.36 1
3 / 2 312( / 2) 12( / 2)

a a a aK J b a na a
b anb na

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= = − − = − −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

 

               
4 4 4

4 4
4 4 4

16 3.36 1 0.01751 0.21 1 0.21
16 3 3 312( ) 12
na a na nK a a

n na n n

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤= − − = − − = − +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦
 

 
From (14-19) 
 

      
( )22 3 3

4 4
4 4 4

( / 2) 2 ( / 2) ( )
0.0175 0.0175 0.01750.21 4 0.21 4 0.21

3 3 3

F ca ca NFR L F ca N Fc Ny
n n nGJ Ga Ga Ga

n n n

π π π
= = = =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤− + − + − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 

             
( )

5 4

5 444

3 3 3 4

0.63 0.05250.0175 44 0.21 4 0.63 0.052533
3

n nn GaGa Ga n nnF nk
y c N c N c n Nπ π π

⎡ ⎤− +⎡ ⎤ ⎢ ⎥− +⎢ ⎥ − +⎢ ⎥⎣ ⎦ ⎣ ⎦= = = =  

 

                                                                                                                  
( )5 4

3 4

4 0.63 0.0525

3

Ga n n
k

c n Nπ

− +
=  

 
     
 

(c)    Since 8 2 /c R d= = , 3 2
16 (4 ) 18.9441.184circ

F d F
d na

τ
π

= = ,    
( )

[ ]2 1.5 ( 1) 0.9rect
F n c c

na
τ = + +     

           

( )
[ ] [ ]

22

2

2

18.944
18.944 ( ) 18.944

1.5 ( 1) 0.9 1.5 ( 1) 0.91.5 ( 1) 0.9

circ

rect

F
F na nna

F F n c c n c cnan c c
na

τ
τ

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟⎜ ⎟+ + + +⎝ ⎠⎝ ⎠+ +
 

               
4

3 364 8circ
d G dGk
R N c N

= =                     
5 4

4

3 4 3

0.01754 0.21 4 0.63 0.05253
3rect

nGa Ga n nnk
c N n c Nπ π

⎡ ⎤− + ⎡ ⎤⎢ ⎥ − +⎣ ⎦ ⎣ ⎦= =  

 

           
( )

( ) ( )
4 3 43

5 4 5 43 5 4

4 3

3 38
4 0.63 0.0525 32 0.63 0.05258 4 0.63 0.0525

3

circ

rect

dG
dG n c Nk d nc N

k Ga n n a n nc N Ga n n

n c N

π π

π

= = =
⎡ ⎤ ⎡ ⎤− + − +⎡ ⎤− +⎣ ⎦ ⎣ ⎦⎣ ⎦

 

             
               Using  2 24 2 /d na d a nπ π= ⇒ =  
 

                                 
( )

4 4

5 45 4

3(2 / ) 0.1875
0.63 0.052532 0.63 0.0525

circ

rect

k a n n n n
k n na n n

π π π
= =

− +− +
 

 



 493

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.5 1 1.5 2 2.5

n

Ta
u_

ci
rc

/T
au

_r
ec

t

 
 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5

n

k_
ci

rc
/k

_r
ec

t

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 494

14-16.   For the helical-coil tension spring of problem 14-12, calculate the maximum stress in the main body of the 
spring, away from the ends, and identify where the critical point occurs.  If the wire material is ASTM A227, would 
failure of the spring wire be expected? 
 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
Assuming that the tension spring does not have a built-in preload of more than 5.0 lb, the maximum stress in the 
main body of the spring at the inner coil radius at mid-height of the wire, and would be given by (14-12) as 
 

( )

( )( )
( )

max 3

max 3

16

2 0.282 13.3
0.042

1.107 (Table 14.5)

16 5.0 0.28
1.107 106,540 psi

0.042

w

w

FRK
d

RC
d

K

τ
π

τ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= = =

=

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

 

 
From Figure 14.4, for ASTM A227 material, for a wire diameter of 0.042 in, Sut = 245,000 psi.  Thus, using the 
distortion energy theory 
 

( )0.577 245,000
1.32

106,540exn = =  

 
So failure would not be expected. 
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14-17.  A round wire helical-coil tension spring is to be used as a return spring on a cam-driven lever, as shown in 
Figure P14.17. The spring must be pretensioned to exert a 45 N force at the “bottom” of the stroke, and should have 
a spring rate of 3500 N/m. The peak-to-peak operating deflection for this spring is 25 mm. The spring is made form 
a patented steel-alloy which has 1380 MPautS = , 1311 MPaypS = , and a fatigue endurance limit of 

621 MPafS = . It is desired to have a spring index of 8c = , and a design factor of safety of 1.5dn = . Design a 
light weight spring for this application. Specifically determine the wired diameter (d), the mean coil radius (R) and 
the number of active coils (N). 
 
                 (USE EXISTING FIGURE P14.14 – Change numbering to P14.17 and change dimensions as shown) 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

1380 MPautS = , 1311 MPaypS = , 621 MPafS = , 8c = , 1.18WK = (from Table 14.5), 1.5dn = , 

max min 25 mmopy y y= − = , 3500 N/mreqk = , min 45 NpreloadP P= =  
 

                                           max 3
16 max

W
P R

K
d

τ
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 

                                           min
min

45 0.01286 m 12.86 mm
3500

Py
k

= = = =  

                                           max min 25 37.86 mmy y= + =  
                                           max max 3500(0.03786) 132.5 NP ky= = =  
 
Since 2 / 8c R d= = , we can write 4R d= , resulting in 
 

                                          max 3 2
16(132.5)(4 ) 31851.18 d

d d
τ

π
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 
Using distortional energy 
 

                              ( )max
max

0.577
0.385

1.5
fm N

d N
d

S
S

n
τ

τ −
−= = =  

 
From Chapter 5 
 

                                  max 1
f

N
t t

S
S

m R− =
−

 for max0 and fm
m N yp

d
S S

n
τ

σ −≥ = ≤  

 

where  1380 621 0.55
1338

ut f
t

ut

S S
m

S
− −

= = =  and ( )
max max

132.5 45 / 2
0.67

132.5
m m

t
P

R
P

σ
σ

+
= = = =  

 

                              max
621 983 MPa 1311 MPa

1 0.55(0.67)N ypS S− = = < =
−

 

Therefore 0.385(983) 379 MPadτ = ≈ . This yields 
 

                                 6
2

3185 379 10 0.00289 m 3 mmd
d

= × ⇒ = ≈  
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This is a nonstandard size. The closest standard size to this (from Table 14.2) is 3.5 mmd = . Therefore 
 
                                    8 2 / 8(3.5) / 2 14 mmc R d R= = ⇒ = =  
 
The number active coils is 
          

                    
( )44 4

3 3 3

(0.0035) 79 109
16.5

64 64 64(0.014) (3500)
d G d Gk N
R N R k

×
= ⇒ = = =  

 
 
                                                     3.5 mmd = , 14 mmR =   16.5N = active coils 
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14--18.   The round wire helical-coil tension spring shown in Figure P14.18 is to be used to make a return spring for 
a pneumatically actuated lever that operates between fixed stops, as shown.  The spring must be pretensioned to 25 
lb at the bottom stop (minimum load point), and operates through a total spring deflection of 0.43 inch, where I is 
halted by the upper stop, then returns to the lower stop and repeats the cycle.  The spring is made of No.12 wire 
(0.105- inch diameter., has a mean coil radius of 0.375 inch, and has been wound with 15 full coils plus a turned-up 
half loop on each end for attachment.  Material properties for the spring wire are Su = 200,000 psi, Syp = 185,000 psi, 
e (2 inches) = 9 percent, Sf = 80,000 psi, E = 30 x 106 psi, G = 11.5 x 106 psi, and ν = 0.30.  Compute the existing 
safety factor for this spring, based on an infinite-life design criterion. 
 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The factor of safety extended to shear loading is 
 

( )
max max

ffm N
exn

ττ
τ τ

=∞= =  

 
Using distortion energy theory ( ) max0.577f NN

Sτ −=∞
= and using (5-70) 

 

max maxfor 0 and
1

f
N m N yp

t t

S
S S S

m R
σ− −≥ ≤

−
 

where 
 

( ) ( )
( )

( ) ( )( )

( ) ( )
( ) ( )

m m

max max

max min

4 6

3

4 6

3

200,000 80,000 0.6
200,000

25 0.43

0.105 11.5 10

64 0.375

2 0.1 0.2 Figure14.10

15 0.2 15.2

0.105 11.5 10
27.25 lb/in

64 0.375 15.2

u f
t

u

t

op

e

c e

S S
m

S
P

R
P

P P k k

k
N

N b

N N N

k

σ
σ

δ

− −
= = =

= =

= + = +

×
=

= =

= + = + =

×
= =
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( )

( )( ) ( )

( ) ( )
( )

( )
( )

max

max

max

25 0.43 27.25 36.7 lb
36.7 25 30.9 lb

2
30.9 0.84
36.7

80,000 161,300 psi 185,000 psi
1 1 0.60 0.84

0.577 161,300 93,100 psi

2 0.3752 7.14
0.105

1.21 Table 14.5

16 36.7 0.37
1.21

m

t

f
N yp

t t

f N

w

P

P

R

S
S S

m R

RC
d

K

τ

τ

−

=∞

= + =

+
= =

= =

= = < =
− −

= =

= = =

=

=
( )

( )3

5
73,263 psi

0.105

93,100 1.27
73,263exn

π

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠

= =
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14--19.   A round wire open-coil helical-coil spring is wound using No. 5 patented steel wire (d = 0.207 inch), with a 
mean coil radius of 0.65 inch.  The spring has 15 active coils, and its free height is 6.0 inches.  The material 
properties for the spring wire age given in Figure P14.19.  The spring is to be used in an application where it is 
axially deflected 1.0 inch from its free height into tension, then 1.0 inch from its free height into compression during 
each cycle, at a frequency of 400 cycles per min. 
 

a. Estimate the expected life in cycles before this spring fails. 
b. Would buckling of this open-coil spring be expected? 
c. Would you expect surging of the spring to be a problem in this application? 
d. How much energy would be stored in the spring at maximum deflection? 

 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) Noting that the deflection is completely reversed, the loading is completely reversed, the stressing is 
completely reversed, and therefore, the S-N curve of Figure P14-19 is directly applicable by using a failure 
theory to relate shearing stress to direct stress.  Choosing the distortion energy theory max max0.577τ σ= .  
Using (14-22) 

 
( )( ) ( )

( ) ( )
( )

( )
( )( )
( )

4 64
max

max 3 3

max 3

max
max

1.0 0.207 11.5 10
75.6 lb

64 64 0.65 15

2 0.652 6.28
0.207

1.24 Table 14.5

16 75.6 0.65
1.24 34,990 psi

0.207

34,990 60,640 psi
0.577 0.577

w

d G
P

R N

RC
D

K

δ

τ
π

τ
σ

×
= = =

= = =

=

⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

= = =

 

 
Using this value in Figure P14.9, we see that infinite life is expected. 

 
(b) Using Figure 14.11 and noting  
 

( )
max

6.0 4.6
2 2 0.65

1.0 0.17
6.0

f

f

L
SR

R
y
L

= = =

= =
 

 
If this point is plotted, whether buckling occurs depends on end fixity.  If both ends are pivoted, buckling 
might occur.  Experimental verification should be specified if buckling is an important issue. 

 
(c) From (14-27) 

 

( ) ( )
( ) ( )2 2

3525 0.2073525 115.1 Hz
0.65 15

6910 cpm

h steel

h

df
R N

f

= = =

=

 

 
Since fop = 400 cpm, surging should not be a problem. 
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(d) From (14-61) 
 

( )max max 75.6 1.0
37.8 in-lb

2 2
P

U
δ

= = =  
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14-20.  A helical-coil spring is to be wound using 3.5 mmd = wire made from a proprietary ferrous alloy for 
which 1725 MPautS = , 1587 MPaypS = , ( )50 mm 7%e = , 210 GPaE = , 79 GPaG = , and 0.35ν = . It is 
desired to use the spring in a cyclic loading situation where the axial load on the spring during each cycle ranges 
from 450-N tension to 450-N compression. The spring deflection at maximum load must be 50 mm. A spring with 
18 active coils is being proposed for the application. 
 

a. Compute the existing safety factor for this spring based on an infinite-life design criterion. Comment on 
the results. 

b. If the spring is wound so that when it is unloaded the space between coils is the same as the wire 
diameter, would you expect buckling to be a problem? (Support your answer with appropriate 
calculations.) 

c. Approximately want maximum operating frequency should be specified for this mechanism? 
 
----------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a)   3.5 mmd = , 1725 MPautS = , 1587 MPaypS = , 210 GPaE = , 79 GPaG = , 18N = , max 450 NP = ,   

        min 450 NP = − , max 50 mmy =  
 

                                       
( )

max

f N
exn

τ

τ
=∞=  

 
where, using the distortional energy theory, ( ) 0.577f fN

Sτ
=∞

= . Since only static properties are known, we 

approximate the S-N curve. By rule of thumb, 6100 ksi (690 MPa) at 10  cyclesfS =  if 

200 ksi (1380 MPa)utS > . Therefore ( ) 0.577(690) 398 MPaf N
τ

=∞
= = . The required spring rate is 

 

                                        max

max

450 9000 N/m
0.050

P
k

y
= = =  

 
Next 
 

                          
( )44

3 6
3 3

(0.0035) 79 109
9000 1.143 10

64 64 (18)
d Gk R
R N R

−×
= ⇒ = ⇒ = ×  

 
                                                     0.0105 m 10.5 mmR = =  
 
Using 2 / 21/ 3.5 6c R d= = =  we determine 1.253WK = (from Table 14.5), which results in 
 

                                            max 3
16(450)(0.021)1.253 1406 MPa

(0.0035)
τ

π

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
 

 

                                           398 0.283
1406exn = =  

 
Since 0.283exn =  we can not expect infinite life and the spring must be redesigned. 
 

 
(b)  Using Figure 14.14 and noting 
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[ ]
( )

2 18(3.5)2( ) 126 6
2 2 2 10.5 21

fL NdSR
R R

= = = = =  

 
and 
 

                              max 50 0.397
126f

y
L

= =  

 
Buckling could be a problem if the ends are hinged. Experimental verification should be considered. 

 
 
(c) From (14-26) 
 

                                  2 322n
d Ggf

wR Nπ
=  

 
For steel  376.81 kN/mw = (from Table 3.4) 

 

              
( )( )

( )

9

2

79 10 9.81)0.0035 0.5614 315 303 315.2 cps
32 768102 (0.0105) (18)nf π

×
= = =  

 
Using the guideline following (14-27) 
 

                                ( )max

315.2 177 cps
15 15

n
op

f
f = = ≈  
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14--21.   For a simply supported flat-beam spring of rectangular cross section, loaded at midspan, answer the 
following questions: 
 

a. What is the primary stress pattern in the beam spring? 
b. Is it uniaxial or multiaxial? 
c. If there are secondary stresses to be considered, what are they? 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 

(a) The primary stress pattern in a flat beam spring is bending. 

(b) Bending stress is uniaxial. 

(c) Transverse shear is a secondary stress in a flat beam spring. 
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14-22.   Derive a general expression for the maximum stress in an end-loaded multileaf cantilever spring with n 
leaves, each having a thickness t and width 1b .  Assume a spring with 1862 MPaypS = , 1 100 mmb = , 10 mmt = , 
and an end load of 400 NP = . Plot the allowable length of the spring as a function of the number of leaves for 
1 5n≤ ≤ . 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For flexure /x xMc Iσ = , where for a cantilever beam with an end load M Px=  , / 2c t= , and 3 /12x xI z t= . In 
addition  
 

                                        1

1

x
x

z nb xx z
nb L L

= ⇒ =  

 
Therefore 
 

                                   
3

1

12x
nb tI x

L
=  

 
Resulting in 
 

                                    3 3
1 1

( / 2) 6

12

x
Px t PL
nb t nb tx

L

σ = =  

 
Given the date in the problem statement 
 
                             

6
3

6(400)1862 10 0.0776
(0.1)(0.01)

L L n
n

× = ⇒ =  
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14--23.   Derive an equation for the spring rate of an end-loaded multileaf cantilever spring with n leaves, each 
having a width b1 and thickness t. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Referring to Figure 14.13: 
 

( )

( )

32
1

2
1

3
1

2

2 3 3
1 1

, , width at x from free end
123

12
12 12

x x
x x

x

x

z t z nb xd y Px xI z
EI nb L Ldx

nb t
I x

L
Px Ld y PL

dx Enb t x Enb t

= = = → =

=

= =

 

 
Integrating gives 
 

13
1

2

1 23
1

12

12
2

dy PL x C
dx Enb t

PL xy C x C
Enb t

= +

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠

 

 
The boundary conditions are:  dy/dx = 0 at x = L and y = 0 at x = L.  Thus, 
 

( )

2 2 2

1 23 3 3
1 1 1

3

2 3
1

2 3
2

3 3 3
1 1 1

3

3
1

3
1
3

12 12 120
2

12
2

12 12 12
2 2

6 , at the free end: 0

6

PL PL PLC and L C
Enb t Enb t Enb t

PLC
Enb t

PL PL PLy x x
Enb t Enb t Enb t

PLy x
Enb t

Enb tPk
y L

⎛ ⎞
= = + − +⎜ ⎟

⎝ ⎠

=

= − +

= =

= =
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14-24.     A horizontal cantilever-beam spring of constant rectangular cross section is loaded vertically across the 
free end by a force that fluctuates cyclically from 4.5 kN down to 22.5 kN up. The beam is 125 mm wide and 250 
mm long. The material is a ferrous alloy with 970 MPautS = , 760 MPaypS = , and 425 MPafS =  . A design 

factor of safety of 1.5dn =  is required, stress concentration factors can be neglected, and an infinite life is required. 
Determine the required beam thickness.    
 
------------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

970 MPautS = , 760 MPaypS = , 970 MPautS = , 

max 22.5 kNP = ↑ , min 4.5 kNP = ↓ , 1.5dn = , dN = ∞  
 
 
Fatigue is the probable failure mode and there is non-zero mean loading. 
 

             max 1
f

N
t t

S
S

m R− =
−

 for max0 and fm
m N yp

d
S S

n
τ

σ −≥ = ≤  

 

where  970 425 0.562
970

ut f
t

ut

S S
m

S
− −

= = =  and ( )
max max

22.5 4.5 / 2
0.40

22.5
m m

t
P

R
P

σ
σ

−
= = = =  

 

                   max
425 548.2 MPa 760 MPa

1 0.562(0.4)N ypS S− = = < =
−

 

 

                  max 548.2 365.5 MPa
1.5

N
d

d

S
n

σ −= = =  

 
At the critical point, point A 
 

                [ ] 3

max 2 2 2

6 (22 500)(0.25)6 270 10
0.125

Mc M
I bt t t

σ ×
= = = =  

                  
3

6
2

270 10365.5 10 0.0272 mt
t
×

× = ⇒ =                       27.2 mmt =  
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14--25.   A horizontal simply supported multileaf spring is to be subjected to a cyclic midspan load that fluctuates 
from 2500 lb down to 4500 lb down.  The spring is to have 8 leaves, each 3.0 inches wide.  The distance between 
shackles (simply supports) is to be 22.0 inches.  Properties of the selected spring material are given in Figure 
P14.25. 
 

a.  Neglecting stress concentration effects, how thick should the leaves be made to provide infinite life, with a 
design safety factor of 1.2? 

b. What would be the spring rate of this spring? 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) Noting that fatigue is the probable failure mode, and non-zero mean loading is imposed, from (5-70) 
 

( )( )

max max

max max

max

for 0 and
1

140,000 70,000 0.5
140,000
4500 2500

2 0.78
4500

70,000 114,750 psi
1 0.5 0.78

f
N m N yp

t t

u f
t

u

m m
t

S
S S S

m R
S S

m
S

P
R

P

S

σ

σ
σ

− −

−∞

= ≥ ≤
−

− −
= = =

+⎛ ⎞
⎜ ⎟
⎝ ⎠= = = =

= =
−

 

 
Note that 114,750 > Syp = 110,000 psi so the above is not valid and Smax-∞ = Syp = 110,000 psi.  Therefore, 
the design stress σd is 

 

( )( )
( )( )

( ) ( )
( )( )( )

max

max
max 2 2

1

110,000 91,670 psi
1.2

3 4500 223
2 2 8 3.0

3 4500 22
0.26 in.

2 8 3.0 91,670

d
d

x

S
n

P L
nb t t

t

σ

σ

−∞

−

= = =

= =

= =

 

 
(b) From (14-49) 

 

( )( ) ( )( )
( )

36

3

8 30 10 8 3.0 0.26
3169.2 lb/in

3 22
k

×
= =  

 
 
 
 
 
 
 
 
 
 
 



 508

14-26.   A multileaf simply supported truck spring is to be designed for each rear wheel, using AISI 1095 steel 
( 1379 MPautS = , 952 MPaypS = , 690 MPafS = ). The truck weight is 16 kN, with 65% of the weight on the rear 
wheels. The static midspan deflection is 100 mm and the maximum midspan deflection during operation is 200 mm. 
The loading may be considered to be released cyclic loading. The length of the spring between supports must 
between 1.2 meters and 1.6 meters. It has been decided that a design factor of safety of 1.3dn = should be used. 
Design a leaf spring to meet these requirements if infinite life is desired. 
 
------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
                       1379 MPautS = , 952 MPaypS = , 690 MPafS =  
 
Since 65% of the truck weight is on the 2 rear springs, the static load supported by each spring is 
 

                                                 0.65(16) 5.2 kN
2sP = =  

 
Since the midspan static deflection is 100 mm, the spring rate is 
 

                                                5.2 52 kN/m
0.1

s

s

P
k

y
= = =  

 
The maximum load will be max max 52 (0.20) 10.4 kNP ky= = = . By specification, the loading is considered releases 
cyclic, so min 0P = .  To assess fatigue we use 
 

                       max 1
f

N
t t

S
S

m R− =
−

 for max0 and fm
m N yp

d
S S

n
τ

σ −≥ = ≤  

 

where  1379 690 0.50
1379

ut f
t

ut

S S
m

S
− −

= = =  and ( )
max max

10.4 0 / 2
0.50

10.4
m m

t
P

R
P

σ
σ

+
= = = =  

 

                   max
690 920 MPa 952 MPa

1 0.50(0.50)N ypS S− = = < =
−

 

 
The design stress is therefore 
 

                                  max 920 708 MPa
1.3

N
d

d

S
n

σ −= = =  

 
The maximum normal stress in a multileaf spring is  
 

                                  
( )3

2 2 2
1 1 1

15.6 103 3(10.4)
2 2x

LPL L
nb t nb t nb t

σ
×

= = =  

 
Equating this to the design stress 
 

                   
( )3

6 2 6
2

11

15.6 10
708 10 22 10

L Lt
nbnb t

−
× ⎛ ⎞

× = ⇒ = × ⎜ ⎟
⎝ ⎠
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The spring rate ( 52 kN/mk = ) is  
 

                               
( )9 33 313 91 1

3 3 3

8 207 10852 10 94.2 10
3 3

nb tEnb t nb tk
L L L

−
×

= × = = ⇒ = ×  

 
Substituting the expression for 2t  from above 
 

                   

6
1

1 9
3 2

22 10
94.2 10 0.00428

Lnb t
nb t

L L

−

−

⎡ ⎤⎛ ⎞
×⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦ = × ⇒ =  

 
From the problem specifications, 1.2 m 1.6 mL≤ ≤ . Select the midrange value, so that 1.4 mL = . This give 

0.00838 m 8.38 mmt = = . This is not a standard length, so we select (from Table 14.4) 8.5 mmt = . Using these 
values for L and t 
 

                       2 6
1

1

1.4(0.0085) 22 10 0.4263nb
nb

− ⎛ ⎞
= × ⇒ =⎜ ⎟

⎝ ⎠
 

 
Selecting a standard width of 1 63 mmb =  from Table 14.4 we get  
 

                                           0.4263 6.77
0.063

n = =  leaves 

 
Since the number of leaves must be an integer, we try using 7 leaves, with 1 63 mmb = , giving 
 
                                          1 7(0.063) 0.441nb = =  
 
Sticking with the thickness of 8.5 mmt = , the length is 
 

                            
2 2

1
6 6

7(0.063)(0.0085) 1.45 m
22 10 22 10

nb tL
− −

= = =
× ×

 

 
This is well within the specified range for length. Therefore we end up with 
 
             1.45 mL = , 8.5 mm (a standard size)t = , 1 63 mm (a standard size)b = , 7 leavesn =  
 

                                  ( )
( )3

2max

15.6 10 (1.45)
710 MPa

7(0.063)(0.0085)xσ
×

= ≈  

 
The design stress was 708 MPadσ = , which would result in an existing factor of safety of 0.997en = . This is 
very close to the desired safety factor, so soliciting a second opinion before proceeding is probably a good idea. 
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14-27. A new revision of an “extreme sport” device that attaches to a persons feet and legs allows them to enhance 
the power of their legs for running, jumping, etc. Your company is trying to improve on the design, as conceptually 
shown in Figure P14.27 (a). For the initial phase of the design, you are to explore various spring configurations. The 
spring (section AB in the drawing) spans an arc of o60 and the arc length AB is initially assumed to be 600 mm long.  
Your company intends to make the spring out of a woven composite material with an elastic modulus of 

28 GPaE = and a yield strength of 1200 MPaypS = . Preliminary investigation has shown that you expect the force 
a “normal” user exerts at point A to be 1000 N down (Figure 14.27 (b)), which was established by considering 
normal walking and running gates, impact, trick maneuvers, etc.  For the most complex maneuver anticipated, you 
have approximated the required spring rate to be 3 kN/mk = . Two spring designs are being considered.  One is a 
rectangular section and the other is cylindrical  (Figure 14.27 (c)).  Your preliminary estimate for the width of the 
rectangular spring is 30 mmw = , which accounts for normal leg widths, possible interference, etc. Spring 
attachment point A is offset from attachment point B by an amount δ , which is not considered in this initial phase 
of design.  Considering only flexure, determine the required thickness of the rectangular spring and the 
corresponding diameter for a solid cylindrical spring. 
 
 
 
Figure P14.27 
Concept design for a new 
extreme sport 
mechanism. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
------------------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Since we consider only flexure of the spring, we use the model 
shown . Knowing that the length AB is 600 mm, we determine the 
radius of curvature of the spring to be 
 
   ( / 3) 600 573 mmR Rπ = → ≈  
 
Using Castigliano’s theorem, we define the moment in terms of the 
applied load as 
      
 ( )1 cosM RP θ= −  
 
The spring rate can be defined as / Ak P δ= , where is Aδ  determined  from /A ABU Pδ = ∂ ∂ .  Expressed in terms of 
the moment, this becomes 
    

 ( )
0

1 /AB
A

U M M P Rd
P EI

θ

δ θ
∂

= = ∂ ∂
∂ ∫    
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where  ( )/ 1 cosM P R θ∂ ∂ = − . Using this we write 

 

  
( )( ) ( )( ) ( )

3 / 3 2

0 0

/33 3

0

1 1 cos 1 cos 1

3 1                 2sin sin 2 0.055
2 4

AB
A

U PRRP R Rd cos d
P EI EI

PR PR
EI EI

θ π

π

δ θ θ θ θ θ

θ θ θ

∂
= = − − = −

∂

⎧ ⎫= − + =⎨ ⎬
⎩ ⎭

∫ ∫
  

             
The spring rate for both spring designs is therefore 

   

                           
9

9
3 3

18.18 18.18(28 10 ) 2706 10
(0.573)A

P EI Ik I
Rδ

×
= = = = ×  

    
For the rectangular spring, 3 3/12 0.03 /12rectI wt t= = . Therefore 
 

                         ( )
3

3 9 9 3 3 60.033 10 2706 10 6.765 10 0.4435 10
12

t t t −⎛ ⎞
× = × = × ⇒ = ×⎜ ⎟⎜ ⎟

⎝ ⎠
 

                                                                                                         0.0076  m 7.6  mmrectt = =  
 
For the cylindrical spring, 4 / 64rectI dπ= . Therefore 
 

                         ( )
4

3 9 9 4 4 93 10 2706 10 1.328 10 22.6 10
64
d d dπ −⎛ ⎞

× = × = × ⇒ = ×⎜ ⎟⎜ ⎟
⎝ ⎠

 

                                                                                                         0.01226  m 12.26  mmcyld = =  
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14--28.   A single-piece torsion bar spring of the type sketched in Figure P14.28 (a) is being considered by a group 
of students as a means of supporting the hood of an experimental hybrid vehicle being developed for intercollegiate 
competition.  The maximum length L that can be accommodated is 48 inches.  Figure P14.28 (b) illustrates their 
concept.  They plan to install the counterbalancing torsion bar spring along the hood-hinge centerline, with one of 
the 3-inch integral end-levers in contact with the hood, as shown.  The hood will then be raised until it contacts the 
45˚ hood stop; the 3-inch support lever on the opposite end will be rotated until the hood is just held in contact with 
the hood stop without any other external lifting force on the hood.  The support lever will next be given an 
additional rotation to lightly preload the hood against the stop, and then clamped to the supporting structure. 
 

a. Determine the diameter do of a solid-steel torsion bar that would counterbalance the hood weight and 
provide a 10 ft-lb torque to hold the hood against the stop shown, if the design stress in shear for the 
material is τd = 60,000 psi. 

b. At what angle, with respect to a horizontal datum, should the clamp for the 3-inch support lever be placed 
to provide the desired 10 ft-lb preload torque?  Neglect bending of the integral levers. 

c. Make a plot showing gravity-induced torque, spring torque, and net torque, all plotted versus hood-opening 
angle. 

d. Is the operating force, Fop, required to open or close the installed hood, reasonable for this design 
configuration?  What other potential problems can you foresee with this arrangement? 

 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) From (14-50), with di = 0 for a solid bar 
 

max 0 max
max 4 3

0 0

16 16T d T
d d

τ
π π

= =  

For a proper design set τmax = τd, giving 
 

( )
( )

maxmax 330

1616
60,000d

TT
d

πτ π
= =  

 
From the problem specification, and referring to Figure P14-28 

 

( ) ( )( )
( )

( )
( )

max

max

30

18sin 18sin 45 25 318 in-lb

10 12 120 in-lb

318 120 438 in-lb

16 438
0.33 in.

60,000

lift preload

lift hood

preload

T T T

T W

T

T

d

β

π

= +

= = =

= =

= + =

= =

o

 

 
(b) Total angle of twist in torsion bar to produce Tmax is  

 

( ) ( )
( )

max

4 64
0

0.33 11.5 10 in-lb279
32 32 48 rad

438 1.57 rad 90
279

total
tor

total

T
k

d G
k

L

θ

ππ

θ

=

×
= = =

= = = o

 

 
 

And, angle of twist in torsion bar to lift the hood until it just touches the hood stop is, 
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318 1.14 rad 65.3
279touchθ = = = o  

 
And, angle of twist in torsion bar to provide the 10 ft-lb preload after the hood touches the stop is, 

 
120 0.43 rad 24.6
279preloadθ = = = o  

 
Since the hood stop is at β = 45˚, the clamp angle γ for the 3-inch support lever should be installed at 

 
45 24.6 69.6preloadγ β θ= + = + = o  

 
(c) To plot gravity-induced torque (due to hood weight), spring torque, and net torque, all versus hood opening 

angle β, the following relationship may be developed from Figure P14-28, noting that CCW is positive and 
β = o when the hood is closed: 

 
( )

max

25 18cos 450cos

438 279
4 4

gr gravity

sp spring tor

net gr sp

T T in lb

T T T k

T T T

β β

π πβ β

= = = −

⎛ ⎞ ⎛ ⎞= = + − = + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= +

 

 
For increments of π/16 for β, the following table may be prepared: 

 
      β 

       rad         deg 
Tgr, 
In-lb 

Tsp, 
In-lb 

Tnet, 
In-lb 

Fop, 
lb 

(closed)  0             0 -450 657 207 5.8 
      “        π/16      11.25 -441 602 161 4.5 
     “         π/8         22.5 -416 548 132 3.7 
     “        3π/16      33.75 -374 493 119 3.3 
(open)      π/4         45 -318 438 120 3.3 
 
These values may be plotted as shown on the next page. 
 

(d) The force required to close the hood, Fop, (see Figure P14-28) is 
 

36
net

op
T

F =  

 
Noting Fop magnitudes shown in the table above, Fop appears to be a reasonable range.  One possible 
problem might be that when unlatched the hood may “jump” open and injure someone.  A damper may be 
required to slow the opening event. 
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14-29.  A single-bodied helical-coil torsion spring (see Figure 14.20) has a wire diameter of 1 mm and an outside 
coil diameter of 10 mm. The tightly coiled spring has 9.5 coil, with an end extension of 12 mma = from the coil 
center to the point of load application at each end. The spring material is a steel allow with 2030 MPautS = . 
 

a. Calculate the torsional spring rate for this spring 
b. If a torque 0.1 N-m were applied to this spring, what angular deflection (in degrees) would be expected? 

Neglect the contribution of end extensions. 
c. What maximum stress would be predicted in the spring wire under the 0.10 N-m torque? 
d. If a design safety factor of 1.5, based on minimum ultimate tensile strength, is desired, would the spring 

design be acceptable? 
 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

2030 MPautS = , 12 mma = , 1 mmd = , 10 mmD = , 9.5N = coils, 1.5dn =  
 
 

(a)    
( )4 94 4 (0.001) 207 10

0.034 N-m/rad
64 64( ) 64(9.5)(0.01 )tor
d E d Ek

L N D

ππ π
π π

×
= = = =  

 

(b)    o0.1 2.94 rad 168.3
0.034tor

T
k

θ = = = =  

 
(c)   Using 2 / 10 /1 10c R d= = = , the maximum normal stress, noting that 0.1 N-mPa T= = ,  is 
 

                   ( )
max 3 3

324 1 32(0.1)1.083 1103 MPa
4 4 (0.001)

Pac
c d

σ
π π

−⎛ ⎞= = =⎜ ⎟−⎝ ⎠
 

 

(d)  
max

2030 1.84
1103

ut
e

S
n

σ
= = =  

 
    The desired safety factor is exceeded, so the design is acceptable. One could go through and modify the 

specifications to get closer to 1.5dn = , but it is not essential that this is done. 
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14-30. A matched pair of torsional helical-coil springs, one left-hand and the other right hand,  is scheduled for use 
to counterbalance the weight of a residential overhead garage door.  The arrangement is sketched in Figure P14.30.  
The 1-inch-diameter rotating shaft is supported on three bearings near the top of the door, one bearing at each end, 
and one at midspan.  A small wire rope is wrapped around each of the pulleys to symmetrically support the weight 
of the door.  The 2.5-inch pulley radii are measured to the wire rope centerlines.  Each spring is wound from 
standard oil-tempered steel wire having a wire diameter of 0.225 inch, a mean coil radius of 0.89 inch, and 140 
turns, closely coiled.  The total length of wire-rope excursion from spring-unloaded position to door closed-position 
is 85 inches. 
 

a. Calculate the maximum bending stress in the springs when the door is closed, and tell where it occurs. 
b. What would be the heaviest garage door that could be counterbalanced using the arrangement of Figure 

P14.30 and this matched pair of springs. 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) Total shaft revolutions, ns, from door open (springs unloaded) to door closed (springs at max load torque) is 
 

( )
( )

( )
( ) ( )
( )( )

464

85 5.4 rev
2 2 2.5

2 2 5.4 34.0 rev

30 10 0.225 34.0
163.9 in-lb (each spring)

64 2 128 0.89 140

s
pulley

s s

s s

Ln
r

n

EI E d
M

L RN

π π

θ π π

θ π θ
π

= = =

= = =

×
= = = =

 

 
From (14-6) 
 

( )

( )
( )

( )
( )max 3

2 0.892 7.91
0.225

4 7.91 1 32 163.9
162,473 psi (at inner coil radius)

4 7.91 4 0.225

RC
d

σ
π

= = =

⎛ ⎞−
= =⎜ ⎟⎜ ⎟−⎝ ⎠

 

 
(b) Using the value of M from above and reviewing Figure P14-30 

 

( ) ( )
max

163.9
2

2 163.9
131 lb

2.5

door
p

door

W
r M

W

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

= =

 

 
(c) Since the springs are tightly wound, the free length may be approximated as  

 
( )140 0.225 31.5 inchesfL Nd= = =  

 
The weight of each spring may be estimated as (for steel springs with w = 0.283 Lb/in3), 
 

( ) ( )( ) ( ) ( )
22 0.225

2 2 0.89 140 0.283 8.8 lb
4 4spr
dW RN w

πππ π
⎛ ⎞⎛ ⎞
⎜ ⎟= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
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14-31.  As a diversion, a “machine design” professor has built a new rough-sawn cedar screened porch as an 
attachment to the back of his house.  Instead of using a traditional “screen-door spring” (closed-coil helical-coil 
tension spring) to keep his screen door closed, he has decided to use a helical-coil torsion spring of the single-bodied 
type shown in Figure 14.20(a).  He plans to install the spring so its coil centerline coincides with the door-hinge 
centerline.  The distance from the hinge centerline to the pull-handle is to be 32 inches, and his goal is to provide a 
handle-pull of 1 lb when the door is closed and a pull of 3 lb after the door has been rotated open through an angle of 
180˚ about its hinge centerline.  Tentatively, a standard No. 6 music wire has been chosen ( d = 0.192 inch) for the 
spring.  A design stress of σd = 165,000 psi has been calculated, based on yielding as the probable governing failure 
mode. 
 

a. Calculate the required mean coil radius for the spring. 
b. Find the initial angular preload displacement of the spring that will produce a 1-lb pull at the 

handle to open the door from its closed position. 
c. What would be the required number of active coils for the spring? 

 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) From (14-53), 
 

( ) ( )
( )( )

( )

max
max 3

33

max

324 1
4 4

165,000 0.1924 1 1.19
4 4 32 32 3 32

4.85
2 4.85

4.85 0.192 0.47 in.
2

d

P ac
c d

dc
c P a

c
Rc

d

R

σ
π

πσ π

−⎛ ⎞= ⎜ ⎟−⎝ ⎠

−
= = =

−

=

= =

= =

 

(b) From (14-54), 
 

( )( )
( ) ( )

( )( )
( ) ( )

( )

4 4 6

4 6

64 1 3264
0.016

0.192 30 10

64 3 32
0.048

0.192 30 10

0.048 0.016

98.2 in.
0.048 0.016

0.016 98.2 1.57 rad 90

closed
pre

open

open closed

pre

LP aL
L

d E

L
L

L L

L

θ
π π

θ
π

θ θ π

π
π

θ

= = =
×

= =
×

= +

= +

= =
−

= = = o

 

 
(c) The number of active coils would be, approximately, 

 

( )
98.2 33.3 coils

2 2 0.47
LN

Rπ π
= = =  
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14-32.   An unlabeled box of steel Belleville spring washers (all washers in the box are the same) has been found in 
a company storeroom.  As a summer-hire, you have been asked to analytically evaluate and plot the force-deflection 
characteristics of the spring washers.  The dimensions of the washers in the unlabeled box, with reference to the 
sketch of Figure 14.21, are as follows: 
 
 Do = 115 mm 
 Di = 63.9 mm  
    t =   2.0 mm 
    h =  3.0 mm 
 
Do the following: 

a. Estimate the force required to just “flatten” one of the Belleville washers. 
b. Plot a force-deflection curve for one of the washers using force magnitudes ranging from zero up 

to the full flattening force.  Characterize the curve as linear, nonlinear hardening, or nonlinear 
softening. 

c. Plot a force-deflection curve for two of the washers stacked together in parallel.  Characterize the 
curve as linear, nonlinear hardening, or nonlinear softening. 

d. Plot a force-deflection curve for two of the washers stacked together in series.  Characterize the 
curve as linear, nonlinear hardening, or nonlinear softening. 

e. Calculate the magnitude of the highest tensile stress that would be expected in the single washer of 
(b) above at the time that the applied load just “flattens” the washer. 

 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) From (14-59) 
 

( )

( )
( )

( )( )
( )

3

2 2
1

1

39 3 3

2 23

4
1
115 1.8
63.9

0.65 Table 14.9

4 207 10 3 10 2 10
2.54 kN

1 0.3 0.65 115 10

flat
o

o

i

flat

E htF
K D

D
D
K

F

ν

− −

−

⎛ ⎞
= ⎜ ⎟− ⎝ ⎠

= =

=

⎛ ⎞× × ×⎜ ⎟= =
⎜ ⎟− ×⎝ ⎠

 

 
(b) Using Figure 14.32, the following table may be constructed for h/t = 3/2 = 1.5: 

 
                                                               Table P14.32A – Single Washer 
 

F/Fflat F, kN y/h y, mm 
0 0 0 0 

0.2 0.51 0.07 0.21 
0.4 1.02 0.16 0.48 
0.6 1.52 0.25 0.75 
0.8 2.03 0.40 1.2 

0.97 2.46 0.60 1.8 
1.0 2.54 1.0 3.0 

 
The force deflection curve for one washer may be plotted from the table as follows: 
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This curve is no-linear so softening, based on Figure 4.21. 
 

(c) When stacked in parallel as shown here (ref. Fig 4.19), deflections are the same for both washers but forces 
add.  

 
 
So to plot a force-deflection curve utilizing 
Figure 14.22, read in a value of y/h, read out 
the corresponding value of F/Fflat, calculate F, 
double its magnitude, and plot 2F versus y to 
obtain the curve for 2 washers in parallel.  
Based on the data in Table P14.32A then the 
following table may be constructed. 

 

 
 

 
Table P14.32B – Two Washers in Parallel 

 
y, mm y/h F, kN 2F, kN 

0 0 0 0 
0.21 0.07 0.51 1.02 
0.48 0.16 1.02 2.04 
0.75 0.25 1.52 3.04 
1.2 0.40 2.03 4.06 
1.8 0.60 2.46 4.92 
2.5 0.83 2.64 5.28 
3.0 1.0 2.54 5.08 
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The force deflection curve may be plotted as shown. 
 

0 1 2 3 4

y, mm

0

1

2

3

4

5

6

2F
, 

kN
Two W asher in P arallel

 
It is noted that this curve would be classified as non-linear softening but is closer to linear up to a load around 3 kN. 
 
 

(d) When stacked in series as shown here 
(ref. Fig. 4.20), the forces are the same 
for both washers, but deflections add.  
So to plot a force deflection curve 
utilizing Figure 14.22, read in a value of 
F/Fflat, readout the corresponding value 
of y/h, calculate y, double its magnitude, 
and plot versus 2y to obtain the curve for 
two washers in series.  Based on data in 
Table P13.32A then, the following table 
may be constructed. 
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Table P14.32C – Two Washers in Series 
 

F, kN y, mm 2y, mm 
0 0 0 

0.51 0.21 0.42 
1.02 0.48 0.96 
1.52 0.75 1.5 
2.03 1.2 2.4 
2.46 1.8 3.6 
2.64 2.5 5.0 
2.54 3.0 6.0 

 
 
The force deflection curve is plotted as shown below 
 

0 1 2 3 4 5 6 7

2y, mm

0

1

2

3

F,
 k

N

Two W asher in S eries

 
 
This curve would also be classified as non-linear softening. 
 

(e) From (14-60), for a single washer 
 

( ) ( )3 3 23 2
1

4
2

21
i

C
o

EtyD h yK K K
t tK D

σ
ν

⎡ ⎤⎛ ⎞= + − −⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦
 

 
From Table 14.9 using Do/Di = 1.80 
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1

2

3

0.65
1.17
1.30

K
K
K

=
=
=

 

 
and for y = ymax = 3.00 mm we have 
 

( )( )( )( )
( )( ) ( )( ) ( )

9 3 3 3 3 3

33 2 3

4 207 10 2 10 3 10 63.9 10 3 10 3 101.3 2 1.3 1.17
2 100.65 115 10 1 0.3 2 2 10

837 MPa

Cσ
− − − − −

−− −

⎡ ⎤⎛ ⎞× × × × × ×⎢ ⎥⎜ ⎟= + − −
⎜ ⎟×⎢ ⎥× − ×⎝ ⎠⎣ ⎦

=

 

 
which is the highest tensile stress (at c.p. C; outer edge, lower surface) when washer is just flattened. 
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14-33.   Considering a solid square bar of steel with side-dimensions s and length-dimension L, would you predict 
that more elastic strain energy could be stored in the bar (without yielding) by using it as a direct tension spring 
axially loaded in the L-direction, or by using it as a cantilever-bending spring loaded perpendicular to the L-
direction?  Make appropriate calculations to support your predictions. 
 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
A direct tension spring, using (14-61) for the case where the force 
corresponding to incipient yielding, Pyp, is applied 
 

2
yp tens

tens

P y
U =  

 
where Pyp = Syp A and from (14-44) 
 

yp
tens

P L
y

AE
=  

 
So our equation becomes 
 

( ) ( )
2 2

2

2 2

2 2

yp yp yp yp
tens

yp yp

P P L S A S AL
U

AE AE

S S
AL s L

E E

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= =

 

 

 

 

 
 
 
 
As a cantilever bending spring, using (14-
61)  for the case where the force 
corresponding to incipient yielding, Pyp, is 
applied 
 

2
yp bend

bend

P y
U =  

 
 

 

 
 
From (4-7), with σmax = Syp 
 

( )
( )

( )

33

3

62

12

6

yp
yp yp

yp

yp
yp

sP LM c P L
S

I ss s

S s
P

L

⎛ ⎞
⎜ ⎟
⎝ ⎠= = =

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

=

 

 
From Table 4.1, case 8, 
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( )

( )

3 3

44

3
3

2

4

3 2 2
2

4

3
12

4
6 2

3
21 1

2 6 3 9 2

yp yp
bend

yp

yp

yp yp yp
bend

P L P L
y

EssE

S s
L

L S L
EsEs

S s S L S
U s L

L Es E

= =
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦= =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 
and  
 

Ubend = 1/9 Utens 
 
Hence, the direct tension member can store 9 times as much strain energy as the bending member, before yielding 
begins. 
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14-34. a.  Write the equations from which the form coefficient CF may be found for a simply supported center-
loaded multileaf spring. 
b.  Find the numerical value of CF for this type of spring and compare it with the value given in Table 14.10. 

 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) From (14-63) 
 

2
max

2

2

v Fu C
E

FyU

σ⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=

 

 
where for a simply supported center-loaded multileaft spring,  

 
3

3
1

2 3

3
1

3
8

3
16

c
FLy

Enb t

F LU
Enb t

=

=

 

 
Referring to Figure 14.14, the volume of material in such a multileaf spring is 

 

( ) 1
1

2 3 2 2

3 2 2 4
11 1

max 2
1

12
2 2 2

3 2 3
16 8

3
2

v

nb LtLv nb t

U F L F Lu
v nb LtEnb t n b t

FL
nb t

σ

⎡ ⎤⎛ ⎞= =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎛ ⎞⎛ ⎞

= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=

 

 
(b) We have that 

 
( ) ( ) ( )

( )

2 2 2 2 4
1

2 2 2 4 2 2
max 1

2 3 2 4
0.38

8 9
v

F

u E F L E n b t
C

En b t F Lσ
= = =  

This value agrees with table 14.10. 
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14-35.   Repeat problem 14-34 except for the case of a simply supported beam spring of rectangular cross section. 
 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From (14-63) 
 

2
max

3

3 2 3

2

48

2 2 48 96

v Fu C
E

FLy
EI

Fy F FL F LU
EI EI

σ⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠

 

 
For a rectangular cross section of width b and thickness t, I = bt3/12, thus 
 

2 3 2 3

3 3

12
96 8

F L F LU
Ebt Ebt

= =  

 
The volume of the beam is v = btL and 
 
 

( )
( )( )

( ) ( ) ( )
( )

2 3 2 2

3 3 4

max 3 2

2 2 2 4

2 2 4 2 2
max

8 8

2 12 3
4 2

2 2 4
0.11

8 9

v

v
F

U F L F Lu
v Ebt btL Eb t

FL tMc FL
I bt bt

u E F L E b t
C

Eb t F L

σ

σ

= = =

= = =

= = =

 

 
 

This value agrees with table 14.10. 
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14-36.   Repeat problem 14-34 except for the case of an end loaded cantilever-beam spring of rectangular cross 
section. 
 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From (14-63) 
 

2
max

3

3 2 3

2

(cantilever beam with end load)
3

2 2 3 6

v Fu C
E

FLy
EI

Fy F FL F LU
EI EI

σ⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠

 

 
For a rectangular cross section of width b and thickness t, I = bt3/12, thus 
 

2 3 2 3

3 3

12 2
6

F L F LU
Ebt Ebt

= =  

 
The volume of the beam is v = btL and 
 
 

( )
( )( )

( ) ( )
( )

2 3 2 2

3 2 4

max 3 2

2 2 2 4

2 2 4 2 2
max

2 2

2 12 6

2 2 2
0.11

36

v

v
F

U F L F Lu
v Ebt btL Eb t

FL tMc FL
I bt bt

u E F L E b t
C

Eb t F L

σ

σ

= = =

= = =

= = =

 

 
 

This value agrees with table 14.10. 
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14-37.   Repeat problem 14-34 except for the case of a spiral flat-strip torsion spring. 
 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From (14-63) 
 

2
max

2v Fu C
E

σ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

 
Adapting (14-61) to the case of applied torque T acting through angular deflection θ, 
 

3

2

3 3

2
12 (from 14 57)

12 6
2

TU

TL
bt E
T TL T LU

bt E bt E

θ

θ

=

= −

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 
The volume of the beam is v = btL and 
 
 

( )

( ) ( )
( )

2 2

3 2 4

max 2

2 2 4

2 2 4 2 2
max

6 6

6 1.1 (assuming the mandrel diameter is at least 5 times t)

2 6 2
0.28

36

v

i i

v
F

i

U T L Tu
v bt E btL Eb t

Tk k
bt

u E T E b t
C

Eb t k T

σ

σ

= = =

⎛ ⎞= ≈⎜ ⎟
⎝ ⎠

= = =

 

 
 

This value agrees with table 14.10. 
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14-38.   Repeat problem 14-34 except for the case of a round wire helical-coil torsion spring. 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From (14-63) 
 

2
max

2v Fu C
E

σ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

 
Adapting (14-61) to the case of applied torque T acting through angular deflection θ, 
 

4

2

4 4

2
64 (from 14 54)

64 32
2

TU

TL
d E

T TL T LU
d E d E

θ

θ
π

π π

=

= −

⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 

The volume of the spring wire is 
2

4
dv Lπ

= , then 

 
( )2 2

4 2 2 6

max 3

32 4 128

4 1 32
4 4

v

T LU Tu
v d E d L d E

c T
c d

π π π

σ
π

= = =

−⎛ ⎞= ⎜ ⎟−⎝ ⎠

 

 
To estimate σmax, a typical value of c may be assumed, say c = 8, thus 
 

( )
( )

( ) ( )
( )

max 3 3

2 2 6

2 22 6 2
max

4 8 1 32 35.4
4 8 4

2 128 2
0.20

35.4
v

F

T T
d d

u E T E d
C

E d T

σ
π π

π
σ π

⎛ ⎞−
= =⎜ ⎟⎜ ⎟−⎝ ⎠

= = ≈

 

This value agrees with table 14.10. 
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14-39.  Repeat problem 14-34 except for the case of a round wire helical-coil compression spring. 
 
--------------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From (14-64) 
 

2
max

3

4

3 2 3

4 4

2

64 (from 14-21)

64 32
2 2

v Fu C
G

FR Ny
d G

Fy F FR N F R NU
d G d G

τ⎛ ⎞
= ⎜ ⎟

⎝ ⎠

=

⎛ ⎞
= = =⎜ ⎟

⎝ ⎠

 

 
 

The volume of a helical coil spring is 
2 2 2

2
4 2
d RNdv RN π ππ

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

 
 

( ) ( )
( )

2 3 2 2

4 2 2 2 6

max 3

2 2 2 6

2 2 6 2 2 2
max

2

32 64

16

2 64 2
256

1
2

v

w

v
F

w

F
w

U F R N F Ru
v d G RNd d G

FRK
d

u G F R d G
C

d GK F R

C
K

π π

τ
π

π
τ π

= = =

⎛ ⎞= ⎜ ⎟
⎝ ⎠

= =

=

 

 
Selecting a spring index of 8 (typical value), Table 14.5 gives Kw = 1.18, hence 

 

( )2

1 0.36
2 1.18

FC = =  
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Chapter 15 

 

15-1.   For each of the design scenarios presented, suggest one or two types of gears that might make good 
candidates for further investigation in terms of satisfying the primary design requirements. 

a. In the design of a new-concept agriculture hay-conditioner, it is necessary to transmit power from one 
rotating parallel shaft to another.  The input shaft is to rotate at a speed of 1200 rpm and the desired output 
speed is 350 rpm.  Low cost in an important factor.  What types (s) of gearing would you recommend?  
State your reasons. 

b. In the design of a special speed reducer for a laboratory test stand, it is necessary to transmit power from 
one rotating shaft to another.  The centerlines of the two shafts intersect.  The driver shaft speed is 3600 
rpm and the desired speed of the output shaft is 1200 rpm.  Quiet operation is an important factor.  What 
types(s) of gearing would you recommend?  State your reasons. 

c. It is desired to use a 1-hp, 1725-rpm electric motor to drive a conveyer input shaft at a speed of 
approximately 30 rpm.  To give a compact geometry, the motor drive shaft is to be oriented at 90 degrees to 
the conveyor input shaft.  The shaft centerline may either intersect or not, depending on designers 
judgment.  What types(s) of gearing would you recommend?  State your reasons. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

a) Specifications to be met include: 

1. Shafts are to be parallel. 

2. Reduction ratio is R = 1200/350 = 3.43. 

3. Low cost is important. 

Based on discussion of 15.2, straight tooth spur gears and helical gears would be likely candidates.  Since low cost is 
a factor, and noise is probably not very important in this environment, straight tooth spur gears would be an 
excellent choice.  The reduction ratio of 3.4 can readily be accommodated. 

b)  Specifications to be met include: 

1. Shaft centerlines are to intersect. 

2. Reduction ratio is R = 3600/1200 = 3.0. 

3. Quiet operation is important. 

Based on discussion of 15.2, zerol bevel gears would be likely candidates.   The reduction ratio of 3.0 can readily be 
accommodated.  Spiral bevel gears would probably be quieter, so they should make an excellent choice. 

c) Specifications to be met include: 

1. Compact geometry is important. 

2. Shaft centerlines are to be 90˚ to each other, and may intersect or not. 

3. Reduction ratio is R = 1725/30 = 57.5. 

Based on discussion of 15.2, bevel gears or worm gears would be candidates.   However, to achieve a reduction ratio 
of 57.5, bevel gears would be unwieldy in size, violating the compact geometry specification.  Worm gears would be 
an excellent choice. 
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15-2.  The compound helical gear train sketched in Figure P15.2 involves three simple helical gears (1,2,5) and one 
compound helical gear (3,4).  The number of teeth on each gear id indicated in the sketch.  If the input gear (1) is 
driven clockwise at a speed of n1 = 1725 rpm, calculate the speed and direction of the output gear (5).  

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

( )
( )

driverout i

in driven i

Nn
n N

⎡ ⎤
= ± ⎢ ⎥

⎢ ⎥⎣ ⎦

∏
∏

 

Noting that the drivers are 1, 2, and 4, and the driven gears are 2,3, and 5, and for the compound gear n3 = n4, thus 

( ) ( )

1 2 4

2 3 5

5

20 66 88 1.60
66 22 50

1.6 1.6 1725 2760 rpm
2760 rpm CCW

out

in

out

in

out in

out

n N N N
n N N N

n
n
n n
n n

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞
= − − −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟
⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞= − − − = −⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎣ ⎦

= − = − = −

= =
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15-3.   The sketch of Figure P15.3 shows a two-stage reverted gear reducer that utilizes two identical pairs of gears 
to enable making the input shaft and output shaft collinear.  If a 1-kw, 1725-rpm motor operating at full rated power 
is used to drive the input shaft in the CW direction, do the following: 

a. Determine the speed and direction of the compound shaft. 

b. Determine the speed and direction of the output shaft. 

c. Assuming a98 percent efficiency of each gear mesh, calculate the torque available for driving the load at 
the output shaft. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) Recalling that external meshes are negative, from (15-2) 

( )

2 1

1 2

2 1

2

16 0.333
48

0.333 0.333 1725 575 rpm
575 rpm CCW

out

in

B

n n N
n n N
n n
n n

= = − = − = −

= − = − = −

= =

 

(b) Since B is a compound shaft, n2 = nB = n3, and using (15-2) 

( )

34 4

3 2 4

4 3

4

16 0.333
48

0.333 0.333 575 191.7 rpm
191.7 rpm CW

out

in

out c

n Nn n
n n n N
n n
n n n

= = = − = − = −

= − = − = −

= = =

 

(c) From (x-xx 4-34) 

( ) ( )9545 9545 1
5.53 N-m

1725in

kW
T

n
= = =  

Since there are two speed reducers meshes in series between the input (Tin) and the output (Tout), each mesh ration 
being 3:1 and each having an efficiency of 98 percent. 

( )( )

( )

3 3 0.98 0.98 8.64
1 1

8.64 5.54 47.9 N-m

out in in

out

T T T

T

⎛ ⎞⎛ ⎞= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= =
 

 

 

 

 

 



  534

15-4.   A two-planet epicyclic gear train is sketched in Figure P15.4.  If the ring gear is fixed, the sun gear is driven 
at 1200 rpm in the CCW direction, and the carrier arm is used as output, what would be the speed and direction of 
rotation of the carrier arm? 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

It may be noted that if the ring gear 3 is fixed (ω3 = 0), the sun gear 1 is used as input (ω1 = ωin), and carrier arm 4 is 
used as output (ω4 = ωout), and the first and last gears in the train are taken as sun gear 1 and ring gear 3, (15-4) 
becomes 

3 4 4

1 4 1 4

4

1 4

4

1

0 30 20
20 70

0
0.43

0.30out out

in in

n
n

ω ω ω
ω ω ω ω

ω
ω ω

ωω
ω ω

− − ⎛ ⎞⎛ ⎞= = −⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠
−

= −
−

= = =

 

For nin = 1200 rpm (CCW), and noting that nout has the same direction as nin, thus 

( )0.30 1200 360 rpm CCWoutn = =  

It is interesting to note that this is the same configuration examined in Example 15.1 except that there are two 
identical planet gears in this problem and only one in Example 15.1.  It may be properly deduced that the kinematics 
are the same whether one planet, two planets, or more are used.  The advantage of multiple planets in a balanced 
configuration is that gear tooth loads are reduced. 
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15-5.   A special reverted planetary gear train is sketched in Figure P15.5.  The planet gears (2-3) are connected 
together (compound) and are free to rotate together on the carrier shaft.  In turn, the carrier shaft is supported by a 
symmetrical one-piece pair of carrier arms attached to an output shaft (5) that is collinear with the input shaft (1).  
Gear 4 is fixed.  If the input shaft (1) is driven at 250 rpm in the CW direction, what would be the output shaft (5) 
speed and direction?  

. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

Noting that sun gear 1 is  used as input (ω1 = ωin), and carrier arm 5 is used as output (ω5 = ωout), and since 2-3 is a 
compound shaft ω2 = ω3, and gear 4 is fixed (ω4 = 0), if first and last gears in the train are taken as sun gear 1 and 
ring gear 4, (15-4) becomes 

( )

4 5

1 5

5

1 5

5

1

20 16
30 34

0
0.314

0.458

0.458 250 114.5 rpm CCW

out out

in in

out

n
n

n

ω ω
ω ω

ω
ω ω
ω ω
ω ω

− ⎛ ⎞⎛ ⎞= − −⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠
−

=
−

= = = −

= =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  536

15-6.   An annular gear A on shaft S1, has 120 teeth and drives a pinion B having 15 teeth, keyed to shaft S2.  
Compounded with B is a 75 tooth gear C which drives a 20 tooth gear D on shaft S3.  Compounded with gear D is 
gear E having 144 teeth driving gear F on shaft S4.  The axis of S4 is collinear with the axis of S1.  All shafts are 
parallel and in the same plane. 

(a) How many teeth must gear F have if all gears have the same diametral pitch? 

(b) If S1 is the driving shaft, determine the train ratio. 

(c) If the gears have a diametral pitch of 4, what is the distance between shafts S1 and Ss? 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

A sketch of the gear train is given below. 

 

(a) From the geometry of the gear train we have using the diameters 

2 2 2 2 2 2
CF E D A B

F A C D B E

dd d d d d

d d d d d d

+ = + + −

= + + − −
 

Since the gears have the same diametral pitch, then d = N/Pd or 

120 75 20 15 144
56 teeth

F A C D B E

F

N N N N N N

N

= + + − −

= + + − −
=

 

(b) The train value is given as 
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120 75 144 77.2
15 20 56

CA E

B D F

NN N
Train value

N N N
⎛ ⎞⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞= − − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(c) The distance between shafts 1 and 3 is 

( ) ( ) ( ) ( )

1 3 2 2 2 2

2 2 2 2
120 15 75 20 25 inches
2 4 2 4 2 4 2 4

CA B D

CA B D

d d d d

dd d d
C

NN N N
P P P P

− = − + +

= − + +

= − + + =
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15-7.   The gear train shown in Figure P15.7 has an input speed of 1200 rpm (clockwise).  Determine the output 
speed (rpm) and direction of rotation. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

Note that the first gear and the last gear selected for the train value equation must be gears that have planetary 
motion. 

3 2

5 7

7 2 2
7 2

2 5 5

6 3 3
6 2

2 4 4

201200 667 rpm
36
321200 1600 rpm
24

Train value

arm

L A

F A

N N
N N
N N
N N

ω ω
ω ω ω
ω

ω ω
ω
ω

ω ω
ω
ω ω
ω ω

=

= =

⎛ ⎞= − = − = − = −⎜ ⎟
⎝ ⎠

⎛ ⎞= − = − = − = −⎜ ⎟
⎝ ⎠

−
=

−

 

Let the first gear of the train be ω6 and the last gear of the train ω10 we then have 

( )

10 6 8

9 10

10

10

Train value

667 28 23- 0.259
1600 667 54 46

667 933 0.259 425
425 (CCW)

L A

F A

out

N N
N N

ω ω
ω ω

ω

ω
ω ω

−
=

−

⎛ ⎞⎛ ⎞+ ⎛ ⎞⎛ ⎞= = − − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− + ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
= − + = −

= =
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15-8.   The gear train shown in Figure P15.8 has an input speed of 720 rpm clockwise and an input torque of 300 lb-
in.  Determine: 

(a) The speed and direction of rotation of the output – shaft (rpm). 

(b) The output torque (in-lb). 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

Note that the first gear and the last gear selected for the train value equation must be gears that have planetary 
motion. 

9 3

6 64
4 6

6 4 4

9 2 2
9 2

2 3 3

35720 840 rpm  (CCW)
30
21720 240 rpm (CCW)
63

arm

N N
N N
N N
N N

ω ω ω
ω

ω ω
ω
ω

ω ω
ω

= =

⎛ ⎞= − = − = − = −⎜ ⎟
⎝ ⎠

⎛ ⎞= − = − = − = −⎜ ⎟
⎝ ⎠

 

(a) For the output shaft 

( )

( )

4 10 9

10 5 8

7 10

10

Train value

840 ccw , , 240

240 39 24- - 0.375
840 240 78 32

240 600 0.375 15 rpm (ccw)

L A

F A

F L A

N N
N N

ω ω
ω ω
ω ω ω ω ω ω

ω

ω

−
=

−

= = = = =

⎛ ⎞⎛ ⎞− ⎛ ⎞⎛ ⎞= = = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠⎝ ⎠⎝ ⎠⎝ ⎠
= + − =

 

(b) Output torque 

( )

Power in Power out

720 300 14,400 in-lb
15

out out in in

in
out in

out

T T

T T

ω ω
ω
ω

=
=

⎛ ⎞= = =⎜ ⎟
⎝ ⎠
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15-9.   In the gear train shown in Figure P15.9, the planet carrier (2) is turning clockwise at the rate of 500 rpm and 
the sun gear (3) is turning counterclockwise at the rate of 900 rpm.  All gears have the same diametral pitch.  
Determine the speed and direction of the annular gear (7). 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

The number of teeth on gear 7 is found from 

7 3 5 6
4

7 3 5 6
4

7

2 2 2 2

(Since they have the same diametral pitch)
2 2 2 2

18 39 2125
2 2 2

128 teeth

d d d d
d

N N N N
N

N

= + + +

= + + +

= + + +

=

 

Using a tabular method we have 

 2 3 4 5 6 7 

Train 
Locked 

500 500 500 500 500 500 

Arm Fixed 0 -1400 
3

4

1400
N
N

⎛ ⎞
− −⎜ ⎟

⎝ ⎠
 3 4

4 5

1400
N N
N N

⎛ ⎞⎛ ⎞
− − −⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

same 
3 64

4 5 7

1400
N NN
N N N

⎛ ⎞⎛ ⎞⎛ ⎞
− − −⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠
 

Total 500 -900 
3

4

500 1400
N
N

⎛ ⎞
+ ⎜ ⎟

⎝ ⎠
 

3

5

500 1400
N
N

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
 3

5

500 1400
N
N

⎛ ⎞
− ⎜ ⎟

⎝ ⎠
 

ω7 

 

3 6
7

5 7

7

500 1400

18 21500 1400
39 128

394 rpm (cw)

N N
N N

ω

ω

⎛ ⎞⎛ ⎞
= − ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞= − ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

=
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15-10.   What are the kinematic requirements that must be met to satisfy the “fundamental law of gearing”? 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

To satisfy the fundamental law of gearing kinematically, the common normal to the curved tooth surfaces at their 
point of contact must, for all gear positions, intersect the line of centers at a fixed point P called the pitch point. 
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15-11.   Define the following terms, using a proper sketch where appropriate. 

a. Line of action 

b. Pressure angle 

c. Addendum 

d. Dedendum 

e. Pitch diameter 

f. Diametral pitch 

g. Circular pitch 

h. Pitch point 

----------------------------------------------------------------------------------------------------------------------------------------- 

Solution 

(a) Referring to the sketch below, the line of action, as shown a-b, is a fixed line in space, through pitch point 
P, representing the direction of the resultant force transmitted from the driving gear to the driven gear. 

 

(b) The pressure angle, φ, is 
the angle between the line 
of action a-b (pressure line) 
and a reference line 
through pitch point P, 
perpendicular to the line of 
centers O1-O2.. 

(c) The addendum is the 
portion of a gear tooth that 
extends outside the pitch 
circle. 

(d) The dedendum is the 
portion of a gear tooth 
inside the pitch circle (to 
the bottom land). 

(e) The pitch diameter, d, is 
the diameter of the pitch 
circle. 

(f) The diametral pitch, Pd, is 
equal to the number of 
teeth, N, divided by the 
pitch diameter in inches. 
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(g) The circular pitch, pc, is the distance from any selected reference point on one tooth to a corresponding 
point on the next adjacent tooth, measured along the pitch circle. 

(h) The pitch point P is the point of contact between pitch circles of two meshing gears. 
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15-12.   Describe what is meant by a “gear tooth system.” 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

A gear tooth system is a standardized set of tooth proportions agreed upon to facilitate interchangeability and 
availability of gears.  Characteristics specified to define a standardized tooth system depend upon first selecting a 
pressure angle, then defining addendum, dedendum, working depth, whole depth, minimum tip clearance, and 
circular tooth thickness as functions of diametral pitch (or module). 
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15-13.   A straight-tooth spur gearset is being considered for a simple-speed reduction device at an early stage in the 
design process.  It is being proposed to use standard 20˚ involute full-depth gear teeth with a diametral pitch of 4 and 
a 16-tooth pinion.  A reduction ratio of 2.50 is needed for the application.  Find the following: 

a. Number of teeth on the driven gear 

b. Circular pitch 

c. Center distance 

d. Radii of the base cicles 

e. Would you expect “interference” to be a problem for this gear mesh? 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-15) 

( )

2.50

16, 2.50 16 40 teeth

p p g g

g g p p

p g

n r N
n r N

N N

ω
ω

= = = =

= = =

 

(b) From (15-12), with Pd = 4, 

0.785 in.
4c

d

p
P
π π

= = =  

(c) From (15-10) 

( )
16 40 7.0 in.

2 2 4
p g

d

N N
C

P
+ +

= = =  

(d) From (15-7) 

( )

( ) ( )
( ) ( )

2
cos

0.785 cos 20cos
2 2

0.1174
0.1174 16 1.878 in.

0.1174 40 4.696 in.

b
c

c
b

b

b p

b g

r
p

N
NNp

r

r N
r

r

π
ϕ

ϕ
π π

=

= =

=

= =

= =

o

 

(e) From Table 15.3, for a 16 tooth pinion, the maximum number of gear teeth without having interference is 
101.  Since for this gearset 

Ng = 40 < 101 

no interference would be expected. 
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15-14.   Repeat problem 15-9, except use a diametral pitch of 8 and 14-tooth pinion. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-15) 

( )

2.50

14, 2.50 14 35 teeth

p p g g

g g p p

p g

n r N
n r N

N N

ω
ω

= = = =

= = =

 

(b) From (15-12), with Pd = 8, 

0.393 in.
8c

d

p
P
π π

= = =  

(c) From (15-10) 

( )
14 35 3.063 in.

2 2 8
p g

d

N N
C

P
+ +

= = =  

(d) From (15-7) 

( )

( ) ( )
( ) ( )

2
cos

0.393 cos 20cos
2 2

0.059
0.059 14 0.826 in.

0.059 35 2.065 in.

b
c

c
b

b

b p

b g

r
p

N
NNp

r

r N
r

r

π
ϕ

ϕ
π π

=

= =

=

= =

= =

o

 

(e) From Table 15.3, for a 14 tooth pinion, the maximum number of gear teeth without having interference is 
26.  Since for this gearset 

Ng = 35 > 26 

interference would be expected. 
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15-15.   Repeat problem 15-9, except use a reduction ratio of 3.50. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-15) 

( )

3.50

16, 3.50 16 56 teeth

p p g g

g g p p

p g

n r N
n r N

N N

ω
ω

= = = =

= = =

 

(b) From (15-12), with Pd = 4, 

0.785 in.
4c

d

p
P
π π

= = =  

(c) From (15-10) 

( )
16 56 9.0 in.

2 2 4
p g

d

N N
C

P
+ +

= = =  

(d) From (15-7) 

( )

( ) ( )
( ) ( )

2
cos

0.785 cos 20cos
2 2

0.1174
0.1174 16 1.878 in.

0.1174 56 6.574 in.

b
c

c
b

b

b p

b g

r
p

N
NNp

r

r N
r

r

π
ϕ

ϕ
π π

=

= =

=

= =

= =

o

 

(e) From Table 15.3, for a 16 tooth pinion, the maximum number of gear teeth without having interference is 
101.  Since for this gearset 

Ng = 56 < 101 

no interference would be expected. 
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15-16.    Repeat problem 15-9, except use a diametral pitch of 12 and  a reduction ratio of 7.50. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-15) 

( )

7.50

16, 7.50 16 120 teeth

p p g g

g g p p

p g

n r N
n r N

N N

ω
ω

= = = =

= = =

 

(b) From (15-12), with Pd = 12, 

0.262 in.
12c

d

p
P
π π

= = =  

(c) From (15-10) 

( )
16 120 5.67 in.

2 2 4
p g

d

N N
C

P
+ +

= = =  

(d) From (15-7) 

( )

( ) ( )
( ) ( )

2
cos

0.262 cos 20cos
2 2

0.039
0.039 16 0.624 in.

0.039 120 4.68 in.

b
c

c
b

b

b p

b g

r
p

N
NNp

r

r N
r

r

π
ϕ

ϕ
π π

=

= =

=

= =

= =

o

 

(e) From Table 15.3, for a 16 tooth pinion, the maximum number of gear teeth without having interference is 
101.  Since for this gearset 

Ng = 120 > 101 

interference would be expected. 
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15-17.    Repeat problem 15-9, except use a diametral pitch of 12, a 17-tooth pinion, and a reduction ratio of 7.50. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-15) 

( )

7.50

17, 7.50 17 127.5 teeth

p p g g

g g p p

p g

n r N
n r N

N N

ω
ω

= = = =

= = =

 

This is unacceptable since an integral number of teeth is mandatory.  Ng = 127 teeth will be chosen, resulting in a 
small deviation in reduction ratio, i.e., 

127 7.47
17Rm = =  

This will be assumed to be close enough, so Ng = 127 teeth. 

(b) From (15-12), with Pd = 12, 

0.262 in.
12c

d

p
P
π π

= = =  

(c) From (15-10) 

( )
16 127 5.96 in.

2 2 12
p g

d

N N
C

P
+ +

= = =  

(d) From (15-7) 

( )

( ) ( )
( ) ( )

2
cos

0.262 cos 20cos
2 2

0.039
0.039 17 0.663 in.

0.039 127 4.953 in.

b
c

c
b

b

b p

b g

r
p

N
NNp

r

r N
r

r

π
ϕ

ϕ
π π

=

= =

=

= =

= =

o

 

(e) From Table 15.3, for a 17 tooth pinion, the maximum number of gear teeth without having interference is 
∞ .  Therefore interference would not be expected. 
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15-18.   A Straight-tooth spur gearset has a 19-tooth pinion that rotates at a speed of 1725 rpm.  The driven gear is to 
rotate at a speed of approximately 500 rpm.  If the gear teeth have a module of 2.5, find the following: 

a. Number of teeth on the driven gear 

b. Circular pitch 

c. Center distance 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-15), 

( )

1725 3.45
500

Since 19

3.45 19 65.55

p g

g p

p

g

n N
n N

N

N

= = =

=

= =

 

This is unacceptable since an integral number of teeth is mandatory.  Ng  = 66  will be chosen, resulting in a small 

deviation from the specified speed of the driven gear, i.e., ( ) ( )19 1725 497 rpm
66

p
g p

g

N
n n

N
= = = .  This will be 

assumed to be close enough, so Ng = 66 teeth. 

(b) From (15-13) 

( )2.5 7.85 mmcp mπ π= = =  

(c) From (15-11), 

( ) ( )2.5 19 66 106.25 mm
2 2p g
mC N N= + = + =  
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15-19.   Repeat problem 15-14, except for a pinion that rotates at 3450 rpm. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-15), 

( )

3450 6.9
500

Since 19

6.9 19 131.1

p g

g p

p

g

n N
n N

N

N

= = =

=

= =

 

This is unacceptable since an integral number of teeth is mandatory.  Ng  = 131 will be chosen, resulting in a small 

deviation from the specified speed of the driven gear, i.e., ( ) ( )19 3450 500.4 rpm
131

p
g p

g

N
n n

N
= = = .  This will be 

assumed to be close enough, so Ng = 131teeth. 

(b) From (15-13) 

( )2.5 7.85 mmcp mπ π= = =  

(c) From (15-11), 

( ) ( )2.5 19 131 187.5 mm
2 2p g
mC N N= + = + =  
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15-20.   Repeat problem 15-14, except for a module of 5.0. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-15), 

( )

1725 3.45
500

Since 19

3.45 19 65.55

p g

g p

p

g

n N
n N

N

N

= = =

=

= =

 

Since an integral number of teeth is mandatory choose Ng  = 66  teeth which will result in a driven gear speed of 

( ) ( )19 1725 497 rpm
66

p
g p

g

N
n n

N
= = = .  This will be assumed to be close enough.   

(b) From (15-13) 

( )5.0 15.71 mmcp mπ π= = =  

(c) From (15-11), 

( ) ( )5.0 19 66 212.50 mm
2 2p g
mC N N= + = + =  
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15-21.   Repeat problem 15-14, except for a driven gear that rotates at approximately 800 rpm. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-15), 

( )

1725 2.16
800

Since 19

2.16 19 41 teeth

p g

g p

p

g

n N
n N

N

N

= = =

=

= =

 

(b) From (15-13) 

( )2.5 7.85 mmcp mπ π= = =  

(c) From (15-11), 

( ) ( )2.5 19 41 75 mm
2 2p g
mC N N= + = + =  
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15-22.   A pair of 8-pitch straight-tooth spur gears is being proposed to provide a 3:1 speed increase.  If the gears are 
mounted on 6-inch centers, find the following: 

a. Pitch diameter of each gear. 

b. Number of teeth on each gear. 

c. If power supplied to the driving pinion at full load is 10 hp, and power loss at the gear mesh is negligible, 
what is the power available at the output gear shaft? 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-10), C = rp + rg = 6.0 inches.  For 3:1 speed increase, using (15-15), 

( )

3

3 6.0

6.0 1.5 in. ( 3.0 in.)
4

3 3 1.5 4.5 in. ( 9.0 in.)

g p

p g

g g

g g

p g p

n r
n r

r r

r d

r r d

= =

+ =

= = =

= = = =

 

(b) From (15-8) 

( )
( )
( )

8

8 8 9 72 teeth

8 8 3 24 teeth

d

p p

g g

P d d N

N d

N d

= =

= = =

= = =

 

(c) If power loss is negligible, by the “First Law of Thermodynamics,” 

(hp)out = (hp)in = 10 horsepower 
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15-23.   Repeat problem 15-18, except for a 3:1 speed decrease. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-10), C = rp + rg = 6.0 inches.  For 3:1 speed decrease, using (15-15), 

( )

1
3

3 6.0

6.0 1.5 in. ( 3.0 in.)
4

3 3 1.5 4.5 in. ( 9.0 in.)

g p

p g

p p

p p

g p g

n r
n r

r r

r d

r r d

= =

+ =

= = =

= = = =

 

(b) From (15-8) 

( )
( )
( )

8

8 8 3.0 24 teeth

8 8 9.0 72 teeth

d

p p

g g

P d d N

N d

N d

= =

= = =

= = =

 

(c) If power loss is negligible, by the “First Law of Thermodynamics,” 

(hp)out = (hp)in = 10 horsepower 
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15-24.   A proposed straight full-depth spur gear mesh is to consist of a 21-tooth pinion driving a 28-tooth gear.  The 
proposed diametral pitch is to be 3, and the pressure angle is 20˚.  Determine the following, and where possible, 
show each feature on a simple scale drawing of the gear mesh. 

a. Pitch circle for the pinion 

b. Pitch circle for the gear 

c. Pressure angle 

d. Base circle for the pinion 

e. Base circle for the gear 

f. Addendum circle for the pinion 

g. Dedendum circle for the pinion 

h. Addendum circle for the gear 

i. Dedendum circle for the gear 

j. Circular pitch 

k. Tooth thickness 

l. One typical pinion tooth 

m. One typical gear tooth 

n. Length of action 

o. Base pitch 

p. Profile contact ratio 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-8) 

21 7.00 inches
3

p
p

d

N
d

P
= = =  

(b) From (15-8) 

28 9.33 inches
3

g
g

g

N
d

P
= = =  

(c)  By specification, φ = 20˚. 

(d) Combining (15-6) and (15-7), 



  557

( ) ( )

cos cos cos
2 2 2

cos 0.470
2
0.470 0.470 7.0 3.29 inches

c
b

b

b pp

Np N d dr
N

dr d

r d

ϕ ϕ π ϕ
π π
ϕ

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

= =

= = =

 

(e) ( ) ( )0.470 0.470 9.33 4.39 inchesb gg
r d= = =  

(f) From Table 15.1, for Pd = 3, addendum a is ap = 1.000/Pd = 1.000/3 = 0.333 inch 

(g) Table 15.1, for Pd = 3, dedendum b is bp = 1.250/Pd = 1.250/3 = 0.417 inch 

(h) From Table 15.1 ag = 0.333 inch (same as pinion). 

(i) From Table 15.1 bg = 0.417 inch (same as pinion). 

(j) From (15-12) pc = π/Pd = π/3 = 1.047 inch 

(k) ttooth = pc/2 = 1.047/2 = 0.524 inch 

(l) See sketch below 

(m) See sketch below 

(n) From (15-18) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2

2 22 2

cos cos sin

where
7.0 9.33 8.17 inches
2 2

3.50 0.333 3.50cos 20 4.67 0.333 4.67 cos 20 8.17sin 20

1.56 inches (shown as a-b in sketch)

p p p g g g

p g

Z r a r r a r C

C r r

Z

Z

ϕ ϕ ϕ= + − + + − −

= + = + =

= + − + + − −

=

o o o

 

(o) From (15-7) 

cos 1.047cos 20 0.984b cp p ϕ= = =o  

(p) From (15-20) 

1.56 1.59
0.984p

b

Zm
p

= = =  
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Scale:  Half size 
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15-25.   A proposed straight full-depth spur gear mesh is to have a reduction ratio of 4:1 and a center distance of 
7.50 inches.  The proposed diametral pitch is to be 3, and the pressure angle is 20˚.  Determine the following, and 
where possible, show each feature on a simple scale drawing of the gear mesh. 

(a) Pitch circle for the pinion 

(b) Pitch circle for the gear 

(c) Pressure angle 

(d) Base circle for the pinion 

(e) Base circle for the gear 

(f) Addendum circle for the pinion 

(g) Dedendum circle for the pinion 

(h) Addendum circle for the gear 

(i) Dedendum circle for the gear 

(j) Circular pitch 

(k) Tooth thickness 

(l) Interference point locations 

(m) Whether interference will exist 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-11), C= rp + rg = 7.50 inches.  From (15-15) 

1
4

4

4 7.50 inches

7.50 1.5 inches
5

g p

p g

g p

p p

p

n r
n r

r r

r r

r

= =

=

+ =

= =

 

(b) ( )4 4 1.5 6.0 inchesg pr r= = =  

(c)  By specification, φ = 20˚. 

(d) Combining (15-6) and (15-7), 

( ) ( )

cos cos cos
2 2 2

cos 0.470
2
0.470 0.470 3.0 1.41 inches

c
b

b

b pp

Np N d dr
N

dr d

r d

ϕ ϕ π ϕ
π π
ϕ

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

= =

= = =
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(e) ( ) ( )0.470 0.470 12.0 5.64 inchesb ggr d= = =  

(f) From Table 15.1, for Pd = 3, addendum a is ap = 1.000/Pd = 1.000/3 = 0.333 inch 

(g) Table 15.1, for Pd = 3, dedendum b is bp = 1.250/Pd = 1.250/3 = 0.417 inch 

(h) From Table 15.1 ag = 0.333 inch (same as pinion). 

(i) From Table 15.1 bg = 0.417 inch (same as pinion). 

(j) From (15-12) pc = π/Pd = π/3 = 1.047 inch 

(k) ttooth = pc/2 = 1.047/2 = 0.524 inch 

(l) See point’s c and d in sketch below. 

(m) Noting that point a, where tooth contact initiates upon approach, lies outside interference point c, 
interference does exist. 

 

 

 

 

 

 

 

Scale: Half size 
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15-26.   Preliminary design calculations have suggested that design objectives may be met by a straight spur gearset 
using standard full-depth 2 ½ -pitch involute gear teeth, and a 21-tooth pinion meshing with a 28-tooth gear.  A 25˚ 
pressure angle has been selected for this application, and the gear teeth are to be shaved to AGMA quality number 
Qv = 8.  Find the following: 

a. Addendum 

b. Dedendum 

c. Clearance 

d. Circular pitch 

e. Circular tooth thickness 

f. Base pitch 

g. Length of action 

h. Profile contact ratio 

i. Module 

  ------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) 1.000 1.000 0.400 inch
2.5d

a
P

= = =  

(b) 1.250 1.250 0.500 inch
2.5d

b
P

= = =  

(c) For shaved teeth   0.350 0.350 0.140 inch
2.5d

c
P

= = =  

(d) 1.257 inches
2.5c

d

p
P
π π

= = =  

(e) 1.571 0.628 inch
2.5

t = =  

(f) cos 1.257cos 25 1.139 inchesb cp p ϕ= = =o  

(g) From (15-6) 

( )

( )

1.257 21
4.20 inches

2 2 2
1.257 28

5.60 inches
2 2 2

4.20 5.60 9.80 inches

p c p
p

g c g
g

p g

d p N
r

d p N
r

C r r

π π

π π

= = = =

= = = =

= + = + =
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2

2 22 2

cos cos sin

4.20 0.40 4.20cos 25 5.60 0.40 5.60cos 25 9.80sin 25

1.64 inches

p p p g g gZ r a r r a r C

Z

Z

ϕ ϕ ϕ= + − + + − −

= + − + + − −

=

o o o  

(h) 1.64 1.44
1.139p

b

Zm
p

= = =  

(i) 2.54 2.54 mm1.016
2.5 teethd

m
P

= = =  
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15-27.    Repeat problem 15-22, except for a 20˚ pressure angle. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) 1.000 1.000 0.400 inch
2.5d

a
P

= = =  

(b) 1.250 1.250 0.500 inch
2.5d

b
P

= = =  

(c) For shaved teeth   0.350 0.350 0.140 inch
2.5d

c
P

= = =  

(d) 1.257 inches
2.5c

d

p
P
π π

= = =  

(e) 1.571 0.628 inch
2.5

t = =  

(f) cos 1.257cos 20 1.181 inchesb cp p ϕ= = =o  

(g) From (15-6) 

( )

( )

1.257 21
4.20 inches

2 2 2
1.257 28

5.60 inches
2 2 2

4.20 5.60 9.80 inches

p c p
p

g c g
g

p g

d p N
r

d p N
r

C r r

π π

π π

= = = =

= = = =

= + = + =

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 2 2

2 22 2

cos cos sin

4.20 0.40 4.20cos 20 5.60 0.40 5.60cos 20 9.80sin 20

1.89 inches

p p p g g gZ r a r r a r C

Z

Z

ϕ ϕ ϕ= + − + + − −

= + − + + − −

=

o o o  

(h) 1.89 1.66
1.139p

b

Zm
p

= = =  

(i) 2.54 2.54 mm1.016
2.5 teethd

m
P

= = =  
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15-28.    A straight-tooth one-stage spur gear reducer has been used in a high-production home appliance for many 
years.  The gear pair constitutes about one-half the $50 production cost of the appliance.  Consumer complaints 
about gear noise have grown over the years and sales are declining.  One young engineer has found data that suggest 
the noise level would be significantly reduced if the AGMA quality number could be increased from its current 
value of Qv = 8 for hobbed gears to a value of Qv = 11, achieved by shaving the gears. 

a. Estimate the increase in production cost of the appliance if gear shaving were used to achieve Qv = 11. 

b. Can you suggest any other approach that might accomplish the noise-reduction goal without restoring to 
shaving the gears? 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

Examining Figure 15.21, it may be noted that the cost scale is logarithmic. 

(a) Under current practice, the curve representing hobbing (cutting) intersects the Qv = 8 level at “unit cost” 
level (call it point A).  In this case, hobbing the gears represents about ½ the cost of producing the appliance 
($50) so cost of hobbing the gears is now about Chobb = $25.00.  The “shaving” cost curve intersects the Qv 
= 11curve at a higher cost level (call it point B).  On the log scale from unit cost to 10 times cost, the 
shaving cost curve is about 0.3 of the interval corresponding to about 2 times unit cost on the logarithmic 
scale (log 2 ≈ 0.3).  Thus the cost of shaving would be about Cshave = 2Chobb = 2(25.00) = $50.00 and the 
production cost therefore would increase to about Ctotal-shaved = $50.00 + $25.00 = $75.00 and the production 
cost, therefore, would increase from about $50 to about $75, a 50 percent increase in cost. 

(b) Using helical gears might be a better and less costly approach. 
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15-29.   A straight-toothed full-depth involute spur pinion with a pitch diameter of 100 mm is mounted on input 
shaft driven by an electric motor at 1725 rpm.  The motor supplies a steady torque of 225 N-m. 

a. If the involute gear teeth have a pressure angle of 20˚, determine the transmitted force, the radial separating 
force, and the normal resultant force on the pinion teeth at the pitch point. 

b. Calculate the power being supplied by the electric motor. 

c. Calculate the percent difference in resultant force if the pressure angle were 25˚ instead of 20˚. 

d. Calculate the percent difference in resultant force if the pressure angle were 14 ½ ˚ instead of 20˚. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-21) 

( )20

225 4500 N
0.050

tan 4500 tan 20 1638 N
4500 4789 N

cos cos 20

p
t

p

r t

t
n

T
F

r

F F
F

F

ϕ

ϕ

= = =

= = =

= = =o

o

o

 

(b) From (4-41), 
( )225 1725

40.65 kilowatts
9549 9549
Tnkw = = =  

(c) If φ = 25˚ , ( )25

4500 4965 N
cos cos 25

t
n

F
F

ϕ
= = =o o

, 4965 4789 100 3.7% (increase)
4789
−

∆ = × =  

(d) If φ = 14 ½˚, ( )14 1/ 2

4500 4648 N
cos cos14.5

t
n

F
F

ϕ−
= = =o o

, 4789 4648 100 2.9%(decrease)
4789
−

∆ = × =  
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15-30.   Referring to the two-stage gear reducer sketched in Figure P15.3, concentrate attention on the first-stage 
mesh between the pinion (1) and the gear (2).  The pinion is being driven by a 1-kw, 1725-rpm electric motor, 
operating steadily at full capacity.  The tooth system has a diametrical pitch of 8 and a pressure angle of 25˚.  Do the 
following for the first-stage gear mesh: 

a. Sketch the gearset comprised of pinion 1 (driver) and gear 2 (driven) taken together as a free body, and 
assume that shaft support bearings are symmetrically straddle mounted about the gear on each shaft.  Show 
all external forces and torques on the free body, speeds and directions of the two gears (refer to Figure 
P15.3), and the line of action. 

b. Sketch the pinion, taken alone as a free body.  Show all external forces and torques on the pinion, including 
the driving torque, tangential forces, separating force, and bearing reaction forces.  Give numerical values. 

c. Sketch the driven gear, taken as a free body.  Show all external forces and torques on the gear, including 
the driving torque, tangential forces, separating force, and bearing reaction forces.  Give numerical values. 

 

 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) the gearset comprised of pinion 1 and gear2, taken together as a free body may be sketched after 
determining the following information: 

( )

( ) ( )( )

( ) ( )( )

16 2.0 50.8 mm
8

48 6.0 152.4 mm
8

2.00 1725 575 rpm
6.00

9549 1 9549
5.54 N-m

1725

9549 1 9549
16.61 N-m

575

p
p

d

g
g

d

p
g p

g

p
p

g
g

N
d inches

P
N

d inches
P
d

n n
d

kw
T

n

kw
T

n

= = = =

= = = =

= = =

= = =

= = =
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        Gearset as a Free Body 

(b)    

 

                                                                                Pinion as Free body 

 

Summing moments about O1, Ftrp = Tp or 
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5.54 218 N
0.0254

tan 25 218 tan 25 101.7 N
218 240.5 N

cos cos 25

p
t

p

r t

t
n

T
F

r

F F
F

F
ϕ

= = =

= = =

= = =

o o

o

 

Likewise, vertical and horizontal force resolution gives 

( ) ( )2 2

101.7 N (down)

218 N (down)

101.7 218 240.6 N

pv r

ph t

p

R F

R F

R

= − = −

= − = −

= + =

 

(c) For the gear 

 

Summing moments about O2, 

16.61 218 N
0.0762

tan 218 tan 25 101.7 N
218 240.6 N

cos cos 25
101.7 N (up)

218 N (up)

240.6 N

t g g

g
t

g

r t

t
n

gv

gv
h

g

F r T

T
F

r

F F
F

F

R

R

R

ϕ

ϕ

=

= = =

= = =

= = =

=

=

=

o

o
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15-31.    In the two-stage gear reducer sketched in Figure P15.31, concentrate attention on the compound shaft “B,” 
with attached gears 2 and 3, taken together as the free body of interest.  The gears have standard 20˚ involute full-
depth teeth, with a diametral pitch of 6.  The motor driving the input shaft “A” is a 20-hp, 1725-rpm electric motor 
operating steadily at full rated power.  For the chosen free body, do the following: 

a. Clearly sketch a top view of shaft “B,” and show all horizontal components of the loads and reactions. 

b. Sketch a front view (elevation) of shaft “B,” and show all vertical components of the loads and reactions. 

c. If shaft “B” is to have a uniform diameter over its whole length, identify potential critical points that should 
be investigated when designing the shaft.  

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) Prior to making the sketch, the following information may be determined.  From (15-8), for input pinion 

( ) ( )

( ) ( )

1
1

2
2

1
2 1

2

2
2

24 4.0 inches
6
36 6.0 inches
6

4.0 1725 1150
6.0

63,025 63,025 20
1096

1150

d

d

N
d

P
N

d
P
d

n n rpm
d

hp
T in lb

n

= = =

= = =

= = =

= = = −

 

Summing moments about center O2, gives 

( )

2 2 2

2
2

2

2 2

1096 365 lb
6.0 2

tan 365 tan 20 133 lb

t

t

r t

F r T
T

F
r

F F ϕ

=

= = =

= = =o

 

Also, for gear 3, from (15-8) 

( )

3
3

3 2

3
3

3

3 3

18 3.0 inches
6

1096 in-lb
1096 730 lb
3.0 2

tan 730 tan 20 266 lb

d

t

r t

N
d

P
T T

T
F

r

F F ϕ

= = =

= =

= = =

= = =o

 

Assuming both gears to be straddle mounted between closely spaced bearings, the top view of shaft B may be 
sketched as follows: 
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(b) For the front view we have 

 

(c) Torsional moment is constant over the whole shaft length, so if the diameter is constant, maximum 
torsional shear stress is constant over whole surface of the shaft. 

Because of straddle mounted bearings, no bending is generated in the shaft. 

Direct shear (or transverse shear) is generated in the shaft at the edge of each bearing, where it adds to the 
torsional shear, stress concentration probably is a concern at this location as well. 

The conclusion then is, since bearing reaction forces are larger at gear 3 than at gear 2, and shaft torque is 
the same, the governing critical section is adjacent to gear 3, and the governing critical point lies at the 
shaft surface. 
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15-32.   Referring again to Figure P15.4, note that the ring gear is fixed, the sun gear is driven at 1200 rpm in the 
CCW direction with a torque of 20 N-m, and the two-planet carrier arm is used as output.  The 20˚ involute gears 
have a module of 2.5.  Do the following: 

a. Determine the circular pitch. 

b. Determine the pitch diameter of each gear in the train, and verify that they are physically compatible in the 
assembly. 

c. Find the center distance between planets on the 2-planet carrier arm. 

d. Sketch each member of the train as a free body, showing numerical values and directions of all forces and 
torques on each free body. 

e. Calculate the output torque. 

f. Calculate the output shaft speed and determine its reaction. 

g. Calculate the nominal radial load on each of the bearings in the assembly, neglecting gravitational forces. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-13), pc = πm = π(2.5) = 7.85 mm 

(b) Using (15-6)  

( )

( )

( )

1
1

2
2

3
3

2.5 30
75 mm

2.5 20
50 mm

2.5 70
175 mm

c

c

c

p N
d

p N
d

p N
d

π
π π

π
π π

π
π π

= = =

= = =

= = =

 

To be physically compatible, referring to Figure P15.4, d1 + 2d2 = d3 , checking this equation by using the above 
values gives 75 + 2(50) = 175 and 175 = 175. Thus, the pitch diameters are physically compatible. 

(c) From geometry of Figure P15.4 and using C = d1 + 2r2 = 75 + 2(50/2) = 125 mm 

(d) A sketch of each member of the train is given as below.  For sun gear 1, taking moments about O1, 

( )

1 1 1

1
1

1

20 533.3 N
0.075 2

t

t

T F r
T

F
r

=

= = =
 

Assuming the tangential force is equally divided between the two planet mesh sites, 

( )

( )
1

1 1

533.3 266.7 N
2
tan 20 266.7 tan 20 97 N

t each mesh site

r teach mesh site

F

F F

= =

= = =o o

 

By equilibrium resolution the forces and moments on each free body may be found as shown on the sketch 
below. 
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(e) The planet carrier arm 4 is used as output, so 

( )4 533.3 0.125 66.7 N-moutT T= = =  

(f) Using (15-4), and noting that ring gear 3 is fixed (ω3 = 0), sun gear 1 is used as input (ω1 = ωin), and carrier 
arm 4 is used as output (ω4 = ωout), and if first and last gears in the train are taken as sun gear 1 and ring 
gear 3 we have 

( )

3 4 4

1 4 1 4

4

1

0 30 20 0.43
20 70

0.30

0.30 1200 360 rpm CCW

out out

in in

out

n
n

n

ω ω ω
ω ω ω ω

ωω
ω ω

− − ⎛ ⎞⎛ ⎞= = − = −⎜ ⎟⎜ ⎟− − ⎝ ⎠⎝ ⎠

= = + =

= =

 

(g) Examining the sketch above, the only bearings in the system (neglecting gravitational forces) that are 
subjected to a nonzero radial load are the two planet bearings.  The normal resultant radial load on each 
planet bearing is, from the sketch, R2 = 533.3 N. 
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15-33.   A 10-pitch 20˚ full-depth involute gearset with a face width of 1.25 inches is being proposed to provide a 
2:1 speed reduction for a conveyor drive unit.  The 18-tooth pinion is to be driven by a 15-hp, 1725-rpm electric 
motor operating steadily at full rated power.  A very long life is desired for this gearset, and the reliability of 99 
percent is required.  Do the following: 

a. Using the simplified approach.  Estimate the nominal bending stress at the tension-side root fillet of the 
driving pinion. 

b.  Estimate the fatigue stress concentration factor for the tension-side root fillet of the driving pinion. 

c. Calculate the actual bending stress at the tension-side root fillet of the driving pinion. 

d. Repeat (c) for the tension-side root fillet of the driven gear. 

e. Based on the recommendation of an in-house materials specialist, Grade 1 AISI 4620 hot-rolled steel is to 
be used for both the pinion and the gear (see Tables 3.3 and 3.13), and the value of k∞ [see (5-57)] has been 
estimated for this application to be 0.75, including the 99 percent reliability requirement but not including 
stress concentration effects.  Estimate the existing safety factor at the tension-side root fillet of whichever 
of the gears is more critical, based on tooth bending fatigue. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) By specification 

2

1725 863 rpm
2 2

p

g

p
g

n
n

n
n

=

= = =

 

Assuming no losses hpp = hpg = 15 horsepower.  From (15-8), for Pd = 10, 

( )
( )( )

( ) ( ) ( )

18 0.90 inch
2 2 10
2 2 0.9 1725 ft812.9

12 12 min
33,000 33,000 15

609 lb
812.9

p
p

d

p p

t p

N
r

P
r n

V

hp
F

V

π π

= = =

= = =

= = =

 

From Table 15.5, for Np = 18, Yp = 0.309, so from (15-35) 

( )
( ) ( )

( )
609 10

15,767 psi
1.25 0.309

t dpnom
b root

pinion p

F P

bY
σ = = =  

(b) Using Figure 4.23, taking e as working depth (2.000/Pd from Table 15.1), and h as base thickness [circular 
thickness (1.1571/Pd from Table 15.1) multiplied by cosφ], 

( ) ( )
2.000 2.000 10 1.35

1.571 cos 20 1.571 10 cos 20
d

d

Pe
h P
≈ = =

o o
 

Extrapolating in Figure 4.23 for a standard cutter tooth tip radius, 1.5tK ≈ .  Using an estimate of root fillet radius of 
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0.35 0.35 0.035 inch
10f

dP
ρ = = =  

The value of q for AISI 4620 hot rolled steel (Su = 87,000 psi from Table 3.3), from Figure 5.46, is 0.72q ≈ , so (15-
37) gives Kf = (0.72)(1.5 – 1) + 1 = 1.4 

(c) From (15-38), 

( ) ( ) ( )1.4 15,767 22,075 psi.actual nom
b f broot root

pinion pinion

Kσ σ= = =  

(d) Following the same reasoning for the gear, from (15-15) 

( )

( )
( ) ( )

1725 18 36 teeth
863

36 1.80 inches
2 10

609 lb

g p

p g

p
g p

g

g

t tg p

n N
n N

n
N N

n

r

F F

=

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= =

= =

 

From Table 15.5, for Ng = 36, Yg = 0.378, so from (15-35) 

( ) ( )
( )

609 10
12,889 psi

1.25 0.378
nom

b root
gear

σ = =  

Since the result above will be that same for the gear as for the pinion, using (15-38) for the gear gives 

( ) ( ) ( )1.4 12,889 18,045 psi.actual nom
b f broot root

gear gear

Kσ σ= = =  

(e) From the above results it is seen that the pinion is more critical.  From Table 3.3, for hot rolled AISI 4620 
steel, Su = 87,000 psi, and Syp = 63,000 psi.  Since S-N data for AISI 4620 are not available, the method of 
section 5.6 for estimating the fatigue endurance limit for the material, fS ′ , gives, since Su < 200 ksi, 

( )

( )

0.5 0.5 87,000 43,500 psi

0.75
0.75 43,500 32,625 psi

f u

f f

S S

k
S k S
∞

∞

′ = = =

=

′= = =

 

Since the pinion teeth experience one-way bending, at the pinion root fillet, based on the actual stress at the root 
pinion 



  575

22,075 0 11,038
2

22,075 0 11,038
2

11,308 12,642
11,30811
87,000

32,625 2.6
12,642

a

m

a
eq CR

m

u

f
ex

eq CR

psi

psi

psi

S
S

n

σ

σ

σ
σ

σ

σ

−

−

−
= =

+
= =

= = =
−−

= = ≈
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15-34.   For the gearset specifications of problem 15-33, do the following: 

a. Using the simplified approach, estimate the surface fatigue wear stress for the meshing gear teeth.. 

b.  If the Grade 1 4620 gear teeth are carburized and case hardened (not including the root fillet) to a hardness 
of approximately RC 60, maintaining the 99 percent reliability requirement, and recalling that very long life 
is desired, determine the surface fatigue strength of the case-hardened teeth. 

c. Estimate the existing safety factor based on surface fatigue wear failure. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-24) 

( )

( )( )

2 2

2 2
sin sin

1 1
cos

2

1725 863 rpm
2

18 1.8 inches
10

2 18 36 teeth

36 3.6 inches
10

2 2 1.8 2 1725 ft812.9
12 12 min

33,000

t
p g

sf
p g

p g

p

g

g

p
p

d

p
g p

g

g
g

d

p p
g p

t

F
d d

b
E E

n
n

n

N
d

P

n
N N

n

N
d

P
r n

V V

h
F

ϕ ϕ
σ

ν ν
π ϕ

π π

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠=
⎛ ⎞− −

+⎜ ⎟⎜ ⎟
⎝ ⎠

=

= =

= = =

⎛ ⎞
= = =⎜ ⎟⎜ ⎟
⎝ ⎠

= = =

= = = =

=
( ) ( )33,000 15

609 lb
812.9

p
V

= =  

From Table 3.9, for steel Ep = Eg = E = 30 x 106 psi, and νp = νg = ν = 0.3, thus with these values we have 

( )
2 2

6 6

2 2609
1.8sin 20 3.6sin 20 115,135 .

1 0.3 1 0.31.25 cos 20
30 10 30 10

sf psiσ
π

⎛ ⎞+⎜ ⎟
⎝ ⎠= =

⎛ ⎞− −
+⎜ ⎟× ×⎝ ⎠

o o

o

 

(b) From Figure 15.29, the 90% reliability surface fatigue strength Ssf at a life of N = 1010 cycles, for steel gears 
case hardened to RC 60, may be read (by extrapolation) as 

( )

( )
10

10

10

10

90,000 psi ( 90%)

0.81 90,000 81,000 psi ( 99%)
0.90

sf N

sf N

S R

S R

=

=

= =

⎛ ⎞= = =⎜ ⎟
⎝ ⎠
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(c) 
( ) 1010 81,000 0.70 (clearly unacceptable)

115,135
sf N

ex
sf

S
n

σ
== = =  
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15-35.   Using the simplified approach (do not refine results by using AGMA equations), design a single-reduction 
straight spur gear unit to operate from a 5.0-hp electric motor running at 900 rpm to drive a rotating machine 
operating at 80 rpm.  The motor is to operate steadily at full rated power.  Near-infinite life is desired.  A reliability 
of 90 percent is acceptable for this application.  It is proposed to use ASTM A-48 (class 40) gray cast-iron material 
for both gears.  Using k∞ = 0.70, properties for this material may be based on Chapter 3 data, except for surface 

fatigue strength, which may be taken as ( ) 810
28,000 psi.sf N

S
=

=   A safety factor of 1.3 is desired.  As part of the 

design procedure, select or determine the following so as to safety design specifications: 

a. Tooth system 

b. Quality level 

c. Diametral pitch 

d. Pitch diameters 

e. Center distance 

f. Face width 

g. Number of teeth on each gear 

Do not attempt to evaluate heat generation. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

Following the design procedure suggested in 15.11, for a single-reduction straight spur gear unit: 

A first conceptual sketch may be based on the following criteria and specifications: 

  hp = 5.0 horsepower 

  assume no losses 

  np = 900 rpm 

  ng =   80 rpm 

  fL ≈ ∞  

  R = 90% 

  Material (both gear): A-48 (class 40) gray cast iron 

  0.70k∞ =  

  From Table 3.3:  Su = 40,000 psi 

  From Table 3.10: e(2”) = nil 

  From Table 3.9:  E = 13-24 x 106 psi 

                G = 5.2-8.8 x 106 psi 

                 ν = 0.21-0.27 
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  By specification:  ( ) 810
28,000 psisf N

S
=

= , nd = 1.3.  By specification np/ng = 900/80 = 11.25 

A first conceptual sketch may be made as follows: 

 

 

(a) Tentatively, choose a standard full depth AGMA involute profile, 20˚ pressure angle tooth system as 
defined in Table 15.1 

(b) From Table 15.4, for the application specified, since speeds are low, nominal accuracy seems sufficient.  
This corresponds to a AGMA quality level of Qv equal to 6 or 7. 

(c) Following the guidance of 15.11, step 6, a tentative selection will be made of Pd = 10. 

(d) From Table 15.3, to avoid interference and undercutting, since the reduction ratio is so large, tentatively 
select Np = 17 teeth, so from (15-8), for Pd = 10, 

( )

17 1.7 inches
10

11.25 1.7 19.125 inches

p
p

d

p
g p

g

N
d

P

n
d d

n

= = =

⎛ ⎞
= = =⎜ ⎟⎜ ⎟
⎝ ⎠

 

(e) From (15-11), C = rp + rg = (1.7 + 19.125)/2 = 10.41 inches. 

(f) From (15-16) as a guide line, select b as 9 14
10 10

b≤ ≤ , or 0.9 1.4b≤ ≤ .  First try b = 1.25 inch. 

(g) Since Np = 17 teeth and using  
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( )

( )( )

( ) ( )

( ) ( )
( )

19.125 17 191 teeth
1.7

2 2 1.7 2 900 ft401
12 12 min

33,000 33,000 5.0
411.5 lb

401
0.303 (Table 15.5 for 17)

411.5 10
10,864 psi

1.25 0.303

g
g p

p

p p

t

p p

t dnom
b pinion

root p

d
N N

d

r n
V

hp
F

V
Y N

F P
bY

π π

σ

⎛ ⎞ ⎛ ⎞= = ≈⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= = =

= = =

= =

= = =

 

Using Figure x.xx (4.23), taking (see Example 15.2) 

( ) ( ) ( )

2.000 2.000 0.2 inch
10

1.571 1.571cos cos 20 0.15 inch
10

0.2 1.3
0.15
1.5 (Extrapolating in Figure . (4.23))

1.0
1.5

1.5 10,864 16,300 psi

d

d

t

f t

actual nom
b f bpinion pinion

root root

e
P

h
P

e
h
K x xx
q
K K

K

ϕ

σ σ

= = =

= = =

= ≈

≈

=
= =

= = =

o

 

Since from Table 15.5, Yg > Yp, the gear tooth root stress will be smaller (less critical) so the pinion governs.  Using 
the procedures of section 5.6, the long life fatigue strength for cast iron is, since Sut = 40,000 psi < 88,000 psi, 

( )0.4 40,000 16,000 psifS ′ = = and from (5-55), Sf = 0.7(16,000) = 11,200 psi.  Since the pinion teeth experience 
one-way bending, at the pinion tension-side root fillet 

16,300 0 8150 psi
2

16,300 0 8150 psi
2

8,150 10, 235
8,15011

40,000

11, 200 1.1
10,235

a

m

a
eq CR

m

u

f
ex

eq CR

psi

S
S

n

σ

σ

σ
σ

σ

σ

−

−

−
= =

+
= =

= = =
−−

= = =

 

This does not meets the criterion of nd = 1.3, so the design must be improved, probably by selecting a new value of 
Pd, e.g., Pd = 8. 

( )

17 2.13 inches
8

11.25 2.13 23.96 inches

p

g

d

d

= =

= =
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Again select b as 9 14
8 8

b≤ ≤ , or 1.13 1.75b≤ ≤ .  This time try b = 1.50 inches. 

( )( )

( ) ( )

( ) ( )
( )

2 2 2.13 2 900 ft502
12 12 min

33,000 33,000 5.0
329 lb

502
329 8

5790 psi
1.50 0.303

p p

t

nom
b pinion

root

r n
V

hp
F

V

π π

σ

= = =

= = =

= =

 

5,790 0 2895 psi
2

5,790 0 2895 psi
2

2895 3,120
28951

40,000
11,200 3.6
3,120

a

m

eq CR

f
ex

eq CR

psi

S
n

σ

σ

σ

σ

−

−

−
= =

+
= =

= =
−

= = =

 

This meets the criteria of nd = 1.3.  Before attempting to optimize the design for bending (trying to make 
changes that move the value of nex toward 1.3), surface fatigue durability should be checked.  Using 
midrange values we have E = 18.5 x 106 psi and ν = 0.24.  From (15-44) we have 

( ) ( )

( ) 8

2 2

2

6

10

2 2
sin sin

1 1
cos

2 2329
2.13sin 20 23.96sin 20 46,690

1 0.241.5 cos 20 2
18.5 10

28,000 0.60
46,690

t
p g

sf
p g

p g

sf N
ex

sf

F
d d

b
E E

psi

S
n

ϕ ϕ
σ

ν ν
π ϕ

π

σ
=

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠=
⎛ ⎞− −

+⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞+⎜ ⎟
⎝ ⎠= =

⎛ ⎞−
⎜ ⎟×⎝ ⎠

= = =

o o

o

 

This is clearly unacceptable.  The required nex is 1.3.  While an increase face width would lower σsf a little, 
it would still be unacceptable.  For another iteration, try Pd = 6.  Repeating 

( )

17 2.83 inches
6

11.25 2.83 31.84 inches

p

g

d

d

= =

= =
 

Again select b as 9 14
6 6

b≤ ≤ , or 1.5 2.33b≤ ≤ .  This time try b = 2.3 inches. 
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( )( )

( ) ( )

2 2 2.83 2 900 ft667
12 12 min

33,000 33,000 5.0
247 lb

667

p p

t

r n
V

hp
F

V

π π
= = =

= = =

 

( ) ( )

( ) 8

2

6

10

2 2247
2.83sin 20 31.84sin 20 28,330

1 0.242.3 cos 20 2
18.5 10

28,000 1.0
28,330

sf

sf N
ex

sf

psi

S
n

σ
π

σ
=

⎛ ⎞+⎜ ⎟
⎝ ⎠= =

⎛ ⎞−
⎜ ⎟×⎝ ⎠

= = ≈

o o

o

 

This is a good improvement, but still does not meet the requirement of nd = 1.3.  For a third iteration, try Pd 
= 4.  Repeating the calculations gives 

( )

17 4.25 inches
4

11.25 4.25 47.81 inches

p

g

d

d

= =

= =
 

Again select b as 9 14
4 4

b≤ ≤ , or 2.25 3.5b≤ ≤ .  This time try b = 2.75 inches. 

( )( )

( ) ( )

2 2 4.25 2 900 ft1001
12 12 min

33,000 33,000 5.0
165 lb

1001

p p

t

r n
V

hp
F

V

π π
= = =

= = =

 

( ) ( )
2

6

2 2165
4.25sin 20 47.81sin 20 17,290

1 0.242.75 cos 20 2
18.5 10

28,000 1.6
17, 290

sf

ex

psi

n

σ
π

⎛ ⎞+⎜ ⎟
⎝ ⎠= =

⎛ ⎞−
⎜ ⎟×⎝ ⎠

= ≈

o o

o  

This safety factor is higher than specified.  For a forth iteration, try Pd = 5.  Thus, 

( )

17 3.40 inches
5

11.25 3.40 38.25 inches

p

g

d

d

= =

= =
 

Again select b as 9 14
5 5

b≤ ≤ , or 1.80 2.80b≤ ≤ .  This time try b = 2.30 nches. 

( )( )

( ) ( )

2 2 3.40 2 900 ft801
12 12 min

33,000 33,000 5.0
206 lb

801

p p

t

r n
V

hp
F

V

π π
= = =

= = =
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( ) ( )
2

6

2 2206
3.40sin 20 38.25sin 20 23,615

1 0.242.30 cos 20 2
18.5 10

28,000 1.2
23,615

sf

ex

psi

n

σ
π

⎛ ⎞+⎜ ⎟
⎝ ⎠= =

⎛ ⎞−
⎜ ⎟×⎝ ⎠

= ≈

o o

o  

Increasing the face width to b = 2.75 inches gives σsf = 21,597 psi. and  

28,000 1.3
21,597exn = ≈  

This is a good solution; many other good solutions can also be found.  The following recommendations should meet 
specifications and provide proper operation for a very long time. 

     Pd = 5 

     Np = 17 teeth 

     Ng = 191 teeth 

     dp = 3.40 inches 

     dg = 38.25 inches 

       b = 2.75 inches 

      3.40 38.25 20.83 inches
2

C +
= =  

 

 

 

 

 

 

 

 

 

 

 

 

 



  584

15-36.   A 10-pitch 20˚ full-depth involute gearset, with Qv = 10 and a face width of 1.25 inches, is being proposed 
to provide a 2:1 speed reduction for a conveyor drive unit.  The 18-tooth pinion is to be driven by a 15-hp, 1725-rpm 
electric motor operating steadily at full-rated power.  A very long life is desired for this gearset, and a reliability of 
99 percent is required.  Do the following: 

a. Using the AGMA refined approach, calculate the tooth bending stress at the tension-side root fillet of the 
driving pinion. 

d. If the proposed material for both gears is Grade 1 4620 steel, and the teeth are carburized and case 
hardened (not including the root fillet) to a hardness of approximately RC 60, maintaining the 99 percent 
reliability requirement, determine the  AGMA surface fatigue strength (pitting resistance) for the 
carburized and case-hardened gear teeth. 

b. If the proposed material for both gears is AISI 4620 through-hardened to BHN 207, estimate the existing 
safety factor at the tension-side root fillet of whichever gear is more critical, based on tooth bending 
fatigue. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) By specification: 

R = 99% (required), Life requirement: very long, Tooth system: 20˚ full-depth involute teeth 

np = 1725 rpm, hpp = 15 horsepower, Qv = 10, b = 1.25 inches, Np = 18 teeth, Pd = 10 

ng = np/2 = 1725/2 = 863 rpm, Ng = 2(18) = 36 teeth, dp = Np/Pd = 18/10 = 1.8 inches. 

From (15-23) 

( )( )

( ) ( )

2 2 1.8 2 1725 f812.9
12 12 min

33,000 33,000 15
609 lb

812.9

p p

t

t d
b a v m I

r n tV

hp
F

V
F P

K K K K
bJ

π π

σ

= = =

= = =

=

 

The factors may be evaluated as 

 Ka = 1.25 (Table 15.6; moderate shock) 

 Kv = 1.17 (Figure 15.24 with Qv = 10 and V = 812.9 ft/min) 

 Km = 1.6 (Table 15.7 with typical conditions) 

 KI = 1.0 (one-way bending) 

 J = 0.24 (Table 15.8; lower precision gearing presumed) 

Substituting yields 

( )
( ) ( ) ( )( )( )( )

609 10
1.25 1.17 1.6 1.0 47,500 psi

1.25 0.24bσ = =  

(b) Same calculations; actually, gear tooth fillet stress is slightly lower in most cases. 
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(c) From (15-42), tbf N g tbfS Y R S ′= .  Using Figure 15.25, assuming Grade 1, with BHN = 207, 
28,500 psitbfS ′ = and from Figure 15.28, for very long life (1010 cycles) YN = 0.8, and from Table 15.13, for 

99 % reliability, Rg = 1.0.  Thus we have ( )( )( )0.8 1.0 28,500 22,800 psitbfS = = and from (15-43) 

( )
( )

1010 22,800 0.50
47,500

tbf N
ex

b

S
n

σ
== = ≈  

Clearly an unacceptable safety factor. 
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15-37.   For the gearset specifications of problem 15-36, do the following: 

c. Using the AGMA refined approach, calculate the surface fatigue contact stress for  the meshing gear teeth. 

d. Repeat (b) for the tension-side root fillet of the driven gear. 

e. Estimate the existing safety factor based on surface fatigue (pitting). 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) By specification: 

R = 99% (required), Life requirement: very long, Tooth system: 20˚ full-depth involute teeth 

np = 1725 rpm, hpp = 15 horsepower, Qv = 10, b = 1.25 inches, Np = 18 teeth, Pd = 10 

ng = np/2 = 1725/2 = 863 rpm, Ng = 2(18) = 36 teeth, dp = Np/Pd = 18/10 = 1.8 inches. 

From (15-23) 

( )( )

( ) ( )

2 2 1.8 2 1725 f812.9
12 12 min

33,000 33,000 15
609 lb

812.9

p p

t

t
sf p a v m

p

r n tV

hp
F

V
F

C K K K
bd I

π π

σ

= = =

= = =

=

 

Noting from Table 3.9 that for steel material E = 30 x 106 psi and ν = 0.3, the elastic coefficient Cp may be 
evaluated as 

( )
2

6

1 2,290
1 0.3 2
30 10

pC
π

= =
⎛ ⎞−
⎜ ⎟×⎝ ⎠

 

The geometry factor I may be evaluated from the gear ratio mG where 36 18 2G g pm N N= = = , giving 

sin 20 cos 20 2 0.107
2 2 1

I ⎛ ⎞= =⎜ ⎟+⎝ ⎠

o o

 

The factors may be evaluated as 

 Ka = 1.25 (Table 15.6; moderate shock) 

 Kv = 1.17 (Figure 15.24 with Qv = 10 and V = 812.9 ft/min) 

 Km = 1.6 (Table 15.7 with typical conditions) 

Substituting yields 

( )( )( ) ( ) ( )( )6092, 290 1.25 1.17 1.6 176,185 psi
1.25 1.8 0.107sfσ = =  
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(b) From (15-17), sf n G sfS Z R S ′= , using Table 15.15, assuming Grade 1, the surface fatigue strength of 
carburized and hardened steel may be read as 180,000 psisfS ′ = , and from Table 15.13 RG = 1.0 and from 
Figure 15.31, for a life of 1010 cycles, 1010

0.67
N

Z
=

= , so 

( )( )( )0.67 1.0 180,000 120,600 psisfS = =  

(c) Using (x-xx 5-7) 

120,600 0.7
176,185

sf
ex

sf

S
n

σ
= = ≈  

Clearly an unacceptable safety factor. 
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15-38.   Using the AGMA refined approach, design a high-precision (Qv = 12)  single-reduction straight spur gear 
unit to operate from a 50-hp electric motor running at 5100 rpm to drive a rotating machine operating at 1700 rpm.  
The motor operates steadily at full rated power.  A life of 107 pinion revolutions is desired, and a reliability of 99 
percent is required.  It is proposed to use Grade 2 AISI 4620 steel carburized and case hardened to RC 60 for both 
gears.  An important design constraint is to make the unit as compact as practical (i.e., use the minimum possible 
number of pinion teeth without undercutting).  A safety factor of 1.3 is desired.  Select or determine the following so 
as to satisfy the design specifications: 

a. Tooth system 

b. Diametral pitch 

c. Pitch diameters 

d. Center distance 

e. Face width 

f. Number of teeth on each gear 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

Following the design procedure suggested in 15.11, for a single-reduction straight spur gear unit: 

A first conceptual sketch may be based on the following criteria and specifications: 

  hp = 50 horsepower 

  Qv = 12 

  np = 5100  rpm 

  ng =   1700  rpm 

  ( ) 710 revp d
L =  

  R = 99 % 

  Material (both gear): AISI 4620, Grade 2, carburized and case hardened to RC 60   

  Use minimum Np without undercut 

  nd = 1.3  

By specification np/ng = 5100/1700 = 3 

 

A first conceptual sketch may be made as follows: 
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(a) Tentatively, choose a standard full depth AGMA involute profile, 20˚ pressure angle tooth system as 
defined in Table 15.1 

(b) Following the guidance of 15.11, step 6, a tentative selection will be made of Pd = 10. 

(c) From Table 15.9, to avoid interference and undercutting, for a reduction ratio of 3:1, tentatively select Np = 
21 teeth, so from (15-8), for Pd = 10, 

( )

21 2.1 inches
10

3 2.1 6.3 inches

p
p

d

p
g p

g

N
d

P

n
d d

n

= = =

⎛ ⎞
= = =⎜ ⎟⎜ ⎟
⎝ ⎠

 

(d) From (15-11), C = rp + rg = (2.1+ 6.3)/2 = 4.2  inches. 

(e) From (15-16) as a guide line, select b as 9 14
10 10

b≤ ≤ , or 0.9 1.4b≤ ≤ .  First try b = 1.25 inch. 

(f) Since Np = 21 teeth and using  

( )

( )( )

( ) ( )

6.3 21 63 teeth
2.1

2 2 2.1 2 5100 ft2804
12 12 min

33,000 33,000 50
588 lb

2804

g
g p

p

p p

t

t d
b a v m I

d
N N

d

r n
V

hp
F

V
F P

K K K K
bJ

π π

σ

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= = =

= = =

=

 

The factors may be evaluated as 

 Ka = 1.0 (Table 15.6; uniform) 

 Kv = 1.1 (Figure 15.24 with Qv = 12 and V = 2804 ft/min) 
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 Km = 1.3 (Table 15.7 with precision gears) 

 KI = 1.0 (one-way bending) 

 J = 0.34 (Table 15.9; high precision gears) 

Substituting yields 

( )
( ) ( ) ( ) ( )( ) ( )

588 10
1.0 1.1 1.3 1.0 19,780 psi

1.25 0.34bσ = =  

From (15-42), tbf N G tbfS Y R S ′= , from Table 15.10, for carburized and case hardened steel (RC 55-64), Grade 2, 
65,000 psitbfS ′ = .  From Figure 15.28, for 107 cycles, YN = 1.0, and from Table 15.13, for 99 % reliability, RG = 

1.0.  So ( )( )( )1.0 1.0 65,000 65,000 psitbfS = = and from (15-43) 

65,000 3.3
19,780

tbf
ex

b

S
n

σ
= = =  

Since this exceeds the desired safety factor of 1.3, it will temporarily be accepted, until surface durability can be 
examined.  From (15-46) 

t
sf p a v m

p

F
C K K K

bd I
σ =  

Noting from Table 3.9 that for steel material E = 30 x 106 psi and ν = 0.3, the elastic coefficient Cp may be evaluated 
as 

( )
2

6

1 2,290
1 0.3 2
30 10

pC
π

= =
⎛ ⎞−
⎜ ⎟×⎝ ⎠

 

The geometry factor I may be evaluated from the gear ratio mG where 63 21 3G g pm N N= = = , giving 

sin 20 cos 20 3 0.12
2 3 1

I ⎛ ⎞= =⎜ ⎟+⎝ ⎠

o o

 

Using the factors evaluated above, we have 

( ) ( ) ( ) ( ) ( )( )5882, 290 1.0 1.1 1.3 118,314 psi
1.25 2.1 0.12sfσ = =  

From (15-47), sf n G sfS Z R S ′= , using Table 15.15, assuming Grade 2, the surface fatigue strength of carburized and 
hardened steel may be read as 225,000 psisfS ′ = , and from Table 15.13 RG = 1.0 and from Figure 15.31, for a life 
of 1010 cycles, 710

1.0
N

Z
=

= , so 

( )( )( )1.0 1.0 225,000 225,000 psisfS = =  

Using (x-xx 5-7) 
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225,000 1.9
118,314

sf
ex

sf

S
n

σ
= = =  

Comparing the bending fatigue with the surface fatigue we see that the surface fatigue is more critical (1.9 < 3.3), 
and the existing factor of safety is substantially larger than the desired value of 1.3.  To reduce nex toward 1.3, try a 
second iteration using Pd = 12.  Thus, 

( )

21 1.75 inches
12

3 1.75 5.25 inches

p
p

d

g

N
d

P
d

= = =

= =

 

From (15-11), C = rp + rg = (1.75+ 5.25)/2 = 3.5  inches. 

From (15-16) as a guide line, select b as 9 14
12 12

b≤ ≤ , or 0.75 1.17b≤ ≤ .  Try b = 1.0 inch. 

Since Np = 21 teeth and using  

( )

( ) ( )

( ) ( )

6.3 21 63 teeth
2.1

2 2 1.75 2 5100 ft2337
12 12 min

33,000 33,000 50
706 lb

2337

g
g p

p

p p

t

d
N N

d

r n
V

hp
F

V

π π

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= = =

= = =

 

( )( )( ) ( ) ( )( )7062, 290 1.0 1.1 1.3 158,780 psi
1.0 1.75 0.12sfσ = =  

225,000 1.4
158,780exn = =  

To optimize a little more, try a b = 0.8 inch, giving 

( )( )( ) ( )( )( )7062, 290 1.0 1.1 1.3 177,520 psi
0.8 1.75 0.12sfσ = =  

225,000 1.3
177,520exn = ≈  

This value is acceptable.  Double checking tooth bending, we have 

( )
( )( ) ( )( ) ( )( )

706 12
1.0 1.1 1.3 1.0 44,540 psi

0.8 0.34bσ = =  

65,000 1.5
44,540exn = =  

This too is acceptable.  Based on the final iteration, the following responses are offered: 
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(a) Tooth system: AGMA standard full depth 20˚ involute profile. 

(b) Diametral pitch: Pd = 12 

(c) Pitch diameter:  dp = 1.75 inches, dg = 5.25 inches. 

(d) Center distance: C = 3.5 inches. 

(e) Face width: b = 0.8 inch 

(f) Number of teeth: Np = 21, Ng = 63 

Many other acceptable design configurations exists. 
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15-39.   A right-hand helical gear, found in storage, has been determined to have a transverse circular pitch of 
26.594 mm and a 30˚ helix angle.  For this gear, calculate the following: 

a. Axial pitch 

b. Normal pitch 

c. Module in the transverse plane 

d. Module in the normal plane 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-52), 26.594 46.062 mm
tan tan 30

t
x

p
p

ψ
= = =

o
 

(b) From (15-51),  cos 26.594cos30 23.031 mmn tp p ψ= = =o  

(c) From (15-13),  ( ) 26.594 mm8.465
tooth

c t
t

p p
m

π π π
= = = =  

(d) From (15-13),  ( ) 23.031 mm7.331
tooth

n
n

p
m

π π
= = =  
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15-40.   The preliminary design proposal for a helical gearset running on parallel shafts proposes a left-hand 18-
tooth pinion meshing with a 32-tooth gear.  The normal pressure angle is 20˚, the helix angle is 25˚, and the normal 
diametral pitch is 10.  Find the following: 

a. Normal circular pitch 

b. Transverse circular pitch 

c. Axial pitch 

d. Transverse diametral pitch 

e. Transverse pressure angle 

f. Pitch diameters of pinion and gear 

g. Whole depth for pinion and gear. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-54), 0.314 inch
10n

n

p
P
π π

= = =  

(b) From (15-51),  0.314 0.346 inch
cos cos 25

n
t

p
p

ψ
= = =

o
 

(c) From (15-52),  0.314 0.743 inch
sin sin 25

n
x

p
p

ψ
= = =

o
 

(d) From (15-55),  cos 10cos 25 9.06t nP P ψ= = =o  

(e) From (15-56),  1 1tan tan 20tan tan 21.88
cos cos 25

n
t

ϕ
ϕ

ψ
− − ⎡ ⎤⎡ ⎤

= = =⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

o
o

o
 

(f) From (15-50),  

( )

( )

18 0.346
1.98

32 0.346
3.52

p t
p

g

N p
d inch

d inch

π π

π

= = =

= =

 

(g) From Table 15.17, for Pn < 20, 2.250 2.250Whole depth 0.225 inch
10nP

= = =  
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15-41.   Repeat problem 15-40, except that the 18-tooth helical pinion is right-hand. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

Solution is the same as for 15-36 above, the “hand” of the pinion plays no role in these calculations. 
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15-42.   Repeat problem 15-40, except that the normal diametral pitch is 16. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-54), 0.196 inch
16n

n

p
P
π π

= = =  

(b) From (15-51),  0.196 0.216 inch
cos cos 25

n
t

p
p

ψ
= = =

o
 

(c) From (15-52),  0.196 0.464 inch
sin sin 25

n
x

p
p

ψ
= = =

o
 

(d) From (15-55),  cos 16cos 25 14.5t nP P ψ= = =o  

(e) From (15-56),  1 1tan tan 20tan tan 21.88
cos cos 25

n
t

ϕ
ϕ

ψ
− − ⎡ ⎤⎡ ⎤

= = =⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

o
o

o
 

(f) From (15-50),  

( )

( )

18 0.216
1.24

32 0.216
2.20

p t
p

g

N p
d inch

d inch

π π

π

= = =

= =

 

(g) From Table 15.17, for Pn < 20, 2.250 2.250Whole depth 0.141 inch
16nP

= = =  

 

 

 

 

 

 

 

 

 

 

 

 

 



  597

15-43.   The sketch of Figure P15.43 shows a one-stage gear reducer that utilizes helical gears with a normal 
diametral pitch of 14, normal pressure angle of 20˚, and a helix angle of 30˚.  The helix of the 18-tooth drive pinion 
1 is left-hand.  The input shaft is to be driven in the direction shown (CCW) by a 1/2-hp, 1725 rpm electric motor 
operating steadily at full rated power, and the desired output shaft speed is 575 rpm.  Determine the following: 

a. Transverse pressure angle 

b. Transverse diametral pitch 

c. Pitch diameter of pinion (1) 

d. Pitch diameter of gear (2) 

e. Number of teeth on gear (2) 

f. Center distance 

g. Pitch-line velocity 

h. Numerical values and directions of tangential, radial, and axial force components on the pinion while 
operating at full rated motor horsepower 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-56),  1 1tan tan 20tan tan 22.8
cos cos30

n
t

ϕ
ϕ

ψ
− − ⎡ ⎤⎡ ⎤

= = =⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

o
o

o
 

(b) From (15-55),  cos 14cos30 12.12t nP P ψ= = =o  

(c) From (15-57),  18 1.48 inches
cos 14cos30

p
p

n

N
d

P ψ
= = =

o
 

(d) From (15-57),  ( )

cos

1725 18 54 teeth
575

54 54 4.45 inches
cos 14cos30

g
g

n

p
g p

g

g
n

N
d

P

n
N N

n

d
P

ψ

ψ

=

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= = =
o

 

(e) Ng = 54 teeth 

(f) From (15-10),  1.48 4.45 2.97 inches
2 2

p gd d
C

+ +
= = =  

(g) From (15-23),  ( )( )1.48 1725 ft668
12 12 min

p pd n
V

π π
= = =  

(h) From (15-65),  
( ) ( )33,000 33,000 0.5

24.7 lb
668t

hp
F

V
= = =  
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Since the driving pinion rotates CCW, the tangential force Ft = 24.7 lb is to the right on the pinion teeth as viewed 
by looking down the motor shaft toward the pinion (1) in Figure P15-43, and as sketched below.  From (15-66), 
using φt = 22.8˚, 

tan 24.7 tan 22.8 10.4 lb

tan 24.7 tan 30 14.3 lb
r t t

a t

F F

F F

ϕ

ψ

= = =

= = =

o

o
 

Sketching the left-hand pinion, 

 

Forces and directions are as shown. 

(i) From (15-59), using (15-54) 

( ) ( )
min

2.0 2.0 142.0
0.90 inch

sin sin sin 30
nn Pp

b
π π

ψ ψ
= = = =

o
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15-44.   Repeat problem 15-43 except that the 18-tooth helical pinion is right-handed. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

The solution is the same as for 15-43 above, except that for a right-hand pinion with a 30˚ helix angle, the direction 
of the axial component Fa = 13.3 lb is reversed.  That is, in the sketch above in 15-43, Fa changes to the down 
direction. 
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15-45.   A parallel-shaft helical gearset is driven by an input shaft rotating at 1725 rpm.  The 20˚ helical pinion is 
250 mm in diameter and has a helix angle of 30˚.  The drive motor supplies a steady torque of 340 N-m. 

a. Calculate the transmitted force, radial separating force, axial thrust force , and normal resultant force on the 
pinion teeth at the pitch point. 

b. Calculate the power being supplied by the electric motor. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) By equilibrium, 340 2720 N
0.250

22

p
t

p

T
F

d
= = =
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, from (15-66), tan 2720 tan 20 990 Nr t tF F ϕ= = =o and 

from (15-67), tan 2720 tan 30 1570 Na tF F ψ= = =o .  From (15-68),  

( ) ( )1 1

cos cos

tan tan cos tan tan 20 cos30 17.5

2720 3293 N
cos17.5 cos30

t
n

n

n t

n

F
F

F

ϕ ψ

ϕ ϕ ψ− −

=

= = =

= =

o o o

o o

 

(b) From (4-41), 

( )( )340 1725
61.4 kw

9549 9549
Tnkw = = =  
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15-46.   The sketch of Figure P15.46 shows a proposed two-stage reverted gear reducer that utilizes helical gears to 
provide quiet operation.  The gears being suggested have a module of 4 mm in the normal plane, and a normal 
pressure angle of 0.35 rad.  The input shaft is driven in the direction shown by a 22-kw, 600-rpm electric motor.  Do 
the following: 

a. Determine the speed and direction of the compound shaft. 

b. Determine the speed and direction of the output shaft. 

c. Sketch a free-body diagram of the 54-tooth gear (2), showing numerical values and directions of all force 
components applied to gear (2) by the 24-tooth pinion (1). 

d. Sketch a free-body diagram of the 22-tooth pinion (3), showing numerical values and directions of all force 
components applied to the pinion (3) by the 50-tooth gear (4). 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-2),  2
24 600 267 rpm (CCW)
54

n ⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

 

(b) From (15-2),  4
24 22 600 117 rpm (CW)
54 50

n ⎛ ⎞⎛ ⎞= − − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

(c) From (4-41),  

( ) ( )

( )( )

1
1

1 1 1

1 1

1

9549 9549 22
350 N-m

600
since

cos

4 mm4.31
cos cos cos 0.38 tooth

4.31 24 103.4 mm

t t

t n

t n

t
t n

n

n t

t n
t n

t

kw
T

n
d m N m m
p p
m m

p
m m

p
p p

p m
m m

p

d

π

ψ

ψ ψ

= = =

= =

= =

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

=

⎛ ⎞
= = = =⎜ ⎟
⎝ ⎠

= =

 

By equilibrium,                    1
1

1

350 6770 N
0.1034

22

t
T

F
d

= = =
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

, from (15-66),         

1 1 1
1

tan tan 0.35tan 6770 2661 N
cos cos 0.38

n
r t t tF F F

ϕ
ϕ

ψ
⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

1 1 1tan 6770 tan 0.38 2704 Na tF F ψ= = = . 

Sketching the left-hand gear 2, as shown below, the forces Ft1 , Fr1 , and Fa1 have the magnitudes and directions 
shown, as applied on the gear. 
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(d) From (4-41), using n2 = 267 CCW,  
( )

2 3

9549 22
787 N-m

267BT T T= = = = and 

( )

3
3

3 3 3

3
3

3

3

3

4 mm4.66
cos cos 0.54 tooth

4.66 22 102.5 mm
787 15,356 N

0.1025
22

tan 0.3515,356 6535 N
cos 0.54

15,356 tan 0.54 9205 N

n
t

t

t

r

a

m
m

d m N
T

F
d

F

F

ψ
= = =

= = =

= = =
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
⎛ ⎞= =⎜ ⎟
⎝ ⎠

= =

 

Sketching the left-hand pinion 3, as  shown below, the forces Ft3 , Fr3 , and Fa3 have the magnitude and direction 
shown, as applied on the pinion. 
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15-47.   An existing parallel-shaft single reduction spur gear speed reducer is made up of a 21-tooth 8-pitch input 
pinion driving a 73-tooth gear mounted on the output shaft.  The center distance between pinion and gear is 5.875 
inches.  The input shaft is driven by a 15-hp, 1725-rpm electric motor operating steadily at full rated capacity.  To 
reduce vibration and noise, it is desired to substitute a helical gearset that can operate on the the same center distance 
and provide approximately the same angular velocity ratio as the existing spur gearset.  Study this request and 
propose a helical gearset that can perform the function satisfactorily at a reliability level of 99 percent for a very 
long lifetime.  Assume that the helical gears will be cut by an 8-pitch 20˚ full-depth involute hob.  The probable 
material is through-hardened Grade 1 steel with a hardness of BHN 350.  Determine the following: 

a. Using the spur gear data as a starting point, make a preliminary design proposal for a pair of helical gears 
with the same center distance and approximately the same angular velocity ratio as the existing spur 
gearset.  Specifically, determine a combination of transverse diametral pitch, number of teeth on the pinion, 
and number of teeth on the mating gear that will satisfy specifications on center distance and angular 
velocity ratio. 

b. Determine the helix angle.  Does it lie within the recommended range of values? 

c. Determine the pitch diameter for the pinion and the gear. 

d. Determine the nominal outside diameter of the pinion and gear. 

e. Estimate an appropriate face width for the helical gear pair. 

f. Calculate the existing safety factor for the tentatively selected helical gear pair, based on tooth bending 
fatigue as a potential failure mode.  

g. Calculate the existing safety factor for the tentatively selected helical gear pair, based on surface fatigue 
pitting wear as a potential failure mode.  

h. Comment on the governing safety factor. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-15),   

( )

21 0.288
73

8 ( )
8 ( (15 55))

2
73 3.476
21

3.476 4.476
0.381

2 2 5.875

g p

p g

n

t

p g
t

g p p

p p p
t p

n N
n N

P matches hob
P see

N N
P

C

N N N

N N N
P N

C

= = =

=

< −

+
=

= =

+
= = =

 

Iterating to a compatible set of Np, Ng, and Pt to give the same center distance and velocity ratio as the spur gear set: 

 

 



  604

Np Ng Pt Remarks 

21 73 8 Original spur gears 

20 69.5 7.62 Ng not a whole number 

19 66.04 7.24 Close enough 

 

So tentatively select Np = 19, Ng = 66, and Pt = 7.24.  From (15-55), 7.24cos 0.905
8

t

n

P
P

ψ = = =  

(b) 1cos 0.905 25.18ψ −= = o .  This helix angle lies in the recommended range of 10˚ to 35˚.(see paragraph 
following (15-60)). 

(c) From (15-57) 

19 2.62 inches
cos 8cos 25.18

66 9.12 inches
cos 8cos 25.18

p
p

n

g
g

n

N
d

P
N

d
P

ψ

ψ

= = =

= = =

o

o

 

(d) Using Table 15.17, 

1.0002 2.62 2 2.87 inches
8

1.0002 9.12 2 9.37 inches
8

op p p

og g g

d d a

d d a

⎛ ⎞= + = + =⎜ ⎟
⎝ ⎠
⎛ ⎞= + = + =⎜ ⎟
⎝ ⎠

 

(e) Using (15-59) and (15-54), 

min
2 2 2 1.85 inches

sin sin 8sin 25.18
n

n

p
b

P
π π

ψ ψ
= = = =

o
 

(f) From (15-69), for the pinion (more critical), 

( )

( )( )

( ) ( )

2 2 2.62 2 1725 ft1183
12 12 min

33,000 33,000 15
418 lb

1183

t t
b a v m Ip

p p

t

F P
K K K K

bJ
r n

V

hp
F

V

σ

π π

=

= = =

= = =

 

The factors may be evaluated as 

Ka = 1.25 (Table 15.6; moderate shock assumed) 

 Kv = 1.15 (Figure 15.24 with Qv = 10 and V = 1183 ft/min) 

 Km = 1.6 (Table 15.7 with tip conditions) 

 KI = 1.0 (one-way bending) 
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 J = 0.33 (Table 15.9; precision gearing; undercutting possible) 

Substituting yields 

( ) ( )
( ) ( ) ( )( )( )

418 7.24
1.25 1.15 1.6 1.0 11,400 psi

1.85 0.33b p
σ = =  

From (15-42), tbf N G tbfS Y R S ′= , using Figure 15.25, for Grade 1steel at BHN 350 (as specified), 40,000 psitbfS ′ = .  
From Figure 15.28, for very long life (1010 cycles), YN = 0.8, and from Table 15.13, for 99 % reliability, RG = 1.0.  
So ( )( )( )0.8 1.0 40,000 32,000 psitbfS = = and from (15-43) 

( )
( )

1010 32,000 2.8
11,400

tbf N
ex

b p

S
n

σ
== = =  

(g) From (15-46) 

t
sf p a v m

p

F
C K K K

bd I
σ =  

Noting from Table 3.9 that for steel material E = 30 x 106 psi and ν = 0.3, the elastic coefficient Cp may be evaluated 
as 

( )
2

6

1 2,290
1 0.3 2
30 10

pC
π

= =
⎛ ⎞−
⎜ ⎟×⎝ ⎠

 

The geometry factor I may be evaluated from the gear ratio mG where 66 19 3.47G g pm N N= = = . 

From (15-56), we have for φt, 

1 1tan tan 20tan tan 21.9
cos cos 25.18

n
t

ϕ
ϕ

ψ
− − ⎛ ⎞⎛ ⎞

= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

o
o

o
 

Thus, 

sin 21.9 cos 21.9 3.47 0.13
2 3.47 1

I ⎛ ⎞= =⎜ ⎟+⎝ ⎠

o o

 

Using the factors evaluated above, we have 

( )( )( ) ( ) ( )( )4182,290 1.25 1.15 1.6 89,450 psi
1.85 2.62 0.13sfσ = =  

From (15-47), sf n G sfS Z R S ′= , From Figure 15.30 143,000 psisfS ′ = , and from Table 15.13 RG = 1.0 and from 
Figure 15.31, for a very long life (1010 cycles), 1010

0.7
N

Z
=

= , so 

( )( ) ( )0.7 1.0 143,000 100,100 psisfS = =  

Using (2-89) 



  606

100,100 1.1
89,450

sf
ex

sf

S
n

σ
= = =  

(h) Comparing bending fatigue with the surface fatigue we see that the surface fatigue failure mode governs, 
with a safety factor of 1.1.  This is a marginal safety factor, and should be carefully examined before 
proceeding with the design.  A face width increase may be in order. 
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15-48.   Repeat problem 15-47, except assume that the helical gears will be cut using a 12-pitch 20˚ full-depth 
involute hob. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(i) From (15-15),   

( )

21 0.288
73

12 (matches hob)
12 ( (15 55))

2
73 3.476
21

3.476 4.476
0.381

2 2 5.875

g p

p g

n

t

p g
t

g p p

p p p
t p

n N
n N

P
P see

N N
P

C

N N N

N N N
P N

C

= = =

=

< −

+
=

= =

+
= = =

 

Iterating to a compatible set of Np, Ng, and Pt to give the same center distance and velocity ratio as the spur gear set: 

 

 

Np Ng Pt Remarks 

21 73 8 Original spur gears 

20 69.5 7.62 Ng not a whole number 

19 66.04 7.24 Close enough 

 

So tentatively select Np = 19, Ng = 66, and Pt = 7.24.  From (15-55), 7.24cos 0.603
12

t

n

P
P

ψ = = =  

(j) 1cos 0.603 52.9ψ −= = o .  This helix angle does not lies in the recommended range of 10˚ to 35˚.(see 
paragraph following (15-60)).  Therefore, a new iteration sequence should be tried, using larger Np values.  
Implementing this, it may be noted that for ψ = 35˚ (largest acceptable value), then 

( )min
cos 12cos35 9.83t nP P ψ= = =o  

Hence, using  

3.476 and 0.381g p t pN N P N= =  
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Np Ng Pt Remarks 

22 76.47 8.38 Ng not a whole number 

23 79.94 8.76 Pt too small 

24 83.42 9.14 Pt too small 

25 86.9 9.52 Pt too small 

26 90.37 9.90 Ng not a whole number 

27 93.85 10.29 Close enough 

 

So tentatively select Np = 27, Ng = 94, and 
( )
27 94 10.30

2 5.875tP +
= = and 10.30cos 0.858

12
ψ = = , thus 

1cos 0.858 30.9ψ −= = o This helix angle lies in the recommended range of 10˚ to 35˚. 

(k) From (15-57) 

27 2.62 inches
cos 12cos30.9

94 9.12 inches
cos 12cos30.9

p
p

n

g
g

n

N
d

P
N

d
P

ψ

ψ

= = =

= = =

o

o

 

(l) Using Table 15.17, 

1.0002 2.62 2 2.79 inches
12

1.0002 9.12 2 9.30 inches
12

op p p

og g g

d d a

d d a

⎛ ⎞= + = + =⎜ ⎟
⎝ ⎠
⎛ ⎞= + = + =⎜ ⎟
⎝ ⎠

 

(m) Using (15-59) and (15-54), 

min
2 2 2 1.0 inches

sin sin 12sin 30.9
n

n

p
b

P
π π

ψ ψ
= = = =

o
 

(n) From (15-69), for the pinion (more critical), 

( )

( )( )

( ) ( )

2 2 2.62 2 1725 ft1183
12 12 min

33,000 33,000 15
418 lb

1183

t t
b a v m Ip

p p

t

F P
K K K K

bJ
r n

V

hp
F

V

σ

π π

=

= = =

= = =

 

The factors may be evaluated as 

Ka = 1.25 (Table 15.6; moderate shock assumed) 
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 Kv = 1.15 (Figure 15.24 with Qv = 10 and V = 1183 ft/min) 

 Km = 1.6 (Table 15.7 with tip conditions) 

 KI = 1.0 (one-way bending) 

 J = 0.38 (Table 15.9; precision gearing) 

Substituting yields 

( ) ( )
( ) ( )( )( )( )

418 10.30
1.25 1.15 1.6 1.0 26,060 psi

1.0 0.38b pσ = =  

From (15-42), tbf N G tbfS Y R S ′= , using Figure 15.25, for Grade 1steel at BHN 350 (as specified), 40,000 psitbfS ′ = .  
From Figure 15.28, for very long life (1010 cycles), YN = 0.8, and from Table 15.13, for 99 % reliability, RG = 1.0.  
So ( )( )( )0.8 1.0 40,000 32,000 psitbfS = = and from (15-43) 

( )
( )

1010 32,000 1.2
26,060

tbf N
ex

b p

S
n

σ
== = ≈  

(o) From (15-46) 

t
sf p a v m

p

F
C K K K

bd I
σ =  

Noting from Table 3.9 that for steel material E = 30 x 106 psi and ν = 0.3, the elastic coefficient Cp may be evaluated 
as 

( )
2

6

1 2,290
1 0.3 2
30 10

pC
π

= =
⎛ ⎞−
⎜ ⎟×⎝ ⎠

 

The geometry factor I may be evaluated from the gear ratio mG where 94 27 3.48G g pm N N= = = . 

From (15-56), we have for φt, 

1 1tan tan 20tan tan 22.98
cos cos30.9

n
t

ϕ
ϕ

ψ
− − ⎛ ⎞⎛ ⎞

= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

o
o

o
 

Thus, 

sin 22.98 cos 22.98 3.48 0.14
2 3.48 1

I ⎛ ⎞= =⎜ ⎟+⎝ ⎠

o o

 

Using the factors evaluated above, we have 

( )( )( ) ( )( )( )4182,290 1.25 1.15 1.6 117,240 psi
1.0 2.62 0.14sfσ = =  
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From (15-47), sf n G sfS Z R S ′= , From Figure 15.30 143,000 psisfS ′ = , and from Table 15.13 RG = 1.0 and from 
Figure 15.31, for a very long life (1010 cycles), 1010

0.7
N

Z
=

= , so 

( )( )( )0.7 1.0 143,000 100,100 psisfS = =  

Using (x-xx 5-7) 

100,100 0.85
117, 240

sf
ex

sf

S
n

σ
= = =  

(p) This safety factor is clearly unacceptable (since nex < 1).  Increasing face width b is one way to increase the 
safety factor.  For example, using b = 2.0 inches, we have 

( )( )( ) ( )( )( )4182,290 1.25 1.15 1.6 82,900 psi
2.0 2.62 0.14sfσ = =  

and 

100,100 1.2
89, 200exn = =  

This is probably an acceptable safety factor, but should be carefully reviewed before proceeding. 
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15-49.   A newly proposed numerically controlled milling machine is to operate from a helical-gear speed reducer 
designed to provide 65 horsepower at an output shaft speed of 1150 rpm.  It has been suggested by engineering 
management that a 3450-rpm elastic motor be used to drive the speed reducer.  An in-house gearing consultant has 
suggested that a normal diametral pitch of 12, a normal pressure angle of 20˚, a helix angle of 15˚, an AGMA 
quality number of 10, an a safety factor of 1.7 would be appropriate starting point for the design.  Design the gears. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

From (15-56), 

1 1tan tan 20tan tan 20.65
cos cos15

cos 12cos15 11.59

cos

n
t

t n

p
p

n

P P
N

d
P

ϕ
ϕ

ψ

ψ

ψ

− − ⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
= = =

=

o
o

o

o  

Referring to Table 15.9 (higher precision gearing), to avoid under cutting, tentatively select Np = 21 teeth, thus 

( )

21 1.81 inches
12cos15

3450 21 63 teeth
1150

p

p
g p

g

d

n
N N

n

= =

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

o

 

( )( )

( ) ( )

63 5.44 inches
cos 12cos15

1.81 5.44 3.63 inches
2 2

1.81 3450 ft1635
12 12 min

33,000 33,000 65
1312 lb

1635

g
g

n

p g

p p

t

N
d

P
d d

C

d n
V

hp
F

V

ψ

π π

= = =

+ +
= = =

= = =

= = =

o

 

From (15-59), 

( ) ( )
min

2.0 2.0 122.0
2.0 inches

sin sin sin15
nn Pp

b
π π

ψ ψ
= = = =

o
 

( ) t t
b a v m Ip

F P
K K K K

bJ
σ =  

The factors may be evaluated as 

Ka = 1.25 (Table 15.6; moderate shock assumed) 

 Kv = 1.15 (Figure 15.24 with Qv = 10 and V = 1635 ft/min) 

 Km = 1.6 (Table 15.7 with tip conditions) 

 KI = 1.0 (one-way bending) 
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                  J = 0.34 (Table 15.9; precision gearing) 

Substituting yields 

( ) ( )
( ) ( )( )( )( )

1312 11.59
1.25 1.15 1.6 1.0 51,430 psi

2.0 0.34b pσ = =  

Based on (15-43) ( ) ( )
'tbf d b preq d

S n σ= .  From initial parameters suggested nd = 1.7 

( ) ( )
'

1.7 51, 430 87,430 psitbf req d
S = =  

Examining Table 15.10, it appears that ( )b pσ should be reduced so that a reasonable material selection may be 

made.  Trying Pn = 10: 

10cos15 9.66
21 2.17 inches

10cos15

t

p

P

d

= =

= =

o

o

 

( )( )

( ) ( )

63 6.52 inches
cos 10cos15

2.17 6.52 4.35 inches
2 2

2.17 3450 ft1960
12 12 min

33,000 33,000 65
1094 lb

1960

g
g

n

p g

p p

t

N
d

P
d d

C

d n
V

hp
F

V

ψ

π π

= = =

+ +
= = =

= = =

= = =

o

 

Also, 

( )
min

2.0 10
2.43 inches

sin15
b

π
= =

o
 

( ) ( )
( ) ( )( )( )( )

1094 9.66
1.25 1.18 1.6 1.0 30,190 psi

2.43 0.34b pσ = =  

( ) ( )
'

1.7 30,190 51,325 psitbf req d
S = =  

From (15-42), tbf N g tbfS Y R S ′= , from Figure 15.28, for very long life YN = 0.8 and from Table 15.13, for R = 99%, Rg 
= 1.0.  Thus, 

( ) ( )( )'

51,325 64,150 psi
0.8 1.0

tbf
tbf req d

N g

S
S

Y R
′ = = =  

From Table 15.10, select Grade 2 carburized and hardened steel (RC 58-64) with minimum core hardness of RC 25, 
giving 65,000 psitbfS ′ = .  Next we have from (15-46) 
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t
sf p a v m

p

F
C K K K

bd I
σ =  

Noting from Table 3.9 that for steel material E = 30 x 106 psi and ν = 0.3, the elastic coefficient Cp may be evaluated 
as 

( )
2

6

1 2,290
1 0.3 2
30 10

pC
π

= =
⎛ ⎞−
⎜ ⎟×⎝ ⎠

 

The geometry factor I may be evaluated from the gear ratio mG where 63 21 3G g pm N N= = = . 

From (15-56), we have for φt, 

Thus, 

sin 20.65 cos 20.65 3 0.12
2 3 1

I ⎛ ⎞= =⎜ ⎟+⎝ ⎠

o o

 

Using the factors evaluated above, we have 

( )( )( ) ( )( )( )10942,290 1.25 1.18 1.6 146, 280 psi
2.43 2.17 0.12sfσ = =  

From (15-47), sf n G sfS Z R S ′= , From Table 15.15 for Grade 2 steel carburized and hardened to RC 58-64, with core 
hardness of RC 25, 225,000 psisfS ′ = , and from Table 15.13 RG = 1.0 and from Figure 15.31, for a very long life 
(1010 cycles), 1010

0.75
N

Z
=

= , so 

( )( )( )0.75 1.0 225,000 168,800 psisfS = =  

Using (2-89) 

168,800 1.2
146,280

sf
ex

sf

S
n

σ
= = =  

This does not meet the design safety factor requirement of nd = 1.7.  Perhaps the easiest remedy is to increase the 
face width.  Trying b = 3.0 gives 

( )( )( ) ( )( )( )10942,290 1.25 1.18 1.6 131,650 psi
3.0 2.17 0.12sfσ = =  

and 

168,800 1.3
131,650exn = =  

Try b = 4.0, then 
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( )( )( ) ( )( ) ( )10942, 290 1.25 1.18 1.6 114,000 psi
4.0 2.17 0.12sfσ = =  

and 

168,800 1.5
114,000exn = =  

This will be regarded as close enough, but the proposed design should be reviewed with engineering management.  
This is only one of the many possible design configurations.  If management insists on nd = 1.7, the next logical step 
would be to try Pn = 8, and repeat the whole calculation.  Summarizing the proposed design parameters: 

 Material: Grade 2 carburized and hardened steel (RC 58-64) with minimum core hardness of RC 25. 

 Reduction ratio: mG = 3 

 Helical pinion: Np = 21 teeth 

 Normal diametral pitch: Pn = 10 

 Normal pressure angle: φt = 20˚ 

 Mating helical gear: Ng = 63 teeth 

 Helix angle: ψ = 15˚ 

 Pinion pitch diameter: dp = 2.17 inches 

 Gear pitch diameter: dg = 6.52 inches 

 Center distance: C = 4.35 inches  

 Face width: b = 4.0 inches 

 Governing safety factor (surface fatigue): nex = 1.5 

Many other acceptable design configurations exist. 
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15-50.   Repeat problem 15-49, except that the suggested helix angle is 30˚. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

From (15-56), 

1 1tan tan 20tan tan 22.8
cos cos30

cos 12cos30 10.39

cos

n
t

t n

p
p

n

P P
N

d
P

ϕ
ϕ

ψ

ψ

ψ

− − ⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
= = =

=

o
o

o

o  

Referring to Table 15.9 (higher precision gearing), to avoid under cutting, tentatively select Np = 21 teeth, thus 

( )

21 2.02 inches
12cos30

3450 21 63 teeth
1150

p

p
g p

g

d

n
N N

n

= =

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

o

 

( )( )

( ) ( )

63 6.06 inches
cos 12cos30

2.02 6.06 4.04 inches
2 2

2.02 3450 ft1824
12 12 min

33,000 33,000 65
1176 lb

1824

g
g

n

p g

p p

t

N
d

P
d d

C

d n
V

hp
F

V

ψ

π π

= = =

+ +
= = =

= = =

= = =

o

 

From (15-59), 

( ) ( )
min

2.0 2.0 122.0
1.05 inches

sin sin sin 30
nn Pp

b
π π

ψ ψ
= = = =

o
 

( ) t t
b a v m Ip

F P
K K K K

bJ
σ =  

The factors may be evaluated as 

Ka = 1.25 (Table 15.6; moderate shock assumed) 

 Kv = 1.17 (Figure 15.24 with Qv = 10 and V = 1824 ft/min) 

 Km = 1.6 (Table 15.7 with tip conditions) 

 KI = 1.0 (one-way bending) 

                  J = 0.34 (Table 15.9; precision gearing) 

Substituting yields 
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( ) ( )
( ) ( )( )( )( )

1176 10.39
1.25 1.17 1.6 1.0 80,090 psi

1.05 0.34b p
σ = =  

Examining Table 15.10, it appears that (σb)p should be reduced so that a reasonable material selection may be made. 

 Trying Pn = 10: 

10cos30 8.66
21 2.42 inches

10cos30

t

p

P

d

= =

= =

o

o

 

( )( )

( ) ( )

63 7.27 inches
cos 10cos30

2.42 7.27 4.85 inches
2 2

2.42 3450 ft2186
12 12 min

33,000 33,000 65
981 lb

2186

g
g

n

p g

p p

t

N
d

P
d d

C

d n
V

hp
F

V

ψ

π π

= = =

+ +
= = =

= = =

= = =

o

 

Also, 

( )
min

2.0 10
1.26 inches

sin 30
b

π
= =

o
 

( ) ( )
( ) ( )( )( )( )

981 8.66
1.25 1.19 1.6 1.0 47, 200 psi

1.26 0.34b pσ = =  

Based on (15-43) ( ) ( )
'tbf d b preq d

S n σ= .   

( ) ( )
'

1.7 47,200 80,240 psitbf req d
S = =  

From Table 15.10 it appears that (σb)p, is still too large for a reasonable material selection.  Try increasing b to 2.5 
inches.  Repeating the above calculation 

( ) 1.26 47,200 23,790 psi
2.50b p

σ ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

Thus, ( ) ( )
'

1.7 23,790 40, 440 psitbf req d
S = = .  From (15-42), tbf N g tbfS Y R S ′= , from Figure 15.28, for very long life 

YN = 0.8 and from Table 15.13, for R = 99%, Rg = 1.0.  Thus, 

( ) ( )( )'

40, 440 50,550 psi
0.8 1.0

tbf
tbf req d

N g

S
S

Y R
′ = = =  

From Table 15.10, select Grade 2 carburized and hardened steel (RC 58-64) with minimum core hardness of RC 25, 
giving 65,000 psitbfS ′ = .  Next we have from (15-46) 
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t
sf p a v m

p

F
C K K K

bd I
σ =  

Noting from Table 3.9 that for steel material E = 30 x 106 psi and ν = 0.3, the elastic coefficient Cp may be evaluated 
as 

( )
2

6

1 2,290
1 0.3 2
30 10

pC
π

= =
⎛ ⎞−
⎜ ⎟×⎝ ⎠

 

The geometry factor I may be evaluated from the gear ratio mG where 63 21 3G g pm N N= = = . 

From (15-56), we have for φt, 

Thus, 

sin 22.8 cos 22.8 3 0.13
2 3 1

I ⎛ ⎞= =⎜ ⎟+⎝ ⎠

o o

 

Using the factors evaluated above, we have 

( ) ( )( ) ( )( )( )9812, 290 1.25 1.18 1.6 124, 244 psi
2.5 2.42 0.13sfσ = =  

From (15-47), sf n G sfS Z R S ′= , From Table 15.15 for Grade 2 steel carburized and hardened to RC 58-64, with core 
hardness of RC 25, 225,000 psisfS ′ = , and from Table 15.13 RG = 1.0 and from Figure 15.31, for a very long life 
(1010 cycles), 1010

0.75
N

Z
=

= , so 

( )( )( )0.75 1.0 225,000 168,800 psisfS = =  

Using (2-89) 

168,800 1.4
124,244

sf
ex

sf

S
n

σ
= = =  

This is too low, perhaps the easiest remedy is to increase the face width.  Trying b = 3.0 gives 

( )( )( ) ( )( )( )9812,290 1.25 1.18 1.6 113,420 psi
3.0 2.42 0.13sfσ = =  

and 

168,800 1.5
113,420exn = =  

Try b = 4.0, then 

( )( ) ( ) ( )( ) ( )9812, 290 1.25 1.18 1.6 98, 224 psi
4.0 2.42 0.13sfσ = =  
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and 

168,800 1.7
98, 224exn = =  

So all requirements are satisfied.  Summarizing the proposed design parameters: 

 Material: Grade 2 carburized and hardened steel (RC 58-64) with minimum core hardness of RC 25. 

 Reduction ratio: mG = 3 

 Helical pinion: Np = 21 teeth 

 Normal diametral pitch: Pn = 10 

 Normal pressure angle: φt = 20˚ 

 Mating helical gear: Ng = 63 teeth 

 Helix angle: ψ = 30˚ 

 Pinion pitch diameter: dp = 2.42 inches 

 Gear pitch diameter: dg = 7.27 inches 

 Center distance: C = 4.85 inches  

 Face width: b = 4.0 inches 

 Governing safety factor (surface fatigue): nex = 1.7 

Many other acceptable design configurations exist. 

 

 

15-51.   A pair f straight bevel gears, similar to those shown in Figure 15.41, has been incorporated into a right-angle 
speed reducer (shaft centerlines intersect at 90˚).  The straight bevel gears have a diametral pitch of 8 and a 20˚ 
pressure angle.  The gear reduction ratio is 3:1, and the number of teeth on the bevel pinion is 16.  Determine the 
following: 

a. Pitch cone angle for the pinion 

b. Pitch cone angle for the gear 

c. Pitch diameter for the pinion 

d. Pitch diameter for the gear 

e. Maximum recommended face width 

f. Average pitch cone radius for the pinion, assuming face width is maximum recommended value 

g. Average pitch cone radius for the gear, assuming face width is maximum recommended value 

h. Pinion addendum 

i. Gear addendum 
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j. Pinion dedendum 

k. Gear dedendum 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-77), 1 1 1 1cot cot 3 tan 18.4
3p Gmγ − − − ⎛ ⎞= = = =⎜ ⎟

⎝ ⎠
o  

(b) From (15-77), ( )1 1 1tan tan 3 tan 3 71.6g Gmγ − − −= = = = o  

(c) From (15-8), 16 2.0 inches
8

p
p

d

N
d

P
= = =  

(d) We have 

( )

3.0

3 3 2.0 6.0 inches

g
G

p

g p

d
m

d

d d

= =

= = =

 

(e) From (15-73), 

max 1

max 2

2.00.3 0.3 0.95
2sin 2sin18.4

10 10 1.25
8

p

p

d

d
b inches

b inches
P

γ−

−

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= = =

o

 

So bmax = 0.95 inches governs. 

(f) From (15-78),   ( ) 2.0 0.95sin sin18.4 0.85 inch
2 2 2ave p pp

br r γ ⎛ ⎞= − = − =⎜ ⎟
⎝ ⎠

o  

(g) From (15-78),    ( ) 6.0 0.95sin sin 71.6 2.55 inch
2 2 2ave g gg

br r γ ⎛ ⎞= − = − =⎜ ⎟
⎝ ⎠

o  

(h) From Table (15.18), 

2

2

0.540 0.460
2.000

160.540 0.460
2.000 48 0.176 inch

8 8

p

g
p

d d

N
N

a
P P

⎡ ⎤⎛ ⎞
⎢ ⎥+ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠= − ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥= − =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(i) From Table (15.18), 
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2

2

0.540 0.460

160.540 0.460
48 0.074 inch

8

p

g
g

d

N
N

a
P

⎡ ⎤⎛ ⎞
⎢ ⎥+ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(j) From Table (15.18), 

( )

[ ]

2

0.540 0.460
0.188 0.002

0.188 0.002 0.074 0.100 inch
8

p

g
e p

d d

N
N

d
P P

⎡ ⎤⎛ ⎞
⎢ ⎥+ ⎜ ⎟⎜ ⎟⎢ ⎥⎡ ⎤⎛ ⎞ ⎝ ⎠= + + ⎢ ⎥⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

= + + =

 

(k) From Table (15.18), 

( )

[ ]

2

0.540 0.460
2.188 0.002

2.188 0.002 0.074 0.202 inch
8

p

g
e g

d d

N
N

d
P P

⎡ ⎤⎛ ⎞
⎢ ⎥+ ⎜ ⎟⎜ ⎟⎢ ⎥⎡ ⎤⎛ ⎞ ⎝ ⎠= + − ⎢ ⎥⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

= + − =
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15-52.   Repeat problem 15-51, except use a diametral pitch of 12 and a reduction ratio of 4:1. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-77), 1 1 1 1cot cot 4 tan 14
4p Gmγ − − − ⎛ ⎞= = = =⎜ ⎟

⎝ ⎠
o  

(b) From (15-77), ( )1 1 1tan tan 4 tan 4 76g Gmγ − − −= = = = o  

(c) From (15-8), 16 1.33 inches
12

p
p

d

N
d

P
= = =  

(d) We have 

( )

4.0

4 4 1.33 5.32 inches

g
G

p

g p

d
m

d

d d

= =

= = =

 

(e) From (15-73), 

max 1

max 2

1.330.3 0.3 0.82 inches
2sin 2sin14

10 10 0.83 inches
12

p

p

d

d
b

b
P

γ−

−

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= = =

o

 

So bmax = 0.82 inches governs. 

(f) From (15-78),   ( ) 1.33 0.82sin sin14 0.57 inch
2 2 2ave p pp

br r γ ⎛ ⎞= − = − =⎜ ⎟
⎝ ⎠

o  

(g) From (15-78),    ( ) 5.32 0.82sin sin 76 2.26 inch
2 2 2ave g gg

br r γ ⎛ ⎞= − = − =⎜ ⎟
⎝ ⎠

o  

(h) From Table (15.18), 

2

2

0.540 0.460
2.000

160.540 0.460
2.000 48 0.117 inch

12 12

p

g
p

d d

N
N

a
P P

⎡ ⎤⎛ ⎞
⎢ ⎥+ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠= − ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥= − =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(i) From Table (15.18), 
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2

2

0.540 0.460

160.540 0.460
48 0.049 inch

12

p

g
g

d

N
N

a
P

⎡ ⎤⎛ ⎞
⎢ ⎥+ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

(j) From Table (15.18), 

( )

[ ]

2

0.540 0.460
0.188 0.002

0.188 0.002 0.049 0.067 inch
12

p

g
e p

d d

N
N

d
P P

⎡ ⎤⎛ ⎞
⎢ ⎥+ ⎜ ⎟⎜ ⎟⎢ ⎥⎡ ⎤⎛ ⎞ ⎝ ⎠= + + ⎢ ⎥⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

= + + =

 

(k) From Table (15.18), 

( )

[ ]

2

0.540 0.460
2.188 0.002

2.188 0.002 0.049 0.135 inch
12

p

g
e g

d d

N
N

d
P P

⎡ ⎤⎛ ⎞
⎢ ⎥+ ⎜ ⎟⎜ ⎟⎢ ⎥⎡ ⎤⎛ ⎞ ⎝ ⎠= + − ⎢ ⎥⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦

= + − =
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15-53.   It is being proposed to use a Coniflex® straight bevel gearset to provide a 3:1 speed reduction between a 15-
tooth pinion rotating at 300 rpm and a meshing gear mounted on a shaft whose centerline intersects the pinion shaft 
centerline at a 90˚ angle.  The pinion shaft is driven steadily by a 3-hp source operating at full rated power.  The 
bevel gears are to have a diametral pitch of 6, a 20˚ pressure angle, and a face width of 1.15 inches.  Do the 
following: 

a. Calculate the number of teeth in the driven gear. 

b. Calculate the input torque on the pinion shaft. 

c. Calculate average pitch-line velocity. 

d. Calculated the transmitted (tangential) force. 

e. Calculate the radial and axial forces on the pinion. 

f. Calculate the radial and axial forces on the gear. 

g. Determine whether the force magnitudes calculated for the pinion and the gear are consistent with the free-
body equilibrium of the bevel gearset (see Figure 15.41 for geometric arrangement). 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-77), ( ) ( )3 15 45 teethg G pN m N= = =  

(b) From (15-84),  
( ) ( )63,025 63,025 3

630 in-lb
300p

p

hp
T

n
= = =  

(c) From (15-78), 

( )

( )

1 1

sin
2 2

15 2.50 inches
6

1cot tan 18.4
3

2.50 1.15 sin18.4 1.07 inches
2 2

p
p pavg

p
p

d

p G

p avg

d br

N
d

P

m

r

γ

γ − −

= −

= = =

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

= − =

o

o

 

(d) From (15-80), 

( ) ( )( )

( ) ( )

2 2 1.07 300 ft168
12 12 min

33,000 33,000 3
589 lb

168

p pavg
avg

t
avg

r n
V

hp
F

V

π π
= = =

= = =

 

(e) From (15-81), 
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( ) ( )( )
( ) ( )( )

tan cos 589 tan 20 cos18.4 203 lb

tan sin 589 tan 20 sin18.4 68 lb

r t pp

a t pp

F F

F F

ϕ γ

ϕ γ

= = =

= = =

o o

o o
 

(f) From (15-77), 

( ) ( )( )
( ) ( )( )

1 1tan tan 3 71.6

tan cos 589 tan 20 cos 71.6 68 lb

tan sin 589 tan 20 sin 71.6 203 lb

g G

r t gg

a t gg

m

F F

F F

γ

ϕ γ

ϕ γ

− −= = =

= = =

= = =

o

o o

o o

 

(g) Referring to Figure 15.41, along with the forces calculated, it may be noted that by equilibrium, forces at 
the contact site must be equal and opposite.  That is, ( )t pF and ( )t gF are equal and opposite, ( )r pF and 

( )a gF are equal and opposite, and ( )r gF and ( )a pF are equal and opposite. 
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15-54.   Repeat problem 15-53, except for a diametral pitch of 10. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-77), ( ) ( )3 15 45 teethg G pN m N= = =  

(b) From (15-84),  
( ) ( )63,025 63,025 3

630 in-lb
300p

p

hp
T

n
= = =  

(c) From (15-78), 

( )

( )

1 1

sin
2 2

15 1.50 inches
10

1cot tan 18.4
3

1.50 1.15 sin18.4 0.57 inches
2 2

p
p pavg

p
p

d

p G

p avg

d br

N
d

P

m

r

γ

γ − −

= −

= = =

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

= − =

o

o

 

(d) From (15-80), 

( ) ( )( )

( ) ( )

2 2 0.57 300 ft90
12 12 min

33,000 33,000 3
1100 lb

90

p pavg
avg

t
avg

r n
V

hp
F

V

π π
= = =

= = =

 

(e) From (15-81), 

( ) ( )( )
( ) ( )( )

tan cos 1100 tan 20 cos18.4 380 lb

tan sin 1100 tan 20 sin18.4 126 lb

r t pp

a t pp

F F

F F

ϕ γ

ϕ γ

= = =

= = =

o o

o o
 

(f) From (15-77), 

( ) ( )( )
( ) ( )( )

1 1tan tan 3 71.6

tan cos 1100 tan 20 cos 71.6 126 lb

tan sin 1100 tan 20 sin 71.6 380 lb

g G

r t gg

a t gg

m

F F

F F

γ

ϕ γ

ϕ γ

− −= = =

= = =

= = =

o

o o

o o

 

(g) Referring to Figure 15.41, along with the forces calculated, it may be noted that by equilibrium, forces at 
the contact site must be equal and opposite.  That is, ( )t pF and ( )t gF are equal and opposite, ( )r pF and 

( )a gF are equal and opposite, and ( )r gF and ( )a pF are equal and opposite. 
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15-55.   Repeat problem 15-53, except for a diametral pitch of 16. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(h) From (15-77), ( ) ( )3 15 45 teethg G pN m N= = =  

(i) From (15-84),  
( ) ( )63,025 63,025 3

630 in-lb
300p

p

hp
T

n
= = =  

(j) From (15-78), 

( )

( )

1 1

sin
2 2

15 0.94 inches
16

1cot tan 18.4
3

0.94 1.15 sin18.4 0.29 inches
2 2

p
p pavg

p
p

d

p G

p avg

d br

N
d

P

m

r

γ

γ − −

= −

= = =

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

= − =

o

o

 

(k) From (15-80), 

( ) ( )( )

( ) ( )

2 2 0.29 300 ft46
12 12 min

33,000 33,000 3
2152 lb

46

p pavg
avg

t
avg

r n
V

hp
F

V

π π
= = =

= = =

 

(l) From (15-81), 

( ) ( )( )
( ) ( )( )

tan cos 2152 tan 20 cos18.4 743 lb

tan sin 2152 tan 20 sin18.4 247 lb

r t pp

a t pp

F F

F F

ϕ γ

ϕ γ

= = =

= = =

o o

o o
 

(m) From (15-77), 

( ) ( )( )
( ) ( )( )

1 1tan tan 3 71.6

tan cos 2152 tan 20 cos 71.6 247 lb

tan sin 2152 tan 20 sin 71.6 743 lb

g G

r t gg

a t gg

m

F F

F F

γ

ϕ γ

ϕ γ

− −= = =

= = =

= = =

o

o o

o o

 

(n) Referring to Figure 15.41, along with the forces calculated, it may be noted that by equilibrium, forces at 
the contact site must be equal and opposite.  That is, ( )t pF and ( )t gF are equal and opposite, ( )r pF and 

( )a gF are equal and opposite, and ( )r gF and ( )a pF are equal and opposite. 
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15-56.   For the Coniflex® bevel gearset described in problem 15-43, the following information has been tabulated 
or calculated: 

     Tp = 630 in-lb 

     Pd = 6 

     dp = 2.50 inches 

     b = 1.15 inches 

     Np = 15 teeth 

     Ng = 45 teeth 

     Further, it is proposed to use Grade 2 AISI 4140 steel nitride and through-hardened to BHN 305 for both the 
pinion and the gear.  Other known design information includes the following items: 

1. Input power is supplied by an electric motor. 

2. AGMA quality Qv = 8 is desired. 

3. The gear is straddle mounted with a closely positioned bearing on each side, but the pinion overhangs its 
support bearing. 

4. A design life of 109 cycles has been specified. 

A reliability of 99 percent is required, and a design safety factor of at least 1.3 is desired.  Do the following: 

a. Calculate the tooth bending fatigue stress for the more critical of the pinion or the gear. 

b. Determine the tooth bending fatigue strength for the proposed AISI 4140 steel material corresponding to a 
life of 109 cycles. 

c. Calculate the existing safety factor for the proposed design configuration, based on tooth bending fatigue as 
the governing failure mode.  Compare this with the desired design safety factor, and make any comments 
you think appropriate. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-85) 

2 p d
b a v m

p

T P
K K K

d bJ
σ =  

The factors may be evaluated as 

 Ka = 1.25 (Table 15.6; uniform drive, moderate shock assumed to driven machine) 

 Kv = 1.1 (Figure 15.24 with Qv = 8and Vavg = 168  ft/min data of problem 15-53) 

 Km = 1.1 (From Figure 15.43; for b = 1.15 inches and one member straddle-mounted) 

 J = 0.24 (From Figure 15.44, for the pinion teeth, using Np = 15, Ng = 45) 

Thus, 
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( )( )
( )( )( ) ( )( )( )

2 630 6
1.25 1.1 1.1 16,570 psi

2.5 1.15 0.24bσ = =  

(b) From Figure 15.26, for Grade 2 nitrided and through-hardened AISI 4140 steel, at 99% reliability, at a life 
of 107 cycles, 49,000 psitbfS ′ = .  From Figure 15.28, for 109 cycles, YN = 0.9, so that 

( )( )0.9 1.0 49,000 44,100 psitbf N g tfbS Y R S ′= = = . 

(c) Based on (2-89), 

44,100 2.7
16,570

tbf
ex

b

S
n

σ
= = =  

Based on the desired safety factor nd = 1.3, this is acceptable.  Until surface durability is checked, no effort to 
optimize the design is warranted. 
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15-57.   Based on the specifications and data for the Coniflex® bevel gearset given in problem 15-56, do the 
following: 

a. Calculate the surface fatigue durability stress for the Coniflex® bevel gearset under consideration. 

b. Determine the surface fatigue durability strength for the proposed nitride and hardened AISI 4140 steel 
material corresponding to a life of 109 cycles. 

c. Calculate the existing safety factor for the proposed design configuration based on surface fatigue 
durability as the governing failure mode.  Compare this with the desired design safety factor, and make any 
comments you think appropriate. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-86) 

( )

( )
( ) ( )

2

2 2

6

2

3 3 2805
1 1 0.32 2 2 2

30 10

p
sf p a v mbevel

p

p bevel

T
C K K K

bd I

C

E

σ

νπ π

=

= = =
⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

The factors may be evaluated as 

 Ka = 1.25 (Table 15.6; uniform drive, moderate shock assumed to driven machine) 

 Kv = 1.1 (Figure 15.24 with Qv = 8and Vavg = 168  ft/min data of problem 15-53) 

 Km = 1.1 (From Figure 15.43; for b = 1.15 inches and one member straddle-mounted) 

 I = 0.075 (From Figure 15.45, using Np = 15, Ng = 45) 

Thus, 

( )
( )( ) ( )

( )( )( )2

2 630
2805 1.25 1.1 1.1 166,800 psi

1.15 2.50 0.075
sfσ = =  

(b) From Table 15.15, for Grade 2 nitrided and through hardened AISI 4140 steel, at 99 % reliability, at a life 
of 107 cycles, 163,000 psisfS ′ = .  From Figure 15.31, for 109 cycles, ZN = 0.8.  Using (15-47), 

( )( )( )0.8 1.0 163,000 130, 400 psisf N G sfS Z R S ′= = =  

(c)  Based on (2-89), 

130, 400 0.8
166,800

sf
ex

sf

S
n

σ
= = ≈  

This safety factor (nex < 1.0) is clearly not acceptable.  Redesign is necessary. 
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15-58.   A Coniflex® , straight-tooth bevel gearset is supported on shafts with centerlines intersecting at a 90˚ angle.  
The gear is straddle mounted between closely positioned bearings, and the pinion overhangs its support bearing.  
The 15-tooth pinion rotates at 900 rpm, driving the 60-tooth gear, which has a diametral pitch of 6, pressure angle of 
20˚, and face width of 1.25 inches.  The material for both gears is through-hardened Grade 1 steel with a hardness of 
BHN 300 (see Figure 15.25).  It is desired to have a reliability of 90 percent, a design life of 108 cycles, and a 
governing safety factor of 2.5.  Estimate the maximum horsepower that can be transmitted by this gear reducer while 
meeting all of the design specifications given. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

From (15-42), tbf N g tbfS Y R S ′= .From Figure 15.25, for R = 99 % and Nd = 107 cycles, 36,000 psitbfS ′ = .  From 

Figure 15.28, for 108 cycles, YN = 0.95.  From Table 15.13, for R = 90 %, Rg = 1.18, thus 

( )( )( )0.95 1.18 36,000 40,360 psitbfS = =  

Similarly, from (15-47), sf N g sfS Z R S ′= .From Figure 15.30, for R = 99 % and Nd = 107 cycles, 125,700 psisfS ′ = .  

From Figure 15.31, for 108 cycles, ZN = 0.90.  From Table 15.13, for R = 90 %, Rg = 1.18, thus 

( )( )( )0.9 1.18 125,700 133,500 psisfS = =  

Based on (2-84), 

( )

( )

40,360 16,144 psi
2.5

133,500 53,400 psi
2.5

tbf
d tbf

d

sf
d sf

d

S
n

S
n

σ

σ

= = =

= = =

 

( ) ( )

( ) ( )
( )

( )
( ) ( )( )

max

2 2

2max

1 1 1 1

2

2

15 2.50 inches
6

1 15cot tan tan tan 14
60

2.50 1.25sin sin14 1.10 inches
2 2 2 2

2 2 1.10 900
12

b pallow
p b

d a v m

sf pallow
p sf

p a v mbevel

p
p

d

p
p G

G g

p
p pavg

p pavg

d bJ
T

P K K K

d bI
T

C K K K

N
d

P
N

m
m N

d br

r n
V

σ

σ

γ

γ

π π

−

−

− − − −

=

=

= = =

= = = = =

= − = − =

= =

o

o

ft518
12 min

=

 

The factors may be evaluated as 

 Ka = 1.25 (Table 15.6; assume uniform drive, moderate shock for driven machine) 

 Kv = 1.2 (Figure 15.24 with Qv = 8and Vavg = 518  ft/min) 
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 Km = 1.1 (From Figure 15.43; for b = 1.25 inches and one member straddle-mounted) 

 J  = 0.235 (From Figure 15.44, for the pinion teeth, using Np = 15, Ng = 60) 

 I = 0.077 (From Figure 15.45, for the pinion using Np = 15, Ng = 60) 

( )
( ) ( )

2 6
2 2

6

3 3 7.87 10
1 1 0.32 2 2 2

30 10

p bevel
C

E
νπ π

= = = ×
⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

Setting ( ) ( )b dallow tbfσ σ= gives 

( ) ( )( )( )( )
( )( )( )( )max

16,150 2.50 1.25 0.235
599 in-lb

2 6 1.25 1.2 1.1p b
T

−
= =  

Setting ( ) ( )sf d sfallow
σ σ= gives 

( ) ( ) ( ) ( )( )
( )( )( )( )

2 2

6max

53,400 2.50 1.25 0.077
66 in-lb

2 7.87 10 1.25 1.2 1.1p sf
T

−
= =

×
 

Since ( )
maxp sf

T
−

is smaller than ( )
maxp b

T
−

, surface fatigue governs.  Hence, from (15-84) 

( ) ( )
max

66 900
0.94 horsepower

63,025 63,025
p p

allow

T n
hp = = =  
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15-59.    Repeat problem 15-58, except change the material to through-hardened Grade 2 steel with a hardness of 
BHN 350 (see Figure 15.25). 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

From (15-42), tbf N g tbfS Y R S ′= .From Figure 15.25, for R = 99 % and Nd = 107 cycles, 52,100 psitbfS ′ = .  From 

Figure 15.28, for 108 cycles, YN = 0.95.  From Table 15.13, for R = 90 %, Rg = 1.18, thus 

( )( )( )0.95 1.18 52,100 58,400 psitbfS = =  

Similarly, from (15-47), sf N g sfS Z R S ′= .From Figure 15.30, for R = 99 % and Nd = 107 cycles, 156,450 psisfS ′ = .  

From Figure 15.31, for 108 cycles, ZN = 0.90.  From Table 15.13, for R = 90 %, Rg = 1.18, thus 

( )( )( )0.9 1.18 156,400 166,150 psisfS = =  

Based on (2-84), 

( )

( )

58,400 23,360 psi
2.5

166,150 66,460 psi
2.5

tbf
d tbf

d

sf
d sf

d

S
n

S
n

σ

σ

= = =

= = =

 

( ) ( )

( ) ( )
( )

( )
( ) ( )( )

max

2 2

2max

1 1 1 1

2

2

15 2.50 inches
6

1 15cot tan tan tan 14
60

2.50 1.25sin sin14 1.10 inches
2 2 2 2

2 2 1.10 900
12

b pallow
p b

d a v m

sf pallow
p sf

p a v mbevel

p
p

d

p
p G

G g

p
p pavg

p pavg

d bJ
T

P K K K

d bI
T

C K K K

N
d

P
N

m
m N

d br

r n
V

σ

σ

γ

γ

π π

−

−

− − − −

=

=

= = =

= = = = =

= − = − =

= =

o

o

ft518
12 min

=

 

The factors may be evaluated as 

 Ka = 1.25 (Table 15.6; assume uniform drive, moderate shock for driven machine) 

 Kv = 1.2 (Figure 15.24 with Qv = 8and Vavg = 518  ft/min) 

 Km = 1.1 (From Figure 15.43; for b = 1.25 inches and one member straddle-mounted) 

 J  = 0.235 (From Figure 15.44, for the pinion teeth, using Np = 15, Ng = 60) 

 I = 0.077 (From Figure 15.45, for the pinion using Np = 15, Ng = 60) 
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( )
( ) ( )

2 6
2 2

6

3 3 7.87 10
1 1 0.32 2 2 2

30 10

p bevel
C

E
νπ π

= = = ×
⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

Setting ( ) ( )b dallow tbfσ σ= gives 

( ) ( )( ) ( )( )
( ) ( )( )( )max

23,360 2.50 1.25 0.235
866 in-lb

2 6 1.25 1.2 1.1p b
T

−
= =  

Setting ( ) ( )sf d sfallow
σ σ= gives 

( ) ( ) ( ) ( )( )
( )( )( )( )

2 2

6max

66,460 2.50 1.25 0.077
102 in-lb

2 7.87 10 1.25 1.2 1.1p sf
T

−
= =

×
 

Since ( )
maxp sf

T
−

is smaller than ( )
maxp b

T
−

, surface fatigue governs.  Hence, from (15-84) 

( ) ( )
max

102 900
1.46 horsepower

63,025 63,025
p p

allow

T n
hp = = =  
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15-60.   It is desired to design a long-life right-angle straight bevel gear speed reducer for an application in which an 
850-rpm, 5-hp internal combustion engine, operating at full power, drives the pinion.  The output gear, which is to 
rotate at approximately 350 rpm, drives a heavy-duty industrial field conveyor.  Design the gearset, including the 
selection of an appropriate material, if a reliability of 95 percent is desired. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

Following the suggestions of 15.19, 

(a) Based on the specifications, a first conceptual layout of the bevel gearset may be sketch as shown below. 

 

(b) Potential primary failure modes appear to be tooth bending fatigue and surface fatigue pitting. 

(c) Coniflex straight bevel gears are tentatively selected. 

(d) Using specified shaft speed requirements, the gear ratio mG may be calculated from (15-77) as 

850 2.43
350

p p
G

g g

n
m

n
ω
ω

= = = =  

(e) Operating pinion torque may be calculated using (15-84) as 

( ) ( )63,025 63,025 5
371 in-lb

850p
p

hp
T

n
= = =  

(f) From Figure (15.47), for Tp = 371 in-lb and mG = 2.43, dp ≈ 1.25 inches. 
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(g) From Figure (15.48), select Np = 18 teeth and for the gear, Ng = mGNp =(2.43)(18) = 43.74 ≈ 44 teeth. 

(h) Using (15-8), Pd = Np/dp = 18/1.25 = 14.4 

(i) Using (15-73) 

1 1

0.3
2sin

1cot tan 22.4
2.43

1.250.3 0.49 inch
2sin 22.4

10 10 0.69 inch
14.4d

p
L

p

p G

L

P
d

d
b

m

b

b
P

γ

γ − −

⎛ ⎞
≤ ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

⎛ ⎞≤ =⎜ ⎟
⎝ ⎠

≤ = =

o

o

 

Selecting the smaller of the two, b = 0.5 inch. 

(j) From (15-78) 

( )
( ) ( )( )

1.25 0.5sin sin 22.4 0.53
2 2 2 2

2 2 0.53 850 ft236
12 12 min

p
p pavg

p pavg

d br inch

r n
V

γ

π π

= − = − =

= = =

o

 

(k) Using (15-79), (15-81), and (15-82) 

( ) ( )

( )
( )

33,000 33,000 5
699 lb

236

tan cos 699 tan 20 cos 22.4 235 lb (selecting a standard 20 bevel gear tooth)

tan sin 699 tan 20 sin 22.4 97 lb

t
avg

r t pp

a t pp

hp
F

V

F F

F F

ϕ γ

ϕ γ

= = =

= = =

= = =

o o o

o o

 

(l) From (15-85) 

2 p d
b a v m

p

T P
K K K

d bJ
σ =  

The factors may be evaluated as 

 Ka = 1.75 (Table 15.6; single cylinder i.e. engine moderate shock in the conveyor) 

 Kv = 1.1 (Figure 15.24 with Qv = 7and Vavg = 236  ft/min) 

 Km = 1.1 (From Figure 15.43; for b = 0.5 inches and one member straddle-mounted) 

 J = 0.24 (From Figure 15.44, for the pinion teeth, using Np = 18, Ng = 44) 

Thus, 
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( )( )
( )( )( ) ( ) ( ) ( )

2 371 14.4
1.75 1.1 1.1 150,833 psi

1.25 0.5 0.24bσ = =  

Comparing with steel gear strengths given in Table 15.10, σb must be reduced significantly.  Try increasing 
dp to 2.50 inches, thus repeating the above calculations gives: 

Pd = Np/dp = 18/2.50 = 7.2 

2.50.3 0.98 inch
2sin 22.4

10 10 1.39 inch
7.2d

L

P
d

b

b
P

⎛ ⎞≤ =⎜ ⎟
⎝ ⎠

≤ = =

o

 

Selecting the smaller of the two, b = 1.0 inch. 

( )
( ) ( )( )

2.5 1.0sin sin 22.4 1.06
2 2 2 2

2 2 1.06 850 ft472
12 12 min

p
p pavg

p pavg

d br inch

r n
V

γ

π π

= − = − =

= = =

o

 

( ) ( )

( )
( )

33,000 33,000 5
350 lb

472

tan cos 350 tan 20 cos 22.4 118 lb

tan sin 350 tan 20 sin 22.4 49 lb

t
avg

r t pp

a t pp

hp
F

V

F F

F F

ϕ γ

ϕ γ

= = =

= = =

= = =

o o

o o

 

( )( )
( )( )( ) ( )( )( )

2 371 7.2
1.75 1.1 1.1 18,850 psi

2.50 1.0 0.24bσ = =  

Reviewing Chapter X (5) methodology, a design safety factor will be chosen as nd = 1.4, so based on (2-84)  

( ) ( )1.4 18,850 26,400 psib d btbf
nσ σ= = =  

From (15-42), tbf N g tbfS Y R S ′= .From Figure 15.28, using Nd = 1010 cycles, YN = 0.85.  From Table 15.13, for R = 95 

%, Rg ≈ 1.1, thus 

( ) ( )( )'

26, 400 28,240 psi
0.85 1.1tbf req d

S ′ = =  

From Figure 15.25, select through-hardened steel, Grade 1, heat treated to BHN 210. 

(m) Next from (15-86), 
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( )

( )
( ) ( )

2

2 2

6

2

3 3 2805
1 1 0.32 2 2 2

30 10

p
sf p a v mbevel

p

p bevel

T
C K K K

bd I

C

E

σ

νπ π

=

= = =
⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

And from Figure 15.45, I = 0.079  (Np = 18, Ng = 44) 

( )
( )( ) ( )

( )( )( )2

2 371
2805 1.75 1.1 1.1 158,230 psi

1.0 2.50 0.079
sfσ = =  

Comparing this value with Figure 15.30, the Grade 1 through-hardened steel selected above will not be satisfactory, 
nor will Grade 2.  Instead, try changing to carburized and hardened Grade 2 steel heat treated to surface hardness of 
RC 58-64, (minimum core hardness of RC 25), from Table 15.15.  This gives, 225,000 psisfS ′ = .  From (15-47), 

sf N g sfS Z R S ′= .  From Figure 15.31, for 1010 cycles, ZN = 0.75, and Rg ≈1.1, thus 

( )( )( )0.75 1.1 225,000 185,625 psisfS = =  

(n) Based on (x-x  5-7), 

185,625 1.2
158, 230

sf
ex

sf

S
n

σ
= = ≈  

This does not satisfy nd = 1.4.  Going back to Table 15.15, select Grade 3 steel carburized and hardened to surface 
hardness of RC 58 – 64, (minimum core hardness of RC 30), giving 275,000 psisfS ′ = and 

( )( )( )0.75 1.1 275,000 226,875 psisfS = =  

and 

226,875 1.4
158, 230exn = =  

So all design specifications are satisfied.  Summarizing the design proposal, the following is suggested: 

Material: AISI 4620 (see 15.5) Grade 3, carburized and hardened at surface to RC 58 – 64, with RC 30 
minimum core hardness. 

Tooth system:  Coniflex standard full depth 20˚ straight bevel gear teeth 

Np = 18 teeth 

Ng = 44 teeth 

dp = 2.50 inches 

dg = 6.11 inches 

Pd = 7.2 
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b = 1.0 inch 
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15-61.    Repeat problem 15-60, except use an 850 rpm, 10-hp internal-combustion engine, operating at full power, 
to drive the pinion. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

Following the suggestions of 15.19, 

(a) Based on the specifications, a first conceptual layout of the bevel gearset may be sketch as shown below. 

 

(b) Potential primary failure modes appear to be tooth bending fatigue and surface fatigue pitting. 

(c) Coniflex standard straight bevel gears are tentatively selected. 

(d) Using specified shaft speed requirements, the gear ratio mG may be calculated from (15-77) as 

850 2.43
350

p p
G

g g

n
m

n
ω
ω

= = = =  

(e) Operating pinion torque may be calculated using (15-84) as 

( ) ( )63,025 63,025 10
741 in-lb

850p
p

hp
T

n
= = =  

(f) From Figure (15.47), for Tp = 741 in-lb and mG = 2.43, dp ≈ 2.0 inches.  Actually, because of the impact 
caused by the I.C. engine drive, a larger pinion pitch diameter will be assumed to start, i.e., dp = 3.0 inches.  

(g) From Figure (15.48), select Np = 20 teeth and for the gear, Ng = mGNp =(2.43)(20) = 48.6 ≈ 49 teeth. 

(h) Using (15-8), Pd = Np/dp = 20/3.0 = 6.67 
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(i) Using (15-73) 

1 1

0.3
2sin

1cot tan 22.4
2.43

3.00.3 1.18 inch
2sin 22.4

10 10 1.5 inch
6.67d

p
L

p

p G

L

P
d

d
b

m

b

b
P

γ

γ − −

⎛ ⎞
≤ ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞= = =⎜ ⎟
⎝ ⎠

⎛ ⎞≤ =⎜ ⎟
⎝ ⎠

≤ = =

o

o

 

Selecting the smaller of the two, b = 1.2 inch. 

(j) From (15-78) 

( )
( ) ( )( )

3.0 1.2sin sin 22.4 1.27 inches
2 2 2 2

2 2 1.27 850 ft565
12 12 min

p
p pavg

p pavg

d br

r n
V

γ

π π

= − = − =

= = =

o

 

(k) Using (15-79), (15-81), and (15-82) 

( ) ( )

( )
( )

33,000 33,000 10
584 lb

565

tan cos 584 tan 20 cos 22.4 197 lb (selecting a standard 20 bevel gear tooth)

tan sin 584 tan 20 sin 22.4 81 lb

t
avg

r t pp

a t pp

hp
F

V

F F

F F

ϕ γ

ϕ γ

= = =

= = =

= = =

o o o

o o

 

(l) From (15-85) 

2 p d
b a v m

p

T P
K K K

d bJ
σ =  

The factors may be evaluated as 

 Ka = 1.75 (Table 15.6; single cylinder i.e. engine moderate shock in the conveyor) 

 Kv = 1.22 (Figure 15.24 with Qv = 7and Vavg = 565  ft/min) 

 Km = 1.1 (From Figure 15.43; for b = 1.2 inches and one member straddle-mounted) 

 J = 0.24 (From Figure 15.44, for the pinion teeth, using Np = 20, Ng = 49) 

Thus, 

( )( )
( ) ( ) ( ) ( )( )( )

2 741 6.67
1.75 1.22 1.1 26,870 psi

3.0 1.2 0.24bσ = =  

(m) Next from (15-86), 
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( )

( )
( ) ( )

2

2 2

6

2

3 3 2805
1 1 0.32 2 2 2

30 10

p
sf p a v mbevel

p

p bevel

T
C K K K

bd I

C

E

σ

νπ π

=

= = =
⎛ ⎞ ⎛ ⎞− −
⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎝ ⎠

 

And from Figure 15.45, I = 0.083  (Np = 20, Ng = 49) 

( )
( )( ) ( )

( )( )( )2

2 741
2805 1.75 1.22 1.1 174,800 psi

1.2 3.0 0.083
sfσ = =  

To attempt selection of an acceptable material, first check surface fatigue since it often governs.  Reviewing Chapter 
2  methodology, a design safety factor will be chosen as nd = 1.4.  From (15-47) 

( ) sf N g sf
d sf

d d

S Z R S
n n

σ
′

= =  

From Figure 15.31, for 1010 cycles, ZN = 0.75, and from Table 15.13, for R = 95 %, Rg ≈1.1, thus, setting 
( )d sfsfσ σ= we have 

( ) ( ) ( )
( )'

1.4 174,800
296,630 psi

0.75 1.1
d d sf

sf req d
N g

n
S

Z R

σ
′ = = =  

The only material that comes close is, from Table 15.15, Grade 3 steel carburized and hardened to surface hardness 
of RC 58 – 64 ( with RC 30 minimum core hardness), giving 275,000 psisfS ′ = .  Based on (15-47) 

( )( )( )0.75 1.1 275,000 226,875 psisf N g sfS Z R S ′= = =  

and 

226,875 1.3
174,800

sf
ex

sf

S
n

σ
= = =  

This does not quite meet the conditions of nd = 1.4, but will be considered acceptable for now.  Engineering 
management must decide whether nex = 1.3 is acceptable in the final analysis. 

Checking on the tooth-bending safety factor, for the Grade 3 material selected from Table 15.10, we have 
75,000 psitbfS ′ = and from (15-42), tbf N g tbfS Y R S ′= .From Figure 15.28, using Nd = 1010 cycles, YN = 0.85.  From 

Table 15.13, for R = 95 %, Rg ≈ 1.1, thus 

( )( ) ( )0.85 1.1 75,000 70,125 psitbfS = =  

and 

70,125 2.6
26,870

tbf
ex b

b

S
n

σ− = = =  
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This is more than adequate.  Summarizing the design proposal, the following is suggested: 

Material: AISI 4620 (see 15.5) Grade 3, carburized and hardened at surface to RC 58 – 64, with RC 30 
minimum core hardness. 

Tooth system:  Coniflex standard full depth 20˚ straight bevel gear teeth 

Np = 20 teeth 

Ng = 49 teeth 

dp = 3.0 inches 

dg = 7.35 inches 

Pd = 6.67 

b = 1.2 inch 

nd = 1.3 

other satisfactory design configurations exist. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  643

15-62.   A proposed worm gearset is to have a single-start worm with a pitch diameter of 1.250 inches, a diametral 
pitch of 10, and a normal pressure angle of 14 ½ ˚.  The worm is to mesh with a worm gear having 40 teeth and a 
face width of 0.625 inch.  Calculate the following: 

a. Axial pitch 

b. Lead of the worm 

c. Circular pitch 

d. Lead angle of the worm 

e. Helix angle of the worm gear 

f. Addendum 

g. Dedendum 

h. Outside diameter of the worm 

i. Root diameter of the worm 

j. Pitch diameter of the worm 

k. Center distance 

l. Velocity ratio 

m. Root diameter of the gear 

n. Approximate outside diameter of the gear 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-87) 

( )

40 4.00 inches
10

4.00
0.314 inch

40

g
x

g

g
g

d

x

d
p

N

N
d

P

p

π

π

=

= = =

= =

 

(b) From (15-93), ( )( )1 0.314 0.314 inchw w xL N p= = =  

(c) From (15-87),  pc = px = 0.314 inch 

(d) From (15-94),  
( )

1 1 0.314tan tan 4.57
1.25

w
w

w

L
d

λ
π π

− −= = = o  

(e) From (15-95),  ψg = λw = 4.57˚ 

(f) From Table 15.20, a = 1/Pd = 1/10 = 0.10 inch 
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(g) From Table 15.20, de = 1.157/Pd = 1.157/10 = 0.116 inch 

(h) From Table 15.20, ( ) 2.000 2.0001.25 1.45 inch
10o ww

d

d d
P

= + = + =  

(i) From Table 15.20,  ( ) 2.314 2.3141.25 1.019 inch
10r ww

d

d d
P

= − = − =  

(j) dg = 4.00 inches 

(k) From (15-91),  4.00 1.25 2.63 inches
2 2

g wd d
C

+ +
= = =  

(l) From (15-89),  
40 40
1

gw

g w

N
N

ω
ω

= = =  

(m) From Table 15.20, ( ) 2.314 2.3144.00 3.769 inch
10r gg

d

d d
P

= − = − =  

(n) From Table 15.20,  ( ) 3.000 3.0004.00 4.300 inch
10o gg

d

d d
P

= + = + =  
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15-63.   A double-start worm has a lead of 60 mm.  The meshing worm gear has 30 teeth, and has been cut using a 
hob having a module of 8.5 in the normal plane.  Do the following: 

a. Calculate the pitch diameter of the worm. 

b. Calculate the pitch diameter of the worm gear. 

c. Calculate the center distance and determine whether it lies in the range of usual practice. 

d. Calculate the reduction ratio of the worm gearset. 

e. Calculate the diametral pitch of the gearset. 

f. Calculate the outside diameter of the worm (mm). 

g. Calculate the approximate outside diameter of the worm gear (mm). 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-94), 

( )

1

1

tan

cos

60 30 mm
2

8.5 26.70 mm

26.70cos 27.13
30

60 37.27 mm
tan 27.13

w
w

w

n
w

x

w
x

w

n n

w

w

L
d

p
p

L
p

N
p m

d

π λ

λ

π π

λ

π

−

−

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

= = =

= = =

⎛ ⎞= =⎜ ⎟
⎝ ⎠

= =

o

o

 

(b) From (15-87),  
( )30 30

286.48 mmg x
g

N p
d

π π
= = =  

(c) From (15-91), 

286.48 37.27 161.88 mm
2 2

g wd d
C

+ +
= = =  

From (15-90), the recommended range is 
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( ) ( )

0.875 0.875

0.875 0.875

3.0 1.6
161.88 161.88

3.0 1.6
85.71 85.71
3.0 1.6

28.57 53.57

w

w

w

w

C Cd

d

d

d

≤ ≤

≤ ≤

≤ ≤

≤ ≤

 

We see that dw = 37.27 mm, which does lie in the recommended range. 

(d) From (15-89), 
30 15
2

gw

g w

N
N

ω
ω

= = =  

(e) From (15-14), 25.4 25.4 3.0
8.5d

n

P
m

= = =  

(f) From Table 15.20, (U.S. units), 

( )

( )

2.000 37.27 2.000 2.13 inches
25.4 3

54.20 mm

o ww
d

o w

d d
P

d

= + = + =

=
 

(g) From Table 15.20, (U.S. units), 

( )

( )

3.000 286.48 3.000 12.28 inches
25.4 3

311.88 mm

o gg
d

o g

d d
P

d

= + = + =

=
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15-64.   A triple-start worm is to have a pitch diameter of 4.786 inches.  The meshing worm gear is to be cut using a 
hob having a diametral pitch of 2 in the normal plane.  The reduction ratio is to be 12:1.  Do the following: 

a. Calculate the number of teeth in the worm gear. 

b. Calculate the lead angle of the worm. 

c. Calculate the pitch diameter of the worm gear. 

d. Calculate the center distance and determine whether it lies in the range of usual practice. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-89),  ( )( )12 3 36 teethw
g w

g

N N
ω
ω

⎛ ⎞
= = =⎜ ⎟⎜ ⎟
⎝ ⎠

 

(b) From (15-93), 

( )

( )

1

cos

1.571
2

1.571
cos
3 1.571 4.713
cos cos

tan 4.786 tan 15.04 tan

sin4.713 15.04 tan 15.04
cos cos

4.713sin 0.313
15.04

sin 0.313 18.24

w w x

n
x

w

n
n

x
w

w
w w

w w w w w

w
w

w w

w

w

L N p
p

p

p
P

p

L

L d

λ
π π

λ

λ λ
π λ π λ λ

λ
λ

λ λ

λ

λ −

=

=

= = =

=

= =

= = =

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

= =

= = o

 

(c) From (15-87), 

( )
cos cos

1.571 36
18.95 inches

cos18.24

n g n g
g

g w

g

p N p N
d

d

π ψ π λ

π

= =

= =
o

 

(d) From (15-91), 

18.95 4.786 11.87 inches
2 2

g wd d
C

+ +
= = =  

From (15-90), the recommended range is 
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( ) ( )

0.875 0.875

0.875 0.875

3.0 1.6
11.87 11.87

3.0 1.6
8.71 8.71
3.0 1.6

2.90 5.44

w

w

w

w

C Cd

d

d

d

≤ ≤

≤ ≤

≤ ≤

≤ ≤

 

We see that dw = 4.876 inches, which does lie in the recommended range. 
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15-65.   It is proposed to drive an industrial crushing machine, designed to crush out-of-tolerance scrap ceramic 
bearing liners, with an in-stock 2-hp, 1200-rpm electric motor coupled to an appropriate speed reducer.  The 
crushing machine input shaft is to rotate at 60 rpm.  A worm gear speed reducer is being considered to couple the 
motor to the crushing machine.  A preliminary sketch of the wormset to be used in the speed reducer proposes a 
double-start right-hand worm with axial pitch of 0.625 inch, a normal pressure angle of 14 ½ ˚, and a center distance 
of 5.00 inches.  The proposed material for the worm is steel with a minimum surface hardness of Rockwell C 58.  
The proposed gear material id forged bronze. 

  Calculate or determine the following, assuming the friction coefficient between worm and gear to be 0.09, 
and that the motor is operating steadily at full rated power; 

a. Number of teeth on the gear 

b. Lead angle of the worm 

c. Sliding velocity between worm and gear 

d. Tangential force on the worm 

e. Axial force on the worm 

f. Radial force on the worm 

g. Tangential force on the gear 

h. Axial force on the gear 

i. Radial force on the gear 

j. Power delivered to the crushing machine input shaft 

k. Whether the wormset is self-locking 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-89), 1200 2 40 teeth
60

w w
g w w

g g

n
N N N

n
ω
ω

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 

(b) From (15-87) 

( )( )

( )
( )

( )

1

1

40 0.625
7.96 inches

tan

2 0.625 1.25 inches

2 2 5 7.96 2.04 inches

1.25tan 11.04
2.04

w

g x
g

w
w

w

w x

w g

w

N p
d

L
d

L N p

d C d

π π

λ
π

λ
π

−

−

= = =

=

= = =

= − = − =

= = o

 

(c) From (15-108), 
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( ) ( )( )
cos
2 2 2 2.04 2 1200 ft641

12 12 min
641 ft653

mincos11.04

w
s

w

w w
w

s

V
V

d n
V

V

λ
π π

=

= = =

= =
o

 

(d) From (15-104), 
( ) ( )33,000 33,000 2

103 lb
641

in
wt

w

hp
F

V
= = =  

(e) From (15-99), 

cos cos sin
cos sin cos

cos14.5 cos11.04 0.09sin11.04103 351 lb
cos14.5 sin11.04 0.09cos11.04

n w w
wa wt

n w w

F F
ϕ λ µ λ
ϕ λ µ λ

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

⎛ ⎞−
= =⎜ ⎟+⎝ ⎠

o o o

o o o

 

(f) From (15-100), 

sin
cos sin cos

sin14.5103 94 lb
cos14.5 sin11.04 0.09cos11.04

n
wr wt

n w w

F F
ϕ

ϕ λ µ λ
⎛ ⎞

= ⎜ ⎟+⎝ ⎠
⎛ ⎞

= =⎜ ⎟+⎝ ⎠

o

o o o

 

(g) From (15-101),  351 lbgt waF F= =  

(h) From (15-102),  103 lbga wtF F= =  

(i) From (15-103), 94 lbgr wrF F= =  

(j) From (15-106), 

( )

( )

cos tan cos14.5 0.09 tan11.04 0.67
cos cot cos14.5 0.09cot11.04

0.67 2 1.34 horsepower

out in

n w

n w

out

hp e hp

e

hp

ϕ µ λ
ϕ µ λ

=

− −
= = =

+ +

= =

o o

o o
 

(k) From (15-112), gearset is self-locking if  

cos sin cos 0
or if

cos14.5 sin11.04 0.09cos11.04 0
or if

0.097 0

n w wϕ λ µ λ− + ≥

− + ≥

− ≥

o o o  

Therefore, the gearset is not self-locking. 
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15-66.   A worm gear speed reducer has a right-hand triple-threaded worm made of hardened steel, a normal 
pressure angle of 20˚, an axial pitch of 0.25 inch, and a center distance of 2.375 inches.  The gear is made of forged 
bronze.  The speed reduction from input to output is 15:1.  If the worm is driven by a ½-hp, 1200-rpm electric motor 
operating steadily at full rated power, determine the following, assuming the coefficient of friction between worm 
and gear to be 0.09: 

a. Number of teeth in the gear 

b. Pitch diameter of the gear 

c. Lead angle of them 

d. Relative sliding velocity between worm and gear 

e. Tangential force on the worm 

f. Tangential force on the gear 

g. An acceptable range for face width that should allow a nominal operating life of 25,000 hours.  (Hint: See 
footnote 130 relating to equations (15-115).) 

 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

(a) From (15-89),  ( )15 3 45 teethw w
g w w

g g

n
N N N

n
ω
ω

⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

(b) From (15-87),  
( )( )45 0.25

3.58 inchesg x
g

N p
d

π π
= = =  

(c) From (15-94), 

( )
( )

( )

1

1

tan

3 0.25 0.75 inches

2 2 2.375 3.58 1.17 inches

0.75tan 11.5
1.17

w

w
w

w

w x

w g

w

L
d

L N p

d C d

λ
π

λ
π

−

−

=

= = =

= − = − =

= = o

 

(d) From (15-108) 

( ) ( )( )
cos
2 2 2 1.17 2 1200 ft368

12 12 min
368 ft376

mincos11.5

w
s

w

w w
w

s

V
V

d n
V

V

λ
π π

=

= = =

= =
o
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(e) From (15-104), 
( ) ( )33,000 33,000 0.5

44 lb
376

in
wt

w

hp
F

V
= = =  

(f) From (15-101), gt waF F= , from (15-99) 

cos cos sin
cos sin cos

cos 20 cos11.5 0.09sin11.544
cos 20 sin11.5 0.09cos11.5

144 lb

n w w
wa wt

n w w

gt wa

F F

F F

ϕ λ µ λ
ϕ λ µ λ

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠

⎛ ⎞−
= ⎜ ⎟+⎝ ⎠
= =

o o o

o o o
 

(g) From (15-128), for an acceptable design, 

( )

( ) ( )

( )

1.8

126,050

cos tan cos 20 0.09 tan11.5 0.68
cos cot cos 20 0.09cot11.5

0.68 0.5 0.34 horsepower
1200 80 rpm

15 15

out

g g s m v

inout

n w

n w

out

w
g

hp
b

d n K K K

hp e hp

e

hp
n

n

ϕ µ λ
ϕ µ λ

≥

=

− −
= = =

+ +

= =

= = =

o o

o o
 

From (15-116), for C = 2.375 < 3.0 inches, 

( ) ( )33720 10.37 720 10.37 2.375 859s c
K C= + = + =  

From (15-117), for dg = 3.58 < 8.0 inches, ( ) 1000
gs d

K = , selecting the larger, Ks = 1000 

From (15-119), since mG = 15 (3 ≤ mG ≤ 20), 

( )
( )( )

0.52

0.52

0.0200 40 76 0.46

0.0200 15 40 15 76 0.46 0.81

m G G

m

K m m

K

= − + − +

= − + − + =
 

From (15-122), for Vs = 376 < 700 ft/min, 

( )

( )
( ) ( )( )( ) ( )

( )

3 0.001 3760.001

min 1.8

max

0.659 0.659 0.45
126,050 0.34

0.15 inch
3.58 80 1000 0.81 0.45

0.67 0.67 1.17 0.78 inch

V
v

w

K e e

b

b d

−−= = =

= =

= = =

 

The acceptable range is 

0.15 ≤ b ≤ 0.78 inch 
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15-67.   It is desired to utilize a worm gearset to reduce the speed of a 1750-rpm motor driving the worm down to 
the output gear shaft speed of approximately 55 rpm, and provide 1 ½ horsepower to the load.  Design an acceptable 
worm gearset, and specify the nominal required horsepower rating of the drive motor. 

------------------------------------------------------------------------------------------------------------------------------------------ 

Solution 

Using 15.23 as a guideline: 

(a) mG = 1750/55 = 31.8.  Initially select Nw =2 and tentatively choose hardened steel for the worm and forged 
bronze for the gear.  From (15-89),  

( )1750 2 64 teeth
55

w
g w

g

n
N N

n
⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

Tentatively select center distance (arbitrary judgment call; may require adjustment) as C = 5.0 inches.  From (15-
90), 

( ) ( )

0.875 0.875

0.875 0.875

3.0 1.6
5.0 5.0

3.0 1.6
1.36 2.56

w

w

w

C Cd

d

d

≤ ≤

≤ ≤

≤ ≤

 

Select dw = 2.0 inches.  From (15-91), dg = 2C – dw = 2(5.0) – 2.0 = 8.0 inches.  From (15-88), Pd = Ng/dg = 64/8.0 = 
8.  From (15-93), Lw = Nwpx, and from (15-87) 

( )

( )

( )
1 1

8.0
0.393 inch

64

2 0.393 0.785 inch
0.785tan tan 7.12

2.0

g
x

g

w

w
w

w

d
p

N

L
L
d

π π

λ
π π

− −

= = =

= =

= = = o

 

Select a normal pressure angle of φn = 20˚.  From (15-108), 

( ) ( )( )
cos
2 2 2 2.0 2 1750 ft916

12 12 min
916 ft923

mincos 7.12

w
s

w

w w
w

s

V
V

d n
V

V

λ
π π

=

= = =

= =
o

 

From (15-104), 
( )33,000

in
wt

w

hp
F

V
= and from (15-106),    
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( )
cos tan
cos cot

out in

n w

n w

hp e hp

e
ϕ µ λ
ϕ µ λ

=

−
=

+

 

From Appendix Table A1, for steel sliding on bronze, µ = 0.09, thus we have 

( )

cos 20 0.09 tan 7.12 0.56
cos 20 0.09cot 7.12

1.5 2.6 horsepower
0.56

33,000 2.6
93 lb

923
cos cos sin
cos sin cos

cos 20 cos 7.12 0.09sin 7.1293
cos 20 sin 7.12 0.09c

in

wt

n w w
gt wa wt

n w w

gt wa

e

hp

F

F F F

F F

ϕ λ µ λ
ϕ λ µ λ

−
= =

+

= =

= =

⎛ ⎞−
= = ⎜ ⎟+⎝ ⎠

−
= =

+

o o

o o

o o o

o o os 7.12
416 lb   gt waF F

⎛ ⎞
⎜ ⎟
⎝ ⎠

= =

o

 

From (15-128), for an acceptable design 

( )
1.8

126,050
out

g g s m v

hp
b

d n K K K
≥  

From (15-118), for dg = 8.0, Ks = 1000.  From (15-120), for mG = 32, 

( )
( )( )

0.52

0.52

0.0107 56 5145

0.0107 32 56 32 5145 0.82

m G G

m

K m m

K

= − + +

= − + + =
 

From (15-123), for Vs = 923 ft/min, 

( )
( )

( ) ( ) ( )( )( )

0.5710.571

min 1.8

13.31 13.31 923 0.27

126,050 1.5
0.36 inch

8.0 55 1000 0.82 0.27

v sK V

b

−−= = =

= =
 

From (15-92), bmax = 0.67 dw = 0.67(2.0) = 1.34 inches.  So the acceptable range is 0.36 ≤ b ≤ 1.34 inches.  Select b 
= 0.75 inch and from (hp)in = 2.6, select a drive motor of 3.0 hp, 1750 rpm motor. 

Summarizing the design proposal: 

 Material:  

  Worm: hardened steel 

  Gear: forged bronze 

 φn = 20˚, λw = 7.12˚ 
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 Nw = 2 starts 

 Ng = 64 teeth 

 C = 5.0 inches 

 dw = 2.0 inches 

 dg = 8.0 inches 

 Pd = 8 

 b = 0.75 inch 

 Drive motor: 3 hp, 1750 rpm 
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Chapter 16 
 
 
 
16-1. A short-shoe block brake is to have the configuration shown in Figure P16.1, with the drum 
rotating clockwise at 500 rpm, as shown. The shoe is molded fiberglass, the drum is aluminum-bronze, and 
the entire assembly is continuously water-sprayed. Maximum allowable contact pressure is 120 psi and the 
coefficient of friction of wet molded fiberglass on aluminum-bronze is 0.15. 
 

a. Using symbols only, derive an expression for actuating force, aF , expressed as a function of 

maxp . 
b. If the actuating force must not exceed 30 lb, what minimum lever length d should be used? 
c. Using symbols only, write an expression for braking torque fT . 
d.     Calculate a numerical value for the maximum-allowable braking torque that may be expected 
from this design. 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From specification: 500 rpmn = , max 200 psip = , 0.15µ = , 22 inA =  
 
(a) maxp p= , max maxN p A=  
 
     0 :BM =∑   0acN Ne F dµ+ − =  

                      ( ) ( ) max
maxa

c e N
F

d
µ+

=  

                       ( ) maxmaxa
c eF p A

d
µ+⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 

(b)  
( )min max

max

4 0.15(6)200(2) 65.3"
30a

c ed p A
F

µ⎛ ⎞+ +⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
(c)  Using a free body diagram of the drum 
 
                  fT Nrµ=  
 
(d)       max max max 0.15(200)(2)(5) 300 in-lbfT N r p Arµ µ− = = = =  
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16-2. Repeat problem 16-1, except that the drum rotates clockwise at 600 rpm, the shoe lining is woven 
cotton, the drum is cast iron, and the environment is dry. In addition, referring to Figure P16.1, e is 3.0 
inches, R is 8.0 inches, the contact area is 28.0 in , and 60 lbaF = is the maximum-allowable value of 
applied force, vertically downward. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From specification: 600 rpmn = , max 100 psi (from Table 16.1)p = , 0.47 (from Table 16.1)µ = , 

28.0 inA = , ( )max 60 lbaF =  
 
(a) maxp p= , max maxN p A=  
 
     0 :BM =∑   4 3 0aN N F dµ+ − =  

                      ( ) ( ) max
max

4 3
a

N
F

d
µ+

=  

                       ( ) maxmax
4 3

aF p A
d
µ+⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 

(b)  
( )min max

max

4 3 4 0.47(3)100(8) 71.2"
60a

d p A
F

µ⎛ ⎞+ +⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
(c)  Using a free body diagram of the drum 
 
                  fT Nrµ=  
 
(d)       max max max 0.47(100)(8)(8) 3008 in-lbfT N r p Arµ µ− = = = =  
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16-3. Classify the short-shoe block brake shown in Figure P16.1 as either “self-energizing” or “non-self-
energizing”. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For the lever and brake show taken as a free body 
diagram and taking moments about point B, we 
establish 
 
 

             
( )

0a
c e N

F
d
µ+

= >  

 
Therefore the brake is not self-energizing (and not self-locking, either) 
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16-4.  Repeat problem 16-3 for the case where the drum rotates counterclockwise at 800 rpm. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Taking moments about point B 
 

0 :BM =∑   0acN e N F dµ− − =  

                      
( )

a
c e N

F
d
µ−

=  

 
 
Because of the eµ− term, there is a potential to reduce aF , the brake is self-energizing and has the 
possibility of being self-locking, depending on the magnitude of eµ . 
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16-5.  Repeat problem 16.1, except that the shoe lining is cermet and the drum is steel. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From specification: 500 rpmn = , max 150 psi (from Table 16.1)p = , 0.32 (from Table 16.1)µ = , 

22 inA =  
 
(a) maxp p= , max maxN p A=  
 
     0 :BM =∑   0acN Ne F dµ+ − =  

                      ( ) ( ) max
maxa

c e N
F

d
µ+

=  

                       ( ) maxmaxa
c eF p A

d
µ+⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 

(b)  
( )min max

max

4 0.32(6)150(2) 59.2"
30a

c ed p A
F

µ⎛ ⎞+ +⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
(c)  Using a free body diagram of the drum 
 
                  fT Nrµ=  
 
(d)       max max max 0.32(150)(2)(5) 480 in-lbfT N r p Arµ µ− = = = =  
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16-6.  Repeat problem 16-1, except that the coefficient of friction is 0.2, the maximum-allowable pressure 
is 80 psi, the contact area A is 210.0 in  1, e is 30.0 inches, R is 9.0 inches, c is 12.0 inches, and the 
maximum-allowable value of aF is 280 lb. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From specification: 500 rpmn = , max 80 psip = , 0.2µ = , 210.0 inA = , 30.0 ine = , 12.0 inc = , 

280 lbaF =  
 
(a) maxp p= , max maxN p A=  
 
     0 :BM =∑   0acN Ne F dµ+ − =  

                      ( ) ( ) max
maxa

c e N
F

d
µ+

=  

                       ( ) maxmaxa
c eF p A

d
µ+⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 

(b)  
( )min max

max

12 0.2(30)80(10) 51.4"
280a

c ed p A
F

µ⎛ ⎞+ +⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
(c)  Using a free body diagram of the drum 
 
                  fT Nrµ=  
 
(d)       max max max 0.2(80)(10)(9) 1440 in-lbfT N r p Arµ µ− = = = =  
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16-7.  A short-shoe block brake is to have the configuration shown in Figure P16.7, with the drum rotating 
clockwise at 600 rpm, as shown. The shoe is molded fiberglass, the drum is stainless steel, and the entire 
assembly is submerged in salt water. The maximum-allowable contact pressure is 0.9 MPa  and the 
coefficient of friction of wet molded fiberglass on stainless steel is 0.18µ =  . 
 

a. Using symbols only, derive an expression for the actuating force aF as a function of maxp . 
b. What is the maximum actuating force that should be used for proper operation and acceptable 
design life? 
c. Using symbols only, write an expression for braking torque. 
d. Calculate a numerical value for maximum braking torque that may be expected from this design. 
e. Would you classify the design as “self-energizing” or “non-self-energizing”? Why? 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a)     maxp p=  and  max maxN p A= . The 
brake lever and shoe are modeled as shown. 
 
           0 :BM =∑ 0abN d N aFµ+ − =  
 

                           a
b dF N

a
µ+⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 

(b)   ( ) ( )( )6 6
maxmax

0.05 0.075(0.18) 0.9 10 125 10 15.88 N
0.45a

b dF p A
a
µ −+ +⎛ ⎞ ⎛ ⎞= = × × =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

                                                                    ( )max 15.9 NaF =  
 
(c) Taking the drum as a free body diagram and summing moments about its center, where radius of the 
drum is the dimension c is the problem statement 
 
                                                 max maxT R N R p Aµ µ= =  
 
(d)  ( )( )6 6

max 0.10(0.18) 0.9 10 125 10 2.025 N-mFT R Nµ −= = × × =  

 
 
(e)  Based on  (16-14) and  

                                     ( ) 0a required
b dF N

a
µ+⎛ ⎞= >⎜ ⎟

⎝ ⎠
 

 
           the brake is not self-energizing (and not self-locking either) 
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16-8.  For the shoe brake shown in Figure P16.8, it is difficult to determine by inspection whether the shor-
shoe assumption will produce a sufficiently accurate estimate of braking torque upon application of the 
actuating force aF . 
 

a. Determine the percent error in calculated braking torque that you would expect in this case if the 
short-shoe assumption is used for calculation of the braking torque. Base your determination on the 
premise that the long-shoe equations are completely valid. 
b. Would the error made by using the short-shoe assumption be on the “conservative” side (braking 
torque calculation by short-shoe assumption is less than the true value of braking torque) or on the 
“nonconservative” side? 
c. Do you consider the error made by using the short-shoe assumption to be significant or negligible 
for this particular case? 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 (a) From the free body diagram, we take moments 
about the pivot point B and find 
 
   0 :BM =∑ 10 4 30 0aN N Fµ− − =  

                   
30 30(650) 2119.6 lb

10 4 10 4(0.2)
aF

N
µ

= = =
− −

 

 
From this we determine 
 
           ( ) 0.2(2119.6)(6.0) 2543.5 in-lbf short

T NRµ= = =  

 
For the long-shoe assumption we determine (from the figure): o

1 22.5ϑ = , o o
2 67.5 90ϑ = < , so 

( ) 2maxsin sin 0.9239ϑ ϑ= = , and 1cos 0.9239ϑ = , 2cos 0.3827ϑ = . The maximum pressure is estimated 
by combining (16-11) and (16-13), to get 
 

      
( ) ( )

( ) [ ]
max

max
30(650) 150 psi

3 (6) 10 0.2(4)
4

a
a

N b c p A b c aF
F p

a a A b c
µ µ

πµ
− −

= = ⇒ = = ≈
− ⎛ ⎞ −⎜ ⎟

⎝ ⎠

 

 
From 16-52 
 

     ( ) ( ) ( ) ( )
2 2

max
1 2

max

0.2(3.0)(6) (150)cos cos 0.9239 0.3827 1898 in-lb
sin 0.9239

c
f long

w R p
T

µ
ϑ ϑ

ϑ
= − = − ≈  

 
The percent error is  
 

                                
( ) ( )

( )
2543.5 1898100 100 34%

1898

f fshort long

f long

T T

T

− −
× = × ≈  

 
(b) Since ( ) ( )f fshort long

T T> , the short-shoe estimate is non conservative. 

 
(c) A 34% error is significant. 
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16-9.  Repeat problem 16.8, except that 36 inchesa = , 300 lbaF = , o40α = , o45β = , 7 inchesR = , 

2 inchesb = , 0.25µ = , and the drum rotates counterclockwise at a speed of 2500 rpm. An accurate 
estimate of 150 psi for the actual value of maxp  has already been made. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications : max 150 psip = , 36 inchesa = , 300 lbaF = , o40α = , o45β = , 7 inchesR = , 

2 inchesb = , 0.25µ = , 2500 rpmN = , 2.0 inchescw =  
 
(a) For the short-shoe brake, we take moments about the pivot point B and find 
 

   0 :BM =∑
36 36(300)10 3 36 0 1167.6 1168 lb

10 3 10 3(0.25)
a

a
F

N N F Nµ
µ

− − = ⇒ = = = ≈
− −

 

                
From this we determine 
 
           ( ) 0.25(1168)(7.0) 2044 in-lbf short

T NRµ= = =  

 
For the long-shoe assumption we determine (from the figure): o

1 25ϑ = , o o
2 65 90ϑ = < , so 

( ) 2maxsin sin 0.9063ϑ ϑ= = , and 1cos 0.9063ϑ = , 2cos 0.4226ϑ = . From 16-52 
 

     ( ) ( ) ( ) ( )
2 2

max
1 2

max

0.25(2.0)(7) (150)cos cos 0.9063 0.4226 1961 in-lb
sin 0.9063

c
f long

w R p
T

µ
ϑ ϑ

ϑ
= − = − ≈  

 
The percent error is  
 

                                
( ) ( )

( )
2044 1961100 100 4.2%

1961

f fshort long

f long

T T

T

− −
× = × ≈  

 
(b) Since ( ) ( )f fshort long

T T> , the short-shoe estimate is non conservative. 

 
(c) A 4.2% error is not considered significant. 
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16-10. A short-shoe block brake has the configuration shown in Figure P16.10, with the drum rotating 
clockwise at 63 rad/sec, as shown. The shoe is wood and the drum is cast iron. The weight of the drum is 
322 lb, and its radius of gyration is 7.5 inches. The maximum-allowable contact pressure is 80 psi, and the 
coefficient of friction is 0.2µ = . Other dimensions are shown in Figure P16.10. 
 

a. Derive an expression for the actuating force aF , and calculate its maximum-allowable numerical 
value. 
b. Derive an expression for braking torque, and calculate its numerical value when the maximum-
allowable actuating force is applied. 
c. Estimate the time required to bring the rotating drum to a stop when the maximum-allowable 
actuating force is applied. 
d. Would you expect frictional heating to be a problem in this application? 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: 0.2µ = , 322 lbdW = , 7.5 indk = , max 80 psip = , 63 rad/secω =  
 
(a) For the short-shoe case, assume max 80 psip p= = . From 
the free body diagram shown, summing moment about pivot 
point H gives 
 

     
( )12 3

12 3 36 0
36a a

N
N N F F

µ
µ

+
+ − = ⇒ =  

 

   ( ) ( ) ( )max
max

12 3(0.2) 12.6 (80)(10)
280 lb

36 36a
p A

F
+

= = =  

 
(b) Taking the drum as a free body 
 
                      max 0.2(80)(10)(9) 1440 in-lbfT NR p ARµ µ= = = =  
 
(c) The time to stop the drum is 
 

               
2 2322(7.5) (63) 2.05 sec

386(1440)
d op

r
f

Wk
t

gT
ω

= = =  

 
(d) From (16-23), we know that /fH CW∆Θ = , where  
 

                               
2 2 2 2 2322(7.5) (63) 9.97 Btu

2 2(9336) 2(386)(9336)
e op op

f
J Mk

H
Jθ

ω ω
= = = =  

 
For cast iron, o0.12 Btu/lb- FC = . Assuming that the heat-absorbing mass of the drum is approximately 
10% of the drum, 0.1( ) 32.2 lbdW W= = . Therefore 
 

                                     o9.97 2.58 F
0.12(32.2)

∆Θ = =   frictional heating does not appear to be a problem 
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16-11. Repeat problem 6-10 for the case where the drum rotates counterclockwise at 63 rad/sec. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: 0.2µ = , 322 lbdW = , 7.5 indk = , max 80 psip = , 63 rad/secω =  
 
(a) For the short-shoe case, assume max 80 psip p= = . 
From the free body diagram shown, summing moment 
about pivot point H gives 
 

     
( )12 3

12 3 36 0
36a a

N
N N F F

µ
µ

−
− − = ⇒ =  

 
   

( ) ( ) ( )max
max

12 3(0.2) 11.4 (80)(10)
253 lb

36 36a
p A

F
−

= = =

 
 
(b) Taking the drum as a free body 
 
                      max 0.2(80)(10)(9) 1440 in-lbfT NR p ARµ µ= = = =  
 
(c) The time to stop the drum is 
 

               
2 2322(7.5) (63) 2.05 sec

386(1440)
d op

r
f

Wk
t

gT
ω

= = =  

 
(d) From (16-23), we know that /fH CW∆Θ = , where  
 

                               
2 2 2 2 2322(7.5) (63) 9.97 Btu

2 2(9336) 2(386)(9336)
e op op

f
J Mk

H
Jθ

ω ω
= = = =  

 
For cast iron, o0.12 Btu/lb- FC = . Assuming that the heat-absorbing mass of the drum is approximately 
10% of the drum, 0.1( ) 32.2 lbdW W= = . Therefore 
 

                                     o9.97 2.58 F
0.12(32.2)

∆Θ = =   frictional heating does not appear to be a problem 
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16-12.   Figure P16.12 shows a 1000-kg mass being lowered at a uniform velocity of 3 m/s by a flexible 
cable wrapper around a drum of 60-cm diameter. The drum weight is 2 kN, and it has a radius of gyration 
of 35 cm. 
 

a. Calculate the kinetic energy in the moving system. 
b. The brake shown maintains the rate of decent of the 1000-kg mass by applying the required steady 
torque of 300 kg-m. What additional braking torque would be required to bring the entire system to 
rest in 0.5 sec? 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From the specifications: 1000 kgloadm = , 3 m/sloadv = , 60 cmdrumd = , 2 kNdrumW = , 35 cmdrumk =  
 
(a) The kinetic energy is 
 

                  ( ) ( )
2

2 2 2 21 1 1 1
2 2 2 2

drum load
load load e op load load drumm d

d

W v
KE KE KE m v J m v k

g r
ω

⎛ ⎞⎛ ⎞
= + = + = + ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

                       ( )
2

221 1 2000 2(1000)(3) 0.35 3 4500 1248.7 5748.7
2 2 9.81 0.6

⎛ ⎞ ⎛ ⎞= + = + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

                       
                              5749 JKE ≈  
 
(b) To bring the moving system to a stop, the work required (W) must equal the kinetic energy (KE), or 

5749 JW = . The work is 
 
                       5749fW T θ= =  
 
where  
 

                      
0

2 2
op op r

avg r r
t

t t
ω ω

θ ω
−⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

 
In this 

                   op
op

d

v
r

ω =  

 
So 

                    
2
op r

d

v t
r

θ =  

Therefore 
 

                      5749(2 ) 5749(0.6)5749 2299.6
2 3.0(0.5)
op r d

f f
d r op

v t r
T T

r t v
⎛ ⎞

= ⇒ = = =⎜ ⎟
⎝ ⎠

 

 
                                                                                    3000 N-m of additional torquefT ≈  
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16-13. A short-shoe brake is sketched in Figure P16.13. Four seconds after the 1-kN actuating force is 
applied, the CW rotating drum comes to a full stop. During this time, the drum makes 100 revolutions. The 
estimated coefficient of friction between drum and shoe is 0.5. Do the following: 
 

a. Sketch the brake-shoe-and-rim assembly as a free-body diagram. 
b. Is the brake self-energizing or self-locking for the direction of drum rotation shown? 
c. Calculate the braking torque of the system shown. 
d. Calculate the horizontal and vertical reaction forces on the free body at pin location D. 
e. Calculate the energy dissipated (work done by the brake) in bringing the drum to a stop. 
f. If it were desired to make the brake self-locking, to what value would dimension d have to be 
increased? 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: 0.5µ = , 1 kNaF = , 4 secrt = , 100 CW rec to stoprN = , 
 
(a)  
 
 
 
 
 
 
 
 
 
 
(b)  0 :DM =∑   

( )0.3 0.15
0.3 0.15 0.7 0

0.7a a
N

N N F F
µ

µ
−

− − = ⇒ =    

           
The brake is self-energizing since the friction moment aids aF  in applying the brake, and   if 

( )0.3 0.15 / 0.7 0µ− ≤ , it will be self-locking. To check this 
 
                               ( )0.3 0.15(0.5) / 0.7 0.321 0− = >  
 
The brake is not self-locking 
 
 
(c) Using a free body of the drum, fT R Nµ= , where  
 

                               0.7 0.7(1000) 3.111 kN
0.3 0.15 0.3 0.15(0.5)

aF
N

µ
= = =

− −
 

 
                                   0.15(0.5)(3111) 233 N-mfT = ≈  
 
(d)  0 : 0 0.5(3111) 1556 N     or  1556 Nx x x xF D N D Dµ= + = ⇒ = − ≈ − = ←∑  
      0 : 0 1000 3111 2111 N     or  2111 Ny y a y yF D N F D D= + − = ⇒ = − = − = ↓∑  
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Problem 16-13 (continued) 
 
(e) To bring the system to a stop, the work must equal the kinetic energy, fW T KEθ= = , where 
 
                    2 (100) 628.3 radθ π= =  
 
                        233(628.3) 146,394 147 JW = = ≈  
 
(f)  To make it self-locking 
 

                          30 30 60 cm
0.5

d
µ

≥ = =  
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16-14. A long-shoe brake assembly is sketched in Figure P16.14. The estimated coefficient of friction 
between the show and drum is 0.3, and the maximum-allowable pressure for the lining material is 75 psi. 
Noting the CCW direction of rotation, determine the following: 
 

a. The maximum actuating force aF  that can be applied without exceeding the maximum-allowable 
contact pressure. 
b. The friction braking torque capacity corresponding to aF  calculated in (a). 
c. The vertical and horizontal components of the reaction force at pin C. 
d.  Is the brake self-energizing or self-locking? 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: 0.3µ = , max 75 psip =  
 

(a) For a CCW rotation, N f
a

M M
F

a
+

= , where 

                           
( ) ( )1 max

2 1
max

2 sin 2 sin 2
4 sin

c
N

w Rr p
M α ϕ ϕ

ϕ
= − +  

                           
( ) ( ) ( )( )max

1 2 1 2 1
max

cos 2 cos 2 4 cos cos
4 sin

c
f

w Rp
M r R

µ
ϕ ϕ ϕ ϕ

ϕ
= − − −  

 
where 
                                1.6"cw =  
                                 5.9"R =  

                                 2 2
1 (7) (7.9) 10.56"r = + =  

                           1 o7.0tan 41.54 0.725 rad
7.9

β − ⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

                          1 o5.9sin 30 0.5236 rad
2 2(5.9)
α − ⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 

                          o
1 60 18.46 0.3222 radϑ β= − = =  

                          o
2 1 60 18.46 78.46 1.3694 radϑ α ϑ= + = + = =  

                          ( ) o
2maxsin sin sin 78.46 0.9798ϕ ϕ= = =  

 

                              
( ) ( )1.6(5.9)(10.56)(75) 2.0944 0.3920 0.6007 1907.65(2.3031) 4393.5

4 0.9798NM = − + = =  

                              ( ) ( ) ( )( )0.3(1.6)(5.9)(75) 10.56 0.91996 0.79948 4(5.9) 0.2001 0.9485
4 0.9798

      54.195( 18.157 17.598) 30.27

fM = − − − −

= − + = −

 

 

                             4393.5 30.27 221.45 lb
19.7aF −

= =                             222 lbaF ≈  
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Problem 16-14 (continued) 
 
(b) The friction torque is  
 

                       
( ) ( ) ( )

2 2
max

1 2
max

0.3(1.6)(5.9) (75)cos cos 0.9485 0.2001 957.2
sin 0.9798

c
f

w R p
T

µ
ϕ ϕ

ϕ
= − = − =  

                                              
                                                                                                              957 in-lbfT ≈  

 
 
(c)   The reactions are  
 

              ( ) ( )( )

( )( )

max
1 2

max

2 1

sin cos cos 2 cos 2
4 sin

                                   cos sin 2 sin 2 sin 2

c
v a

w Rp
R F β µ β ϕ ϕ

ϕ

β µ β α ϕ ϕ

⎡= − − −⎣

⎤+ + − + ⎦

 

                     
( )( )

( )( )

1.6(5.9)(75)222 sin 41.54 0.3cos 41.54 cos36.92 cos156.92
4(0.9798)

                                   cos 41.54 0.3sin 41.54 2.0944 sin156.92 sin 36.92

⎡= − − −⎣

⎤+ + − + ⎦

 

                     ( )( ) ( )( )222 180.65 0.6633 0.3(0.7485) 1.7194 0.7485 0.3(0.6631) 2.303⎡ ⎤= − − + +⎣ ⎦  
 
                                                                                                             308.4 lbvR = −  
 

             ( ) ( )( )

( )( )

max
1 2

max

2 1

sin cos cos 2 cos 2
4 sin

                                   cos sin 2 sin 2 sin 2

c
h

w Rp
R µ β β ϕ ϕ

ϕ

µ β β α ϕ ϕ

⎡= − −⎣

⎤+ + − + ⎦

 

                      
( )( )

( )( )

1.6(5.9)(75) 0.3sin 41.54 cos 41.54 cos36.92 cos156.92
4(0.9798)

                                   0.3cos 41.54 sin 41.54 2.0944 sin156.92 sin 36.92

⎡= − −⎣

⎤+ + − + ⎦

 

                      ( )( ) ( )( )180.65 0.3(0.6633) 0.7485 1.7194 0.3(0.7485) 0.6631 2.303⎡ ⎤= − + +⎣ ⎦  
 
                                                                                                        207.9 lbhR =  
 
(d)  Since 0fM < , it is CW about point C, and the brake is self-energizing, but since 222 lb 0aF ≈ > , the 
brake is not self-locking. 
 
 
 
 
 
 
 
 
 
 
 
 



 672

 
16-15.  Repeat problem 16-14 for the case where the drum rotates in the clockwise direction. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

(a) For a CW rotation, N f
a

M M
F

a
−

= , where 

                           
( ) ( )1 max

2 1
max

2 sin 2 sin 2
4 sin

c
N

w Rr p
M α ϕ ϕ

ϕ
= − +  

                           
( ) ( ) ( )( )max

1 2 1 2 1
max

cos 2 cos 2 4 cos cos
4 sin

c
f

w Rp
M r R

µ
ϕ ϕ ϕ ϕ

ϕ
= − − −  

 
where 
                                1.6"cw =  
                                 5.9"R =  

                                 2 2
1 (7) (7.9) 10.56"r = + =  

                           1 o7.0tan 41.54 0.725 rad
7.9

β − ⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

                          1 o5.9sin 30 0.5236 rad
2 2(5.9)
α − ⎛ ⎞
= = =⎜ ⎟

⎝ ⎠
 

                          o
1 60 18.46 0.3222 radϑ β= − = =  

                          o
2 1 60 18.46 78.46 1.3694 radϑ α ϑ= + = + = =  

                          ( ) o
2maxsin sin sin 78.46 0.9798ϕ ϕ= = =  

 

                              
( ) ( )1.6(5.9)(10.56)(75) 2.0944 0.3920 0.6007 1907.65(2.3031) 4393.5

4 0.9798NM = − + = =  

                              ( ) ( ) ( )( )0.3(1.6)(5.9)(75) 10.56 0.91996 0.79948 4(5.9) 0.2001 0.9485
4 0.9798

      54.195( 18.157 17.598) 30.27

fM = − − − −

= − + = −

 

 

                             4393.5 (30.27) 224.6 lb
19.7aF −

= =                             225 lbaF ≈  

 
 
 
(b) The friction torque is  
 

                       
( ) ( ) ( )

2 2
max

1 2
max

0.3(1.6)(5.9) (75)cos cos 0.9485 0.2001 957.2
sin 0.9798

c
f

w R p
T

µ
ϕ ϕ

ϕ
= − = − =  

                                              
                                                                                                              957 in-lbfT ≈  
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Problem 16-15 (continued) 
 
 
(c)   The reactions are  
 

              ( ) ( )( )

( )( )

max
1 2

max

2 1

sin cos cos 2 cos 2
4 sin

                                   cos sin 2 sin 2 sin 2

c
v a

w Rp
R F β µ β ϕ ϕ

ϕ

β µ β α ϕ ϕ

⎡= − − −⎣

⎤+ + − + ⎦

 

                     
( )( )

( )( )

1.6(5.9)(75)225 sin 41.54 0.3cos 41.54 cos36.92 cos156.92
4(0.9798)

                                   cos 41.54 0.3sin 41.54 2.0944 sin156.92 sin 36.92

⎡= − − −⎣

⎤+ + − + ⎦

 

                     ( )( ) ( )( )225 180.65 0.6633 0.3(0.7485) 1.7194 0.7485 0.3(0.6631) 2.303⎡ ⎤= − − + +⎣ ⎦  
 
                                                                                                             305.4 lbvR = −  
 

             ( ) ( )( )

( )( )

max
1 2

max

2 1

sin cos cos 2 cos 2
4 sin

                                   cos sin 2 sin 2 sin 2

c
h

w Rp
R µ β β ϕ ϕ

ϕ

µ β β α ϕ ϕ

⎡= − −⎣

⎤+ + − + ⎦

 

                      
( )( )

( )( )

1.6(5.9)(75) 0.3sin 41.54 cos 41.54 cos36.92 cos156.92
4(0.9798)

                                   0.3cos 41.54 sin 41.54 2.0944 sin156.92 sin 36.92

⎡= − −⎣

⎤+ + − + ⎦

 

                      ( )( ) ( )( )180.65 0.3(0.6633) 0.7485 1.7194 0.3(0.7485) 0.6631 2.303⎡ ⎤= − + +⎣ ⎦  
 
                                                                                                        207.9 lbhR =  
 
 
 
(d)  Since 0fM < ,and the drum rotation is CW (reverse direction from that used to derive 16-45), the 

fM− means the moment is CCW and the brake is  non self-energizing, but since 225 lb 0aF ≈ > , the 
brake is not self-locking. 
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16-16.     The brake system shown in Figure P16.16 is to be fabricated using a 30 mmcw = wide lining 
material at the contact surface. The coefficient of friction between the drum the lining material is 0.2µ = . 
The lining material should not be operated at maximum pressures higher than 0. 8 MPa. Determine the 
minimum activation force aF  . 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From problem specifications; 0.2µ = , max 0.8 MPap = , 

30 mmcw = , and ccwω = . From Figure P16.16 and the 
model of the upper brake arm shown; 100 mmR = , 

o90  α = , 1 otan (150 / 200) 36.87  β −= = , o
1 8.13  ϕ = , 

o
2 98.13  ϕ = , and ( ) ( )2 2

1 200 150 250 mmr = + =  
 
From (16-42) and (16 -45) 
 

    ( ) ( ) ( )

( )

6
1 max

2 1
max

0.03(0.10)(0.25)(0.8 10 )2 sin 2 sin 2 sin 196.26 sin 16.26
4 sin 4(1.0)

       150 ( 0.2799) 0.2799 0.555 kN-m

c
N

w Rr p
M α ϕ ϕ π

ϕ

π

×
= − + = − +

= − − + =

 

 

   

( ) ( ) ( )

( ) ( )

( ) ( ) [ ]

max
1 2 1 2 1

max
6

cos 2 cos 2 4 cos cos
4 sin

0.2(0.03)(0.10)(0.8 10 )    0.25 cos196.22 cos16.26 4(0.10) cos98.13 cos8.13
4(1.0)

    120 0.25 0.960 0.960 0.4 0.1414 0.9899 120 0.96 0.4525

c
f

w Rp
M r R

µ
ϕ ϕ ϕ ϕ

ϕ
⎡ ⎤= − − −⎣ ⎦

× ⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= − − − − − = − + =⎣ ⎦ 0.061 kN-m−

 

 
The direction of the friction force in the model above indicates 
  

                  0.555 ( 0.061) 0.988 kN
0.5

N f
a

M M
F

a
+ + −

= = =                           

 
For the lower arm all relevant parameters are the same with 

0.555 kN-mNM = and  0.061 kN-mfM = − . The direction of 
the friction force in this model indicates 
 

                         0.555 ( 0.061) 1.232 kN
0.5

N f
a

M M
F

a
− − −

= = =  

 
 
The minimum activation force is therefore 0.988 kNaF =  
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16-17. The brake shown in Figure P16-17 is to be fabricated using an impregnated asbestos lining material 
at the contact surface. The lining material should not be operated at maximum pressures higher than 100 
psi. 
 

a. What is the largest actuating force aF , that should be used with this braking system as no 
designed? 
b. If the largest-allowable actuating force is applied, what braking torque is produced on the rotating 
drum? 
 

--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: 0.2µ = , max 100 psip =  
 

(a) For a CCW rotation, N f
a

M M
F

a
+

= , where 

                           
( ) ( )1 max

2 1
max

2 sin 2 sin 2
4 sin

c
N

w Rr p
M α ϕ ϕ

ϕ
= − +  

                           
( ) ( ) ( )( )max

1 2 1 2 1
max

cos 2 cos 2 4 cos cos
4 sin

c
f

w Rp
M r R

µ
ϕ ϕ ϕ ϕ

ϕ
= − − −  

 

Where  2.0"cw = ,    6.0"R = ,    2 2
1 (10) (10) 14.14"r = + = ,  o45 0.7854 radβ = = ,  

            o90 1.5708 radα = = ,  1 0ϑ =  ,   o
2 90 1.3694 radϑ = = ,  ( )maxsin 1.0ϕ =  

 

                              
( ) ( )2.0(6.0)(14.14)(100) 0 0 4242 13,327 in-lb

4 1.0NM π π= − + = ≈  

                              ( ) ( ) ( )( )

( )

0.2(2.0)(6.0)(100) 14.14 1 1 4(6.0) 0 1
4 1

      60 28.28 24 256.8 257 in-lb

fM = − − − −

= − + = − ≈ −

 

 

                             13,327 257 435.67 436 lb
30aF −

= = ≈                             436 lbaF ≈  

 
 
(b) The friction torque is  
 

                       
( ) ( ) ( )

2 2
max

1 2
max

0.2(2.0)(6.0) (100)cos cos 1 0 1440
sin 1.0

c
f

w R p
T

µ
ϕ ϕ

ϕ
= − = − =  

                                              
                                                                                                              1440 in-lbfT ≈  
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16-18. Repeat problem 16-17 for the case where the drum rotates in the clockwise direction. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: 0.2µ = , max 100 psip =  
 

(a) For a CW rotation, N f
a

M M
F

a
−

= , where 

                           
( ) ( )1 max

2 1
max

2 sin 2 sin 2
4 sin

c
N

w Rr p
M α ϕ ϕ

ϕ
= − +  

                           
( ) ( ) ( )( )max

1 2 1 2 1
max

cos 2 cos 2 4 cos cos
4 sin

c
f

w Rp
M r R

µ
ϕ ϕ ϕ ϕ

ϕ
= − − −  

 

Where  2.0"cw = ,    6.0"R = ,    2 2
1 (10) (10) 14.14"r = + = ,  o45 0.7854 radβ = = ,  

            o90 1.5708 radα = = ,  1 0ϑ =  ,   o
2 90 1.3694 radϑ = = ,  ( )maxsin 1.0ϕ =  

 

                              
( ) ( )2.0(6.0)(14.14)(100) 0 0 4242 13,327 in-lb

4 1.0NM π π= − + = ≈  

                              ( ) ( ) ( )( )

( )

0.2(2.0)(6.0)(100) 14.14 1 1 4(6.0) 0 1
4 1

      60 28.28 24 256.8 257 in-lb

fM = − − − −

= − + = − ≈ −
 

 

                             13,327 ( 257) 452.8 453 lb
30aF − −

= = ≈                             436 lbaF ≈  

 
 
(b)   The friction torque is  
 

                       
( ) ( ) ( )

2 2
max

1 2
max

0.2(2.0)(6.0) (100)cos cos 1 0 1440
sin 1.0

c
f

w R p
T

µ
ϕ ϕ

ϕ
= − = − =  

                                              
                                                                                                              1440 in-lbfT ≈  
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 16-19.     A 16-inch diameter drum has two internally expanding shoes as shown in Figure P16.19 . The 
actuating mechanism is a hydraulic cylinder AB, which produces the same actuating force aF  on each shoe 
(applied at points A, and B). The width of each shoe is 2 inches, the coefficient of friction is 0.24µ = , and 
the maximum pressure is max 150 psip = . Assuming the drum rotates clockwise, determine the minimum 
required actuating force, and the friction torque. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The moments due to the normal and friction forces either add or 
subtract, based on a clockwise rotation of the drum, as shown in the 
figure. The angles 1ϕ  and 2ϕ are: 
 
Setting 1 0ϕ =  for both cases, we determine 2ϕ to be 

                                1 o
2

52 tan 79.6
6

ϕ −= =  

 
By noting the directions of the normal and friction forces in the figure, 
we determine 
                    

       Shoe AC:  0 :CM =∑ 12 0a f NF M M+ − =      
10

N f
a

M M
F

−
=  

      Shoe BD: 0 :DM =∑ 12 0a f NF M M− − =      
10

N f
a

M M
F

+
=  

 
The smallest activation force results from ( ) /10a N fF M M= − .  For a clockwise drum rotation, shoe AC 

is the primary shoe and experiences the largest pressure, and shoe BD is the secondary shoe, which will not 
experience the same pressure as shoe AC. The magnitudes of NM  and fM  will be independent of the shoe 

being considered, therefore we take advantage of symmetry. Since o
2 90ϕ <  for both shoes, 

( ) 2maxsin sin 0.9836ϕ ϕ= = . The moments due to the normal and friction forces are determined from 

equations (16-42) and (16-45), in which 0.442α π= , 2 in.cw = , 1 0ϕ = , o
2 79.6ϕ = , 0.24µ = , 

max 150 psip = , 1 8 in.R r= = . Therefore 
 

          
( ) [ ]

( ) ( ) ( ) [ ]

1 max
2 1

max
2

o

2 sin 2 sin 2
4 sin

(2)(8) (150)        2 0.442 sin 159.2 sin 0 4880 2.777 0.3551 11,819 lb-in
4(0.9836)

c
N

w Rr p
M α φ φ

φ

π

= − +

⎡ ⎤= − + = − =⎣ ⎦

 

                                                                                                          

           

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
[ ]

max
1 2 1 2 1

max

o o

cos 2 cos 2 4 cos cos
4 sin

0.24(2)(8)(150)        = 8 cos 159.2 cos 0 4(8) cos 79.6 cos 0
4(0.9836)

       146.4 7.479 ( 26.223) 2744 lb-in

c
f

w Rp
M r R

µ
φ φ φ φ

φ
= − − −⎡ ⎤⎣ ⎦

⎡ ⎤− − −⎢ ⎥⎣ ⎦

= − − − =
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Problem 16-19 (continued) 
 
The smallest activation force is 
 

                          ( ) ( )min
11,819 2744 907.5 lb

10 10
N f

a a primary

M M
F F

− −
= = = =  

 
The torque associated with the primary shoes is 

 

   [ ] ( ) ( )( )
2 2

omax
1 2

max

0.24(2)(8) (150)cos cos cos 0 cos 76.9 3623 in-lb
sin 0.9836

cw R p
T

µ
ϕ ϕ

θ
= − = − =  

                                                                                                             3623 in-lbprimaryT =  
 
The pressure on the secondary shoe can be determined by noting that max max/ sin / sinp pθ θ=  and 

maxsin sinθ θ= . Therefore the normal and friction moments already computed can be used to determine the 
pressure on the secondary shoe. We can express the moments as 
  

       11,819
150NM p=              2744

150fM p=  

 

Therefore   ( )1907.5 11,819 2744 93.47 psi
10 10(150)

N f
a

M M
F p p p

+ ⎛ ⎞
= ⇒ = + ⇒ =⎜ ⎟

⎝ ⎠
 

 
The torque for the secondary shoe is therefore 
 

               [ ] ( ) ( )( )
2 2

omax
1 2

max

0.24(2)(8) (93.47)cos cos cos 0 cos 76.9 2258 in-lb
sin 0.9836

cw R p
T

µ
ϕ ϕ

θ
= − = − =  

                 
                                 sec 2258 in-lbondaryT =  
 
The friction torque for the entire system is therefore 
 
                     sec 3623 2258 5881 in-lbf total primary ondaryT T T T= = + = + =  
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16-20.  A simple band brake of the type shown in Figure 16.9 is to be constructed using a lining material 
that has a maximum-allowable contact pressure of 600 kPa. The diameter of the rotating drum is to be 350 
mm, and the proposed width of the band is 100 mm. The angle of wrap is o270 . Tests of the lining material 
indicate that a good estimate for the coefficient of friction is 0.25. Do the following: 
 

a. Calculate the tight-side band tension at maximum-allowable pressure. 
b. Calculate the slack-side tension at maximum-allowable pressure. 
c. Calculate the maximum torque capacity. 
d. Calculate the actuating force corresponding to maximum torque capacity. 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: 0.25µ = , max 600 kPap = , 350 / 2 175 mmR = = , 900 mma = , 100 mmb = , 

45 mmm = , o270 1.5   radα π= =  
 
(a)  3

1 max 0.10(0.175)(600 10 ) 10.5 kNP bRp= = × =  
 

(b)  1
2 (0.25)(1.5 )

10.5 3.23 kNPP
e eµα π= = =  

 
(c)   ( ) ( )2 2 3 (0.25)(1.5 )

max 1 0.1(0.175) (600 10 ) 1 1272 N-mfT bR p e eµα π− −= − = × − ≈  

 

(d)  2
45 (3.23) 161.5 N

900a
mF P
a

= = =  
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16-21. Repeat problem 16-20 for the case where the angle of wrap is o180 . 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: 0.25µ = , max 600 kPap = , 350 / 2 175 mmR = = , 900 mma = , 100 mmb = , 

45 mmm = , o180   radα π= =  
 
(a)  3

1 max 0.10(0.175)(600 10 ) 10.5 kNP bRp= = × =  
 

(b)  1
2 (0.25)( )

10.5 4.79 kNPP
e eµα π= = =  

 
(c)   ( ) ( )2 2 3 0.25

max 1 0.1(0.175) (600 10 ) 1 999.7 1000 N-mfT bR p e eµα π− −= − = × − = ≈  

 

(d)  2
45 (4.79) 239.5 N

900a
mF P
a

= = =  
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16-22.  A simple band brake is constructed using a 0.050-inch-thick by 2-iniwide steel band to support the 
tensile forces. Carbon-graphite material is bonded to the inside of the steel band to provide the friction 
surface for braking, and the rotating drum is to be a solid-steel cylinder, 16 inches in diameter a 2 inches in 
axial thickness. The brake band is wrapped around the rotating drum so that it is in contact over o270 of the 
drum surface. It is desired to bring the drum to a complete stop in exactly one revolution from its operating 
speed of 1200 rpm. What would be the maximum tensile stress induced in the 0.050-inch-thick steel band 
during the braking period if the drum were brought to a stop in exactly one revolution? Assume that the 
rotating drum is the only significant mass in the system, and that the brake is kept dry. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: 2.0"band drumb b= = , 0.050"bandt = , 16 / 2 8"R = = , o270 1.5   radα π= = , 

2   radstopθ π= ,  1200  rpmopn = , 0.25  (from Table 16.1)µ =  
 

        1 1 1
max 110

2.0(0.05)band band

P P P P
A b t

σ = = = =  

         
          0.25(1.5 )

1 2 2 23.25P P e P e Pµα π= = ≈  
 

          
( ) ( )2 0.25(1.5 )

0.0556
1 8 1

f f
f

T T
P T

R e eµα π
= = ≈

− −
 

 

In addition, we know 
2

d e op
f

r

W k
T

gt
ω

= , where  

 
                        ( )2 20.283 (8) (2) 113.8 lbd steel drumW w R bπ π= = =  

 
From Appendix Table A.2, case 3, 2 / 2 4.0ek R= = . Therefore, knowing 1200  rpmopn = , we determine 

2 / 60 125.7 rad/sop opnω π= ≈ , and 
 

                         113.8(4)(125.7) 148.23/
386f r

r
T t

t
= =  

 

For stopping, 
0

2 2
op op

stop avg r r rt t t
ω ω

θ ω
−⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

. Therefore 
2 2(2 ) 0.1 sec

125.7
stop

r
op

t
θ π
ω

= = ≈ , and 

 
                148.23/ 1482.3f rT t= =  
 
              2 0.0556 0.0556(1482.3) 82.42fP T= = =  
 
              1 23.25 3.25(82.42) 267.87 lbP P= = =  
             
               max 110 10(267.87) 2678.7 2679Pσ = = = ≈                              max 2679 psiσ =  
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16-23.  A differential band brake is sketched in Figure P16.23. The maximum-allowable pressure for the 
band lining material is 60 psi, and the coefficient of friction between the lining and the drum is 0.25. The 
band and lining are 4 inches in width. Do the following: 
 

a. If the drum is rotating in the clockwise direction, calculate the tight-side tension and slack-side 
tension at maximum-allowable pressure. 
b. For clockwise drum rotation, calculate the maximum torque capacity. 
c. For clockwise drum rotation, calculate the actuating force corresponding to maximum torque 
capacity. 
d. If the direction of drum rotation is changed to counterclockwise, calculate the actuating force 
corresponding to maximum torque capacity. 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: 0.25µ = max 60 psip = , 4.0"b = , o247 1.372   radα π= = 8"R = , 1 1"m =  , 2 4"m = , 

20"a =   
 
(a)  1 max 4(8)(60) 1920 lbP bRp= = =  

      1
2 (0.25)(1.372 )

1920 653.6 lbPP
e eµα π= = =  

 
(b)  max 2 2 1 1 4(653.6) 1(1920) 694.4 in-lbT m P m P= − = − =  
 
(c)   For CW drum rotation 
 

                      max2 2 1 1 694.4 28.9 lb
20 4 24 24a

Tm P m PF −
= = = =

+
 

 
(d)  For CCW rotation, 2P  becomes the tight side and 1P  the slack side. This results in 2 1920 lbP =  and 

1 653.6 lbP =  for the maximum-allowable pressure of 60 psi. Therefore 
 
                            max 4(1920) 1(653.6) 6985.6 in-lbT = − =  
 

                           max 6985.6 291 lb
24 24a

T
F = = ≈  
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16-24.     The differential band brake sketched in Figure P16.24 has a 25-mm-wide band. The coefficient of 
friction between the counterclockwise rotating drum and the lining is 0.25µ = .  If the maximum allowable 
pressure of 0.4 MPa, determine the activation force, aF . 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
The wrap angle is determined form geometry 
 

1 o200sin 30
400

β − ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 so  o180 210 3.665 radα β= + = =  

 

( )( )( )6
1 max 0.4 10 0.025 0.20 2000 NP p bR= = × =  

1
2 0.25(3.665)

2000 800 NPP
e eµα= = =  

 
0 :   600 100(2000) 141.4(800) 0A aM F= − + =∑  

                                  
                                         144.8 NaF =  
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16-25.     A 2-m-long arm is attached to a 50-mm-diameter drum, which is free to rotate about an axle at O.  
The arm is required to support a 5N force as shown in Figure P16.25.  In order to keep the arm from 
rotating, a band brake is being suggested. For the initial analysis, we assume the belt is 100 mm wide and is 
made from woven cotton. The actuation force is provided by pneumatic cylinder BC, attached to one end of 
the belt.  The pneumatic cylinder can supply a pressure of 0.3 MPa. Determine the cross-sectional area of 
the cylinder in order to supply enough force to keep the required force to keep the arm in the position 
shown, and determine the pressure on the pad. 
 
------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For woven cotton, we find (from Table 16.1) 0.47µ =  and max 0.69 MPap = . The torque about the axel 
resulting from the 5 N load is 
 
                          5(2cos30) 8.66 N-mT = =  

The wrap angle is o270 4.712 radα = = , so 1 1
2 10.47(4.712) 0.109P PP P

e eµα= = =  

Therefore  
 

                   1 2 18.66 N-m ( ) 0.025(1 0.109)T R P P P= = − = −                        1
8.66 388.8 N

0.02228
P = =  

 
The required area of the cylinder is 
 

            6 1 2 2
1 6

388.80.3 10 :         1.296 10  m 1296 mm
0.3 10

P pA A A −= = × = = × =
×

         21296 mmA =  

 
Since 1 388.8 NP = , the maximum pad pressure is  
 
             ( )( )1 max max:    388.8 0.1 0.025P p bR p= =          max 0.159 MPap =  
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16-26. In the analysis and design of disk brakes and clutches, it is usual to hypothesize either “uniform 
wear” or “uniform pressure” as a basis for making calculations. 
 

a. What important information can be derived on the basis of making a proper choice between these 
two hypotheses? 
b. How would you decide whether to choose the uniform wear hypothesis of the uniform pressure 
hypothesis in any given situation? 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a)  A proper choice between the “uniform wear” and “uniform pressure” assumptions provides the basis 
for more accurate estimates and calculations for pressure distribution, braking torque, and actuation force 
for a disk brake or clutch. 
 
(b) If disks tend to be rigid, the greatest wear will initially occur over the outer circumferential portion of 
the disks because tangential velocity is greater there and ultimately the pressure redistribution results in 
nearly uniform wear. 
 
If the disks tend to be flexible, the disks tend to be in intimate contact and the result is uniform pressure. 
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16-27.  It is desired to replace the long-shoe brake shown in Figure P16.17 with a simple band brake of the 
same width b. If the materials used are the same at the friction surface (i.e. 0.2µ =  and max 100 psip = are 
unchanged) and the drum size must remain unchanged, what wrap angle should be used for the simple band 
brake to produce the same braking torque capacity as the long-shoe brake shown in Figure P16.17? 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
For the long-shoe brake  
 

              ( ) [ ]
2

max
1 2

max
cos cos

sin
c

f shoe

w R p
T

µ
ϕ ϕ

θ
= −  

 
For the band brake 
 
                  ( ) ( )2

max 1f band
T bR p e µα−= −  

 
Equating these two expressions and noting that cw b=  
 

                          
[ ] ( )
[ ]

2
2max

1 2 max
max

1 2

max

cos cos 1
sin

cos cos
1

sin

cw R p
bR p e

e

µα

µα

µ
ϕ ϕ

θ

µ ϕ ϕ
θ

−

−

− = −

−
− =

 

 
For the long-shoe brake ( )1 2 max0 , 90 , and sin 1ϕ ϕ ϕ= = =  
 

                   0.2 0.2 0.20.2(1 0)1 0.2 1 0.2 0.8 or    1/ 0.8 1.25
1

e e eα α α− −−
− = = ⇒ = − = = =  

 
                   o0.2 ln(1.25)         1.1157 rad 63.93α α= ⇒ = ≈  
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16-28.  A disk clutch is being proposed for an industrial application in which the power-input shaft supplies 
12 kw steadily at 650 rpm. The patented friction lining material, which is to be bonded to one or more 
annular disk surfaces, is to be brought into contact with stiff steel disks to actuate the clutch. The outside 
diameter of the clutch disks must be no larger that 125 mm, and it is desired to configure the annular 
friction surfaces so that the inner diameter is about 2/3 of the outer diameter. The coefficient of friction 
between the patented friction lining material and steel is 0.32µ =  and the maximum-allowable contact 
pressure is max 1.05 MPap = . What is the minimum number of friction surfaces required for the clutch to 
function properly? 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: power in 12 kw= , 650 rpmn = , max 1.05 MPap = , 125 / 2 62.5 mmor = = , 

2 / 3 41.7 mmi or r= = , 0.32µ =  
 
Since the disks are stiff, we assume uniform wear 
 

                           ( ) ( ) ( )
( )

2 2
max 2 2

max

f uw
f f i o i fuw

i o i

T
T n p r r r n

p r r r
µπ

µπ
= − ⇒ =

−
 

 

                               9549( ) 9549(12) 176.3 N-m
650f

kwT
n

= = =  

 

                  
( )6 2 2

1763 2.88
0.32 (1.05 10 )(0.0417) (0.125) (0.0417)

fn
π

= =
× −

 

 
Therefore 3 friction surfaces are required. 
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16-29.  A disk brake is to be constructed for use on a high-speed rotor balancing machine. It has been 
decided that a carbon-graphite friction material be used against a steel-disk material surface to provide the 
braking action. The environment is dry. For clearance reasons the inner diameter of the steel brake disk 
must be 10.0 inches and its thickness is 0.375 inch. Further, the brake must be able to absorb 

62.5 10  in-lb×  of kinetic energy in one-half revolution of the disk brake as it brings the high-speed rotor to 
a full stop. Only one braking surface can be used. 
 

a. What should be the outside diameter of the disk brake? 
b. What axial normal actuating force aN  will be required for the brake to function properly? 
c. Due to the short stopping time, it is estimated that only about 10 percent of the volume of the steel 
disk constitutes the entire “effective” heat sink for the brake. About how large a temperature rise 
would you expect in this brake during the stop? Is this acceptable? 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: 5"ir = , 0.375"diskt = , 62.5 10  in-lbKE = × , radstopθ π= , 1fn =  
 
(a) From Table 16.2, 0.25µ = , max 300 psip = , o

max 1000 F T = . Since 0.375"diskt = , they are assumed to 
be rigid, so the uniform wear assumption is used. 
 
                                       ( ) ( )2 2

maxf f i o iuw
T n p r r rµπ= −  

 
The work required to bring the system to a stop is 
 

                        
6

62.5 10 0.796 10  in-lbf stop f
stop

KEW T Tθ
θ π

×
= ⇒ = = ≈ ×  

So 
 
                        ( ) ( )6 2 2 2 2

max0.796 10 1(0.25) (300)(5) (5) 26.47"f i o i o on p r r r r rµπ π× = − = − ⇒ =  

 
                                                                  2 52.94" 53"o od r= = ≈                                           53"od =  
 
(b)     The actuating force is 
 
                        ( ) ( ) ( )max2 2 (300)(5) 26.5 5 202.6 kipa i o iuwN p r r rπ π= − = − =             ( ) 202.6 kipa uwN =  

 
 

(c)  The temperature change is KET
CWJθ

∆ = , where 

 
                         ( )2 20.1 ( ) 0.1 26.5 5 (0.375) (0.283) 22.58 lbdiskW V w π⎡ ⎤= = − ≈⎣ ⎦  

                                         
6

o2.5 10 99 F
0.12(22.58)(9336)

T ×
∆ = ≈  

 
Given that o

max 1000 F T = , the o99 FT∆ =  is not significant 
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16-30.  For use in a specialized underwater hoisting application, it is being proposed to design a disk clutch 
with a 20-inch outside diameter. Hard-drawn phosphor bronze is to be used in contact with chrome-plated 
hard steel to form the friction interfaces ( 0.03µ = , max 150 psip = ). The clutch is to transmit 150 
horsepower continuously at a rotational speed of 1200 revolutions per minute. Following a rule of thumb 
that says that for good design practice the inner diameter of a disk clutch should be about 2/3 of the outer 
diameter, determine the proper number of friction interfaces to use for this proposed clutch. Since the 
device operates under water, neglect temperature limitations. 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Specifications: 10"or = , 0.03µ = , max 150 psip = , ( ) 150 horsepowerinhp = 1200 rpmopn = , 

2 / 3 6.67"i or r= =  
 
Assuming the disks to be rigid, the uniform wear assumption is used. 
                                                        
              ( ) ( ) ( )2 2 2 2

max (0.03) (150)(6.67) (10) (6.67) 5234.4f f i o i f fuw
T n p r r r n nµπ π= − = − =  

 
In addition 
 

                    63,025( ) 63,025(150) 7878.125 in-lb
1200f

op

hpT
n

= = =  

 
Equating these 
 
                            5234.4 7878.125 1.5f fn n= ⇒ =  
 
So use  
 
                                                        2fn =  
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16-31.    A pneumatic cylinder with a  25 mm internal diameter operates at a pressure of 0.50 MPa and 
supplies the activation force for a clutch that is required to transmit 10 kw  at 1600 revolutions per minute. 
The friction interfaces of the clutch are a rigid molded nonasbestos with 0.45µ = and  max 1.0 MPap = . 
The outer diameter of the clutch is initially assumed to be 150 mm and the inner diameter is assumed to be 
100 mm. Determine the activation force and the number of friction surfaces assuming both uniform wear 
and uniform pressure. 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
The activation force is the same regardless of the uniform wear or uniform pressure assumption. 
 

                      ( )
2

6(0.025) 0.50 10 245 N
4aN pA π

= = × =  

 
Uniform wear:  0.075 mor = and 0.050 mir =  
                                                              

                            9549( ) 9549(10) 60 N-m
1600 2

o i
f a

r rkwT n N
n

µ
+⎛ ⎞= = ≈ = ⎜ ⎟

⎝ ⎠
 

                          0.075 0.05060 (0.45) (245) 6.9
2f fn n+⎛ ⎞= =⎜ ⎟

⎝ ⎠
  

                                                                                                                                           9fn =  
        Check to see if the actuation force exceeds the allowable 
 
                          ( ) ( )6

max2 2 1.0 10 (0.05)(0.075 0.05) 7854 N 245 Na i o iN p r r rπ π= − = × − = >  

 
        The activation force supplied by the cylinder does not exceed the allowable. 
 
 
Uniform pressure: We have 0.075 mor = , 0.050 mir = , and 60 N-mT =  
 

                        
( )

( )
3 3

2 2

2

3

f o i
a

o i

n r r
T N

r r

µ −
=

−
 

                     
( )

( )
3 3

2 2

2 (0.45) (0.075) (0.050)
60 (245) 6.98

3 (0.075) (0.050)

f
f

n
n

−
= =

−
 

                                                                                                                                             9fn =  
 
            Check to see if the actuation force exceeds the allowable  
 
                        ( ) ( )( )2 2 6 2 2

max 1.0 10 (0.075) (0.050) 9817 N 245 Na o iN p r rπ π= − = × − = >  

 
            The activation force supplied by the cylinder does not exceed the allowable. 
 
 
 
 
 



 691

 
16-32.  It is desired to replace a single-contact-surface disk brake used on the end of a rotating drum by a 
long-shoe block brake, as shown in Figure P16.32, without changing the drum. The materials used at the 
friction interface are the same for both cases. It may reasonably be assumed, therefore, that both brakes will 
operate at the same limiting pressure maxp during actuation. The original disk brake contact surface had an 
outer radius equal to the drum radius, and an inner radius of two-thirds the outer radius. What width b is 
required for the new long-shoe brake shown in Figure P16.32 to produce the same braking torque capacity 
as the old disk brake? 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From Figure P16.32:  cb w= 6"oR r= = , 2 / 3 4"i or r= = ,  1 0ϑ = , 2 90ϑ = , ( )maxsin 1ϕ =  
 

               ( ) [ ] [ ]
2 2

max max
1 2 max

max

(6)
cos cos 1 0 36

sin 1
c c

f cshoe

w R p w p
T w p

µ µ
ϕ ϕ µ

θ
= − = − =  

 
Assume uniform wear 
 
                           ( ) ( ) ( )2 2 2 2

max max max(1) (4) (6) (4) 80f f i o iuw
T n p r r r p pµπ µπ µπ= − = − =  

 
Equating these 
 
                            max max36 80 80 / 36 6.98c cw p p b wµ µπ π= ⇒ = = =  
 
                                                                                                                6.98"cb w= =  
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16-33.  A disk clutch has a single set of mating annular friction surfaces having an outer diameter of 300 
mm and an inner diameter of 225 mm. The estimated coefficient of friction between the two contacting 
surfaces is 0.25, and the maximum-allowable pressure for the lining material is 825 kPa. Calculate the 
following: 
 

a. Torque capacity under conditions that make the uniform wear assumption more nearly valid. 
b. Torque capacity under conditions that make the uniform pressure assumption more nearly valid. 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From specifications:  225 / 2 112.5 mmir = = , 300 / 2 150 mmor = = , 1fn = , 0.25µ = , max 825 kPap =  
 
(a) Uniform wear 
 
                 ( ) ( ) ( ) ( )2 2 3 2 2

max (1)(0.25) 825 10 (0.1125) (0.15) (0.1125) 717.6f f i o iuw
T n p r r rµπ π= − = × − =  

 
                                                 ( ) 718 N-mf uw

T ≈  

 
(b) Uniform pressure 
 

                    ( ) ( )
3 3 3 3

3
max

(0.15) (0.1125)2 2 (1)(0.25) 825 10 842.8
3 3

o i
f fup

r r
T n pπ µ π

⎛ ⎞ ⎛ ⎞− −
= = × =⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 
                                               ( ) 843 N-mf up

T ≈  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 693

 
16-34. A multiple-disk clutch is to be designed to transmit a torque of  750 in-lb while fully submerged in 
oil. Space restrictions limit the outside diameter of the disks to 4.0 inches. The tentatively selected 
materials for the interposed disks are rigid molded-asbestos against steel. Determine appropriate values for 
the following: 
 

a. Inside diameter of the disks 
b. Total number of disks 
c. Axial normal actuating force 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From specifications:  ( ) '

750 in-lbf red d
T = , 4.0 inod = , 0.06µ =  (from Table 16.1), max 300 psip =  

  
(a) The usual range of values for ir  is  0.6 0.8o i or r r≤ ≤ . Selecting a mid-range value, 0.7 1.4 ini or r= =  
 
                                                              2.8 inid =  
 
(b) Since the disks are rigid, we use uniform wear. 
 
                     ( ) ( ) ( ) ( )2 2 2 2

max (0.06) 300 (1.4) (2) (1.4) 161.5f f i o i f fuw
T n p r r r n nµπ π= − = − =  

 
                                         750 161.5 4.64f fn n= ⇒ =  
 
The number of friction surfaces must be an integer, so  
 
                                                       5fn =  friction interfaces are required 
 
(c)  
 

                                  
( )
( ) ( )

2 2(750) 1470.5
5(0.06) 2 1.4

f uw
a

f o i

T
N

n r rµ
= = =

+ +
 

 
                                                                                                   1471 lbaN ≈  
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16-35.   The wheels of a standard adult bicycle have a rolling radius of approximately 340 mm and a 
radius to the center of the hand-actuated caliper disk brake pads (see Figure 16.13) of 310 mm. The 
combined weight of the bike plus the rider is 890 kN, equally distributed between the two wheels. If the 
coefficient of friction between the tires and the road surface is twice the coefficient of friction between the 
caliper brake pads and the metallic wheel rim, calculate the clamping force that must be applied at the 
caliper to slide the wheel upon hand brake application. 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
      340 mmwhR = , 310 mmbpr =  

      890 / 2 445 kNwhW = = , 
      2road bpµ µ=  
 
Using the free body diagram shown 
 
    0 :oM =∑  

            32( )(0.310) (445 10 )(0.340)bp a roadNµ µ= ×  

           32 (244 10 )bp a bpNµ µ= ×  

           488 kNaN =  
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16-36.    A cone clutch with a cone angle of  o12  is disengaged when a spring ( 200 lb/ink = ) is 
compressed by means of a lever with a 10 lb load applied as shown in Figure P16.37. The clutch is required 
to transmit 4 hp at 1000 rpm. The lining material along an element of the cone is 3.0 inches long. The 
coefficient of friction and the maximum pressure for the lining material are 0.38µ =  and max 100 psip = , 
respectively. The free length of the spring is 3.0 in.fL =  and it is compressed by x inches for operation 
(when the clutch is engaged). Determine the amount of spring compression required for the clutch to 
engage properly and. the distance  a that the 10 lb force has to be away from pivot point A (see Figure 
P16.36) in order to compress the spring an additional 0.05 inches to disengage the clutch. 
 
 
Figure P16.36 
Cone clutch 
 
 
 
 
 
 
 
 
 
 
 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

      '
63,025( ) 63,025(4) 252 in-lb

1000req d
hpT

n
= = =  

 
       sin 3.5 2sin12 3.08"o i c ir r W rα− = ⇒ = − =  
 
 
 
 
 
 
When the cone clutch shown is engaged, the spring  provides a 
clamping force of 170 lbF = . When the clutch is disengaged (by 
application of a force P to the lever ), the spring is 0.10 in shorter. 
This causes the force in the spring to increase by 25 lbF∆ = . Based 
on preliminary calculations, a wire size of 0.192 in has been 
selected for the spring, and a clash allowance of 0.050 in. is to be 
used. The spring material is to be shot-peened wire ( max min1.15τ τ=  
and max 113 ksiτ = ). Assume a factor of safety for eventual fatigue of 
1.3 and determine suitable combinations of D, N, sL , and fL . 
 
 
 
 
Solution 

P

P

Engaged

Disengaged
0.1"

F F+∆

F
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max max max

max 3 3 2
16 8 8

W W W
F R F D F

K K CK
d d d

τ
π π π

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

( )
max 2

8 195
113,000 /1.3 86,923 6.453

(0.192)W WCK CKτ
π

⎛ ⎞
= = = → =⎜ ⎟⎜ ⎟

⎝ ⎠
   

where 4 1 0.615
4 4W

CK
C C
−⎛ ⎞= +⎜ ⎟−⎝ ⎠

 

 
2

24 1 0.615 4 1.46 2.466.453 4 24.35 23.35 0
4 4 4 4

C C CC C C
C C C
− + −⎛ ⎞= + = → − + =⎜ ⎟− −⎝ ⎠

 

 
Solving, C = 4.89 and 1.19. Assume C = 5,     5(0.192) 0.96D Cd= = = ,     

/ 25 / 0.1 250 lb/in.k F δ= = =  

( ) 64 4

3 3 4 3 3

0.192 (11.5 10 )( / ) 8.8
64 8 8 8 8(5) (250)
d G D C G DG dGN

R k D k C k C k
×

= = = = = =                         8.8N =                                                     

( )2 (10.8)(0.192) 2.07 in.sL N d= + = =                                                                        2.07 in.sL =  

maxclash allowance / 2.07 0.05 196 / 250 2.90 in.f sL L F k= + + = + + =                      2.90 in.fL =  
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16-37.  A cone clutch having a cone angle α of  o10 is to transmit 40 horsepower continuously at a 
rotational speed of 600 rpm. The contact width of the lining along an element of the cone is 2.0 inches. The 
lining material is wound asbestos yarn and wire, operating against steel. Assuming that the uniform wear 
assumption holds, do the following: 
 

a. Calculate the required torque capacity. 
b. Calculate the change in radius of the contact cone (i.e., o ir r− ) across the contact width of the 
lining. 
c. Calculate an acceptable value for ir  so that required torque capacity can be satisfied. 
d. Calculate the corresponding value of or . 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From specifications: o10α = , 40 horsepowerhp = , 600 rpmn = , 2.0 inchescW = , 0.38µ =  (from Table 
16.1), max 100 psip =  
 

(a)  '
63,025( ) 63,025(40) 4202 in-lb

600req d
hpT

n
= = =  

 
(b) From Table 16.14, sino i cr r W α− = , so 2sin10 0.347 incho ir r− = =  
                                                                                                                          0.347 incho ir r− =  
 

(c) 
( ) ( )( )2 2

max max
' sin sin

i o i i o i o i
req d

p r r r p r r r r r
T

µπ µπ
α α

− + −
= =  

 
 

               
( )( ) ( )( ) ( )

0.38 (100) 0.347 0.347 38 0.347 2 0.347
4202 238.6 0.347 2

sin10 0.1736
i i i i i

i i
r r r r r

r r
π π+ + +

= = = +  

           
                 22 0.347 17.6 0 2.88"i i ir r r+ − = ⇒ =  
 
(d)  0.347 0.347 2.88 3.23 incheso ir r= + = + ≈  
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Chapter 17 
 
 
 
17-1.  A flat belt drive system is to be designed for an application in which the input shaft speed (driving 
pulley) is 1725 rpm, the driven shaft speed is to be approximately 960 rpm, and the power to be transmitted 
has been estimated as 3.0 horsepower. The driven machine has been evaluated and found to have 
characteristics of moderate shock loading during operation. The desired center distance between driving 
and driven pulleys is approximately 18 inches. 
 

a. If 1/8-inch-thick polyamide belt material were chosen for this application, what belt width would 
be required? 
b. What initial tension would be required for proper operation?  

 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications: 1725 rpmi sn n= = , 960 rpmo Ln n= = , 3.0 horsepowerhp = , 0.125 inchbt =  , 

' 18 inreq dC = , moderate shock 
 

(a)   ( ) 33,000( )
t s

hpT T
V

− = ,  where  
2

12
s sr n

V
π

=  

 
From Table 17.1, for a polyamide belt with ( )0.125" 0.13bt = ≈ , 30.042 lb/inw = , 0.8µ = , 

100 lb/inaT = , and the minimum recommended pulley diameter is 4.3"sd = , which gives 
 

                       2 (4.3 / 2)(1725) 1942 ft/min
12

V π
= ≈  

Therefore 

                     ( ) 33,000(3.0) 50.9 51 lb      51
1942t s s tT T T T− = = ≈ ⇒ = −  

 

From (15-23)    17254.3 7.73"
960

s
L s

L

n
d d

n
⎛ ⎞ ⎛ ⎞= = ≈⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 

 

Using Figure 17.1: 1 1 7.73 4.32 2sin 2sin 2.95 rad
2 2(18.0)

L s
s

d d
C

θ π α π π− − ⎛ ⎞− −⎛ ⎞= − = − = − =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

From (17-3)  
2

1
c

w vT
g

= , where 1 ( )(0.125)(0.042)12 0.063b bw b b= = , so  

                                     
2(0.063 )(1942 / 60)

2.05
32.2

b
c b

b
T b= =  

 
From (17-4) 
 

                
( )

0.8(2.95)2.05 2.05
     10.6   or    10.6 

2.05 51 2.05
st c t b t b

s c s b t b

T T T b T b
e e

T T T b T b
µθ− − −

= ⇒ = = =
− − − −

       (1) 
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Problem 17-1 (continued) 
 

From (17-7)  ( ) a b
t d

a

T b
T

K
= , where 1.25aK = (from Table 17.2), so ( ) 100

80
1.25

b
t bd

b
T b= = .  

 
Using this information, (1) becomes 
 

                       
( ) ( )80 2.05

10.6       77.95 10.6 7795 51
80 51 2.05

b b
b b

b b

b b
b b

b b
−

= ⇒ = −
− −

 

                                                                                                                  0.7224"bb =  
 
(b)  From (17-6) 
 

                              
[ ]80(0.7224) 80(0.7224) 51

32.29
2 2

t s
o

T T
T

+ −+
= = =  

 
                                                                                                                                   32.3 lboT ≈  
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17-2. A flat belt drive consists of two cast-iron pulleys, each 4 feet in diameter, spaced 15 feet apart, center-
to-center. The belt is to be made of two-ply oak-tanned leather, each ply being 5/32 inch thick, and the 
specific weight of the leather material is 30.040 lb/in  . The application involves a water-spray environment 
in which the belt is constantly subjected to the water spray (see Appendix Table A.1 for coefficients of 
friction). It has been experimentally determined that the tensile stress in the belt should not exceed 300 psi 
for safe operation. If 50 horsepower is to be transmitted at a pulley speed of 320 rpm, what belt width 
should be specified? 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications: 1 2 48"d d= = , 0.15625"plyt = , 50 horsepowerhp = , 320 rpmn = , 30.040 lb/inbeltw =  , 

15 ft 180 inC = = , 300 psiallowσ = , 0.20µ =  (from Table A.1), θ π= (from Figure 17.8) 
 
            

                     
2 2 (48 / 2)(320) 4021 ft/min

12 12
s sr n

V
π π

= = =  

 

                   ( ) 33,000( ) 33,000(50) 410.3 lb               410.3  
4021t s s t

hpT T T T
V

− = = = ⇒ = −  

 
                 ( )( ) ( )1 ( ) 2 12 ( ) 2 0.15625 0.040 12 0.15  lb/ftb ply belt b bw b t w b b⎡ ⎤= = =⎡ ⎤⎣ ⎦⎣ ⎦  

 

                     
( )22

1 0.15 4021/ 60
20.92

32.2
b

c b
bw vT b

g
= = =  

 

                    0.2( )20.92
     1.874

20.92
st c t b

s c s b

T T T b
e e

T T T b
µθ π− −

= ⇒ = =
− −

 

 

                ( ) a b
t d

a

T b
T

K
= , where 1.25aK = (from Table 17.2, assuming moderate shock)     

                       
                 [ ]300 2(0.15625) 93.75a allow belt b bT A b bσ= = =  
 

                     ( ) ( ) 293.75
75

1.25
b b

t bd

b b
T b= =  

 

                 
( )

2
2

2

75 20.92
1.874 34.98 9.76 410.3 0 3.57"

75 410.3 20.92
b b

b b b
b b

b b
b b b

b b
−

= ⇒ − − = ⇒ =
− −

 

 
   Typically this would be rounded up to an even inch, so the specified belt width would be 
 
                                     4.0"bb =  
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17-3.  A 1725-rpm 5-horsepower high-torque electric motor is to be used to drive a woodworking table saw 
in a storm-windoe manufacturing plant. The saw is to operate 16 hours per day, 5 days per week, at full-
rated motor horsepower. A V-belt drive is to be used nbetween the motor and the saw pulley. Ideally, the 
center distance between the motor drive sheave and the driven saw sheave should be about 30 inches, and 
the driven sheave should rotate at approximately 1100 rpm. Saw operation will probably produce moderate 
shock loading. Propose a V-belt drive arrangement that will provide a mean life of about 1 year between 
belt replacement. 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications: 5.0 horsepowerhp = , 1725 rpmmotor sn n= = , 1100 rpmsaw Ln n= = , 30 inC = , 

0.30µ =  (from Table A.1), ' 1 year @ 16 hr/day, 5 days/weekreq dL =  
 
The number of belt passes in 1 year is 
 
           ( )( ) ( )( )( ) 81100 passes/min 60 min/hr 16 hr/day 5 days/wk 52 wk/yr 2.75 10  passespN = = ×  
 
For an electric motor (from Table 17.2) 
 
                 ( ) ( ) 5(1.25) 6.25 horsepowerad ophp hp K= = =  

 
The ratio is / 1725 /1100 1.57motor sawR n n= = = , giving ( ) ( )1.57d dsaw motd d=  
 

                     
( ) ( )2 ( ) / 2 2 ( ) / 2 17252

451.6( )  
12 12 12

p mot mot p mots s
p mot

d n dr n
V d

π ππ
= = = =  

 

                   ( ) 33,000( ) 33,000(6.25) 456.7
451.6( )  ( )

d
t s

p mot p mot

hp
T T

V d d
− = = =  

 
From figure 17.10, for 6.25 horsepower and 1725 rpmmotorn = , the tentative selection is an A-section belt. 
For an A-section belt, the minimum recommended datum diameter (Table 17.4) is 3.0 inches. We begin by 
selecting a slightly larger size, say ( ) 4.5"d motd = . From Table 17.4, we use 2 0.25dh = , giving 
 
                     ( ) ( ) [ ]1.57 0.25 0.25 1.57 4.5 0.25 0.25 7.21"d dsaw motd d⎡ ⎤= + − = + − =⎣ ⎦  
 
Therefore 451.6( ) 451.6(4.5 0.25) 2145p motV d= = + ≈  and 
 

                          ( ) 456.7 456.7 96.2 lb
( ) 4.5 0.25t s

p mot
T T

d
− = = ≈

+
 

 
From Figure 17.8 
 

          ( ) ( )1 1 7.21 4.52 2sin 2sin 3.05 rad
2 2(30)

d dsaw mot
motor s

d d
C

θ θ π α π π− −−⎛ ⎞ ⎛ ⎞−
= = − = − = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

         ( ) ( )1 1 7.21 4.52 2sin 2sin 3.23 rad
2 2(30)

d dsaw mot
saw L

d d
C

θ θ π α π π− −−⎛ ⎞ ⎛ ⎞−
= = + = + = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
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Problem 17-3 (continued) 
  

               
( ) ( ) ( )

( ) ( )

[ ]

22

22

4
2

7.21(3.23) 4.5(3.05)             = 4(30) 7.21 4.5 59.94 18.51 78.45"
2

d L d sL s
d d dnom L s

d d
L C d d

θ θ+
⎡ ⎤= − − +⎣ ⎦

+
− − + = + =

 

 
 
From Table 17.5, the closest standard datum length is 82.3"dL =  for an A-section belt. From Table 17.3 for 

4.5"dd = , we find 1 0.065 lb/ftw = , resulting in 
 

                                    
( )22

1 0.065 2145 / 60
2.58 lb

32.2c
w vT

g
= = =  

 
 
Recalling from above that 96.2s tT T= − , determining from Figure 17.9 that o36β = , and using (17-9)  
 

                ( )
[ ]

/ sin / 2 0.3(3.05) / sin182.58
     19.32 104 lb

96.2 2.58
st c t

t
s c t

T T T
e e T

T T T
µθ β− −

= ⇒ = = ⇒ =
− − −

 

 
                                            104 96.2 7.8 lbsT = − =  
 
From Table 17.3, 6 3 8

1 2 3 45.0 , 111 , 0.101 10 , 0.175 , 1.73 10 , 6.13 10c iC C C C A K− − −= = = × = = × = × , 
19.8 , 26.4 , 1o mK K k= = = − . Therefore, using (17-13), (17-14), and (17-15) 

 

                            ( ) ( )
1 2 5.0 111 25.78 lb

4.5be motor
d motor

C CT
d

+ +
= = =  

                            ( ) ( )
1 2 5.0 111 16.09 lb

7.21be saw
d saw

C CT
d
+ +

= = =  

                             ( )22 6
3 0.101 10 2145 0.46 lbceT C V −= = × =  

                            4 0.175(104) 18.2 lbte tT C T= = =  
                             4 0.175(7.8) 1.37 lbse sT C T= = =  
 
From (17-11) and (17-12) 
 

              ( ) ( )3

2 18.2 25.78 2(0.46) 1.37 13,373 psi
2 2 1.73 10

te be ce se
m motor

c

T T T T
A

σ
−

+ + + + + +
= = ≈

×
 

              ( ) ( )3

2 18.2 16.09 2(0.46) 1.37 10,572 psi
2 2 1.73 10

te be ce se
m saw

c

T T T T
A

σ
−

+ + + + + +
= = ≈

×
 

              ( ) ( )3

18.2 25.78 1.37 12,315 psi
2 2 1.73 10

te be se
a motor

c

T T T
A

σ
−

+ − + −
= = ≈

×
 

              ( ) ( )3

18.2 16.07 1.37 9515 psi
2 2 1.73 10

te be se
a saw

c

T T T
A

σ
−

+ − + −
= = ≈

×
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Problem 17-3 (continued) 
 
From (17-10) [ ] [ ]2 2 1.75 k

f i o a m m dN K K K L Vσ σ= − − , so for the motor 

 
( ) [ ] [ ] ( )2 2 1.758 86.13 10 19,800 12,315 26, 400 13,373 82.3 (2145) 6.11 10  cyclesk

f motor
N − −= × − − = ×  

( ) [ ] [ ] ( )2 2 1.758 96.13 10 19,800 9514 26,400 10,572 82.3 (2145) 1.7 10  cyclesk
f saw

N − −= × − − = ×  

 
From (17-20) 
 

             ( )
( ) ( )

8

8 9

1 1 4.495 10  passes
1 1 1 1

6.11 10 1.7 10

p f

f fmotor saw

N

N N

= = = ×
+ +

× ×

 

 
 
Comparing this to the number of required passes ( 82.75 10  passes× ), the selected belt has about 60% more 
tha the required life of 1 year, so it is regarded as acceptable and we use an A-series belt with 
( ) 4.5"d motord =  and ( ) 7.21"d sawd =  
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17-4. A D-section V-belt is to be used to drive the main power shaft of an agricultural combine (an 
agricultural combine may be regarded as a combination of conveyors, elevators, beaters, and blowers). The 
power source is a 6-cylinder, 30-hp internal combustion engine which delivers full-rated power to a 12-
inch-diameter sheave at 1800 rpm. The driven sheave is 26 inches in diameter, and the center distance 
between sheaves is 33.0 inches. During the harvest season, combines typically operate continuously 24 
hours per day. 
 

a. If a D-section V-belt were specified for use in this application, how often would you predict that 
the belt would require replacement? 
b. Based on the knowledge that it takes about five hours to change out the main drive belt, would you 
consider the replacement interval estimate in (a) to be acceptable? 

 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications: ( ) 30 horsepowerophp = , ( ) 12"p s

d = , ( ) 26"p L
d = 1800 rpmsn = , 33"C =  

 
(a) From Table 17.2, 1.5aK =  
 
                         ( ) ( ) 30(1.5) 45 horsepowerad ophp hp K= = =  

 

                         
2 (12)(1800) 5655 ft/min

12 12
s sr n

V
π π

= = =  

 
From Table 17.4, for a D-section belt 2 0.4dh = , we 
 
               ( ) ( ) 0.4 12 0.4 11.6"d ps s

d d= − = − =  

               ( ) ( ) 0.4 26 0.4 25.6"d pL L
d d= − = − =  

 

                  ( ) 33,000( ) 33,000(45) 262.5 lb      262.5
5655 

d
t s s t

hp
T T T T

V
− = = = ⇒ = −  

                ( ) ( )1 1 25.6 11.62 2sin 2sin 2.71 rad
2 2(33)

d dL s
s

d d
C

θ π α π π− −−⎛ ⎞ ⎛ ⎞−
= − = − = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

                ( ) ( )1 1 25.6 11.62 2sin 2sin 3.57 rad
2 2(33)

d dL s
L

d d
C

θ π α π π− −−⎛ ⎞ ⎛ ⎞−
= + = + = + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 

                 
( ) ( ) ( )

( ) ( )

[ ]

22

22

4
2

25.6(3.57) 11.6(2.71)             = 4(33) 25.6 11.6 64.598 61.414 126"
2

d L d sL s
d d dnom L s

d d
L C d d

θ θ+
⎡ ⎤= − − +⎣ ⎦

+
− − + = + ≈

 

 
 
From Table 17.5, the closest standard datum length is 123.3"dL =  for an D-section belt. From Table 17.3 
for 11.6"dd = , we find 1 0.406 lb/ftw = , resulting in 
 

                            
( )22

1 0.406 5655 / 60
112 lb

32.2c
w vT

g
= = =  
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Problem 17-4 (continued) 
 
Recalling that 262.5s tT T= − , determining from Figure 17.9 that o36β = , and using table A.1 to find 

0.3µ =  
 

                ( )
[ ]

/ sin / 2 0.3(2.71) / sin18112
     13.886 394.8 lb

262.5 112
st c t

t
s c t

T T T
e e T

T T T
µθ β− −

= ⇒ = = ⇒ =
− − −

 

 
                                            394.8 262.5 132.3 lbsT = − =  
 
From Table 17.3, 6 3 8

1 2 3 426.5 , 256 , 0.291 10 , 0.10 , 5.15 10 , 6.76 10c iC C C C A K− − −= = = × = = × = × , 
10.8 , 14.6 , 0o mK K k= = = . Therefore, using (17-13), (17-14), and (17-15) 

 

                            ( ) ( )
1 2 26.5 256 24.35 lb

11.6be s
d s

C CT
d
+ +

= = =  

                            ( ) ( )
1 2 26.5 256 11.04 lb

25.6be L
d L

C CT
d
+ +

= = =  

                             ( )22 6
3 0.291 10 5655 9.31 lbceT C V −= = × =  

                            4 0.10(394.8) 39.48 lbte tT C T= = =  
                             4 0.10(132.3) 13.23 lbse sT C T= = =  
 
From (17-11) and (17-12) 
 

              ( ) ( )3

2 39.48 24.35 2(9.31) 13.23 9289 psi
2 2 5.15 10

te be ce se
m s

c

T T T T
A

σ
−

+ + + + + +
= = ≈

×
 

              ( ) ( )3

2 39.48 11.04 2(9.31) 13.23 7997 psi
2 2 5.15 10

te be ce se
m L

c

T T T T
A

σ
−

+ + + + + +
= = ≈

×
 

              ( ) ( )3

39.48 24.35 13.23 4913 psi
2 2 5.15 10

te be se
a s

c

T T T
A

σ
−

+ − + −
= = ≈

×
 

              ( ) ( )3

39.48 11.04 13.23 3620 psi
2 2 5.15 10

te be se
a L

c

T T T
A

σ
−

+ − + −
= = ≈

×
 

 
From (17-10) [ ] [ ]2 2 1.75 k

f i o a m m dN K K K L Vσ σ= − − , so for the motor 

 
( ) [ ] [ ] ( )2 2 1.758 0 96.76 10 10,800 4913 14,600 9289 123.3 (5655) 3 10 cyclesf s
N −= × − − ≈ ×  

( ) [ ] [ ] ( )2 2 1.758 0 96.76 10 10,800 3620 24,600 7997 123.3 (5655) 6.94 10  cyclesf L
N −= × − − ≈ ×  

 
From (17-20) 
 

             ( )
( ) ( )

9

9 9

1 1 2.1 10  passes
1 1 1 1

3 10 6.94 10

p f

f fs L

N

N N

= = ≈ ×
+ +

× ×
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Problem 17-4 (continued) 
 
The number of passes per day will be 
 

      
( ) ( )( ) ( )( )

p

5

 ft/min 5655 ft/min60 min/hr 24 hr/day 60 min/hr 24 hr/day
L 126  ft/pass ft/pass 1212

            7.75 10  passes/day

p day

VN = =
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= ×

 

 
The belt life in days is therefore 
 

                
( )
( )

9

5
2.1 10 2710 days

7.75 10

p f

p day

N
BL

N
×

= = ≈
×

 

 
(b)  The replacement cycle is more than adequate. The belt is overdesigned and a smaller-section belt 
should be investigated. 
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17-5. A portable bucket elevator for conveying sand is to be driven by a single-cylinder internal-
combustion engine operating at a speed of 1400 rpm, using a B-section V-belt. The driving pulley and 
driven pulley each have a 5.00-inch diameter. If the bucket elevator is to lift two tons per minute (4000 
lb/min) of sand to a height of 15 feet, continuously for 10 hours per working day, and if friction losses in 
the elevator are 15 percent of operating power, how many working days until failure would you estimate 
for the B-section belt if it has a datum length of 59.8 inches (B 59 belt)? 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications: ( ) ( ) 5"p ps L

d d= = , 1400 rpms Ln n= = , 59.8"dL = ,Operating requirements; lift 4000 

lbs/min to a height of 15 ft, 15% friction loss, 10 hr/day. 
 
From Table 17.2, 1.75aK =  
 
                             ( ) ( ) ( )ad op frhp K hp hp⎡ ⎤= +⎣ ⎦  

                             ( ) 4000(15) 1.82 hp
33,000ophp = =  

                             ( ) ( )0.15 0.15(1.82) 0.27 hpfr ophp hp= = =  

                             ( ) [ ]1.75 1.82 0.27 3.658 horsepowerdhp = + =  
 

                            
2 2 (5 / 2)(1400) 1833 ft/min

12 12
s sr n

V
π π

= = ≈  

 
From Table 17.4, for a B-section belt 
  
               ( ) ( ) ( ) 0.35 5 0.35 4.65"d d pL s s

d d d= = − = − =  

              
                  ( ) 33,000( ) 33,000(3.658) 65.86 lb      65.86

1833 
d

t s s t
hp

T T T T
V

− = = = ⇒ = −  

                s Lθ θ π= =  
                 
From Table 17.3 for 4.65"dd = , we find 1 0.112 lb/ftw = , resulting in 
 

                            
( )22

1 0.112 1833/ 60
3.25 lb

32.2c
w vT

g
= = ≈  

 
Recalling that 65.86s tT T= − , determining from Figure 17.9 that o36β = , and using table A.1 to find 

0.3µ =  
 

                ( )
[ ]

/ sin / 2 0.3 / sin183.25
     21.11 72.4 lb

65.86 3.25
st c t

t
s c t

T T T
e e T

T T T
µθ β π− −

= ⇒ = = ⇒ ≈
− − −

 

 
                                            72.4 65.86 6.24 lbsT = − =  
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Problem 17-5 (continued) 
 
From Table 17.3, 6 3 7

1 2 3 45.2 , 123 , 0.133 10 , 0.15 , 1.73 10 , 1.78 10c iC C C C A K− − −= = = × = = × = × , 
17.3 , 26.0 , 1o mK K k= = = − . Therefore, using (17-13), (17-14), and (17-15) 

 

                            ( ) ( ) ( )
1 2 5.2 123 25.64 lb

5be beL s
d s

C CT T
d
+ +

= = = =  

                             ( )22 6
3 0.133 10 1833 0.447 lbceT C V −= = × =  

                            4 0.15(72.4) 11.3 lbte tT C T= = =  
                             4 0.15(6.24) 0.94 lbse sT C T= = =  
 
From (17-11) and (17-12) 
 

              ( ) ( ) ( )3

2 11.3 25.64 2(0.477) 0.94 11,224 psi
2 2 1.73 10

te be ce se
m mL s

c

T T T T
A

σ σ
−

+ + + + + +
= = = ≈

×
   

              ( ) ( ) ( )3

11.3 25.64 0.94 10, 405 psi
2 2 1.73 10

te be se
a aL s

c

T T T
A

σ σ
−

+ − + −
= = = ≈

×
 

               
From (17-10) [ ] [ ]2 2 1.75 k

f i o a m m dN K K K L Vσ σ= − − , so for the motor 

 
    ( ) ( ) [ ] [ ] ( )2 2 1.757 1 91.78 10 17,300 10, 405 26,000 11,224 59.8 (1833) 1.3 10  cyclesf fL s

N N − −= = × − − ≈ ×  
 
 
From (17-20) 
 

             ( )
( ) ( )

8

9 9

1 1 6.5 10  passes
1 1 1 1

1.3 10 1.3 10

p f

f fs L

N

N N

= = ≈ ×
+ +

× ×

 

 
 

( ) ( )( ) ( )( )
p

5

 ft/min 1833 ft/min60 min/hr 10 hr/day 60 min/hr 10 hr/day
L 59.8  ft/pass ft/pass 1212

            2.21 10  passes/day

p day

VN = =
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

= ×

 

 
 
The belt life in days is therefore 
 

                
( )
( )

8

5
6.5 10 2941 days
2.21 10

p f

p day

N
BL

N
×

= = ≈
×
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17-6.  In a set of 5V high-capacity V-belts, each belt has a pitch length (outside length) of 132.0 inches, and 
operates on a pair of 12-inch diameter multiply grooved sheaves. The rotational speed of the sheave is 960 
rpm. To achieve a mean life expectancy of 20,000 hours, find the number of belts that should be used in 
parallel to transmit 200 horsepower. 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications: 12" (per sheave)pd = , 960 rpmn = , 132"pL = , ( ) ' 20,000 hoursm req dH = , 

( ) 200 horsepowerophp =   

 
 

             
2 2 (12 / 2)(960) 3016 ft/min

12 12
s sr n

V
π π

= = ≈  

           ( ) ( )( ) ( )( )3 8
'' p

3016 ft/min60 60 min/hr 20 10  hr 3.29 10  passes
L 132  ft/pass 1212

p m req dreq d

VN H= = × = ×
⎛ ⎞ ⎛ ⎞

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 

 

           ( ) 33,000( ) 33,000( )
10.94( )

3016 
belt belt

t s belt
hp hp

T T hp
V

− = = =  

 
From Table 17.3 for a 5V belt we find 1 0.141 lb/ftw = , resulting in 
 

                            
( )22

1 0.141 3016 / 60
11.1 lb

32.2c
w vT

g
= = ≈  

 
Since the sheaves are the same, sθ π= , and from Figure 17.9 that o36β = , and using table A.1 to find 

0.3µ = , we get 
 

                ( )

( )
/ sin / 2 0.3 / sin1811.1

     21.11
10.94 11.1

st c t

s c t belt

T T T
e e

T T T hp
µθ β π− −

= ⇒ = =
− ⎡ ⎤− −⎣ ⎦

 

 
                                            ( )11.48 11.1t beltT hp= +  

                    ( )( ) ( )10.94( ) : 11.48 11.1 10.94( ) 0.54 11.1s t belt s beltbelt beltT T hp T hp hp hp= − = + − = +  

 
From Table 17.3, 6 3 8

1 2 3 46 , 200 , 0.202 10 , 0.17 , 2.88 10 , 9.99 10c iC C C C A K− − −= = = × = = × = × , 
16 , 29.2o mK K= = , 1k = − . Therefore, using (17-13), (17-14), and (17-15) 

      

                             1 2 6 200 17.2 lb
12be

C CT
d
+ +

= = ≈  

                            ( )22 6
3 0.202 10 3016 1.84 lbceT C V −= = × =  

                            ( ) ( )4 0.17(11.48 11.1) 1.95 1.89te t belt beltT C T hp hp= = + = +  

                            ( ) ( )4 0.17(0.54 11.1) 0.092 1.89se s belt beltT C T hp hp= = + = +  
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17-6 (continued) 
 

             
( )( ) ( )( )

( )
( )

3

1.95 1.89 17.2 2(1.84) 0.092 1.892
2 2 2.88 10

      354.5 4281

belt beltte be ce se
m

c

belt

hp hpT T T T
A

hp

σ
−

+ + + + ++ + +
= =

×

= +

 

 

              
( )

( )( ) ( )( )
( )

( )

3

1.95 1.89 17.2 0.092 1.89

2 2 2.88 10

        354.2 2986

belt beltte be se
a s

c

belt

hp hpT T T
A

hp

σ
−

+ + − ++ −
= =

×

= +

 

               
From (17-20) 
 

             ( ) ( ) 8 8
' '

1    2 2(3.29 10 ) 6.58 10
1 1 2

f
p f preq d req d

f f

N
N N N

N N

= = ⇒ = = × = ×
+

 

 
From (17-10) [ ] [ ]2 2 1.75 k

f i o a m m dN K K K L Vσ σ= − − , so for the motor 

 
( )( ) ( )( ) ( )

2 2 1.758 8 16.58 10 9.99 10 16,000 354.2 2986 29,200 354.5 4281 132 (3016)belt belthp hp− −⎡ ⎤ ⎡ ⎤× = × − + − +⎣ ⎦ ⎣ ⎦

       ( ) ( )2 2153.86 10 13,104 354.5 24,919 354.5belt belthp hp⎡ ⎤ ⎡ ⎤× = − −⎣ ⎦ ⎣ ⎦  
 
Solving numerically, we find 
 
                     ( ) 26 horsepowerbelthp ≈  
 
Each 5V belt can carry about 26 horsepower 
 

                               
( )
( )

200 7.69
26

op
belts

belt

hp
N

hp
= = =  

 
Use 8 beltsbeltsN =  
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17-7. It is desired to use a compact roller chain drive to transmit power from a dynamometer to a test stand 
for evaluation of aircraft auxillary gear boxes. The chain drive must transmit 90 horsepower at a small-
sprocket speed of 1000 rpm. 
 

a. Select the most appropriate roller chain size. 
b. Determine the minimum sprocket size to be used. 
c. Specify appropriate lubrication. 

 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications:, 1000 rpmsn = , ( ) 90 horsepowernomhp =   
 

(a)  From (17-24) , ( )
( )a nom

d
st

K hp
hp

K
= . Assume moderate shock, so from Table 17.2 1.25aK = . 

Assuming 1 strand, 1stK =  
 

                               ( ) 1.25(90) 112.5 horsepower
1dhp = =  

 
For this horsepower and a drive sprocket speed (small sprocket) of 1000 rpm, Figure 17.14 suggests a no. 
120 chain, which , from Table 17.6, has a pitch of 1.5"p =  and a minimum center distance of min 33"C = . 
From step 3 of section 17.10, the optimum range of center distances is about 30 – 50 chain pitches, or 45 – 
75 inches for 1.5"p = . A nominal center distance of 30 pitches will be adopted to satisfy the “compact” 
specification, so 
 
                                      min 30 pitches 45"C = =  
 
From Figure 17.13, we select 12 teethsN = , so from (17-25) 
 

                                            1000 (12) 12 teeth
1000

s
L s

L

n
N N

n
= = =  

 
From (17-21) 
 
        ( ) ( ) ( )3.0 0.07 3.0 0.07(1.5)1.08 0.9 1.08 0.9

lim 0.004(12) (1000) (1.5) 94.9 horsepowerp
lp s slphp K N n p − −= = =  

 
Compared to the design horsepower of ( ) 112.5 horsepowerdhp = , this is a bit low. Increasing sN  may 

increase the horsepower so we will set ( ) ( )lim 112.5 horsepowerlp dhp hp= =  and solve for sN  

 
            ( )3.0 0.07(1.5)1.08 0.9 1.08112.5 0.004( ) (1000) (1.5)      ( ) 17.35    14.04s s sN N N−= ⇒ = ⇒ =  
 
This close enough, so we set 14 teethsN = . Now, from (17-22), for a no. 120 chain 
 

                      ( )
1.5 0.8 1.5 0.8

lim 1.5 1.5
1000 1000(17)(14) (1.5) 38.95 horsepower

(1000)
rb s

rb
s

K N p
hp

n
= = =  
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17-7 (continued) 
 
Compared to the design horsepower (112.5 horsepower), the roller bearing limiting fatigue power is too 
low, so multiple strand chain may be required. Assuming 4 strands, we revise the design horsepower. From 
Table 17.7, 3.3stK = , so 
 

                 ( ) 1.25(90) 34.1 horsepower
3.3dhp = =  

 
With 4 strands of no. 120 chain, both ( )lim 112.1 horsepowerlphp = (calculated using 14 teethsN = ) and 

( )lim 38.95 horsepowerrbhp = are acceptable. From (17-23) 

 

               
( ) ( ) ( )

( ) ( )

lim 4.413 2.073 0.0274 ln 1.59 log 1.873
110.84 1000

1000(1.5)(14) 1000           4.413 2.073(1.5) 0.0274(14) ln 1.59log(1.5) 1.873
110.84 1000

s s l
Lg

n pN n
hp p N p⎛ ⎞ ⎛ ⎞= − − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞= − − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
                   ( )lim 174.3 horsepowerghp ≈  
 
This is acceptable. To summarize 
 
                                            Use 4-strand no. 120 precision roller chain 
 
(b) The pitch diameter of the sprocket is 
 

                              14(1.5) 6.68"s
p

N p
d

π π
= = =  

 
(c) The chain velocity is  
 

                       (6.68)(1000) 1748.8 ft/min
12 12

p s
chain

d n
V

π π
= = =  

 
Based on recommendation of 17.7, use Type III lubrication 
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17-8.  It is desired to use a roller chain drive for the spindle of a new rotating shaft fatigue testing machine. 
The drive motor operates at 1750 rpm and the fatigue machine spindle must operate at 2170 rpm. It is 
estimated that the chain must transmit 11.5 hp. Spindle-speed variation of no more than 1 percent can be 
tolerated. 
 

a. Select the most appropriate roller chain. 
b. What minimum sprocket size should be used? 
c. Specify appropriate lubrication. 
d. Would it be feasible to use no. 41 lightweight chain for this application? 

 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications:, 2170 rpmsn = , 1750 rpmLn = , ( ) 11.5 horsepowernomhp = , ( )max 1%n∆ =  
 
(a)  From Table 17.2, for an electric motor drive (assuming uniform load) and 1 strand, 1a stK K= =  
 

                               ( )
( )

11.5 horsepowera nom
d

st

K hp
hp

K
= =  

 
From Figure 17.13, using ( )max 1%n∆ = , 21 teethsN = . Therefore 
 

                            2170 (21) 26 teeth
1750

s
L s

L

n
N N

n
= = =  

 
Using (17-21) 
 

                  ( ) ( ) ( ) ( )lim3.0 0.07 3.0 0.071.08 0.9
lim 1.08 0.9      lpp p

lp s slp
lp s s

hp
hp K N n p p

K N n
− −= ⇒ =  

                ( ) ( )lim3.0 0.07 3
1.08 0.9 1.08 0.9

11.5 0.107      0.107 0.475
0.004(21) (2170)

lpp

lp s s

hp
p p

K N n
− = = = ⇒ ≈ =  

 
Using Table 17.6, we select 0.5"p =  as the closest standard chain. Tentatively use a no. 40 chain. Next 
 
           ( ) ( ) ( )3.0 0.07 3.0 0.07(0.5)1.08 0.9 1.08 0.9

lim 0.004(21) (2170) (0.5) 13.8 horsepowerp
lp s slphp K N n p − −= = =  

 
This is acceptable when compared to ( ) 11.5 horsepowerdhp = . Next  
 

                   ( )
1.5 0.8 1.5 0.8

lim 1.5 1.5
1000 1000(17)(21) (0.5) 9.29 horsepower

(2170)
rb s

rb
s

K N p
hp

n
= = =  

 
Comparing this with ( ) 11.5 horsepowerdhp = , it is not quite close enough, so we try increasing sN  to 

25 teethsN = , which results in  
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Problem 17-8 (continued) 
 

                    ( )
1.5 0.8 1.5 0.8

lim 1.5 1.5
1000 1000(17)(25) (0.5) 12.1 horsepower

(2170)
rb s

rb
s

K N p
hp

n
= = =  

 
This is close enough, so LN becomes 
 
                                    2170 (25) 31 teeth

1750
s

L s
L

n
N N

n
= = =  

 
Next 
 

        
( ) ( ) ( )

( ) ( )

lim 4.413 2.073 0.0274 ln 1.59 log 1.873
110.84 1000

2170(0.5)(25) 1750           4.413 2.073(0.5) 0.0274(31) ln 1.59 log(0.5) 1.873
110.84 1000

s s l
Lg

n pN n
hp p N p⎛ ⎞ ⎛ ⎞= − − − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞= − − − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
           ( )lim 284 horsepowerghp ≈  

 
This is acceptable. Summarizing 
 
                                 Use 1-strand no. 40 precision roller chain with 25 teethsN =  and 31 teethLN =  
 
(b) The pitch diameter of the sprocket is 
 

                              25(0.5) 3.98"s
p

N p
d

π π
= = =  

 
(c) The chain velocity is  
 

                       (3.98)(1000) 1042 ft/min
12 12

p s
chain

d n
V

π π
= = =  

 
Based on recommendation of 17.7, use Type III lubrication 
 
(d)   Assuming an no. 41 chain 
 

               ( )
1.5 0.8 1.5 0.8

lim 1.5 1.5
1000 1000(3.4)(25) (0.5) 2.4 horsepower

(2170)
rb s

rb
s

K N p
hp

n
= = =  

 
A no. 41 chain is not feasible 
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17-9.  A five-strand no. 40 precision roller chain is being proposed to transmit power from a 21-tooth 
driving sprocket that rotates at 1200 rpm. The driven sprocket is to rotate at one-quarter the speed of the 
driving sprocket. Do the following: 
 

a. Determine the limiting horsepower that can be transmitted by this drive, and state the governing 
failure mode. 
b. Find the tension in the chain. 
c. What chain length should be used if a center distance of approximately 20 inches is desired? 
d. Does the 20-inch center distance lie within the recommended range for this application? 
e. What type of lubrication should be used for this application? 

 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications:, 5-strand no. 40 chain, 1200 rpmsn = , / 4 300 rpmL sn n= = , 21 teethsN = ,  
 

     (a)                       1200 (21) 84 teeth
300

s
L s

L

n
N N

n
= = =  

 
                 ( ) ( ) ( )3.0 0.071.08 0.9

lim lim
5

=p
st st lp s slp lp strand

K hp K K N n p hp−

−
⎡ ⎤ ⎡ ⎤= ⎣ ⎦⎣ ⎦  

 
From Tables 17.6 and 17.7 0.5"p =  and 3.9stK = , so  
 
                    ( ) ( )3.0 0.07(0.5)1.08 0.9

lim
5

3.9 0.004(21) (1200) (0.5) 31.6 horsepowerlp strand
hp −

−
⎡ ⎤⎡ ⎤ = =⎣ ⎦ ⎣ ⎦  

 
 

( )
1.5 0.8 1.5 0.8

lim 1.5 1.55

1000 1000(17)(21) (0.5)3.9 88.2 horsepower
(1200)

rb s
strb strand

s

K N p
hp K

n−

⎡ ⎤ ⎡ ⎤
⎡ ⎤ = = ≈⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎣ ⎦⎣ ⎦

 

 
 

( ) ( ) ( )

( ) ( )

lim
5

4.413 2.073 0.0274 ln 1.59 log 1.873
110.84 1000

1200(0.5)(21) 300           3.9 4.413 2.073(0.5) 0.0274(84) ln 1.59 log(0.5) 1.873
110.84 1000

s s l
st Lg strand

n pN n
hp K p N p

−

⎡ ⎤⎛ ⎞ ⎛ ⎞⎡ ⎤ = − − − +⎢ ⎥⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎧ ⎫⎛ ⎞ ⎛ ⎞= − − − +⎨⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎩

⎬
⎭

 

 
                    ( )lim

5
467 horsepowerg strand

hp
−

⎡ ⎤ ≈⎣ ⎦  

 
 
The limiting horsepower is therefore ( )lim

5
31.6 horsepowerlp strand

hp
−

⎡ ⎤ =⎣ ⎦  and he failure mode is link 

plate fatigue. 
 
 
(b)  The slack side tension in a chain is equal to zero, so 0sT = . For the tight side 
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Problem 17-9 (continued) 
                         

                           
( )lim33,000 lp

t

hp
T

V

⎡ ⎤
⎣ ⎦=  

 

Where 
( )22 / 2

12
sd n

V
π

=  and / 21(0.5) / 3.34"s sd N p π π= = = , so  

 

                               
( )2 3.34 / 2 (1200)

1049 ft/min
12

V
π

= =  

 
and 
 

                             33,000(31.6) 994 lb (5 strands)
1049tT = =  

 
The tension per strand is 
 

                               ( ) 994 =198.8 199 lb/strand
5t strandT = ≈  

 
 

(c)    
( ) ( )

( )

2 2

2 2

84 2184 21 202 2 135 pitches
2 2 0.54 4 20 / 0.5

L sL s N NN N
L C

Cπ π

− −+ +⎛ ⎞ ⎛ ⎞= + + = + + =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

 
In order to avoid half-links we use 136 pitchesL =  
 
(d)  The optimum center distance is  30 50 pitchesC≤ ≤ . For this application 20 / 0.5 40 pitchesC = = , 
which is in the recommended range. 
 
 
(e)   =1049 ft/minV  , so based on the recommendations of 17.7, we use a Type II lubrication 
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17-10. It is desired to market a small air-driven hoist in which the load is supported on a single line of wire 
rope and the rated design load of 3/8 ton (750 lb). The wire rope is to be wrapped on a drum of 7.0 inches 
diameter. The hoist should be able to lift and lower the full-rated load 16 times a day, 365 days a year, for 
20 years before failure of the rope occurs. 
 

a. If a special flexible 6 37× improved plow steel (IPS) rope is to be used, what rope size should be 
specified? 
b. With the rope size determined in (a), it is desired to estimate the “additional stretch” that would 
occur in the rope if a 750-lb load were being lowered at the rate of 2 ft/sec, and when the load reaches 
a point 10 feet below the 7.0-inch drum, a brake is suddenly applied. Make such an estimate. 

 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications: 7.0"sd = , 750 lbW =  , 16 lifts/day, 365 days/yr, for 20 years, 6 37×  rope  
 
(a) Based on judgment, assume 5staticn = and 1.25fatiguen = . For a 6 37×  wire rope, From Table 17.9: 

20.427r rA d=   , 200 ksiuS =  
 

                                       2 2

750 1765
0.427t

r r r

T
A d d

σ = = =  

 
/ 200,000 / 5 40,000 psid u staticS nσ = = =  

 

                       2

1765 176540,000     0.21"
40,000r

r

d
d

= ⇔ = =  

 
From Table 17.9, 18 18(0.21) 3.78"s rd d= = = . From (17-31) 
 

                             
( )( )60.21/ 22 9.9 10

25,000 psi
3.78

w
b r

s

d
E

d
σ

×
= = =  

 
This appears to be a reasonable bending stress. The required design life is 
 

                         ( ) 5lifts days16 365 20 years 1.168 10  cycles
day yaerdN

⎛ ⎞⎛ ⎞
= = ×⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
Using Figure 17.17, we approximate ( ) 0.0037N fR ≈ . Therefore 

 
                                    ( ) ( ) ( ) 0.0037(200,000) 740 psi

f
N uN f

p R S= = =  

                                     ( )
( ) 740 592 psi

1.25
fN

d fatigue
fatigue

p
p

n
= = =  

 
From (17-33) 
 

                                  ( ) ( )
2 2(750) 0.362"

7(592)r fatigue
s d fatigue

Td
d p

= = =  
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Problem 17-10 (continued) 
 
From Table 17.10, for a 6 37× rope on a cast carbon-steel sheave (BHN 10), the allowable bearing pressure 
based on wear is ( ) 1180 psid wear

p = . Inserting this pressure into (17-33) 
 

                ( ) ( )
2 2(750) 0.182"

7(1180)r wear
s d wear

Td
d p

= = =  

 
Comparing all of these diameters, ( ) 0.362"r fatigue

d =  is the governing diameter.  Selecting the next larger 

rope from Table 17.9 
 
                                  3 /8 0.375"rd = =  
 
Summarizing: (1) select a 3/8-inch diameter 6 37× IPS fiber core (FC) rope 
                        (2) Choose a cast carbon-steel sheave material (BHN =-160) with a 7” diameter 
 
 
(b) ( ) ( )translating rope stretched ropeKE PE= ,  

       ( )
2 2

21 1 750(2) 46.6 ft-lb 559.2"
2 2 2(32.2)tr ld

WvKE mv
g−

= = = = =  

       ( ) ( )
2( )

2 2 2
ax ax

stretched rope spring

k kFPE PE
δ δ δδ

= = = = , where /ax o ok A E L=  

        ( )
( )2 6 22

2
0.427(0.375) 9.9 10

2477
2 2(10 12)
o

spring
o

A EPE
L

δδ
δ

⎡ ⎤ ×⎣ ⎦= = ≈
×

 

             2559.2 2477       559.2 / 2477 0.475"δ δ= ⇒ = =  
 
 There is an additional stretch of 0.475"δ =  
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17-11.  An electric hoist, in which the load is supported on two lines, is fitted with a ¼-inch 6 19×  
improved plow steel (IPS) wire rope that wraps on an 8-inch-diameter drum and carries an 8-inch sheave 
with an attached hook for load lifting. The hoist is rated at 1500-lb capacity. 
 

a. If full-rated load were lifted each time, about how many “lifts” would you predict could be made 
with the hoist? Use a fatigue safety factor of 1.25. Note that there are 2 “bends” of the rope for each lift 
of the load. 
b.  If the hoist were used in such a way that one-half the time it is lifting full-rated load but the rest of 
the time it lifts only one-third of rated load, what hypothesis or theory would you utilize for estimating 
the number of lifts that could safely be made under these circumstances? 
c.  Numerically estimate the number of lifts that could be safely made under the mixed loading 
described in (b). Again, use a fatigue safety factor fo 1.25 in your estimating procedure. 

 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications: 8.0"sd = , 1500 lbW =  , ¼” 6 19×  rope ( 0.25"rd = ) , 1.25fn = , 2 lines, 200 ksiuS =  
 
 
(a)   / 2 1500 / 2 750 lbT W= = =  
 

            2 2(750) 750 psi
0.25(8)r s

Tp
d d

= = =  

            ( ) 750 0.00375
200,000N f

u

pR
S

= = =    and  ( ) ( ) 1.25(0.00375) 0.0046875 0.0047N f Nd fR n R= = = ≈  

 
From Figure 17.17, the number of bend cycles, bendN , is 
 

                                    92,000 46,000 lifts
2bendN = =  

 
(b) The Palmgryn-Miner hypothesis would be appropriate. 
 

(c) 1i

i

n
N

=∑ . With 750 lb lifts half the time and 250 lb lifts the rest of the time, 250 750 2
liftsN

n n= = . 

Therefore 
 

                                

250 750

2
1 1liftsN

N N

=
+

, where 750 46,000 N =  

 

( ) 250

2(250) 0.00125 0.0013
200,000(0.25)(8)N F

R
=

= = ≈  and ( ) 250
1.25(0.0013) 0.0016N d

R
−

= = . From Figure 

17.17, 250 600,000 liftsbendN − = , and with 2 bends per lift, 250 300,000 N =  
 
 

               2 79,769
1 1

300,000 46,000

liftsN = =
+

                           79,800liftsN ≈  
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17-12. It is desired to select a wire rope for use in an automotive tow truck application. A single line is to 
be used and , considering dynamic loading involved in pulling cars back onto the roadway, the typical load 
on the rope is estimated to be 7000 lb. It is estimated that approximately 20 cars per day will be pulled back 
onto the highway (i.e., the rope experiences 20 “bends” per day) under full load. If the truck is used 360 
days per year, and a design life of 7 years is desired for the rope: 
 

a. What size IPS wire rope would you specify if the rope is to be of 6 19× regular lay construction? 
b. What minimum sheave diameter would you recommend? 

 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications: 7000 lbW =  , 6 19×  IPS rope  , 20.404r rA d= , 200 ksiuS = , 20 “bends”/day, 365 days/yr, 
for 7 yrs 
 

(a) Assume 5staticn = and 1.5fatiguen = , giving 2 2

7000 17,327
0.404t

r r r

T
A d d

σ = = =  

 
/ 200,000 / 5 40,000 psid u staticS nσ = = =  

 

                       ( )2

17,327 17,32740,000     0.658 0.66"
40,000r r static

r

d d
d

= ⇔ = = = ≈  

 

                     ( )bends days20 365 7 years 50,960 bends
day yaerdN

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

 
Using Figure 17.17, with 50,960 bends, we approximate ( ) 0.006N f

R ≈ . Therefore 

        ( ) ( ) ( ) 0.006(200,000) 1200 psi
f

N uN f
p R S= = = , so   ( )

( ) 1200 800 psi
1.5

fN
d fatigue

fatigue

p
p

n
= = =  

 
From (17-33) 

                                  ( ) ( )
2 2(7000) 17.5

800r fatigue
s d s sfatigue

Td
d p d d

= = =  

 

From Table 17.9, for a 6 19×  rope, 3 34 rd d= , so ( )2 17.5 0.5147
34r fatigued = = , or ( ) 0.717 0.72"r fatigued = ≈  

From Table 17.10, the allowable pressure for a 6 19×  rope is max 1000 psip = . From (17-33) 
 

           ( ) ( ) ( ) ( )22 2 2(7000) 0.412"
34 34(1000)r rwear wear

s d r dwear wear

T Td d
d p d p

= = ⇒ = =  or   ( ) 0.642"r wear
d =  

 
Failure is controlled by ( ) 0.717 0.72"r fatigued = ≈ . The next largest size (from Table 17.9) is 

3 / 4 0.75"rd = =  
 
(b) 34 25.5"s rd d= =  
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17-13.  A deep-mine hoist utilizes a single line of 2-inch 6 19× extra improved plow steel (EIPS) wire rope 
wrapped on a cast carbon-steel drum that has a diameter of 6 feet. The rope is used to vertically lift loads of 
ore weighing about 4 tons from a shaft that is 500 feet deep. The maximum hoisting speed is 1200 ft/min 
and the maximum acceleration is 22 ft/s . 
 

a. Estimate the maximum direct stress in the “straight” portion of the 2-inch single-line wire rope. 
b. Estimate the maximum bending stress in the “outer” wires of the 2-inch wire rope as it wraps onto 
the 6-foot diameter drum. 
c. Estimate the maximum unit radial pressure (compressive stress) between the rope and the sheave. 
Hint: Model the 2-inch single-line rope wrapped around the 6-foot sheave as a “band brake,” utilizing 
equation (16-76) with 2α π= and 0.3µ = , to find maxp . 
d. Estimate the fatigue life of the 2-inch wire rope as used in this application. 

 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications: 8000 lbpW =  , 21.60  lb/ftr rw d= , 500 ftrL = , 2” 6 19×  EIPS single line rope , 

6 ft 72"sd = = , 20.404r rA d= , 220 ksiuS = , 1200 ft/minv = , 2
max 2 ft/sa =  

 
 
(a)   2 21.60 1.6(2) (500) 3200 lbr r r r rW w L d L= = = =  
           
          Using aF W ma= = , we get the weight (force) due to acceleration 

                               
( )

max
8000 3200 (2) 695.7 696 lb

32.2
p r

a
W W

W ma a
g

+ +
= = = = ≈  

 
                                  8000 3200 696 11,896p r aT W W W= + + = + + =  

                                  2 2
11,896 11,896 7361 psi

0.404 0.404(2)t
r r

T
A d

σ = = = =                               7361 psitσ =  

 
(b)  From Table 17.9 /13w rd d= and 610.8 10rE = ×  
 

                                  ( )6(2 /13) 10.8 10 23,077 psi
72

w
b r

s

d
E

d
σ = = × =                       23,077 psibσ =  

 
 
(c)  From (16.76) 
 

                              
0.3(2 )

max
max

( / 2) 2 2(11,896)    1088 psi
2(72)

r s

r s

d d p Te eT p
d de

µα π

µα= ⇒ = = =  

 
                                                                                                                                 max 1088 psip =  
 
(d)  / 1088 / 220,000 0.0049N uR p S= = = . From Figure 17.17, for a 6 19×  rope, we estimat 
 
                                               83,000 liftsfN =  
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17-14. It is necessary to mount a 7.5 horsepower 3450-rpm electric motor at right angles to a centrifugal 
processor as shown in Figure P17.14 (also see arrangement 2A B− of Figure 16.6). It had been planned to 
use a 1 : 1 bevel gearset to connect the motor to the processor, but a young engineer suggested that a 
flexible shaft connection might be quieter and less expensive. Determine whether a flexible shaft is a viable 
alternative, and, if so, specify a flexible shaft that should work. 
 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications: 7.5 horsepowerophp =  , 3450 rpmopn = , 12"bR =  (from Figure P17.14) , arrangement 

2A B−  of Figure 17.6 
 
 
Since the operation is unidirectional, use Table 17.11 and equation (17-35) 
 

                              63,025 63,025(7.5) 137 in-lb
3450

hpT
n

= = =  

 
From Table 17.11, with 12"bR =  and 137T =  
 
                                                 min 0.62"d = shaft core diameter 
 
Operating speed is alright. 
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17-15. To avoid other equipment on the same frame, the centerline of a 2-horsepower 1725 rpm electric 
motor must be offset from the parallel centerline of the industrial mixer that it must drive. 
 

a. For the offset shown in Figure P17.15, select a suitable flexible shaft  (also see arrangement 
1A B− of Figure 16.6). 

b. To improve mixing efficiency, it is being proposed to replace the standard 2-horsepower motor 
with a “reversible” motor having the same specifications. With the “reversible” motor, would it be 
necessary to replace the flexible shaft chosen in (a)? If so, specify the size of the replacement shaft. 
c. Comparing results of (a) and (b), can you think of any potential operational problems associated 
with the flexible shaft when operating in the “reverse” direction? 

 
 
------------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Specifications: 2 horsepowerophp =  , 1725 rpmopn = ,  arrangement 1A B−  of Figure 17.6, 4"x = and 

12"y =  from Figure P17.15 
 
 

(a) From (17-36)  
2 2 2 2(4) (12) 10"
4 4(4)b

x yR
x
+ +

= = = .  

 

                                     63,025 63,025(2) 73 in-lb
1725

hpT
n

= = =  

 
From Table 17.11 with 10"bR =  and 73 in-lbT =  
 
                                            min 0.495"d = shaft core diameter 
 
The 73 in-lb torque is close to the limiting torque of 70 in-lb associated with the min 0.495"d =  core 
diameter. Since (per footnote 1) there is a built in safety factor of 4, we would probably accept the 0.495” 
core diameter. 
 
(b) For reversing loads (bidirectional operation), we use Table17.12 and note that for a core diameter of 
0.495” and a 10” bend radius, the maximum allowable torque is 117 in-lballowT = , so the core diameter is 
acceptable. 
 
(c)  One reason might be Torsional stiffness; for LOL operation it is 0.081 deg/ft/in-lb  vs  
0.06 deg/ft/in-lb for (a). This might produce a torsional vibration problem. 



 724

Chapter 18 
 
 
 
18-1.  A deep-draw press is estimated to have the load torque versus angular-displacement characteristics 
shown in Figure P18.2. The machine is to be driven by a constant-torque electric motor at 3600 rpm. The 
total change in angular velocity from its maximum value to its minimum value must be controlled to within 

3± percent of the average angular velocity of the drive. 
 

a. Compute and sketch the motor input torque versus angular displacement curve. 
b. Sketch a curve of angular velocity (qualitative) versus angular displacement (qualitative). 
c. On the torque versus angular displacement curve, carefully locate angular displacement values 
corresponding to maximum and minimum angular velocity.  
d. Calculate maxU . 
e. Calculate the required mass moment of inertia for a flywheel that would properly control the speed 
fluctuation to within 3± percent of the average angular velocity, as specified. 

 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 (a)    3600 rpmmotn =  , max 3% of avgω ω∆ = ± ,   2 / 60 377 rad/secave motnω π= =  
 
From (18-4), with 0dW = ,  

1 1l dcycle cycle
T d T dθ θ=∫ ∫  

 

                  [ ]1
400 1200

2
                1400  ft-lb

l cycleT d πθ π

π

= +

=
 

                   [ ]1 2d dcycleT d Tθ π=  

                   
2 1400  
       700 ft-lb

d

d

T
T

π π=
=

 

 
The motor input torque versus angular 
displacement is superposed upon the load-
torque versus angular displacement curve 
as illustrated to the right. 
 
 
 
(b) Sketching ω (quantitative) versus   
θ (quantitative) produces the  
representation shown. 
 
        
            
(c)  

max
 radωθ π=    and    

       
min

2  radωθ π=  
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Problem 8-1 (continued) 
 
(d)  Solving (16-6) graphically 
                                                     

              
( )min

max
max

         area of shaded region

l dU T T dω

ω

θ

θ
θ= −

=

∫  

 
             ( )max 1200 700 500 1570 ft-lb 18,850 in-lbU π π= − = ≈ ≈  
 
(e) From (18-12)  2

' max /req d f aveJ U C ω= .  Since max 3% of avgω ω∆ = ±  
 

                 max 1.03 1.03(377) 388 rad/secavgω ω= = =  and  min 0.97 0.97(377) 366 rad/secavgω ω= = =  
 

From (18-11),  388 366 0.058
377fC −

= =  

                            

                     
( )

2max
' 2 2

18,850 2.287 2.3 in-lb-sec
(0.058) 377

req d
f ave

U
J

C ω
= = = ≈  
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18-2. A hammermill has the load torque versus angular displacement curve shown in Figure P18.2, and is 
to be driven by a constant-torque electric motor at 3450 rpm. A flywheel is to be used to provide proper 
control of the speed fluctuation. 
 

a. Compute and plot the motor input torque versus angular displacement. 
b. Sketch angular velocity (qualitative) of the shaft-flywheel system as a function of angular 
displacement (qualitative). Specifically note locations of maximum and minimum angular velocity on 
the torque versus angular displacement curve. 
c. Calculate maxU . 
d. Calculate the mass moment of inertia required for the flywheel to properly control the speed 
fluctuation. 

 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 (a)    3450 rpmmotn =  , so    2 / 60 361.3 rad/secave motnω π= = . 
 
From (18-4), with 0dW = ,  

1 1l dcycle cycle
T d T dθ θ=∫ ∫                                                          

Using Figure P18.2 

                 [ ] ( )1
1 38 18 8 4 12.5  kN-m

2 2 2 2l cycleT d π π πθ π
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − + =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 

                 [ ]1 2d dcycleT d Tθ π=  

                                                                                       

                          
2 12.5  
       6.25 kN-m

d

d

T
T

π π=
=

 

                                                                                                       
 

 
 
 
 
 
 
 

 
 

                                     
 
(b) Sketching ω (quantitative) versus    
       θ (quantitative) 
 
                     

max
/ 4 radωθ π=    and    

                    
minωθ  extends from 3 / 4 π to 3 / 2 π  
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Problem 18-2 (continued) 
 
(c) Solving (16-6) graphically 

 

                  
( )min

max
max

         area of shaded region

l dU T T dω

ω

θ

θ
θ= −

=

∫                                               

                 ( ) ( )max
1 18 8 8 6.25 10.6 kN-m
2 2 2

U π π⎡ ⎤= − + − =⎢ ⎥⎣ ⎦
 

 
 
  (d)  From (18-12)  2

' max /req d f aveJ U C ω= . Selecting a value of  0.2fC =  from Table 19.1 gives 
 

                           
( )

2max
' 2 2

10600 0.406 N-m-sec
(0.2) 361.3

req d
f ave

U
J

C ω
= = =  
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18-3  A natural gas engine is to be used to drive an irrigation pump that must be operated within 2± percent 
of its nominal operating speed of 1000 rpm. The engine torque angular displacement curve is the sawtooth 

engineT curve shown in Figure P8.3. The pump torque versus angular displacement curve is the stepped 

pumpT curve shown. It is desired to use a solid-steel flywheel of 10-inch radius to obtain desired speed 
control. 
 

a. Sketch angular velocity (qualitative) of the flywheel system as a function of angular displacement 
(qualitative), and identify points od maximum and minimum angular velocity on the torque versus 
angular displacement curve.  
b. Calculate maxU . 
c. Calculate the mass moment of inertia of the flywheel that would be required to properly control 
the speed.  
d. Of what thickness should the flywheel be made? 
 

--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 (a)    1000 rpmnomn =  , max 2% of avgω ω∆ = ± ,  2 / 60 104.7 rad/secave nomnω π= = , 10 "or =  
Figure P18.3 is reproduced below along with a sketchs of  ω (quantitative) versus  θ (quantitative). We 
note that 

max
/ 2 radωθ π=   and  

min
3 / 2 radωθ π= . 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) Solving (16-6) graphically, ( )min

max
max area of shaded regionl dU T T dω

ω

θ

θ
θ= − =∫  

 

                                      ( )max
12 1200 600 300  ft-lb
2 2

U π π⎡ ⎤= − ≈⎢ ⎥⎣ ⎦
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Problem 8-3 (continued) 
 

(c)  From (18-12)  2
' max /req d f aveJ U C ω= .  Since max 3% of avgω ω∆ = ±  

 
      max 1.02 1.02(104.7) 106.8 rad/secavgω ω= = =  and  min 0.98 0.98(104.7) 102.6 rad/secavgω ω= = =  
 

         From (18-11),  106.8 102.6 0.04
104.7fC −

= =  

                            

                     
( )

2max
' 2 2

300 (12) 25.8 in-lb-sec
(0.04) 104.7

req d
f ave

U
J

C
π

ω
= = ≈  

 
 

(d)  From Appendix Table A.2, case 2 
 

                       
2 4

2 2
o oMr w tr

J
g

π
= =  

 

                                         '
' 4 4

2 2(386)(25.8) 2.24"
0.283 (10)

req d
req d

o

gJ
t

w rπ π
= = =  
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18-4.  A spoke-and-rim flywheel of the type shown in Figure 18.4(a) is made of steel, and each of the six 
spokes may be regarded as very stiff members. The mean diameter of the flywheel rim is 970 mm. The rim 
cross section is rectangular, 100 mm in the radial dimension and 50 mm in the axial dimension. The 
flywheel rotates counterclockwise at a speed of 2800 rpm. 
 

a. Calculate your best estimate of the maximum bending stress generated in the rim. 
b.    At what critical sections in the rim would this m 
 

--------------------------------------------------------------------------------------------------------------------------- 
Solution 

 
( ) 970 mmm rimd =       2800 rpmn = ,  rectangular cross section 100 mm radial 50 mm axial×  
 
 
(a)   From (18-26) 
 

                         ( )
2 2

max 35, 200(12)
r m r

b
r

wA r n L c
I

σ =  

                 
The 35,200  in the denominator comes from (18-18), in which 2 232.2 ft/s 386.4 in/sg = =   . In our case, 

we use  29.81 m/sg = , which results in                                    
 

                       ( )
2 2

max 894.6(12)
r m r

b
r

wA r n L c
I

σ =  

 
For steel 376.81 kN/mw = . The remaining terms in the equation above are 0.970 / 2 0.485 mmr = = , 

3 2(0.10)(0.05) 5 10  mrA −= = × , 2800 rpmn = , 2 / 2 (0.485) / 6 0.509 mm sL r nπ π= = = , 

0.1/ 2 0.05 mrc = = , and 3 6 40.05(0.10) /12 4.167 10  mrI −= = × . Therefore 
 

              ( )
( ) ( )( )( ) ( ) ( )

( )
2 23 3

max 6

76.81 10 5 10 0.485 2800 0.509 0.05
423 MPa

894.6(12) 4.167 10
bσ

−

−

× ×
= =

×
 

 
(b) Based on the approximate rim stresses shown in Figure 18.6, this maximum stress occurs at the outer 
fibers of the rim at the “fixed supports”, i.e. adjacent tot the spoke centerline. 
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18-5. A spoke-and-rim flywheel of the type shown in Figure 18.4(a) has a mean rim diameter of 5 ft and 
rotates at 300 rpm. The rim cross section is 8 inches by 8 inches. During the duty cycle, the flywheel 
delivers energy at a constant torque of 9000 ft-lb over ¼  revolution, during which time the flywheel speed 
drops 10 percent. There are six spokes of elliptical cross section, with major axis twice the minor axis. The 
major axes of the elliptical spokes are parallel to the circumferential direction. The cast-iron material 
weighs 3480 lb/ft  and has a design-allowable stress of 3000 psi. 
 

a. Determine the required dimensions of the spoke cross section. 
b.  Estimate the hoop stress in the rim. 
c. Estimate the bending stress in the rim. 
d. Dimension the hub if a 1020 steel shaft is used and is sized only on the basis of transmitted torque. 

 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From specifications;  
                             Flywheel type: spoke-and-rim, material: cast iron, 
                            3 3480 lb/ft 0.28 lb/inCIw = = ,   3000 psiallowσ = , 5 ft 60 inrimd = = , 300 rpmn = ,  
                              rim cross section: square 
                              rim dimensions: radial = 8”, axial = 8” 

duty cycle: flywheel delivers energy at a constant torque of 9000 ft-lb over ¼ revolution 
speed change: speed drops 10% over the ¼ revolution when energy is supplied by the 

flywheel 
spoke cross-section: elliptical with major axis parallel to circumference. Major axis is 

twice (2a) the minor axis (2b) 
                             6sn =  
 
(a) From (18-29) 

                               

2 2 2 2sin sin

17,600 17,600( )

r
m m r

s s s
s allow s

allow

Awr n wr n A
A n n

A

π π

σ σ
σ

⎛ ⎞
⎜ ⎟
⎝ ⎠= = ⇒ =  

                                 

                               
2 2 2

2
0.28(60 / 2) (300) (8) sin

6 13.74 in
17,600(3000)sA

π

= =  

 
In addition, ellipseA abπ= . Since 2 2(2 ) / 2a b b a= ⇒ =  
 

                   
13.74 ( / 2) 2.96"

                                                   1.48"
ellipseA a a a

b

π= = ⇒ ≈

≈
 

 
(b) From (18-20) 
 

                             
2 2 2 20.28(60 / 2) (300) 644 psi

35, 200 35, 200
m

h
wr n

σ = = =  
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Problem 18-5 (continued) 
 
(c) From (18-26) 
 

                       ( )
2 2

max 35,200(12)( )
r m r

b
r

wA r n L C
I

σ =  

 
 Using Figure 18.6: 28(8) 64 inrA = = , 60 / 2 30"mr = = , 300 rpmn = ,      
                   

                            
2 2 (30) 31.4 in

6
m

s

r
L

n
π π

= = = , 8 / 2 4"rC = = , 
3 3

48(8) 341.3 in
12 12r
bdI = = = .  

Therefore 
 

                     ( )
2 2

max
0.28(64)(30)(300) (31.4) (4) 1324 psi

35, 200(12)(341.3)bσ = =  

 
 
(d) Following the rule of thumb of 18.6, paragraph 4. 2.25 2.25hub shaft sd d d= =  and  
 
                      1.25 1.25hub shaft sL d d= = . For a solid steel shaft of diameter sd  
 

                          3max 4 3
max

( / 2) ( / 2) 16 16
/ 32

s s
s

s s

T d T d T Td
J d d

τ
πτπ π

= = = ⇒ =  

 
For the material used 30 ksiypS = . Based on a judgment call, we set 2dn = . Using distortional energy we 

use 0.577 17.31 ksiyp ypSτ = =  and set max / 17.31/ 2 8.66 ksiyp dnτ τ= = ≈ . Therefore 
 

                                         3
16(9000 12) 3.989 4"

(8666)sd
π

×
= = ≈  

 
This results in 
 
                    2.25 2.5(4) 9"hub sd d= = =  
                    1.25 1.25(4) 5"hub sL d= = =  
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18-6.  A disk flywheel has a 600-mm outside diameter, 75-mm axial thickness, and is mounted on a 60-mm 
diameter shaft. The flywheel is made of ultra-high-strength 4340 steel (see Tables 3.3, 3.4, and 3.5). The 
flywheel rotates at a speed of 10,000 rpm in a high-temperature chamber operating at a constant 
temperature of o425 C . Calculate the existing safety factor for this flywheel, based on yielding as the 
governing failure mode. 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
From specifications: flywheel type: constant thickness disk,  
                                             material: 4340 steel (ultra-high-strength) 

 failure mode: yielding 
 60 / 2 30 mm 0.030 ma = = = , 600 / 2 300 mm 0.30 mb = = = , 

75 mm 0.075 mt = = , 10,000 rpmn = , o425 CCΘ =  
 
From Table 3.5 we use date for o427 CCΘ = , which specifies 1524 MPauS =  and 1283 MPaypS = . 

Since yielding is the failure mode, ( ) max/ex ypypn S σ= .   

 
 From (18.54), (18.55), and (18.56), we know t rσ σ> , ( )max  occurs @ t r aσ = , and 0 @ r r aσ = = . 

Therefore  ( )maxtσ is uniaxial at the critical point r a=  . From Table 3.4 376.81 kN/mw = and form Table 

3.9 0.3ν = . In addition, 2 / 60 2 (10,000) / 60 1047.2 rad/secnω π π= = =   , so from (18-57) we get  
 

                            
( ) ( ) ( )

( ) ( )

2
2 2

max max

2
2 2

3 1
4

(76,810)(1047.2)                       3 0.3 (0.3) 1 0.3 (0.03) 630 MPa
4(9.81)

t
w b a

g
ωσ σ ν ν⎡ ⎤= = + + −⎣ ⎦

⎡ ⎤= + + − ≈⎣ ⎦

 

 

                            ( ) 1283 2.04
630ex ypn = =  
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18-7. A disk-type flywheel, to be used in a punch press application with 0.04fC = , is to be cut from a 
1.50-inch-thick steel plate. The flywheel disk must have a central hole of 1.0-inch radius, and its mass 
moment of inertia must be  250 in-lb-sec . 
 

a. What would be the maximum stress in the disk at 3600 rpm? 
b. Where would this stress occur in the disk? 
c. Would the state of stress at this critical point be multiaxial or uniaxial? Why? 
d. Would low-carbon steel with a yield strength of 40,000 psi be an acceptable material for this 
application? 

 

Hint: 
( )4 4 2

2
o ow t r r

J
g

π ω−
=  

 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From specifications: flywheel type: constant thickness disk,  

0.04fC = , 1.5"t = , 1.0"a = , 3600 rpmn = , 250 in-lb-secJ =  
 
(a) Using the hint  

 

                  
( )4 4

4 4 44
2 2

2
o i

o i o i

w t r r gJ gJJ r r r r
g w t w t

π

π π

−
= ⇒ − = ⇒ = +  

 

                               44
2(386)(50) (1.0) 13.04"
0.283 (1.5)or π

= + =  

 
With 30.283 lb/inw = , 0.3ν = , and 2 / 60 2 (3600) / 60 377 rad/secnω π π= = = , (18-57) gives 
 

                          
( ) ( ) ( )

( ) ( )

2
2 2

max

2
2 2

3 1
4

(0.283)(377)             3 0.3 (13.04) 1 0.3 (1.0) 14.635 ksi
4(386)

t
w b a

g
ωσ ν ν⎡ ⎤= + + −⎣ ⎦

⎡ ⎤= + + − =⎣ ⎦

 

                                                                                                                          ( )max 14.64 ksitσ ≈  
 
(b) From (18.55) , ( )max  occurs @ t r aσ =  
 
(c) Uniaxial because  0 @ r z r aσ σ= = =  

 
(d) For yielding as the governing failure mode 
 

                               40 2.73
14.64ypn = =  

 
                                           This appears to be acceptable 
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18-8.  A steel disk-type flywheel, to be used in a V-belt test stand operating at 3000 rpm, must have a 
coefficient of speed fluctuation of 0.06fC = . The flywheel has been analyzed in a preliminary way and it 
is proposed to use a constant-thickness disk, 75 mm thick, with a central hole of  50 mm radius and an outer 
radius of 250 mm. Further, it is desired to drill one small hole through the disk at a radius of 200 mm, as 
shown in Figure P18.8. 
 

a. At the location of the small hole, neglect stress concentration factors, and determine the magnitude 
of the tangential and radial stresses and identify the stress as uniaxial or multiaxial and explain 
you answer. 

b. At the location of the small hole, take into account the stress concentration factors, and 
approximate the magnitude of the tangential and radial stresses. 

c. Would the state of stress at this location ( 200 mmr = ) be uniaxial or multiaxial? Why? 
d. At the location of the small hole, not neglecting stress concentration, what would be a rough 

approximation of the magnitude of tangential and radial stress components at the edge of the small 
hole? (Hint: See Figure 5.9) 

 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

3000 rpmn = , 0.06fC = , 75 mmt = , 50 mma = , 250 mmb = , 200 mmhole hr r= =  
 
(a) From (18-5) and (18-51) 
 

                       ( ) ( ) 2 2 2
2 2 2

2

3
8r hhole

h

w a ba b r
g r

ν ω
σ

⎡ ⎤ ⎡ ⎤+
= + − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

 

                        ( ) ( ) 2 2 2
2 2 2

2

3 1 3
8 3t hhole

h

w a ba b r
g r

ν ω νσ
ν

⎡ ⎤ ⎡ ⎤+ +⎛ ⎞= + − +⎢ ⎥ ⎢ ⎥⎜ ⎟+⎝ ⎠⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 

 
For steel 376.81 kN/mw = and 0.30ν = . In addition, 2 / 60 2 (3000) / 60 314 res/secnω π π= = =  and 

29.81 m/sg = . Therefore 
 

 ( )
( )( )( )

( )

23 2 2
2 2 2

2

3 0.3 76.81 10 314 (0.05) (0.250)(0.05) (0.250) (0.200)
8 9.81 (0.200)r holeσ

⎡ ⎤+ × ⎡ ⎤⎢ ⎥= + − −⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

 

  ( ) [ ]6318.5 10 0.065 0.0439 6.72 MPar holeσ = × − =  
 

( )
( )( )( )

( )

23 2 2
2 2 2

2

3 0.3 76.81 10 314 1 3(0.3) (0.05) (0.250)(0.05) (0.250) (0.200)
8 9.81 3 0.3 (0.200)t holeσ

⎡ ⎤+ × ⎡ ⎤+⎛ ⎞⎢ ⎥= + + +⎢ ⎥⎜ ⎟⎢ ⎥ +⎝ ⎠⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦
 

( ) [ ]6318.5 10 0.065 0.0269 29.3 MPat holeσ = × + =  
 

                Since there are 2 components of stress, the state of stress is multiaxial. 
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Problem 18-8 (continued) 
 
(b) The stress concentration factor, tK , is determined by noting that since the hole is small, its diameter 
will be 0d → , so / 0d b ≈ , resulting in 3tK ≈ . As a result 
 
                            ( ) ( ) 3(6.72) 20.16 MPar t ractual holeKσ σ= = =  

                            ( ) ( ) 3(29.3) 87.9 MPat t tactual holeKσ σ= = =  
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18-9.  A proposed constant-strength flywheel is to be 1.00 inch in axial thickness at the center of rotation, 
and 0.10 inch thick at its outer radius, which is 15.00 inches. If the material is AM 350 stainless steel, and 
the flywheel is operating in a o400 F ambient air environment, estimate the rotational speed in rpm at 
which yielding should initiate. 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From specifications: flywheel type: constant strength  

 material: AM 350 stainless steel 
environment: o400 F air  

0 1.0"rz = = , 0.10"
oo r rz z == = , 15.0"or =  

 
From Tables 3.4 and 3.5 , 30.282 lb/inw =  and ( )400

144 ksiypS = . From (18-64) 

 

                                 7 2

2 2

max 0

2 2
5.71 10

7 2

 exp
2

0.282 (15.0)         1.0 0.1  exp 10
2(144,000)(386)

        ln(10) 5.71 10

o
r o

w r
z z z e

g

e e ω

ω
σ

ω

ω

−

=

×

−

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥⎣ ⎦
⎡ ⎤

= ⇒ =⎢ ⎥
⎢ ⎥⎣ ⎦

= ×

 

 

                                7
2 ln(10) 60(2008)2008 rad/sec 19,175 rpm
60 25.71 10

n nπω
π−

= = = ⇒ = =
×

 

 
Yielding should occur at 19,175 rpmn =  
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18-10.  A constant-strength steel flywheel with a rim is being considered for an application in which the 
allowable stress of the flywheel material is 135 MPa, the outer radius of the disk is 300 mm, the rim 
loading is 780 kN per meter of circumference, and the flywheel rotates at 6000 rpm.  Calculate the 
thickness of the flywheel web at radii of 0, 75, 150, 225, and 300 mm, and sketch the profile of the web 
cross section. 
 
--------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

6000 rpmn = , 135 MPaallowσ σ= = , 300 mmor = , 780 kN/mq = .  From (19-62) A
oz z e= ,  where 

 

                         ( )
2

2 2

2 o
wA r r

g
ω
σ

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

 
From (18-65)  3 6 3/ 780 10 /135 10 5.78 10 mo oz q σ −= = × × = × .  For steel 376.81 kN/mw = . In addition, 

2 / 60 2 (6000) / 60 628.3 res/secnω π π= = = . Therefore 
 

                               ( )
3 2

2 2 2
6

76.81 10 (628.3) (0.3) 11.45(0.09 )
2(135 10 )(9.81)

A r r
⎡ ⎤⎛ ⎞×

= − = −⎢ ⎥⎜ ⎟⎜ ⎟×⎢ ⎥⎝ ⎠⎣ ⎦
 

 
                                  ( ) 23 11.45(0.09 )5.78 10 rz e− −= ×  

 
 
 
 

r (mm) z (mm) 
0 16.2 

75 15.2 
150 12.5 
225 9.1 
300 5.8 
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Chapter 19 

 
 
19-1. The cylindrical bearing journal of an overhung crankshaft has been sized for wear and found to 
require a diameter of 38 mm based on wear analysis. A force analysis of the journal has shown there to be a 
transverse shear force of 45 kN, torsional moment of 1000 N-m and bending moment of 900 N-m at the 
critical cross section of the cylindrical journal bearing. If the fatigue-based stress governs, and has been 
found to be 270 MPa, calculate whether the 38-mm-diamter journal is safely designed to withstand the 
fatigue loading. 
 
---------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From specifications 38 mmd = , 45 kNV = , 1000 N-mT = , 900 N-mM = , ( ) 270 MPad fatigueσ =  

 
At the critical section, we define points A and B 
as critical. The sate of stress at each point is as 
shown. The magnitude of each of these is 
 

3 3
32 32(900) 167 MPa

(0.038)b
M
d

σ
π π

= = =  

 

3 3
16 16(1000) 93 MPa

(0.038)T
T

d
τ

π π
= = =  

 

( ) 2 22

4 16 16(45 000) 53 MPa
3 3 3 (0.038)/ 4

V
V V

dd
τ

π ππ
= = = =  

 
At point A, the principal stresses are 2 0σ = and   
 

          ( )
2

2
1,3 1 3

167 167 93 83.5 125 209 MPa ,  42 MPa
2 2

σ σ σ⎛ ⎞= ± + = ± ⇒ ≈ ≈ −⎜ ⎟
⎝ ⎠

 

 

          
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
1 2 2 3 3 1

2 2 2

1
2

1         209 0 0 42 42 209 233 MPa
2

eq A
σ σ σ σ σ σ σ⎡ ⎤= − + − + −⎢ ⎥⎣ ⎦

⎡ ⎤= − + + + − − ≈⎢ ⎥⎣ ⎦

 

 
                ( ) ( )233 MPa 270 MPaeq d fatigueA

σ σ= < =      Pont A should not suffer fatigue failure 

 
At point B, the state of stress is pure shear with  93 53 146 MPaT Tτ τ τ= + = + = . The principal stresses 
are 1 146 MPaσ = , 2 0σ = , and 3 146 MPaσ = −  
 

     ( ) ( ) ( ) ( ) ( )2 2 21 146 0 0 146 146 146 253 MPa 270 MPa
2eq d fatigueB

σ σ⎡ ⎤= − + + + − − ≈ < =⎢ ⎥⎣ ⎦
 

 
Pont B should not suffer fatigue failure either, so the journal is adequately designed. 
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19-2.  The overhung crankshaft shown in Figure P19.2A is supported by bearings at 1R  and 2R , and 
loaded by P on the crankpin, vertically, as shown. The crank position shown may be regarded as the most 
critical position. In this critical position, load P ranges form 900 lb up to 1800 lb down. The material 
properties are given in Figure P19.2B. Based on wear estimates, all cylindrical bearing diameters should be 
0.875 inch. Neglecting stress concentration effects, and using a safety factor of 1.5, determine whether the 
diameter of 0.875 inch at 1R  is adequate if infinite life is desired. 
 
---------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
From specifications: max 1800 lb (down)P = , min 900 lb (up)P = − , 0.875"bd = , 1.5dn = , 

70 ksi (Figure P19.2)fS = , and desiredN = ∞  
 
The potential failure modes are fatigue and yielding. The specified loading produces non zero-mean cyclic 
stresses. From (5-??) 
 

                             max 1
N

N
t t

S
S

m R− =
−

  for max0 ; m N ypS Sσ −≥ ≤  

 
For desiredN = ∞  

                            max 1
f

f
t t

S
S

m R− =
−

 

 

where  140 70 0.5
140

u f
t

u

S S
m

S
− −

= = =   and  
( )

max max

1800 ( 900)) / 2
0.25

1800
m m

t
P

R
P

σ
σ

+ −
= = = =  

 
So 

                                  max
70 80 ksi

1 0.5(0.25)fS − = =
−

      

 

And   max 80 53.333 ksi
1.5

f
d

d

S
n

σ −= = =  

 
Taking the crankshaft portion 
outboard of a cutting plane 
perpendicular to the shaft centerline 
and through the cylindrical bearing at 
R, the sketch shown may be made. 
From the sketch, we determine 
 

2(1800) 3600 in-lbbM = =  
1.25(1800) 2250 in-lbT = =  

1800 lbtsF =  
 
From case 2 of Table 4.3 
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Problem 19-2 (continued) 
 

     2
4 4 4(1800) 3990 psi
3 3 (0.875)

ts
ts

F
A

τ
π

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

 
The shear stress due to torsion and the normal stress due to bending are  
 

        3 3
16 16(2250) 17,105 psi

(0.875)T
T

d
τ

π π
= = =   and   3 3

32 32(3600) 54,740 psi
(0.875)b

M
d

σ
π π

= = =  

 
Two critical point are identified on this section, as shown in the figure below 
 
At point A,  2 0σ = and 
 

( )

( ) ( )

2
2

1

2 2

2 2

   27,370 27,370 17,105

   59,645 psi

b b
T

σ σ
σ τ⎛ ⎞= + +⎜ ⎟

⎝ ⎠

= + +

=

 

( )

( ) ( )

2
2

3

2 2

2 2

    27,370 27,370 17,105

    4905 psi

b b
T

σ σ
σ τ⎛ ⎞= − +⎜ ⎟

⎝ ⎠

= − +

= −

 

 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
1 2 2 3 3 1

2 2 2

1
2

1         59.645 0 0 4.905 4.905 59.645 62.24 ksi
2

eq A
σ σ σ σ σ σ σ⎡ ⎤= − + − + −⎢ ⎥⎣ ⎦

⎡ ⎤= − + + + − − ≈⎢ ⎥⎣ ⎦

 

 
At point B,  2 0σ = and 
 
         1 17,105 3990 21,140 psiT tsσ τ τ= + = + =    and    ( ) ( )3 17,105 3990 21,140 psiT tsσ τ τ= − + = − + = −  
 

       
( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
1 2 2 3 3 1

2 2 2

1
2

1         21.14 0 0 21.14 21.14 21.14 36.62 ksi
2

eq B
σ σ σ σ σ σ σ⎡ ⎤= − + − + −⎢ ⎥⎣ ⎦

⎡ ⎤= − + + + − − ≈⎢ ⎥⎣ ⎦

 

 
From this we see that critical point A governs. 
 
                ( ) 62.24 ksi 53.33 ksieq dA

σ σ= > =  

 
Therefore the journal is not adequately designed to provide infinite life under the specified loading. Since  

115 ksiypS = , yielding is not predicted. 



 742

 
 
19-3. The overhung crankshaft shown in Figure P19.3 is supported on bearings 1R and 2R  and loaded by 
force P on the crank pin.  This is taken to be the most critical crank position. The load P ranges from 6.25 
kN up to 6.25 kN down. The crankshaft is made from forged carburized AISI 4620 steel 
( 696 MPauS = , 586 MPaypS = , ' 348 MPafS ≈ ). It has been determined that wear is the governing 
failure mode for the bearing journal, and the allowable bearing design pressure, based on wear, is 5 MPa. A 
5-mm-radius fillet is desired where cylindrical journal A blends into rectangular cheek B, which has a width 
to height ratio of / 0.5w h = . A factor of safety of 3 is to be used for all failure modes except wear, for hich 
the safety factor has already been included in allowable stress for wear (5 MPa). 
 

a. For cheek member B, determine the governing design stress 
b. Assuming a “square” bearing, determine the diameter and length of journal A. 
c. Based on the results of (b) and other pertinent data given, find the rectangular cross-section 

dimensions w and h for cheek B. 
d. Identify the most critical section of cheek B, and the critical point location(s) within the critical 

cross section. 
e. For each critical point identified in (d), specify the types of stress acting. 
f. Calculate all pertinent forces and moments for these critical points. 
g. Calculate all pertinent stresses for these critical points. 
h. Calculate equivalent combined stresses for these critical points. 
i. Is the design for cheek B acceptable? 
j. Is the design for cheek B controlled by yielding, fatigue, journal wear, or something else? 

 
 
---------------------------------------------------------------------------------------------------------------------------- 
Solution 
 

696 MPauS = , 586 MPaypS = , ' 348 MPafS ≈ , max 6.25 kNP = ↓ , min 6.25 kNP = ↑ , 5 MPaw allowσ − = , 

5 mmABr = , / 0.5w h = , 3dn =  
 
 
(a)   ( ) ' / 348 / 3 116 MPad f df S nσ = = = . Since 586 MPaypS = , ( ) 116 MPad fσ =  is the governing 

design stress for cheek B. 
 
 
(b)  Assuming a square bearing with L d= , and based on wear  
 

              
3

max max max
2 6

6.25 10 0.0354 m 35.4 mm
5 10w allow

w allow

P P P
d

Ld d
σ

σ−
−

×
= = ⇒ = = = =

×
 

 
Since fatigue governs the filleted junction of A and B, the 
completely reversed stress must be checked. 

 
With 35.4 mmd = , we find 2 45.4 mmABh d r= + = . In        
addition 0.5 22.7 mmw h= = .  Now 

 

           ( ) 3
32

b nom
M
d

σ
π

=  

 
where  max (0.05 / 2) 6250(0.03865) 241.6 N-mM P w= − = =  
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Problem 19-3 (continued) 
 

              ( ) 3
32(241.6) 55.5 MPa
(0.0354)b nomσ

π
= =  

 
Checking for stress concentrations, with / / 45.4 / 35.4 1.3D d h d≈ = ≈ and / 5 / 35.4 0.14r d = ≈ we 
determine 1.7tK ≈ Using 0.85q =  

 
                 ( ) ( )1 1 0.85 1.7 1 1 1.6f tK q K= − + = − + =  
 
                ( ) ( ) ( )max 1.6(55.5) 88.8 MPa 116 MPab f b dnom fKσ σ σ= = = < =  

 
Therefore the dimensions 35.4 mmL d= = , 45.4 mmh = , and 22.7 mmw = are appropriate. 
 
(c)     45.4 mmh =  and 22.7 mmw =  
 
(d)  The intersection of B and C appears to be 
the most critical point of the cheek (B). The 
forces and resulting stresses at 4 critical points 
are as shown. Points 1 and 3 have multiaxial 
states of stress, while points 2 and 4 are in 
pure shear (with point 4 having the largest 
magnitude). 
 
The two most critical points are points 1 and 
4. 
 
(e) Point 1: Bending ( bσ ) and shear due to 
torsion ( Tτ ). 
Point 4: Shear hear due to torsion ( Tτ ) and shear due to transverse shear ( Vτ ) 

 
(f) 0.03865(6250) 241.6 N-mT = = , 0.034(6250) 212.5 N-mM = = , 6250 NV =  
 
 

(g)   3 3 6250 9.1 MPa
2 2 0.0227(0.0454)V

V
bh

τ
⎛ ⎞

= = ≈⎜ ⎟
⎝ ⎠

 

         2 2
6 6(212.5) 27.3 MPa

0.0227(0.0454)b
M

bh
σ = = ≈  

         ( )maxT T
T
Q

τ τ= =  

 
          where 
 

                      
2 2 2 2

68( / 2) ( / 2) 8(0.0227) (0.01135) 5.99 10
3( / 2) 1.8( / 2) 3(0.0227) 1.8(0.01135)

h wQ
h w

−= = = ×
+ +

 

 

                           ( )max 6
241.6 40.33 MPa

5.99 10T Tτ τ
−

= = =
×
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Problem 19-3 (continued) 
 
(h)  Point 1:  2 0σ =  and  
          

             
2

2
1,3 1 313.65 42.6 56.25 MPa , 28.95 MPa

2 2
b b

T
σ σ

σ τ σ σ⎛ ⎞= ± + = ± ⇒ = = −⎜ ⎟
⎝ ⎠

 

 

            ( ) ( ) ( ) ( )2 2 2

1

1 56.25 0 28.95 0 28.95 56.25 75 MPa
2eqσ ⎡ ⎤= − + − − + − − ≈⎢ ⎥⎣ ⎦

 

 
       
 Point 4: Pure shear with 40.33 9.1 49.43 MPaT Vτ τ τ= + = + = , therefore 2 0σ =  and  
 
                    1 349.43 MPa , 49.43 MPaσ σ= = −  
              

           ( ) ( ) ( ) ( )2 2 2

4

1 49.43 0 49.43 0 49.43 49.43 85.5 MPa
2eqσ ⎡ ⎤= − + − − + − − ≈⎢ ⎥⎣ ⎦

 

 
(i) Since ( ) ( )

1
75 MPa 116 MPaeq d fσ σ= < = and  ( ) ( )

4
85.5 MPa 116 MPaeq d fσ σ= < = , we 

conclude that the design is acceptable. 
 
 
(j)    The design check of cheek B is controlled by fatigue. 
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19-4.  The cylindrical bearing journal of a straddle-mounted crankshaft has been tentatively sized based on 
wear requirements, and it has been found that a diameter of 1.38 inches is required for this purpose. A force 
analysis of the journal at the critical cross section has shown there to be a transverse shear force of 8500 lb, 
torsional moment of 7500 in-lb , and bending moment of 6500 in-lb. If the governing failure mode is 
fatigue, and the design stress based on fatigue has been found to be 40,000 psi, calculate whether the 1.38-
inch-diameter journal is properly designed to safely withstand the fatigue loading. 
 
---------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 
From Specifications 1.38 ind = , 8500 lbtsF = , 7500 in-lbT = , 6500 in-lbbM = , ( ) 40 ksid fσ =  

 
At the critical section, we define points A and B 
as critical. The sate of stress at each point is as 
shown. The magnitude of each of these is 
 

3 3
32 32(6500) 25,193 psi

(1.38)b
M
d

σ
π π

= = =  

 

3 3
16 16(7500) 14,534 psi

(1.38)T
T

d
τ

π π
= = =  

 

( ) 2 22

44 16 16(8500) 7577 psi
3 3 3 (1.38)

ts ts
ts

F F
dd

τ
π ππ

= = = =  

 
At point A, the principal stresses are 2 0σ = and   
 

( )
2

2
1,3 1 3

25.193 25.193 14.534 12.6 19.2 31.8 ksi ,  6.6 ksi
2 2

σ σ σ⎛ ⎞= ± + = ± ⇒ ≈ ≈ −⎜ ⎟
⎝ ⎠

 

 

          ( ) ( ) ( ) ( )2 2 21 31.8 0 0 6.6 6.6 31.8 35.6 ksi
2eq A

σ ⎡ ⎤= − + + + − − ≈⎢ ⎥⎣ ⎦
 

 
 
At point B, the state of stress is pure shear with 22.1 ksiT tsτ τ τ= + = . The principal stresses are 

1 22.1 ksiσ = , 2 0σ = , and 2 22.1 ksiσ = − , which results in 
 

                    ( ) ( ) ( ) ( )2 2 21 22.1 0 0 22.1 22.1 22.1 38.3 ksi
2eq B

σ ⎡ ⎤= − + + + − − ≈⎢ ⎥⎣ ⎦
 

 
Point B is therefore critical, and since ( ) ( )38.3 ksi 40 ksieq d fB

σ σ= < = , we conclude that the bearing is 

designed correctly. 
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19-5.  A straddle-mounted crankshaft for a belt-driven single-cylinder refrigeration compressor is to be 
designed to meet the following specifications: 
 

a. The force on the connecting rod bearing ranges from 3500 lb down to 1300 lb up. 
b. The belt tension ratio is 1 28T T= . 
c. The crank throw is 2.2 inches. 
d. Allowable maximum bearing pressure is 700 psi. 
e. The pulley pitch diameter = 8.00 inches. 
f. All bearings are to be made alike 
g. Main bearings are 12 inches apart center-to-center, with the connecting rod bearing halfway 
between. 
h. The pulley overhangs the main bearing 4 inches. 
 

Design a suitable chrankshaft and construct good engineering sketches of the final design. 
 
------------------------------------------------------------------------------------------------------------------------ 
Solution 
 
Based on specifications a through 
h in the problem statement, the 
steps suggested in 19.5 may be 
used to develop a proposal for the 
crankshaft design. 
 
 
1.   A preliminary conceptual 
sketch may be drawn as Figure 1. 
 
 
2. Assume the phase shown is 
the most vulnerable. 
 
 
3.  A tentative basic shaper for 
the crankshaft of Figure 1 is 
sketched as shown in Figure 2. 
 
 
4. No global force analysis is required. 
Sufficient data is available from 
specifications and assumptions. 
 
 
5.  From Figures 1 and 2 
 

0 :   (identically satisfied)xF =∑  
0 :   (identically satisfied)yF =∑  

0 :  0z L R s tF R P R T T= + + + + =∑  
0 :   (identically satisfied)zM =∑  
0 :  2.2 4 4 0x s tM P T T= − + =∑  

( )0 :  12 6 16 0y R t sM R P T T= + + + =∑  
 
By specification; 1 28 8t sT T T T= = = , max 3500 lb (down)P = − , min 1300 lb (up)P = . Therefore 
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Problem 19-5 (continued) 
 
 ( )0 :  2.2( 3500) 4 0 7700 4(1 8) 0 275 lb , 2200 lbx t s s s tM T T T T T= − + − = ⇒ − + − = ⇒ = =∑  
 

( ) ( )0 :  12 6( 3500) 16 0 12 21,000 16 8 1 (275) 0, so  1550 lby R t s R RM R T T R R= + − + + = ⇒ − + + = = −∑

     
0 :  ( 3500) 0

               3500 1550 9(275) 0
                                  2575  lb

z L R s t

L

L

F R R T T
R

R

= + − + + + =
− − + =

=

∑
 

 
These results are shown in Figure 3. 
 
 
6.  Each element (labeled A through E) contains 
critical points (numbered 1 through 7). Local forces 
and moments acting at each critical point, and the 
corresponding shape of each element (circular or 
rectangular) must be considered independently. These 
are summarized in Table A. 
 
 
                                                 Table A 
 

Critical 
Section 

 
Element 

Section 
Shape 

 
(lb)zF  

 
(in-lb)T  

 
(in-lb)M
 

 
1 

 
A 

 
 

 
2575 

 
0 

 
0 

 
2 

 
A 

 
 

 
2575 

 
0 

 
7725 

 
2 

 
B 

 

 
2575 

 
7725 

 
0 

 
3 

 
B 

 

 
2575 

 
7725 

 
5665 

 
3 

 
C 

 
 

 
2575 

 
5665 

 
7725 

 
4 

 
C 

 
 

 
2575 

 
5665 

 
15,450 

 
5 

 
C 

 
 

 
-925 

 
5665 

 
12,675 

 
5 

 
D 

 

 
-925 

 
12,675 

 
5665 

 
6 

 
D 

 

 
-925 

 
12,675 

 
7700 

 
6 

 
E   

-925 
 

7700 
 

12,675 
 

7 
 

E   
-2475 

 
7700 

 
9900 
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Problem 19-5 (continued) 
 
Since all bearings are to be the same, we see form Table A that sections 4C, 6E, and 7E are more critical 
than other circular sections. Similarly, sections 3B and 6D are the most critical rectangular sections. 
Therefore we have 5 sections to check (3B, 4C, 6D, 6E, and 7E). 
 
7.  Based on the discussions of 19.3, the failure modes to be investigated should include wear, fatigue, and 
yielding. 
 
 8. Based on the methods of Example 3.1, the tentative material selection will be forged 1020 steel, case 
hardened at the bearing sites. The basic properties of 1020 steel are 61 ksiuS = , 51 ksiypS = , and 

(2") 15%e = . 
 
 9. The design factor of safety, dn , from Chapter 2 is 
 

                                    
( )210

1 ; 6
100d

t
n t

+
= + ≥ − ,   where ( )

8

1
i

i
t RN

=
= ∑  

 
The rating numbers (RN) for the 8 rating factors may be chosen as shown in Table B. 
 

Table B 
 

  
Rating Factor 

Selected Rating 
Number (RN) 

1. Accuracy of loads knowledge -1 
2. Accuracy of stress calculations 0 
3. Accuracy of strength knowledge 0 
4. Need to conserve -2 
5. Seriousness of failure consequences +2 
6. Quality of manufacture 0 
7. Condition of operation -2 
8. Quality of inspection/maintenance 0 

 Summation , t =  -2 
 

                                          
( )210 3

1 1.49 1.5
100dn
−

= + = ≈  

 
10. Based on steps 7, 8, and 9, the design stresses using the specified “d” are 
 
                       ( ) 700 psiwear dσ =     and   0.5 0.5(61,000) 30,500 psiN e uS S S=∞ = = = =  
 
Using (5- ??) 
 

                   ( )max
/1

1
e f

N d
d t t

S K
n m R

σ −
⎛ ⎞

= ⎜ ⎟
−⎝ ⎠

 

 
Assuming 2fK =  

                                  
/ 61,000 30,500 / 2 0.75

61,000
u e f

t
u

S S K
m

S
− −

= = =  
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Problem 19-5 (continued) 
 

                               
[ ]

max max

3500 ( 1300) / 2
0.314

3500
m m

t
P

R
P

σ
σ

+ −
= = = =  

 
So  
 

                   ( )max
1 30,500 / 2 13, 298 13,300 psi

1.5 1 (0.75)(0.314)N dσ −
⎛ ⎞

= = ≈⎜ ⎟−⎝ ⎠
 

 
For yielding 
 

                      ( ) 51,000 34,000 psi
1.5

yp
yp d d

S
n

σ = = =  

 
 
11.  (a)  Based on wear, using the projected bearing area pA  
 

                          ( ) max
maxwear wd

p

P
A

σ σ −= =   ,  so   ( ) ( )
2max

'

3500 5 in
700p req d wear d

P
A

σ
= = =  

 
Using a square bearing ( L d= ), so  ( ) 2

'
5       5 2.24 inp req d

A Ld d L d= = = ⇒ = = =  

 
(b)  Since ( ) ( )max N ypd d

σ σ− < , fatigue is more critical that yielding, so designing for fatigue will 

automatically satisfy the yielding requirement.. Dimensions for the circular (4C, 6E, and 7E) and 
rectangular (3B and 6D) sections is now determined. 
 
Circular Sections  - The critical points for the circular sections are 
subjected to bending and shear. Two points are of interest, point i and 
point ii as shown in Figure 4.  Point I experienced a normal stress due 
to bending, ( bσ ) and point ii experiences a shear stress due to torsion 
( Tτ ) and a shear stress due to transverse shear ( tsτ ). These stresses 
are defined by 
 

3
32

b
M
d

σ
π

= , 3
16

T
T

d
τ

π
=  , and   

( )2

44
3

ts
ts

F

d
τ

π
=  

 
Table A can be used to define the stresses at each point. Note that the 
value for zF  in Table A is actually tsF  in the equation above. From 
Table A we note that point 4C has the largest bending moment, and is 
likely to have the largest principal stresses. 
 
Section 4C:   

                  2 2
4 4(2575) 4372  
3ts d d

τ
π

= = ,  3 3
16(5665) 28,852

T d d
τ

π
= = , and 3 3

32(15, 450) 157,372
b d d

σ
π

= =  

 
For point i, 2 0σ =  and  
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Problem 19-5 (continued) 
 

                  
2 2

1,3 3 3 3 3 3 3 3
157,372 157,372 28,852 78,686 83,809 162,495 5123,

2 2d d d d d d d
σ ⎛ ⎞ ⎛ ⎞= ± + = ± = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 
The equivalent stress is 
 

               ( )
2 2 2

3 3 3 3 3
1 162,495 5123 5123 162, 495 201,1280 0
2eq i d d d d d

σ
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + + − − =⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 

 
Setting ( ) ( )max 13,300eq N di

σ σ −= = and solving for d 

 

                                            3
201,128 13,300 2.47d

d
= ⇒ =  

 
Using 2.5"d =  we find that ( ) 12,872 13,300eq i

σ = < , so point i at 4C satisfies the criteria. Next we turn 

to point ii, which is in a state of pure shear. The shear stress due to transverse shear at this point is 
 

                                        2
4372  700
(2.5)tsτ = ≈  

 
Since 1846 700 2546 psiii T tsτ τ τ= + = + = , we get 1 2 32546 psi , 0 , 2546 psiσ σ σ= = = − , which 
produces 
 

                      ( ) ( ) ( ) ( )2 2 21 2546 0 0 2546 2546 2546 4410 psi
2eq ii

σ ⎡ ⎤= − + + + − − =⎢ ⎥⎣ ⎦
 

 
Therefore, section 4C is predicted to be safe form fatigue failure. 
 
 
Section 6E: This section has a smaller bending stress, but larger torque. Using 2.5"d = , at 6E 
 

            2
4 4(925) 251 psi
3 (2.5)tsτ π

= = , 3
16(7700) 2510 psi

(2.5)Tτ π
= = , and 3

32(12,675) 8263 psi
(2.5)bσ π

= =  

 
 

At point i, this results in 2 0σ =  and ( )
2

2
1,3

8623 8623 2510 4312 4989 9301, 677
2 2

σ ⎛ ⎞= ± + = ± = −⎜ ⎟
⎝ ⎠

 

 

This produces ( ) ( ) ( ) ( )2 2 21 9301 0 0 677 677 9301 9657
2eq i

σ ⎡ ⎤= − + + + − − =⎢ ⎥⎣ ⎦
, which is also below the 

required stress level. Since 2510 700 3210 psiii T tsτ τ τ= + = + = , we get 1 23210 psi , 0 ,σ σ= = and  

3 3210 psiσ = − , which produce ( ) ( ) ( ) ( )2 2 21 3210 0 0 3210 3210 3210 5560 psi
2eq ii

σ ⎡ ⎤= − + + + − − =⎢ ⎥⎣ ⎦
. 

As a result, we conclude that section 6E is also safe for fatigue failure.. 



 751

Problem 19-5 (continued) 
 
 
Section 7E: This section has a smaller bending stress, but larger torque. Using 2.5"d = , at 7E 
 

            2
4 4(2475) 672 psi
3 (2.5)tsτ π

= = , 3
16(7700) 2510 psi

(2.5)Tτ π
= = , and 3

32(9900) 6454 psi
(2.5)bσ π

= =  

 
 

At point i, this results in 2 0σ =  and  ( )
2

2
1,3

6454 6454 2510 3227 4088 7315, 861
2 2

σ ⎛ ⎞= ± + = ± = −⎜ ⎟
⎝ ⎠

 

 

This produces ( ) ( ) ( ) ( )2 2 21 7315 0 0 861 861 7315 7781
2eq i

σ ⎡ ⎤= − + + + − − =⎢ ⎥⎣ ⎦
, which is also below the 

required stress level. Since 2510 672 3182 psiii T tsτ τ τ= + = + = , we get 1 23182 psi , 0 ,σ σ= = and  

3 3182 psiσ = − , which produce ( ) ( ) ( ) ( )2 2 21 3182 0 0 3182 3182 3182 5031 psi
2eq ii

σ ⎡ ⎤= − + + + − − =⎢ ⎥⎣ ⎦
. 

As a result, we conclude that section 7E is also safe for fatigue failure. 
 
 
Based on this, we tentatively assume 2.5"d = will be used for all bearing cross sections. 
 
 
Rectangular Sections - for the rectangular cross section we have a 
similar state of stress, except the geometry and appropriate stress 
equations change. The states of stress are as indicated in Figure 5.  
The stresses are given as 
 

2
6

b
M

bh
σ = , 

( )
2 2

1.5 0.9

0.5T
T h bT

Q h b
τ

+
= =  , and    

3 3
2 2

ts ts
ts

F F
A bh

τ = =  

 
For the circular sections we found that 2.5"d = was a good size. 
For the rectangular cross sections we arbitrarily assume that 

3.0"h = , and select an aspect ration of / 0.5b h = , which results in 
1.5"b = . This produces the stress relationships 

 

2
6 0.444

1.5(3)b
M Mσ = = , 3 0.333

2 1.5(3)
ts

ts ts
F

Fτ = = , and 
( )

2 2

1.5(3) 0.9(1.5)
0.5778

0.5(3) (1.5)T
T

Tτ
+

= =  

 
Section 3B: The stresses here are  
 

0.444(5665) 2517 psibσ = = , 0.333(2575) 858 psitsτ = = , and 0.5778(7725) 4464 psiTτ = =  
 
At point i, 2 0σ =  and  
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Problem 19-5 (continued) 
 

                                 ( )
2

2
1,3

2517 2517 4464 1259 4638 5897, 3379
2 2

σ ⎛ ⎞= ± + = ± = −⎜ ⎟
⎝ ⎠

 

                                  ( ) ( ) ( ) ( )2 2 21 5897 0 0 3379 3379 5897 8131 psi
2eq i

σ ⎡ ⎤= − + + + − − =⎢ ⎥⎣ ⎦
 

 
At point ii , 4464 858 8322 psiii T tsτ τ τ= + = + = , which produces  1 25322 psi , 0 ,σ σ= = and  

3 5322 psiσ = − .  These result in 
 

                             ( ) ( ) ( ) ( )2 2 21 5322 0 0 5322 5322 5322 9218 psi
2eq ii

σ ⎡ ⎤= − + + + − − =⎢ ⎥⎣ ⎦
 

  
Both are less than ( )max 13,300 psiN dσ − = , so these two point are safe from fatigue failure. 
 
Section 6D: The stresses here are  
 

0.444(7700) 3419 psibσ = = , 0.333(925) 308 psitsτ = = , and 0.5778(12,675) 7324 psiTτ = =  
 
At point i, 2 0σ =  and  
 

                                 ( )
2

2
1,3

3419 3419 7324 1710 7521 9231, 5804
2 2

σ ⎛ ⎞= ± + = ± = −⎜ ⎟
⎝ ⎠

 

                                  ( ) ( ) ( ) ( )2 2 21 9321 0 0 5804 5804 9321 13, 216 psi
2eq i

σ ⎡ ⎤= − + + + − − =⎢ ⎥⎣ ⎦
 

 
At point ii , 7324 308 7632 psiii T tsτ τ τ= + = + = , which produces 
 
                 1 27632 psi , 0 ,σ σ= = and  3 7632 psiσ = −   
 
These result in 
 

                             ( ) ( ) ( ) ( )2 2 21 7632 0 0 7632 7632 7632 13,219 psi
2eq ii

σ ⎡ ⎤= − + + + − − =⎢ ⎥⎣ ⎦
 

  
Both are less than ( )max 13,300 psiN dσ − = , so these two point are safe from fatigue failure. 
 
All critical points are adequately designed for wear, fatigue and yielding. The circular cross sections have a 
diameter of 2.5"d = , and the rectangular sections have dimensions of 1.5"b =  and 3.0"h = . 
 
 
12.  Based on the specifications and analysis above, 
a more refined sketch of the crankshaft may be 
made, as shown in Figure 6. 
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Chapter 20 
 
 
20-1. Splined connections  are widely used throughout industry, but little research has been done to provide 
the designer with either analytical tools or good experimental data for spline strength or compliance 
estimates. In question are such matters as basic spline-tooth strength, shaft strength, notch effect, and spline 
geometry effects, as well as spline-compliance effects on the torsional spring rate of a system containing 
one or more splined connections. 

It is desired to construct a splined-joint testing setup versatile enough to facilitate both strength and 
life testing of various splined connections, as well as to perform torsional compliance testing on such joints. 
The testing setup is to accommodate in-line splined connections, offset parallel shafts connected by double 
universal joints, and angular shaft connections. Parallel shaft offsets up to 250 mm must be accommodated, 
and angular shaft centerline displacements up to o45 may be required. Splines up to 75 mm in diameter 
may need to be tested in the device, and shafting samples, including splined connections, may be up to 1 
meter in length. Rotating speeds up to 3600 rpm may be required. 

The basic setup, sketched in Figure P20.1, is to utilize a variable-speed drive motor to supply power 
to the input shaft of the testing setup, and a dynamometer (device for measuring mechanical power) used to 
dissipate from the output shaft of the test setup. 

 
a.  Select an appropriate type of frame or supporting structure for integrating the drive motor, testing 
setup, and dynamometer into a laboratory test stand for investigating splined-connection behavior, as 
just discussed. 
b.  Sketch the frame. 
c. Identify potential safety issues that should , in your opinion, be addressed before putting the test 

stand into use. 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a)  Since this is a design task, there is no “one” correct solution. The approach suggested is simply one 
possible proposal. The following observations have pertinence to conception of the supporting frame 
structure: 
  

1. The drive motor shaft centerline should be at the same elevation as the dynamometer shaft 
centerline. 
2. Some vertical “adjustment” of the drive motor shaft centerline should be provided. 
3.   The drive motor support structure must be “moveable” to any location in the plane of the base so 
as to accommodate a 250-mm shaft centerline offset relative to the dynamometer shaft centerline, and 
to accommodate test sample lengths up to 1 meter. 
4. The drive motor support structure should provide a means to accommodate rotation of the drive 
motor about a vertical centerline up to o45 . 

 
Based on these observations, the following configuration concepts seem satisfactory 
           

1. Use a simple T-Slotted base plate mounted on a concrete foundation of floor as the support 
structure for the dynamometer and motor. 
2. Use an open truss frame, mounted to the T-slotted base plate, to support the motor. Provide a 
series of mounting holes so motor location can be changed. 
3. Use a rotary table on top of the motor mount frame so motor can be rotated about a vertical axis. 
4. Use shims between motor mounting feet and rotary table to provide vertical adjustment of the 
motor shaft centerline. 
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Problem 20-1 (continued) 
 
(b)   The concept suggested is crudely illustrated below 
 

 
 
 
 
(c)  Rotating machinery is always dangerous. Guards should be used and protective barriers and signs 
should be used . 
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20-2.   You have been given the task of designing a special hydraulic press for removing and replacing 
bearings in small to medium-size electric motors. You are to utilize a commercially available 1 ½ ton (3000 
lb) capacity hydraulic actuator, mounted vertically, as sketched in Figure P20.2. As shown, the actuator 
body incorporates a 2-inch-diameter mounting boss. A lower plate for supporting the motor bearing 
packages is to be incorporated, as sketched. A minimum vertical clearance of 3 inches is required, as 
indicated, and a minimum unobstructed horizontal clearance of 5 inches between the vertical centerline of 
the hydraulic press and the closest structural member is also required. The operator’s intended position is 
indicated in Figure P20.2, as well. 
 

a. Select an appropriate type of frame or supporting structure for integrating the hydraulic actuator 
and support platen into a compact, stand-alone assembly, giving  reasons for your selection. 
b. Make a neat sketch of the frame, as you envision it. 
c. Design the frame that you have sketched in (b) so that it may be expected to operate for 20 years 
in an industrial setting without failure. It is estimated that the press will be operated on average, once a 
minute, 8 hours each day, 250 days a year. 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
(a) Since this is a design task, there is no “one” correct solution. The approach presented here is only one of 
many possible proposals.  The following observations have pertinence to the conception of a supporting 
frame structure: 
 

1. The frame should incorporate a means of clamping the 2-inch diameter mounting boss to 
support the hydraulic actuator. 

2. The frame should incorporate a means of securing the lower platen in line with the 
hydraulic actuator.  

3. The frame should provide open access to the operator for loading, positioning, and 
unloading workpieces (motor bearing support plates). 

4. The frame should provide specified minimum clearances (5 inches from vertical 
centerline to closest structure and 3 inches minimum between bottom end of the actuator 
stem (and any special pressure fitting) and top of the lower platen. 

 
Based on these observations, it would seem that the best choice for the supporting frame would be a basic 
C-frame (Figure 20.1e). 
 
(b) A basic C-frame for this 
application may be crudely 
sketched as shown. 
 
(c) Gudelines for designing the 
frame shown are given in Table 
1.2, since the frame is, in fact, just 
one part of the machine, to 
comment on the steps suggested 
in Table 1.2, 
 

1. The tentative shape is 
sketched above. 
2. Forces are shown in the sketch above 
3. The probable potential failure modes would include 

(a) Force-induced elastic deformation. (If C-frame deflects elastically so much that misalignment 
interferes with bearing installation, failure has occurred.) 
(b) Yielding (if permanent deformation takes place so that mis alignment interferes with bearing 
installation, failure has occurred.) 
(c) Fatigue failure (If cyclic loading on the frame induces fatigue cracking in kless than 

660 8 250 20 2.4 10  cycles× × × = × , failure has occurred.) 
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Problem 20-2 (continued) 
 

4.  Reviewing Chapter 3, cast iron or steel are reasonable candidate materials to be evaluated. 
5. For cast iron, it is probably redundant to say casting is the process of choice. For steel, casting or 
welding would be reasonable choices. 
6. To select critical points, review section 4.4 and Chapter 6. 
7. To select appropriate equations of mechanics, review section 4.4. 
8. To determine dimensions at each critical section, review section 4.4. Review Chapter 2 to 
determine an appropriate safety factor. For this application, an appropriate value would be 2dn ≈ . 
9. Review all aspects of the above 8 steps for compatibility, with attention to maintenance and 
inspection requirements. 
10. Sketch the design proposal, including dimensions and specifications. 
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20-3. Cutting firewood is popular with “do-it-yourselfers” in many parts of the world, but hand-splitting the 
logs is a less-popular task.  You are being asked to design a compact, “portable” moderately priced 
firewood splitting machine for “home” use. The device should be capable of handling logs up to 400 mm in 
diameter and 600 mm long, splitting them into fireplace-size pieces. A cord of wood (a stack of wood 
1.2 m 1.2 m 4.4 m× × ) should take no longer than a hour to split. Management has decided that a power-
screw-driven splitting wedge should be investigated as a first choice. The concept is sketched crudely in 
Figure P20.3. Safety is to be considered, as well as compactness and portability. 
 

a. Select an appropriate type of frame or supporting structure for integrating the power-screw-driven 
wedge and adjustable log-support arm into a compact, portable, stand-alone assembly, giving reasons 
for your selection. 
b. Make a sketch of the frame as you envision it. 
c. From your sketch, identify each coherent subassembly, and give each subassembly a descriptive 
name. 
d. Make a neat sketch of each coherent subassembly, and, treating each subassembly as a free body, 
qualitatively indicate all significant forces on each subassembly. 
e. Design the power-screw subassembly. Preliminary estimates indicated that with a properly shaped 
splitting wedge, the wedge travel need not exceed half the length of the log, and that the “splitting 
force” required of the power screw need not exceed about 38 kN in the direction of the screw axis. 
f. Design the adjustable log-support unit. 
g. Design any other subassembly that you have named in (c). 
h. Design the frame that you have sketched in (b). 
i. Discuss any potential safety issues that you envision to be important. 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
Since this is a design task, there is no “one” correct solution. The general nature of this project would 
require a comprehensive effort from several persons for multiple weeks. Clearly, a “solution” can not be 
presented here. Many possible configurations are possible. The following observations have pertinence to 
conception of the supporting frame structure: 
 

1. Use an open truss frame as the primary support structure 
2. The log support unit might be supported on the basic open truss frame by integrating a vertical 
slider plate with a vertical hand-cranked lead screw to move the log support unit up or down on the 
slider plate to obtain the 200 mm (half the maximum log diameter) vertical travel. 
3. The power screw subassembly might be supported by a vertical mounting pad supported by the 
open truss frame. 
4. Since the schematic in the problem statement figure shows a V-pulley drive sheave, provision 
should be made for mounting a small i. c. engine on the frame for driving the power screw. A belt 
tightening idler pulley to run on the back side of the V-belt could be incorporated as a clutch. 
5. A “fast react” or “dead man” feature should be incorporated into the design. Perhaps a “split nut” 
on the power screw that could be opened to allow the wedge to be pushed back, or a reversing unit 
between the i.c. engine to drive the V-belt at a higher speed in the opposite direction. 
6. In designing the power screw subassembly, refer to the appropriate text chapters for selection or 
bearings, or power screw, or V-belt information.  
7. Safety issues will probably include provisions for belt guards, guards for rotating parts and quick 
disconnect features for disconnecting the prime mover from the power screw driven splitting-wedge. 
8. Component weight and strength must also be considered since the unit is to be portable and 
vibrations are expected simple due to the nature of the machine and its operating environment. 
9. An appropriate engine must be selected. The engine selection is linked to the power screw 
selection in (6), since the 38 kN splitting force is related to the raising torque ( RT ) of a power screw 
through  

                                       

                               38 000
cos sin cos
cos cos sin

R

n t
p

n t

T

r θ α µ α
θ α µ α

=
⎡ ⎤+
⎢ ⎥−⎣ ⎦
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20-4.   The input shaft of a rotary coal-grinding mill is to be driven by a gear reducer through a flexible 
shaft-coupling, as shown in Figure P20-4. The output shaft of the gear reducer is to be supported on two 
bearings mounted 10 inches apart at A and C, as shown. A 1:3 spur gear mesh is being proposed to drive 
the gear-reducer output shaft. A spur gear is mounted on the output shaft at midspan between the bearings, 
as shown, and is to have a pitch diameter of 9 inches. The pitch diameter of the drive pinion is to be 3 
inches. The coal-grinding mill is to be operated at 600 rpm, and requires 100 horsepower continuously at its 
input shaft. 
 An 1800-rpm electric motor is to supply power to the pinion input shaft. Concentrating attention 
on the spur gear speed reducer sketched in Figure P20.4, do the following: 
 

a. Select an appropriate type frame or supporting structure for integrating the gears, shafts, and 
bearings into a compact stand-alone subassembly, giving reasons for your selection. 
b. Make a neat sketch of the frame, as you envision it. 
c. Design or select a spur gear set. 
d. Design the gear-reducer output shaft. 
e. Design the pinion input shaft. 
f. Select appropriate bearings for the gear-reducer output shaft. 
g. Select appropriate bearings for the pinion input shaft. 
h. Specify appropriate lubrication for the gears and bearings. 
i. Design the frame that you have sketched in (b). 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
This problem is in the nature of a “project”, requiring the cooperative efforts of perhaps three persons 
working together over a period of 10 -15 weeks to produce a reasonable result. Clearly, a “solution” can not 
be presented here. Many acceptable configurations can be conceived to fulfill specifications. The following 
suggestions are offered as guidelines: 
 

1. A “housing” or “case” (see Figure 20.1g) would seem to be a good choice for the supporting 
structure, since it can provide bearing supports for the two shafts, a sump for lubrication, and an 
enclosure to protect the gear mesh from environmental contamination as well as provide safety 
shielding. 

2. In designing the spur gear set, see Chapter 15 for procedures and details. 
3. In designing the gear-reducing output shaft and the pinion input shaft, see Chapter 8 for 

procedures and details. 
4. For selection of bearings for the gear reducer output shaft and the pinion input shaft, see details of 

Chapter 10  if plain bearings are chosen, or Chapter 11 if roller bearings are chosen. 
5. For selecting and specifying appropriate lubrication for bearings and gears, see details of Chapter 

10 or Chapter 11, and Chapter 15, as appropriate. 
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20-5.  a. In the context of mechanical design, define the terms safety, danger, hazard, and risk. 

b. List the actions a designer might take to provide proper safeguards before releasing a machine to 
customers in the marketplace. 
c. Make a list of safeguarding devices that have been developed to help reduce to an acceptable level 
the risks associated with engineered products. 

 
--------------------------------------------------------------------------------------------------------------------------------- 
Solution 
 
 (a) Definitions; 
 

i. Safety may be defined as “freedom from danger, injury, or damage.” 
ii. Danger may be defined as “an unreasonable combination or an unacceptable combination of 

hazard and risk.” 
iii. Hazard may be defined as “a condition or changing set of circumstances that presents a 

potential for injury.” 
iv. Risk may be defined as “the probability and severity of an adverse outcome.” 

 
(b) Before releasing a machine to customers in the marketplace, a designer should; 
 

i. As far as possible, design all hazards out of the product. 
ii. If it is impossible to design out all hazards, provide guards or devices to eliminate the danger. 
iii. If it is not possible to provide proper and complete protection through the use of guards and 

safeguarding devices, provide appropriate directions and post “clear warnings.” 
 
(c) From Table 20.2, a list of safeguarding devices may be made as follows; 
 

1. Photoelectric sensors 
2. RF capacitance devices 
3. Electromechanical devices 
4. Pullback devices 
5. Holdback devices 
6. Safety trip controls 
7. Pressure sensitive body bars 
8. Safety tripods 
9. Safety tripwires 

10. Two-hand controls 
11. Two-hand trips 
12. Gates 
13. Automatic feeders 
14. Semiautomatic feeders 
15. Automatic ejectors 
16. Semiautomatic ejectors 
17. Robots 
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