Chapter 1

1-1. Define engineering design and elaborate on each important concept in the definition.

Solution

(Ref. 1.2) Engineering design is an iterative decision-making process that has the objective of creating and
optimizing a new or improved engineering system or device for the fulfillment of a human need or desire, with
regard for conservation of resources and environmental impact.

The essence of engineering (especially mechanical design) is the fulfillment of human needs and desires. Whether a
designer is creating a new device of improving an existing design, the objective is always to provide the “best”, or
“optimum” combination of materials and geometry. Unfortunately, an absolute optimum can rarely be achieved
because the criteria of performance, life, weight, cost, etc. typically place counter-opposing demands upon any
proposed combination of material and geometry.

Designers must not only compete in the marketplace, but must respond to the clear and growing obligation of the
global technical community to conserve resources and preserve the environment.

Finally, iteration, or cut-and-try pervades design methodology. Selection of the best material and geometry are
typically completed through a series of iterations.



1-2. List several factors that might be used to judge how well a proposed design meets its specified objectives.

Solution

(Ref. 1.3) The following factors might be used:

(1)  Ability of parts to transmit required forces and moments.

(2)  Operation without failure for prescribed design life.

(3) Inspectability of potential critical points without disassembly.

(4) Ability of machine to operate without binding or interference between parts.
(5) Ease of manufacture and assembly.

(6) Initial and life-cycle costs.

(7) Weight of device and space occupied.

(8) Ability to service and maintain.

(9) Reliability, safety, and cost competitiveness.



1.3 Define the term optimum design, and briefly explain why it is difficult to achieve an optimum solution to a
practical design problem.

Solution

A dictionary definition of adequate is “sufficient for a specified requirement”, and for the word optimum is “greatest
degree attainable under implied or specified conditions”. In a machine design context, adequate design may
therefore be defined as the selection of material and geometry for a machine element that satisfies all of its specified
functional requirements, while keeping any undesirable effects within tolerable ranges. In the same context, optimal
design may be defined as the selection of material and geometry for a machine element with specific the objective of
maximizing the part’s ability to address the most significant functional requirements, making sure that all other
functional requirements are adequately satisfied, and that any undesirable effects are kept within tolerable ranges.

Optimum design of real mechanical elements is complicated by the need to study relationships between and among
functions that embody many variables such as performance, life, weight, cost, and safety. Unfortunately, these
variables place counter-opposing demands upon and selected combination of materials and geometry; design
changes that improve the part’s ability to respond to one significant performance parameter may, at the same time,
degrade its ability to respond to another important parameter. Thus, an absolute optimum design can rarely be
achieved.



1-4. When to stop calculating and start building is an engineering judgment of critical importance. Write about 250
words discussing your views on what factors are important in making such a judgment.

Solution

The decision to stop calculating and start building is a crucial engineering responsibility. To meet design objectives,
a designer must model the machine and each of its parts, make appropriate simplifying assumptions where needed,
gather data, select materials, develop mathematical models, perform calculations, determine shapes and sizes,
consider pertinent failure modes, evaluate results, and repeat the loop of actions just listed until a “best” design
configuration is achieved. Questions always arise at each step in the design sequence. For example:

(1) What assumptions should be made, how many, how detailed, how refined?

(2) Are data available on loading spectra, environmental conditions, user practice, or must testing be
conducted?

(3) Are materials data available for the failure modes and operating conditions that pertain, and where are the
data, or must testing be conducted?

(4) What types of modeling and calculation techniques should be used; standard or special, closed-form or
numerical, P-C, workstation, or supercomputer?

(5) How important are reliability, safety, manufacturing, and/or maintainability?

(6) What is the competition in the marketplace for producing this product?

Often, the tendency of an inexperienced new engineer is to model, analyze, calculate, and refine too much, too often,
and too long, loosing market niche or market share as a consequence. On the other hand, the “old-timer” in the
design department often tends to avoid the analysis and build the product “right away”, risking unforeseen problems
in performance, safety, reliability, or manufacturability at high cost. Although dependent upon the product and the
application, the engineering decision to stop calculating and start building is always crucial to success.



1-5. The stages of design activity have been proposed in 1.6 to include preliminary design, intermediate design,
detail design, and development and field service. Write a two- or three-sentence descriptive summary of the essence
of each of these four stages of design.

Solution

(1) Preliminary design is primarily concerned with synthesis, evaluation, and comparison of proposed
machine or system concepts. The result of the preliminary design stage is the proposal of a likely-
successful concept to be designed in depth to meet specific criteria of performance, life, weight,
cost, safety, or other aspects of the overall project.

(2) Intermediate desigh embodies the spectrum of in depth engineering design of individual
components and subsystems for the already pre-selected machine or system. The result of the
intermediate design stage is the establishment of all critical specifications relating to function,
manufacturing, inspection, maintenance, and safety.

(3) Detail design is concerned mainly with configuration, arrangement, form, dimensional
compatibility and completeness, fits and tolerances, meeting specifications, joints, attachment and
retention details, fabrication methods, assemblability, productibility, inspectability, maintainability,
safety, and estagblishing bills of material and purchased parts. The result of the detail design stage
is a complete set of working drawings and specifications, approved for production of a prototype
machine.

(4) Development and field service activities include development of a prototype into a production
model, and following the product into the field, maintaining and analyzing records of failure,
maintenance procedures, safety problems, or other performance problems.




1-6. What conditions must be met to guarantee a reliability of 100 percent?

Solution

A designer must recognize at the outset that there is no way to specify a set of conditions that will guarantee a
reliability of 100%. There will always be a finite probability of failure.




1-7. Distinguish between fail safe design and safe life design, and explain the concept of inspectability, upon which
they both depend.

Solution

(Ref 1.5) Fail safe design is implemented by providing redundant load paths in a structure so that if failure of a
primary structural member occurs, a secondary member is capable of carrying the load on an emergency basis until
the primary structural failure is detected and repaired.

Safe life design is implemented by carefully selecting a large enough safety factor and establishing inspection
intervals to assure that the stress levels, the potential flaw size, and the governing failure strength levels combine to
give crack growth rate slow enough to assure crack detection before the crack reaches its critical size.

Both fail safe and safe life design depend on regularly scheduled inspections of all potential critical points. This
implies that critical point locations must be identified, unfettered inspection access to the critical points must be
designed into the structure from the beginning (inspectability), appropriate inspection intervals must be established
(usually on a statistical basis), and a schedule must be established and executed to assure proper and timely
inspections.



1-8. Iteration often plays a very important role in determining the material, shape, and size of a proposed machine
part. Briefly explain the concept of iteration, and give an example of a design scenario that may require an iterative
process to find a solution.

Solution

A dictionary definition of iteration is “to do again and again.” In he mechanical design context, this may imply the
initial selection of a material, shape, and size for a machine part, with the “hope” that functional performance
specifications can be met and that strength, life, and safety goals will, at the same time be achieved. Then,
examining the “hope” through the use of applicable engineering models, make changes in the initial selection of
material, shape or size that will improve the part’s ability to meet the specified goals, and repeat the process (iterate)
until the goals are met.

For example, assume a stepped shaft needs to be designed for a newly proposed machine. Neither the material, the
shape, nor the size are known at the outset. The loads, torques, speed, and bearing support locations are initially
known. The iteration steps for such a case might include:

(1) Select (assume) a potential material.

(2) Establish a coordinate system and make a stick-sketch free-body diagram of the shaft,
showing all known forces and moment and their locations.

(3) Make a first-iteration conceptual sketch of the proposed shaft.

(4)  Using appropriate shaft design equations, calculate tentative diameters for each stepped
section of the shaft.

(5) By incorporating basic guidelines for creating shape and size, transform the first-iteration
sketch into a more detailed second-iteration sketch that includes transition geometry from one
step to another, shoulders, fillets, and other features.

(6) Analyze the second-iteration shaft making appropriate changes (iterations) in material (to
meet specified strength, stiffness, or corrosion resistance specifications), changes in shape (to
alleviate stress concentrations, reduce weight, or provide for component retention), and
changes in size (to reduce stress or deflection, or eliminate interference).

(7) Continue iterations until a satisfactory design configuration has been achieved

A more specific example of the design iteration process is discussed in Example 8-1.



1-9. Write a short paragraph defining the term “simultaneous engineering” or “concurrent engineering”.

Solution

“Simultaneous” , or “concurrent” engineering is a technique for organizing and displaying information and
knowledge about all design-related issues during the life cycle of a product, from the time marketing goals are
established to the time the product is shipped. The technique depends upon an iterative computer system that allows
on-line review and rapid update of the current design configuration by any member of the product design team, at
any time, giving “simultaneous” access to the most current design configuration to all members. Properly executed,
this approach prevents the need for costly “re-designs” by incorporating requirements of down-stream processes
early in the preliminary design stage.



1-10. Briefly describe the nature of codes and standards, and summarize the circumstances under which their use
should be considered by a designer.

Solution

(Ref. 1.9) Codes are usually legally binding documents, compiled by a governing agency, that are aimed at
protecting the general welfare of its constituents and preventing loss of life, injury, or property damage. Codes tell
the user what to do and when to do it.

Standards are consensus-based documents, formulated through a cooperative effort among industrial organizations
and other interested parties, that define good practices in a particular field. Standards are usually regarded as
recommendations to the user for how to do the task covered by the standard.

A designer should consider using applicable codes and standards in every case. If codes are not adhered to, a

designer and their company may be exposed to litigation. If standards are not used, cost penalties, lack of
interchangeability, and loss of market share may result and overall performance may be compromised as well.
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1-11. Define what is meant be ethics in the field of engineering.

Solution

Ethics and morality are formulations of what we ought to do and how we ought to behave, as we practice
engineering. Engineering designers have a special responsibility for ethical behavior because the health and welfare
of the public often hangs on the quality, reliability, and safety of their designs.
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1-12. Explain what is meant by an ethical dilemma.

Solution
An ethical dilemma is a situation that exists whenever moral reasons or considerations can be offered to support two

or more opposing courses of action. An ethical dilemma is different from an ethical issue, which is a general
scenario involving moral principles.
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1-13.%* A young engineer, having worked in a multinational engineering company for about five years, has been
assigned the task of negotiating a large construction contract with a country where it is generally accepted business
practice, and totally legal under the country’s laws, to give substantial gifts to government officials in order to obtain
contracts. In fact, without such a gift, contracts are rarely awarded. This presents an ethical dilemma for the young
engineer because the practice is illegal in the United States, and clearly violates the NSPE Code of Ethics for
Engineers [see Code Section 5(b) documented in the appendix]. The dilemma is that while the gift-giving practice is
unacceptable and illegal in the United States, it is totally proper and legal in the country seeking the services. A
friend, who works for a different firm doing business is the same country, suggests that the dilemma may be solved
by subcontracting with a local firm based in the country, and letting the local firm handle gift giving. He reasoned
that he and his company were not party to the practice of gift giving, and therefore were not acting unethically. The
local firm was acting ethically as well, since they were abiding by the practices and laws of hat country. Is this a
way out of the dilemma?

Solution

This appears to be exactly what some U.S. firms do on a routine basis. If you think it is a solution to the ethical
dilemma posed, reexamine section 5 (b) of the NSPE Code shown in the appendix. It begins, “Engineers shall not
offer, give, solicit, or receive, either directly or indirectly, ....”. Clearly, the use of a subcontractor in the proposed
manner is indirectly giving the gift. The practice is not ethical.
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1-14.* Two young engineering graduate students received their Ph.D. degrees from a major university at about the
same time. Both sought faculty positions elsewhere, and they were successful in receiving faculty appointments at
two different major universities. Both knew that to receive tenure they would be required to author articles for
publication in scholarly and technical journals.

Engineer A, while a graduate student, had developed a research paper that was never published, but he
believed that it would form a sound basis for an excellent journal article. He discussed his idea with his friend,
Engineer B, and they agreed to collaborate in developing the article. Engineer A, the principal author, rewrote the
earlier paper, bringing it up to date. Engineer B’s contributions were minimal. Engineer A agreed to include
Engineer B’s name as co-author of the article as a favor in order to enhance Engineer B’s chances of obtaining
tenure. The article was ultimately accepter and published in a referred journal.

a. Was it ethical for Engineer B to accept credit for development of the article?
b. Was it ethical for Engineer A to include Engineer B as co-author of the article?

Solution

(a) Although young faculty members are typically placed under great pressure to “publish or perish”, Engineer B’s
contribution to the article is stated to be minimal, and therefore seeking credit for an article that they did not author
tends to deceive the faculty tenure committee charged with the responsibility of reviewing his professional progress.
Section 111.3.C of the Code (see appendix) reads, in part, “... such articles shall not imply credit to the author for
work performed by others.” Thus, accepting co-authorship of the paper, to which his contribution was minimal, is at
odds with academic honesty, professional integrity, and the Code of Ethics . Engineer B’s action in doing so is not
ethical.

(b) Engineer A’s agreement to include Engineer B as co-author as a favor, in order to enhance Engineer B’s
chances of obtaining tenure, compromises Engineer A’s honesty and integrity. He is professionally diminished by
this action. Collaborative efforts should produce a high quality product worthy of joint authorship, and should not
merely be a means by which engineering faculty expand their list of achievements. Engineer A’s action is not
ethical.
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1-15. If you were given the responsibility for calculating the stresses in a newly proposed “Mars Lander,” what
system of units would you probably choose? Explain.

Solution

The best choice would be an absolute system of units, such as the SI system. Because the mass is the base unit and
not dependent upon local gravity.
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1-16. Explain hoe the lessons-learned strategy might be applied to the NASA mission failure experienced while
attempting to land the Mars Climate Orbiter on the Martian surface in September 1999. The failure event is briefly
described in footnote 31 to the first paragraph of 1.14.

Solution

As noted in footnote 31, the mission failure was caused by poor communication between two separate engineering
teams, each involved in determining the spacecraft’s course. One team was using U.S units and the other team was
using metric units. Apparently units were omitted from the numerical data, errors were made in assuming what
system of units should be associated with the data, and, as a result, data in U.S. units were substituted directly into
metric-based thrust equations, later embedded in the orbiter’s guidance software.

As discussed in 1.7, the lessons-learned strategy may be implemented by making an organized effort to observe in-
action procedures, analyze them in after-action reviews, distill the reviews into lessons learned, and disseminate the
lessons learned so the same mistakes are not repeated.

In the case of the Mars Climate Orbiter, little effort was required to define the overall problem: the Orbiter was lost.
A review by NASA resulted in discovery of the incomplete units used in performing the Orbiter’s guidance
software. A proper next curse of action would be to define ways of reducing or preventing the possibility of using
inconsistent units in making performance calculations. Perhaps by a requirement to always attach units explicitly to
numerical data. Perhaps by an agreement that would bind all parties to use of a single agreed-upon system of units.
Perhaps by mandating an independent quality assurance review of all inter-group data transmission. Whatever
remedial actions are decided upon, to be effective, must be conveyed to all groups involved, and others that may be
vulnerable to error caused by the use of inconsistent units.
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1-17. A special payload package is to be delivered to the surface of the moon. A prototype of the package,
developed, constructed, and tested near Boston, has been determined to have a mass of 23.4 kg.

a. Estimate the weight of the package in newtons, as measured near Boston.
b. Estimate the weight of the package in newtons on the surface of the moon, if g,,,,, =17.0 m/s? at the

landing site.
c. Reexpress the weights in pounds.

Solution

The weight of the package near Boston and on the moon are

229.6 N
W, =F =ma=(23.4kg)(9.81m/s?) =2296 N=—-"""_"_=5161b
Boston ( g)( ) 4448 N/Ib
39.8N
W =F=ma=(23.4kg)(L.70 m/s®’)=39.8 N=——""_-8.951b
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1-18. Laboratory crash tests of automobiles occupied by instrumented anthropomorphic dummies are routinely
conducted by the automotive industry. If you were assigned the task of estimating the force in newtons at the mass
center of the dummy, assuming it to be a rigid body, what would be your force prediction if a head-on crash
deceleration pulse of 60 g’s (g’s are multiples of the standard acceleration of gravity) is to be applied to the dummy?
The nominal weight of the dummy is 150 pounds.

Solution

W _ (150 Ib)(4448 D) _ o

g 9.81 m/s?
F = ma = (68 kg)(9.81 m/s-g)(60 g) = 40 kN
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1-19. Convert a shaft diameter of 2.25 inches into mm.

Solution

D =2.25in(25.4 mm/in) =57.2 mm
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1-20. Convert a gear-reducer input torque of 20,000 in-1b to N-m.

Solution

0.1138 N-m

T, =(20,000 in-lb
o = )( in-b

): 2276 N-m
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1-21. Convert a tensile bending stress of 869 MPa to psi.

Solution

1 psi
6.895x10~° MPa

o, = (876 MPa)[ ) ~ 127,050 psi
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1-22.  Itis being proposed to use a standard W10x 45 (wide-flange) section for each of four column supports for
an elevated holding tank. (See Appendix Table A.3 for symbol interpretation and section properties.) What would be

the cross-sectional area in mm? of such a column cross section?

Solution

Using Appending Table A-3 and Table 1.4

2
m] — 8580.6 mm?

In

Ay =(133 inz)[
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1-23. What is the smallest standard equal-leg angle-section that would have a cross-sectional area at least as large as
the W10x 45 section of problem 1-22? (From Table A.3, the W10x 45 section has a cross-sectional area of

13.31in%))

Solution

Fora W10x45, A=13.3in?. From Appendix Table A-6, the minimum area, A, for a structural equal-leg angle

section requires that nothing smaller than L8><8><1% be used.
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Chapter 2

2-1. In the context of machine design, explain what is meant by the terms failure and failure mode.

Solution

Mechanical failure may be defined as any change in the size, shape, or material properties of a structure,
machine, or machine part that renders it incapable of satisfactorily performing its intended function.

Failure mode may be defined as the physical process or processes that take place or combine their effects to
produce failure.
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2-2. Distinguish the difference between high-cycle fatigue and low-cycle fatigue, giving the characteristics of
each.

Solution

High-cycle fatigue is the domain of cyclic loading for which strain cycles are largely elastic, stresses
relatively low, and cyclic lives are long.

Low-cycle fatigue is the domain of cyclic loading for which strain cycles have a significant plastic
component, stresses are relatively high, and cyclic lives are short.
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2-3. Describe the usual consequences of surface fatigue.

Solution

Surface Fatigue is as failure phenomenon usually resulting from rolling surfaces in contact, in which
cracking, pitting, and spalling occur. The cyclic Hertz contact stresses induce subsurface cyclic shearing
stresses that initiate subsurface fatigue nuclei. Subsequently, the fatigue nuclei propagate, first parallel to the
surface then direct to the surface to produce dislodged particles and surface pits. The operational results may
include vibration, noise, and/or heat generation. This failure mode is common in bearings, gear teeth, cams,
and other similar applications.
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2-4. Compare and contrast ductile rupture and brittle fracture.

Solution

Brittle Fracture manifests itself as the very rapid propagation of a crack, causing separation of the stressed
body into two or more pieces after little or no plastic deformation. In polycrystalline metals the fracture
proceeds along cleavage planes within each crystal, giving the fracture surface a granular appearance.

Ductile rupture, in contrast, takes place as a slowly developing separation following extensive plastic

deformation. Ductile rupture proceeds by slow crack growth induced by the formation and coalescence of
voids, giving a dull and fibrous appearance to the fracture surface.
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2-5. Carefully define the terms creep, creep rupture, and stress rupture, citing the similarities that relate
these three failure modes and the differences that distinguish them from one another.

Solution

Creep is the progressive accumulation of plastic strain, under stress, at elevated temperature, over a period of
time.

Creep Rupture is an extension of the creep process to the limiting condition where the part separates into two
pieces.

Stress Rupture is the rupture termination of a creep process in which steady-state creep has never been
reached.

28



2-6. Give a definition for fretting, and distinguish among the related failure phenomena of fretting fatigue,
fretting wear, and fretting corrosion.

Solution

Fretting is a combined mechanical and chemical action in which the contacting surfaces of two solid bodies
are pressed together by a normal force and are caused to execute oscillatory sliding relative motion, wherein
the magnitude of normal force is great enough and the amplitude of oscillatory motion is small enough to
significantly restrict the flow of fretting debris away from the originating site. Related failure phenomena
include accelerated fatigue failure, called Fretting-Fatigue, loss of proper fit or significant change in
dimensions, called Fretting wear, and corrosive surface damage, called Fretting-corrosion.
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2-7. Give a definition of wear failure and list the major subcategories of wear.

Solution

Wear failure may be defined as the undesired cumulative change in dimensions brought about by the gradual
removal of discrete particles from contacting surfaces in motion (usually sliding) until dimensional changes
interfere with the ability of the part to satisfactorily perform its intended function. The major subcategories of

wear are:

(@) Adhesive wear (d) Surface fatigue wear (g9) Impact wear
(b) Abrasive wear (e) Deformation wear
(c) Corrosive wear (f) Fretting wear
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2-8. Give a definition for corrosion failure, and list the major subcategories of corrosion.

Solution

Corrosion failure is said to occur when a machine part is rendered incapable of performing its intended
function because of the undesired deterioration of a material through chemical or electrochemical interaction
with the environment, or destruction of materials by means other than purely mechanical action. The major

subcategories of corrosion are:

(@) Direct chemical attack (e)
(b) Galvanic corrosion )]
(c) Crevice corrosion (9)
(d) Pitting corrosion (h)

Intergranular corrosion (i) Hydrogen damage
Selective leaching (i) Biological corrosion
Erosion corrosion (k) Stress corrosion cracking

Cavitation corrosion
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2-9. Describe what is meant by a synergistic failure mode, give three examples, and for each example
describe how synergistic interaction proceeds.

Solution

Synergistic failure modes are characterized as a combination of different failure modes which result in a
failure more serious than that associated with either constituent failure mode. Three examples are

1. Corrosion wear; a combination failure mode in which the hard, abrasive corrosion product
accelerates wear, and the wear-removal of “protective” corrosion layers tends to accelerate
corrosion.

2. Corrosion Fatigue; a combination failure mode in which corrosion-produced surface pits and
fissures act as stress raisers that accelerate fatigue, and the cyclic strains tend to “crack” the brittle
corrosion layers to allow a to atmospheric penetration and accelerated rates of corrosion.

3. Combined Creep and Fatigue; a combination failure mode in which details of the synergistic
interaction are not well understood but data support the premise that the failure mode is
synergistic.
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2-10. Taking a passenger automobile as an example of an engineering system, list all failure modes you think
might be significant, and indicate where in the auto you think each failure mode might be active.

Solution

A list of potential failure modes, with possible locations might include, but not be limited to

Possible Failure Mode
Brinnelling
High-cycle fatigue
Impact fatigue
Surface fatigue
Corrosion fatigue
Fretting fatigue
Direct chemical attack (corrosion)
Crevice corrosion
Cavitation corrosion
Adhesive wear
Corrosion-wear
Fretting wear
Thermal relaxation
Galling seizure
Buckling

Possible Location
Bearings, cams. gears
Connecting rods, shafts, gears, springs, belts
Cylinder heads, valve seats, shock absorbers
Bearings, cams, gears
Springs, driveshaft
Universal joints, bearing pads, rocker arm bearings
Body panels, frame, suspension components
Body panels, joints, frame joints
Water pump
Piston rings, valve lifters, bearings, cams, gears, brakes
Brakes, suspension components
Universal joints, rocker arm bearings
Engine head bolts, exhaust manifold bolts
Nuts on bolts, piston rings, bearings, valve guides, hinges
Body panels, hood, springs
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2-11. For each of the following applications, list three of the more likely failure modes, describing why each
might be expected: (high-performance automotive racing engine, (b) pressure vessel for commercial power
plant, (c) domestic washing machine, (d) rotary lawn mower, (€) manure spreader, (f) 15-inch oscillating fan.

Solution

(@  High-performance automotive engine:

1. High cycle fatigue; high speed, high force, light weight.

2. Adhesive wear; high sliding velocity, high contact pressure, and elevated temperature.

3. Galling and seizure; high sliding velocity, high contact pressure, elevated temperature,
potential lubricant breakdown.

(b)  Pressure vessel for commercial power plant:

1. Thermal relaxation; closure bolts lose preload to violate pressure seal.

2. Stress corrosion; impurities in feed water, elevated temperature and pressure.

3. Brittle fracture; thick sections, high pressure, growing flaw size due to stress corrosion
cracking.

(c)  Domestic washing machine:

1. Surface fatigue; gear teeth, heavy loading, potential impact, many cycles.

2. Direct chemical attack (corrosion); lubricants attack seals and belts, detergent-bearing
water may infiltrate bearings.

3. Impact fatigue; spin-cycle imbalance induces impact, many cycles

(d) Rotating lawn mowers:

1. Impact deformation; high rotary blade speed, objects in blade path.

2. Yielding; high rotary blade speed, immovable object in blade path.

3. High cycle fatigue; high speed, many cycles

()  Manure spreader:

1. Direct chemical attack (corrosion); corrosive fluids and semisolids of barnyard manure,
exposed and constantly abraded surfaces of transport chains, slats, distribution augers,
beaters, and supports.

2. Abrasive wear; mixture of manure, dirt and sand, constant sliding between mixture and
surfaces, minimal lubrication.

3. High-cycle fatigue; high speeds, many cycles

(f)  Fifteen-inch oscillation electric fan:

1. Adhesive/abrasive wear; minimal lubrication, high rotary bearing speed, many cycles

2. Force-induced elastic deformation; rotary blade elastic deformation.

3. Impact wear; reversing drive linkage, high forces, many cycles.
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2-12. In atension test of a steel specimen having a 6-mm-by-23-mm rectangular net cross section, a gage
length of 20 mm was used. Test data include the following observations: (1) load at the onset of yielding was
37.8 kN, (2) ultimate load was 65.4 kN, (3) rupture load was 52 kN, (4) total deformation in the gage length
at 18 kN load was 112 um . Determine the following:

a. Nominal yield strength
b.  Nominal ultimate strength
c. Modulus of elasticity

Solution

Given: 1,=20cm, P, =52kN, P,, =37.8kN, R, =65.4kN, (Al) =112 um

P=18 kN

_Pp_378 kN

a) S —_— = =252 MPa

® P A, 6(25) mm?

(0) 5, -2 - B4 sz =436 MPa
A, 6(25) mm

© E_Cme __ (18/150) kN

_=214GPa
18 kN (112><103/200) mm

35



2-13. A tension test on a 0.505-inch diameter specimen of circular Load, Ib Elongation, in
cross section was performed, and the data shown were recorded 1000 0.0003
during the test. 2000 0.0007
3000 0.0009
a. Plot the engineering stress-strain curve for the material. 4000 0.0012
b. Determine the nominal yield strength. 5000 0.0014
c. Determine the nominal ultimate strength. 6000 0.0020
d. Determine the approximate modulus of elasticity. 7000 0.0040
e. Using the available data and the stress-strain curve, make 8000 0.0850
your best guess as to what type of material the specimen was 9000 0.150
manufactured form. 10.000 0'250
f.  Estimate the axially applied tensile load that would 11’000 0'520
correspond to yielding of a 2-inch diameter bar of the same : :
material.
g. Estimate the axially applied load that would be required to
produce ductile rupture of the 2-inch bar.
h. Estimate the axial spring rate of the 2-inch bar if it is 2 feet
long.
Solution
@ P 4P P (kip) o (ksi) AL (in) & (uinfin)
oOo=—=—2=
A,  7(0.505) 1 5 0.0003 150
2 10 0.0007 350
AL AL 3 15 0.0009 450
£= =55 05AL 4 20 0.0012 600
5 25 0.0014 900
6 30 0.0020 1000
7 35 0.0040 20,000
8 40 0.0850 43,000
9 45 0.1500 75,000
10 50 0.2500 125,000
11 55 0.5200 260,000
We plot two stress-strain curves using different scales
50 il— i _i_ ’:L- 'l;u.t—ai ksi
40 — 5 B e _
HE | ] AT T T
30 ksi S — — — — 4+ —|——
i e o [ TTTC—
! ! ! o (ks) | S I O O
o (ksi) ‘—‘I————L—'—L_ 30 ] I ] J ) |
20 | | |
I —i_ —i_ u—l——|__|'_‘——l—-—|——|—
—+ 20 ¢+
10 E =30%10°/1000=107° = 30=10 mT'__I_ T T
ST LI T T
[ L LT T
: : = :
0 1000 1300 st 50,000 100,000 150,000 200,000 230,000
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Problem 2.13 (continued)

(b) Using figure (A) we find o, =S, =30 ksi

¥
(c) Using figure (B) we find o; = S,; =55 ksi
(d) From figure (A) we find E =30x10° psi
(e) E =30x10° psi is characteristic of steel

7(2)°

() Py =0ypA =307

=94.25 kip

7(2)? .
(@) Rux =ounh = 55% =172.79 kip

7(2)?

i K AE (30><106)

= =3.93x10° Ib/in
L 2(12)
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2-14. An axially loaded straight bar of circular cross section will fail to perform its design function if the
applied static axial load produces permanent changes in length after the load is removed. The bar is 12.5 mm
in diameter, has a length of 180 cm, and is made from Inconel 601. The axial required for this application is
25 KkN. The operating environment is room-temperature air.

a.  What is the probable governing failure mode?
b.  Would you predict that failure does take place? Explain your logic

Solution

(a) For Inconel 601, from Chapter 3 S,,=35ksi, S, =102 ksi, e=50% in 2in . Since e=50% in2in,
the material is ductile and the failure mode is yielding.

(b) FIPTOl 525,

Gzi_ 4F :4(25X103) ~ 200 MPa

A, zd?  7(0.0125)

FIPTOI 200 >(35, 000)(6.895x10‘3) = 241 . Therefore failure by yielding is not predicted.
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2-15. A 1.25-inch diameter round bar of material was found in the stock room, but it was not clear whether
the material was aluminum, magnesium, or titanium. When a 10-inch length of this bar was tensile-tested in
the laboratory, the force-deflection curve obtained was as shown in Figure P2.15. It is being proposed that a
vertical deflection-critical tensile support rod made of this material, having a 1.128-inch diameter and 7-foot
length, be used to support a static axial load of 8000 pounds. A total deflection of no more than 0.04 inch can
be tolerated.

a. Using your best engineering judgment, and recording your supporting calculations, what type of
material do you believe this to be?

b.  Would you approve the use of this material for the proposed application? Clearly show your analysis
supporting your answer.

Solution

_ AE  z(L25°E 16,000

(a) k ~ 0.123E . From Fig P2.15 k = slope = =8x10°. Equating both
L 4(10) 0.02
0.123E =8x10° = E ~6.5x10° psi
Reviewing Table 3.9, the material is probably magnesium.
(b) For the proposed supportrod o = F = F = 8000 ~0.103"

k [Adej 7(1.128)? \( 6.5x10°
I-rod 4 7(12)

FIPTOI &g =0.1032 (5 ),,,,,, = 0-040. So failure is predicted. Do not use this material.

allo
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2-16. A 304 stainless-steel alloy, annealed, is to be used in a deflection-critical application to make the
support rod for a test package that must be suspended near the bottom of a deep cylindrical cavity. The solid
support rod is to have a diameter of 20 mm and a precisely machined length of 5 m. It is to be vertically
oriented and fixed at the top. The 30 kN test package is to be attached at the bottom, placing the vertical rod

in axial tension. During the test, the rod will experience a temperature increase of 80°C . If the total
deflection at the end of the rod must be limited to a maximum of 8 mm, would you approve the design?

Solution

The potential failure modes include force- and temperature-induced elastic deformation and yielding. From
the material property tables in Chapter 3 we find

S, =586 MPa, S, =241 MPa, w="78.71kN/m®, E =193 GPa  =17.3x10"° m/m/°C,
and e = 60% in 50 mm.

Check first for yielding, and assume the 80°C temperature rise has no effect on material properties. FIPTOI
o=P/A>S,, . The axial force at the fixed end is equal to the applied load plus the weight of the rod.

(0.02)*
P =W +Wpog =30+ 7= |(5)(78.71) =30+0.123 =30.123 kN
pkg

_ 4P 4(30.123)

o=—03p= >-=95.9 MPa
7d®  7(0.02)

Since 95.9 < 241, no yielding is predicted.

The total deformation is a combination of the force-induced ( 8¢ ) and temperature-induced (&7 )
deformations. The total deformation is & = 6g +J; and FIPTOlI 6 >8 mm .

Pl (30.123><103)(5)

T AE (0.3142x10°% ) (193x10°) = 000z484m

F

8 = La(A®)=5(17.3x10"°)(80) = 0.00692 m

0 =0.002484 +0.00692 = 0.0094 m =9.4 mm

Since 9.4 > 8, failure is predicted and therefore you do not approve the design.
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2-17.  Acylindrical 2024-T3 aluminum bar, having a diameter of 25 mm and length of 250 mm is
vertically oriented with a static axial load of 100 kN attached at the bottom.

a. Neglect stress concentrations and determine the maximum normal stress in the bar and identify
where it occurs

b. Determine the elongation of the bar.

c. Assume the temperature of the bar is nominally 20°C when the axial load is applied. Determine the
temperature change that would be required to bring the bar back to its original 250 mm length.

Solution

From Chapter 3 we find E =71 GPa and « = 23.2x10"° m/m/°C

(@) Given the magnitude of the applied load, we can safely assume that the weight of the bar does not
contribute to the axial force in the bar, so the tensile stress is uniform everywhere.

o=AP - 4090 5637 MPa o =203.7 MPa
7d2  7(0.025) —
pL (200x10%)(0.25)
b) Sp=——= =0.000717 m=0717mm & =0.717 mm

AE (20025 /4)(71x10°

(c) To return the bar to its original length & =—-J¢ , where
8r = La(A0)=0.25(232x10"°)(A0) =5.8x10° (10)

~0.000717 _
5.8x107°°

-123.6°C A® =-123.6°C
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2-18. A portion of a tracking radar unit to be used in an antimissile missile defense system is sketched in
Figure P2.18. The radar dish that receives the signals is labled D and is attached by frame members A, B, C,
and E to the tracking structure S. Tracking structure S may be moved angularly in two planes of motion
(azimuthal and elevational) so that the dish D can be aimed at an intruder missile and locked on the target to
follow its trajectory.

Due to the presence of electronic equipment inside the box formed by frame members A, B, C, and
E, the approximate temperature of member E may sometimes reach 200°F while the temperature of member
B is about 150°F . At other times, Members B and E will be about the same temperature. If the temperature

difference between members B and E is 50°F, and joint resistance to bending is negligible, by how many
feet would the line of sight of the radar tracking unit miss the intruder missile if it is 40,000 feet away, and

a. the members are made of steel?
b.  The members are made of aluminum?
c. The members are made of magnesium?

Solution

Elongation of E causes a small angle ¢ relative to the desired line of sight.

Assuming small angles Desiredline
of sight V Actual line
AL, AL [ of sight
S=tan!| ==E |» =—E U e =
( 15 ] 15 E e |
A = Lear® = &= LeaA® _ 20a(50) _ ¢ oo | B | 20m

15 15 4

=
At 40,000 feet is s, = RS = 40,000(66.67a) = 2.67ar x10° 15"

Using Table 3.8 for « gives Part Material a(in/in/°F) Smiss ()
Steel 6.3x10°8 16.8
Aluminum 12.9x10°° 34.4
c magnesium | 16.0x107° 42.7
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2-19. Referring to Figure P2.19, it is absolutely essential that the assembly slab be precisely level before use.
At room temperature, the free unloaded length of the aluminum support bar is 80 inches, the free unloaded
length of the nickel-steel support bar is 40 inches, and the line through A-B is absolutely level before
attaching slab W. If slab W is then attached, and the temperature of the entire system is slowly and uniformly
increased to 150° F above room temperature, determine the magnitude and direction of the vertical
adjustment support “C” that would be required to return slab A-B to a level position. (For material properties,
see Chapter 3)

Solution

PA:PB :W/2:l500, §:§F+5T' §F :% ’51_ = aLA®

I_AD IK
1500(80) .
Op = +(12.9x107)(80)(150
A (7[(0.625)2/4)(10.3><106) ( ) (80)(150) j - |
=0.038+0.1548 = 0.1928"
5y = 1500(40) + (7,6x1076)(4o)(150) =0.0099 +0.0456 = 0.0555"
(;z(o.so)2 /4)(31><106)

AC =8, — 55 =0.1928-0.0555 = 0.1373" |
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2-20. Referring to the pinned mechanism with a lateral spring at point B, shown in Figure 2.5, do the
following:

a. Repeat the derivation leading to (2-23) using the concepts of upsetting moment and resisting
moment, to find an expression for critical load.

b. Use an energy method to again find an expression for critical load in the mechanism of Figure 2.5,
by equating changes in potential energy of vertical force P, to strain energy stored in the spring. (Hint:
Use the first two terms of the series expansion for cos« to approximate cosc .)

c. Compare results of part (a) with results of part (b).

Solution

(@) The value of P, that satisfies the condition that the maximum available resisting moment, M, , exactly
equals the upsetting moment M, or M, = M. From Figure 2.5(c)

M, 20P, £005a=2Pa5 and Mr=(k5)£005a
Lcosa ) 2 2

I((’)‘Tl'com:2(Pa)cr5 = Pcr:(Pa)Cr:%COSa

or small angles cosa ~1, so P, =kL/4

(b) Setting the change in potential energy APE of P, equal to the stored strain energy of the spring, SE, and
noting that

2
APE =P, |2 L Liosa =P,L(1-cose) and SE = 1k62 = Lk[ Lsing
2 2 2 2 \ 2

1. L%a? k’a?

For small anglessina =~ , so SE = K2 =8 A series expansion of cos« is
2 4
cosa=1-2+& .

21 4

062

Using the first 2 terms with P, =(P, ), givesAPE =(P,)_ L|1- 1—7
2 2 2

a kl'a
(Pa),, |_7= 2 P, =kL/4

(c) The results are identical
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2-21. Verify the value of L, =2L for a column fixed at one end and free at the other [see Figure 2.7 (b)] by

writing and solving the proper differential equation for this case, then comparing the result with text equation
(2-35).

Solution

2
Start with EI %z—M , where M = (M, ) = P,v(x) . Defining
X

k? =P, /El resultsin, d?v/dx®+k?v=0

The general solution to this isv = Acos(kx)+ Bsin (kx) . The boundary condition v(0) =0 gives

0=A(1) = A=0 and the boundary condition dv/dx=0atx =L gives 0=Bcos(kL). The non-

trivial solution for this is
kL = 7z /2 . Therefore

2 2 2
k=" and | — =P, /El or T iL or PcrzﬂEI:”EI
2L 2L 2 El (Le)z (2|_)2
Therefore L, =2L
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2-22. A solid cylindrical steel bar is 50 mm in diameter and 4 meters long. If both ends are pinned, estimate
the axial load required to cause the bar to buckle.

Solution

P, = z2El /2. From the data, E = 207 GPa, | = 7(0.05)*/64=0.307x10° m*, L,=L=4m

7 (207 x10° )(0.307 x10*6)
P, = —39.2 kN P, =39.2 kN
(4) S
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2-23. If the same amount of material used in the steel bar of problem 2-22 had been formed into a hollow
cylindrical bar of the same length and supported at the ends in the same way, what would the critical buckling
load be if the tube wall thickness were (a) 6 mm, (b) 3 mm, and (c) 1.5 mm. What conclusion do you draw
from these results?

Solution

7 (207x10°) 1
Py =—————~1.217x10" (1)
(4)

For a solid rod with a 50 mm diameter A= 7;(0.05)2 /4=0.001963 m?. Fora
hollow cross section with a mean diameter D,

2 2
A= ”(D" b ) = ;z[ Do~ b j( Do + D, j = 7Dt =0.01963 = D, =0.000625/t
4 2 2
t(m) Dy, (M) D, (M) D; (m) I (m*) Por (kN)
0.006 0.1042 0.1072 0.1012 1.333x10°° 170
0.003 0.2083 0.2098 0.2068 | 5324x10°° 679.9
0.0015 0.4167 0.41745 | 0.41595 | 21.31x10°° 2721

The critical buckling load can be dramatically increased by moving material away from the center of the cross
section (increasing the area moment of inertia).
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2-24. If the solid cylindrical bar of problem 2-22 were fixed at both ends, estimate the axial load required to
cause the bar to buckle.

Solution

P, =7?El /1%, E=207 GPa, | = (0.05)*/64 = 0.307x10° m*, L, =05L=2m

72 (207 xlOg)(O.307 ><10_6)
P, = . —156.8 kN P, =156.8 kN
(2 -
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2-25. A steel pipe 4 inches in outside diameter , and having 0.226-inch wall thickness, is used to support a
tank of water weighing 10,000 pounds when full. The pipe is set vertically in a heavy, rigid concrete base, as
shown in Figure P2.25. The pipe material is AISI 1060 cold-drawn steel with S, = 90,000 psi and

Syp = 70,000 psi . A safety factor of 2 on load is desired.

a.

Derive a design equation for the maximum safe height H above the ground level that should be used

for this application. (Use the approximation | ~ zD%/8 .)

b.  Compute a numerical value for (H ) . .
pipe
c. Would compressive yielding be a problem in this design? Justify your answer.
Solution
2 3
7 El 7Dt
a =2, P = , = ,n=2, H=L
@ L TR 3
p, 7E(7D’t/8) (zD)Et (zD)’ Et
n 2(2H) 64H 64P,
(47)’ (30x10°)(0.226)
b) H. . = =144.99 H. . =145in =12.08 ft
®) Hinan 64(10,000) mex
S,A S Dt 70,000 4)(0.226
© (Py), =2"= w (7DY) _ (70,000)(7(4)0.226)) _ 035 49 (P ), =99,400
P /4 n 2 2 YP /g4

P; =10,000 << (Pyp )d =99,400 Compressive yielding is not a problem

49



2-26. Instead of using a steel pipe for supporting the tank of problem 2-25, it is being proposed to use a
W6 x 25 wide-flange beam for the support, and a plastic line to carry the water. (See Appendix Table A.3 for

beam properties.) Compute the maximum safe height (Hmax )beam above ground level that this beam could

support and compare the result with the height (Hmax) =145 inches, as determined in problem 2-25.

pipe

Solution

L, = 2L . From Table A-3 for a W6 x 25 wide flange beam, 1,, =53 in*, Iy, =17 in*, W =25 Ib/ft,
A=73in?

2Bl 7 (30x10°)(17) _ 1258.4x10°

T (2L)? (2H)? H?2

cr

P, 1258.4x10°  629.2x10°
n 2H? H?

f629.2x106 .
H = (Hmax )beam = W = 2508 |n

The chosen beam allows for a greater height.

P, = =10,000
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2-27. A steel pipe is to be used to support a water tank using a configuration similar to the one shown in
Figure P2.25. It is being proposed that the height H be chosen so that failure of the supporting pipe by
yielding and by buckling would be equally likely. Derive an equation for calculating the height H,, , that

would satisfy the suggested proposal.

Solution

2 2 2
L, =2L=2H, Pcr:” E;: V4 E|2:7Z' E2|
(L)* (2H)® 4H

For yielding P,, =S, A. For both to be equally likely to occur, P, =P,

2
ZHEzl =SyA
Setting H = H,
H o _ |#°El
44, A
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2-28. A steel pipe made of AISI 1020 cold-drawn material (see Table 3.3) is to have an outside diameter of
D =15 cm, and is to support a tank of liquid fertilizer weighing 31 kN when full, at a height of 11 meters
above ground level, as shown in Figure P2.28. The pipe is set vertically in a heavy rigid concrete base. A
safety factor of n=2.5on load is desired.

a. Using the approximation | ~ (ﬂ'DSt)/S, derive a design equation, using symbols only, for the

minimum pipe wall thickness that should be used for this application. Write the equation explicitly for t
as a function of H, W, n, and D, defining all symbols used.

b. Compute the numerical value for thickness t.

c. Would compressive yielding be a problem in this design? Justify your answer.

Solution

2 2 3
(@ L=2L=2H , P, =2l ZEL  ADU Py
(L)>  4H 8 n
" Z2El _ﬂ'zE(ﬂ'Dst/B)_(ﬂ-D)g Et - _32nH2W
4nH? 4nH? 32nH? "™ (zD)’E
2 3
() t=ty, = 32(2'5)(131) B1x107) _ 4 01385 m t,, ~1.4 cm
(0.157)" (207 x10%)

(c) From Table 3.3, for 1020 CD steel, S, ~352 MPa. Using n=2.5, o4 =S,,/n=140.8 MPa

- 7(DZ-D?) ) 7((0.15)% - (0.1223)%) o23MPa

W AN 4(31x10%)
Oact = K =

Ot <0y - NoYyielding is expected
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2-29. A connecting link for the cutter head of a rotating mining machine is shown in Figure P2.29. The
material is to be AISI1020 steel, annealed. The maximum axial load that will be applied is service is
Prax =10,000 pounds (compressive) along the centerline, as indicated in Figure P2.29. If a safety factor of at

least 1.8 is desired, determine whether the link would be acceptable as shown.

Solution

From Table 3.3 S, =43 ksi, S, =57 ksi. Because of the combination of end conditions and section moduli,

it is not obvious whether buckling is more critical about axis a-a or c-c in the figure. Therefore buckling about
both axes is checked, as well as compressive yielding.

S S
Yielding: nj,=—"—=—%* _= 43,000 _215
Cactual (Pmax /A)  [10,000/(1.0)(0.5)]

Since this is larger than the specified 1.8, yielding is not expected

2 2 6
Buckling: P, =2 E; -z (30”20 ) 296x10° ('—ZJ
(Le) (Le) [y

Section a-a: 1, , =1(0.5)°/12=0.0104 in*. For both ends fixed, (L), =0.5(20) =10 in

(Py),_, =296x10° [O(fol)g“} =30,784 Ib
P
Nyg_a = ( = )a—a = 30,784 ~ 3.08
P.ax 10,000

Section ¢-¢: 1., =05(1.0)*/12=0.04167 in*, (L), =20 in

(Py). . =296x10° [0'04167J =30,835 Ib
a-a (20)2
o (R, 30835 00

®2" p._ 10,000

The link is acceptable
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2-30. A steel wire of 2.5-mm-diameter is subjected to torsion. The material has a tensile strength of
Syp =690 MPa and the wire is 3 m long. Determine the torque at which it will fail and identify the failure

mode.

Solution
Both buckling and yielding are possible failure modes. From the given data, E = 207 GPa,
| = 7(0.0025)*/64 =1.917x107*2 m*. J =21 =3.834x107? m*.

27(207x10° )(1.917 x107?
(M), = Z”LE' 2| )3( )=0.831 N-m

Checking for yielding

3 (s../2)d ((690/2)x10°%)(3.834x1072
(M‘)ypzry; :( yglz) :( 0'02525 )=1.058 N-m

Therefore, buckling governs and

M =(M,), =0.831N-m (M,),, =0.831N-m
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2-31. A sheet-steel cantilevered bracket of rectangular cross section 0.125 inch by 4.0 inch is fixed at one end
with the 4.0-inch dimension vertical. The bracket, which is 14 inches long, must support a vertical load, P, at
the free end.

a.  What is the maximum load that should be placed on the bracket if a safety factor of 2 is desired? The
steel has a yield strength of 45,000 psi.
b. Identify the governing failure mode.

Solution

K /GJ.El,

@ Py= 12

Where G =11.5x10° psi, E =30x10° psi, L =14 in, K = 4.013 (from Table 2.2)
dt® ~ 4.0(0.125)° _dt®  4.0(0.125)°

Jo = ~2.60x107 | I, ~6.51x107
3 3 12 12
4.013\/(11.5><106)(2.60><10_3)(30><106)(6.51x10_4)
Por = 5 =494.76 ~ 495 Ib
(14)
For yielding
Mc (PpL)(d/2) 6P, L
% =TT 3 T2
| bd? /12 bd
S,,hd? 2
Settlng oy = Syp! Pyp — yp _ 45, 000(0125)(4) —10711b
6L 6(14)
(b) P, <Py, sobuckling governs failure and Py = P, /n=495/2=247.5 Py =24751b
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2-32. A hollow tube is to be subjected to torsion. Derive an equation that gives the length of this tube for
which failure is equally likely by yielding or by elastic instability.

Solution
Start with (M) . = and note that for yielding z,, == Setting Ty, =(M,),,
Ccr
typd  27El
a Ler
. ED,
Setting J =21 and a=D,/2 Lcr:%
T
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2-33. A steel cantilever beam 1.5 m long with a rectangular cross section 25 mm wide by 75 mm deep is
made of steel that has a yield strength of S,; =276 MPa . Neglecting the weight of the beam, from what

height, h, would a 60 N weight have to be dropped on the free end of the beam to produce yielding. Neglect
stress concentrations.

Solution

From the given data, E = 207 GPa, | =(0.025)(0.075)* /12 = 0.879x10™® m*. The potential energy for the
falling mass is EE =W (h+ Y, ), Where y,., = FL®/3EI (from Table 4.1, case 8).

The maximum stress, at the fixed end, is o, =Mc/1 = FLc/I . Combining this with the equation for y,,,,

results in
y (&j il IR (G s
max I )| 3E c 3E 3Ec

. L2 . .
The potential energy can now be expressed as EE =W (h 4 Fmax J . The strain energy stored in the beam

3Ec
at maximum deflection is

2-33. (continued)

0+F Omax| V[ Tmax > | Ol IL
SE = Fave Ymax = e Ymax = T — = max2
2 2Lc 3Ec 6EC

Equating the potential and strain energy

O e S
3Ec 6EC’

Solving this quadratic and considering only the positive root

_ W[, [, 6nEl
O-max—T + +W|_3

To produce yielding o, =S, =276 MPa . Noting that W =60 N, L=1.5m, E =207 GPa,
¢=0.075/2=0.0375m, and | =0.879x10° m* results in

6h(207x10°)(0.879x10°°
276x106=w 1+, 1+ ( I - ) = 70.88=1/1+5391.6h
0.879x10 60(L.5)

Solving for h, h=hg, =0.932m hy, =932 mm
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2-34. A utility cart used to transport hardware from a warehouse to a loading dock travels along smooth,
level rails. At the end of the line the cart runs into a cylindrical steel bumper bar of 3.0-inch diameter and 10-
inch length, as shown in Figure P2.34. Assuming a perfectly “square” contact, frictionless wheels, and
negligibly small bar mass, do the following:

a. Use the energy method to derive an expression for maximum stress in the bar.
b. Calculate the numerical value of the compressive stress induced in the bar if the weight of the loaded
cart is 1100 Ib and it strikes the bumper bar at a velocity of 5 miles per hour.

Solution
2
(@) The kinetic energy of a moving mass is KE =%Mv2 = V;—V
g
I:max = O_maxA and Omax = Egmax = EYmax L = Ymax = O_maxL/ E

The strain energy stored in the bar at max deflection is

0+F Cmax A\ OmaxL ) Chax AL
SE:Favgymax:( Zmaxjymax:( m;x ][ méx j: m2axE

Equating the strain energy to the kinetic energy
2 2 2
W_V:O-LXAL or Omax = ﬂ E
29 2E Al gL
(b) v=>5mph =88in/sec, E=30x10° Ib/in?, W /A =1100/7.07 =155.59 Ib/in?, g =386.4 in/sec?,
L=10in

5\ (88 in/sec)” (30x10° Ibrin?) _ _
Omax = (155.59 Ib/in ) - 5 - =96.7 ksi Ormax = 96.7 Ksi
(386.4 in/sec)(10 in) _—
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2-35. If the impact factor, the bracketed expression in (2-57) and (2-58), is generalized, it may be deduced

that for any elastic structure the impact factor is given by [1+\/1+(2h/ Y max _static )J . Using this concept,

estimate the reduction in stress level that would be experienced by the beam of Example 2.7 if it were
supported by a spring with k =390 Ib/in at each end of the simple supports, instead of being rigidly
supported.

Solution

The spring rate, by definition, is k = F / y . For the beam of Example 2.7 with F =W /2,

_w__ 1’ _
(ySt )spring ok 2(390) o

Using identical springs at each end, the beam does not rotate about its centroid, so the equation above
is valid at the beam’s midspan as well as at the support springs. The midspan beam-deflection due to

its own elasticity is

we 78(60)°

- = 0.0052"
48(30x106)£1"0(1?;®J

( Yst )beam =

(Yst ot = (Yst Dpring (Yt Jpea = 0-10+0.0052 = 0.1052"

total

Using a drop height of h=6.57" from Example 2.7, and the expression for impact factor (IF) given in

the problem statement
[ 2(6.57)
o 1+,/1+
with { 0.1052 } 1222

= =518 =0.238
O max [ 2(6.57) :
i 1+, 1+
without |: 0.0052 :|

Thus, if spring are added as suggested, the maximum impact stress in the beam at midspan is reduced
by approximately 24% of the stress when there are no springs.
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2-36. A tow truck weighing 22 kN is equipped with a 25 mm nominal diameter tow rope that has a metallic
cross-sectional area of 260 mm?, an elastic modulus of 83 GPa, and an ultimate strength of S, =1380 MPa .

The 7-m-long tow rope is attached to a wrecked vehicle and the driver tries to jerk the wrecked vehicle out of
a ditch. If the tow truck is traveling at 8 km/hr when the slack in the rope is taken up, and the wrecked vehicle
does not move, would you expect the rope to break?

Solution

ol AL 1 Wy

From (2-53) we can write SE = . The Kinetic energy is EE = 5 Mv? = ST Equating
g

r

Wv2  oha AL

oo |EwW
29 2E, max gAL

(83x10°)(22x10° )| (8000/3600)? |
_ — 711 MPa
(9.81)(0.260x10°)(7)

O-max

Since 711 < 1380, the rope would not be expected to break
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2-37. An automobile that weighs 14.3 kN is traveling toward a large tree in such a way that the bumper
contacts the tree at the bumper’s midspan between supports that are 1.25 m apart. If the bumper is made of
steel with a rectangular cross section 1.3 cm thick by 13.0 xm deep, and it may be regarded as simply
supported, how fact would the automobile need to be traveling to just reach the 1725 MPa yield strength of
the bumper material?

Solution
3
For the beam loaded as shown y = FL and o ey _Me _(F/2)L72)c _ FLe
48E | | 41
y — (FL) L2 _ 4|O-max L2 _ O-maxLZ
M 4(12)El c 4(12)El 12Ec

The strain energy stored in the bar at max deflection is

sE=F.y —[9*F), _(F o2 | (MO N[ Tmax > | [ Thax L]
g Tmax 2 )7™ 2 )| 12Ec 2Lc 12Ec 6EC?

2
The Kinetic energy is EE = % Mv? = VZ—V . Equating
g

W2 [ omall ) e [IL
29 6EC? c V3EW

Setting oe = Sy, and substituting

3
[(0'13)52'013) ](1.25)(9.81)
6
V= 172510 =152 v=152m/s
(0-013) 3(207><109)(14.3><103) —
2
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2-38. a. If there is zero clearance between the bearing and the journal (at point B in Figure P2.38), find the

maximum stress in the steel connecting rod A-B, due to impact, when the 200-psi pressure is suddenly
applied.

b. Find the stress in the same connecting rod due to impact if the bearing at B has a 0.005-inch

clearance spece between bearing and journal and the 200-psi pressure is suddenly applied. Compare
the results with aprt (a) and draw conclusions.

Solution

(a) The connecting rod is a solid cylindrical pinned-end two-force
member made of steel. The axial force acting on the rod is

p(zd?/4) 200(7(3.0)2/4
K (ra74) 200 ):1504Ib
cos 20° cos 20° cos 20°

F, 1504 .
(Omax )suddentt = 2—2—= ZW = 3008 psi

applied Arod

(b) 1fa0.005 inch clearance space exists in the bearing we can use
equation (2-57) with the drop height being h = 0.005"

1504 2(0.005)(30x10°)(1.0) | .
(o 0005 = 1.0 [1+\/ (1504)(7) ] = 9533 pel

Since (Gmax )y_g.005 ! (Tmax )Z%%?i%rélt ~3.17, the new bearing would produce an impact factor of about 2, while

the worn bearing would produce an impact factor of about 6.4. A clearance space of only a few thousandths
of an inch more than triples the connecting rod stress due to impact.
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2-39. Clearly define the terms creep, creep rupture, and stress rupture, citing the similarities that relate these
failure modes and the differences that distinguish them from one another.

Solution

Creep is the progressive accumulation of plastic strain, under stress, at elevated temperature, over a period of
time.

Creep Rupture is an extension of the creep process to the limiting condition where the part separates into two
pieces.

Stress Rupture is the rupture termination of a creep process in which steady-state creep has never been
reached.

All three failure modes are functions of stress, temperature, and time. Creep is a deformation based failure
mode as contrasted to creep rupture and stress rupture, which are rupture based.
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2-40. List and describe several methods that have been used for extrapolating short-term creep data to long-
term applications. What are the potential pitfalls in using these methods?

Solution
Three common methods of extrapolating short-time creep data to long-term applications are:

a. Abridged method: Test are conducted at several different stress levels, all at a constant
temperature, plotting creep strain versus time up to the test duration, then extrapolating
each constant-stress to the longer design life.

b. Mechanical acceleration: Test stress levels are significantly higher than the design
application stress level. Stress is plotted versus time for several different creep strains, all at
a constant temperature, up to the test duration, then extrapolating each constant-strain curve
to the longer design life.

c. Thermal acceleration: Test temperatures are significantly higher than the design application
temperature. Stress is then plotted versus time for several different temperatures, up to the
test duration, the extrapolating each constant-temperature curve to the longer design life.
The creep strain is constant for the whole plot.

The primary pitfall in all such creep-prediction extrapolation procedures is that the onset of stress rupture may
intervene to invalidate the creep extrapolation by virtue of rupture
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2-41. A new high-temperature alloy is to be used for a 3-mm diameter tensile support member for an
impact-sensitive instrument weighing 900 N. The instrument and its support are to be enclosed in a test vessel

for 3000 hours at 871°C . A laboratory test on the new alloy used a 3 mm diameter specimen loaded by a 900

N weight. The specimen failed due to stress rupture after 100 hours at 982°C . Based on the test results,
determine whether the tensile support is adequate for the application.

Solution

Using equation (2-69) for a stress rupture failure assessment we note that this equation is expressed in terms

of °F instead of °C. Expressing the temperatures as 871°C =1600°F and 982°C =1800°F . In addition, we
need the test and required times, which are t =100 hr and t,., =3000 hr . For the lab test, (2-109) results

in
P= (@ + 460)(20 +logy, t) = (1800 + 460)(20 +logyg 100) =49,720.

For the application at 871°C =1600°F; 49,720 =(1600+ 460)(20 +1093 tapp ) =ty =13,675 hrs

Since 13,675 > 3000, the support is adequate.
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2-42. From the data plotted in Figure P2.42, evaluate the constants B and N of (2-72) for the material tested.

Solution

In order to evaluate the constants B and N in equation (2-71) for the material given we can approximate (2-

71)as 6 ~ AS/ At~ Bo™ , where AS/At may be evaluated by estimating the slopes of the steady-state

branches of constant stress curves shown below in Fig.1. These strains are then plotted for each stress level
using a log-log coordinate system (Fig. 2). The slope of the “best fit” curve through the six data points can

then be approximated as N ~5.36, 50 & ~ B>
- 3.0
;;',A"J' )ﬁ’ljg /[ 055
0.10 =~ 71 =
Eﬁ“‘?g 500 psi | 20
3750 psi [T0.33 £)
0.08 ‘Lé =
ff /3/ - _F_,ar"'I?rE-:])Upsi '“E 1.0 N #35.36
= N e p
E0.06 |8 =l el R o
2 L 4 | 1| 4500psi =06
= 004 b J, o A N S 2 04
oo LN _______—o———:—_""—_f_d—s_:ﬂﬂpsi L E
0.02 | 02
40 80 120 160 200 240 280 0.1 - . : s 10t
Time (hours) Fiz 1 10° ) e
# e sy Fig2
The approximation for B is obtained form the data using a table
o (psi) 5 (infin/hr) B=5/0>%
3700 0.10 7 49 %102
4500 0.17 4.46x1074
5200 0.33 3.99x10°4
5750 0.55 388x102
6500 1.39 5.01x107%
7200 2.47 5.22x107%
Average 50x107%

5~ (5.0><10_21)O'5'

36
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2-43. Give a definition of wear failure and list the major subcategories of wear.

Solution

Wear failure may be defined as the undesired cumulative change in dimensions brought about by the gradual
removal of discrete particles from contacting surfaces in motion (usually sliding) until the dimensional
changes interfere with the ability of the machine part to satisfactorily perform its intended function. The
major subcategories of wear are:

(a) adhesive wear (b) abrasive wear (c) corrosive wear

(d) surface fatigue wear (e) deformation wear () fretting wear
(g) impact wear
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2-44. One part of the mechanism in a new metering device for a seed-packaging machine is shown in Figure
P2.44. Both the slider and the rotating wheel are to be made of stainless steel, with a yield strength of 275
MPa. The contact area of the shoe is 25 cm long by 1.3 cm wide. The rotating wheel is 25 cm in diameter and
rotates at 30 rpm. The spring is set to exert a constant normal force at the wearing interface of 70 N.

a. If no more that 1.5-mm wear of the shoe surface can be tolerated, and no lubricant may be used,
estimate the maintenance interval in operating hours between shoe replacements. (Assume that adhesive
wear predominates.)

b. Would this be an acceptable maintenance interval?

c. If it were possible to use a lubrication system that would provide “excellent” lubrication to the contact
interface, estimate the potential improvement in maintenance interval, and comment on its acceptability.
d. Suggest other ways to improve the design from the standpoint of reducing wear rate.

Solution

(a) Since no lubrication is permitted, adhesive wear is the probable governing failure mode. From equation
(2-77) dagy = Kagh P - From Table 2.6, k = 211072, so from (2-76)

-3
dog = Ko 2207 548410 and P :[ﬂszzo.zw MPa
9Sy, ) 9(275x10°) A, ) (0.025)(0.013)
Setting dadh = dmax—allowable
L = o _ 0.0015 =822.7~823m
Kan P (0.215x10° ) (8.48x102)
At n =30 rpm the failure time is, (tf )m = IB = (0225:;’(30) =34.9 min = 0.58 hr (tf )m =0.58 hr
zbn T\V.

(b) Maintenance every Y% hour is clearly unacceptable

(c) From Table 2.7 the ration of “k” values for “excellent lubrication” to “unlubricated” like metal-on-
metal is

R_2x10° - 107

- S 10 - =4x107* to 2x107*
5x10™ 5x10~

Since t; is proportional to 1/R

(t¢ Jexcetrene = (2500 to 50,000)(t )

lubrication

~ 60 days to 3.3 years

unlubricated

(tf )exce”em = 60 days to 3.3 years

lubrication

Thus, “excellent lubrication” would improve the required maintenance interval.

(d) A good possibility would be to select a better combination of material pairs, e.g. Table 17.2 indicates that
unlubricated non-metal on metal should be about 1000 times better on maintenance interval.
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2-45. In a cinder block manufacturing plant the blocks are transported from the casting machine on rail carts
supported by ball-bearing-equipped wheels. The carts are currently being stacked six blocks high, and
bearings must be replaced on a 1-year maintenance schedule because of ball-bearing failures. To increase
production, a second casting machine is to be installed, but it is desired to use the same rail cart transport
system with the same number of carts, merely stacking blocks 12 high. What bearing-replacement interval
would you predict might mecessary under this new procedure?

Solution

)3.33

Using equation (2-82), bearing life in revolutions, N, is N :(C/P . The basic load rating, C , does not

change since the bearings are the same in both cases. The ratio of new bearing life for the double load, N,p,
to the original bearing life under the original load, Np, is

sz _(Cj3.33 (Cj3.33 Ni
Ny 2P P 10

Since the original life was about 1 year (365 days), the replacement interval under double load would be
about 37 days, or about 1 month.
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2-46. Give the definition of corrosion failure and list the major subcategories of corrosion.

Solution

Corrosion failure is said to occur when a machine part is rendered incapable of performing its intended
function because of the undesired deformation of a material through chemical or electrochemical interaction
with the environment, or the destruction of material by means other than purely mechanical action. The major
subcategories of corrosion are:

(@) Direct chemical attack (b) Galvanic corrosion (c) Crevice corrosion
(d) Pitting corrosion (e) Intergranular corrosion (f) Selective leaching
(g) Erosion corrosion (h) Cavitation corrosion (i) Hydrogen damage
(j) Biological corrosion (k) Stress corrosion cracking
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2-47. Itis planned to thread a bronze valve body into a cast-iron pump housing to provide a bleed port.

a. From the corrosion standpoint, would it be better to make a bronze valve body as large as possible or
as small as possible?
b.  Would it be more effective to put an anticorrosion coating on the bronze valve or on the cast-iron

housing?

c. What other steps might be taken to minimize corrosion of the unit?

Solution

The probable governing corrosion failure mode is galvanic corrosion. From Table 3.14, it may be found that
the bronze valve body is cathodic with respect to the cast iron pump housing.

(a)
(b)

(©)

It is desirable to have a small ratio of cathodic area to anode area to reduce the corrosion rate.
Hence the bronze valve body should be as small as possible

When coating only one of the two dissimilar metals (in electrical contact) for corrosion
protection, the more cathodic (more corrosion-resistant) metal should be coated. Therefoire, the
bronze valve should get the anti-corrosion coating.

Selection of alternative materials (closer together in the galvanic series) or use of cathodic
protection (e.g. , use of a sacrificial anode such as Mg) might be tried.
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2-48. Give a definition for fretting and distinguish among the failure phenomena of fretting fatigue, fretting
wear, and fretting corrosion.

Solution

Fretting is a combined mechanical and chemical action in which the contacting surfaces of two solid bodies
pressed together by a normal force and are caused to execute oscillatory sliding relative motion, wherein the
magnitude of the normal force is great enough and the amplitude of the oscillatory motion is small enough to
significantly restrict the flow of fretting debris away form the originating site. Related failure phenomena
include accelerated fatigue failure, called fretting-fatigue, loss of proper fit or change in dimensions, called
fretting-wear, and corrosive surface damage, called fretting-corrosion.
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2-49. List the variables thought to be of primary importance in fretting-related failure phenomena.

Solution
The eight variables though to be of primary importance in the fretting process are:

(1)  Magnitude of the relative sliding motion.

(2)  Contact pressure, both magnitude and distribution.

(3)  State of stress in the region of the contacting surfaces, including magnitude, direction, and
variation with time.

(4)  Number of fretting cycles accumulated.

(5) Material composition and surface condition of each member of the fretting pair.

(6)  Frequency spectrum of the cyclic fretting motion.

(7)  Temperature in the fretting region.

(8)  Environment surrounding the fretting pair.
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2-50. Fretting corrosion has proved to be a problem in aircraft splines of steel on steel. Suggest one or more
measures that might be taken to improve the resistance of the splined joint to fretting corrosion.

Solution
Measures that might improve the steel-on-steel aircraft spline fretting problem would include:
(1) Change one member to a different material.
(2) Plate one of the members with an appropriate material.
(3) Introduce an appropriate lubricant.
(4) Utilize a solid shear layer between members in contact.

In practice, it has been found that silver plating and use of molybdenum disulfide (a solid lubricant)
significantly improves fretting resistance of aircraft splines.
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2-51. List several basic principles that are generally effective in minimizing or preventing fretting.

Solution

Basic principles that are generally effective in minimizing or preventing fretting include:

(1)  Separation of contacting surfaces.

(2)  Elimination of relative sliding motion.

(3)  Superposition of a large unidirectional motion.

(4)  Provision for a residual compressive stress field at the fretting surface.

(5)  Judicious selection of material pairs.

(6)  Use of interposed low-modulus shim material or plating; e.g. silver or lead.
(7)  Use of solid lubricant coatings; e.g. moly-disulfide.

(8)  Use of surface grooves or roughening in some cases.
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2-52. Define the term “design-allowable stress,” write an equation for design-allowable stress, define each
term in the equation, and tell how or where a designer would find values for each term.

Solution

The “design-allowable stress” is the largest stress that a designer is willing to permit at the most critical point
in the machine or structure under consideration. An equation for design allowable stress may be written as
04 = S /Ny

where o, = Design allowable stress
Sem =  Failure strength of the selected material corresponding to the governing failure mode
n, = Selected design factor of safety

The design allowable stress is calculated form oy = Sg,, /ny . The failure strength is found in tables of

Uniaxial strength data by selecting a table that corresponds to the governing failure mode(s) identified for the
application. The design factor of safety is selected by the designer, either based on experience, by using

empirical calculation as shown in (2-87) or (2-88), or by using code-mandated values as discussed in section
1.9.
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2-53. Your company desires to market a new type of lawn mower with an “instant-stop” cutting blade (For
more details about the application, see Example 16.1). You are responsible for the design of the
actuation lever. The application may be regarded as “average” in most respects, but the material
properties are known a little better than for the average design case, the need to consider threat to
human health is regarded as strong, maintenance is probably a little poorer than average, and it is
extremely important to keep the cost low. Calculate a proper safety factor for this application, clearly
showing details of your calculation.

Solution

Based on the information given, the rating number assigned to each of the eight rating factors might be

Selected Rating

Rating Factor Number (RN)

1. Accuracy of loads knowledge 0
2. Accuracy of stress calculations 0
3. Accuracy of strength knowledge -1
4. Need to conserve -4
5. Seriousness of failure consequences +3
6. Quality of manufacture 0
7. Condition of operation 0
8. Quality of inspection/maintenance +1

Summation, t= -1

(10-1)°

Since t>—-6, ny =1+ =18 ng =18

100
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2-54. You are asked to review the design of the shafts and gears that are to be used in the drive mechanism
for a new stair-climbing wheelchair for quadripelegic users. The wheelchair production rate is about 1200 per
year. From the design standpoint the application may be regarded as “average” in many respects, but the need
to consider threat to human health is regarded as extremely important, the loads are known in a little better
than for the average design project, there is a strong desire to keep weight down, and a moderate desire to
keep the cost down. Calculate a proper safety factor for this application, clearly showing all details of how
you arrive at your answer.

Solution

Based on the information given, the rating number assigned to each of the eight rating factors might be

Selected Rating

Rating Factor Number (RN)
1. Accuracy of loads knowledge -1
2. Accuracy of stress calculations 0
3. Accuracy of strength knowledge 0
4. Need to conserve -3
5. Seriousness of failure consequences +4
6. Quality of manufacture 0
7. Condition of operation 0
8. Quality of inspection/maintenance 0
Summation, t= 0
_ (10-0)°
Since t>-6, ng =1+———=2.0 ng =20
100 _
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2-55. A novel design is being proposed for a new attachment link for a chair lift at a ski resort. Carefully
assessing the potential importance of all pertinent “rating factors,” calculate a proper safety factor for this
application, clearly showing the details of how you arrive at your answer.

Solution

For this case we must assess the importance of each rating factor in the chair lift attachment link. The
judgment of this designer is that loads are probably known a little better than for the average design case,
threat to human health is a strong consideration, and there is a moderate need to keep coast low. Based on
these judgments, the rating numbers assigned to each of the eight rating factor might be

Selected Rating

Rating Factor Number (RN)
1. Accuracy of loads knowledge -1
2. Accuracy of stress calculations 0
3. Accuracy of strength knowledge 0
4. Need to conserve -2
5. Seriousness of failure consequences +3
6. Quality of manufacture 0
7. Condition of operation 0
8. Quality of inspection/maintenance 0
Summation , t = 0
_ (10-0)°
Since t>-6, ng =1+———=2.0 ng =2.0
100 _

79



2-56. Stainless-steel alloy AM 350 has been tentatively selected for an application in which a cylindrical

tension rod must support an axial load of 10,000 Ib. The ambient temperature is known to be 800°F . If a
design factor of safety of 1.8 has been selected for the application, what minimum diameter should the
tension rod have? (Hint; Examine “materials properties” charts given in Chapter 3.)

Solution

The most probable failure mode is yielding. For the specified material we find (Syp )800 =186 ksi . With
ng =18, o4 =186/1.8 =103.33 ksi .

4P 4(10,000)

Od =Oact = =
7d? 7d?

=103,330 = d?=0.12322 d =0.351"
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2-57. 1t has been discovered that for the application described in problem 5-56, an additional design
constraint must be satisfied, namely, the creep strain rate must not exceed 1x10~® in/in/hr at the ambient

temperature of 800°F . To meet the 1.8 safety factor requirement for this case, what minimum diameter
should the tension rod have? (Hint: Examine “materials properties” charts given in Chapter 3.)

Solution

The most probable failure mode is creep strain in which & =10 in/in/hr . For the specified material we find
(Ser—max )800 =91ksi . With ny =1.8, o4 =91/1.8 ~50.56 Ksi .
4P 4(10,000)

?_ 42 =50,560 = d?=0.2518 d = 0.50"
V4 Ve

Og = Oqct =
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2-58. A design stress of oy =220 MPa is being suggested by a colleague for an application in which 2024-
T4 aluminum alloy has tentatively been selected. It is desired to use a design safety factor of ny =1.5. The

application involves a solid cylindrical shaft continuously rotating at 120 revolutions per hour, simply
supported at the ends, and loaded at midspan, downward, by a static load P. To meet design objectives, the
aluminum shaft must operate without failure for 10 years. For 2024-T4 aluminum S, = 469 MPa and

Syp =331 MPa . In addition, we know that at 107 cycles, the fatigue failure strength is Syogor =158 MPa.
Would you agree with your colleague’s suggestion that oy =220 MPa ? Explain.

Solution

The shaft is loaded as a simply supported beam with a midspan load that produces bending in the shaft. Since
the shaft is rotating slowly, any given point on the surface cycles form a maximum tensile bending stress,
through zero to a minimum compressive bending stress, then back through zero to the maximum tensile
bending stress. This repeats for every shaft rotation. Therefore both yielding and fatigue are potential
governing failure modes, and should be investigated. For yielding, using (6-2), the yield based design stress is

oy =i=%=221 MPa

For fatigue, the shaft rotating at 120 revolutions per hour over the 10 year design life produces

Ny =(120re—vj 24" | 365925 (10 yaers) =1.05x10" cycles
hr day year

Knowing that S _, - =158 MPa, the fatigue based design stress may be calculated as

04 =S,,_yy /Ng =158/1.5=105 MPa

The fatigue design stress (o—d ) =105 MPa is much lower than the yielding design stress

fatigue

(o—d )yield = 221 MPa and should be the one considered for analysis. The suggestion is not valid.
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2-59. A 304 stainless-steel alloy, annealed, has been used in a deflection-critical application to make the
support rod for a test package suspended near the bottom of a deep cylindrical cavity. The solid stainless-steel
support rod has a diameter of 0.750 inch and a precisely manufactured length of 16.000 feet. It is oriented
vertically and fixed at the top end. The 6000-pound test package is attached at the bottom, placing the vertical
bar in axial tension. The vertical deflection at the end of the bar must not exceed a maximum od 0.250 inch.
Calculate the existing safety factor.

Solution

The existing factor of safety is based on deflection and n., = Syji0w / O _max » Where Sgyow = 0.25".

Pox  Poaxl  4Pnml  4(6000)(16x12)

5. - ~0.093"
T (AE/L) AE zd?E 7(0.75)" (28x10°

025

Nox =5 o = 26827 Ny = 2.7
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2-60. A very wide sheet of aluminum is found to have a single-edge crack of length a =25 mm . The
material has a critical stress intensity factor (a fracture mechanics measure of the material’s strength) of

K\ =27 MPa+/m . For the sheet in question, the stress intensity factor is defined as K, =1.122¢+/7a ,
where the expected stress is o = 70 MPa . Estimate the existing factor of safety, defined as n, = K. /K .

Solution

The existing safety factor may be defined asn,, = P, / P, .From text Table 2.1, for a pinned--pinned
condition, L, =L =4 m. The critical load is

4
72 (207><109) #(0.05)"
72El 64
Per = > = > =39.2 kN
Le 4
Therefore  n,, = % =174 Ny =1.74
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2-61. A vertical solid cylindrical steel bar is 50 mm in diameter an 4 meters long. Both ends are pinned and
the top pinned end is vertically guided, as for the case shown in Figure 2.7 (a). If a centered static load of
P =22.5 kN must be supported at the top end of the vertical bar, what is the existing safety factor?

Solution

- 1g 1 6 3
f==>"x% —£[13.895><10 J—397><10 cycles

n i=1

- 1 : A2 1 : AN2
Gz\/(ﬁjz(xi_ﬂ) =\/£mj2(xi—y) =11.67x10° ~11.7x10° cycles

i=1

& =11.7x10° cycles
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2-62. A supplier of 4340 steel material has shipped enough material to fabricate 100 fatigue-critical tension
links for an aircraft application. As required in the purchase contract, the vendor has conducted uniaxial
fatigue tests on random specimens drawn from the lot of material, and has certified that the mean fatigue

strength corresponding to a life of 10° cycles is 470 MPa , that the standard deviation on strength
corresponding to 10° cycles is 24 MPa , and that the distribution of strength at a life of 10° cycles is normal.

a. Estimate the number of tensions links in the lot of 100 that may be expected to fail when operated
for 10° cycles if the applied operating stress amplitude is less than 415 MPa .

b. Estimate the number of tensions links that may be expected to fail when operated for 10° cycles at
stress levels between 415 MPa and 470 MPa..

Solution

Since the fatigue strength distribution corresponding to a life of 10° cycles has been certified to be normal,
Table 2.9 is applicable.

a. The standard normal variable X at a stress amplitude of 415 MPa is

415-470
Xag == ——=-229

From Table 6.1 with reference to Figure 6.2 (b) and (6-13)
F(X)a1s = P{X < X415} =1_P{X < X415}
SO[F(X)eo ]y 500 =1-[F(X)g0]4_, ,o =1—0.9890 = 0.011. Therefore, the number of links in a lot of

100 that would fail at 415 MPa would be

n =100(0.011) =1.1 links

fail<10°
b. Ataload level of 470 MPa

470470
24

X0 = 0

From Table 6.1, F(X),;, = 0.500 and the number of failed links is n
Therefore, if operating between 415 MPa and 470 MPa

106 =100(0.50) =50.

n =100(0.500—-0.011) = 48.9 ~ 49 links

fail<10°
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2-63. A lot of 4340 steel material has been certified by the supplier to have fatigue strength distribution at a
life of 10 cycles of

d
S =N (68,000 psi, 2500 psi)

N=10’

Experimental data collection over a long period of time indicates that operating stress levels at the critical
point of an important component with a design life of 10’ cycles have a stress distribution of

d
oop =N (60,000 psi, 5000 psi)

Estimate the reliability level corresponding to a life of 10 cycles for this component.

Solution

Xy = 08.000-60,000 _ .

(2500)? +(5000)°

Since R=1-P and F(X)x;us =1—F(X)X:1_43v

R=0.924

Therefore, you would expect 92.4% of all installations to function properly, but about 18 of every 1000
installations would be expected top fail earlier than 10’ cycles.
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2-64. Itis known that a titanium alloy has a standard deviation on fatigue strength of 20 MPa over a wide
range of strength levels and cyclic lives. Also, experimental data have been collected that indicate that the

operating stress levels at the critical point of an important component with a design life of 5x10 cycles have
a stress distribution of

d
Oop =N (345 MPa, 28 MPa)

If a reliability level of “five-times” (i.e., R =0.99999) is desired, what mean strength would the titanium
alloy need to have?

Solution

Assuming a normal fatigue strength distribution at 5x10” cycles, Table 6.1 is appropriate. For R =0.99999,
we find X =4.27. Using (6.17)

X =427=—_Hs"Hs

(65)° +(6, )"
fis = 8.213(65 ) +(6, ) + i, = 4.27)(20) +(28)° +345 = 492

(/}5 )required =492 MPa
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2-65. Using the tabulated normal cumulative distribution function given in Table 2.9, verify the strength
reliability factors given in Table P2.67, knowing that the Table P2.65 is based on k, =1-0.08X.

Table P2.65 Strength Reliability Factors

Reliability Corresponding Standard | Strength Reliability
R (%) Normal Value X Factor k,
90 1.282 0.90
95 1.645 0.87
99 2.326 0.81
99.9 3.090 0.75
99.995 3.891 0.69

Solution

Using R =90, with X =1.828, we get k, =1-0.08(1.282) = 0.8974 ~ 0.90
Similarly, for R =95, with X =1.645, we get k, =1-0.08(1.645) = 0.868 ~ 0.87
Similar results are obtained for R=99 and R =99.9

Finally, for R =99.995, with X =3.981, we get k, =1-0.08(3.891) = 0.6887 ~ 0.69
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2-66. The main support shaft of a new 90 kN hoist design project is under consideration. Clearly, if the shaft
fails, the falling 90 kN payload could inflict serious injuries, or even fatalities. Suggest a design-acceptable
probability of failure for this potentially hazardous failure scenario.

Solution

Referring to the reliability-based design goals, established primarily on the basis of industry experience,
presented in Table 2.9, for “Hazardous” applications, a design-acceptable probability of failure would be

P{ failure} =10~ t0 10
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2-67. A series-parallel arrangement of components consists of a series of n subsystems, each having p
parallel components. If the probability of failure for each component is g, what would be the system
reliability for the series-parallel arrangement described?

Solution

A series-parallel arrangement of components is a series of sub-systems, each having components in parallel.
For a subsystem of p parallel components, with each component having reliability (l—q) , the equivalent

subsystem reliability Ry, is Ry =1-q P For a series of n such subsystems, each having reliability Req » the
system reliability is
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2-68. A series-parallel arrangement of components consists of p parallel subsystems, each having n
components in series. If the probability of failure for each component is g, what would be the system
reliability for the series-parallel arrangement described?

Solution
A parallel-series arrangement of components is a parallel set of sub-systems, each having components in

series. For a subsystem of n series components, with each component having reliability (1— q), the

equivalent subsystem reliability Ry, is Ry = (1— q)n . For a set of p such subsystems, each having reliability

Req » the system reliability is

Rps =1-[1-Ryq |" :1—[1—(1—q)”}p
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2-69. A critical subsystem for an aircraft flap actuation assembly consists of three components in series, each
having a component reliability of 0.90.

a.  What would the subsystem reliability be for this critical three-component subsystem?

b. If asecond (redundant) subsystem of exactly the same series arrangement were placed in parallel
with the first subsystem, would you expect significant improvements in reliability? How much?

c. Ifathird redundant subsystem of exactly the same arrangement as the first two were also placed in
parallel with them, would you expect significant additional improvements in reliability? Make any
comments you think appropriate.

d. Can you think of any reason why several redundant subsystems should not be used in this
application in order to improve reliability?

Solution

(@) Using (2-102), the subsystem reliability would be

Ry = (1-0.10)° =0.729

(b) Using the results of (a) and (2-105), R, = 1—(1—0.729)2 ~ 0.927 . Thus, the addition of a parallel

(redundant) subsystem improves the system reliability from 0.729 to 0.927 (27% improvement).

(c) Using the results of (a) and (2-105), Ry3 = 1—(1—0.729)3 ~0.980 . Thus, the addition of a parallel

(redundant) subsystem improves the system reliability from 0.927 to 0.980 (6% improvement). It is obvious
that adding redundancy improves reliability, but the benefit diminishes as more systems are added.

(d) Cost and weight penalties grow larger.

93



2-70. A machine assembly of four components may be modeled as a parallel-series arrangement similar to
that shown in Figure 2.18 (d). It has been determined that a system reliability of 95 percent is necessary to
meet design objectives.

a. Considering subsystems A-C and B-D, what subsystems reliability is required to meet the 95 percent
reliability goal of the machine?

b. What component reliabilities would be required for A, B, C, and D to meet the 95 percent reliability
specification for the machine?

Solution

1/2

To meet the 95% goal for system reliability R, = (0.95) ~ 0.975. For subsystem A-C, components A and

C are is series, so
Ry =0.975=R* = R =0.987

The system reliability goal can be met if each component in the parallel-series arrangement specified has a
reliability of at least 0.987.
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Chapter 3

3-1. A newly graduated mechanical engineer has been hired to work on a weight-reduction project to redesign the
clevis connection (see Figure 4.1A) used in the rudder-control linkage of a low-cost high-performance surveillance
drone. This “new hire” has recommended the use of titanium as a candidate material for this application. As her
supervisor, would you accept the recommendation or suggest that she pursue other possibilities?

Solution

Since this is a “redesign” project, the specification statement need only include the newly emphasized specifications.
Therefore, the specification statement may be written as: In addition to the original specifications, the clevis
connection should be low-cost and capable of high production rates. The “special needs” column of Table 3.1 may
be filled in as shown

Potential Application Requirement Special Need?
Strength/volume ratio

Strength/weight ratio

Strength at elevated temperature

Long term dimensional stability at elevated temperature
Dimensional stability under temperature fluctuation
Stiffness

Ductility

Ability to store energy elastically

9.  Ability to dissipate energy plastically

10.  Wear resistance

11. Resistance to chemically reactive environment

12.  Resistance to nuclear radiation environment

13  Desire to use specific manufacturing process Yes
14.  Cost constraints Yes
15.  Procurement time constraints

Nk~ wNE

Special needs have been identified for 2 items. From Table 3.2, we identify the corresponding evaluation indices as
follows;

Special Need Evaluation Index
13 Manufacturability Suitability for specific process
14. Cost Cost/unit weight; machinability

Materials data for these indices are given in Tables 3.18 and 3.19. From these two tables we note that for the special
needs identified, titanium is dead-last on machinability index and unit material cost. This translates into high-cost
and low production rate, both of which are at odds with the redesign objective. Other possibilities should be
suggested.
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3-2. Itis desired to select a material for a back-packable truss-type bridge to be carried in small segments by a party
of three when hiking over glacial fields. The purpose of the bridge is to allow the hikers to cross over crevasses of
up to 12 feet wide. Write a specification statement for such a bridge.

Solution

The specification statement for a back-packable bridge might be written as; The bridge should have low weight, low
volume, high static strength, high stiffness, and high corrosive resistance.
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3-3. A very fine tensile support wire is to be used to suspend a 10-1b sensor package from the “roof” of an
experimental combustion chamber operating at a temperature of 850°F . The support wire has a diameter of 0.020
inch. Creep of the support wire is acceptable as long as the creep rate does not exceed 4x10~° in/in/hr . Further,
stress rupture must not occur before at least 2000 hours of operation have elapsed. Propose one or two candidate
materials for the support wire.

Solution

The specification statement for the tensile support wire might be written as; The support wire should have good
strength at elevated temperature, low creep rate and good stress rupture resistance at elevated temperatures. The
“special needs” column of Table 3.1 may be filled in as shown

Potential Application Requirement Special Need?
1. Strength/volume ratio
2. Strength/weight ratio
3. Strength at elevated temperature Yes
4.  Long term dimensional stability at elevated temperature Yes
5.  Dimensional stability under temperature fluctuation
6.  Stiffness
Potential Application Requirement Special Need?
7. Ductility

8.  Ability to store energy elastically

9.  Ability to dissipate energy plastically

10.  Wear resistance

11.  Resistance to chemically reactive environment
12.  Resistance to nuclear radiation environment
13  Desire to use specific manufacturing process
14.  Cost constraints

15.  Procurement time constraints

Special needs have been identified for 2 items. From Table 3.2, we identify the corresponding evaluation indices as
follows;

Special Need Evaluation Index
3. Strength at elevated temperature Strength loss/degree of temperature
4.  Long term dimensional stability at Creep rate at operating temperature

elevated temperature

Based on the 10 Ib tensile force on the support wire and itsd = 0.020" diameter, the tensile stress is

P = 4(;0)2 = 31,830 psi
A 7(0.020)

Materials data for the evaluation indexes above may be found in Tables 3.5, 3.6, and 3.7. Making a short list of
candidate materials from each of these tables, keeping in mind that the stress in the wire must not exceed 31,830 psi,

that the creep rate must not exceed 4x10~° in/in/hr at 850°F , and that stress rupture life must be at least 1000 hr,
the following array may be identified
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Problem 3.3 (cnntinued)

Ultra high strength steel (4340)
Stainless steel (AM 350)
Titanium (Ti-6Al-4V)

For high yield strength at
elevated temperature (Table 3.5)

Stainless steel (AM 350)
Iron-base superalloy (A-286)
Cobalt base superalloy (X-40)

For high stress rupture strength at
elevated temperature (Table 3.6)

Stainless steel (AM 350)

For high creep )
. Chromeium steel (13% Cr)
resistance (Table 3.7)
Manganese steel (17% Mn)

From these three lists, the only materials contained in all of them is AM 350 stainless steel.
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3-4. For an application in which ultimate strength-to-weight ratio is by far the dominant consideration, a colleague
is proposing to use aluminum. Do you concur with his selection, or can you propose a better candidate for the
support wire.

Solution

The specification statement for this simple case might be written as; The part should have a high ultimate strength-
to-weight ratio. The only “special needs” column of Table 3.1 which would contain a “yes” would be item 2, for
which the evaluation index is “ultimate strength/density”. From Table 3.4, there is a short list of candidate materials,
which include

Graphite-epoxy composite, Ultra high strength steel, Titanium

Since aluminum is not in this list, a suggestion to investigate the materials listed above should be made.
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3-5. You have been assigned the task of making a preliminary recommendation for the material to be used in the
bumper of a new ultra-safe crash-resistant automobile. It is very important that the bumper be able to survive the
energy levels associated with low-velocity crashes, without damage to the bumper of the automobile. Even more
important, for high energy levels associated with severe crashes, the bumper should be capable of deforming
plastically over large displacements without rupture, thereby dissipating crash pulse energy to protect the vehicle
occupants. It is anticipated that these new vehicles will be used throughout North America, and during all seasons of
the year. A 10-year design life is desired. Cost is also a very important factor, Propose one or a few candidate
materials suiotable for this application. (Specific alloys need not be designated.)

Solution

The specification statement for the bumper might be written as; The bumper should have good ability to store and
release energy within the elastic range, good ability to absorb and dissipate energy in the plastic range, resistance to
ductile rupture, ability to allow large plastic deformation, high stiffness if possible, good corrosion resistance, and
have a low to modesty cost. The “special needs” column of Table 3.1 may be filled in as shown

Potential Application Requirement Special Need?
1. Strength/volume ratio Yes
2. Strength/weight ratio
3. Strength at elevated temperature
4.  Long term dimensional stability at elevated temperature
5. Dimensional stability under temperature fluctuation
6.  Stiffness Perhaps
7. Ductility Yes
8.  Ability to store energy elastically Yes
9.  Ability to dissipate energy plastically Yes
10.  Wear resistance
11.  Resistance to chemically reactive environment Yes
12.  Resistance to nuclear radiation environment
13  Desire to use specific manufacturing process
14.  Cost constraints Yes
15.  Procurement time constraints

Special needs have been identified for multiple items. From Table 3.2, we identify the corresponding evaluation
indices as follows;

Special Need Evaluation Index
1.  Strength/volume ratio Ultimate or yield strength
6.  Stiffness Modulus of elasticity
7. Ductility Percent elongation in 2”
8.  Ability to store energy elastically Energy/unit volume at yield
9.  Ability to dissipate energy plastically Energy/unit volume at rupture
11.  Resistance to chemically reactive environment Dimensional loss in op. environment
14.  Cost constraints Cost/unit weight and machinability

Materials data for these evaluation indexes may be found in Tables. 3.3, 3.9, 3.10, 3.11, 3.12, 3.14, 3.18, and 3.19.
Making a short list of candidate materials from each of these tables, the following may be established:
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Problem 3.5 (continued)

Ultra-high strength steel
For high strength/vol. | Stainless steel (age-hardened)
(Table 3.3) High carbon steel
Graphite-epoxy composite

Phosphor Bronze
Inconel
Stainless steel
Copper
Silver
Gold
Aluminum
Steel

For high ductility
(Table 3.10)

Inconel
Stainless steel
Phosphor Bronze
Ultra-high strength steel

For high toughness
(Table 3.12)

For corrosion resistance — refer to Table 3.14

Gray cast iron
Low carbon steel
Ultra-high strength steel
Zinc alloy

For low material cost
(Table 3.18)

Tungsten carbide
Titanium carbide
Molybdenum
Steel

For high stiffness
a desire - (Table 3.9)

Ultra-high strength steel
Stainless steel
Titanium
Aluminum
Magnesium
Steel

For high resilience
(Table 3.11)

Gray cast iron
Low carbon steel
Ultra-high strength steel
Zinc alloy

For low material cost
(Table 3.18)

Magnesium alloy
Aluminum alloy
Free machining gsteel
Low carbon steel
Medium carbon steel
Ultra-high strength steel

For good machinability
(Table 3.19)

From this list, no material is common to all. However, except for corrosion resistance, ultra-high strength steel
shows high ratings and carbon steel also has good ratings. Corrosion-resistant coatings can be used with either.
Therefore, it is recommended that plated ultra-high strength steel be selected.
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3-6. A rotor disk to support the turbine blades in a newly designed aircraft gas turbine engine is to operate in a flow
of 1000°F mixture of air and combustion product. The turbine is to rotate at a speed of 40,000 rpm. Clearance
between rotating and stationary parts must be kept as small as possible and must not change very much when the
temperature changes. Disk vibration cannot be tolerated either. Propose one or a few candidate materials for this
operation. (Specific alloys need not be designated.)

Solution

The specification statement for the gas turbine rotor disk might be written as; The rotor disk should be strong, light,
compact, have good high temperature properties, good corrosion resistance, and high stiffness. The “special needs”
column of Table 3.1 may be filled in as shown

Potential Application Requirement Special Need?
1.  Strength/volume ratio Yes
2. Strength/weight ratio Yes
3. Strength at elevated temperature Yes
4.  Long term dimensional stability at elevated temperature Yes
5. Dimensional stability under temperature fluctuation Yes
6.  Stiffness Yes
7. Ductility
8.  Ability to store energy elastically
9.  Ability to dissipate energy plastically
10.  Wear resistance
11.  Resistance to chemically reactive environment Yes
12.  Resistance to nuclear radiation environment
13  Desire to use specific manufacturing process
14.  Cost constraints
15.  Procurement time constraints

Special needs have been identified for multiple items. From Table 3.2, we identify the corresponding evaluation
indices as follows;

Special Need Evaluation Index
1. Strength/volume ratio Ultimate or yield strength
2. Strength/weight ratio Ultimate or yield strength/weight
3. Strength at elevated temperature Strength loss/degree of temperature
4.  Long term dimensional stability at elevated temp. Creep rate at operating temperature
5. Dimensional stability under temperature fluctuation Strain/deg. Of temp. change
6.  Stiffness Modulus of elasticity
11.  Resistance to chemically reactive environment Dimensional loss in op. environment

Materials data for these evaluation indexes may be found in Tables. 3.3, 3.4, 3.5, 3.7, 3.8 3.9, and in a limited way,
in 3.14 (for which the corrosive environment is sea water, not combustion produced in air; corrosion testing will
ultimately be required). Making a short list of candidate materials from each of these tables, the following may be
established:
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Problem 3-6 (continued)

Ultra-high strength steel
Stainless steel (age-hardened)
High carbon steel
Graphite-epoxy composite
Titanium
Ceramic
Nickel based alloy

For high strength/vol.
(Table 3.3)

Ultra-high strength steel

Stainless steel (age-hardened)

For resistance to thermal
weakening (Table 3.5)

Titanium
Titanium carbide
Inconel

Ceramic
Titanium
Gray cast iron
Steel
Stainless steel
Nickel base alloy

For low thermal expansion
(Table 3.8)

For corrosion resistance (no vaild data
are available in this textbook; as a crude
guideline, consult sewater data in Table 3.14

Graphite-epoxy composite
Ultra-high strength steel
Titanium
Stainless steel (age-hardened)
Aluminum

For high strength/weight
(Table 3.4)

Stainless steel (age-hardened)
Chromium steel
Manganese steel

Carbon steel

For creep resistance
(Table 3.7)

Tungsten carbide
Titanium carbide
Molybdenum
Steel
Stainless steel

For high stiffness
(Table 3.9)

Refer directly to Table 3.14;
search out more applicable
corrosion dgata if possible

From these results, only stainless steel and ultra-high strength steel are common to all lists. Ultra-high strength steel

is very low on corrosion resistance. Select stainless steel
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3-7. A material is to be selected for the main landing-gear support for a carrier-based navy airplane. Both weight
and size of the support are important considerations, as well as minimal deflection under normal landing conditions.
The support must also be able to handle impact loading, both under normal landing conditions and under extreme
emergency controlled-crash-landing conditions. Under crash-landing conditions permanent deformations are
acceptable, but separation into pieces is not acceptable. What candidate materials would you suggest for this
application?

Solution

The specification statement for the main landing gear support might be written as; The main landing gear support
should be light, compact, be able to store high impact energy in the elastic regime, to dissipate high impact energy in
the plastic regime without rupture, be stiff, be ductile, and be corrosion resistant in seawater. The “special needs”
column of Table 3.1 may be filled in as shown

Potential Application Requirement Special Need?
1.  Strength/volume ratio Yes
2. Strength/weight ratio Yes
3. Strength at elevated temperature
4. Long term dimensional stability at elevated temperature
5. Dimensional stability under temperature fluctuation
6.  Stiffness Yes
7. Ductility Yes
8.  Ability to store energy elastically Yes
9.  Ability to dissipate energy plastically Yes
10.  Wear resistance
11.  Resistance to chemically reactive environment Yes

12.  Resistance to nuclear radiation environment
13 Desire to use specific manufacturing process
14.  Cost constraints

15.  Procurement time constraints

Special needs have been identified for multiple items. From Table 3.2, we identify the corresponding evaluation
indices as follows;

Special Need Evaluation Index
1. Strength/volume ratio Ultimate or yield strength
2. Strength/weight ratio Ultimate or yield strength/weight
6.  Stiffness Modulus of elasticity
7. Ductility Percent elongation in 2”
8.  Ability to store energy elastically Energy/unit volume at yield
9.  Ability to dissipate energy plastically Energy/unit volume at rupture
11.  Resistance to chemically reactive environment Dimensional loss in op. environment

Materials data for these evaluation indexes may be found in Tables. 3.3, 3.4, 3.9, 3.10, 3.11, 3.12, and 3.14. Making
a short list of candidate materials from each of these tables, the following may be established:

Ultra-high strength steel Graphite-epoxy composite
For high strength/vol | Stainless steel (age-hardened) For high strength/weight | Ultra-high strength steel
(Table 3.3) High carbon steel (Table 3.4) Titanium
Graphite-epoxy composite Stainless steel
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Problem 3-7 (continued)

Tungsten carbide
Titanium carbide
Molybdenum
Steel
Stainless steel

For high stiffness
(Table 3.9)

Ultra-high strength steel
Stainless steel
For high resilience Titanium
(Table 3.11) Aluminum
Magnesium
Steel

For high ductility
(Table 3.10)

For high toughness

(Table 3.12)

For corrosion resistance — refer to Table 3.14

Phosphor Bronze
Inconel
Stainless steel
Copper
Silver
Gold
Aluminum
Steel

Inconel
Stainless steel
Phosphor Bronze
Ultra-high strength steel

Surveying these lists, the candidate materials with best potential appear to be ultra-high strength steel, stainless
steel, or carbon steel, noting that corrosion protective plating would have to be applied for either ultra-high
strength steel or stainless steel. It is recommended that all three materials be investigate more fully.
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3-8. A job shop manager desires to have a rack built for storing random lengths of pipe, angle iron, and other
structural sections. No special considerations have been identified, but the rack should be safe and the cost
should be low. What material would you suggest?

Solution

Based on the recommendation included in step (1) of text section 3.4, because specification information is sketchy,
it is suggested that 1020 steel be tentatively selected because of its good combination of strength, stiffness, ductility,
toughness, availability, cost, and machinability.
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3-9. The preliminary specification statement for a new-concept automotive spring application has been written as

follows:
The spring should be stiff and light.
Using this specification statement as a basis, special needs have been identified form Table 2.1 as items 2

and 6. From Table 3.2, the corresponding performance evaluation indices have been determined to be low density

and light.
With these two indices identified, the project manager has requested a report on materials exhibiting values

of Young’s modulus, E, of more than about 200 GPa and values of density, p, less than about 2 Mg/m?. Using
Figure 3.1, establish a list of candidate materials that met these criteria.

Solution

Based on the recommended use of Figure 3.1, a search pattern is established, as shown below, by marking the
bounds of E >200 GPa and p <2 Mg/m®.

Material candidates within the search region are L_%%UM I

BE and CFRP. These “short-name” identifiers (G=3E/8 " Xab) ©

may be interpreted from Table 3.21 as : > —t
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3-10. By examining Figure 3.3, determine whether the plane strain fracture toughness K,., of common engineering
polymers such as PMMA (Plexiglas) is higher or lower than for engineering ceramics such as silicon carbide (SiC).

Solution

Based on the recommended use of Figure 3.3, boundaries may be marked for the minimum plain strain fracture
toughness for SIC and the maximum plain strain fracture toughness for PMMA, as shown.
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3-11. Itis desired to design a pressure vessel that will leak before it breaks. The reason for this is that the leak can
be easily detected before the onset of rapid crack propagation that might cause an explosion of the pressure vessel
due to brittle behavior. To accomplish the leak-before-break goal, the vessel should be designed so that it can
tolerate a crack having a length, a, at least equal to the wall thickness, t, of the pressure vessel without failure by
rapid crack propagation. A specification statement for design of this thin-walled pressure vessel has been written as
follows:

The pressure vessel should experience slow through-the-thickness crack propagation to cause a leak before
the onset of gross yielding of the pressure vessel wall.

From evaluation of this specification statement using Tables 3.1 and 3.2, the important evaluation indices
have been deduced to be high fracture toughness and high yield strength.

By combining (5-51) and (9-5), keeping in mind the “separable” quality of the materials parameter
f;(M) discussed in Example 3.2, the materials-based performance index for this case has been found to be

K
fy(M) = <=
yp

It is also desired to keep the vessel wall as thin as possible (corresponding to selecting materials with yield strength
as high as possible).

a. Using the Ashby charts shown in Figures 3.1 through 3.6, select tentative material candidates for this
application.

b. Using the rank-ordered-data tables of Table 5.2 and Tables 3.3 through 3.20, select tentative material
candidates for this application.

c. Compare results of parts (a) and (b).

Solution
R R 1000 —_—
(a) Based on the given performance index . _FRACTURE
TOUGHNESS-STRE
SRPEUESS STRENGTH
K OB | B e
fS(M ) -_C _— mc-cu‘.mmv::t:ci/l‘,
Syp s TN i
=] YIELD BEFORE
: oLl
Figure 3.5 may be chosen to mark boundaries based on o
. . - . b Fon parE [
the equation above and the high yield strength materials, g LA
as shown. 3 7| o
Material candidates within the search region are steels,
Cu alloys, and Al alloys. Theses “short-name” identifiers

may be interpreted from Table 3.21 as;

Steels
Copper alloys
Aluminum alloys

| FRACTURE |
[BEFORE YiELD I

(b) For the performance-evaluation indices high fracture ey

toughness and high yield strength, as identified in the STRENGTH, 5 (MPa)
problem statement, materials data for these evaluation
indices may be found in Tables 2.10, 3.3, and 3.12.
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Making a short list of candidate materials from each of these tables, the following array may be established:

_ _ _ A-538 steel 18 Ni maraging steel (300)
For hlgh plaln strain Ti-6Al-4V titanium For h|gh y|e|d Strength A-538 steel
fracture toughness o o
(Table 2.10 D6AC steel (1000°F temp.) (Table 2.10) 4340 steel (500°F temp.)
. 0 (0]
not rank-ordered) 4340 steel (800°F temp.) D6AC steel (1000°F temp.)
18 Ni maraging steel (300)

For high yield strength | Ultra-high strength steel Ni based alloys
(Table 3.3) Stainless steel For high toughness Stainless steel
(Table 3.12) Phosphor Bronze

Ultra-high strength steel

Surveying the four lists, the best candidate materials appear to be ultra-high strength steel and nickel based alloys.

(c) The procedures of (a) and (b) agree upon ultra-high strength steel as a primary candidate. Secondary choices
differ and would require a more detailed comparison.
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Chapter 4

4-1. For the pliers shown in Figure P4.1, construct a complete free-body diagram for the pivot pin. Pay particular
attention to moment equilibrium.

Solution

Referring to section A-A, the pivot pin can be extracted as a separate free body and sketched as shown below.
Following the approach of Example 4-1, it might first be argued that the forces shown as 7, , placed on the pivot-

pin by the two handle-press,
are distributed along bearing : _
contact region “A” at the l. Fos -
top and “B” at the bottom. ‘ . ¥ ¥ ¥ 4+ & 4

Likewise, these forces f "A"

would be distributed around
the half circumference in

F, Divat

each of these locations. The a ’
resultant magnitude of ! FT T T T l" Foi
F 0 May be calculated as Foior o
a
Fpivot = ZF

The effective lines of action for F vt

If these were the only forces on the free body, and if the above assumptions were true, it is clear that the moment
equilibrium requirements would not be satisfied. The question then becomes “what is the source of the
counterbalancing moment, or how should the assumptions be modified to satisfy the equilibrium requirement by
providing a more accurate free body diagram?”

could reasonably be assumed to pass through the mid-length of “A” and “B”.

The question of moment equilibrium complicates the seemingly simple task of constructing a free body diagram.
Additional information may be required to resolve the issue. One argument might be that if both the pivot pin and
the hand-pieces were absolutely rigid, and a small clearance

existed between the pin and the hand-pieces, the pin would tip Foior
slightly, causing the forces F at both “A” and “B” to J, i

pivot
concentrate at the inner edges and become virtually collinear
counter-posing forces in equilibrium as shown. S S

Another argument might be that if the fit between the pivot pin . and
the handle piece were perfect, but elastic deformations were '[ F.

recognized, i

moment

equilibrium might be established by an opposing deflection-based
force couple in one of the hand pieces to support the work piece.
For example, first considering the distributed F,,,, force acting

ivot
along region “B” only, the deflection-based resisting force couple
would be generated as shown. Superposition of region “A”

"B" loading consequences the would result in a complicate force

¥ F ¥ F,... distribution on the free body, but would provide the required
//L/ ° equilibrium.
Fiar_saces

The lesson is that assumptions made when constructing free body
diagrams must be carefully considered.
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4-2. For the bolted bracket assembly shown in Figure P4.2, construct a free-body diagram for each component,
including each bracket-half, the bolts, the washers, and the nuts. Try to give a qualitative indication of relative

magnitudes of force vectors you show,.

Solution
Free body of upper bracket-half: P F
i From bolt heads
iy FERTINNYI
| | |
TTITCTTTTT I Imrrrer  m
I Preload from tightening bolts
Free body diagram of bolt (typical): [
I
From upper
bracket-haf
l lFrmn nut
! Preload from tightening bolts
Free body of lower bracket-half: l l ll ' ; l l l H. l l Hllll l H

7, N\

I 11 il

From lower
bracket-half

Free body diagram of washer (typical):

I
From nut

Free body diagram of nut (typical):

i

I

I

From bolt heads

P
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4-3. For the simple short-shoe block brake shown in Figure P4.3, construct a free-body diagram for the actuating
lever and short block, taken together as the free body.

Solution

Free body diagram of integral shoe and lever: Vo a *

4

N
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4-4. A floor-supported beam or rectangular cross section supports a uniformly distributed load of w Ib/ft over its
full length, and its ends may be regarded as fixed.

a. Construct a complete free-body diagram for the beam.
b. Construct shear and bending moment diagrams for the beam.

Solution

The solution is given in Case 9 of Table 4.1 of the text.

(@) The free-body diagram is a shown

M =M

fied
T

(b) Refer to Case 9 of Table 4.1
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4-5. The toggle mechanism shown in Figure P4.5 is used to statically load a helical coil spring so that it may be
inspected for cracks and flaws while under load. The spring has a free length of 3.5 inches when unloaded, and a
spring rate of 240 Ib/in. When the static actuating force is applied, and the mechanism is at rest, the spring is
compressed as shown in Figure P4.5, with dimensions as noted. Determine all the forces acting orn link 3, and neatly
draw a free-body diagram of Zink 3. Clearly show the numerical magnitudes and actual directions for all forces ob
link 3. Do only enough analysis to determine the forces on link 3, not the entire mechanism.

Solution

The spring force on link 4 (in the x direction) will be Fy, , = kx = 240(3.5-1.5) = 480 Ib . The free body diagram for
link 4 (the block) and ling 3 (member BC) are shown below

Noting the member BC is a two-force member we can write
gp=tan! 211 11310 and
10.5

F,
— —tang=0.2

Cx
Fy, =0.2F, =0.2(480) =96 Ib

Since BC is a two-force member, we can model
the force as each point as shown.
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4-6. A simply supported beam is to be used at the 17" floor of a building under construction to support a high-speed
cable hoist, as shown in Figure P4.6. This hoist brings the 700-pound payload quickly from zero velocity at ground
level to a maximum velocity and back to zero velocity at any selected floor between the 10" and 15" floor levels.
Under the most severe operating conditions, it has been determined that the acceleration of the payload from zero to
maximum velocity produces a dynamic cable load of 1913 Ib. Perform a force analysis of the beam under the most

severe operating conditions. Dhow final results, including magnitudes and actual directions of all forces, no a neat
free-body diagram of the beam.

Solution

Using the free body diagram shown we note

A
—.Ia‘_, ® C B
W =88 @ =11001b o — 75— w75 5" —n
12 4, ] | B,
W F. :
F, =700+1913=2613 Ib

Satisfying equilibrium Y F, =0: 4,=0

X

> F,=0: A,+B,-1100-2613=0 = A, +B,=3713

2M,=0: 1508, -1100(75)-2613(100)=0 = B,=22921b, B, =14211b

A o C B
—T 5" —— 25! —ma— 5" —n
1421 1b 1100 1b 2613 1b 2792 1b
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4-7. Two steel bars are pin-connected as shown in Figure P4.7. If the cross-sectional area of the steel bars is
50 mm? and the allowable stress is 300 MPa, what value of P can be carried by the bars?

Solution

Consider the free body diagram . Applying the equations of static equilibrium gives F

Laa

e |4
> F, =0: 2Fcos@=P 2F(4/5)=P Fng .
The stress is given as azE: 300=5—P P =24kN
A 8(50) F
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4-8. (a) Determine the maximum shear stress due to torsion in the steel shaft shown in Figure P4.8.

the maximum tensile stress due to bending in the steel shaft.

(b) Determine

Solution

The torque due to F; and F is given as

T:(E_FZ)R Dia. = 40mm

= (1200 - 400) (0.120) =96N-m
Based on the torque value Fy becomes

2T @ =1600 N
D 0.120

>
I
|
I

Look at shaft in the horizontal and vertical
directions. The loads and moments are as follows:

> F,,=0: R,+R,=3200

> M, =0:
0.600R, =0.200(1600) + 0.480(1600)

R, =988 _1g133N
0.600

R, =1386.7N

The forces and moments in the vertical direction
are:
> F,,=0: R -800+580—R; =0
R" —R) =220
> M, =0:
0.600R}, —580(0.480)+800(0.200) = 0
R/ =197.3N, R’ =417.3N

The maximum moment occurs at C and is

M, =(277.3) +(835) =289.6N-m

m

200 mm

800N

280 mm

4 0200m Cl 0.

80m D Tl}_lzl}m B

TR:]'=41“3 ; i.:?;':w?.ax
83.3 N-m i
1;'- 1
NMomzat !
0 i \W
F+F,=1600N F, =1600N
g 020m 0280 m DT 0120m B

Horz.
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16(96
The stresses are: 7, = Tr 167 _ # =7.6MPa

J  zD’  z(0.40)
_MC _32M _32(2896)

- - — 46.0MPa
I 7D’ 7(0.40)

Oy

4-9. Consider the circular bent rod with diameter 20 mm shown in Figure P4.9. The free end of the bent is subjected
to a vertical load of 800 N and a horizontal load of 400 N. Determine the stress at locations a-a and b-b.

Solution

At section a-a, we have the free body diagram shown. Summing

forces and moments gives I,
F,=-400N, F,=800N,
M, =800(0.200) =160 N -m,
M, =400(0.200)=80N-m
T =400(0.200) =80N-m

At section a-awe have the loads and moment shown below. 200 mm
E | =30H m
F =g800H
- _ = 800 N
Af =al0k] o
¥
L
F =180 M-tn
32(160
The stresses are:  Top: Bending stress o, = Me _ 32]‘;[ = ( )3 =204 MPa
I 7d”  7(0.020)
16(80
Torsional Stress T, = Ir_ 16—7; = (—)3 =51MPa
J rd 7:(0.020)
16(400
Direct Shear T, = AR _ 16F = ( )2 =1.7MPa

‘734 31d® 37(0.02)

Bottom: Bending Stress o, =—-204 MPa
Torsional Stress 7, =51MPa
Direct Shear 7, =1.7MPa

The torsional stress and the direct shear add on the bottom and subtract on the top.
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Left Side: Bending Stress

Torsional Stress

Direct Shear

Problem 4-9 (continued)

Right Side: Bending Stress

Torsional Stress

Direct Shear

The torsional stress and the direct shear add on the right and subtract on the left.

32(80
o _32M _ (80)

, 3 5 =—102MPa
zd”  7(0.020)
7, =51MPa
1
T, = 16F2 = 6(800)2 =3.4MPa
3zd”  37(0.02)
32M  32(80)
Y= = 5 =102MPa
zd”  7(0.020)
7, =51MPa
16(800
T, 16F _ (800) =3.4MPa

“37d® 37(0.02)°

At section b-b we have summing forces and moments:

F,=400N,

At section b-b we have the loads and moments shown.

are:

. F,
Axial stress o= j

Top: Bending stress

Torsional Stress

Bottom: Bending Stress
Torsional Stress

Left Side: Bending Stress

Torsional Stress

Direct Shear

Right Side: Bending Stress

Torsional Stress

F,=800N, M, =80+320=400N-m,

The stresses

M,=80N-m, T=160N-m

z | M =90Nm

F =B800N

fk F, =400N

4(400)
——__13MPa
7(0.020)
o, - Me_32M _ 32(800) _goonipn g
"1 xd®  z(0.020)
_Tr 167 16(160) ) mipa
J  7d’  7(0.020)
o, =-509MPa
7, =102MPa
32(80
o, = 32M _ _82(0) 1) \pg
7d*  7(0.020)
7, =102 MPa
__16F _ 16(800) .
© 3zd® 37(0.02)
32 3280) 05 ppa
" ad® 7(0.020)
7, =102MPa
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=3.4MPa

16(800
Direct Shear T, = 16F2 = ( )2
3zd”  37(0.02)
The torsional stress and the direct shear add on the right and subtract on the left.

4-10. Determine the bearing reactions and draw the bending moment diagram for the shaft in Figure P4.10.
Determine the location and magnitude of the maximum moment.

Solution

The loads transferred to the 300 1b

shaft are as shown. Summing

forces and moments yields: i 0in A 0in. B 10in & M=3000inlb

D Fi.=0: = 500 1
R =5001b PT PT T“'E' "

Note: The axial load can only be reacted at one bearing. Usually, the bearing with the least radial load is used.

> F,,=0: —300+R;+R;+400=0 R+ Ry =-T700
>M,=0:  300(10)+30R; —3000+400(40) =0 30R; =-3000-+3000-16,000
R, = "12’(?00 =-533.31b R} =-100-R; =-100+533.3=433.3Ib

The bending moment diagram is given as:

I(in-1t)
1000

-3000 -3000

The maximum moment is 3000 in-Ib and occurs at bearing 4 and at the location of the gear.
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4-11. A bar of steel is 600 mm long. It has a diameter of 25 mm at one end and 30 mm at the other. Each has a
length of 150 mm. The remaining central section has a 20 mm diameter and is 300 mm in length as shown in Figure
P4.11. When the bar is subjected to a tensile load of 110 kN determine the length of the bar. Take E for steel to be
207 GPa.

Solution
The axial deformation of a bar is given as

_PL_4APL
AE 7nd*E

Thus, the axial deformation of each section is
given as follows:

4(110000)150 4(110000)300
o, =—————=0.1624mm 0, =

' z(25) 207000 ~ 7(20)’ 207000

4(110000)150
7(30)” 207000

=0.5075mm 0y = =0.1128mm

The total elongation is 6, =6, + 39, +J, =0.7827mm

Thus, the length of the bar is: L =600+ &, =600+ 0.7827 = 600.7827 mm
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4-12. Two vertical rods are both attached rigidly at the upper ends to a horizontal bar as shown in Figure P4.12.
Both rods have the same length of 600 mm and 10 mm diameter. A horizontal cross bar whose weight is 815 kg
connects the lower ends of the rods and on it is placed a load of 4 kN. Determine the location of the 4 kN load so

that the cross member remains horizontal and determine the stress in each rod. The left rod is steel and the right rod
is aluminum. E, =207 GPa and £, =71GPa.

Solution

Let Py be the force in the steel rod and P, the force in the

risuumm 41
aluminum rod. Summing moments gives: P %

4 4&N T
. x , £
> M,: 800P, =8000(400)+4000(800- x)
P, =8000 - 5x y B
M, : 800P, = 4000x +8000(400
XM, f (400) L_ermm
P, =5x+4000
_ W =815(0.81)= 8000 N
Elongation of rods:
5 - Bls _ (8000-5x) L, 5 - PiL, _ (5x+4000)Z,
S AE, 2070004 4 AE, 710004,

2
We have that Lg=L, =600 mmand Ag=A4, = ﬂj =78.54mm?. Since the cross member is to remain horizontal,

5=, 8000-5r 5x+4000 - gge 3660 = x—187mm
207000 71000

Stresses inrods: Py =8000—5(187) =7065N
P, = 5(187) +4000=4935N

o =5 195 _g5\ipa
A 7854
P

SO By
A, 7854
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4-13. Determine the maximum deflection of the steel cantilever shaft shown in Figure P4.13.

Solution
M=4F=1600 in-lb
Summing forces and moments gives: A g B i
R, = =P=400lb % F=4001b
A2 A
R =-M _ 5331 ’ a i b
! I
R =M _s331p
a
The deflection equations are as follows:
0<x<a Ely/=—-R)x
a<x<L Ely, =-R)x+R’(x—a)+M =-Ra+ M

Where R; has been replaced by R’ . Integrating once gives:

—R’y?
Elyl’z%+q

Ely, =—Rjax+Mx+C,

. . Rd’
The boundary condition at x = a requires that y; = y,, thus C, = Aza —-Ma+C,

y,3

R
Therefore, Ely, = gx +Cx+G,

y 2 y 2
Rlax* Mx* Rja’x

2 2

Ely, = —Max+Cx+C,

ZRy 2 Ry 3
Atx=0,y;=0,thus C, =0. Atx=4a, y; =0, andy, =0, hence C1:a6”‘ and C4=Ma - A6a

We have for the beam the following deflection equations
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_pYy3 2py y
R (AR x :R—A(x3 —azx)
6 6

Ely, =

y

Ely, = —%(3&)62 —4a’x + as) +%(x2 —2ax+ad’ ) =—

The maximum deflection between the supports occurs at

EI%:%:(:%)CZ —az)

dx

=0 =x=

v
Rja

M 2
5 (3x—a)(x—a)+?(x—a)

e

4-14. For the square, 20mm x 20mm, aluminum beam shown in Figure P4.14 determine the slope and deflection at

B. Take E =71 GPa.

Solution
) ) ) M=4P=1600inlb
Consider a section of the beam measuring x A . B Y
from the free end. Summing moments gives: |><} L
. , < P=4001b
B X\x  gox R R
M== Z ==
2 x[% LJ 3 6L : a i b
I
Thus, the deflection equation is
gox’
EI " :M — 0
d 6L
Integrating twice gives
gox" qoX’
ER'=2—+C Ely=""—+Cx+C
Y T ar Yo T
. L , . qOL3 qoL4
Applying the boundary conditions: Atx=L y'=0andy =0, this gives C, =— ” and C, = 20
Therefore,
4 3 5 3 4
Elc9=y’=q0x gL . Ely= 9o*"  qoL x+QoL
241, 24 120L 24 30
3 4
Atx=0,wehave @=- %L , Y= 9L
24E1 30E1
3 4 20 4
Taking ¢o =500 kKN/m, L =500 mm, and [ = % = il—z = u =13333 mm* yields
5(500)° 5(500)"
0=- =-0.0275 rad y= =11 mm
24(71000)(13333) 30(71000)(13333)
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4-15. A simply supported beam subjected to a uniform load over a portion of the beam as shown in Figure P4.15.
The cross section of the beam is rectangular with the width 4 inches and a height of 3 inches. Determine the
maximum deflection of the beam. Take E to be 30 x 10° psi.

Solution

. . M=4F=1600 in-Ib
Summing forces and moments gives:

y 2 B T
S F=0:  R,+Ry=2aw N =—=——— 4'%'___“?49911:
ZMA =0: 4daRy = 4a’w R: i R b

Rp=wa , R,=wa

The moment in terms of singularity functions is given as

Ya y
M = ()= (a2 (30 [TTT11]
-
The deflection equation then becomes P T f P
” W w, - - "
Ely"=-M =R, (x)+ - (x-a) ——(x-3a) "
Integrating gives Ely' = —R—2”<x>2 +%<x—a>3 —%(x—3a>3 +C,

R
Ely = —?A<x>3 +2—M;<x—a>4 —2—M;<x—3a>4 +Cx+C,

Applying the boundary conditions: y =0 atx =0and x = L gives C,=0 and C :1—61wa3. The deflection

equation becomes

1 1 11
y= —%[%(xf —§<x—a>4 +§<x—30¢>4 —Easx}

The maximum deflection occurs at the center where x = 2a
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B 19wa*
Wein =g

3 4(3)
Substituting the given values yields: 7 = % = 52) =9in!

_ 19(8.333)(36)"

=0.1231in.
Fras 8(30x10°)(9)

4-16. Consider the cantilever beam shown in Figure P4.16. The beam has a square cross-section with 160 mm on a
side. Determine the slope at B and the deflection at C. The material is steel with £ = 207 GPa.

Solution

Summing forces and moments gives: M=4P=1600 in-lb

A e B T,
2 —_— e —— — —— —— —— — —
Ro=wa and i, =0 b4 — | — e
R; . R .
The moment in terms of singularity functions ;
is
w w
M=-M, <x>0+RA <x>—5<x>2+5<x—a>2 N
The deflection equation is . ||'4 | | | | |E F .
! J 1 ¥

Eh'=-M=M, <x>0 -R, <x>+%<x>z —%(x—a)z

&
5]
_x_
o
.

=) )+ 2 ) - 2 =) J

Integrating yields

2
By =2 () -2 ) 4 2 - 2

2 2 6
2
Ely = WZ <x>2 —%(x)s +2—M;<x>4 —2—M;<x—a>4 +Cx+C,

The boundary conditions are: Atx =0, y"=0which implies that C; = 0 and at x = 0, y = 0 which implies that C, = 0.
Thus we have

2
EIO=El/' = %(x)l —%(x)z +%<x)3 ~Z{x-ay’

Bty = 2 a2 )
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3
wa

The slope at B, x = a we have 6, = —
6EI

s p4 0 (160)
_bit B _(180) oy eia10f mm

12 12 12
2.4(2400)° :
6, = - = 0.00049 radians
6(207000)(54.613x10° )
Problem 4-16 (continued)
The deflectionat 4, x = L is
2 3
yo | WAy W s W Wy = (4a°L~a")=""(4L~a)
EI| 4 6 24 24 EI El

and

2.4(2400)’[ 4(3600) - 2400 |
= =1.467mm
24(207000)(54.613x10°)
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4-17. A horizontal steel cantilever beam is 10 inches long and has a square cross section that is one-inch on each
side. If a vertically downward load of 100 pounds is applied at the mid-length of the bem, 5 inched from the fixed
end, what would be the vertical deflection at the free end if transverse shear is neglected. Use Castigliano’s theorem
to make your estimate.

Solution

P=1001b O
Apply a dummy load Q at the free end and define the moment for l

sections AB and BC of the beam. Ti,{ B +C
N N — - =
MAB:P(x_Ej+Q(x_L) ‘_£2=5u_‘| =
MBC:Q(X_L) }_\‘ ol

Using Castigliano’s theorem

L2 L
yC:a—U:iJ M, M 1y de+ | Mg OM s dx
0Q EI|Jo o0 LI2 oQ

8A4QB __aA{BC
o0 20

From the definitions of M ,, and M., =(x—L). Therefore

e :Z—g:%“.OL/Z(P(X—%)+Q(x—L)J(x—L)dx+J‘L (Q(x—L))(x—L)dx}

Ll2

Since the dummy load is zero, we set Q =0 and this reduces to

LI2 LI2 2
ycza—Uzi J P(x—£j(x—L) dx =ijl x° —3—Lx+L— dx
00 EIlJo 2 ElJo 2 2

_ P
El

N T 48EI

o s x| _ser
I

0
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For the beam specified £ =30x10° psi and 7 =1(1)°/12 = 0.0833 in*. Therefore

3
= 2QO0U0 17,10 ~0.00417 in
48(30x10°)(0.0833)

4-18. a. Using the strain energy expression for torsion in Table 4.7, verify that if a prismatic member has a uniform

cross section all along its length, and if a constant torque 7 is applied, the stored strain energy in the bar is
properly given by (4-61).

b. Using Castigliano’s method, calculate the angle of twist induced by the applied torque 7.

Solution

L 2
(a) From Table 4.7, U :J. ;(—de . Since K and G are constants
0

L 2
U=LJ. T2dx = 'L
2KG Jo 2KG

Which confirms (4-61)

L. oU TL
b) The angle of twist is givenby §=—=——
®) J g 4 oT KG
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4-19. The steel right-angle support bracket, with leg lengths L, =10 inches and L, =5 inches, as shown in Figure

P4.19, is to be used to support the static load P =1000 Ib. The load is to be applied vertically downward at the free
end of the cylindrical leg, as shown. Both bracket-leg centerlines lie in the same horizontal plane. If the square leg
has sides s =1.25 inches, and the cylindrical leg has diameter d =1.25 inches, use Castigliano’s theorem to find
the deflection y, under the load P.

Solution
Using the model to the right, we note that there is a bending moment in section P
2 and a bending moment plus a torque is section 1. /"_Al\L
vy 4 1)
Section1: M, =P(x), I, = PL, f/ =
Section2: M, =P(L,-z) f/*," 2 l

Applying Castigliano’s theorem

L L L
y:6—U= L J Mz(—észdz+iJ‘ Ml(aMljdx+—l I Tl(%jdx
oP  E,L Jo op El o op GK, Jo \op

Noting that oM, /6P =(L,—z), 0M,/0P = x ,and 0T,/0P = L, , and substituting into the equation above gives

oU 1 [k 1 (- "
== ), (Pl (b 2)de o [ T Px(n)aes o [P (1)
L, L 2 prh
= L I (L§—2L22+Zz)dz+ P J- x2dx+ PLZJ dx
E,I, Jo dp Jo GK, Jo

_ PL, . PL +PL§L1
3E,I, 3EI GK,

Section 1: E, =30x10° psi, I, = (1.25)(1.25)° /12 = 0.2035 in*, G, =11.5x10° psi, and
K, = (1.25/2)"(2.25) = 0.3433 in*
Section 2: E, =30x10° psi, I, = 7(1.25)* /64 =0.1198 in*
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(5)° N (10)° N (5)°(10)
3[30x106(0.1198)] 3[3ox106(0.2035)] 11.5%10°(0.3433)

y=P
= P[1.159 x107° +5.46x10° + 6.332x10-5] =1000(12.951x10°) = 0.1295

y~0.13"

4-20. The bevel gear shown in Figure P4.20 carries an axial load of 2.4 kKN. Sketch the bending moment diagram
for the steel shaft and calculate the deflection due to P in the axial direction using Castigliano’s theorem. Neglect
energy stored in the system between the gear and bearing B.

Solution

Summing forces and moments gives:

M =0.16P =384N-m = E

M _0.160P

RY == =—"—"""=0.2667P = 640N /
AT L 0600 N L >

R} =0.2667P =640N Y R Rz

R: = P =2.4kN

The bending moment diagram is given as M 500 mm
shown. The deflection due to P using ok I
Castigliano’s theorem is given as 0

_ou _ PL M@ﬂ 5
T op AE o EI OP

P

384 Nem

The axial load and moment are given by
P =2.4kN, M = R’x =0.2667 Px, aa_A]/)I =0.2667x

Therefore, we have

L
11 [(0.2667Px)(0.2667x)dx =

0

PL ﬁ 0.071129x° |" _PL 00237PL3
AE  EI 3 , AE EI

Thus, we have

2 4

2 7(50 ¢ 2(50
4D _7(50) _19635mm?, =72 =709 _ 306796, 2mm
4 4 64 64
5 _PL 00237PL’ __ 2400(600) +O.0237(2400)(600)3
_PL _

+ =
AE EI 1963.5(207000) 306796.2(207000)
=0.00354+0.19346 = 0.197 mm

132



0, =0.197 mm

4-21. Using Castiligano’s theorem determine the deflection of the steel shaft, shown in Figure P4.21 at the location
of the gear. Take E to be 207 GPa.

Solution
P
Summing forces and moments gives:
ZE/ertZO: RA+RB:P
A C
>M,=0: R,L=aP
R, :ﬂ, and R, _oP
L L R, k| a b
R_-'n'
We have for the shaft the following:
X z
M
For OSxSaZszRszp—bx 0 X:ﬁx
L orP L
For 0<z<hiM. =R,z=2%: oM, _a,
L oP L

Castigliano’s theorem gives the deflection at the gear location as

a M b M a b
ou_1 J.M 0 xdx-i-iJ.M 0 = dz L P—bx 2xdx+ij ﬁz 9 dz
! EI : L )L
0 0

TP BN ax oz EN\ L)L T E
2 a 2 b 372 213 272
_ szj.xzdx+ PaZJ-ZZ Z:Pa b2 +Pa b2 :Pa b2 (a+b)
EIL" EIL 3EIL” 3EIL 3EIL
_Pazb2
3EIL

Substituting the values: L = 800 mm, a = 520 mm, » = 280mm we find

- zD" _ z(25)"
64 64
P’ 3200(520)°(280)°
" 3EIL ~ 3(207000)(19174.76)(800)

=19174.76 mm*

=7.12mm
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o, =7.12mm

4-22. A beam of square cross-section 2 in. x 2 in. is fixed at both ends is subjected to a concentrated load of 2400 Ib

and a uniform load of 400 Ib/ft as shown in Figure P4.22. Determine:
a. The beam reactions
b. The deflection at the location of the concentrated load P.

Solution

Using the principle of superposition we have

F=24001h
w = 400 th/ft w = 400 th/ft i?=24cu:| 1t
e [ [ [ [ HEEEEEN .
= +
3R 0n L ] o \L2.5ﬂ on |
- | | |
| | I I
Case I: W
2
R=r=YE oy M ]
2 12 M
wx 2
= L—
3 () =4 (£ =) " L .
R (1) S
Case Il:
Pb? Pa? P
Rf==5-(3a+h), R ==;~(3b+a)
Pab’ Pa*b M¥ M,
My =—7 My==5 AT -
Ph2? =T :
For0xsa y, (x) =2 x(3a+b)-3aL] R2 @ g

Superposing Cases | and 1l gives: Using a = L/4 and b = 3/4AL

(a) Beam reactions
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2 2

R,=R.+RY :WTL+PLI)3 (3a+b):WTL+237—2P R, =R, +R) :WTLJrFZ; (3b+a):W7L+Z—12)
2 2 2 2 2 2
wx 2 Pb’x? wx? 2 9Px’

y(x):y, (x)+y,, (x):ﬂ(L—x) +W[x(3a+b)—3aL]: 4El (L—x) _128EI(2x_L)
wx? 2 9Px?

= L— — 2x—L

() =g (=) gy (¥ 1)

Problem 4-22 (continued)

(b) Deflection at x = L/4
3 4 4

:%:h_:2_21.333in.4

12 12 12

2 2 4 3
L/\ W ) 9Px A 3wL 9PL
78)= 20 ) 1255 1= 208 0067
_ 3(33.333)(120)° N 9(2400)(120)’
2048(30x10°)(1.333)  4096(30x10°)(1.333)

=0.2531+0.2279 = 0.481in.

y(%):0.481in.
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4-23. Consider a beam that is supported at the left end and fixed at the right end and subjected to a uniform load of
4 kN/m as shown in Figure P4.23. Determine the beam reactions and the maximum deflection of the beam. Take £
=200 GPa.

Solution
.
Since the problem is statically indeterminate take Rg as the | | | | | | |
redundant force. Apply Castigliano’s theorem: B .4) M,
L R.-'.' = TR
_oU MM dr 4
" OR, 4 EIOCR,
2
M=Ryx—22 M _ .

L 2 3 4 E 3 4
PO T WP ST Y-
Ely 2 EIl 3 8 , EI 3 8

Since the beam is supported at B, 5, =0, therefore, R, = S%L Summing force and moments gives:

S F,, =0: R,+R,=wL RAzwL_RBzwL_C”%L:%
2 2 2 2

ZMBZO: RAL—WL M, =0 MA:RAL—EZSLL—WL:WL
2 2 8 2 8

Using the values, w = 4 KN/m, L =5 m we find

5wL _5(4000)(5) 3wL _ 3(4000)(5)

L= =12.5kN R, = =7.5kN
8 8 8 8
2 4000(5)°
M, = WSL _40000) 15 sin-m

The deflection of the beam is given by the following: w

Note: x is now measured from end 4. The deflection equation

can be written as | | | | | | |

B i'.) 'H..J

21 . x
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Integrating yields:
B =M (3 =24 (#2006 and Bl = 4 - (1) 4 () + G

The boundary conditions are: x =0, y"=0and y = 0, this implies that C; = C, =0. Thus, the deflection equation is

Problem 4-23 (continued)

2
Ely = o) =) g ) = () e () e )

Since all the x values will be positive we can write the above equation as
Problem 4-23 (continued)

2
_wx 2 2
Ely==¢ [31° —5Lx+2x" |

The location of the maximum deflection can be found from
g% _o- 1[6Lx—15Lx2 +8x3] or x(8x’~15Lx+6L")=0
dx 48

The solutions are x = 0, or x =(0.9375+0.3591) L. The only valid solution is x = 0.5784L. Thus, the maximum
deflection is:

0.33455) 4
Ely:u[SLz ~51° (0.5784)+2(0.33455) L | y =%
The cg and moment of inertia of the cross-section is
_240(40)(20)+160(40)(260)
Y 160(40)+ 240(60) m 2y ji
40(240Y’ 160(40)’
I =%+ 240(40)(176 -120)° +%+160(4O)(260—l76)2 240 y
=122.2x10° mm*
| b0
0.00542(4)(5000)"
Thus, the maximum deflectionis  y, . = (4)( ) =0.5544mm Yoax = 0.5544mm

200000(122.2x10°)
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4-24. Consider a steel beam on three supports subjected to a uniform load of 200 Ib/ft as shown in Figure P4.24.

Determine the maximum deflection and the slope at B.

Solution
.
Take R, as the redundant force. Thus, obtain Rg and Rc in terms | | | | | | |
of R, by summing forces and moments.
A 1 C
> F,. =0: R,+R,+R.=3wL RAT_ 2 B, 1 &
2 * i
> M,=0: R.L= —3w?+ 2LR,
RC:ZRA—SWL R, =3wL-R,-R, :Q%L—SR
Apply Castigliano’s theorem using the model shown: e
The deflection at 4 is given by | | | | | | r:
A
1 X . B z 1
J‘ MAB M +j‘MBC oM ¢ dz R, R"_",I: R.
EI OR, ¢ EI OR, R L
The moments are:
2 oM
M, =Rx-2, = _
2 R,
2 2
MCB:RCZ_WZ _2Rz- 3wlz  wz , oM ., _ o,
2 2 2 R,

Substituting
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2L 3 L 2 3
5= [ Rt -2 | L[| ar 2 - SWEE 2 g,
EI'Y 2 EIY 2 2
2L L

LR wt ) 1(4RZ o wet

EI\ 3 8 EI( 3 4 )
_ 1 8R,I’ 16wL' . 4RI _WL4_WL4

EI 8 3 4
_ 1 (12R,I’ 13wl
CEI 3 4

Since 4 is supported 6, =0and we find that R, = %wL . Thus,

R, :ng—SRA :_33WL R.=2R, —EWL :W—L
2 16 2 8

Problem 4-24 (continued)

The deflection of the beam can be found from the following equation using singularity function s

ED"=-R,(x) +%<x>2 ~R,(x-2L)

Integrating yields
., R R
El' =- 2A <x>2 +%<x>3 ——23 (x— 2L>2 +C

Ely = —&<x>3 d x>4 —%(x— 2L>3 +Cx+C,

+_
6 24
or
3wL, 2 w, 3 33wL 2
El' = - {x)" +=(xy - =—=(x-2L) +C
= ELaf + 2a -E v-2n) 4
13wL , 3w 4+ 33wl 3
Ely=— +— - -2L) +Cx+C.
A S AT
. . Swi®
Apply the boundary conditions y=0at x=0,2L,we findC, =0 and C, = . Thus,
3wL, \» w, 3 33wl 2 Swl®
El' =" (x)"+=(xy - == (x-2L) +
=g b gl 2 ey
3wL, 3w 4 33wL s 5wl?
Ely=-""Z{(x) +—(x)" === (x-2L) +
y==mgg () () —Tgg (v T
The slope at B (x = 2L) is
3 3
o=y -t _13_WL(2L)2+E(2L)3+5LL __w
EI 32 6 24 12E1
The maximum deflection is found from
3
B 0 Bh(a) W 4) 2 g or 126726147 4152 =0
dx 96 24 24
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Using Maple gives x = 1.0654L or 4.26 ft, thus, the maximum deflection is given as

3
y=t| 1L o6sary + ¥ (1.og54L) + 20E
EI| 96 24 24

4
(1.0654L) :—logggL

3 4 4 4
Substituting the given values yields: 7 = oh” = L = 42 =20in.*
12 12 12 12

3
_ 16.667(48) =-2.56x10"* radians

0. =— =—
* 12E1 12(30x10°)(20)

10.741wL* _10.741(16.667)(48)"
96E1 96(30x10°)(20)

=0.0165 in.

y Max —

0, =-2.56x10"* radians (-0.01466 °) , y,,. = 0.0165 in.

4-25. The steel shaft shown in Figure P4.25 is fixed at one end and simply supported at the other and carries a
uniform load of 5 KN/m as shown. The shaft is 120 mm in diameter. Determine the equation for the deflection of
the shaft and the location and magnitude of the maximum deflection.

Solution

The deflection equation for the given loading can be written in W
terms of singularity functions as | | | | | | |

M
o w B ‘{) 4

ED"=-R,(x)+M (x) +5<x>2 R, t —=x 1

Integrating yields

bty = e M 2 e

Applying the boundary conditions:

At x=0, »'=0, =C =0
At x=0, y=0, =C(C,=0

Also, we have the condition that at x = L, y = 0, which gives the condition

3 2 4
RL ML wL'

A

6 2 24

This equation along with the equilibrium of forces and moments, which are given by
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> F,, =0: R,+R,—wL=0

wil?
> M, =0: M, +R,L— > =0
gives three equations which can be solved for Ra, Rg, and Ma. Thus,
5wL
R, =——
8
R, - WL_SWL _ 3wL
8 8
2 2 2 2
MA:wL _R, _wL _3wL _ L
2 2 8 8

The deflection equation now becomes

2
Ely =~ 2o () 2 () ()’

The maximum deflection occurs at
Problem 4-25 (continued)

2
Eld—y 15wl 2+2wL 4w

= X x+—x>=0 or wx(—lSLx—6L2—8x2):0

dx 48 16 24

Solving this equation for x gives
x=(0.9375+0.3590)L or x=0.5785L

Thus, the maximum deflection is

1w 4 5SwL s wl?
=—|—(0.5785L) ————(0.5785L
yMax EI|:24( ) 48 ( ) + 16

(0.5785L)2}

Substituting yields

4 4
7Dt 70200 8760 mme
64 64
0.260wL*  0.260(5)(5000)°

e =T48EI  48(207000)(10178760)

=8mm

yMax = 8mm
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4-26. Consider the beam fixed at one end and simply supported at the other as shown in Figure P4.26.

a. Using Castiglano’s theorem determine the redundant reaction at the simple support.
b. Assume that P = 4000 Ib, L = 10 ft, a = 4 ft, E = 30 x 10° psi and 7 = 100 in.*. Using Castigliano’s theorem

determine the deflection at the location of P.

Solution
P
a B
(@) Taking R, as the redundant reaction we have for the i1 -L
deflection at 4: v ) v
A B
L 1 X *
M oM R, .
é‘A =a_U= _a_dx RE'
AR, 3 EIGR,
The moment is given as:
M.
M, =R,x 0 L= 0<x<a
OR,
M
M,=R,x—P(x—a) 0 2=x a<x<L
OR,

Thus, we have
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L L 3¢ 3 3 2\
5/1:iJ.RAxZdx+iJ-[RAx2—P(xz—ax)]dx:i Rix LR pfx e
El El EI\ 3 ) EI| 3 3 2 )|
_LJR@ RL L al’) Ra pfa o
EI| 3 3 3 2 3 3 2
3 3 2 3
_LIRE G L Al
EIl 3 3 2 3

Since L = a + b we have
3
’ L ﬂ—ﬁ(zﬁ—swmi‘)

El| 3 6

Since 5, =0we have
3
M—5(2L3—3aL2 +a’)=0

3
P
R, =E(2L3—3aL2 +d’)

%(L_a)z(zua)

(b) The deflection at P is given as

a L
5, =ile%dx+ijMz M 4o
Ely ' oP EI % 0P
Problem 4-26. (continued)
The moments are given as:
L-a)’(2L
Mlzis(L—a)z(ZL—i-a)x 6M1:( @) ( B +a)x 0<x<a
2L OP 2L
L-a)’(2L
MZ:L(L—a)2(2L+a)x—P(x—a) agizz( %) 2(L3 +a)x —(x—a) a<x<L

2r
Let Q :w , then
2L
1) :ijPQx(Qx)dx+ij[PQx—P(x—a)][Qx—(x—a)}dx
" EIy EIY

1 ¢ 1§
:EIPQZXZ dx+E:|:P[Qx—(x—a)]2 dx

3 3

1 {[PQZ)C?’J +P{Q2x3_Q(x__a_)czj+x_—ax2+ax2} }
3 2] 3 .

“E 3 3

0

_ 61;[[2Q2L3 ~0(2 ~3al* +a*)+2(L ~°)|
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. (L—a)Z(ZL—i-a)
S A= AT
ince O e
B P
 BEI

P

[2Q2L3 —2r0+2(L -d’ )] = 3—;(5” ~a*)
Substituting gives

_ P 3 3\ _ 4000
(=)=

= — ———————(120°-48°) =0.719 in. 5,=0.719 in.
3EI 30x10°)(100) —_—

4-27. Determine the force at support B for the steel beam such that the deflection at point B is limited to 5 mm. The
cross section is a rectangle with width 30 mm and height 20 mm.

Solution

Use the principle of superposition:

wa

T 24E]

» [L3 -2La* +a3]

’, Rbx [Lz _ 2 —bZJ _ 2Rab’x

T BEIL 6EIL
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¥y

The total deflectionisy =y, +y,, or

2
= wa [L3—2La2+a3]—2Rab X
24E1 6FEIL
Solving for R yields
wL 3yEIL
R=o [-2Ld® +a° |- -
3 2 3
We have the following properties 7 =% = 30(120) =20000mm*, a=L/4=2m, b=3L/4=6m,
L=8m, w=5000N, and y=5mm (0.005m)
Thus,
wL 4 » 37 SYEIL
= L-2L -
8b2x[ “ +a} ab’x
5000(8 3(0.020)(207x10°)(8)(20x10°®
— 2( )[83_2(8)(2)2+23:|_ ( )( X - )( )( x )
8(6)"(2) 2(6)°(2)
=31530N

R =31530N

4-28. The two span beam shown in Figure P4.28 supports a uniform load of 1000 Ib/ft over the central portion of
the beam. Determine the various reactions using Castigliano’s theorem.

Solution

Since the beam and loading are symmetric we need only to look at half the hd

beam. In addition we have that R, = R.. Take R, as the redundant

reaction, thus we find 4l | ¢

—— B;:?%—T . e
ou "M oM = a_ L2 . ]
O,=——=2[ - ——dx R, R R.

AR, 3 EIGR, . W

The moment is
w(x - a)2 oM
2 OR,

M =R, x—
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Thus the deflection is given as

2 R X x' 2ax® +a2x2 Za_ 2 RA(?_a)3 (2a)4 2a(2a)3+a2(2a)2
“E| 3 4 3 2 O_EI 3 | 4 3 2

Since the deflection at 4 is zero, we have, R, = %. Summing forces in the vertical direction yields

R,+R,+R.=2aw R,=R.=-—= R, =34
4 2
Hence
1000(12 3(1000)(12
RA=RC=%=#=SOOOIb RB=3”2V“= ( 2)( ) 1800016

R,=R.=3000lb, R, =18,000lb

4-29. Consider a steel beam fixed at one end and simply supported at the other carrying a uniformly varying load as
shown in Figure P4.29. Determine the moment at the fixed support.

Solution

Summing moments about B yields

wi?
D> M, =0: RAL—MA—F:O
The differential equation for the deflection is
Eh"=R, <x> -M, <x>o —i<x>3 x
6L 3 WX~
Integrating gives —wn 2L

|
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R
EN = 7A<x>2 ~ M, (x) —ﬁ(x)“ +C,

2 (x)z - 12v;L (x)s +Cx+C,

M
2

Ely = R—6A<x>3 -

The boundary conditions are: Atx =0,y = y'=0which implies C, =C, =0, thus we have

R w
pry =R Mo 2y

RL M, wl

6 2 120

The third boundary condition is y = 0 at x = L, which gives

From the equilibrium equation and the third boundary condition we have

2 2
RL-M,- Y _o RL M, wL _
16 6 2 120
and
9wL Twl?
4 =, MA =
40 120
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4-30. An S-hook, as sketched in Figure P4.30, has a circular cross section and is being proposed as a means of
hanging unitized dumpster bins in a new state-f-the-art dip-style painting process. The maximum weight of a
dumpster is estimated at be 1.35 kN and two hooks will typically be used to support the weight, equally split
between two lifting lugs. However, the possibility exists that on some occasions the entire weight may have to be
supported by a single hook. The proposed hook material is commercially polished AM350 stainless steel in age-
hardened condition (see Table 3.3). Preliminary considerations indicate that yielding is the most likely mode of
failure. ldentify the critical points in the S-hook, determine the maximum stress at each critical point, and predict
whether the loads can be supported without failure.

Solution

For the AM stainless steel used S, =1420 MPa, §,, =1193 MPa, and e (50

mm) = 13%. Since there is a possibility that the entire bucket must be supported
by one hook, the applied load is P =1.35 kN . The critical points are shown in
the figure

Curved beam analysis is appropriate, so we use (4-116) and examine the stress
at the inner radius at points 4 and B using P =1.35 kN .

Point A:

_Mycy P
(ai)A - e Ary " A

where M , = Pr,, =1350(0.025) =33.75 N-m

Knowing that ¢,y =¢; =r, —r and r, =r,. —e , determine e from

e=r -4
=7 a
,
2 2
where A= ”LIW = 7(1.5) =44.179 mm? and from Table 4.8, case 4

2 ’ 1/2
dA d, d,\Y d?
—=273| K+ —ln+=22 ——=
r 2 2 4

Determining that » =25-7.5/2 =21.25 mm we determine

2 1/2
A _on (21.25+3.75)-{(21.25+3.75)2 —%}

r

~2r {(25) - (297 —14.0625}1/2} 1777

e =e= 25—M =0.1384 mm
1.777
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Problem 4-30 (continued)
r,=r.—e=25-0.1384=24.862 mm and c¢;, =7, —r; =24.862—21.25=3.612 mm
Therefore at point 4

(O'i) _Mycy N P 33.75(0.003612) N 1350

esdry A (0.0001384)(44.179x10°°)(02125) ~ 44.179x10°°
=938.2+30.6 =969 MPa

Since 969 < §,, =1193 MPa the hook should not yield at 4.

_ My P

PointB:  (o;) i,

where M = Prz =1350(0.035) = 47.25 N-m .Since r, =35-7.5/2=31.25 mm

2 1/2
M o (31.25+3.75){(31.25+3.75)2 —%}

7

1/2

Y {(35) [ (35)" ~14.0625 ] } ~1.2659

eg=e= SS—LNQ =0.1007 mm
1.2659

r, =35-0.1007 =349 mm and ¢,z =7, —r, =34.9-31.25=3.65mm
Therefore at point B

egdry A (0.0001007)(44.179><10_6)(.03125) 44.179x107°
=1240+30.6 =1271 MPa

_Mep P _ 47.25(0.00365) ,_ 1350

(Gi B

Since 1271> S, =1193 MPa the hook is expected to yield at B.
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4-31. The support (shackle) at one end of a symmetric leaf spring is depicted in Figure P4.31. The cross section at 4-
B is rectangular, with dimensions of 38 mm by 25 mm thickness in andout of the paper. The total vertical force at
the center of the leaf spring is 18 kN up on the spring.

a. Find the maximum stress at the critical point in the support.

b. Would it be reasonable to select ASTM A-48 (class 50) gray cast iron as a potential material candidate for the
support? (See Table 3.5 for properties).

Solution
(@) Link CD is a two-force member and, since an 18 kN force is applied at the center of B =9kN the
leaf spring, each support will react a 9 kN force. The force at point C will be as shown. The
horizontal force at C will be
P, =9tan(22.5) =3.73 kN
Three stress components exist at points 4 and B, which result from (a) direct stress due to

P,, (b) bending stressdue to M =-M, = —(Pvav) , and (c) bending stress due to
M =M = Fa,.

Point4: (c,), =—-P,/ 4, where 4=0.025(0.038) =9.5x10"* m®. Therefore

v

9x10°

=——=-9.47 MPa
(o), 9.5x10™*
MvCiA 3
(04), =-—", where -M, =-9x10°(0.025+0.038+0.019) = ~738 N-m
v eAr,

1

cu=r,—r=(r.—e)-rn,

4
e=r,————-=(0.076-0.019)-

0.0095

0.076}

=.057-0.0549 = 0.00209
0.025In
0.038

7

Ciy = (0.057 - 0.00209) —0.038=0.01691

(o)), —- 738(0.01691) 1654 MPa
4/, = (0.00209)(0.00095)(0.038) '

The bending stress due to M, is

M,c;
(0.4),y, =54 where M,, =3730(0.057) = 212.6 N-m

edr;

( ) _ 212.6(0.01691)
4)m, (0.00209)(0.00095)(0.038)

=47.6 MPa

Problem 4-31 (continued)
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04 =(04), +(04),, +(04),, =-947-165.4+47.6=-122.3 MPa
o, =-122.3 MPa

Point B: (o), =-9.47 MPa

(o-B )M _ Mo where ¢ g =1, -1, = 0.076—(0.057 —0.00209) =0.02109

edr,

(05), = 738(0.02109) 1032 MPa
5/, = (0.00209)(0.00095)(0.076) '

Mycos _ 2126(002109)  _ oo

(), = edr,  (0.00209)(0.00095)(0.076)

op =(0p )Pv +(op )Mv +(op )Mh =-9.47+103.2-29.7 = 64.0 MPa
oy =64.0 MPa

If the material properties are the same in tension and compression, point 4 is critical

(b) From Table 3.3 for ASTM A-48 gray cast iron (S, ) =345 MPa

n,=345/123.3~2.8 ng =345/64~5.4
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4-32. A 13 kN hydraulic press for removing and reinstalling bearings in small to medium size electric motors is to
consist of a commercially available cylinder mounted vertically in a C-frame, with dimensions as sketched in Figure
P4.32. 1t is being proposed to use ASTM A-48 (Class 50) gray cast iron for the C-frame material. Prdict whether the
C-frame can support the maximum load without failure.

Solution
B B=3Tmm
2 »
From case 5 of Table 4.3 E e e
|
dA r+h 7 I 1
—=bIn- +b, In—= ' L
r : 7+ | '
|
_ 2510810 10— _g.025
38 38+10 | »=3Emm
l 7 =43 mm
7= 250(43) +180(57) _ 0 o . A
250+180 b7 =66mm —

A=250+180 =430 mm?, ¢ =48.86 —% =1.2146 mm

M =13x10°(48.86+90) =1805 kN-mm =1.805 kN-m
r,=r,—e=48.86-1.2146 =47.645mm and ¢, =7, —r, =47.645-38=9.645 mm

Mec;

l

o = 1805(0.009645)

, - =877 MPa
edr;  (0.0012146)(430x10°° )(0.038)

For Class 50 gray cast iron the probable failure mode is brittle fracture. Knowing that S, = 345 MPa we see
that 877 > S, = 345 MPa. Therefore the maximum load of 13 kN will cause failure.

152



4-33. Consider the thin curved element shown in Figure P4.33. Determine the horizontal displacement of the curved
beam at location A. The cross section is square being 5mm x 5mm. Use E = 200 GPa.

Solution

Look at a free body diagram: Since we want the horizontal deflection at 4 the fictitious force Q has been added.
The horizontal deflection using Castigliano’s theorem is given as

:”fﬂﬁﬂ
EI 80

0=0 0

oUu

=2 RdO
o0

The moment equation is M = PR(1-cos@)-Qsind, and g—g =-sin@. Therefore

17 : : PR* : _
5=~ | [PR(L-c0s0)~Qsind(~Rsin0)Rdo=— [ [(coso-1)(sin6)+ 05D |a0

0 0

3 /2 3

_ PR lsin26’+cosﬁ _ PR
EI |2 o 2EI

. bh® n* 5 4 . . .
Since/ =—=—=—=52.1mm" , the horizontal deflection at 4 is
12 12 12

PR®  300(100)’

S,=m = =14.4
* 2EI  2(200000)(52.1) m

153



4-34. A snap-ring type of leaf spring is shown in Figure P4.34. Determine the following:
a. The bending moment equation at location B.
b. The total amount of deflection (change in distance AD) caused by the loads acting at the ends using
Castigliano’s second theorem. Take R = 1 in., the width 5= 0.4 in., 2= 0.2 in., E = 30 x 10° psi, P = 10
Ib, and ¢, =10°.
c. Plot the deflection as a function of ¢, from ¢ =1"to a, = 45’

Solution
At location B we have The free body diagram shown
(a) Considering bending only gives

M = PR(cos ¢, —cos6)

(b) Applying Castigliano’s theorem gives

_2jﬂaﬂlgd@ and %—AI/)[:R(COS%—COSH) |

Substituting yields
M oM
O,, =2|———Rdb
» J EI 6P
2 7 2 2
S :E—IPR (cosg, —cos#)” RdO
é

V4

I(cos ¢ —2C0S ¢, COS O+ C0s 0 ) dO
¢o

_2PR® )
= cos 2cosg, sin@+—=| @+=sin20
o { #(0)-20030,5in0+3 0+ j}

4

#

:2?;3{cosz¢o(7r—¢0)—2005¢0( sing, )+ ( — ¢ — sm2¢o)}

= PE‘If {(ﬂ'—¢0 )(1+2c0s” ¢ ) +1.5sin 2¢0}

Substituting the numerical values given yields

2(10)(1) {(ﬂ' 107 j(l+2cos 10)+1.55in2(10°)}

30x10° (2.667x104‘) 180
=0.0205 in.

AD —

Problem 4-34. (continued)
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(c) To plot the equation from (b) form the following

8, El
PR®

- {(7[—¢0)(1+ 2c0s’ ¢, )+1.5sin 2¢0}

verses {(7r—¢0 )(l+ 2cos’ ¢0)+1.53in 2¢0}

3, El
PR®

Now we can plot

s)

¢o(Degree
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4-35. Your group manager tells you that she has heard that a sphere of AISI 1020 (HR) steel will produce plastic
flow in the region of contact due to its own weight if placed on a flat plate of the same material. Determine whether
the allegation may be true, and, if true, under what circumstances. Use SI material properties to make your
determination.

Solution

From the appropriate tables we note that S, =379 MPa, S, =207 MPa, w=76.81 kN/m*®, E =207 GPa,

v =0.30, and ¢(50 mm)=15% . The failure mode of interest is yielding. Since ¢(50 mm)=15%, the material is

considered ductile. Since the state of stress at the contact point is tri-axial, the D.E. theory of failure will be used.
Therefore

FIPTOI %[(0'1 -0, )2 +(O'2 —0'3)2 +(03 —0'1)2] > Sip

The principal stresses are given by (4-66) and (4-67). At the contact surface z=0, so
1
01 =09 = —Pmax {(1+ v)—E} = —Pmax [1.3—0.5] ==0.8pya @nd 03 = —ppax

FIPTOI %[(—0.8+0.8)2 #(-08+1)" +(-L+08)" | phoy 252, > 0040p%, > 5%

From (4-65) prax = 3F

3 3
4 (d d
2 2’ where F:VVsphere :(V here)wz_”(_sj w= W
wa

” 3 12 6

The radius of the circular contact area, a, is given by (4-64). Since the material is the same for both the sphere and
the plate and the radius of curvature of the plate is infinite; E, =E, =E, vy=v, =v, d;=d,,and d, =
Therefore (4-64) reduces to

Using the material properties for 1020 (HR) steel

=5.009x10 3443

ﬁdf(76.81><103)(l—0.32)
a == 3
8(207 x10°)

_zdiw  7d}(76.81x10°%)
6 6

F = 40.22x10%43

Problem 4-35. (continue)
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s 3(40.22x10%7)

1
=1738.6x10°(d, )3

Prmax =

2 2
274" 27(5.099x10°d}"
Therefore,

2
FIPTOI 0.040p2, >S3,  — 0.040(738.6><106)2(ds)§ 2(379><106)2

3/2

i (379><106)2

s

=16.88 m

0.040(738.6><106 )2

The allegation is true for a very large sphere (d, >16.88 m ), but for all practical purposes it is not true.
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4-36. Two mating spur gears (see Chapter 15) are 25 mm wide and the tooth profiles have radii of curvature at the
line of contact of 12 mm and 16 mm, respectively. If the transmitted force between them is 180 N, estimate the
following:

a. The width of the contact zone.

b. The maximum contact pressure

¢. The maximum subsurface shearing stress and its distance below the surface.

Solution

(a) Two spur gears in contact may be approximated as two cylinders in contact, so the contact width can be
approximate from (4-69), notingthat £, =E, =E ,and v, =v, =v .

oo [ara—vt | 4(180)(1 0.31) s ~166x10°
e I \/72'(207X109)(25><103)( 3t SJ
44, 12x107°  16x10"
b~0.017 mm
2(180)
(b) From (4-70) pra = =216 MPa

7(L.66x107°)(25x107%)
(c) From Fig 4.17 7y, = 0.3pmay =0.3(276) =82.8 MPa and it occurs at a distance below the surface of

d =0.8b = 0.8(0.017) = 0.014 mm
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4-37. The preliminary sketch for a device to measure the axial displacement (normal approach) associated with a
sphere sandwiched between two flat plates is shown in Figure P4.37. The material to be used for both the sphere and
the plates is AISI 4340 steel, heat treated to a hardness of R. 56 (see Tables 3.3, 3.9, and 3.13). Three sphere

diameters are of interest: d, =0.500 inch, d, =1.000 inch, and 4, =1.500 inchs.

a. To help in selecting a micrometer with appropriate measurement sensitivity and range, estimate the range of
normal approach for each sphere size, corresponding to a sequence of loads from 0 to 3000 pounds, in
increments of 500 pounds.

b. Plot the results.

¢. Would you classify these force-deflection curves as linear, stiffening, or softening? (See Figure 4.21).

Solution

From the figure we note that the total displacement is the sum of the displacements A, defined by (4-77) for two
contact sites between the sphere and the two planar plates. Therefore

2
2 1,2
Atotal = ZAS = 2(104)§/F2 (di+0] |:1—Vl+ﬂ:|

S

With E, = E, =30x10° and v; =v, = 0.30, this becomes

2[4 _nan2 P 2
A =28, = 201083 12030 1550000755 5
d, | 3010 d.

Using d, =0.500,1.00, and 1.500 and letting F vary between 0 and 3000 in 500 Ib increments, the plot below can
be generated. They represent stiffening

0.009
0.008 A
0.007 /
0.006 ~ —
< 0.005 /’/ A& -
;gu 0.004 ‘////:,//A/
0.003 / //A// —e—d=05 |
0.002 / - —a—0d=1.0 [ |
0.001 — & —d=1.5 —
0 ‘ ‘
0 1000 2000 3000
Force (Ib)
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4-38. Consider two cylinders of length 250 mm in contact under a load P as shown in Figure P 4.38. If the
allowable contact stress is 200 MPa, determine the maximum load P that can be applied to the cylinders. Take r; =
200 mm, r, = 300 mm, £ = 200 GPa, and v = 0.25.

Solution

Since the cylinders have the same material properties, Equation (4-124) becomes

2F(rlr2 )(1—1/2)
P\ e

Since
2F
pmax = Ualluw = %
we have
b2 2F(rlr2)(1—1/2)_ 2F 2
B 7ZEL(r +1,) B rlo,,,
Thus,

F = ”Lazflluw 'irz (1_ VZ)
2 E(r1 +r, )

Substituting yields

Fe ﬂ(25o)(2oo)2[200(300)(1-11252)

~8.84 kN
2 200000( 200 +300)
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4-39. Itis being proposed to use a single small gas turbine power plant to drive two propellers in a preliminary
concept for a small vertical-take-off-and-landing (VSTOL) aircraft. The power plant is to be connected to the
propellers through a “branched” system of shafts and gears, as shown in Figure P4.39. One of many concerns about
such a system is that rotational vibrations between and among the propeller masses and the gas turbine mass may
build up their vibrational amplitudes to cause high stresses and/or deflections that might lead to failure.
a. ldentify the system elements (shafts, gears, etc.) that might be important “springs” in analyzing this rotational
mass-spring system. Do not include the gas turbine of the propellers themselves.
b. For each element identified in (a), list the types od springs (torsional, bending, etc.) that might have to be
analyzed to determine vibrational behavior of the rotational vibrating system.

Solution

They types of springs are identified below

System Element Types of springs to be analyzed
Turbine output drive shaft Torsion
Branched speed reducer Bending (gear teeth)

Hertz contact (gear tooth contacts; bearings)
Torsion springs (gear shafts)

Branch shaft (left & right) Torsion springs

Right-angle gear boxes (left & right) Bending springs (gear teeth)
Hertz contact (gear tooth contacts; bearings)
Torsion springs (gear shafts)

Drive box shafts (left & right) Torsion springs

Drive gear boxes (left & right) Bending springs (gear teeth)
Hertz contact (gear tooth contacts; bearings)
Torsion springs (gear shafts)

Propeller drive shafts (left & right) Torsion springs
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4-40. a. A steel horizontal cantilever beam having the dimensions shown in Figure P4.40(a) is to be subjected to a
vertical end-load of £ =100 Ib. Calculate the spring rate of the cantilever beam referred to its free end (i.e. at
the point of load application). What vertical deflection at the end of the beam would you predict?

b. The helical coil spring shown in Figure P4.40(b) has been found to have a linear spring rate of

k,, =300 Ib/in. If an axial load of =100 Ib is applied to the spring, what axial (vertical) deflection would
you predict?

c. In Figure P4.40(c), the helical coil spring of (b) is placed under the end of the cantilever beam of (a) with
no clearance of interference between them, so that the centerline of the coil spring coincides with the end of
the cantilever beam. When a vertical load of 7 =100 Ib is applied at the end of the beam, calculate the spring

rate of the combined beam (i.e. at the point of load application). What vertical deflection of the end of the
beam would you predict?

d. What portion of the 100-Ib force F is carried by the cantilever beam, and what portion is carried by the

spring?
Solution
3

p 3000 20
(a) From case 8 of Table4.1 £, =—%*=—= - =457.8 Ib/in

ycb L (16)

3 3
Yoo = IZELI = (100)(12)0 o~ 021851n
330x10°)| 209"
12
) v, =L =20 _5333in
k, 300

(c) Spring are in parallel, so &, =k, +k,, =457.8+300="757.8 Ib/in, y, = i— = % =0.132in

c

(d) Since springs are in parallel y, =y, =y, . Inaddition F, = F, + F,, =100 Ib

F‘cb = F‘c _Fsp zloo_F;p zloo_k‘spyc
F, =100-300(0.132) =100-39.6 =60.4 Ib
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4-41. To help assess the influence of bearing stiffness on lateral vibration behavior of a rolling steel shaft with a
100-Ib steel flywheel mounted at midspan, you are asked to make the following estimates:
a. Using the configuration and the dimensions shown in Figure P4.41(a), calculate the static midspan deflection
and spring rate, assuming that the bearing are infinitely stiff radially (therefore they have no vertical deflection
under load), but support no moment (hence the shaft is simply supported).
b. Using the actual force-deflection bearing data shown in Figure P4.41(b) (supplied by the bearing
manufacturer), calculate the static midspan spring rate for the shaft bearing system.
c. Estimate the percent change in system stiffness attributable to the bearings, as compared to system stiffness
calculated by ignoring the bearings. Would you consider this to be a significant change?

Solution

(a) Assuming the bearings have infinite stiffness (no vertical deflection under load), all deflection at mid-span is due
to shaft bending, so from case 1 of Table 4.1

3 3
v, = VngkE? __(1000)6) 7 ¥ 60410 in
48(30x10%)| 75
64
ky = o 1000 4 657108 in
‘ v,  6.04x10

(b) Using the force-deflection curve for a single bearing given in the problem statement, and noting that for a
symmetric mounting geometry the 1000 Ib disk weight is evenly distributed by each bearing (500 Ib each),
each bearing deflects vertically by

y, =3.00x10™ in
The total system deflection is
Voo =V + ¥, =(6.04+3.00)x10* =9.04x10* in
The system spring rate is

_ Wiy _ 1000

= — ~1.106x10° in
"y, 9.04x10

[ Note that the non-linear force-deflection curve for the bearings has been treated as linear. For
small vibration amplitudes about the 9.04x10™* in deflection operating point, this procedure

gives reasonable results. However, in general, when non-linear springs are used is a system,
caution must be exerciosed with predicting system stiffness]

(c) Using k, =1.657x10° in and Vs =9.04x10™ in, the percent change in the calculated value

of the system stiffness when bearing compliance (stiffness) is included, as compared to the
system stiffness calculated by ignoring the bearings is estimated as

~ (1.657—1.106
1.657

j =0.3325~ 33% - this is significant
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4-42. For the system shown in Figure P 4.42, determine the deflection for a load of 10 kN. The beam has a length L
of 600 mm and a rectangular cross-section with a width of 20 mm and height 40 mm. The column has a length / of
450 mm and a diameter of 40 mm. Take E = 200 GPa for both.

Solution

For a beam fixed at its ends we know that the maximum deflection occurs at the mid span and is given by

V.., = PL*1192E1

The stiffness is then given by k, = P/ y =192EL/ I’ .The stiffness of the column is given by k. = EA/L
2
7(40) .
Thus we have E4, = 200000 — - 251.327x10° N
20(40)3 10 2
EI, =200000 ST =2.1333x10" N-mm

192(2.1333x10")

(600)’

, _ 251.327x10°
‘ 450

The stiffness of the beam and column are £, = =18962.67 N/mm

=558504.44 N/mm

The column and lower beam are in series (they have the same force acting on them), the stiffness is then given as

=5.45256x10""

1 _ 1.1 1 1
k. k, k 18962.67 558504.44
k.., =18339.98 N/mm

Now, notice that the top beam is in parallel with
the column plus the lower beam (they have the same
deflection) .,

&

k=k,+k,, =18962.67+18339.98 k

+c L

=37302.65 N/mm

Thus, the deflection is given as

= 0134 mm d=—=——=0.268 mm

P _ 5000 P _ 10000
k 3730265 k  37302.65
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4-43. A notched rectangular bar is 1.15 inches wide, 0.50 inch thick, and is symmetrically notched on
both sides by semicircular notches with radii of » =0.075 inch. The bar is made of a ductile steel with
yield strength of S = 50,000 psi . Sketch the stress distribution across the minimum section for each of
the following circumstances, assuming elastic-perfectly plastic behavior.

a. A tensile load of P, =10,000 Ibis applied to the bar.

b. The 10,000-Ib tensile load is released.

c. A tensile load of P, = 20,000 Ib is applied to a new bar of the same type.

d. The 20,000-Ib load is released

e. A tensile load of P, = 30,000 Ib is applied to another new bar of the same type.

f. Would the same or different results be obtained if the same bar were used for all three loads in

sequence?
Solution
=20 k= _ = -
@) 0., =250, = 2.5 2220 | 50 ksi Tas “20kd 5 =350ks
1.0(0.5) —

Therefore, at the root of the notch

O, =S, =50 ksi and the stress -+

distribution shown results F, =10 kip

L ! | |

Tace =Sy = S0 ksl

(b) There is no local yielding in (a), so no residual stresses
remain when the load is released.

.‘_
(c) For a tensile load of P =P, =20 kip and F=c=0
o, =250, =25 229001 100 ki
1.0(0.5)

At the root of the notch o, =100 ksi > S, =50 ksi and plastic flow occurs locally at the notch root.
The stresses may be sketched as shown

=50 ksi (O gag Jitrmuar = 100 ksi

—‘1\‘_ : / SHATE

T g = 30 ks (muncated due to

P =20 Hp - :I:"’:/hhx local plastic flow)
7 |

(Cgag himua = 100 ksi
" elastic

the plastically deformed notch root material into a £ D,. stress in the core
state of compression. The resulting residual o0
stresses may be sketched as shown. j“-——« Compressive residual

Problem 4-43 (continued) stress at the notch root

(d) Because of local plastic flow, when the load 1 _ _
in (c) is released, The elastic core material pulls —~ Tensile residual
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(e) Foratensile load of P=P, =30 kip

30,000
o =
@ ~1.0(0.5)

30,000
1.0(0.5)

=60ksi o, =250, = 2.5[ j =150 ksi

In this case both o, and o, exceed S . Therefore the entire cross section goes into the plastic flow

regime, and because of the assumed elastic-perfectly plastic behavior, the bar flows unstably into
separation by ductile rupture.

(f) If the same bar were used for all three loads, the following observation could be made;

(1) Applying and releasing P, would leave the bar unstressed as shown in part (b).

(2) Next, applying and releasing P, would leave the same residual stresses pattern shown in
part (d).

(3) Finally, the process of applying P, to the bar containing the residual stresses of part (d), the
transitional stress pattern as P, is increased form zero would differ from the transitional

pattern in a new bar (because of built-in residual stresses) but because the average stress
exceeds S, , all residual stresses would be overpowered by plastic flow of the entire cross

section.

The conclusion is that the same results would be obtained.
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4-44. An initially straight and stress-free beam is 5.0 cm high and 2.5 cm wide. The beam is made of a
ductile aluminum material with yield strength of S =275 MPa.

a. What applied moment is required to cause yielding to a depth of 10.0 mm if the material behaves
as if it were elastic-perfectly plastic?
b. Determine the residual stress pattern across the beam when the applied moment of (a) is released.

required to Fr——[10mm

—
produce yielding to a depth of , =10 mm. Since 13 ﬂ“*ﬂ_ f

Solution

(a) Following Example 4-18 we find that (M)

d,=10

S, =275 MPa, we can determine the plastic ( F,) and elastic
(F,) forces to be

._.
d'-g-"-h

10 mm q—FJ‘,

F, = 275x10°(0.010)(0.025) = 68.75 kN i

1
F = E(275x106)(0.025—0.010)(0.025) =51.56 kN

By satisfying moment equilibrium

(M,), = 2{(68.75x103)(0.025—%j+<51.56x103)E£O.OZS—EH ~4.125 kN-m
P 2 3 2

(b) Applying (M,), , =4.125kN-m results in | a }ID mm
the stress distribution shown. Application of a T
moment equal to — (A7, )y, 20 = ~4125 kKN-m 375 MPa /
and assuming elastic behavior, we obtain a virtual .
stress distribution, which is defined by $ 273 MPa
(M,), () 6(M,), 4 dp =10 mm
Omax— — — ==
I bd’ 4
6(4.125x10°) -396 MPa v
=—— 7~ =_396 MPa

"~ (0.025)(0.050)? d, =10mm

This gives the stress distribution to the right.

Combining the two distributions results in the stress _— 1376 MPa
distribution shown below. ‘L h \/
d, =10mm
4 396 MPa
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Problem 4-44 (continue

-121 MPa

d)

""-—\.\_\_\__q

-374MPa g

v
S

m

374 MPa

==

121 MPa
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Chapter 5

5-1. As shown in Figure P5.1, abeam of solid rectangular cross section is fixed at one end, subjected to a
downward vertical load (along the z-axis) of V =8000 Ib at the free end, and at the same time subjected to a
horizontal load (along the y-axis) to the right, looking directly at the free end of the beam, of H =3000 Ib.
For the beam dimensions shown, do the following:
a. Identify the precise location of the most serious critical point for this beam. Explain your logic clearly.
b. Calculate the maximum stress at the critical point.
c. Predict whether failure by yielding should be expected if the beam is made of AISI 1020 annealed
carbon steel.

Solution

(a) Superposition is used. Both the vertical and horizontal forces at the free end produce maximum moments
at the fixed end. The maximum tensile stresses due to the vertical and

horizontal forces ((o,), and (o), , respectively) occur along the sides s

indicated in the figure. As a result, the maximum stress is at the Cnpnial _““\L‘?.- )
intersection of the two lines (at the upper left hand corned). pomt

L]

(b) The normal stresses due to the vertical and horizontal forces are

(e ]

My, [8000(80)](3.5)

(Gt) = = 3 =26.122 ksi
v I, 3(7)° /12
(Gt) _ M,c, _ [3000(80)](1.5) 22,857 ksi
H I, 7(3)’ /12
By superposition

(Umax )c.p4 = (Ut )v +(O-t)H =26.122 + 22.857 = 48.979 ksi
(c) From Table 3.3, the yield stress is S, =43 ksi . For this uniaxial state of stress
(Umax )c_p_ =48.979 ksi > S, =43 ksi

Failure by yielding would be expected.
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5-2. A rectangular block shown in Figure P.5.2 is free on its upper end and fixed at its base. The rectangular
block is subjected to a concentric compressive force of 200 kN together with a moment of 5.0 kN-m as
shown.

a. Identify the location of the most critical point on the rectangular block.

b. Determine the maximum stress at the critical point and determine if yielding will take

place. The material is AISI 1060 (HR) steel.

St

Solution i

The tensile force P produces a tensile stress that is uniform over the

entire surface of the rectangular block. This tensile stress is T
P 200000 - x
o, =—= =160 MPa 25mm L
A 25(50) #

The moment M Produces a tensile stress on the right hand side of the
rectangular block and the maximum value occurs at the edge where X

=25 mm. The maximum bending stress is 450 mm
5000(.025 I A
az':w: 7 ( ) =480 MPa

: 1(0.025)(050)’
The total resultant tensile stress is (o-Z +o, ) at the edge of the 4 P=200N
rectangular block X =25 cm is

& A&7TTN i = 50N
o, =160+480 = 640 MPa

Yielding will occur if &, <S, , where Sy, =372 MPa. Since o, is

yp ?
greater than Sy, yielding will take place.
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5-3. Consider the bent circular rod shown in Figure P5.3. The rod is loaded as shown with a transverse load
P of 1000 Ib. Determine the diameter d in order to limit the tensile stress to 15,000 psi.

Solution

P=10001b
A free body diagram of the circular bent rod is as shown. The axial A
stress due to the load P is

4P 4(1000) 1273

P
A zd? zd? d?

GA:

The bending stress is given as

Mc M(d/2) 32M  32(4000) 40744

B | 7rd4/64 d d’ FE M =4 P=4000 in1b
The maximum stress is
1273 40744 P=10001b
O-max = UA +O—B :d_2+d—3

Since the maximum allowed stress is 15,000 psi we find
15000d° —1273d = 40744
Solving the above equation using Maple or Matlab yields

d = 1.42 inches
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5.4 Consider the cylindrical bent shown in Figure P5.4.

a. Determine the maximum bending stress at point A.
b. Calculate the following stresses at point B:

i.  Torsional shear

ii. Direct shear

Solution

At location A the torsion acting on the rod isT = 0.200P = 0.200(700) =140 N-m and the moment is

M =0.325P = 0.325(700) =227.5 N-m .At B the moment is zero, the torque is 140 N-m and the transverse
shear is 700 N.

(a) The maximum bending stress at A is

Mc
o, =—0
|
d 7(d*-d)
where ¢=—, and | =——~ . Since d; =20 mm
2 64
7(0.030* —0.020*
| = ( )=3.19><10’8 m*
64
hence
227.5(0.015)
o, =——"_" =107 MPa
3.19x10

(b) The torsional shear at point B is

Tr _Tr _ 170(0.015)

Ty=—=—"=—F7———-=40 MPa
J 21 2(3.19x107)
and the direct shear is
P P 8P
=2_-7 =
P TTAT (@ )4 # (0 -a))
8(700) =2.64 MPa

B 7(0.030° -0.0157 )
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5-5. The electronic detector package for monitoring paper thickness in a high-speed paper mill scans back
and forth along horizontal precision guide rails that are solidly supported at 24-inch intervals, as shown in
Figure P5.5. The detector package fails to make acceptable thickness measurements if its vertical
displacement exceeds 0.005 inch as it moves along the guide rails during the scanning process. The total
weight of the detector package is 400 1b and each of the two guide rails is a solid AISI 1020 clod drawn steel
cylindrical bar ground to 1.0000 inch in diameter. Each of the support rails may be modeled as a beam with
fixed ends and a midspan concentrated load. Half the dector weight is supported by each rail.

a. At a minimum, what potential failure modes should be considered in predicting whether the support

rails are adequately designed?

b. Would you approve the design of the rails as proposed? Clearly show each step of your supporting

analysis, and be complete in what you do.

c¢. If you do approve the design, what recommendations would you make for specific things that might

be done to design specifications? Be as complete as you can.

Solution

(a) At a minimum, potential failure modes to be considered include: (1) yielding, (2) Force-induced elastic
deformation.

- M,..C . .
(b) Based on yielding, FIOTOI o, = % 2S,,. The guide rail may be

modeled as a fixed-fixed beam with a concentrated load at midspan. This is
Case 8 of Table 4.1, which is sketched as shown. The maximum bending
moment, occurring at A, B, and C is

i

M =600 in-Ib

_ WL _ 200(24)
8 8

max

For the solid 1.0-inch diameter rails, 1 = zd* /64 = 7(1)* /64 =0.0491 in*, and c=d /2= 0.5 in. So, FIPTOI

_ 600(0.5)

G =6110> 51,000 (from Table 3.3)
0.0491

So failure by yielding is not predicted.

Based on force-induced elastic deformation: FIPTOI y_, =&, , where &, has been specified as
0, =0.005 inch . From Table 4.1

WL 200(24)’ _
192E1  192(30x10°)(0.0491)

ymax =
Since y, .. =0.0098" > 5, =0.005", failure by force-induced elastic deformation is predicted. Do not approve
the design.
(c) To improve the design based on deflection,
(1) Shorten the span, L, by moving the supports closer together.
(2) Increase the rail diameter, d.

(3) Select a material with a larger modulus of elasticity, but this is not practicqal because it would
require an expensive “exotic” material.
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5-6. A shaft having a 40 mm diameter carries a steady load F of 10,000 N and torque T of 5000,000 N-mm is
shown in Figure E5.4A. The shaft does not rotate. Locate the critical location and determine the principal

stresses at the critical location using Mohr’s circle.

Solution

The critical location will be located at the
midsection of the shaft. At this location the
bending moment is a maximum. The reactions
are

&:&:%:wfmzmmN

The maximum bending moment is

M,.. =150R, =750000 N-mm

max

The maximum bending stress is given as

32(750000
o Mec_32m 32 ) _ 11937 MPa

o ad 7 (40)’

The torsional stress is given as

Tr 16T _ 16(500000)

= J o ad?

7(40)°

I'= 300 EN-mm

F=10EN

=39.79 MPa

o =40 mm

I'= 3500 kN-mm

Using Mohr’s circle analogy to find the principal stresses in the xy plane, the critical stress is shown below

K'/
—>

& =119.37 MPa ‘,/- \
/ ¢ =3079 MFPa

X

-
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v =39.79 MPa

o, =119.37 MPa




Problem 5-6 (continued)

Mohr’s circle of stress is plotted as
shown.

2
R, =\/(“92'37j +(39.79)°

=71.73 MPa

o, =C+R +71.73

11937
2

= 131.42 MPa

=-12.05 MPa

and o,=0. The maximum shear
stress is

7. =71.73 MPa

max

(0, 39.79)

B
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5-7. At a point in a body, the principal stresses are 10 and 4 MPa. Determine:

(a) The resultant stress on a plane whose normal makes an angle of 25° with the normal to the plane of
maximum principal stress.
(b) The direction of the resultant stress.

Solution

(a) From Mohr’s circle, Figure 5.1 we have

o +0, o -0 o -0, .
=1 2,71 72:0520 and 7. =——25in26
" 2 2 : 2

Substituting for 6, and o, yields

o, =102 1028 052(257) =8.93 MPa
2 2

TS:

sin2(25°) =2.3 MPa

Thus, the resultant stress is

R=yo?+72 =4/(8.93) +(2.3)" =9.22 MPa

a=tan"'| 2= | = tan™ (ﬁj =144
o 8.93

(b) The direction is
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5-8. A newly designed “model” is to be tested in a hot flowing gas to determine certain response
characteristics. It is being proposed that the support for the model be made of Ti-6Al-4V titanium alloy. The
titanium support is to be a rectangular plate, as shown in Figure P5.8, 3.00 inches in the flow direction, 20.00
inches vertically (in the load-carrying direction), and 0.0625 inch thick. A vertical load of 17,500 pounds
must be carried at the bottom end of the titanium support, and the top end of the support is fixed for all test
conditions by a special design arrangement. During the test the temperature is expected to increase fro
ambient (75°F ) to a maximum of 400°F . The vertical displacement of the bottom end of the titanium
support must not exceed 0.125 inch, or the test will be invalid.

a. What potential failure modes should be considered in predicting whether this support is adequately

designed?

b. Would you approve the proposed design for the titanium support? Support your response with clear,

complete calculations.

Solution

(a) At a minimum, potential failure modes to be considered include: (1) yielding, (2) Force-induced elastic
deformation, and (3) Temperature-induced elastic deformation.

o F .
(b) Based on yielding, FIPTOI o, = x > (Syp )40001: . From Table 3.5 (Syp )4000F =101ksi.

o 17,500 93,333 <101,000 So failure by yielding is not predicted.

Tm = 0.0625)(3.00)

So failure by yielding is not predicted.

Based on force-induced elastic deformation: FIPTOI &; 2 6,

cro

where by specification o, =0.1250". The

force-induced elastic deformation is

8 =g, L, =] Zom || =(93’3336)(20.O)=0.1167"
E 16x10

Since §; =0.1167"< 5, =0.1250", failure by force-induced elastic deformation alone is not predicted.

Based on temperature-induced elastic deformation FIPTOI &, > &, , where &, = L, (AT ). From Table 3.8,

a =5.3x10"° in/in/ °F . In addition we determine AT =400—75=325°F . Thus
o, = 20(5.3x10’6)(325) =0.0345"

Since ¢, =0.0345" < 5, =0.1250", failure by temperature-induced elastic deformation alone is not
predicted.

In order to predict failure, we must note that both force-induced and temperature-induced elastic deformation
occur at the same time. Therefore, the total deformation will be

o,

total

=0, +0,=0.1167+0.0345=0.1512"

Since 9,

ot = 0-1512" > &, =0.1250", failure by elastic deformation (force and temperature combined) is

predicted. The support is not adequately designed.
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5-9. A polar exploration team based near the south pole is faced with an emergency in which a very
important “housing and supplies” module must be lifted by a special crane, swung across a deep glacial
crevasse, and set down is a safe location on the stable side of the crevasse. The only means of supporting the
450-N module during the emergency move is a 3.75-m-long piece of steel with a rectangular cross section of
4 cm thick by 25 cm deep with two small holes. The holes are both 3 mm in diameter, and are located at
midspan 25 mm from the upper and lower edges, as shown in Figure P5.9. These holes were drilled for some
earlier use, and careful inspection has shown a tiny through-the-thickness crack, approximately 1.5 mm long,
emaneating from each hole, as shown. The support member may be modeled for this application as a 3.75-m-
long simply supported beam that symmetrically supports the module weight at two points, located 1.25 m
from each end, as shown. The material is known to be D6AC steel (1000°F temper). Ambient temperature is

about —54°C.
If the beam is to be used only once for this purpose, would you approve its use? Support your answer
with clearly explained calculations based on the most accurate techniques that you know.

Solution

For the material given at an ambient temperature of —54°C , we use Table 5.2 to determine S,, =1570 MPa

and K. =62 MPa+/m . Using Figure P5.9 we can also determine R, = R; =225 kN . Over the central 1.25

m span of the beam the bending moment is constant and the transverse shear force is zero (this is a beam in
four-point bending).

_PL_225(3.75)
3

M =281.25 kN-m V=0

The upper half of the beam is in compression and the lower half is in tension. Therefore, the crack at the
lower hole is in tension and governs failure. The crack tip in the enlarged view of Figure P5.9 is 3.0 mm
below the center of the hole. The distance from the neutral bending axis to the crack tip is

Ve :%—2.5+0.3:10.3 cm =103 mm

The nominal tensile bending stress at the crack tip is

My, 281.25(0.103)

= =556 MPa
(0.04)(0.025)" /12

O,
ct
|

The maximum tensile bending stress within the central span of the beam is

_Mc_ 281.25(0.125)

Onax = I

=675 MPa
(0.04)(0.025)" /12

Both yielding and brittle fracture should be checked as possible failure modes. For yielding we note that the
existing factor of safety is n,, =S, /o, =1570/675~2.3. Therefore, the beam is safe from yielding. For

brittle fracture we check the plane strain condition using (5-53)

2
B=4.0>25 62 =0.39
1570
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Problem 5-9 (continued)

Since the condition is satisfied, plane strain conditions prevail and K. may be used. Calculating K, using

K, =Co,+7a requires engineering judgment, since no charts for C that match the case at hand (a beam

with through-holes, subjected to bending) are included in this text. The most applicable available chart is
probably Figure 5.21, with

a 1.5

A=0 and : = 30
+a [iu.s}

=0.5

This results in F, 1.38, C =(1-4)F, + AF, =1.38, and subsequently
K, =1.38(556x10°),/7(1.5x107) = 52.7 MPav/m

Based on fracture, the existing factor of safety is

K. 62

n = ~1.2
» K, 527

The beam may be approved for use in this one-time emergency.
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5-10. The support towers of a suspension bridge, which spans a small estuary on a tropical island,a re
stabilized by anodized aluminum cables. Each cabe is attached to the end of a cantilevered support bracket
made of D6AC steel (tempered at 1000°F ) that is fixed in a heavy concrete foundation, as shown in Figure P
5.10. The cable load, F , may be regarded as static and has been measured to be about 20,000 1b, but under
hurricane conditions may reach 500,000 Ib due to wind loading.

Inspection of the rectangular cross-section brackets has turned up a crack, with dimensions and
location as shown in Figure P5.10. Assuming that fatigue is not a potential failure mode in this case, would
you recommend that the cracked support bracket be replaced (a very costly procedure) or allow it to remain is
service? (Repair procedures such as welding of the crack are not permitted by local construction codes.)

Solution

For the material given at an ambient temperature of 70°F , we use F . P = Fsin&0

Table 5.2 to determine S, =217 ksi and K. =93 ksiv/in . The I'= Fsinf)

vertical and horizontal components of the applied force produce tensile _

stresses due to bending (from V) and a P/A direct stress (from P). Since Thumbnail 3"

the crack is shallow, the gradient in bending stress is neglected and we crack ©

assume a uniform tensile stress due to P. The normal stress is 3"
™.

Mc P [Fcos60(5)]c Fsin60
Gcr:Gb+o-p:_+_: 3 +

I A bd” /12 bd

cos 60(5)(6) N sin 60

2012y /12 2(12)

=500,000

= 500,000[0.0521+ 0.0361] =26,050+18,050 =44.1 ksi

Both yielding and fracture should be checked. For yielding, the bending stress is maximum at the wall, where
the moment arm is 8” instead of 5”. This results in a maximum normal stress at the wall of

o, =26,050(8/5)+18,050 = 59.7 ksi

The existing factor of safety is n, =S, /o, =217/59.7 = 3.6 . Therefore, the beam is safe from yielding.
For brittle fracture we check the plane strain condition using (5-53)

2
B=2.02> 2.5[2 =0.46
217

Since the condition is satisfied, plane strain conditions prevail and K,; may be used. For a thumbnail crack,
(5-52) may be used witha/2¢=10.070/0.35=0.2 and o, /S, =44.1/217=0.20. The value of Q is
estimated form Figure 5.22 as Q ~1.3 . Using (5-52)

K, %a\/ﬁ - %(44.1)/;:(0.07) =20.3 ksiv/in

Based on fracture, the existing factor of safety is

Ke 93 46

n, = = =
K, 203

Recommendation: Allow bracket to remain in service, but inspect regularly for crack growth.
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5-11. A horizontal cantilever beam of square cross section is 250 mm long, and is subjected to a vertical
cyclic load at its free end. The cyclic load varies from a downward force of Py, =4.5 kN to an upward

force of B, =13.5 kN . Estimate the required cross-sectional dimensions of the square beam if the steel
material has the following properties: S, =655 MPa, S, =552 MPa, and S; =345 MPa (note that
St =345 MPa has already been corrected for the influencing factors). Infinite life is desired. For this

preliminary estimate, the issues of safety factor and stress concentration may both be neglected.

Solution

Critical points A and B are identified at the fixed end of the beam. Point B will experience a tensile non-zero
mean stress and point A a compressive non-zero mean stress. Since a tensile mean stress is potentially more
serious, point A governs the design. The maximum and minimum bending moment and the mean and
alternating moments are

M nax = Prax L =13.5(0.25) =3.375 kN-m M. =P L=-45(0.25)=-1.125 kN-m

max

M., :%(Mmax + Mmin):%(3.375+(—1.125)) = 1.125 kKN-m

M, :%(Mmalemin):%(3.375—(—1.125)) =2.25kN-m
. . I s*/12 ¢ . .
The section modulus isZ = — = 3 = ? . The maximum, mean, and alternating stresses are
c S
M 6M .
Oy = — = — o 66 275) =20.25x10° /s
Z S S
Om = My _ My _ 60L125) (750103 /68
z s s
M M .
o =Ma _ My _6(2.25) 155 10363
a Z 3 3
S S

Neglecting the safety factor by assuming ny =1.0, the equivalent completely reversed cyclic stress is

o, 135x10°/s* 135x10°/8  13.5x10°
e T o T 675x10° /s oS 0
- On _6.75x10%/s | 1031x10° s’ ~10.31x10
Su 655x10° s’

Setting ogq_¢r =S¢ = 345x10° results in

13.5x10°

—————— o §°=3857x107°+1031x107° =396x10°
s* ~10.31x10

345%10° =

Therefore s = 0.0734 m = 73.4 mm .Checking for yielding

20.25%10°

= (0.0734)° =512 MPa <3S, =552 MPa No yielding

O-max
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5-12. A short horizontal cantilever bracket of rectangular cross section is loaded vertically downward (z-
direction) by a force F =85,000 Ib, as shown in Figure P5.12. The beam cross section is 3.0 inches by 1.5
inches, as shown, and the length is 1.2 inches. The beam is made of hot-rolled AISI 1020 steel.

a. Identify potential critical points other than the point directly under the force F.

b. For each identified critical point, show a small volume element including all nonzero stress

components.

c. Calculate the magnitude of each stress component shown in (b). Neglect stress concentration effects.

d. Determine whether failure by yielding will occur, and if it does, state clearly where it happens. Neglect

stress concentration effects.

Solution
i1
(a) Potential critical points are at the wall, including all points along boundaries 1 and 2 L
(due to bending) and along axis 3-3 (due to transverse shear) |
(b) Volume elements may be sketched as shown below 3 b i }3' )
z z z !
[ 2
x T
> - y S ¥y = l ¥
X .~ X, x,
along boundary 1 glong boundary 2 dong axs 3-3

(tensiomn) (compressiomn) (transverse shear)

(c) The stress components are

85(1.2)] (1.5
zew:&:wzﬁjksi

|1 153 /12
235215 85

. 5—— =283 ksi
2 A 1.5(3)

T

(d) For uniaxial tensile stresses, based on yielding as a failure mode, we identify AISI hot-rolled 1020 steel
as ductile (from Table 3.10), and S, =30 ksi (from Table 3.3). Since we identify the principal stress as

o, =0y =453 ksi > S, , yielding is predicted.

yp >
For transverse shear we identify the principal stresses as oy =7, =28.3 ksi, 0, =0, 03 =-7, =-28.3 ksi

For yielding due to transverse shear FIPTOI

%[(28.3—0)2 +(0—{-28.3})% +(-28.3 —28.3)2] >S2,
2400 > (30)” =900

Therefore, yielding due to transverse shear is predicted along axis 3-3.

182



5-13. The stubby horizontal cantilevered cylindrical boss shown in Figure P5.13 is loaded at the free end by a
vertically downward force of F =575 kN . The circular cross section has a diameter of 7.7 cm and a length
of just 2.5 cm. The boss is made of cold-rolled AISI 1020 steel.
a. Identify clearly and completely the locations of all potential critical points that you believe should be
investigated, and clearly explain why you have chosen these particular points. Do not consider the point
where force F is concentrated on the boss.
b. For each potential critical point identified, neatly sketch a small-volume element showing all pertinent
stress components.
c. Calculate a numerical value for each stress component shown in (b)
d. At each of the critical points identified, determine whether yielding should be expected to occur. Show
calculation details for each case.

Solution

(a) Potential critical points are at the wall, including points 1 and 2 (due to bending) and
along axis 3-3 (due to transverse shear)

(b) Volume elements may be sketched as shown below

Z Z

” i

o
& r -
‘-{;____, v 5“,—-‘} v = l v
x " X x
at point 1 (tension) at point 3 {compression) along ads 3-3 (transverse shear)

(c) The stress components are

Mc Flc _ [575(0.025)](0.0375)
I I 7(0.075)* / 64

i =3 .33L52:1
3A 7(0.075)* /4

=347 MPa

Oy =

73 MPa

(d) For uniaxial tensile stresses, based on yielding as a failure mode, we identify AISI cold-rolled 1020 steel
as ductile (from Table 3.10), and S, =352 MPa (from Table 3.3). Since we identify the principal stress as

o0, =0y, =347 <352, yielding is not predicted.
For transverse shear we identify the principal stresses as
oy=1,=173MPa, 0,=0, 03=-1, =-173 MPa

For yielding due to transverse shear FIPTOI

%[(173—0)2+(0—{—173})2+(—173—173)2]zs§p or 89,7872 (352)” =123,904

Therefore, yielding due to transverse shear is not predicted along axis 3-3.
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5-14. The short tubular cantilever bracket shown in Figure P5.14 is to be subjected to a transverse end-load
of F =30,000 Ib. Neglecting possible stress concentration effects, doe the following:
a. Specify precisely and completely the location of all potentially critical points. Clearly explain why you
have chosen these particular points. Do not consider the point where the force F is applied to the bracket.
b. For each potential critical point identified, sketch a small-volume element showing all noOnzero
components of stress.
c¢. Calculate numerical values for each of the stresses shown in (b).
d. If the material is cold-drawn AISI 1020 steel, would you expect yielding to occur at any of the critical
points identified in (a)? Clearly state which ones.

Solution

(a) Potential critical points are at the wall, including points 1 and 3 (due to bending)
and 2 and 4(due to transverse shear)

(b) Volume elements may be sketched as shown below

|

L]

Z

o, -

ot L v * l v

x X~ x

at point 1 (tension) at point 3 (compression) at points 2 & 4 (transverse shear)

(c) The stress components are

_Mc _Flc _ [30(1.5)](1.625)

o, = = 48.736 ksi
I ;{(3.25)4 —(3.00)4}
64
ry =252 50 ~48.892 ksi
A ;{(3.25)2 —(3.00)2]
4

(d) For uniaxial tensile stresses, based on yielding as a failure mode, we identify the material as ductile (from
Table 3.10), and S, =51 ksi (from Table 3.3). Since we identify the principal stress as 0y = o, =48.7 <51,

yielding is not predicted.
For transverse shear we identify the principal stresses as

oy =7, =48.892ksi, 0, =0 , 03 =—7,, = —48.892 ksi

For yielding due to transverse shear FIPTOI

[(48.892—0)2 +(0—{-48.892})? +(—48.892—48.892)2] >$2 or 7131>(51)° =2601

1
E yp

Therefore, yielding due to transverse shear is predicted at points 2 and 4.
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5-15. It is being proposed to use AISI 1020 cold-drawn steel for the shaft of a 22.5-horsepower electric
motor designed to operate at 1725 rpm. Neglecting possible stress concentrations effects, what minimum
diameter should the solid steel motor shaft be made if yielding is the governing failure mode? Assume the
yield strength in shear to be one-half the tensile yield strength.

Solution

The required torque for this application is

T _ 63,025(22.5)
1725

=822 in-lb

The maximum shearing stress is

_Ta _T(d/2) 16T 16(822) 4186.4

R rd*  zd® xd? d’
32

Based on yielding as a failure mode, and assuming z,, =S,,/2=51/2=25.5 ksi as suggested, the shaft

diameter is determined from

4186.4
d3

=25,500 = d=0.5475" d =0.55"

Note that no factor of safety has been included, so a larger shaft would probably be used in this application.
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5-16. It is desired to us a solid circular cross section for a rotating shaft to be used to transmit power from one
gear set to another. The shaft is to be capable of transmitting 18 kilowatts at a speed of 500 rpm. If yielding is
the governing failure mode and the shear yield strength for the ductile material has been determined to be 900
MPa, what should the minimum shaft diameter be to prevent yielding?

Solution

The required torque for this application is

T 9549(18)
550

=312.5 N-m

The maximum shearing stress is

_Ta_T(d/2) 16T 16(3125) 15915

Y rd*  zd? 7d? d?
32

The shear yield strength has been given as 900 MPa, so

15915
a3

900x10° = d=0.0121m or d =12.1 mm

Note that no factor of safety has been included, so a larger shaft would probably be used in this application
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5.17. A solid steel shaft of square cross section is to be made of annealed AISI 1020 steel. The shaft is to be
used to transmit power between two gearboxes spaced 10.0 inches apart. The shaft must transmit 75
horsepower at a rotational speed of 2500 rpm. Based on yielding as the governing failure mode, what
minimum dimension should be specified for the sides of the square shaft to just prevent yielding? Assume the
yield strength in shear to be one-half the tensile yiely strength. There are no axial or lateral forces on the
shaft.

Solution

The noncircular shaft transmits pure torque. The critical points (c.p.) are located r

at the midpoints of each side of the square, as shown. The torque transmitted is '-?P T

la
Qecp. cp@ =%
72830573 _ 1591 i1
2500 EP-
The maximum shearing stress is given by (4-42) as 7, =T1/Q =1891/Q . For M, P,

the material selected , S,;, =43 ksi and 7., =S,,/2=21.5 ksi . Using this we

determine

Q=1891/21,55~0.088
The expression for Q from Table 4.5 for a square is

212 4
Q=D _8 a0 _0.088
3a+1.8b 4.8a

Solving for a gives a =0.375. Since the length of each side is 2a, we end up with the length of each side
being

2a=0.75"

Note that no factor of safety has been included, so a larger shaft would probably be used in this application.
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5-18. It is necessary to use a solid equilateral triangle as the cross-sectional shape for a rotating shaft to
transmit power from one gear reducer to another. The shaft is to be capable of transmitting 4 kilowatts at a
speed of 1500 rpm. Based on yielding as the governing failure mode, if the shear yield strength for the
material has been determined to be 241 MPa, what should the minimum shaft dimensions be to just prevent
yielding.

Solution

which must be transmitted is

T= 9345(%) =25.5N-m
1500

The maximum shear stress is 7,,,,, =T /Q, where from Table (4.5)

The critical points of the non-circular shaft are located as shown. The torque
T /\

Q=a’/20, meaning

20T _ 20(25.5) _ 510

Tna -
el a’ a’

The shear yielding strength is 7,,,,, =241 MPa, so

a= 3’L06 =0.0128 m
241x10

Note that no safety factor has been included, so a larger shaft would probably be used
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5-19. a. Find the torque required to produce first yielding in a box-section torsion-bar build up from two
. 1 1. .
equal-leg L-sections (structural angles), each 25>< 25>< 7 inch, welded together continuously at two

places all along their full length of 3 feet. The material is hot-rolled ASIS 1020 steel. Assume the yield
strength in shear to be one-half the tensile yield strength. Neglect stress concentration effects.

b. For the box-section torsion-bar of (a), what torque would cause first yielding if the welder forgot to
join the structural angles along their length? Compare with the results from (a).

Solution

(a) The welded box-section will transmit pure torque. Based
on the shape of the section we deduce that the critical points are
likely to be at the midpoint of each side. The expression for Q
from Table 4.5 for a square is

212 4
Q:&:&:I.mf
3a+1.8b 4.8a

1. . L .
For the 25 -inch angles, the outside and inside dimensions are

25-2(0.25)

a,=25/2=1.25 & 5

1.0

For the hollow square tube we have

Q= 1.67(a§ —ai3):1.67[(1.25)3 —(1.0)3] =1.592

For the material selected ,

The maximum shearing stress and torque are related by T =7, Q =1.5927,. .

Syp =30ksi and 7y, =S, /2=15ksi. The torque required to reach the yield point in the weld material is

therefore

(Typ ), g =1:592(15,000) = 23,865 in-Ib (Typ), ,, = 23865 in-Ib

(b) If the welder fails to execute the weld correctly, the section no longer behaves as a box. Instead is will
behave as two thin rectangles in parallel. The dimensions of each rectangle will be 2a=5 and 2b=10.25.
This results in

0= sa’b>  8(2.5)%(0.125)
3a+1.80  3(2.5)+1.8(0.125)

Since there are two parallel rectangular plates, we use Q =0.20 to determine

(Typ ), yg = 0-2(15,000) = 3000 in-1b (Typ ), yg = 3000 in-Ib

Comparing the two solutions, it is obvious that if the welder fails to perform correctly, the resulting section
would carry about 12% as much torque as a correctly welded section.
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5-20. A hollow square tube is to be used as a shaft to transmit power from an electric motor/dynamometer to
an industrial gearbox which requires an input of 42 horsepower at 3400 rpm, continuously. The shaft material
is annealed AISI 304 stainless steel. The dimensions of the square shaft cross section are 1.25 inch outside,
the wall thickness is 0.125 inch, and the shaft length is 20 inches. There are no significant axial or lateral
loads on the shaft.
a. Based on yielding as a failure mode, what existing factor of safety would you calculate for this shaft
when it is operating under full power? Assume the yield strength in shear to be one-half the tensile yield
strength.
b. Want angle of twist would you predict for this shaft when operating under full power?

Solution
(a) The critical points are at the midpoint of each side as shown. Knowing the o
dimensions, we use Table 5.4 to determine cp.

212 4
0= 8a’b _ 8a _1678° cp.
3a+1.8b 4.8a i

Since the section is hollow

3 3
0-0, -0 161 (122 (142 |- o1

The torque and maximum shearing stress are

- 03.025482) _ 706 551 P === 152 _ 3012 psi
3400 Q 019

For the material selected, S,; =35 ksi and 7., =S,;/2=17.5 ksi . The existing factor of safety is

Ty 175
n, =—" =" —447 n, =447
&7 3.912 &

max

(b) The angle of twist is given by § =TL/KG , where, for a square section

4
K =ab’ E—3.36B 1- b ; =2.25a*
3 a 12a

Since the section is hollow

4 4
M :2.25[(£] (1) ]:0.2027
2 2

The shear modulus is, from Table 3.9, is G =10.6x10° . The angle of twist is therefore

_778.5(20)
0.2027(10.6x10°)

~0.00725 rad 6 =0.00725 rad(z 0.420)
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5-21. Compare and contrast the basic philosophy of failure prediction for yielding failure with failure by
rapid crack extension. As a part of your discussion, carefully define the terms stress-intensity factor, critical
stress intensity, and fracture toughness.

Solution

The basic philosophy of failure prediction is the same, no matter what the governing failure mode may be.
That is, failure is predicted to occur when a well-selected, calculable measure of the seriousness of loading
and geometry exceed the value of a critical strength parameter that is a function of material, environment, and
governing failure mode. Thus, for yielding

Failure is predicted to occur if o > Syp

where o is the applied stress and S is the uniaxial yield strength of the material. Similarly, for brittle

fracture by rapid crack extension

Failure is predicted to occur if K > K

where K is the stress intensity factor and K¢ is the critical stress intensity factor, or fracture toughness. These
three terms may be defined as follows:

Stress intensity factor — a factor representing the strength of the stress field surrounding the tip
of the crack, as a function of external loading, geometry, and crack size.

Critical intensity factor — the value of the stress intensity associated with the onset of rapid crack
extension.

Fracture toughness — a material strength parameter that gives a measure of the ability of a
material to resist brittle fracture; this parameter has a lower limiting value under conditions of
plane strain, that may be regarded as a material property, namely K,., plane strain fracture

toughness.

191



5-22. Describe the three basic crack-displacement modes, using appropriate sketches.

Solution

There are three basic crack displacement modes: I, II, and III (as shown). Mode I is the crack opening mode
and the crack surfaces are moved directly apart. Mode II is the sliding mode and the crack surfaces slide over
each other in a direction perpendicular to the leading edge. Mode 11 is the tearing mode and the crack
surfaces are caused to slide parallel to the leading edge.

Mode I Mode 1T Mode 111

s - -+t
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5-23. Interpret the following equation, and carefully define each symbol used. Failure is predicted of occur if:

Covrma 2Ky,

Solution

Failure is predicted to occur if Co+vza = K| would be used by a designer to predict potential brittle fracture
by rapid crack extension, for “thick” sections, where

K¢ =plane strain fracture toughness (a material property)

a = crack length

o = gross section nominal stress

C = parameter dependent upon the type of loading, far-field geometry, temperature, and strain
rate.

2
The minimum thickness required to regard a section as “thick” is given by B > 2.5[ Ic J , Where
yp

B = thickness of section
Syp = yield strength
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5-24. A very wide sheet of 7075-T651 aluminum plate, 8 mm thick is found to have a single-edge through-
the-thickness crack 25 mm long. The loading produces a gross nominal tension stress of 45 MPa

perpendicular to the plane of the crack tip.

a. Calculate the stress intensity factor at the crack tip.
b. Determine the critical stress-intensity factor

c. Estimate the factor of safety (n =K, /K, )

Solution

Given: b= very wide..a/b—0,
material: 7075-T651 aluminum plate
B=8mm, a=25mm, o =45 MPa
(K,C )min =27 MPaym (from Table 5.2)

(a) K=Co+ra . From Figure 5.19 for a/b—0
a 32 3/2
C(I—Bj =C(1-0)""=1.122 —» C=1.122
K =K, =Co+/ra =1.122(45)1/0.0257 =14.15 MPa\/m

(b) Checking for plane strain

2 2
B=0.008>2.5 Kie | - 2.5[£j =0.0069
Sy 515

Plane strain condition is satisfied

27

n=K, /K, =—'_=
© ™ 415

1.91
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5-25. Discuss all parts of 5-24 under conditions that are identical to those stated, except that the sheet
thickness is 3 mm.

Solution

Given: b= very wide .. a/b — 0, material: 7075-T651 aluminum plate
B=3mm, a=25mm, o =45MPa, (ch) =27 MPay/m (from Table 5.2)

min

(a) K=Co+ra. From Figure5.19 for a/b—>0
a 3/2
C(I—Ej —Cc(1-0y"?=1.122 » C=1.122

K =K, =Co+/ra =1.122(45)11/0.0257 =14.15 MPav/m

(b) Checking for plane strain

2 2
B=0.003>25 Kie | _ 2.5(1j =0.0069
Sy 515

Plane strain condition are not satisfied

1.4 (27

4
e —j =29.85
(0.0069)> \ 515

29.85
o) n=K_ /K, =222 _2 11
© N T 1415
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5-26. A steam generator in a remote power station is supported by two straps, each one 7.5 cm wide by 11
cm thick by 66 cm long. The straps are made of A%/#* steel. When in operation, the fully loaded steam
generator weighs 1300 kN, equally distributed to the two support straps. The load may be regarded as static.
Ultrasonic inspection has detected a through-the-thickness center crack 12.7 mm long, oriented perpendicular
to the 66-cm dimension (i.e. perpendicular to the lensile load). Would you allow the plant to be put into
operation? Support your answer with clear, complete engineering calculations.

Solution

Given: W =1300 kN ; equally split between 2 supports. material: A538 steel
From Table 5.2 S, =1772 MPa ,(K,;) =111 MPaym P T

Both yielding and brittle fracture should be checked as possible failure
modes. One approach is to calculate the existing factor of safety.

For yielding we use the neat area to define o

3
o= P _ 1300x10° /2 — 943 8 MPa

A (0.075-0.0127)(0.011)

r—f: G0 mum —1
x
]

S
nyp:ﬂ:ﬂﬂ,gz P l
o 948.8

This is an acceptable factor of safety. For brittle fracture; we begin by checking the plane strain criteria

2 2
B=0.011>2.5 & =2.5(£) =0.0104
Syp 1722

Since the condition is satisfied, plane strain conditions hold and K| is the proper failure strength parameter to

use. We calculate the K, = Co~/7a . From the mode I curve of Figure 5.17, with a/b=12.7/75=0.17, we

estimate
C+1-0.17=093 = C=1.02

Using the nominal area ( A= 0.075(0.011) = 0.000825 m?) to determine the normal stress
o =650/ A=788 MPa The gives

K, =1.02(788)\/7(0.0127/2) =113.5 MPay/m

and
&_ 111

- =0.98
K, 1135

Based on this safety factor, do not restart the plant.
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5-27. A pinned-end structural member in a high-performance tanker is made of a 0.375-inch-thick-by-5-inch-
wide, rectangular cross-section, titanium 6Al-4V bar, 48 inches long. The member is normally subjected to a
pure tensile load of 154,000 1b. Inspection of the member has indicated a central through-the-thickness crack
of 0.50-inch length, oriented perpendicular to the applied load. If a safety factor (see 2.13) of n=1.7 is
required, what reduced load limit for the member would you recommend for safe operation (i.e. to give
n=1.7)?

Solution

P
Given:; P =154.4 kip , material: 6Al-4v titanium T B =D'ji,>
From Table 5.2 Sy, =119 ksi, (K. ) =96 ksiv/in .

—— 5" —l“’;

Both yielding and brittle fracture should be checked as possible failure modes. One

approach is to calculate the existing factor of safety. a0 -
I:I_ SII
For yielding we use the neat area to define o
o=t o DA g5y -
Ae  (5-0.5)(0.375) P
S 119
yp
n,=——=—-=1.3
oo 915

This is an acceptable factor of safety. For brittle fracture; we begin by checking the plane strain criteria
K ) 96 \’
B=0375>25/—¢ =2.5(—J =1.63
Syp 119

Since the condition_is not satisfied, plane strain conditions do not apply and we have to assume plane stress.
In order to determine the plane stress critical stress intensity factor we use (5-54)

1/2

4 4 1/2
K, =K, 1+:3‘—4[%J =96{1+L( 96} ] = 2193 ksivin

215, (03752 \ 119

Next , K, =Co+/za . From the mode I curve of Figure 5.17, with a/b =0.5/5=0.10, we estimate
C+1-0.10 =096 = C=1.01.Using the nominal area ( A=15(0.375) =1.875 inz) to determine the
normal stress o =154.4/ A=82.3 ksi. The gives

K, =1.01(82.3)4/7(0.5/2) = 73.7 ksin/in

and
n=K, /K, =2193/73.7=2098

The required factor of safety criteria is met and no reduced load limit is required.
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5-28. An engine mount on an experimental high-speed shuttle has been inspected, and a thumbnail surface
crack of 0.05 inch deep and 0.16 inch long at the surface has been found in member A, as shown in Figure
P5.28. The structure is pin-connected at all joints. Member A is 0.312 inch thick and 1.87 inches wide, of
rectangular cross section, and made of 7075-T6 aluminum alloy. If full power produces a thrust load P of
18,000 Ib at the end of member B, as shown in Figure P5.28, what percentage of full-power thrust load would
you set as a limit until part A can be replaced, if a minimum safety factor (see 2.13) of 1.2 must be
maintained?

Solution

P=180001b
Material: 7075-T6 aluminum; from Table 5.2

Syp =75 ksi, (K) . =26 ksiv/in . Noting that member 1-2 ‘o 1

is a two-force member, we use the free body diagram shown to
determine the force in member “A”.

Laa

M, =0: 15(18,000)—10(F,cos45°)=0
2 A

Fp ~38,184 b
1|:|II

At full power the stress in member “A” will be

-
=i:ﬂ:65,446 psi r
A 0.312(1.87)

Both yielding and brittle fracture should be checked. For

yielding 10"

S
Nyp =i:l:1.15 ~1.2
o 6545

This is considered to be equal to the required factor of safety, so we conclude that for full power, the bracket
will not fail due to yielding. For brittle fracture we first check the plane strain condition

2 2
B=031222.5| N | _p5(26) _30
Syp 75
Since the plane strain condition is satisfied we use (5-52)

1.12
K, =—=o+ra

o)

From Figure 5.22 with a/2¢ =0.05/0.16 =0.3125and o, /S, =65.45/75=0.873 we can estimate
Q =~1.45, which gives

K, =12 (65.45)/7(0.05) = 24.13 ksiv/in

\1.45
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Problem 5-28 (continued)
The factor of safety is

Kie _ 26

= ~1.08
K, 2413

This does not satisfy the factor of safety requirement, so the power must be reduced. The maximum reduced
power would be

1.0

8
(Pax )reguced = E(l 00) % 90% of full power

(P =90%

max )reduced
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5-29. A 90-cm-long structural member of 7075-T6 aluminum has a rectangular cross section 8 mm thick by
4.75 cm wide. The member must support a load of 133 kN static tension. A thumbnail surface crack 2.25 mm
deep and 7 mm long at the surface has been found during an inspection.

a. Predict whether failure would be expected.

b. Estimate the existing safety factor under these conditions.

Solution

Material: 7075 T-6 aluminum. From Table 5.2 S, =440 MPa , K. =31 MPav/m

Both yielding and brittle fracture should be checked as possible failure modes. One approach is to calculate
the existing factor of safety.

For yielding we use the neat area to define o

P 133

G=—=— " -35) MPa
A (0.008)(0.0475)

S
Nyp :ﬂ:ﬂzl,%
lo 350

For brittle fracture; we begin by checking the plane strain criteria
Ky | 31 Y
B=0.008>2.5 -1 | = 2.5[—j =0.0124
Syp 440

Since the condition_is not satisfied, plane strain conditions do not apply and we have to assume plane stress.
In order to determine the plane stress critical stress intensity factor we use (5-54)

1/2 1/2

4 4
K. =K, 1+IB'—3[%J :31[1+L(3” —38.46 MPa/m

" (0.008)> \ 440

We calculate K, using K, = (1.12/\/6)0\/7ra . From Figure 5.22 with
a/2c¢=0.00225/0.007 =0.321and o, /S, =1/1.26 =0.794 we can estimate Q ~ 1.6, which gives

K, = %(350)4;;(0.00225) =26.1 MPay/m

The factor of safety is

_ Ky 3846

K, 26.1

~1.47
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5-30. A transducer support to be used in a high-flow-rate combustion chamber is to be made of hot-pressed
silicon carbide with tensile strength of 110,000 psi, compressive strength of 500,000 psi, fracture toughness
of K. =3.1 ksiv/in , and nil ductility. The dimensions of the silicon-carbide support, which has a rectangular
cross section, are 1.25 inches by 0.094 inch thick by 7.0 inches long. Careful inspection of many such pieces
has revealed through-the-thickness edge cracks up to 0.060 inch long, but none longer. If this part is loaded in
pure uniform tension parallel to the 7.0-inch dimension, approximately what maximum tensile load would
you predict the part could withstand before fialing?

Solution

Material: Hot-pressed silicon carbide.

Syt =100 ksi , S, = 500 ki, K, =3.1 ksiv/in ,
e = nil . Since the ductility is nil, the potential failure a=0.060"
mode is brittle fracture, for which FIPTOI

K, =C, oJra> K|c - The dimensions given are

shown in the sketch. Checking the plane strain
criterion results in l_
¢ =0.094"

2 2
K .
B=0.094>25—° | = Z.S(EJ =0.00198
Syp 110

Since the plane strain condition is met we use the Mode I curve from Figure 5.19 with

a/b=0.06/1.25=0.048 and C, (1—0.048)3/2 ~1.12 to estimate C, ~1.21. The failure stress is determined
from
K, 3.1 .
O=0¢ = = = 5.9 kSl
" Jra 121400607
The failure load is therefore
P, = o A=5900(0.094)(1.25) = 693 Ib P, =693 Ib
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5-31. A newly installed cantilever beam of D6AC steel (1000°F temper) has just been put into use as a
support bracket for a large outdoor tank used in processing synthetic crude oil near Ft. McMurray, Alberta,
Canada, near the Arctic Circle. As shown in Figure P5.31, the cantilever beam is 25 cm long and has a
rectangular cross section 5.0 cm deep by 1.3 cm thick. A large fillet at the fixed end will allow you to neglect
stress concentration there. A shallow through-the-thickness crack has been found near the fixed end, as
shown, and the crack depth has been measured as 0.75 mm. The load P is static and will never exceed 22 kN.
Can we get through the winter without replacing the defective beam, or should we replace it now?

Solution

Material: D6AC steel., S, =1570 MPa @ —54°C, Syp =1495 MPa @ 21°C,

K, =62 MPavm @ -54°C, K, =102 MPa+/m @ 21°C . From Figure P5.31, the crack has been initiated
at the fixed end of a cantilever beam, on the tension side (top) and bending stress governs at that critical point.

Mc 6M  6[(22)(0.25)]
O-b == e ——

== 7 =1015 MPa
I tb®  0.013(0.05)

Both yielding and brittle fracture will be checked. One approach is to calculate the existing factor of safety.
For yielding we note that S, is more critical at warmer temperatures.

:Si:1495

—= =147
P, 1015

For brittle fracture, we check the plane strain criterion

2 2
K
B=0.013>25] —¢ =2.5(£j =0.0039
Sy 1570

Since the plane strain condition is met we use Figure 5.20 with a/b =0.00075/0.050 = 0.015 and

C, (1—0.015)3/2 ~1.12 to estimate C, ~1.15. The failure stress is determined from

K, =1.15(1015)4/0.000757 =56.7 MPa
The existing factor of safety is

K
np =t = 2 10911
K, 567

The governing failure mode is therefore brittle fracture. Although the existing safety factor is low, we can
probably wait for warmer weather, but frequent inspection of the crack is suggested.
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5-32. Identify several problems a designer must recognize when dealing with fatigue loading as compared to
static loading.

Solution

(1) Calculations of life are generally less accurate and less dependable than strength calculations.

(2) Fatigue characteristics can not be deduced from static material properties; fatigue properties must
be measured directly.

(3) Full scale testing is usually necessary.

(4) Results of different but “identical” tests may differ widely; statistical interpretation is therefore
required.

(5) Materials and design configurations must often be selected to provide slow crack growth.

(6) Reliable crack detection methods of must be identified and employed.

(7) Fail-safe design techniques, including design for inspectability, must of be implemented.
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5-33. Distinguish the difference between high-cycle fatigue and low-cycle fatigue.

Solution

High-cycle fatigue is the domain of cyclic loading for which strain cycles are largely elastic, stresses are
relatively low, and cyclic lives are long. Low-cycle fatigue is the domain of cyclic loading for which strain
cycles have a significant plastic component, stresses are relatively high, and cyclic lives are short
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5-34. Carefully sketch a typical S— N curve, use it to define and distinguish between the terms fatigue
strength and fatigue endurance limit, and briefly indicate how a designer might use such a curve in practice.

Solution
A typical S-N curve has the appearance shown.

Defining terms:
Sn, = Snon, = fatigue strength corresponding to

N, cycles of life.

Se = Sy_ = fatigue endurance limit; corresponding

N log NV

to strength asymptote (if one exists) to
the S — N curve.

A designer might use an S —N curve as follows:

(1) Select an appropriate design life, say Ny = N;.
(2) Read up from N, and left to Sy , which is the fatigue strength corresponding to the selected

design life.
(3) Determine the design stress as oy = Sy /Ny , where ny is the design factor of safety.

(4) Configure the part so that the stress at the most critical location in the part does not exceed the
design stress oy .
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5-35. Make a list of factors that might influence the S — N curve, and indicate briefly what the influence might
be in each case.

Solution

The following factors may influence an S-N curve:

(a)

(b)

(c)
(d)
(e)

(®

(2)

(h)

(@)

)

(k)
M

Material composition — Two types of material responses are observed: (1) ferrous and titanium
alloys exhibit fatigue endurance limits, and (2) all other materials exhibit no horizontal asymptote
(no fatigue endurance limit).

Grain size and grain direction — fine grained materials generally exhibit superior fatigue
properties. Fatigue strength in the grain direction is typically higher than in the transverse
direction.

Heat treatment — Fatigue properties are significantly influenced by heat treatment.

Welding — Generally, welded joints have inferior fatigue strength as compared to a monolithic part
of the same base material.

Geometrical discontinuities — Changes in shape result in stress concentrations that may greatly
reduce fatigue strength, even for ductile materials.

Surface conditions — surface conditions are extremely important since nearly all fatigue failures
initiate at the surface. Smooth is better than rough, cladding and plating generally lower the
fatigue strength (but corrosion prevention usually more than offsets the deficit).

Size effect — Large parts generally exhibit lower fatigue strength than smaller specimens of the
same material.

Residual surface stresses — These are extremely important since nearly all fatigue failures initiate
at the surface. Residual stresses add directly to operating stresses. Generally, compressive residual
stresses are good and tensile are bad,

Operating temperature — Fatigue strength generally diminishes at elevated temperatures and is
somewhat enhanced at lower temperatures. The fatigue endurance limit of ferrous and titanium
alloys disappears at elevated temperatures.

Corrosion — A corrosive environment lowers fatigue strength and eliminates the fatigue endurance
limit of ferrous and titanium alloys in many cases.

Fretting — In many cases fretting action results in a large reduction of fatigue strength.

Operating speed — Generally, from about 2000 cpm to about 7000 cpm, no effect. Below 200 cpm,
a small decrease in fatigue strength. Above 7000 cpm, significant increase in fatigue strength,
except around 60,000 — 90,000 cpm, some materials show a sharp decrease in fatigue strength.

(m) Configuration of stress-time pattern — Not much sensitivity of fatigue strength to shape of stress

(n)
(0)

wave along time axis.

Non-zero mean stress — Extremely important and must be accounted for, especially when tensile.
Damage accumulation — Extremely important and must be evaluated as a function of cycles at
each level, e.g. by Palmgrin-Miner rule.
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5-36. Sketch a family of S— N — P curves, explain the meaning and utility of these curves, and explain in
detail how such a family of curves would be produced in the laboratoty.

Solution

The S-N-P curve sketched here is a family of
“constant probability of failure” curves on a graph of
stress versus life. The plot shown is the simplest
version, i.e. o, versus N for the case of completely

reversed loading (o, = 0). To produce such a plot,

the following experimental and plotting procedures
would be used.

l.

W

10.

11.

T,=0
& e
\ P =090

P =0.50

P=0.10

Stress amplitude

Select a group of about 100 specimens
from the population of interest, carefully
prepared and polished. Divide the group Life N, cycles (log)

into 4 or 5 subgroups of at least 15

specimens each.

Select 4 or 5 stress levels that span the stress range of the S — N curve.

Run an entire subgroup at each selected stress level, following the procedures outlined below.

To run each test, carefully mount the specimens in the machine, align to avoid bending stresses,
set the desired load amplitude (stress amplitude), and zero the cycle counter.

Run test at the desired constant stress amplitude until the specimen fails, or the machine reaches a

pre-selected “run-out” life, often taken to be 5x10” cycles.

Record the stress amplitude and the cycle count at the time of failure or run-out.

Repeat the procedure until all specimens in the subgroup have been tested.

Starting with a new subgroup, repeat the process again, and continue until all subgroups have
been tested.

From the data for each subgroup, compute a sample mean and variance. Plot the resulting failure
data, together with a mean S — N curve, on a plot of stress versus failure life, as shown in Figure
5.27. The failure life axis is usually chosen to be a logarithmic scale, and the stress axis may be
either linear or logarithmic.

Additional data may be taken at a “constant life” to generate a stress-wise distribution , using the
“up-and-down” method presented in reference 1 from Chapter 9. Calculate stress-wise mean and
variance for this special subgroup and estimate population mean and variance.

Establish selected probability coordinates for each subgroup, say for P =0.99, 0.90, 0.50, and
0.10, and/or others, and connect points of constant probability. This results in a family of S —N- P
curves as shown above, or as shown in text Figure 5.29.
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5-37. a. Estimate and plot the S-N curve for AISI 1020 cold-drawn steel, using the static properties of
Table 3.3 (use SI units).

b. Using the estimated S-N curve, determine the fatigue strength at 10° cycles.

c. Using Figure 5.31, determine the fatigue strength of 1020 steel at 10° cycles and compare it with the
estimate of (b).

Solution

(a) From Table 3.3; S, =421 MPa, S, =352 MPa . From text Section 5.6
Sy =S, =421 MPa atN =1 cycle
St =0.5S, =0.5(421) =211 MPa at N =10° cycles since S, <1379 MPa
The resulting S-N curve is shown below

600

Stress (MNP a)
aa
=]
(=]
1

1 10 107 10° 10* 10° 108 10 10°

N, cycles

'

Nojos ~ 211 MPa (estimated)

(b) From the plot S
(¢) From Figure 5.31 we estimate S;\l:l o =35 ksi~ 241 MPa (actual)

241-211

x100=12.4% higher estimate
241
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5-38. a. Estimate and plot the S — N curve for 2024-T3 aluminum alloy, using the static properties given in
Table 3.3.
b. What is the estimated magnitude of the fatigue endurance limit for this material?

Solution

(a) From Table 3.3; S, =70 ksi, Sy, =50 ksi . From text Section 5.6
Sy =S, =70ksi at N =1 cycle
St =0.4S, =0.4(70) =28 ksi at N =10° cycles since S, <1379 MPa

The resulting S-N cure is shown below.

Stresskad
e
f=J
/
1

1 10 10° 10° 10* 10° 108 10 10°

N, eycles

(b) This material does not exhibit a fatigue endurance limit.
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5-39. a. Estimate and plot the S-N curve for ASTM A-48 (class 50) gray cast iron, using the static
properties of Table 3.3 (use SI units).
b. On average, based on the estimated S-N curve, what life would you predict for parts made from this
cast iron material if they are subjected to completely reversed uniaxial cyclic stresses of 210 MPa
amplitude.

Solution

(a) From Table 3.3; S, =345 MPa, S, =——— . From text Section 5.6
Sy =S, =345 MPa at N =1 cycle
St =0.4S, =0.4(345)=138 MPa at N =10°

The resulting S-N curve is shown below

Stress (MNP a)
aa
=]
(=]
'
1
T

1 10 102 10° 10 10° 10° 10 10

N, eycles

(b) Reading from the S-N curve, at 210 MPa, a life of N ~5.2x10° cycles is predicted.
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5-40. It has been suggested that AISI 1060 hot-rolled steel (see Table 3.3) be used for a power plant
application in which a cylindrical member is subjected to an axial load that cycles from 78,000 pounds
tension to 78,000 pounds compression, repeatedly. The following manufacturing and operating conditions are
expected:

a. The part is to be lathe turned.

b. The cycle rate is 200 cycles per minute.

c. A very long life is desired.

d. A strength reliability factor of 99 percent is desired.

Ignoring the issues of stress concentration and safety factor, what diameter would be required for
this cylindrical cast iron bar?

Solution

From Table 3.3; S, =98 ksi, S, =54 ksi . From text section 5.6
S; =0.5S, =0.5(98) = 49 ksi , since S, < 200 ksi
The fatigue endurance limit is determined from (5-55); S; =k, Sr , where

koo = (kgrkwekf ksr ksz krskfr I(cr ksp I(r )

From Table 5.3

Kgr =1.0 (from Table 5.3)

Kye =1.0 (no welding specified)

k; =1.0 (by specification)

ks =0.70 (see Figure 5.34)

ki, =0.9 (size unknown; use Table 5.3)

ks =1.0 (no information available; later review essential)

k¢ =1.0 (no fretting anticipated)

k., =1.0 (no information available; later review essential)

ke =1.0 (conservative estimate for specified operating speed)

k, =0.81 (from Table 5.3 for R =99))
k,, =(1.0)(1.0)(1.0)(0.7)(0.9)(1.0)(1.0)(1.0)(1.0)(0.81) = 0.51
S, =0.51(49) ~ 25 ksi
Ignoring the issue of safety factor
4P 4(78,000)

max
O, = =

max
7d? 7d?

Setting 0, =S¢ =25 ksi

4(78,000) _ 12 _ 4(78,000)

25,000 =
7d? 25,0007

=3.973 d=1.99"
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5-41. A solid square link for a spacecraft application is to be made of Ti-Al-4V titanium alloy (see Table
3.3). The link must transmit a cyclic axial load that ranges form 220 kN tension to 220 kN compression,
repeatedly. Welding is to be used to attach the link to the supporting structure. The link surfaces are to be

finished by using a horizontal milling machine. A design life of 10° cycles is required.

a. Estimate the fatigue strength of the part used in this application.
b. Estimate the required cross-sectional dimensions of the square bar, ignoring the issues of stress
concentration and safety factor.

Solution

From Table 3.3; S, =1034 MPa, S, =883 MPa.
Sy =S, =1034 MPa at N =1 cycle
St =0.55S, =0.55(1034) = 569 MPa at N =10° cycles where the factor 0.55 is the

midrange value.

The resulting S-N curve is shown below

Stress (NP a)
[=4]
=]
(=]

1 10 107 10° 10* 10° 108 10 10°

N, cycles
Reading the cure, at the specified design life of 10° cycles
Sy_jos ~ 610 MPa
From (5-56); K,gs = (KgrKueK  KerkeKisK gk Kepki )105

Based on the data provided

K
Kye = 0.8 (welding specified)

r =1.0 (no information available)

k; =1.0 (no information available)

ki =0.70 (see Figure 5.34, assuming steel data applies)
ki, =0.9 (size unknown; use Table 5.3)
kis =1.0 (no information available; later review essential)

K¢ =1.0 (no fretting anticipated)

ke =1.0 (no information available; later review essential)
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Problem 5-41 (continued)

K =1.0 (moderate; use Table 5.3)

k. =0.69 (high reliability required for spacecraft)
Now we evaluate Kk, as

ks =(1.0)(0.8)(1.0)(0.7)(0.9)(1.0)(1.0)(1.0)(1.0)(0.69) = 0.3478 = 0.35

The fatigue limit is therefore
Syt = Kigs (Syoigs ) = 0-35(610) = 214 MPa

Ignoring stress concentration and safety factor issues

o Pua _ 220000

max A Sz

Equating this to S 214 MPa

N=10° —

3 3
214x106:w S s= wzo.onm
s \ 214x10

s =32 mm on each side
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5-42. An old “standard” design for the cantilevered support shaft for a biclcle bedal has a history of fatigue
failure of about one pedal for every 100 pedals installed. If management desires to reduce the incidence of
failure to about one pedal shaft for every 1000 pedals installed, by what factor must the operating stress at the
critical point be reduced, assuming that all other factors remain constant?

Solution

Based on historic data, the probability of failure for the “standard” pedal design is

L=0.010

P{F}std = 100

This gives an estimated reliability of
Ry =(1-0.010)100 =99%

The desired probability of failure and corresponding reliability are

1
P{F} :WZO'OOIO R ges = (1-0.0010)100 = 99.9%

Based on concepts leading to (5-55), and assuming that the only factor that changes when going from
the standard to the desired scenario is strength reliability, the stress reduction ratio must be, using
Table 5.3

(UR:99.9 )desired _ Kr=99.9S' _ 0.75

(O-R:99 )standard K R=99 S 0.81

=0.926~0.93

The operating stress at the critical point must be reduced to 93% of what it is currently for the standard
design.

214



5-43. An axially loaded actuator bar has a solid rectangular cross section 6.0 mm by 18.0 mm, and is made of
2024-T4 aluminum alloy. The loading on the bar may be well approximated as constant-amplitude axial
cyclic loading that cycles between a maximum load of 20 kN tension and a minimum load of 2 kN
compression. The static properties of 2024-T4 are S, =469 MPa, S, =324 MPa, and e (50 mm) = 20

percent. Fatigue properties are shown in Figure 5.31. Estimate the total number of cycles to failure for this
bar. Neglect stress concentration effects. Assume that buckling is not a problem.

Solution

The material properties are S, =469 MPa, S, =324 MPa, e=20% in 50 mm. Since this is a non-zero

mean loading condition we use (5-72).

Oa

Oeq—CR = for o, >0 and o,,,, <Sy,

|_Om

u

The cross-sectional area of the bar is A=6(18) =108x107% m? . The mean, alternating, and maximum
stresses are

1
o [zj[zm (-2)]x10°

Oy =-—0 = =83.3 MPa
" A 108x107°
5 Gj[zo—(—z)]xlo3
Oy=—"2= c =101.9 MPa
A 108x10"
Omax =Om +0, =83.3+101.9=185.2 MPa

Since o,y

=1852<S,, =324 and o}, > 0

101.
Ceq-cr =%=1z3.9 MPa

469

Since Figure 5.31 is plotted in English units, we convert 123.9 MPa ~ 17.96 ksi . From Figure 5.31 for

2024-T4 aluminum, we read N >>>10° cycles to failure. Therefore

N = oo cycles to failure.
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5-44. A tie-bar is to be used to connect a reciprocating power source to a remote shaking sieve in an open-pit
mine. It is desired to use a solid cylindrical cross section of 2024-T4 aluminum alloy for the tie-bar

(S, =68ksi, Sy, =47 ksi, and €=20% in2in.). The applied axial load fluctuates cyclically from a
maximum of 45,000 pounds tension to a minimum of 15,000 pounds compression. If the tie-bar is to be
designed for a life of 107 cycles, what diameter should the bar be made? Ignore the issue of safety factor.

The material properties are S, = 68 ksi, Syp =47 ksi, e=20% in 2 in, and from Figure 5.31,
Snopo” ®23.5 ksi. The loading cycle is Py, =45 kip, Py, =—15 kip . This is a non-zero loading case and

max min

the mean load is

4515

P =15 kip
. . . . . . . . SN
Since this is a tensile load, (5-70) is valid, giving SN = " = where
— MRy
Su—S —-23. R
m, =~ N _ 087235 654 and R =-2m w15 333
Sy 68 Omax  Pmax 45
Therefore
235 =30.04 ksi

SpxoN =———
ma=N T 0.654(0.333)
Ignoring the safety factor, the design stress oy is set equal to S,y to give

P, P 4P,
N — 30’040 — r:x — max — max

ad? ) ad?
4

Og¢ = Smax—

42 = 4(45,000)
30,0407

1.907

d=1.38"
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5-45. A 1-meter-long, simply supported horizontal beam is to be loaded at midspan by a vertical cyclic load
P that ranges between 90 kN down and 270 kN down. The proposed beam cross section is the be rectangular,
50 mm wide by 100 mm deep. The material is to be Ti-6Al-4V titanium alloy.

a.  What is (are) the governing failure mode(s), and why?
b.  Where is (are) the critical point(s) located? How do you come to this conclusion?
¢. How many cycles would you predict that the beam could sustain before it fails?

Solution

From Table 3.3; S, =1034 MPa, S,, =883 MPa , and e(50 mm)=10%

(a) Since the loading is cyclic, the probable failure mode is fatigue.

(b) Since the beam cross section is uniform in size, and the maximum bending moment is at midspan, the
critical section is midspan. Since tension is more critical than compression under fatigue loading, the critical
point will be at the bottom of the beam (the tension side).

(c) This is a non-zero mean loading case.

P
03im l 03m
Oeq-cr :G—Z for oy 20and o, < Sy
dul
Su R; =P/2 Ry =
Note that
M._.c M. c
Oa = Ia and o =—"
c d/2
where —= 3 =—
I bd°/12 bd

At the critical point

P 5( P P

My =[ 22 ][ £ ] = 22 Poa =Poin | 125(270 - 90) = 22.5 kNemm
2 \2) 2 2
; 5( P +Pos

M, =| - (EJ:E Tmax ¥ Pin | .125(270 +90) = 45 kN-m
2 \2)7 2 2

Therefore
M . M
o, M, __ 6@25) 270 MPa Om = M _ 6(45) =540 MPa

" bd? (0.050)(0.10) " bd2  (0.050)(0.10)>2

270
O =53

1034

=565 MPa
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Problem 5-45 (continued)

Noting that Sy =S, =1034 MPa atN = 1 cycle, and S; =0.55S, =0.55(1034) =569 MPa at N =10°

cycles where the factor 0.55 is the midrange value, the resulting S-N curve is shown below

Stress (MNP a)
[=4]
=]
(=]
1)
)
I

1 10 107 10° 10 10° 10° 10 10°

N, eycles

Since ggq_¢r =565 MPa is below the S} =569 MPa level, we could assume infinite life, but ogq_c, is not

much below S; , so caution must be exercised.
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5-46. Explain how a designer might use a master diagram, such as the ones shown in Figure 5.39.

If a designer is engaged in designing a part subjected to non-zero-mean cyclic stressing, and can find a master
diagram such as Figure 5.39 for the material, design calculations may be made directly from the data-based
master diagram without resorting to any approximating relationships such as Goodman’s, Soderberg’s, etc.
For example, if the loading cycle is known, and it is desired to determine dimensions that will provide a
specified design life, the designer could calculate R for the load cycle, find the intersection of the R “ray”
with the pertinent life curve, and read out the corresponding maximum stress from the master diagram, divide
it by an appropriate safety factor, and calculate design dimensions. If required, additional adjustments could
be made to account for other factors, such as those listed in the solution to problem 5-35. (all this assumes a
uniaxial state of stress.)
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5-47. a. An aluminum bar of solid cylindrical cross section is subjected to a cyclic axial load that ranges form
5000 pounds tension to 10,000 pounds tension. The material has an ultimate tensile strength of 100,000
psi, a yield strength of 40,000 psi, and an elongation of 8 percent in 2 inches. Calculate the bar
diameter that should be used to just produce failure at 10° cycles, on average.

b. If, instead of the loading specified in part (a), the cyclic axial load ranges form 15,000 pounds
tension to 20,000 pounds tension, calculate the bar diameter that should be used to produce failure at
10° cycles, on average.

c. Compare the results of parts (a) and (b), making any observations you think appropriate.

The material properties are S, =100 ksi, S,, =80 ksi, €=8% in 2 in, and from Figure 5.31,
Snoios ®40 ksi.

(a) The maximum and minimum loads are P,,, =10 kipand P,;, =5 kip . The mean and alternating loads
are

10+5 . 10-5 .
P, = =75kip P,=——=25kip
2 2
Expanding (5-72)
P,/A P P . .
O'eq—CR=—a - a +_m=£+2=0_1375
|_Fn/A Oeqck Sy 40 100
S,
For a circular cross section
2
A=01375= 790 o g2 2013 405
4 V4
d= d105 =0.418~0.42"
(b) With P,,, =20 kipand P,;,, =15kip, B, = # =17.5kip and P, = 20—515 =2.5 kip . This results
in
P, /A P P . .
O-eq—CR:L = A:—a+_m:£+17_5:().2375
1- Pn/A Oeq—CR S, 40 100
Sy
2
A=02375=790 o g2 302375 5,
4 T
d= d105 =0.549 ~0.55"

(c) Although the alternating stress is the same for both cases, the higher tensile mean stress requires a larger
diameter because o,,,, =0, + 0, is higher.
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5-48. The S-N data from a series of completely reversed fatigue tests are shown in the chart below. The
ultimate strength is 1500 MPa, and the yield strength is 1380 MPa. Determine and plot the estimated S-N
curve for the material if its application can be well characterized as having a mean stress of 270 MPa.

S (MPa) N (cycles)
1170 2%10%
1040 5%x10%
970 1x10°
880 2x10°
860 5x10°
850 1x10°
840 2x10% > 0

The plotting parameter of interest is (o-max )N . Using (5-64) we can write
Sn
(o-max)N =Sy +o,|1- (1)
Su

Using the zero-mean date given in the problem statement we know that S

O =270 MPa . Using (1) we have

N=2x10* — 1170 MPa , and we know

1170
(O-max )N=2><104 =1170+ 270{1—%} =1176 Mpa

Using this sane technique for all other data given in the problem statement we generate the table below

N (cycles) S (MPa) (Cmax )N (MPa)
210" 1170 1176
5%10% 1040 1123
X10° 970 1065
5107 880 992
52105 860 975
1x10° 850 967

2x10° = oo 840 959

The curve is shown below.

Problem 5-48 (continued)
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Btress (MFa)

1100

1000

200

200

-8

I~

10*

10°
N, eycles
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5-49. The o,,, — N data for direct stress fatigue teste, in which the mean stress was 25,000 psi tension for all
tests, are shown in the table.

Omax (PS1) N (cycles)
150,000 2%x10%
131,000 5%10%
121,000 1x10°
107,000 2%x10°
105,000 5%10°
103,000 1x10°
102,000 2%x10°

The ultimate strength is 240,000 psi, and the yield strength is 225,000 psi.

a. Determine and plot the o,,,, — N curve for this material for a mean stress of 50,000 psi, tension.

b. Determine and plot, on the same graph sheet, the o,,,, —N curve for this material for a mean stress
of 50,000 psi, compression.

Solution

The plotting parameter of interest is (a

max ) - Using (5-64) we can write

S
(O-max)N = SN +O'm |:1—S—N:|

u

For a life of N =2x10* cycles, the data table developed for o, =+25 ksi, S, = 240 ksi and
S,p =225 ksi we write the above equation as 150 = Sy +(25)[1—Sy, /240]. Solving for Sy,

S % =139.5 ksi
[-2)

Using the same technique , the other Sy, ksi N, cycles

tabulated values of (G, ), may be used to 1395 2x10*

construct the table to the right for Sy . 118.3 5%10%
107.1 1x10°
91.5 2x10°
89.3 5x10°
87.0 1x10°
85.9 2x10°

139.5

(a) For the case of o, =+50 ksi, (0' , =139.5+ 50[1 —%} =160.4 ksi . Using the same

max )N =2x10

technique , the other tabulated values of Sy may be used to construct a table for (o, )N with

Om =+50 ksi..
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Problem 5-49 (continued)

(b) For the case of o, =—50 ksi, the previous approach is not valid since o, <0 . Instead we use
(o-max )N =0p,tON =0 t SN
(Tomax )yt = —50+139.5 =89.5 ksi

Using the same technique , the other tabulated values of Sy may be used to construct the table shown for

(Omax )N with o, =-50 ksi

O =450 ksi O =—50 ksi
(gmax )N L ksi N, cycles (gmax )N L ksi N, cycles
160.4 2%x10% 89.5 2%x10%
143.7 5%104 68.3 5%10%
134.8 1x10° 57.1 1x10°
122.4 2%10° 41.5 2%10°
120.7 5%10° 393 5%10°
118.9 1x10° 37.0 1x10°
118.0 2%10° 359 2%10°

The result are plotted below along with the case for o, =0

200
180
160 ]
140 .;';.\ ﬁ
2100 e S G, = 423
H e }E‘\—u;-[_ L____JH |||m| 1
7 20 - =
o, =0
" 0
60
40 \:
i o, =-50
20 .
0 3 4 5 § T B
10 10 10 10 10 10

N, eycles
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5-50. Discuss the basic assumptions made in using a linear damage rule to assess fatigue damage
accumulation, and note the major “pitfalls” on might experience in using such a theory. Why, then, is a linear
damage theory so often used?

Solution
The basic assumptions made when using a liner damage rule include:

(i) The damage fraction at any stress level is linearly proportional to the ratio of the number of cycles
of operation to the number of cycles required to produce failure in a damage-free element.

(ii)) When the damage fractions sum to unity, failure occurs, whether operating at only one stress level,
or at many stress levels in sequence.

(iii) No influence of the order of stress levels applied in a sequence.

(iv) No effect of prior cyclic stress history on the rate of damage accumulation.

The most significant shortcomings of a linear damage rule are that assumptions (iii) and (iv) above are often

violated. A linear damage theory is often used because of its simplicity. Further, non-linear damage theories
do not show consistent superiority.
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5-51. The critical point in the main rotor shaft of a new VSTOL aircraft, of the ducted-fan type has been
instrumented, and during a “typical” mission the equivalent completely reversed stress spectrum has been
found to be 50,000 psi for 15 cycles, 30,000 psi for 100 cycles, 60,000 psi for 3 cycles, and 10,000 psi for
10,000 cycle.

Ten missions of this spectrum have been “flown”. It is desired to overload the shaft to 1.10 times the
“typical” loading spectrum. Estimate the number of additional “overload” missions that can be flown without
failure, if the stress spectrum is linearly proportional to the loading spectrum. An S — N curve for the shaft
material is shown in Figure P5.51.

Solution
A “typical” mission block contains the spectrum of completely reversed stresses shown.

o =50 ksi for 15 cycles, og =30 ksi for 100 cycles, o = 60 ksi for 3 cycles , and
op =10 ksi for 10,000 cycles

The accumulated damage during a “typical” mission, Dy, , is given by (5-79)

4
_ N _Na Ng Nc  Np
P = 2, TN, Ny N Ny
i N A B c D

where N; is read from Figure P5.51 for each stress level. The damage accrued after 10 missions is

4
15 100 3 107\ 9043

D, =10D,, =10| — +——+—
10 oP 2500 52,000 120 10

For 1.10 “overload” spectrum of completely reversed stresses: o, =55 ksi for 15 cycles,

og =33 ksi for 100 cycles, o =66 ksi for 3 cycles , and op =11 ksi for 10,000 cycles . The values of

N; are read from Figure P5.51. The damage accumulated during each “overload” block is

15 100 3 10*
Dy = + +=+
1500 35,000 4 85x10°

~
~

The total damage after one overload block is

D; =Dy +D,, =0.43+0.78=121>1.0

The obvious conclusion is that no additional “overload” missions should be attempted.
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5-52. A hollow square tube with outside dimensions of 32 mm and wall thickness of 4 mm is to be made of
2024-T4 aluminum, with fatigue properties as shown in Figure 5.31. This tube is to be subjected to the
following completely reversed axial force amplitudes: First, 90 kN for 52,000 cycles; next 48 kN for 948,000
cycles; then, 110 kN for 11,100 cycles.

After this loading sequence has been imposed, it is desired to change the force amplitude to 84 kN,
still in the axial direction. How many remaining cycles of life would you predict for the tube at this final level
of loading?

Solution

For this cumulative damage problem we say FIPTOI

n n n n
_1+_2+_3+_4:1

Since the applied forces are axial, the normal stress on the section is given by 3 mm

Laa

— b

_E P ~ p b 20 trirm o

= . ~~ 2874
A (0.032)% —(0.026) .

—32 mim —-

From Figure 5.7? We convert the stress levels given into SI units and
approximate the number of cycles to failure at each load level. The results are tabulated as shown

Load

Level P (kN) o (MPa) ~ o (ksi) n (cycles) N (cycles)
1 90 259 38 5.2x10* 4x10°
2 48 138 20 0.48x10° 0
3 110 316 46 1.11x10* 8x10*
4 84 241 35 ? 1.8%10°

52x10*  9.48x10° 1.11x10* n,
5 T + rEn 5
4x10 S 8x10*  1.8x10

0.13+0+0.14+ Ny 5:1 - n4:1.8x105(1—0.27)
1.8x10

n, =1.31x10°

227



5-53. A solid cylindrical bar of 2024-T4 aluminum alloy (see Figure 5.31) is to be subjected to a duty cycle
that consists of the following spectrum of completely reversed axial tensile loads: First, 50 kN for 1200
cycles; next, 31 kN for 37,000 cycles; then 40 kN for 4300 cycles. Approximate static properties of 2024-T4
aluminum alloy are S, =470 MPa and S, =330 MPa.

What diameter would be required to just survive 50 duty cycles before fatigue failure takes place?

Solution

In this problem FIPTOI (n1 /Ny +ny /Ny +ny/N; ) =1. Since the applied forces are axial and the bar has a
solid circular cross section, the stress at each load level may be calculated as o; = B,/ A . Since the area A is

unknown, a trial value is assumed or estimated to make the calculation o; possible. One estimation, based on
a trial area that would give a maximum stress of about 2/3 the yield strength is

Poa 50x10°

~ = - =226x10" m?
(2/3)Sy,  0.67(330x10°)

Using this area, the stresses at each load level are o; = 4425P,, or: o =221 MPa (32.1 ksi),

o0, =137 MPa (19.9 ksi), and o3 =177 MPa (25.7 ksi) . The failure lives at these stress levels may be
approximated form Figure 5.31. The results are summarized below. Note that each value of n; is multiplied
by 50 to account for the required number of duty cycles.

Load

Level | P,kN o, MPa (ksi) n; cycles N; cycles
1 50 221 (32.1) 1200(50) 6x10°
2 31 137 (19.9) 37,000(50) 2.5%x10°
3 40 177 (25.7) 4300(50) 3.5x10°

Based on a trail area of A=2.26x10"* m?, the data above results in

1200(50) | 37,000(50) , 4300(50)

6x10°

The trial are used is obviously too large. As a second approximation we arbitrarily select the area to be 80%
of the original. This provides an area of A, =0.8(2.26x 10%)=1.81x10"* m?. The resulting date at each

load level is

2.5%x10%

3.5x10°

=0.169=0.17 <1

Load

Level P, kN o, MPa (ksi) n, cycles N; cycles
1 50 277 (40.2) 1200(50) 1.7x10°
2 31 171 (24.8) 37,000(50) 5x10°
3 40 221 (32.1) 4300(50) 8x10°

Based on a trail area of A=1.81x10"* m?, the data above results in
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Problem 5-53 (continued)

1200(50) | 37,000(50) _ 4300(50)

S . S =0992~1
1.7x10 5x10 8x10

This is considered close enough. The resulting diameter is

4
d= }ﬁ:,/wzo.mszm d =152 mm
T T -
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5-54. The stress-time pattern shown in Figure P5.54(a) is to be repeated in blocks until failure of a test
component occurs. Using the rain flow cycle counting method, and the S — N curve given in Figure P5.54(b),
estimate the hours of life until failure of this test component occurs.

Solution

Start the count at a minimum valley, as
shown, by shifting the block along the
time axis. Data for each numbered
raindrop in the table below. Values for
Ogq—cr are calculated from

o
— a .
Oeq-CR =~ On >0
1_%m

S

u

Ogq-CR =0a ; O < 0

-50 -40 -30 -20-10 0O

Stress,

ksi

q, ONLIL | _..|

==al

DD

— |

=]

——
L
—
—

|
PN RNA)

[——

10 20 30 40

-

®L—3Tm'-'1'-'l I—J

= ]
We note that S, =62 ksiand N is read ; +'-_-———_5_—______-_-___;_______ ) C:)
form Figure P-54(b) @ il il
=
n Omax Omin Onm O, Oeq-CR N
Rain Drop No. (cycles) (ksi) (ksi) (ksi) (ksi) (ksi) (cycles)
L4@1/2ea. 1 40 -50 5 | 45 45 | 6x10°
2,3@]1/2ea. 1 20 -10 5 15 16.3 o
5,8@1/2ea. 1 35 10 22.5 12.5 19.6 0
6,7@]1/2 ea. 1 30 20 25 5 8.4 0
9,10@1/2ea. 1 30 0 15 15 19.8 0

FIPTOI >’ n;/N; >1. With only 1 non-zero cycle ratio, defining the number of blocks to failure is simplified

to

B, [;jzl = B; =6x10° blocks to failure

6x10°

At a rate of one block per minute

H, :(6x103 min)(60 —

! j —100 hours
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5-55. The stress-time pattern shown in Figure P5.55(a) is to be repeated in blocks until failure of the
component occurs on a laboratory test stand. Using the rain flow cycle counting method, and the S — N curve
given in Figure P5.54(b), estimate the time hours of testing that would be required to produce failure.

Solution

Start the count at a minimum valley, as shown, by Stress, sl
shifting the block .along the time axis. Data for -50 -40 -30 -20-10 0 10 20 30 40 50
each numbered raindrop in the table below. Fy
==l N
Values for og_cg are calculated from B
—_— — .-i:_\_\.
O. ; E 1 for - L:;:_:__:.
o =i 20 B ﬂﬂ_g}ﬁﬁ;@
Teq-CR =Ta O <0 6 T 71 _:‘:ﬁ
N )
We note that S, = 62 ksiand N is read form @ d e RN
Figure P-54(b) @ g v
-
=1 | |
—
-i.____
) nl O nax Omin o O, Oeq-CR ’;‘
Rain Drop No. (cycles) (ksi) (ksi) (ksi) (ksi) (ksi) (cycles)
L6@l1/2ea. 1 50 -50 0 50 50 2%x10°
2,3@1/2ea. 1 40 20 30 10 19.4 0
4,5@l/2 ea. 1 20 -30 -5 25 25 2.6x10°
7,8@1/2 ea. 1 0 -20 -10 10 10 0
9,10@1/2ea. 1 20 10 15 5 6.6 0

FIPTOI Y n;/N; >1. With 2 non-zero cycle ratio, defining the number of blocks to failure is

Bf[ ! ! }:1 = B; =1985

+
2x10°  2.6x10°

The time to failure is

H, =1985 seo| — 2
3600 sec

j =0.55hr
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5-56. In “modern” fatigue analysis, three separate phases of fatigue are defined. List the three phases, and
briefly describe how each one is currently modeled and analysed.

Solution

The three phases are:

(1) Crack initiation
(2) Crack propagation
(3) Final Fracture

The _crack initiation phase may be modeled using the “local stress-strain” approach. See section 5.6 for
details.

The crack propagation phase nay be modeled using a fracture mechanics approach in which the crack
propagation rate is empirically expressed as a function of the stress intensity factor range. See section 5.6 for
details.

The final fracture phase may be modeled by using linear elastic fracture mechanics (LEFM) to establish the
critical size that a growing crack should reach before propagating spontaneously to failure. See section 5.6 for
details.
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5-57. For the equation da/dN = CAK", define each term, describe the physical phenomenon being modeled,
and tell what the limiting conditions are on the magnitude of AK . What are the consequences of exceeding
the limits of validity?

Solution
This equation models fatigue crack growth rate as a function of stress intensity factor range. The terms may
be defined as

da .

N = fatigue crack growth rate

AK = stress intensity factor range
C = empirical parameter dependent upon material properties, fretting, and mean load

n = slope of log(da/dN)vs log(AK) plot
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5-58. Experimental values for the properties of an alloy steel have been found to be S, =1480 MPa ,
S,p =1370 MPa , K, =81.4 MPa/m , e =2 percent in 50 mm, k'=1070 MPa, n'=0.15, &; =0.48,
o-} =2000 MPa ,b=-0.091, and ¢ =-0.060 . A direct tension member made of this alloy has a single

semicircular edge notch that results in a fatigue stress concentration factor of 1.6. The net cross section of the
member at the root of the notch is 9 mm thick by 36 mm wide. A completely reversed cyclic axial force of 72
kN amplitude is applied to the tension member.

a. How many cycles would you estimate that it would take to initiate a fatigue crack at the notch root?

b. What length would you estimate this crack to be at the time it is “initiated” according to the calculation

of part (a)?

Solution

(a) The normal stress amplitude, S,, may be calculated as

S,=ra-—_ 2 _2oMpa
A 0.009(0.036)

The nominal stress range, AS ,is AS =25, =444.4 MPa . Using (5-81)

[1.6(444.4x106)]2

P =2.44x10°
X

AoAe =

Next, from (5-82)

1
As _ Ao (£j+ Ao (Ej 0.15
2 2207x10")\As ) | 2(1070x10°) | Ae
1
2.44x10° ) 2.44x10° |015
2140x10° Ae

T 414x10° Ae

or

2 1
Ag 1—
( 2) =5.89><10_6+2.40><1()‘20Ag( 0.15)
or
(A«S)2 =11.78x107% +4.80x10 2 Ag™>¢7

Solving for Ag gives Ag = 3.8x 107 em/cm . Then, from (5-83)

3.8x107°  2000x10°
2 207x10°

)—0.091

+0.48(2N; )

(2N,
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Problem 5-58 (continued)

or

N; =[0.21—80.5Ni‘°'6]_0.(;91

Solving

N; ~3.2x10" cycles to initiation

(b) There is no known method for calculating the length of a newly formed fatigue crack. The length must
either be measured from an experimental test or estimated from experience. Often, if no other information is
available, a newly initiated fatigue crack is assumed to have a length of about 1.5 mm.
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5-59. Testing an aluminum alloy has resulted in the following data: S, =483 MPa, S,; =345 MPa,

Kic =28 MPa\/E, e(SO mm):22%, kK'=655MPa, n’:0.065,5} =0.22, G'f =1100 MPa, b=-0.12,
c=-0.60,and E =71 GPa . A direct tension member made of this alloy is to be 50 mm wide, 9 mm thick,

and have a 12 mm diameter hole, through the thickness, at the center of the tension member. The hole will
produce a fatigue stress concentration factor of k; =2.2 . A completely reversed axial force of 28 kN

amplitude is to be applied to the member. Estimate the number of cycles required to initiate a fatigue crack at

the edge of the hole.

Solution

The nominal stress amplitude S, may be calculated as

_Fa_ 28000 _ o5 nipa

27 A 7 (0.009)(0.050)

Hence the nominal stress range AS is given by AS =2S, =2(62.2) =124.4 MPa .

[2.2(124.4><106 )T

TIx10° =1.05 MPa
X

AoAe =

Next, from (5-82), using the results from (1)

1/0.065
Ae Ac (Ag) Ac (AgJ
- | — ] | —
2 2(71x109) A 2(655><106) Ag

6 6 1/0.065
As _ 1.05x10° | 1.05x10
2 142x10°(Ae) | 1310x10°(Ag)

(a¢)’

=7.39x107° +2.41x107% (Ag) ¥

A = \[148x107° +4.82x10% (az) "+

This can be iterated to the solution
Ae ~3.64x107° m/m
Then, from (5-83)

3.64x107  1100x10°
2 71x10°
1.82x107 =14.3x107 (N;

(2N 7 +0.22(2N; )

) r0.145(N;)

This can be iterated to

N; > 10" cycles to initiation
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5-60. A Ni-Mo-V steel plate with yield strength of 84,500 psi, plane strain fracture toughness of

33,800 psi\/a , and crack growth behavior shown in Figure P5.60, is 0.50 inch thick, 10.0 inches wide, and
30.0 inches long. The plate is to be subjected to a released tensile load fluctuating from 0 to 160,000 Ib,
applied in the longitudinal direction (parallel to 30-inch dimension). A through-the-thickness crack of length
0.075 inch has been detected at one edge. How many more cycles of this released tensile loading would you
predict could be applied before catastrophic fracture would occur?

Solution

This crack propagation problem may be started by assess whether the plane strain condition holds.

2 2
B>2.5 & :2.5[ﬁ) =40 in
Syp 84.5

Since the 0.50-inch plate meets the condition for plane strain, the critical crack size is determined from

[ Kk, T
_ Ic
acr 73 |:Clo-tmax :|
3/2

With a;/b=0.075/10 = 0.008 we use Figure 5.19 to determine C, [1 - 0.008] =1.11, which results in
C, =1.12. Because C, is a function of crack size, it changes value as the crack grows. If the crack were to
grow to a=0.3", we would find a/b =0.03, and eventually C, =1.13.The maximum tensile stress is
Ot_max = P/ A=160/[0.5(10.0)] = 32 ksi . This gives

2
oL 3B8 Fha78~0.08"
7| 1.1332)

The empirical crack growth law for this material, from Figure P5.60 is da/dN =1.8x 1077 AK? Using
(5-85) and (5-86)

d

a 19 3 da
oy = 18x10 [1.13(32,000)x/7zaJ =

3
-19
7 =18x10 [1.13(32,000)\/;@ dN

Integrating both sides from a; = 0.075to a, =0.28

Jo (ﬂj ) L’th 18x107"°[113(32.000Vz | dN

0.075\ g3/2 0

or
2 2 -5
_ N —474x10°5N
028 0.075 P
Solving
_ 737378 105 = 74,260 cycles N, = 74,260 cycles
P 475 i
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5-61. A helicopter-transmission support leg (one of three such members) consists of a flat plate of rectangular
cross section. The plate is 12 mm thick, 150 mm wide, and 200 mm long. Strain gage data indicate that the
load is cycling between 450 N and 100 kN tension each cycle at a frequency of about 5 times per second. The
load is applied parallel to the 200-mm dimension and is distributed uniformly across the 300-mm width. The
material is Ni-Mo-V alloy steel with an ultimate strength of 758 MPa, yield strength of 582 MPa, plane strain

fracture toughness of 37.2 MPa+v/m , and crack-growth behavior is approximated as
da/dN ~ 4.8x107" (AK )3 , where da/dN is measured in #m/mand AK is measured in MPavm .

If a through-the-thickness crack at one edge, with a crack length of 1 mm, is detected during an
inspection. Estimate the number of cycles before the crack length becomes critical

Solution
To begin, we assess whether the plane strain condition is applicable.

2 2
B>2.5 & =2.5(ﬂ] =0.0102 m=10.22 mm
" 582

Since B =12 mm >10.22 mm , plane strain prevails and K, = K|, =37.2 MPa+/m ..The initial crack size is
a, =1 mm . The critical crack length, from (5-7?) is

[ Kk, T
—— |
acr 7 |:Clo-t—max :|

where

Poax _ 100x10°

max

A 0012(0.150)

O-t—max = 6 MPa

Since C, is a function of crack length, its value changes as the crack grows. For an initial crack length of
g =1mm, a/b=1/75=0.01333, and

C[1-00133]? ~1.12 —» C =114
Therefore we estimate
6
. :l Ll()é =0.109 m =109 mm
7| 1.14(55.6x10°)

Using the average C, =1.14
3
3_’3 ~4.8x1077 (AK)’ = 481077 | 1.14(55.6x10°)W7 | @' = 0.0068a""2

or
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Problem 5-61(continued)

0.109
109 N
j ﬂ:o.mésj "N - ——=|  =00068N,
0.001 g3/2 0 NEY
—2( L1 =0.0068N, — N, =57.19/0.0068=8410
V0.109  /0.001

N, =8410 cycles
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5-62. Make two neat, clear sketches illustrating two ways of completely defining the state of stress at a point.
Define all symbols used.

Solution

T, K d
x/ 1

(a) Arbitrary x-y-z coordinate system with three  (b) Principal axes 1-2-3 with three peincipal
normal stress components ( oy ,0y,0, ) and stresses ( 0,,0,,073).

three shear stress components (7yy,7y,,7y )-
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5-63. A solid cylindrical bar is fixed at one end and subjected to a pure torsional moment M, at the free end,

as shown in Figure P5.63. Find, for this loading, the principal normal stresses and the principal shearing
stresses at the critical point, using the stress cubic equation.

Solution

For pure torsion all points on the surface of the cylindrical bar are equally
critical. The state of stress at each point is illustrated in the sketch. The stress is

~_Mia  Ma  2M;
TXy - J 3

_7ra4/2_ za

The stress cubic equation reduces to o + 6(—rfy) =0 . This may be solved to - /

obtain the roots, which are the principal stresses.

2M;, 0 2M;,
O1=Ty=—"73 »0,=0,03="Ty =——=
Y rad Y oxdd
The principal shearing stresses are
o, —o3| M, oy—oy| 2M, o -0, M,
B el B e B e
2 za 2 a 2 ra
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5-64. Solve problem 5-63 using Mohr’s circle analogy.

Solution

In solving 5-63 using Mohr’s circle we note that the
three-dimensional state of stress can be reduced to a

state of stress in the X-y plane as illustrated. In
constructing Mohr’s circle we plot the two I
diametrically points A and B, with coordinates Ty

s

2M 2M
A:(O'X:O,z'xy:—;) and B:[O'y:O,—er:— ;]
wa wa

Mohr’c circle is plotted as shown and the principal stresses are as indicated

2M, 2M,

O'I—Txy—?,GZZO,U3=—TXy=—E
o, -0z M, oy;—oy| 2M,;

|| = T3 ,|2|=—:—3
2 za 2 za
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5-65. A solid cylindrical bar of diameter d is fixed at one end and subjected to both a pure torsional moment
M; and a pure bending moment M, at the free end. Using the stress cubic equation (5-1), find the principal

normal stresses and principal shearing stresses at the critical point for this loading, in terms of applied
moments and bar dimensions.

Solution

The pure torsional moment, M, results in a shear stress that is equally critical
at all points on the surface. This stress is

M _M(d/2) _16M, " T ¥
Y zd*/32 ad? x

The pure bending moment, M,,, results in a normal stress that is maximum at

the furthest distance from the neutral bending axis. Assuming the tensile and compressive normal stresses to
be equally as critical, we model the tensile stress. The magnitude of this stress is

Mo My(d/2)  32M,
| xd* /64 7d?3

Oy =

The stress cubic equation reduces to o> — o (o) + G(—Tfy) =0or o(c? - oo, — z'fy) =0 . This can be solved

to obtain

2 2 2
o= %[ %] (o) =16Mb+J(16Mbj o150 =20 g

+ —_
2 2 xd?3 xd? xd? zd
02:0
2 2 2
o (o > 16M,  [(16My Y (16M, Y 16 7
N (TJ Hay) = 2 W ) G ) T Mo VMo M

The principal shearing stresses are

|| = % :%_—Mbh/Mth}
ol =25 = =2 Mg |
|r3|:% :%_Mbh/Mth}
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5-66. Solve problem 5-65 using the Mohr’s circle analogy.

Solution

The original three dimensional state of stress is z

represented as a state of plane stress as shown in the N P ! T r

sketch. The stresses are represented as — ¥

— o
M.c M. (d/2) 16M, T, I o, h
Ty = = 4 = 3 to T ¥ ) .
J zd* /32  xd 'y i ; -— ¥

Moc  My(d/2) 32M, x

GX: I =

rd*/64  7d?

The two diametrically opposite points used to construct Mohr’s circle are

A:(GX:32Mb __16M,

16M
?,—rxy = 3 J and B:[o-y =0,7, = t]

7d?

2
The center of the circle is located at C = o, /2 and the radius is R,_, =/(oy/ 2)2 + (rxy) . The circle is as

shown and principal stresses are

2
2
0 =C+Ry = 26t (%j ()

_16M, (16Mbj2+(16Mtj2
zd? zd? zd?

:%[Mbh/M,erMf}

62=0

2
o o 2
0'3:C—R1—2:_2X_ (ij +(Txy)

16M, [16Mb]2 (16Mtj2
= - +
zd? zd? zd?

:%[Mb—\/MéJer}

T

The principal shearing stresses are

|Tl|:%zi3[_mb+ /M§+Mg] |T2|:M:1_63[ M§+M3}
zd 2 d
|| = 01;(72 - 23['\"“ 'V'§+'V't2}

T

244



5-67. From the stress analysis of a machine part at a specified critical point, it has been found that
o, =6 MPa, 7,, =2 MPa , and 7|, =5 MPa. For this state of stress, determine the principal stresses and the
maximum shearing stress at the critical point.

Solution

For the state of stress shown the stress cubic equation reduces to

o’ - 0'262 + 0'(—2'X2Z - riz) = 0. This can be factored to yield

0'[0'2 -o0, — (rfZ + r?z )} =0. Solving for the principal stresses

o, + IGZZ +4(sz +r)z,z)

0-1: 2
6+ \/(6)2+4 (2)* +(5)*
- ( ):6“2'3:9.15 MPa
2
0-2:0
2 2 2 2 2 2
o, — ol +4(c2 +7 6—\/(6) +4(2)% +(5) ~
o = z z 2( xz yz) _ 2( ):6 ;2'3z—3.15MPa

The maximum shearing stress is

_ Fmax ~Omin _ 9157319 _ 615 \ppy
2 2
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5-68. A solid cylindrical bar of 7075-T6 aluminum is 3 inches in diameter, and is subjected to a torsional
moment of T, =75,000 in-lb, a bending moment of M, =50,000 in-lb, and a transverse shear force of

F, =90,000 b, as shown in the sketch of Figure P6.68.

a. Clearly establish the location(s) of the potential critical point(s), giving logic and reasons why you
have selected the point(s).

b. Calculate the magnitudes of the principal stresses at the selected point(s).

c. Calculate the magnitude(s) of the maximum shearing stress(es) at the critical point(s).

Solution

(a) The system of applied moments /’
and forces will produce three stress /

components. There will be a
bending stress due to the moment
(op =0y ) and two components of

shearing stress: one due to torsion

(7 ) and one due to transverse shear T ™
(7.5 ). Four points (A, B, C, and D).

Points A and C have a normal stress

(op =0y ) and a shear stress due to

f-* 1

torsion (74 ). Points B and D have

two components of shear stress,
which add at point D and subtract at
point B. We note that points A and C
are equally critical, but since A has a
tensile normal stress, we select A for
detailed analysis. Since the shearing
stresses add at point D, we also
select that point for detailed
analysis.

(b) The normal and shearing stresses are

M, My(d/2) 32M,  32(50)

O, =0, = = =18.863 ksi
P adYied xd® 2(3) e
M M(d/2) 16M, 16(75) . =14.147
o == 22D O D) 14,147 ki T
J 7d*/32 nd 7(3) I
4F, 4 F 16F,  16(90) . u
Tie =——== = = =16.977 ksi
T3 A 37d%/4 37d2 3203 X, oy =18.863

The state of stress at point A is as shown in the figure. The principal stresses at this point are

2
o =2+ /(%} +(ry ) =9.4315+/(9.4315)" +(14.147)?

=9.4315+17.003 = 26.43 ksi
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Problem 5-68 (continued)

6220

0-3:

2
2
D 12| +(ry) =9.4315-17.003 = ~7.57 ki
2 2

The state of stress at point D is as shown in the figure to the right.
The principal stresses at this point are

oy, =7=31.124 ksi
0-2 :0
oy =—7=-31.124 ksi .

(c) The maximum shearing stress at each point is

(Tmax )A = i ;O-min = 2643 _2(_7.57) =17 ksi

e —Omin _ 31.124—(=31.124)

() == 5 =31.124 ksi
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5-69. The square cantilever beam shown in Figure P5.69 is subjected to pure bending moments My and M,

as shown. Stress concentration effects are negligible.
a. For the critical point, make a complete sketch depicting the state of stress.
b. Determine the magnitudes of the principal stresses at the critical point.

Solution

(a) Referring to Figure P5.69, the pure bending moment M, produces a uniform

tensile stress (o-x )M along the top surface of the beam. The pure bending
y

moment M, produces a uniform tensile stress (o-x )M along the left edge of the

beam. These two stresses add at the upper left corner of the beam, producing the
maximum normal stress o =(0y),, +(0y),, - This state of stress is shown in
y 7

the sketch.

(b) Based on the uniaxial state of stress at the critical point, the principal stresses are

o) =0y :(UX)MV -i—(GX)MZ , 0, =03=0

where
(o-) =My(a/2)=My(a/2)=6My
My ly a*/12 a’
(a ) _M,@/2) M,@/2) 6M,
M, I, at/12 a’
Therefore

o—lza—i(My+MZ)
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5-70. Equations (5-15), (5-16), and (5-17) represent Hooke’s Law relationships for a triaxial state of stress.
Based on these equations:

a. Write the Hooke’s Law relationships for a biaxial state of stress.

b. Write the Hooke’s Law relationships for a uniaxial state of stress.

c. Does a uniaxial state of stress imply a uniaxial state of strain? Explain

Solution

(a) To obtain the biaxial Hooke’s law equations from (5-15), (5-16), and (5-17), set o, =0, giving

b= lon-r0y)s 8 =2 (oyver)s & ==L (oy )

(b) To obtain the uniaxial Hooke’s law equations from (5-15), (5-16), and (5-17), set o, =0, =0, giving

(¢) Since all three component of strain in (b) are non-zero, the state of strain is not uniaxial for a state of
uniaxial stress.
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5-71. Tt has been calculated the the critical point in a 4340 steel part is subjected to a state of stress in which
oy =6000 psi, 7,, =4000 psi, and the remaining stress components are all zero. For this state of stress,

determine the sum of the normal strains in the X, Yy, and z directions; that is, determine the magnitude of

Exteytée,.

Solution

Since the only non-zero stresses are o, =6 ksiand 7,, =4 ksi, and for this material E =30x 10° and

v=03, we get

& = O _6000__ 200 gin/in and &y =¢&, =~ Vo, _ _60000030) _ —60 uin/in
E  30x10° E 30x10°

Thus

e +&y+&, =200-60-60 =80 uin/in
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5-72. For the case of pure biaxial shear, that is, the case where 7 is the only nonzero component of stress,

write expressions for the principal normal strains. Is this a biaxial state of strain? Explain.

Solution

For pure biaxial shear o, =0, =0, =0, 80 & =&, =¢, =0. Inaddition, 7, =7,, =0, and equation (5-

y
14) reduces to

& a7 =0

or

The roots (principal normal strains) of this equation are

Ty

7x
g = Ty

& =0 Eqy = —
s ©2 s 3
2

Since two of the principal strains are non-zero and the third principal strain is zero, this is a case of biaxial
strain.
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5-73. Explain why it is often necessary for a designer to use a failure theory.

Solution

In contrast to a uniaxially stresses machine part, for which an accurate failure prediction may be obtained
from one or a few simple tests, if the machine part is subjected to a biaxial or triaxial state of stress. A large
number of complex multiaxial tests is required to make a failure prediction. Such complicated testing
programs are costly and time consuming. Hence, a designer often finds it necessary to save time and money
by using a failure prediction theory when faced with Multiaxial states of stress.
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5-74. What are the essential attributes of any useful failure theory?

Solution
Any useful failure theory must:

1. Provide an applicable model that relates external loads to stresses, strains, or other pertinent
parameters, at the critical point in the Multiaxial state of stress.

2. Be based on measurable critical physical material properties.

3. Relate stresses, strains, or other calculable parameters of the uniaxial state of stress_to the
measurable properties corresponding to failure in a simple uniaxial test.

253



5-75. What is the basic assumption that constitutes the framework for all failure theories.

Solution

The basic assumption is as follows: Failure is predicted to occur when the maximum value of the selected
mechanical modulus, in the Multiaxial state of stress becomes equal to or exceeds the value of the same
modulus that produces failure in a simple uniaxial stress test, using the same material.
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5-76. a. The first strain invariant may be defined as |, = & + &, + &; . Write in words a “first strain invariant”

theory of failure. Be complete and precise.

b. Derive a complete mathematical expression for your “first strain invariant” theory of failure,
expressing the final result in terms of principal stresses and material properties.

c. How could one establish whether or not this theory of failure is valid?

Solution

(a) Failure is predicted to occur in the multiaxial state of stress when the first strain invariant becomes equal
to or exceeds the first strain invariant at the time of failure in a simple uniaxial test using a specimen of the
same material.

(b) Mathematically, the “first strain invariant” theory of failure may be expressed as IFPTOI I, > | . In this

expression || =& +¢, +&; . Using Hooke’s law in the form

1
&j :E|:O-| —V(O-j +O'k):|
we can write |, =g +&, +&; as

I, = I_EZV(O'1 +0, +0'3)

By setting 0, =0 and o, = 03 =0 for the uniaxial state of stress at failure

Ilf _ I—ZV(O_f)

As aresult, we can write

FIPTOI (0, +0,+03) >0y

(c) The validity of this theory, as for any theory, could only be established by comparing its predictive
capability with a spectrum of experimental evidence. (There is no evidence that the hypothesized first-strain-
invariant theory is valid.)
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5-77. The solid cylindrical cantilever bar shown in Figure P5.77 is subjected to a pure torsional moment T
about the x-axis, a pure bending moment M, about the y-axis, and a pure tensile force P along the x-axis, all

at the same time. The material is a ductile aluminum alloy.
a. Carefully identify the most critical point(a), neglecting stress concentrations. Give detailed reasoning
for your selection(a).
b. At the critical point(a), draw a cubic volume element, showing all stress vectors.
c. Carefully explain how you would determine whether of not to expect yielding at the critical point.

Solution

(a) The pure torsional moment T produces maximum shearing stress at the surface; all surface points are
equally critical. The pure bending moment M, produces maximum normal stresses all along the top and
bottom surface elements in Figure P5-77. (Both elements lie in the plane containing the z-axis). The tensile
force P produces a uniform normal stress over the whole cross section. The most critical combination of these
three stress component occurs along the top surface of the cylinder where the stresses caused by T, M, , and

P are all at their maximum values, and tensile components add. Any point along the top element may be
selected as a “typical” point.

(b) A volume element representing any “typical” critical point is shown in -

the figure to the right. /’

(c) Since a Multiaxial state of stress exists, a failure theory is the best tool for / | T 5 I
prediction of potential yielding. Since the specified aluminum alloy is /

ductile, the best choice for a failure theory would be the distortional energy / o
failure theory, with the maximum shearing stress theory an acceptable )
second choice. The procedure would be: b Oy =0p+0p

(1) Calculate the principal stresses
(2) Use the chosen failure theory to predict whether yielding should be expected.
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5-78. In the tiraxial state of stress shown in Figure P5.78, determine whether failure would be predicted. Use
the maximum normal stress theory for brittle materials and both the distortional energy theory and the
maximum shearing stress theory for ductile materials:

a. For an element stressed as shown, made of 319-T6 aluminum (S, =248 MPa , Sy =165 MPa,

e =2 percent in 50 mm ).

b. For an element made of 518.0 aluminum, as cast (S, =310 MPa , S, =186 MPa,

e =8 percent in 50 mm ).

Solution

Since all shearing stress components are zero on the element shown in Figure P5.78, it is a principal element
and the principal stresses are o, =290 MPa, o, =70 MPa , o, =-35 MPa

(a) Since € =2%, the aluminum alloy is regarded as brittle, so the maximum normal stress theory is used
and FIPTOI o > O i = Su . Thus

max —

Omax =01 =290> S, =248

max

Failure is predicted by brittle fracture.

(b) Since e =8%, the aluminum alloy is regarded as ductile, so both the distortional energy and maximum
shearing stress theories will be used. From the distortional energy theory, FIPTOI

1
5|:(o'1 -0, )2 +(0'2 — 03 )2 +(0'3 -0 )ﬂ > O'%a“

or

%[(290—70)2 +(70-[-35])" +(-35-290)" |2 (186

8.25x10* >3.459x10*

Since the inequality is satisfied, failure is predicted (by yielding). From the maximum shearing stress theory,
FIPTOI

| r _ |9max ~ 9min

max|_ 2|
2

7 fail

max 2

or
loy—o3]2S, = 290-(-35)2186 = 3252186

Since the inequality is satisfied, failure is predicted (by yielding).
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5-79. The axle of an electric locomotive is subjected to a bending stress of 25,000 psi. At the critical point,
torsional stress due to the transmission of power is 15,000 psi and a radial component of stress of 10,000 psi
results form the fact that the wheel is pressed onto the axle. Would you expect yielding at the selected critical
point if the axle is made of AISI 1060 steel in the “as-rolled” condition?

Solution

The state of stress at the critical
point is as shown in the sketch.
For this state of stress the stress
cubic equation reduces to

o’ —o’(oy+0,)

+0'(0'X0'Z - rfy )
—(—O'ery) =0

Substituting numerical values, we
get

o’ —o?(25-10)
+0'(25(—10)—(15)2)

_(—(—10)(15)2): 0

or
o’ —156% = 4756 -2250=0

Since the shearing stress is zero on the z-plane, it is by definition a principal plane. The principal stresses are
determined to be

o, =32ksi, o, =7 ksi, o3 =-10 ksi
For the material used, Sy, =54 ksi . Using the distortional energy theory, FIPTOI

1
E[(al -0, )2 +(oy—03 )2 +(o3-0 )2} >0

%[(32—(—7))2+(—7—(—10))2+(—10—32)2]2(54)2 or 16472916

Since the condition is not satisfied, failure by yielding is not predicted.
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5-80. A hollow tubular steel bar is to be used as a torsion spring subjected to a cyclic pure torque ranging
from -60 N-m to +1700 N-m. It is desirable to use a thin-walled tube with wall thickness t equal to 10% of the
outside diameter d. The steel material has an ultimate strength of 1379 MPa, a yield strength of 1241 MPa,

and an elongation of e(50 mm) =15% . The fatigue limit is 655 MPa. Find the minimum tube dimensions
that should just provide infinite life. The polar moment of inertia for a thin-walled tube may be approximated
by the expression J = 7d’t/4.

Solution

Since t=0.10d , J = zd>*t/4=0.1zd* /4 = 0.0785d* . The shear stress due to the pure torsion load is

rery = o 1@ T —eum(Tj

J00785d* 0.1571d> 43

Since the only nonzero stress is the shear stress, the equivalent stress is given by oy = 4 [31'3), =11.026T /d>.

For the specifications given, the non-zero mean and alternating torques are T, = (1700 - 60) /2 =820 N-m

and T, = (1700 + 60) /2 =880 N-m . The equivalent mean and alternating stresses are
Oeqa =11.026T, /d* ~9703/d’ Oeqm =11.026T, /d* ~9041/d*

The equivalent completely reversed stress is

o . Tewa _ 9703/d> 9703
T G 9041/d’ ¥ -6.56x107°
Sy 1379x10°

Equating the fatigue strength to the equivalent completely reversed stress oy, =0t =655 MPa gives

9703

ﬁ:655x106
d” -6.56x10"
This gives
3 9703 -6 -6
d :W+6.56x10 =214x10" — d=0.0278m,or d =27.8 mm,t=2.78 mm
X

Using these results

9703 9041

=———=451.6 MPa  and Oeq-m = —————5 = 420.8 MPa
(0.0278) (0.0278)

Ocg-a

Therefore

Opmax = 451.6+420.8 =874.2 MPa < S, =1241 MPa

We can therefore use d =27.8 mm and t =2.78 mm
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5-81. Using the “force-flow” concept, describe how one would assess the relative severity of various types of
geometrical discontinuities in a machine part subjected to a given set of external loads. Use a series of clearly
drawn sketches to augment your explanation.

Solution

Visualizing the lies of force flow (dashed lines in the sketch below) as fluid-flow path-lines, it may be noted
that higher stresses exist where force flow lines are closer together. Thus, when comparing two geometric
discontinuities, the better geometry from the standpoint of stress concentration is the one which the lines of
force flow are less crowded. On this basis, in the sketches below, Figure b is better than Figure a, Figure d is
better than Figure ¢, and Figure f is better than Figure e. Any change in geometry that tends to smooth and
separate the locally crowded force flow lines reduces the stress concentration. The use of a larger fillet radius
in Figure f as compared to the small radius in Figure e, is a good example. The addition of “more” holes or
notches, when properly placed and contoured as in Figure b or d, is also sometimes helpful, contrary to “first
intuition”.

s + E==0O==={+ Fed +E_——Z__|-

T== Fig.e  #—

Figb 4+ ——=3%

Fige +————=T"T""1. Fig. f =+
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5-82. The support bracket shown in Figure P5.82 is made of permanent-mold cast-aluminum alloy 356.0,
solution-treated and aged (see Tables 3.3 and 3.10), and subjected to a static pure bending moment of 850 in-
Ib. Would you expect the part to fail when the load is applied?

Solution

From Table 3.3 S, =38 ksi, S, =27 ksi, and e =5% . Since the elongation in 2 inches is 5%, the material

is on the boundary between brittle and ductile behavior. Examining Figure P5-82, may stress concentration
sites require consideration as potential critical points. These include: (1) the 0.25 inch diameter hole, (2) the
0.15 inch radius fillet, and (3) the 0.125 inch radius fillet. Considering each of these potential critical points:

(1) The hole is at the neutral bending axis so the nominal stress is near aero, and even with a stress
concentration the actual stress will also be near zero. The hole may be ignored.

(2) Referring to Figure 5.7(a), at the 0.15 inch radius fillet

F_015 610 and
h 15

=—=3.0

H_45
h 15

From Figure 5.7(a) we establish K; = 1.9 . Calculating the actual stress

Mc 850(0.75
Oact = KiOpom =Ky — = 1-9{4

3 =22.97 ksi
| 0.1875(1.5)° /12

Comparing o, = 22.97 ksi with the material properties listed above, neither brittle fracture nor
yielding would be predicted.

(3) Referring to Figure 5.7(a), at the 0.125 inch radius fillet

F_0025 0 ana B )
h 125 h 125

From Figure 5.7(a) we establish K; = 1.7 . Calculating the actual stress

Mc 850(0.625
Oact = KiOnom = Ky — = 1-7|: ( )

3 =29.59 ksi
I 0.1875(1.25)" /12
Comparing o, = 29.59 ksi with the material properties listed above, brittle fracture would not be predicted,

but yielding at this fillet is predicted. Whether one would predict failure is clouded by the fact that ductility of
the material is on the boundary of brittle versus ductile behavior and the question about consequences of local
yielding at the fillet. As a practical matter, it would probably be wise to redesign the part.
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5-83. The machine part shown in Figure P5.83 is subjected to a completely reversed (zero mean) cyclic
bending moment of +4000 in-Ib , as shown. The material is annealed 1020 steel with S, = 57,000 psi ,

Syp =43,000 psi, and an elongation in 2 inches of 25 percent. The S — N curve for this material is given in

Figure 5.31. How many cycles of loading would you estimate could be applied before failure occurs?

Solution

The cyclically loaded machine part has three potentially critical points; one at the 1/8”-diameter hole, one at
the 0.25” radius fillet, and one at the 0.18” radius fillet. Since the part is subjected to cyclic pure bending, and
the hole is at the neutral bending axis the nominal stress there is zero and even with a stress concentration the
actual stress there will be nearly aero. The hole is therefore ignored. Comparing the two fillets, it may be
observed that for the 0.25”-radius fillet the ratio of H/h is smaller and the ratio of r/h is larger than for the
0.18”-radius fillet. Examining Figure 5.7(a) we conclude that the stress concentration factor at the 0.18”-
radius fillet is larger and the nominal bending stress is larger. Therefore we focus on the r =0.18" fillet,
where

T8 001 and Ho20 10
h 1.64 h 1.64

From Figure 5.7(a) we establish K; =1.7 . Since the loading is cyclic, a fatigue stress concentration factor is
needed. From Figure 5.46, for a steel with S, =57 ksi and a fillet radius of r =0.18", we determine q = 0.8 .
Using (5-92) we determine the fatigue stress concentration factor to be

Ki =q(K~1)+1=0.8(1.7-1)+1=1.56
The maximum normal stress is therefore

4000(1.64/2)

Mc
O, = Kiopom = Kk — =1.56
st oM {0.375(1.64)3/12

} ~37.12 ksi

From Figure 5.31, the estimated life would be N ¢ ~10° cycles.
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5-84. a. The mounting arm shown in Figure P5.84 Is to be made of Class 60 gray cast iron with ultimate
strength of 414 MPa in tension and elongation in 50 mm less than 0.5%. The arm is subjected to a
static axial force of P =225 kN and a static torsional moment of T = 2048 N-m, as shown. For the
dimensions shown, could the arm support the specific loading without failure?

b. During a different mode of operation the axial force P cycles repeatedly from 225 kN tension to
225 kN compression, and the torsional moment remains zero at all times. What would you estimate the
life to be for this cyclic mode of operation?

Solution

(a) Due to the fillet, there is a stress concentration factor. Using Figures ?.?? (b) and (c) with

r/d=3/50=0.06and D/d =56/50=1.12, we approximate the stress concentration factors due to the axial
load and the torsional moment as

(Ki)p =1.8 and (K;) ~1.15

The normal and shear stresses at the root of the fillet are

p 4(225x10°)
oy :(Kt)P(ijl.f& ﬁ =206 MPa
7(0.05
32(2048)(0.025
7 = (Ko)r (%}1.15[%}:96 MPa
7(0.05

The stress cubic equation for this state of stress is o — 020X + 0(—rfy ) =0, which gives principal stresses of

2 2
o o o o
oy =—+ - +T>%y> 0,=0, o3=—"- - +Tfy
2 2 2 2

Since the material is brittle, FIPTOI

2
O. O.
2
o :¥+ (%} +(96)? =244 MPa < S, = 414 MPa

Failure under static loading will not occur.

(b) For cast irons with S, <88 ksi (607 MPa), S} =0.4S,at N = 10° cycles. Therefore, for Class 60 gray

cast iron

S¢ =0.4(414) =166 MPa
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Problem 5-84 (continued)

This should be corrected for influence functions by using S = ka} , but the information given is not

sufficient to determine Kk . Therefore
S =S; =166 MPa

For the mode of operation now being considered 7,, =0 since T =0. In addition, since P is completely

reversed
0, =0y =206 MPa
From the S-N curve below, we can approximate the life as

N ~5.2x10% cycles

Stress (MNP a)
aa
=]
(=]

1 10 107 10° 10 10° 10° 10 10°

N, eycles
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5-85. An S-hook, as sketched in Figure P5.85, is being proposed as a means of hanging unitized dumpster
bins in a new state-of-the-art dip-style painting process. The maximum weight of a dumpster bin is estimated
to be 300 pounds, and two hooks will typically be used to support the weight, equally split between two
lifting lugs. However, the possibility exists that on some occasions the entire weight may have to be
supported by a single hook. It is estimated that each pair of hooks will be loaded, unloaded, then reloaded
approximately every 5 minutes. The plant is to operate 24 hours per day, 7 days per week. The proposed hook
material is commercially polished AM 350 stainless steel in age-hardened condition (see Table 3.3).
Preliminary considerations suggest that both yielding and fatigue may be potential failure modes.

a. To investigate potential yielding failure, identify critical points in the S-hook, determine maximum

stresses at each critical point, and predict whether the loads can be supported without failure by

yielding.

b. To investigate potential failure by fatigue, identify critical points in the S-hook, determine pertinent
cyclic stresses at each critical point, and predict whether a 10-year design life could be achieved with

99 percent reliability.

Solution

(a) Since the entire load can occasionally be placed on a single hook, to
investigate yielding, the applied static load on the hook must be taken to
be

P

yield = 300 lb

The material properties, taken form Tables 3.5 and 3.10 are
S, =206 ksi, Syp =173 ksi , and e =13% . The potential critical points

are A and B as shown in the sketch. The stress at the inner radius of point
Ais

( Ui)A M aCia . Pyietd

epAliy A
where M, = Pyigigfea =300(1) =300 in-Ib
Knowing that ¢, =C; =1, — I, and I, =r, —e, determine e from
A

(oA
;

e=r,

2 2
ﬂ = w =0.0755 in? and from Table 4.8, case 4

dA d a v a2
— =2 (rl +_Wj_ (rl +_Wj __w
r 2 2 4

Determining that ; =1-0.31/2 =0.845 in we determine

where A=
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Problem 5-85 (continued)

2

1/
dA 0.31°

= (0.845+0.31/2)—| (0.845+0.31/2) -

=27{1.00-0.9879} = 0.0760

epa=e€=1- 0.0755 =0.0066 in
0.0760

r,=r,—e=1-0.0066=0.9934in and Cjp =1, - =0.9934-0.845=0.1484 in
Therefore at point A

M,Cn P 300(0.1484) 300

(6i), = +—= + =105.732+3.974 =109.706 ksi
A epAr, A (0.0066)(0.0755)(0.845) 0.0755

To check for yielding

(1), =109.706< S, =173

The static load can be supported without yielding at point A.
At critical point B:

MgCg P

(oi)g “eAr. A

where Mg = Pyjgiqlig =300(1.5) =450 in-Ib .Since f; =35-7.5/2=31.25 mm

/2

) 1
deAzzn (1345+031/2) | (1.345+031/2)° - 21

=27{1.500 104920} = 0.0505

eg =€= 1.500—M =0.0036 in
0.0505

r,=1.5-0.0036=1.4964 in and Cg =", —r =1.4964-1.345=0.1514 in
Therefore at point B

MgCis Pyiela 450(0.1514) 300

). = = =171.484 ksi
S egArg A (0.0036)(0.0755)(1.4964)+0.0755 B

To check for yielding

(01)y =171.484<S,, =173
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Problem 5-85 (continued)

The static load can also be supported without yielding at point B. The margin of safety at this point is fairly
small. Clearly critical point B governs the failure. An alternative calculation could have been made at point B
using (4-15) and Table 4.3, Case 4. Noting that c=d,,/2=0.31/2=0.155, we find

r,/c=1.5/0.155=9.68 . From Case 4 of Table 4.3 we determine k; to be

ki :1.103—£ 1.103-1.080) =1.084
B 2.0

The stress at point B is

Pi MgC Pietd 450(0.31/2) 300
). = (k yield _ () | 22B¥B |, Yeld _y gy
(91)g = (ki) (ornam )+ —5== (ki) s ) A #(031) 164 | 00755

(01)g =170.71 ksi

This is reasonably close to the previous result for (o3 ), -

(b) From a fatigue standpoint, the cyclic design life is estimated to be

Ng =(10 yr )(52 W—kj( %){24%}(60 %j(l CyCleJ:1.048><106 cycles
r

yr w ay 5 min

The critical point for fatigue loading is also point B. For fatigue loading the 300 Ib total load is equally shared

by each hook, so (Pmax )fatigue =300/2 =150 Ib. We not that this is a non-zero-mean load ranging from
P

i =0 to P =1501b.

max

Since fatigue properties are not readily available, the methods of 5.6 are used to estimate the S — N curve for
the material, then modify the curve to account for various factors including reliability in the actual hook
application. Using the methods of 5.6 we start with

Snoi =Sy, =206 ksi and S _ =100 ksi (since S, > 200 ksi)
Using Table 5.4, and Figure 5.33; k, =0.81 (Table 5.4) and Ky, = 0.83 (Fig. 5.33) . From (5-57)
k., =(0.83)(0.81) =0.67

From (5-55), S; (R =99) =k S,

nios = 0-67(100) = 67 ksi . This results in the approximate S-N curve shown

below.
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Problem 5-85 (continued)

220

200 ‘LT e T i

Vi

L Tt i

1 1 - —— HHl—3—=

Btress kah

1 10 107 10° 104
N, eycles

The stress level at critical point B, under fatigue loading, is proportional to the loading ratio

(P )faﬁgue / Pjietd =150/300 = 0.5 . Therefore

max
(Cig_max ) fatique = 0-3(171.484) =85.742 ksi

Since the cyclic loading is released, we determine ogq_cg , Which is

(oF

_85782+0 _ 1 971 ksi

— a
O-eq—CR - 1_07m
SU
Where o, = Zmax ~%min _ 8574270 _ 15 071 1j o = Tmax * Timin
2 2 2
Therefore
42.871 .
Oeq-CR ——1_ D8 54.14 ksi
206

From the S-N curve above it may be seen that og,_cg = 54.14 ksi lies below the curve. We therefore

conclude that the 10-year design life can be achieved at the 99% reliability level.
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5-86. A 1%— ton hydraulic press for removing and reinstalling bearings in small to medium-size electric

motors is to consist of a commercially available hydraulic cylinder mounted vertically in a C-frame, with
dimensions as sketched in Figure P5.86. It is being proposed to use ASTM A-48 (Class 50) gray cast iron for
the C-frame material. (See Table 3.3 for properties.) Predict whether the C-frame can support the maximum
load without failure.

Solution
From case 5 of Table 4.3 E =225"
dA L+h r, L——, E———~
—=b/In +b, In | —
r I r+h ! I . _L
1.5+0.4 2.6 I !
=(1.0)In +(0.4)In =0.362 ' " : 4 An
(1.0 [ 15 j 04 [1.5+0.4j | 1.0 - E;F
L
A= (1.0)(0.4) +(0.7)(0.4) = 0.68 in> :
=13in
— 04(1.7)+0.28(2.25) _, oo U=l
0.68 c F=LTm
e=1926-_~ = =0.0475 in b7 =26in —
M = P(r, +3.5) =3000(1.926 +3.5) = 16.278 kip-in
r,=r.—e=1926—0.0475=1.8785 in ¢ =r —r =18785-1.5=0.3785 in
o _Me 1627803785 oo,

eAr  (0.0475)(0.68)(1.5)

From Table 3.3, S, =50 ksi. Since 127.2 > S, =50, failure by brittle fracture will occur and the load can
not be supported..
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5-87. A bolted joint of the type shown in Figure P5.87A employs a “reduced-body” bolt to hold the two
flanged members together. The area of the reduced-body steel bolt at a critical cross section A is 0.068 in?.
The steel bolt’s static material properties are S, = 60,000 psi and S, =36,000 psi . The external force P

cycles from zero to 1200 Ib tension. The clamped flanges of the steel housing have been estimated to have an
effective axial stiffness (spring rate) of three times the axial bolt stiffness over its effective length

L =1.50 inches.

a. Plot the cyclic force-time pattern in the reduced-body bolt if no preload is used.

b. Using the S - N curve of Figure P5.87B, estimate bolt life for the case of no preload.

c. Plot the cyclic force-time pattern in the reduced-body bolt if the nut is initially tightened to induce a
preload force of i =1000 Ib in the bolt body (and a preload force of -1000 1b in the clamped flanges). A

separate analysis has determined that when the 1000-1b preload is present, the peak external force of 1200 Ib
will not be enough to cause the flanges to separate. (See Example 13.1 for details.)

d. Estimate the bolt life for the case of an intial preload force of 1000 Ib in the bolt, again using the S - N
curve of Figure P5.87B.

e. Comment on the results.

Solution
1200
(a) With no preload, the reduced-body bolt is subjected to the full 1000
operational cyclic force, ranging from P,;, =0 to P,,, =1200 Ib o
as shown in the sketch to the right. g Ll
2 600
(b) Since the cyclic force produces a tensile non-zero mean cyclic -
stress we can calculate an equivalent completely reversed stress as 400
200
_ O-max O-m
Oeq—CR = o time
u
Poax 1200 . .
where o, = A = 0008 17,647 =17650 psi and o, =0 . Accordingly
17,650+0 .
Op = ~LOT*DY 8825 psi
2
17,650 —8825 .
Thus, Oeq-CR = W =10,347 ~10,350 ps1
60,000

Reading from the bolt S-N curve of Figure P5.87B with a value of gg_cg =10,350 psi, the estimated life of

the non-preloaded bolt may be read as approximately 3x10° cycles.

(¢c) When the bolted joint in Figure P5.87A is initially preloaded by tightening the nut, the bolt is stretched
and the flanges are compressed so the tensile force in the bolt is equal to the compressive force in the flanged
members. This constitutes a statically indeterminate system in which the bolt “spring” and flange “spring” are
in_parallel. The spring rates of the bolt and the flange (member) are
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Problem 5-87(continued)

F, _ AE _ 0.068(30x10°)

k, = =1.36x10° Ib/in
Vb L 1.5
Fm 6 6 .

ki =~ =3k, =3(1.36x10° ) = 4.08x10° Ibin
Ym

Since the springs are in parallel P = F, + F,,. As long as the operational forces do not separate the flanges

(guaranteed by the problem statement), Y, =Y, . Thus we can write F,, =k,F, /k;, , which results in

P=Fb+k—mFb=£l+k—mJFb or sz( s ]P
ke ke Ky + K

The force on the preloaded bolt, F,, due to the operating force P and the preload, F is

K . 0
szFi+Fb:Fi+[k 0 jP:loooJ{( 13610 JP=1000+0.25P

b+ K 1.36+4.08)x10°
When B, =0, (F,) . =1000 Ib and when P, =1200, 1400
(Fb )max =1300 Ib. The force-time response is as shown in the figure to 1200 W
the right. = 1000
o
2 800
(d) Since the cyclic force produced in this figure is a tensile non-zero = 600
mean cyclic stress, 400
O-max o-m zl:”:l
Oe¢q-CR = .
_“m time
SU
where

P 1300
A 0.068

=19,118 19,120 psi and

Therefore o, = (19,120 +14, 710)/ 2=16,915 psi. This results in

19,120-16,915
Teq-CR = 16,915
60,000

=3070 psi

Reading from the bolt S-N curve of Figure P5.87B with a value of o¢,_cg =3070 psi, the estimated life of

the non-preloaded bolt is infinite.

(e) The result of preloading in this case is to improve bolt life fro about 300,000 cycles to infinite life.
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5-88. Examining the rotating bending fatigue test date for 60° V-notched specimens depicted in Figure 4.22,
respond to the following questions:
a. For notched specimens that have not been prestressed, if they are subjected to rotating bending tests
that induce an applied alternating stress amplitude of 20,000 psi at the notch root, what mean life might
reasonably be expected?
b. If similar specimens are first subjected to an axial tensile static preload level that produces local
stresses of 90 percent of notch ultimate strength, then released and subjected to rotating bending tests
that induce an applied alternating stress amplitude of 20,000 psi at the notch root, what mean life might
reasonably be expected?
c. If similar specimens are first subjected to an axial compressive static preload level that produces
local stresses of 90 percent of notched ultimate strength, then released and subjected to rotating
bending tests that induce an applied alternating stress amplitude of 20,000 psi ate the notch root, what
mean life might reasonably be expected?
d. Do these results seem to make sense? Explain.

Solution

(a) Reading the S-N curve for “specimen not prestressed”, for an alternating stress amplitude of 20 ksi the
mean life expected is about 1.8x10° cycles .

(b) Reading the S-N curve for for a specimen initially subjected to a momentary axial static tensile preload
level that produces local stresses of 90% of notched ultimate strength, when an alternating stress amplitude of
20 ksi is subsequently imposed, the mean life expected is_infinite.

(¢) Reading the S-N curve for for a specimen initially subjected to a momentary axial static compressive
preload level that produces local stresses of 90% of notched ultimate strength, when an alternating stress

amplitude of 20 ksi is subsequently imposed, the mean life expected is about 10* cycles .

(d) These results make sense because the initial tensile preload, when released, leaves a favorable residual
compressive stress field at the notch root, imp[roving life expectancy. In the same vein, the initial
compressive preload, when released, leaves an unfavorable residual tensile stress field at the notch root,
diminishing life expectancy.
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Chapter 6

6-1. List the basic principles for creating the shape of a machine part and determining its size. Interpret these
principles in terms of the five common stress patterns discussed in 4.4.

Solution
From 6.2, the basic principles to be applied are

(1) Create a shape that will, as nearly as possible, result in a_uniform stress distribution throughout all
of the material in the part.
(2) For the shape chosen, find dimensions that will produce maximum operating stresses equal to the

design stress.

Interpreting these principles in terms of five common stress patters discussed in Chapter 4, the designer
should, if possible, select shapes and arrangements that will produce direct axial stress (tension or
compression), uniform shear, or fully conforming contact. And avoid bending, Hertzian contact geometry.
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6-2. List 10 configurational guidelines for making good geometric choices for shapes and arrangements of
machine parts.

Solution
Configurational guidelines for making good geometric choices and arrangements include

(1) Use direct load paths.
(2) Tailor element shape to loading gradient.
(3) Incorporate triangular ort tetrahedral shapes or arrangements.
(4) Avoid buckling-prone geometry.
(5) Utilize hollow cylinders and I-beams to achieve near-uniform stress.
(6) Provide conforming surfaces at mating interfaces.
(7) Remove lightly stresses or “lazy” material.
(8) Merge different shapes gradually from on the another.
(9) Match element surface strains at joints and contacting surfaces.
(10) Spread loads at joints.
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6-3. In Proposal 1 shown in Figure 6.1(a), a “U-shaped” link is suggested for transferring direct tensile force
F from joint A to joint B. Although the direct load path guideline clearly favors Proposal 2 shown in Figure
6.1(b), it has been discovered that a rotating cylindrical drive shaft, whose center lies on a virtual line
connecting joints A and B, requires that some type of U-shaped link must be used to make space for the
rotating drive shaft. Without making any calculations, identify which of the configurational guidelines of 6.2
might be applicable in determining an appropriate geometry for the U-shaped ling, and, based on these
guidelines, sketch an initial proposal for the overall shape of the link.

Solution

Reviewing the list of configurational guidelines in 6.2, the potentially applicable guidelines for the “U-
shaped” link of Figure 6.11 (a) would include:

(2) Tailor element shape to loading gradient.

(5) Utilize hollow cylinders and I-beams to achieve near-uniform stress.
(6) Provide conforming surfaces at mating interfaces.

(7) Remove lightly stresses or “lazy” material.

(8) Merge different shapes gradually from on the another.

(10) Spread loads at joints.

Incorporating these guidelines to refine the shape of the “U-shaped link”, one initial proposal might take the
form shown below. Obviously, many variations are possible.

F

V-\_\
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6-4. Referring to Figure 16.4, the brake system shown is actuated by applying a force F, at the end of the

actuating lever, as shown. The actuating lever is to be pivoted about point C. Without making any
calculations, identify which of the congigurational guidelines of 6.2 might be applicable in determining an
appropriate shape for the actuating lever, and based on these guidelines, sketch an initial proposal for the
overall shape of the lever. Do not include the shoe, but provide for it.

Solution

Reviewing the list of configurational guidelines in 6.2, the potentially applicable guidelines for the actuating
lever of Figure 6.14 would include:

(2) Tailor element shape to loading gradient.

(5) Utilize hollow cylinders and I-beams to achieve near-uniform stress.
(6) Provide conforming surfaces at mating interfaces.

(7) Remove lightly stresses or “lazy” material.

(8) Merge different shapes gradually from on the another.

(10) Spread loads at joints.

Incorporating these guidelines to refine the shape of the actuating lever, one initial proposal might take ther
form shown below. Obviously, many variations are possible. For example, a hollow rectangular tubular cross
section might be used instead of an I-section, tapered height might be used instead of tapered width, etc.
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6-5. Figure P6.5 shown a sketch of a proposed torsion bar spring, clamped at one end to a rigid support wall,
supported by a bearing at the free end, and loaded in torsion by an attached lever arm clamped to the free end.
It is being proposed to use a split-clamp arrangement to clamp the torsion bar to the fixed support wall and
also to use a split-clamp configuration to attach the lever arm to the free end of the torsion bar. Without
making any calculations, and concentrating only on the torsion bar, identify which of the configurational
guidelines of 6.2 might be applicable in determining an appropriate shape for this torsion bar element. Based
on the guidelines listed, sketch an initial proposal for the overall shape of the tosion bar.

Solution

Reviewing the list of configurational guidelines in 6.2, the potentially applicable guidelines for the torsion bar
of Figure P6.5 would include:

(5) Utilize hollow cylinders and I-beams to achieve near-uniform stress.
(6) Provide conforming surfaces at mating interfaces.

(7) Remove lightly stresses or “lazy” material.

(8) Merge different shapes gradually from on the another.

(10) Spread loads at joints.

Incorporating these guidelines to refine the shape of the torsion bar, one initial proposal might take the form
shown below. Obviously, many variations are possible.
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6-6. a. Referring to the free-body diagram of the brake actuating lever shown in Figure 16.4(b), identify
appropriate critical sections in preparation for calculating dimensions and finalizing the shape of the part.
Give your rationale.

b. Assuming that the lever will have a constant solid circular cross section over the full length of the
beam, select appropriate critical points in each critical section. Give your reasoning.

Solution

(a) From the free body diagram at shown in Figure 16.4 (b), we deduce that the actuation force, F, at the end
of the lever is reacted by normal (N) and friction ( «N ) forces at the brake shoe and pin reactions R, and R, .

These produce primarily bending of the lever arm as a simply supported beam. Transverse shear is also
present in the lever arm (beam) and an axial compressive force over the length b of the arm.

The lever arm has a solid circular cross section (see problem statement), constant over its entire length
(probably a poor choice as per the solution to problem 6-5). From Table 4.1, case 2, the maximum bending
moment occurs at section B (where N and u#N are applied). The transverse shear acts over the entire length

of the arm, but is largest over length b. Axial compression occurs over length b. Since the length b includes
section B, we conclude that the critical section is B.

(b) At section B we indicate critical points as shown. The normal compression
is uniform over the entire section. The transverse shear is maximum a C and D A
and zero at A and B. Point A sees tension due to bending and point B sees
compression due to bending. Since some failure modes are more sensitive to
tension we conclude that A and B are the most critical points.

278



6-7. a. Figure P6.7 shows a channel-shaped cantilever bracket subjected to an end load of P =8000 Ib,
applied vertically downward as shown. Identify appropriate critical sections in preparation for checking
the dimensions shown. Give your rationale.

b. Select appropriate critical points in each critical section. Give your reasoning.
c. Can you suggest improvements on shape or configuration for this bracket?

Solution

(@) Three types of stress patterns occur for a channel oriented with its web vertical as in Figure P6-7. They
are:

(1) Bending stress, which reaches a maximum at the extreme upper and lower fibers of the wall.

(2) Transverse shearing stress, which is maximum at the neutral bending axis, all along the length of the
channel.

(3) Torsional shearing stress because the applied load does not pass through the shear center of the
channel (see case 1 of Table 4.5). These reach a maximum in the upper and lower flanges, along the
entire length.

Based on these observations, the bracket section at the wall is more critical than any other section.

(b) Based on the reasoning above, the critical points due to bending and torsion 4 4 —4
occur along AA in the figure shown. The critical points due to transverse shear T
occur along BB. Therefore, two critical points should be considered. These are
points A and B. | E_

B B
(c) The torsional shearing stress can be eliminated by moving the load P to the
left so that it passes through the line of action of the shear center. This is L 1

recommended.
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6-8. The short tubular cantilever bracket shown in Figure P6.8 is to be subjected to a transverse end load of
F =130 kN vertically downward. Neglecting possible stress concentration effects, do the following:

a. ldentify appropriate critical sections in preparation for determining the unspecified dimensions.
b. Specify precisely and completely the location of all potential critical points in each critical section
identified. Clearly explain why you chose these particular points. Do not consider the point where the
force F is applied to the bracket.
c. For each critical point identified, sketch a small volume element showing all nonzero components of
stress.
d.
If cold-drawn AISI 1020 steel has been tentatively selected as the material to be used, yielding has been
identified as the probable governing failure mode, and a safety factor of ny =1.20 has been chosen, calculate

the required numerica

Solution

(a) Bending is the most critical at the wall, and
transverse shear is constant along the length. Therefore
the cross section at the wall is the critical section.

N

(b) and (c) The critical points and state of stress at each
are shown in the sketch. Points 1 and 3 experience
maximum tensile and compressive bending stresses,
and points 2 and 4 experience the maximum transverse
shear stress.

(d) For cold-drawn AISI 1020 steel S, =352 MPa.

Since the design safety factor is ny =1.20, the design
stress is

S
o4 :ﬂz%:zgs MPa

At points 1 and 3 the normal stress is uniaxial and
oy =0y =293 MPa . The stress due to bending at point
lis

(130000)(0.04)(0.08/2) 4237

o, =293x10° = . = y
7| (0.08)" -df |64 [ (0.08)" -df |

4.096x10° —d =1.446x10° — d, =717 mm —d, =72 mm
1 1 1

Next we check points 2 and 4 to see if the safety factor is met. The transverse shear at these points is

- (5):2 4F 5 4(130000) _ 272 MPa
A 7Z'(d02 -d?) ;{(0.08)2 —(0.072)2]

For transverse shear stress, a multiaxial design equation is required. Choosing the distortional energy theory
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Problem 6-8 (continued)

2
1 S
O'ezq 25[(01_0-2)2 +(o —03)2 +(o3 —01)2} o} :[%}
e

where n, is the existing safety factor. Since the state of stress is pure shear, the principal stresses are o; =7, ,

o, =0,and o3 =-7,, . Therefore

%[(272)2 +(-272)? +(—544)2} _ {352 ]2

ne
ne=0.75<ny =12

This means that the tube thickness must be increased, meaning d; must be decreased. Using a simple
spreadsheet we can generate the date below

dl A T O¢q ng
0.072 0.000955  272.2387 222341.8 0.746504
0.0715 0.001011  257.0703  198255.4  0.7905514
0.071 0.001067  243.5926 178012 0.8342919
0.0705 0.001123 231.5386 160830.3 0.8777254

0.07 0.001178 220.6949  146118.7 0.920852
0.0695 0.001233 210.8885 1334219 0.9636716
0.069 0.001287 2019782 122385.6 1.0061843
0.0685 0.001341 193.847 112730 1.04839
0.068 0.001395  186.3977 104232.3  1.0902888
0.0675 0.001448 179.5484  96712.83  1.1318806
0.067 0.001501 173.2299 90025.76  1.1731654
0.0665 0.001553 167.3833 8405148 1.2141434
0.066 0.001605 1619581  78691.24  1.2548143
0.0655 0.001657 156.9107 73862.87 1.2951783
0.065 0.001708 152.2033 69497.58  1.3352354
0.0645 0.001759 147.8032 65537.38  1.3749855
0.064 0.00181 143.6815 61933.16  1.4144287
0.0635 0.00186 139.813 58643.04  1.4535649

From this we can select the inner diameter to be d, = 66.5 mm
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6-9. The cross-hatched critical section in a solid cylindrical bar of 2024-T3 aluminum, as shown in the sketch
of Figure P6.9, is subjected to a torsional moment T, = 8500 N-m , a bending moment of M, =5700 N-m ,

and a vertically downward transverse force of F, =400 kN .

a. Clearly establish the location(s) of the potential critical point(s), giving logic and reasons why you
have selected the point(s).

b. IF yielding has been identified as the possible governing failure mode, and a safety factor of 1.15 has
been chosen, calculate the required numerical value of diameter d.

Solution

L]

(a) Bending (o}, ), torsion (z; ), and

transverse shear stresses (7, ) all exits. Based
J

on the figure showing how each of these
stresses acts, we conclude that point 1 (since Ty - Iy
oy, is tensile) and point 4 (since zr and 7

add) are the most critical points.

(b) For 2024-T3 aluminum S, =345 MPa A L 4

Since the design safety factor is ny =1.15,
the design stress is rptr,

N\
I

St

et

S 1
o4 :izﬂzmompa B
ng 115

rd
Each stress component can be defined as
«
X

Myc  32M _ 32(5700) _ 5.81x10° a, v Iy

O, = =
T 2d® d® a3

NN

_ _Tc_16T _16(8500) _ 4.33x10*
70 zd® xd® d®

4 F, 4(4|=Z )_16(400><103) _ 6.79x10°

s T3A T 3l g2 3702 d2

At point 1 the state of stress is such that o, =0 , while

2 4 4\2 42 4
_ Oy oy 2 2.91x10 2.91x10 4.33x10 _ 8.13x10
0'1—74‘ 7 +(TT) = d3 + d3 + d3 = d3

Q

2 4 42 4\2 4
_ oy b 2 2.91x10 2.91x10 4,33x10 _ 2.31x10
TS A o +(zr)” = FER FE + q° E
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Problem 6-9 (continued)
Since the material is ductile we use the distortional energy theory

(o102 +(oa-00f +(oz-01) | =3

4 2 _ 4 2 4 4 2 2
1 [8.13x10 _OJ +[0_ 2.31x10 J +{_2.31><10 8.13x10 j _ (300x10°)

2 d? d? d? d?

90.2x10%

o =9x10** or  d=0.0682m=682mm

We now use this diameter to determine the existing factor of safety at critical point 4. Using d = 68.2 mm we
determine

4 5
T =le37 MPa and 7 :le% MPa

(0.0682)° (0.0682)°

Since the state of stress at this point is pure shear, we know that o; = 74 + 7, =283 MPa, ¢, =0, and
o3 =—(71 +7,5) =—283 MPa . In order to determine if the design factor of safety is met we can use (6-14)

2

S S

oa :[ ypj or n=—%-= 345 =0.704
Ne 1

e \/2[(283)2 +(283)" +(-566)’ |

This existing factor of safety does not meet the requirement of ny =1.15, and since n, <1, we expect
yielding to occur at point 4. As a result of this, we need to recalculate the diameter at point 4 based on the
state of stress there. At point 4 we have z; = 4.33x10* /d®and 7, =6.79x10° /d?, which results in
principal stresses of

433x10° 67.9x10° . _ _ 4.33x10"  67.9x10"
d3 + d2 ,0_2— , an O-S_TT_TtS_ d3 - d2

0-1:TT +TtS =

The equivalent stress is

=3 (0102 +(o2-0n) +(o3-a)' | = [H[ () (o) (0-n)]

A simple spreadsheet can be used to estimate the diameter based on the existing factor of safety, which must
be greater than n, =1.15 . Beginning with the original diameter, a spreadsheet similar to that shown can be

generated.
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Problem 6-9 (continued)

d (m)
0.0682
0.0692
0.0702
0.0712
0.0722
0.0732
0.0742
0.0752
0.0762
0.0772
0.0782
0.0792
0.0802
0.0812
0.0822
0.0832
0.0842
0.0852

oy (MPa)
282483243.3
272462023.3
262946144.3
253903008.5

245302559
237117048.6
229320833.1
221890185.1
214803127.2
208039281.1
201579731.9
195406905.5
189504457.3
183857171.9

178450872
173272335.6
168309220.4
163549995.9

o5 (MPa)
-282483243.3
-272462023.3
-262946144.3
-253903008.5

-245302559
-237117048.6
-229320833.1
-221890185.1
-214803127.2
-208039281.1
-201579731.9
-195406905.5
-189504457.3
-183857171.9

-178450872
-173272335.6
-168309220.4
-163549995.9

Based on this table, we select a diameter of

d =0.084 m=84 mm

Ueq

489275329.7
471918067.5
455436081.5
439772910.9
424876495.4
410698775.6
397195334.1
384325074.3
372049929.9
360334604.8
349146337.5
338454688.5
328231348.3
318449963.1

309085977
300116488.8
291520121.2
283276902.5
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0.705124455
0.731059105
0.757515739
0.784495796
0.812000672
0.840031723
0.868590264
0.897677573
0.927294893

0.95744343
0.988124356
1.019338812
1.051087904
1.083372712
1.116194281
1.149553633
1.183451758
1.217889623



6-10. A fixed steel shaft (spindle) is to support a rotating idler pulley (sheave) for a belt drive system. The
nominal shaft diameter is to be 50 mm. The sheave must rotate in a stable manner on the shaft, at relatively
high speeds, with the smoothness characteristically required of accurate machinery. Write an appropriate
specification for the limits on shaft size and sheave bore, and determine the resulting limits of clearance. Use
the basic hole system.

Solution

Referring to Table 6.4, the specifications in the problem statement would appear to be best satisfied by
selecting a medium running fit, RC 5.

Since the tables in the text are only in English units, we will work in these units and convert to SI once a
selection is made. Therefore we note that 50 mm = 2.0 in . From Table 6.5, under RC 5, for a n nominal 2.00-
inch size

2.000 +0.0018 = 2.0018 in = 50.85 mm (largest)
2.000 +0.0000 = 2.000 in =50.84 mm (smallest)

For the shaft diameter

2.000-0.0025=1.9975 in = 50.74 mm (largest)
2.000-0.0037 =1.9963 in = 50.70 mm (smallest)

One appropriate specification for hole and shaft diameter would be

:% (hole) d _S074 (hole)
50.85

h S 50.70

Note that the smaller diameter hole diameter is placed in the numerator because it is the first of the
limiting dimensions reached in the metal removal process (drilling, reaming, boring), while the largest
diameter shaft is placed in the numerator because it is the first of the limiting dimensions in the metal removal
process (turning, grinding)

The limits of clearance may be found by combining the smallest allowable shaft diameter with the
largest allowable hole and the largest allowable shaft diameter with the smallest diameter hole. Thus

2.0018-1.9963 = 0.0055 in = 0.1397 mm (largest clearance)
2.000-1.9975 =0.0025 in = 0.0635 mm (smallest clearance)
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6-11. A cylindrical bronze bearing sleeve is to be installed into the bore of a fixed cylindrical steel housing.
The bronze sleeve has an inside diameter of 2.000 inches and a nominal outside diameter of 2.500 inches. The
steel housing has a nominal bore diameter of 2.500 inches and an outside diameter of 3.500 inches. To
function properly, without “creep” between the sleeve and the housing, it is anticipated that a “medium drive
fir” will be required. Write an appropriate specification for the limits on sleeve outer diameter and housing
bore diameter, and determine the resulting limits of interference. Use the basic hole system.

Solution

From Table 6.6, it may be noted that a “medium drive fit” is a class FN2 fit. From Table 6.7, under class
FN2, for a nominal 2.500-inch size, the limits on hole size are +0.0012 inch and -0 inch. The standard limits
on shaft size are +0.0027 inch and +0.0020 inch. Thus the specifications for hole and shaft diameter would be

_ 2.5000 (hole) and d, = 2.5027
2.5012 2.5020

h (shaft)

Note that the smaller hole diameter is is in the numerator because it is the first of the limiting dimensions
reached in the metal removal process (drilling, reaming, boring). Similarly, the largest shaft diameter is
placed in the numerator because it is the first of the limiting dimensions reached in the metal removal process
(turning, grinding).

The limits of interference are calculated by combining the smallest allowable shaft with the largest
allowable hole, and by combining the largest allowable largest allowable shaft with the smallest allowable
hole. Similarly, one can read the “limits of interference” from Table 6.7. In either case, the limits of
interference are

0.0027 in. (largest interference)
0.0008 in. (smallest interference)
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6-12. For a special application, it is desired to assemble a phosphor bronze disk to a hollow steel shaft, using
an interference fir for retention. The disk is to be made of C-52100 hot-rolled phosphor bronze, and the
hollow steel shaft is to be made of cold-drawn 1020 steel. As shown in Figure P6.12, the proposed nominal
dimensions of the disk are 10 inches for outer diameter and 3 inches for the hole diameter, and the shaft, at
the mounting pad, has a 3-inch outer diameter and a2-inch inner diameter. The hub length is 4 inches.
Preliminary calculations have indicated that in order to keep stresses within an acceptable range, the
interference between the shaft mounting pad and the hole in the disk must not exceed 0.0040 inch. Other
calculations indicate that to transmit the required torque across the interference fit interface the interface muts
be at least 0.0015 inch. What class fit would you recommend should be written for the shaft mounting pad
outer diameter and for the disk hole diameter? Use the basic hole system for your specifications.

Solution

From the problem statement, the maximum and minimum allowable interferences are specified as
Apmax =0.0040 inch and A, =0.0015 inch . From Table 6.7 with the nominal shaft size of 3.00 inches, it

may be deduced that a Class FN3 fir satisfies both of these requirements since

(Arax )y 5 = 0-0037 < 0.0040
(Amin )5 = 0.0018 > 0.0015

Hence, a Class FN3 fir is recommended.

Under the Class FN3 fits in Table 6.7, the standard limits for hole size of 3.000 inches are +0.0012
inch and -0. For the shaft, the limits are +0.0037 inch and 0.0030 inch. Thus the sprcifications for hole
diameter and shaft diameter should be

dh—M (hole) and dg

13,0037
3.0012

shaft
3.0030 ( )
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6-13. It is desired to design a hydrodynamically lubricated plain bearing (see Chapter 11) for use in a
production line conveyor to be used to transport industrial raw materials. It has been estimated that for the
operating conditions and lubricant being considered, a minimum lubricant film thickness of

hy = 0.12 mm can be sustained. Further, it is being proposed to finish-turn the bearing journal (probably

steel) and ream the bearing sleeve (probably bronze). An empirical relationship has been found in the
literature (see Chapter 11) that claims satisfactory wear levels can be achieved if
hy > 0.5(R; +R, )

where R; = arithmetic average asperity peak height above mean bearing journal surface (mm)

R, = arithmetic average asperity peak height above mean bearing sleeve surface (mm)

Determine whether bearing wear levels in this case would be likely to lie within a satisfactory range.

Solution

From Figure 6.11, reading the mid-range values of average roughness height for finish turning (journal) and
reaming (bearing sleeve)

R; =18 um

Using the criteria above
hy =0.12 mm > 0.5(1.8+1.8)><10’6 m =0.0018 mm

Since the criteria is satisfied, wear is acceptable.
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6-14. You have been assigned to a design team working on the design of a boundary-lubricated plain bearing
assembly (see Chapter 10) involving a 4340 steel shaft heat-treated to a hardness of Rockwell C 40 (RC 40),
rotating in an aluminum bronze bushing. One of your colleagues has cited data that might be achieved by
grinding the surface of the steel shaft at the bearing site, as opposed to a finish-turning operation, as currently
proposed. Can you think of any reasons not to grind the shaft surface?

Solution

One might ask what the cost penalty, if any, would be to grind the surface of the steel shaft. Figure 6.10
provides some data for making an evaluation. Comparing the increase in cost to finish-turn the shaft from as-
received stock (100%) with the increase in cost to finish-turn and grind the shaft (249%), it is obvious that
grinding add a significant amount to the cost of the shaft. The question then becomes, “is it worth a cost
increase of 140% to achieve a 20% improvement in wear life?” The answer depends on specific
circumstances, but cost increase is certainly one potential reason not to grind the shaft.
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Chapter 7

7-1. Define the term “concurrent engineering” and explain how it is usually implemented.

Solution

The objective of “concurrent engineering” or “concurrent design” is to organize the information flow among
all project participants, from the time marketing goals are established until the product is shipped.
Information and knowledge about all of the design-related issues is made as available as possible at all stages
of the design process. It is usually implemented by utilizing an interactive computer system, including
computer-aided design and solid modeling software that allows on-line review and updating by any team m
ember at any time.
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7-2. List the five basic methods for changing the size or shape of a work piece during the manufacturing
process and give two examples of each basic method.

Solution

From Table 7.1, the five basic methods for changing size or shape of a piece during the manufacturing
process, with two examples of each method, may be listed as follows:

Method Examples
Flow of molten material Sand casting
Permanent mold casting
Fusion of component parts Arc welding
Gas welding
Plastic deformation Hammer forging
Rolling
Chip-forming action Turning
Milling
Sintering Diffusion bonding

Hot isostatic processing
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7-3. Explain what is meant by “near net shape” manufacturing.

Solution

“Near net shape manufacturing” is a philosophy based on the recognition that each machining and finishing
process cost time and money. It is therefore important to minimize the need for secondary machining and
finishing processes. To this end, it is efficient to try to select net shapes and sizes that are as near as possible
to standard stock raw material available, and utilize secondary processing only where needed.
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7-4. Basically, all assembly processes may be classified as either manual, dedicated automatic, or flexible
automatic assembly. Define and distinguish among these assembly processes, and explain why it is important
to tentatively select a candidate process at an early stage in the design of a product.

Solution

Basic assembly processes may be defined as follows:

Manual assembly — a process performed by humans, either by assembling a complete machine at a single
station (bench assembly) or by assembling only a small portion of the the complete unit as it moves from
station to station (line assembly).

Dedicated automatic assembly — a process performed by a series of single-purpose machines, in line, each
dedicated to only one assembly activity.

Flexible automatic assembly — a process performed by one or more machines that have the capability of
performing many activities, simultaneously or sequentially, as directed by computer managed control
systems.

It is important to select which assembly process is most suitable early in the design because parts typically
should be configured to accommaodate the selected assembly process.
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7-5. Explain how “design for inspectability” relates to the concepts of fail-safe design and safe life design
described in 1.8.

Solution

Referring to 1.5, the fail safe design technique provides redundant load paths in the structure so that if failure
of a primary structural member occurs, a secondary member picks up the load on an emergency basis and
carries it temporarily until the primary structural failure is detected and a repair made. The safe life design
technique involves selection of a large enough safety factor and establishing inspection intervals that assure
that a growing crack will be detected before reaching a critical size that will cause unstable propagation to
fracture.

To implement either of these design techniques, it is clear that any priomary structural failure or any growing
crack must be observable. Therefore it is imperative that designers, from the beginning, configure machine
components, subassemblies, and fully assembled machines so that critical points are inspected.
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7-6. Give three examples from your own life-experience in which you think that “design for maintenance”
could have been improved substantially by the designer of manufacturer of the part or machine being cited.

Solution

Based on over sixty years of engineering design and analysis experience, J. A. Collins recalls three cases in
which maintenance procedures were more complex than necessary:

(1)

()

3)

A used “five-foot cut” tractor-pulled power-take-off driven agricultural combine purchased in the
1940’s. The main-drive V-belt failed and required replacement. In the process, it required the
removal of secondary drive belts, pulleys, sprockets, and some structural supports. The belt
replacement effort required about 8 hours. A better configuration could have saved time and effort.
A new 1954 red convertible with numerous accessories, including a relatively new concept, power
steering. When the oil and filter were changed for the first time, it was observed that because of the
power steering actuation system, the only way to replace the oil filter was to raise the car on a lift,
set in place a separate jack to raise the body of the car away from the chassis, turn the wheels hard to
the right, and “wiggle” the filter between the power steering actuator and the engine block.
Obviously a better configuration would have reduced maintenance time.

A 1965 four-door family sedan subjected to the heat of the Arizona sun. The replacement of all
critical rubber products every couple of years was a wise idea. Most components were very simple to
change. The one major exception was the replacement of one 3-inch long length of heater-hose in
the engine coolant loop. This change required the removal of the right front fender. Obviously, a
better configuration would improve maintenance.
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7-7. The gear support shaft depicted in Figure 8.1(a) is to be made of AISI 1020 steel. It is anticipated that
20,000 of these shafts will be manufactured each year for several years. Utilizing Tables 7.1 and 7.2,
tentatively select an appropriate manufacturing process for producing the shafts.

Solution

Evaluating each of the characteristics listed in Table 7.2 as related to the gear support shaft depicted in Figure
8.1(a), and using the “process category” symbols defined in Table 7.1, the following table may be
constructed.

Application Applicable Process
Characteristic Description Category
Shape Uniform, simple M,F,S
Size Small M,F,S
Number to be produced Low mass production M,F,C,S,W
Strength required Average M,F,W

The frequency of citation for “applicable process categories” is
M: 4 times , F:4times , C: 1time , S:3times , W: 2 times
Machining and forming are each cited 4 times, but because of the “stepped” shape and need for precision,

machining would appear to be the most appropriate manufacturing process. From Table 3.17, this choice is
compatible with 1020 steel.
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7-8. It is being proposed to use AlSI 4340 steel as the material for a high-speed flywheel such as the one
depicted in Figure 18.10. It is anticipated that 50 of these high-speed flywheels will be needed to complete an
experimental evaluation program. It is desired to achieve the highest practical rotational speeds. Utilizing
Tables 7.1 and 7.2, tentatively select an appropriate manufacturing process for producing these high-speed
rotors.

Solution

Evaluating each of the characteristics listed in Table 7.2 as related to the high-speed flywheel depicted in
Figure 18.10, and using the “process category” symbols defined in Table 7.1, the following table may be
constructed.

Application Applicable Process
Characteristic Description Category
Shape Uniform, simple M,F,S
Size Medium M,F,C,W
Number to be produced A few M, W
Strength required Maximum available F

The frequency of citation for “applicable process categories” is
M: 3times , F: 3times , C: 1time , S:1time , W: 2 times
Machining and forming (forging) are each cited 3 times, but because it is desired to obtain the “maximum

strength available”, forging would appear to be the most appropriate manufacturing process. From Tables
3.17 and 3.10, this choice appears to be compatible with 4340 steel (in annealed condition).
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7-9. The rotating power screw depicted in Figure 12.1 is to be made of AISI 1010 carburizing-grade steel. A
production run of 500,000 units is anticipated. Utilizing Tables 7.1 and 7.2, tentatively select an appropriate
manufacturing process for producing the power screw.

Solution

Evaluating each of the characteristics listed in Table 7.2 as related to the power screw depicted in Figure 12.1,
and using the “process category” symbols defined in Table 7.1, the following table may be constructed.

Application Applicable Process
Characteristic Description Category
Shape Uniform, simple M,F,S
Size Medium M,F,C,W
Number to be produced A few M,F,C, S,W
Strength required Average F,.M,W

The frequency of citation for “applicable process categories” is
M: 4 times , F:4times , C:3times , S:2times , W: 3 times

Machining and forming are each cited 4 times, but because of the need for precision, machining would be
chosen. From Table 3.17, this is compatible with 1010 steel.
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7-10. Figure 8.1(c) depicts a flywheel drive assembly. Studying this assembly, and utilizing the discussion of
7.5, including Table 7.3, suggest what type of assembly process would probably be best. It is anticipated that
25 assemblies per week will satisfy market demand. The assembly operation will take place is a small
Midwestern farming community.

Solution

Studying Figure 8.1(a), the guidelines of Table 7.3 may be summarized for this application as follows,

Application Applicable Process
Characteristic Description Category
Number of parts per assembly Medium M,D,F
Production volume Low M,F
Labor cost Low M
Difficulty handling/inspecting Moderate M,D,F

M = manual assembly , D = dedicated automatic assembly , F = flexible automatic assembly
The frequency of citation for “best-suited assembly method” is
M: 4 times , D: 3times , F: 3 times

Manual assembly is cited 4 times, therefore the preliminary recommendation would be for manual assembly.
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Chapter 8

8-1. A drive shaft for a new rotary compressor is to be supported by two bearings, which are 200 mm apart.
A V-belt system drives the shaft through a V-sheave (see Figure 17.9) mounted at midspan, and the belt is
pretensioned to P, kN, giving an vertically downward force of 2P, at midspan. The right end of the shaft is
directly coupled to the compressor input shaft through a flexible coupling. The compressor requires a steady
input torque of 5700 N-m. Make a firstOcut conceptual sketch of a shaft configuration that would be
appropriate for this application.

Solution

Left V-belt Right Flexible
bearing sheave bearing coupling hub

c € € €

——100 mm —++—100 mm —w+50 ﬂlﬂl-li
| | {assumed)

Left ShT'I 'F"Elt 4 Right Coupling-hub
beariflg pad Ein|E pa hearirllg pad | pad
' ! ' | Shaft @
| ) | |
; | -
Threads for i} g .
/ bearing retention el REPrng
| | ‘-/ ke}.—wa}r ﬁ’_' grnl:ﬂ- e
Y I Square

;—/) |
Bearing shoulder

i H I — keyway
i H ) Suan €
I 1
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8-2. The drive shaft of a rotary coal grinding miss is to be driven by a gear reducer through a flexible shaft
coupling, as shown in Figure P8.2. The main shaft of the gear reducer is to be supported on two bearings

mounted 10 inches apart at A and C, as shown. A 1:3 spur gear mesh drives the shaft. The 20° spur gear is

mounted on the shaft at midspan between the bearings, and has a pitch diameter of 9 inches. The pitch

diameter of the drive pinion is 3 inches. The grinder is to be operated at 600 rpm and requires 100 horsepower
at the input shaft. The shaft material is to be AISI 1060 cold-drawn carbon steel (see Table 3.3). Shoulders for
gears and bearings are to be a minimum of 1/8 inch (1/4 inch on the diameter). A design safety factor of 1.5 is

desired. Do a first-cut design of the shaft, including a second-cut sketch showing principal dimensions.

Solution

(1) A first-cut conceptual sketch of the
shaft may be made based on Figure P8-2
and the pattern of Figure 8.2. The result

is shown in the sketch to the right.

__EE[_

(2) Shaft material: AISI 1060 CD steel,
with (from Tables 3.3 and 3.10)
S, =90ksi, S, =70ksi, and

e(2")=10%.

207 involute spur gear

D, =9"

] -

L 3

E

(3) Assuming infinite life, we estimate the fatigue endurance limit as S'f =0.5S, =45 ksi

(4) Using the notation shown to the right, we
begin by noting that the transmitted torque from
BtoCis

~63,025(hp) _ 63,025(100)
n 600
=10,504 in-Ib

The forces are calculated as

Far - T 10,504
7 (D, 12) 45

Since for this gear ¢ = 20°

2334 =10,504 Ib (tangent, down)

|Fay| = Fg, tan ¢ = 2334 tan 20° ~ 850 Ib (radially, toward gear center)

Next: >(Mc) =0: —5Fg ~10R,, =0 —> -5(-2334)-10R,, =0 = Ry, =11671Ib
>(Mc),=0: 5Fg +10Rp =0 —> 5(-850)+10R, =0 = R, =4251b

Now: S'F, =0: Ry +Fg +Rey =0 —> 425+ (-850)+(-850)+ R, =0 = Rg, =425 b

SF,=0: Ry+Fg +Re; =0 — 1167+(-2334)+R;, =0 = R, =1167 Ib
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Problem 8-2 (continued)

R, =1167 1b

(5) A simplified free-body diagram of FE; =23341hb R =1167 1b _
the shaft with force magnitudes and = 5 o Ilrn I, =1167 indb
directions is as shown. / N / .

45" J
(6) The bending and torsional moments R, =4251b Re. =
are Fp =830 1b

Tag=0, Tg_c =10,504 in-Ib

(Mp), =(My), =0, (My), =54(1167) + (425)? ~ 6210 in-Ib

(7) The shaft diameter is determined using (8-8). The fatigue strength will be taken to be approximately 85%
of the endurance limit (S'f =45 ksi ). Later revisions should be review this assumption by using equations (5-
37) and (5-39). A stress concentration factor of K, =1.7 will be assumed for the first iteration, and a value of
g = 0.8 will be assumed. We now determine

Kp=q(K -1)+1=0.8(1.7-1)+1~1.6

We note that the bending moment and torque are zero at point A. Therefore, we consider the transverse shear
at this point (see Example 8.1). Therefore, at point A

16V/3(L.5)y/(L167)? + (425)
dy = /16f;d \/ VBWOVALET® + (4257 sg6 5 40r
7ot

37[0.85(45,000)]

Next we apply (8-11) to both points B and C . We note that T, = M, =0 at each point. Therefore, at point B

16 T, | 16 6210 10,504
43 = =4 2K g (ng) =2 +~/3-1 L = =2 2(1.7)(1L5 ++/3 =5.25
o { wl d) ISU} ﬂ'{ A5G 85(as,000) [90,000}

dg =1.738"=1.75"

At point C the moment is zero, but the torque exists. Therefore

16 16 10,504
dd ==—={2K g (n —+ —3= =103 = d.=1.0"
¢ { i (Ng) V3 u} . {\/790,000} c

second-cut approximation can be made as
shown in the sketch to the right.

Based on this, the first-cut sketch can be —p4n =DB5" dg =1.73"
updated. Using the shoulder restrictions /' dn = 1.0"
specified in the problem statement, the ]

L
¥

F
-
3



8-3. A belt-drive jack-shaft is sketched schematically in Figure P8.3.
a. Construct load, shear, and bending moment diagrams for the shaft in both the horizontal and the
vertical plane.
b. Develop an expression for the resultant bending moment on the shaft segment between the left pulley
and the right bearing.
c. Find the location and magnitude of the minimum value of bending moment on the shaft segment
between the left pulley and the right bearing.
d. Calculate the torque in the shaft segment between pulleys.
e. If the shaft is to be made of hot-rolled 1020 steel (see Figure 5.31), is to rotate at 1200 rpm, and a
design safety factor of 1.7 is desired, what diameter would be required to provide infinite life?

Solution
L 21 450 mm 450 mm 225 mm
(a) Using figure P8.3, we transfer all of the rt i *
forces to the centerline of the shaft. Using the R.% 000 N +p QU0 N
coordinates shown in the sketch to the right, 4 Cz
we determine the reactions at each bearing. R X L

N
p

S F, =0: Ry —9900+ R, =0
Ry, + Rey = 9900

SF,=0: Ry, -900+R;, -9900=0 = R,, +R, =10,800

¥ (Mp), =0: 0.45(9900)-09(R) =0 = Ry =4950N = R, =4950 N
> (My), =0: 0.45(900)-0.9(Rc,)+1.125(9900) =0 = R, =12,825N
Ry, = —2025 N

The shear force and bending moment diagrams in the y-x and y-z planes are as shown below. The coordinate q
in the starting at point C in the y-x load diagram is used is part b.

4 I

5 u

- A Bl g c |D

4950
v, )
v, ) *
-4950
?\
M_ (N-m) M, (N-m) |
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Problem 8-3 (continued)

(b) Using the coordinate g in the load diagram above, we can write an expression for the bending moment
between B and C for moments about the x and the z axes. For bending about the x axis we have

(M, )g_c =-911.3-2925q

For the moment about the z axis we have

(M,), o =2227.5-4950q

The resultant moment between B and C is

(Mg)g ¢ = \/[(MZ )ec ]2 +[(My)g ]2 = \/[2227.5-4950q I’ +[-911.3-2925q |’

(c) Differentiating with respect to g, setting the derivative equal to zero, and solving for g

d(Mg), . 2[2227.5-4950q ]+ 2[-911.3-2925q | 0

dg 2,[2227.5-4950q | +[-911.3-2925q |

—78750+1316.2=0 = q=0.167

(Mg ), . = |[2227.5-4950(0.167) |" +[-911.3-2925(0.167) |* =1980 N-m
(Mg), . =1980 N-m

(d) The torque in the shaft segment between the pulleys is (between B and D) is

Tap = 6750(0.380) — 2250(0.380) =1710 N-m

(e) The maximum bending moment occurs at B and is

Mg =+/(911.3)° + (2227.5) ~ 2407 N-m

Knowing the torque is Tgp =1710 N-m , using ny =1.7, reading S'f ~ 33 ksi ~ 228 MPa from Figure 5.31

and assuming k,, =0.85, which results in Sy =0.85(228) ~194 MPa. In addition, S, ~ 379 MPa .
Therefore

d3:E 2be(nd)Ma +\/§T—m _16 2(1.7)( 24076j+\/§ 17106 ~ 0.000255
V4 Sy S, T 194 %10 379x10

dg =0.0633 m ~ 63 mm
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8-4. Repeat problem 8-3, except that the shaft is to be made of AISI 1095 steel, quenched and drawn to
Rockwell C 42 (see Table 3.3)

Solution

The solution is identical to that of 8-3, except for part (e), where S, ~1379 MPa and S, ~ 952 MPa .
Estimating the S-N curve, S'f =0.5(1379) = 690 MPa and Sy = 0.85(690) = 587 MPa

g2 =18 2(1.7)( 24076)+ﬁ 101+ 0.000082
7 58710 1379x10

dg =0.0434 m =43 mm
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8-5. A pinion shaft for a helical gear reducer (see Chapter 15) is sketched in Figure P8.5, where the reaction
forces on the pinion are also shown. The pinion shaft is to be driven at 1140 rpm by a motor developing 14.9
kW.
a. Construct load, shear , and bending moment diagrams for the shaft, in both the horizontal and vertical
plane. Also make similar diagrams for axial load and for torsional moment on the shaft, assuming that the
bearing at the right end (nearest the gear) supports all thrust (axial) loading.
b. If the shaft is to be made of 1020 steel (see Figure 5.31), and a design factor of safety of 1.8 is desired,
what diameter would be required at location B to provide infinite life?

Solution

Starting with the sketch T
shown, we transfer all il 140 mm
forces (and associated A/ / A

moments) to the centerline

of the shaft. This results in Ry

the figure below.

140 mm

Note that the moments applied at point C come from taking moments of the three active force components
about point C.

i j K
SMc =0: rxFe=| 0 0  -0.035 ~—72i+125
~3571 -2047 1502

Next we apply the equations of static equilibrium

SF,=0: Rpy +Rg—3571=0 = Ry, +Rg, =3571
> F,=0: Ry —2047=0 = Ry, =2047
S'F,=0: Ry, +Rg, +1502=0 = R,, +Rg, =—1502
> M, =0: rpgxRg+rac xFe +T,]
i j % i j k
=0 0140 O |+ O 0.205 0 |+T,j—72i+125j=0
Rex 2047 Rg,| |-3571 —2047 1502
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Problem 8-5 (continued)

0.140Rg,i —0.140Rg,K + 236.3i +125j+ 732K + T,,j = 0
Rg, =—1688 N, Rg, =5229 N, T,, =125 N-m

Ry, =186 N, Ry, =—1658 N

The shear force and bending moment diagrams are

- 502 C 35
" 1186 1688 1302 * | 1658 230 3571
- 72 -
0.140 0.065 . _ 0.140 0.063
A B Mo A B c
186 3571
o v, (M)
V)
1502
. 1658
26
M, (N-m) M; (N-m)
L 2232
In addition, the axial force (F, ) and torque (T = M) variations along the shaft are
0.140 3 . Y 5
F, @) ‘A B 0065 C . T=M, (Nm) |4 0.140 B 0065 C
2047 25

The maximum bending moment occurs at B and is

Mg =+/(26)% +(-232)* = 233.5~ 234 N-m

et

For hot rolled 1020 steel, reading S'f ~ 33 ksi ~ 228 MPa from Figure 5.31 and assuming k,, = 0.85, which

results in Sy =0.85(228) ~194 MPa. In addition, S, ~ 379 MPa . Therefore

FE 2(1.8)( 24 6j+\/§ 1 1 0.000025
T 194 %10 379x10

dg =0.0292 m ~ 29 mm
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8-6. A power transmission shaft of hollow cylindrical shape is to be made of hot-rolled 1020 steel with
S, =65,000 psi, S, =43,000 psi, e =236 percent elongation in 2 inches, and fatigue properties as shown

for 1020 steel in Figure 5.31. The shaft is to transmit 85 horsepower at a rotational speed of n=1800 rpm,

with no fluctuations in torque or speed. At the critical section, midspan between bearings, the rotating shaft is
also subjected to a bure bendign moment of 2000 in-Ib, fixed in a vertical plane by virtue of a system of
symmetrical external forces on the shaft. If the shaft outside diameter is 1.25 inches and the incide diameter is
0.75 inch, what operating life would be predicted before fatigue failure occurs?

Solution

The torque is

_ 63,025(hp) _ 63,025(85)
n 1800

T = 2976 in-lb (steady)

From the problem statement, the bending moment is completely reversed (due to shaft rotation) and is
M = 2000 in-lIb (completely reversed)

The state of stress at the outside surface is as shown. The stresses are expressed .
in terms of the shaft diameters as Ty (steady)

7—>

oy - Ta__ 16Td, _ 16Q2976)1.25) oo o
J ;r(d;‘ —d;‘) ;z((1.25)4 —(0.75)4) o, (cyclic)
o oMo __32Md, _ 3202000)025) ) gqn

(et slezt -1

The equivalent stress for this state of stress is expressed as o, = /oy +375

From the loading conditions, the mean and alternating torque and moment are T,, =2976, T, =0and
M, =0, M, =2000. As a result the mean and alternating shear and normal stresses are
Tyy-m =8916 psi, z,,_, =0 and o, , =0, oy_, =11,983 psi . Therefore

Guq-m = |02 m +373, m =+/(0)% +3(8916)? =15,443 psi

Gug-a =[O0 +375, 4 =+/(11,983) +3(0)° =11,983 psi
Omax =11,983+15,443 = 27,426 psi < S, = 43,000 psi. Therefore

o, 11,983
1-0,/S, 1-15,443/65,000

Oeq—CR = =15,717 psi

From Figure 5.31, using o,q_cgr =15,717 psi , we estimate infinite life (N = ).
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8-7. A solid cylindrical power transmission shaft is to be made of AM 350 stainless steel for operation in an

elevated temperature air environment of 540°C (see Table 3.5). The shaft is to transmit 150 kW at a
rotational speed of 3600 rpm, with no fluctuation in torque or speed. At the critical section, midspan between
bearings, the rotating shaft is also subjected to a pure bending moment of 280 N-m, fixed in the vertical
plane by a system of symmetrical external forces on the shaft. If the shaft diameter is 32 mm, predict a range
within which the mean operational life would be expected to fall.

Solution

The torque applied to the shaft is

L _9549(kw) _ 9549(150)

=398 N-m
n 3600 - P
The bending moment, M =280 N-m is completely reversed due to
shaft rotation. Since the maximum shearing stress due to torsion is / Ty (steady)
at the surface, and the cyclic bending stress is at the surface with .
each rotation, we have a state of stress as shown. o, (oydic) ; ¥

The shearing stress and flexural (bending) stress are given by

_Tr_16T . _Mr_3Mm
Yo gdd o 7d?®

This is a relatively simple state of stress and the principal stress can be determined from either the stress cubic
equation or Mohr’s circle. Since it is a state of plane stress, we know that o, = ,/o—f +3rfy , SO

[ 2 2 [ 2 2
Oeq-a =1/Ox-a t3Txy_a ANd Toq_m =[O +375y_m -

Noting that T = Trin = Tm =398 N-m, T, =0. WithM ;. =+280 N-m, and M, =-280 N-m, we
determine M, =0and M, =280 . Therefore

“_a =&80)3:87 MPa and o,_,, =0
7(0.032)
16(398)
Txy—a =0 and Txyfm = W =61.9 MPa
Therefore

Geqa =0 ra +375_a =4/(87)° +3(0)* =87 MPa
eqm =[O m +375_m =4/(0)° +3(61.9)° =107 MPa

309



Problem 8-7 (continued)

From Table 3.5 we approximate the 540°C material properties as (Su) =821 MPa and

540°C
(S ) =572 MPa . In addition, egy (50 mm)=13%, so the material is considered ductile. The
YP Js40°¢

maximum normal stress is

Omax = Teq-a + Teq_m =87 +107 =194 MPa

The equivalent completely reversed stress is

o, 81
(Geq-cr )5400C on 107 =100 MPa
S 821

The S-N curve for AM 350 stainless steel at 540°C is not readily available, so we will approximate the
fatigue failure stress. Assume the guidelines given for nickel based alloys are applicable, giving

S; =0.3S, t0 0.55, @ 10 cycles
For the ultimate strength we are using S; = 0.3(821) to 0.5(821) @ 10° cycles, so
S; =246 to 411 MPa @ 10° cycles

Comparing this to (%q-crz) =100 MPa we conclude that infinite life is expected. A more accurate

540°C
answer involves considering the strength-influencing factors.
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8-8. A shaft of square cross section 2.0 inches by 2.0 inches, is being successfully used to transmit power in a
application where the shaft is subjected to constant steady pure torsion only. If the same material is used and
the same safety factor is desired, and for exactly the same application, what diameter should a solid
cylindrical shaft be made for equivalent performance?

Solution

For equivalent performance, with the same power '

transmitted, the torque on she square shaft will be the T
same as that on the round shaft. For the same safety )
factor, if the material is the same for each shaft, 2a=21.0 -
Tmax Must be the same for each shaft. The square shaft is l
a special case of the rectangular shaft, so from Table 4.5 L I
with a=b=1.0" 2E=20"

T T T,

(Tmax )rect. — rect. — rgct.z — r;ct. - — O-6Trect.
Qrect, 8a°b 8(1)* (1)
3a+1.8b 3(2) +1.8(2)

For the circular shaft

_ Tcirc. — Tcirc. — 2Trect.

(Tmax)- =
aire. Qeirc. [ﬂ'raj r

2

Since (Tmax) and Teire, = Treqt.

circ. (TmaX )rect.

—3§=05 = r’=1.061
wr
r=1.02"
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8-9. A shaft with a raised bearing pad, shown in Figure P8.9 must transmit 75 kW on a continuous basis at a
constant rotational speed of 1725 rpm. The shaft material is annealed AISI 1020 steel. A notch-sensitivity
index of g =0.7 may be assumed for this material. Using the most accurate procedure you know, estimate the

largest vertical midspan bearing force P that can be applies while maintaining a safety factor of 1.3 based on
an infinite life design.

Solution

For this material we determine S, =393 MPa, S, =296 MPa ,

and e(50 mm)=25% . The fatigue endurance limit can be

approximated from as Sy = S; =~ 33 ksi ~ 228 MPa . We have [ | 1]

not considered the strength-influencing parameters since the
problem statement did not specify conditions that would warrant
their use. Due to the symmetry of the shaft loading we note that

Similarly, the maximum bending moment will be

M =R, L1_PILV P 12sp
2) 2\2) a4

Since the shaft is rotating at a constant rate we know that T,, =T andT, =0. Similarly, since the bearing
force is constant the bending stress is completely reversed, resultingin M, =M =PL/4and M, =0.We
can apply (9-8) to determine the allowable bearing force P.

16 M T 16 0.125P T
d° =—42K, (n, ) =2 +~3-"t=—{2K, (n ++/3—
{oka () B <28y ) 255 T

T N u N u

Rearranging this

From the given dimensions we establish r/d =2/32=0.0625 and D/d =38/32=1.1875. From Chapter 5
we approximate K; = 2.00, which results in

Kgp =0a(K;-1)+1=0.7(2.0-1.0)+1.0=1.7
The torque we determine form

~ 9549(kw)  9549(75)
™ n 1725

=415 N-m
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Problem 8-9 (continued)

Using the data; d =0.032m, L=050m, Ky =17, ny =1.3, S, =393 x10°, S\, =228x10° , and
T, =415 N-m and (1)

4(228x10° 3
4 )( 7(0.032) 55 ) st
17(1.3) 16 293x10

P = 3700 N (maximum load)
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8-10. A solid circular cross-section shaft made of annealed AISI 1020 steel (see Figure 5.31) with an ultimate
strength of 57,000 psi and a yield strength of 43,000 psi is shouldered as shown in Figure P8.10. The
shouldered shaft is subjected to a pure bending moment , and rotates at a speed of 2200 rpm. How many
revolutions of the shaft would you predict before failure takes place?

Solution

The actual stress is o, = K opon = Ky (Mc/1), where K; =q(K; —1)+1. We determine K, from Figure

5.4 (a) using r/d =0.025/1=0.025and D/d =1.5/1=1.5, which results in K; = 2.25 . For annealed
aluminum with S, =57 ksi, @ r =0.025, we use Figure 5.47 and get g ~ 0.53 . Therefore

K = 0.53(2.25—1) +1~1.66
Next

1600(0.5)

4 = 27,053 27 ksi
7()* /64

Cact :1.66¥ =1.66

From Figure 5.31 we determine N = o0, so fatigue failure is not predicted.
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8-11. A rotating solid cylindrical shaft must be designed to be as light as possible for use in an orbiting space
station. A safety factor of 1.15 has been selected for this design, and the tentative material selection is Ti-
150a titanium alloy. This shaft will be required to rotate a total of 200,000 revolutions during its design life.
At the most critical section of the shaft, it has been determined from force analysis that the rotating shaft will
be subjected to a steady torque of 1024 rpm and a bending moment of 1252 N-m. It is estimated that the
fatigue stress concentration factor for this critical section will be 1.8 for bending and 1.4 for torsion. Calculate
the required minimum shaft diameter at this critical section.

Solution

8-11. For Ti 150a, for a design life of 2x10° cycles, we get Sn—aaes ~ 69 ksi ~ 476 MPa . Approximating
S, =1000 MPa , the diameter is approximated from

16 M T 16 1252 1024
d® = 42K, (n,)—2+/3-" 4 ==212(1.8)(1.15 ++/3 }:0.0000645
n{ o d)sN su} 7[{ LB L15) g 10 To00x107

d =0.040 m =40 mm
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8-12. The sketch in Figure P8.12 shows a shaft configuration determined by using a now-obsolete ASME
shaft code equation to estimate several diameters along the shaft. It is desired to check the critical sections
along the shaft more carefully. Concentrating attention on critical section E-E, for which the proposed
geometry is specified in Figure P8.12, a force analysis has shown that the bending moment at E-E will be
100,000 in-Ib, and the torsional moment is steady at 50,000 in-Ib. The shaft rotates at 1800 rpm. Tentatively,
the shaft material has been chosen to be AISI 4340 ultra-high strength steel (see Table 3.3). A factor of safety
of 1.5 is desired. Calculate the minimum diameter the shaft should have at location E-E if infinite life is
desired.

Solution

From Tables 3.3 and 3.10 S, =287 ksi, S, =270 ksi, and e(2") =11% . Estimating the S —N curve, since
S, > 200 ksi , we have S; =100 ksi . Since no information is available for calculating k., , we assume

k, =1, which resultsin S; =S; =100 ksi.

From the problem statement we have a steady torque and completely reversed bending . Using Figure 5.5 (a)
with r/d =0.25/3.5=0.07and D/d =4/3.5=1.14 . This gives K; = 2.1. With S, =287 ksi, @ r =0.25,

we use Figure 5.47 and get q ~1.0. Therefore
K = q(Kt —1)+1:1(2.1—1)+1: 2.1

The diameter is determined from

16 M T.| 16 100 50
d®=—42K. (n,)—2+/3-2t =—J2(2.1)(1.5 —+\/§—}:33.62
7[{ “’(")SN su} ;z{( ) )100 287

d=3.22in
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8-13. One of two identical drive shafts for propelling a 600 N radio controlled robot is shown in Figure
P8.13. The shaft is supported by bearings at A and C and driven by gear B. The chains attached to sprockets
D and E drive the front and rear wheels (nhot shown). The tight side chain tensions on sprockets D and E make

an angle 6 =5° with the horizontal z axis. The gear and sprocket forces are as shown. The shaft is to be
made of AISI cold-drawn medium carbon steel with ultimate and yield strengths of 621 MPa and 483 MPa,
respectively. The robot is being designed for a yearly competition, so long term fatigue is not a primary
consideration. However, since the robotic competition generally involves multiple incidents of high impact,
you decide to include fatigue considerations and assume Sy =300 MPa and ny =1.5. Neglecting stress

concentration factors, calculate an appropriate shaft diameter.

Solution

We begin by transferring the forces from gear B and
sprockets D and E to the center of the shaft. This results in
both horizontal and vertical forces as well a torque at points
B, D, and E along the shaft center line. The resulting loads
are shown below

Fgy =3600 N T

Fg, =3200 N «

T =3600(0.020) = 72 N-m
Fp; =1200c0s5° ~1195 N —
Fpy =1200sin5° ~105 N T

Fe, =1200c0s5° ~1195 N «—
Fey =1200sin5° ~105 N {
Tp =Te =1200(0.030) = 36 N-m

The forces and torques acting on the centerline of the shaft
are as shown. The reactions at bearings A and C are
determined from the equations for static equilibrium.

> F,=0: A +C,+3600+105-105=0

A, +C, = -3600
YF, =0: A +C,+3200-1195+1195=0 36 Nomm
A, +C, =—3200
(M), =0: —3200(0.03)-C, (0.06) HOSN
+1195(0.08) ~1195(0.10) = 0 36 N-m
0.06C, =—119.9 = C, ~-1998 N .
A, ~—1202 N 0 o
1195 N :
> (My), =0: 3600(0.03)+C, (0.06) 20 ma™a " 105 N

+105(0.08) —~105(0.10) = 0
C,~-1765N , A ~-1835N
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Problem 8-13 (continued)

Since no axial forces exist, an axial force diagram is not required. The torque diagram and approximate shear
force and bending moment diagrams for the xy and xz planes are shown below

ka

o — —

1835

|
|
M, | — M, |
|- =
~ |
; g

From the moment diagrams it is obvious that the maximum moment occurs at point B. This is also the
location of the maximum torque and represents the critical point along the shaft. Since the shaft is rotating
in order to drive the wheels, this moment is the alternating moment, with a magnitude of

M =M, = (M, )" +(M, ) = |/(-55.05)" +(~36.06)" =65.81~ 65.8 N-m

The torque at B is the mean torque and has a magnitude of 72 N-m . The maximum bending moment is.
Knowing that S, = 621 MPa , Sy, =300 MPa, ny =1.5and by neglecting stress concentrations , Ky, =1,

the shaft diameter is approximated using

16 M T 16 65.8 72
d®=—J2K. (n,)—2+/3-" 4 =2 J2(1)(L5 +3 }:o.ooooo44
7;{ o(n) S, su} 72'{ D2 3005107 V¥ 21107

d =0.0164 m=16.4 mm
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8-14. At aweekly design review meeting someone suggests that perhaps the shaft in problem 8.13 will
undergo too much deflection at end E. Therefore it is suggested that an addition bearing support be placed 20
mm to the right of the sprocket at E, thus extending the shaft length to 120 mm. Assuming the same material
and design constrains as in Problem 8.13, determine the required diameter for this shaft

Solution

We begin by transferring the forces from gear B and
sprockets D and E to the center of the shaft. This
results in both horizontal and vertical forces as well
a torque at points B, D, and E along the shaft center
line. The resulting loads are shown below

Fg, =3600 N T

Fg, =3200 N «

T =3600(0.020) = 72 N-m
Fp, =1200c0s5° ~1195 N —
Fpy =1200sin5° ~105 N T
Fe, =1200€0s5° ~1195 N «
Fg, =1200sin5° ~105 N 4

Tp =T =1200(0.030) = 36 N-m

The forces and torques acting on the centerline of
the shaft are as shown. With the addition of a new
bearing 20 mm to the right of point E, the shaft
becomes statically indeterminate. The
reactions at bearings A, C , and F can not
be determined from the equations for static
equilibrium. Although they can not be
solved, the equations of static equilibrium
supply useful equations which can be used
to eventually solve the problem.

2> F,=0: A +C,+F, +3600
+105-105=0

A, +C, +F, =-3600 @

> (My),=0: 3600(0.03)+C, (0.06)
+105(0.08) —105(0.10)
+F,(0.12)=0

0.06C, +0.12F, =-1059 — C, +2F, =-1765 @)

e

Using superposition with the models below and Table 4.1
cases 1 and 2 we note that four models are required and in
each case we need to determine the deflection at point C.

3600 N 105N

D.DBmTD.Mm D.DlmTD_Dlm 002m

A

105N
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Problem 8-14 (continued)

et

Pbx (L2—b2—X2)

Ye1 = 5EIL X 3600 N
_3600(0.03)(0.06) 2 2 )
1 BEI(0.12) ((0'12) (0.03)7~(0.06 ) b=0.03 T a=0.09

X
0.0891 T B Cl x=006
Yo =—— 4, FJ

El

et

y _ PbX (Lz_bz_xz) I{JSN
€2 6EIL o T
=0. B=0.04
105(0.04)(0.06) ) ) ) 4 x
=7 ((0.12) - (0.04)? — (0.06
Ye-2 = 5E10.12) ((012)7 -(0.04)" - (0.00°) ,4_‘T x=006 |€ D 3
y ~0.00322
c27 g
=
Pbx /o .o 5
= L® —-b“ —x
Yo-2 6EIL( )
= b=10.02
—105(0.02)(0.06) ) ) ) a=0.10 .
= A ((0.12)7 - (0.02)2 — (0.06
Yos = ero1z) (012 ~(002)" - (0.06)°) RETTRE lE T—-F
y _ 000182 | 105 N ¥
Cc-3 El
B
P C,(0.12)°
Yc-a =

T48EI 48El
0.06
0.000036C, 0.06
Ye-s =g 4, T C}T F,

Combining these displacements we get
1
Ye =Yea+ Yoo+ Yos+Yea=0= E[O.OSQM 0.0032-0.00182 + 0.0000SGCy] C, ~ 2514

From (1) and (2) above

—-2514+2F, =-1765 — F, ~375
A, —2514+375=-3600 — A, =-1461

For the xz plane we use the model shown and follow the 3200 N 1185 N
same procedures as before. The equations of equilibrium

yield 0.03m T'I}.'IB m 0.02m L.ﬂz m002m 4

4; T 5 C-T O

z =

1195 N
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Problem 8-14 (continued)

> F,=0:

A, +C,+F,+3200+1195-1195=0
A, +C, +F, =-3200

©)

> (Ma), =0: 3200(0.03)+C, (0.06) +1195(0.08) ~1195(0.10) + F2(0.12) = 0

0.06C, +0.12F, =-72.1 —

Using Superposition again we get
Pbx 2 2 2
Zey=—(L —b"—x
ot 6EIL( )
~3200(0.03)(0.06)
6E1(0.12)

0.0792
Icy = El

C-1

Pbx (o o 5
zc_zzﬁ(L -b—x )
~ —1195(0.04)(0.06)
~ BEI(0.12)
re, = 0.0366

El

C-2

Pbx /o .o 5
anﬁﬁ('— -b“—x )
~1195(0.02)(0.06)
~ BEI(0.12)
req = 0.0207

El

C-3

P C,(0.12)°
Icy = =
48EI 48EI
. _ 0.000036C,
C-4 El

Combining these displacements we get

Zc =Zcq+2cp+Zcg+2c4=0 Bl

((0.12)2 ~(0.03)2 - (0.06)2)

((0.12)2 ~(0.04)% - (0.06)2)

((0.12)2 ~(0.02)% - (0.06)2)

1

C, +2F, ~—1202

L]

L]

L]

0.06

e,
L]
e
iy
—_—

[0.0792 -0.0366 + 0.0207 + 0.000036C, |
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Problem 8-14 (continued)
From (3) and (4) above

~1758+2F, =—-1202 — F, =278
A, —1758+278=-3200 — A, =-1720

The approximate shear force and bending moment for the xy and xz planes, as well as the torque distribution
are shown below.

L]

¥

3600 TS‘EE
4| 003 E 41003 0.03

183_3|I}.D3 0.02 D[;n DD"‘ Thr Bl |
1461 | 1837 2514 |1-'33

2139

| EF

-1461 | 375 J
| 20.34| ) | | |
| NM‘* | 16.62 | '
i M, |
- 1
|

.-‘-f‘_ | | i |r
| | |
43 83 | .

From the moment diagrams it is obvious that the maximum moment occurs at point B. This is also the
location of the maximum torque and represents the critical point along the shaft. Since the shaft is rotating
in order to drive the wheels, this moment is the alternating moment, with a magnitude of

= (M, Y+ (M, )7 = |(-43:83)" +(~39.66)° =59.1N-m

The torque at B is the mean torque and has a magnitude of 72 N-m . The maximum bending moment is.
Knowing that S, =621 MPa, Sy =300 MPa, ny =1.5and by neglecting stress concentrations, K, =1

, the shaft diameter is approximated using

16 M T 5.1 72
d® ==42Ky (ng ) =2 ++/3-1 2 +4/3 = 0.00000403
72'{ g ”)SN su} { D) 3005107 621><106}

d =0.01592 m =15.92 mm
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8-15. To obtain a quick-and-dirty estimate for the maximum slope and deflection of the steel shaft shown in

Figure P8.15. it is being proposed to approximate the stepped shaft by an “equivalent” shaft of uniform

diameter d =100 mm . The shaft may be assumed to be simply supported by bearings at locations A and G,
and loaded as shown. Estimate the maximum deflection of the equivalent-uniform-diameter shaft and the

slopes at bearing locations A and G.

Solution
Bending deflections and slopes may be calculated using . 4. =01m
case 2 of Table ?.?? twice. For both cases considered we J'"S EN / =
use ' » |
.r‘I [ _J & [ G
_ w0275 m
L=1m RI- 4—[!_6:11—.91@‘1 RR

4
0.1 :
El =207 x10° [”(6—4)]:1.016x105 N-m2 . 1.0m

For P=-36 kN, a=0.275 m and b =0.725 m the slopes are

3 _ 3 3
eAzi pL_ 2 | 86x10° 0.725(1.0)—(0'725) — —0.00203 rad
6El L 6(1.016><106) 1.0

3 B 3
O = | 2oL+ 2" _gp? |- —=38X10" 50 725)0.0)+
6El L 6(1.016x106)

Deflections are determined based on information in the table. Using a=0.725mand b=0.275m;

3
@_ 3(0.725)2J =-0.00150 rad

Pab(a+2b),/3a(a+2b)

Ymax 27El

—36x10°%)(0.725)(0.275)(0.725+0.55) . /3(0.725) (0.725 + 0.55
:( )( )(0275)( O T25)( ):-o.ooosssm
27(1.016><106)

At

a(a+2b) 0.725(0.725+0.55) . .
X= 3 = 3 =0.5551 m from the right end, or 0.4449 m from the right end

For P=9KkN, a=0.6 mand b =0.4 mthe slopes are

3 3 3
0=t | o 9107 16 40.0)- O | _0.000496 rad
6EI L 6(1.016x106) 1.0

3 3 3
O =——| 2oL+ 2 —ap? |- — 2 o04yw.0)+ 2D _300.4)2 | = 0.000567 rad
6EI L 6(1.016x106) 1.0

The deflection is determined using the same properties as for the slopes; P=9kN, a=0.6mand b=0.4m
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Problem 8-15 (continued)

_ Pab(a-+2b) [3a(a+2b) (9x10°)(0.6)(0.4)(0.6 +0.8) /3(0.6) (0.6 +0.8)

y = =0.000175m
e 27El 27(1.016><106)

a(a+2b) O.6(O.6+0.8)
at x= 3 = 3 =0.5292 m from the left end

Since the location of the maximum deflection for both cases is relatively close, the results are superposed and
the location is averaged.

Yimax == —0.000555+0.000175 = —0.0005375 m = —0.5375 mm

at x :%(o.4449+0.5292) =0.4871m

The slopes at A and G are determined by adding the result above

6, =-0.00203+ 0.000496 = —0.001534 rad
65 =-0.00150 +0.000567 = —0.000933 rad
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8-16. For the stepped steel shaft of problem 8-15, use integration to determine the maximum displacement
and the slope of the shaft at A and G.

Solution
In order to integrate the moment equation to define 05325 m———*
slope and displacement we first determine the 0375 m—
reactions at A and G. Using the free body diagram 0125 m
shown e
136 KN
RL + RR = 27 t * G
— 0275 m L— 9 }L‘\I] 2
>M, =0: 1.0Rg +0.6(9)-(0.275)36 =0 R * 0.6 m y ®
Rg =4.5kN 1.0 m .

R, =225kN

Next, we set up a moment expression for the beam. Since singularity functions are simple to set up and use,
that approach will be used here. Using the free body diagram shown and singularity functions, we write

M (X) =Ry (x)+36(x—0.275)-9(x—0.6) =0 lsa KN
Therefore A
I 4 0275m k— 9“] M
y . .
Bl e = MM =R (x)~36(x~0.275)+9(x~0.6) PR 0.6 m

9

38y _0.275)? +E<x—0.6>2 +C

. - ﬂ_ _i 2
Integrating twice; El vl El16(x) = > (x)
Ely(x) = %(x)g —%(x—0.275>3 +%<x— O.6>3 +Cx+C,

Using the boundary condition y(0) =0, C, =0. Using the boundary condition y(1) =0

22500

eiy(y -0 -2 (1 - 36000

3 +_90600 (1—0.6)3 +C (1) =C, =-1559.5

(1-0.275)

The slope and deflection at any point are therefore given as

E16(x) =11250(x)” ~18000(x —0.275)" +4500(x — 0.6)° ~1559.5 (1)
Ely(x) = 3750(x)’ —6000(x —0.275)° +1500(x — 0.6)° ~1559.5x 2)

The stepped shaft results in different El products for various sections of the shaft.

=0.3215x10°

4
Elys = Elgg %20&1@[%]
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Problem 8-16 (continued)
4 4
Elgp = (207x10°) 70100 1 5161108 Elpe = (207x10°) 70129 1_; 4g1410°
64 64

Plotting equations (1) and (2) results in the slope and displacement curves shown. The maximum
displacement is Y. =1.15 mm .The slopes at Aand G are 6, =—-0.00499 rad and 65 =0.00304 rad.

0.2 0.004

0 0.003

0.2 0.4 0.6 0.8 1 0.002
-0.2 4
0.001 +
0.4 0

0.2%; 06 0.8 1
0.6 -0.001

0s | -0.002 1
-0.003 A
1
V -0.004 J
1.2+ -0.005 |

-1.4 -0.006

X (m) X (m)

Displacement (mm)
Slope (rad)
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8-17. A rotating shaft having 5.00-cm outside diameter and a 6.0-mm-thick wall is to be made of AISI 4340
steel. The shaft is supported at its ends by bearings that are very stiff, both radially and in their ability to resist
angular deflections caused by shaft bending moments. The support bearings are spaced 60 cm apart. A solid-
disk flywheel weighing 450 N is mounted at midspan, between the bearings. What limiting maximum shaft
speed would you recommend for this application, based on the need to avoid lateral vibration of the rotating
system?

Solution

From the problem statement, noting that bearings are i .
stiff to both radial displacement and bending moment, lﬁ'ﬁ, =430 N

the shaft flywheel system may be modeled as abeam = ]
with both ends fixed, loaded by two forces; the d :Ijl} mm
flywheel (W;, ) and the shaft (Wj, ). - L 1
[ ¥ W ¥ -
From Table 4.1 e 300 mm— = 6.0mm
pL3 - 600 mm *
Ymax = 1921

In addition, we can determine

7| (0.05)° - (0.038)’ |
4

7Z'(d02—di2)

W, = Lw, = (0.60)(7.68x10%) =38.22 N

Therefore we use P =450+38.22 = 488.2 . In addition, we know that E = 207 GPa, and we calculate

w(d2-d?) 7| (0.05) ~(0038)" |

| = = =2.04x107" m*
64 64
The maximum deflection is therefore
3
Yinax = 488.2(0.6) =1.3x10° m

192(207><109)(2.04><10_7)

Noting that g = 9.81m/s? and that yg, = Y = Ymax =1.3x107> m we determine

-5
o _ 60 | o 488.2(1.3><105)2 _ 8205 rpm
2 488.2(1.3x107°)

Since it is recommended that the operating speed should be no more that 1/3 to 1/2 of n, , we suggest

Ne =~ 3300 rpm
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8-18. Repeat problem 8-17 using a solid shaft of the same outside diameter instead of the hollow shaft.

Solution

From the problem statement, noting that bearings are
stiff to both radial displacement and bending moment, lﬁ'_;i.- =450 N
the shaft flywheel system may be modeled as abeam Q .

with both ends fixed, loaded by two forces; the :T
flywheel (Wy,, ) and the shaft (W, ). ©

From Table 4.1 300 mm . i

_ pL3
M 192E|
In addition, we can determine

2
0.05
Wy =70 L = al . ) (0.60)(7.68x10*) = 90.48 N

Therefore we use P =450+ 90.48 ~ 540.5. In addition, we know that E =207 GPa, and we calculate

_nd? _7(005)°

I =3 —307x107 m*
64 64
The maximum deflection is therefore
3
Yimax = 540.5(0.6) =9.57x10° m

B 192(207><109)(3.07><10_7)

Noting that g = 9.81 m/s® and that g, = Y, = Yimax = 9-57 x10° m we determine

6
60 \/981{ 540.5(9.57x10°°%)

n, =— =9670 rpm
“2n 540.5(9.57><10_6)2} P

Since it is recommended that the operating speed should be no more that 1/3 to 1/2 of n,, , we suggest

Ne = 3900 rpm
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8-19. A 2-inch-diameter solid cylindrical 1020 steel shaft is supported on identical rolling-element bearings
(see Chapter 11) spaced 90 inches apart, as sketched in Figure P8.19. A rigid coupling weighing 80 Ib is
incorporated into the shaft at location A, 30 inches form the left bearing, and a small solid-disk flywheel
weighing 120 Ib (see Chapter 18) is mounted on the shaft at location B, 70 inches from the left bearing. The
shaft is to rotate at 240 rpm. The bearings are not able to resist any shaft bending moments.

a. Neglecting any radial elastic deflection in the support bearings, and neglecting the mass of the shaft,
estimate the critical speed for lateral vibration of the rotating system shown. If this estimate of critical speed
is correct, is the proposed design acceptable?

b. Reevaluate the critical speed estimate of (a) by including the mass of the shaft in the calculation. If this
new estimate of critical speed is correct, is the proposed design acceptable?

c. Reevaluate the critical speed estimate of (b) if the radial elastic deflections of the bearings (the spring rate

of each bearing has been provided by the bearing manufacturer as 5x10° Ib-in ) are included in the

calculation. Does this new estimate of ctiotical speed, if correct, support the postulate that the system is
adequately designed from the standpoint of lateral vibration?

Solution

(a) The critical speed for lateral vibration of the shaft may be estimated from (8-18). From the problem
statement, shaft weight and bearing stiffness effects will be neglected for this estimate. We need the
displacement at points A and B. We treat each load independently and add the results. For the shaft we know

E =30x10° psi, | =7(2)*/64=0.785in*, and L =90 in. The product El = 23.55x10° Ib-in .

Coupling: At point A we use Case 2 of Table 4.1 directly, E =301b )
with a=30",b=60" R —F
A B
22 202 i ——
(yn), =220 __BUBOTCO°___ g 54976 (32) (pe)
© 3EIL - 3(2355x10°)(90) - Yl (¥e), -
At point B we work from right to left using a =60",b=30", x =20"
Pabx 80(30)(20 "
(Yg), =2 (L —b%- 2): (30)¢ 6) [(90)2 ~ (30)2 —(20)2}0.00257
6EIL 6(23.55x10°)(90)
Flywheel: At point B we use a=70",b=20" . P, =1201b
212 N
2 2 A B
(vs),, = Pea’™” _ 120(70)°(20) — 0.03699" :
SEIL  3(2355x10°)(90) e
L] l:-I'A |Jq"' |.:_|._E.:|_"

At point Awe use a=70",b=20", x=30"

?)- 120(20)(30)
6(23.55x10°)(90)

(Ya), = F’E‘bX(LZ—bz—x

2 2 27 _ "
e [ (90)* - (20)* - (30)° | = 0.00381

Combining there results

Ya=(Ya), +(Ya), =0.04076+0.00381 = 0.04457"
Ye =(Ys), +(¥s ), =0.00257 +0.03699 = 0.03956"
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Problem 8-19 (continued)

80(0.04457) +120(0.03956 8.313
ng =187.7 ( 2) ( )2 =187.7 { } =919 rpm
80(0.04457)“ +120(0.03956) 0.3467

Nr / Ngp =919/ 240 = 3.83

The current design exceeds the specifications of ny, =2 or 3 times ng, .

(b) I the shaft weight is included, we must add a third W, =801b
term to the calculations. We model the weight as E =301 P, =1201b
being concentrated at the center of the shaft (Case 1 of 5 M
Table 4.1). The shaft weight is A o B
3 :-I'.A I :_l'-: ..-I'_E
Wy, = ”(j) (90)(0.283) ~ 80 Ib - s

The case of a concentrated load at the center is used. For a concentrated load in the center of the

shaft(y,),, = Z\g:‘; (3|_2 _4x2), Using x =30"

_ 80(30)
48(23.55><106)

(YA )Sh

[3(90)2 - 4(30)2] — 0.04395"

For point B we use x = 30" (working from right to left along the shaft)

__ 80(0) 390242002 =0.03213"
(Y6 ) 48(23.55><106)[ (90 ~4c20y’

We also need to determine the mid-span deflection due to the shaft weight, which is

3 3
(Ye),, = W™ 800" _ g g5150
" 4BEl 48(23.55x10%)

We also need the deflection at C due to the collar and the flywheel. For the collar a=70",b = 20",
and x =45".

)  80(20)(45)
(ve ). = ga (10" )= 6(23.55x10°)(90)

[(90)2 —(20)2 - (45)2] - 0.03213"

For the flywheel, a=70",b =20", x=45", and

CWybx(, o o\ 120(20)(45)
e ) =g (1 ) 6(23.55x10°)(90)

[(90)2 —(20)% - (45)2] —0.04820"
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Problem 8-19 (continued)

The new displacements at A and B are

ya =0.04457 +(yA )Sh =0.04457+0.04395 = 0.08852"
yg = 0.03956 +(yA )Sh =0.03956 + 0.04395 = 0.08351"

AtpointC:  ye =(Yc ), +(Yc)g, +( Ve )y, =0.03212+0.04820 +0.05159 = 0.13191"

The critical speed is therefore

n, —187.7 80(0.04452)+80(0.13191)2+120(0.03956)2 _1877 [18.866}: 618 rpm
80(0.04457)% +80(0.13191)? +120(0.03956)

Ny 618,40
Ny 240

This is within the specifications of n, =2 or 3 times n,, .

(c) A crude estimate for the contribution of bearing W, =801b
deflection may be made by calculating the bearing P =301b P —1201h
reactions at the left and right ends of the shaft. ¢ M

a0 A c B g

>F,=0: R _-Ry-280=0 A ]
M, =0: 90R; —80(30)—80(45)-120(70)=0  [* - 435" ! e T
Re =160 Ib, R, =120 Ib : .

Each bearing has a spring stiffness of k = F/y =5x10°. The deflection at each bearing is therefore
Yr, =120/5x10° =0.002" and y, =160/5x10° =0.003". We approximate the effect of bearing

displacement by averaging the displacement and adding it to the existing displacements. Using
Yavg = (0.002+0.003)/2 = 0.0025" results in

Ya =0.08852 + Y,,, =0.08852+0.0025 ~ 0.091"
Yg = 0.08351+ y,,, = 0.08351+0.0025 = 0.0860"
Yo =0.13191+ y,, =0.13191+0.0025 = 0.1344"

The critical speed is therefore

80(0.091) +80(0.1344) +120(0.0860) 28352
N =187.7 5 5 5| = 187.7 =578 rpm
80(0.091)° +80(0.1344)“ +120(0.0860) 2.995
Ny 578,40
n 240

op

The design still meets the guidelines.
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8-20. For the proposed coupling sketched in Figure P8.20, evaluate the folloeing aspects of the proposed
configuration if a design safety factor of 2.0 is desired.

a. Shear and bearing in the keys.

b. Shear and bearing in the flange attachment bolts.

c. Bearing on the flange at attachment bolt interfaces.

d. Shear in the flange at the hub.

The input shaft has a nominal diameter of 2.25 inches, and supplies a steady input of 50 hp at 150
rpm. The bolt circle diameter is d, = 6.0 inches. Cold-drawn AISI 1020 steel is being proposed as the

material for the coupling components, including the bolts, and also the material for the key (see Table 3.3). Is
the coupling design acceptable as proposed?

Solution

For the material specified, S, =61ksi, S,, =51ksi, e(2")=22%.

(@) The torqueis T =

%‘Z@O) ~ 21,000 in-lb . For a 2” diameter shaft, a 1/2" square key is recommended

(Table 8.1). Since the load does not fluctuate K., =1.0 and

7(2.25) 35"

Leq—str = m =~ 9.

The average shearing stress is

o _2T _ 2(21,000)
* DwL 2.25(0.5)(3.5)

=10,666 ~ 10,670 psi

Based on distortional energy, z,, =0.577S,, = 0.577(51) = 29,430 psi . The existing factor of safety is

Ty 29,430

n. = =
® 7, 10,670

=276~28>ny =2 -acceptable

The compressive bearing stress is

o - AT _ 4(21,000)
° DwL 2.25(0.5)(3.5)

=21,333~ 21,330 psi

_ Sy 51,000
* o, 21,330

=239~24>ny; =2 -acceptable

(b) The area of each 0.5 diameters bolt is A; = 7(0.5)? /4 =0.1963 ~ 0.196 in? . The total shear area is
Ay, =6A, =1.176 in®. The torque-induced force at the bolt circle is

_ 2T _ 2(21,000)

F
B dB

=7000 Ib
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Problem 8-20 (continued)

Each bolt in the pattern supports a force of F, = Fg /6 =1167 Ib . The shear stress in each bolt is

7y =0 167 5954+ 5050 psi
A, 0.196
Ty 29,430

n =495~5>n, =2 -acceptable
“ 7, 5950 ‘ P

The compressive bearing stress is

1167

o, =——— =3734~3730 psi
0.5(0.625)

Syp 51,000
Nex =——=
o, 3730

c

=13.66>>ny =2 -acceptable
(c) Since the flange and bolt material are the same, the existing factors of safety for flange and bolt bearing
are acceptable.

(d) At the edge of the hole, the force in the flange is

F, = 2T _ 2(21,000) 9882 ~ 9880 Ib

d, 4.25
The flange shear area at the edge of the hub is Ay, = 7(4.25)(0.625) = 8.345 in. The shaer stress and
existing factor of safety are

Te =i:ﬂ:1184 psi
Ay, 8345
_ Ty _ 29,430

=24.85>n,; =2 -acceptable

n
¥ 1y, 1184

The complete design is acceptable.
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8-21. As a new engineer, you have been assigned the task of recommending an appropriate shaft coupling for
connecting the output shaft of an 8.95 kW gear-motor drive unit, operating at 600 rpm, to the input shaft of a
newly designed seed-corn cleaning machine ordered by a farm-supply depot. Based on the capabilities within
your company’s production facility, it has been estimated that the parallel centerline misalignment between
the motor drive shaft and the input shaft of the seed cleaning machine may be as much as 0.8 mm, and the

angular misalignment between shafts may be as much as 2° . What type of coupling would you recommend?

Solution

In this application torque to be transmitted is

o 9549(kw) _ 9549(8.95)

=142 N-m(1250 in-lb)
n 600

Referring to Figure 8.4, and reading “flexible couplings” in Section 8.9, the following table is made

Coupling Max. Allowable
Shown in Max. Allowable Offset | Angular Misalignment | Other Limitations
Figure 9.4 in mm degrees
@) 0.25 6.35 0.5 Low speed
() 1-3
(c) 0.01 0.25 15
(d) 0.125 3.18 4
(e) 0.0625 1.59 1
(f 0.25 6.35 9 Low torque only
)] 1
(h) Low torque only
(i) 0.25 6.35 1

Comparing the information in the problem statement; Moderate torque capacity, 0.8 mm parallel alignment
and 2° angular misalignment, We conclude that coupling (d), a spring coupling, is appropriate.
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8-22. a. A chain drive (see Chapter 17) delivers 110 horsepower to the input shaft of an industrial blower in a
paint manufacturing plant. The drive sprocket rotates at 1700 rpm, and has a bore diameter of 2.50
inches and a hub length of 3.25 inches. Propose an appropriate geometry for a standard square key,
including width and length dimensions, if the key is to be made of 1020 cold-drawn steel having
S, =61,000 psi and S, =51,000 psi. The key material may be assumed to be weaker than either the

mating shaft material or hub material. A design safety factor of 3 is desired.
b. Would it be possible to use a standard Woodruff key of the same material in this application?

Solution

For the material specified, S, =61ksi, S,, =51ksi, e(2")=22%.

63,025(110)
1700
recommended (Table 8.1). Since the load does not fluctuate K;, =1.0 and

(@) The torqueis T = ~ 4078 in-Ib . For a 2.5” diameter shaft, a 5/8" square key is

7(2.5)

D) L 3.93"
2(1.0)

Leq—str =

The hub length is only 3.25”, so the longest key that can be used is 3.25”. Actually, a 3.0” key would give
end clearance, so we will assume the key length to be 3.0”. The shear stress is

S 2T 2(4079)
° DwL 2.5(0.625)(3.0)

=1739.9 ~ 1740 psi

Based on distortional energy, z,, =0.577S,, =0.577(51) = 29,430 psi . The existing factor of safety is

T
Ney = —- = 29,430 _ 16.9>ny =3 -acceptable
r, 1740

The compressive bearing stress is

o _ AT 4(4078)
° DwL 2.5(0.625)(3.0)

=3479.9 ~ 3480 psi

Sy _ 51,000

n,, = =14.6>n, =3 - acceptable
* 5, 3480 ‘ P

Based on these safety factors a smaller key would work. Rearranging the equation for o, and replacing o,
with an allowable stress, (ot )., = Syp /Ng =51/3=17 ksi , the key width resulting is a factor of safety of
3.0 can be determined

4T 4(4078)

= =0.1279 ~ 0.13"
DL(o) 2.5(3.0)(L7,000)

W=

allow
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Problem 8-22 (continued)
An appropriate key recommendation would be
3/16” square key, 3.0” long

(b) To investigate the possible use or a Woodruff key, Figure 8.6 (d) and Table 8.2 provide the information
needed. For a design safety factor of 3.0, 7y =7,, /ny =29,430/3=9810 psi . Setting 74 =z,

2T 2(4078)

- = =0.3326 in?
Dry, 2.5(9810)

Using Table 8.2, we check selected values of the product wL

(wL)
(wt)

=0.375(1.5) = 0.5625 in? > 0.3326 in?
=0.25(1.125) = 0.28125 in® < 0.3326 in?

#1212

#809

Based on this we select #1212 key that could be used for this application.
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8-23. Repeat problem 8-22,except that the drive perocket rotates at 800 rpm.

Solution

For the material specified, S, =61ksi, S,, =51ksi, e(2")=22%.

Yl

63,025(110)
800

(@ Thetorqueis T = ~ 8666 in-Ib

With a design factor of safety of ny =3.0, the design stresses are

S 0.577S
oy =2 5L _17 s .y = w _ 0577(51)
ng 3 Ng

=9.81 ksi

The hub length is only 3.25”, so the longest key that can be used is 3.25”. Actually, a 3.0” key would give
end clearance, so we will assume the key length to be 3.0”. Setting 74 =z,

o 2T 2(8666)
Dr,L  2.5(9810)(3.0)

=0.2356 ~ 0.24"

Setting oy = o,

AT 4(8666)

W= - =0.2718 ~ 0.27"
Do,L  2.5(17,000)(3.0)

The larger width (w=0.27") governs. An appropriate key recommendation would be

5/16” square key, 3.0” long

(b) To investigate the possible use or a Woodruff key, Figure 8.6 (d) and Table 8.2 provide the information
needed. Setting oy =7,

wi=[ 2 p)L= 4T _ 40666 _e156~082in2
2 Do,  2.5(17,000)

Using Table 8.2, for a #1212 key, h=0.641" and L =1.5", so
2.5 .2 )
7—0.641 (1.5)=0.9135in“ > 0.82 in

Based on this we select #1212 key that could be used for this application.
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8-24. For the chain drive specifications given in problem 8.22, and for the same sprocket dimensions, select
the minimum size of grooved pin that could be used to attach the sprocket to the shaft, assuming the grooved
pin to be made of 1095 steel quenched and drawn to Rockwell C 42 (see Table 3.3)

Solution

For the material specified, S, =61ksi, S,, =51ksi, €(2") =22% . The torque is

Yl

T _ 63,025(110)
1700

~ 4078 in-Ib

Assuming the shear force is equally distributed between the two shear areas, the shear force F; is

RIS
D 25

Since ny =3.0
Fy =ngF, =3(1631) = 4893 Ib
From Table 8.6, the smallest “grooved” pin with a capacity of 4893 Ib is

3/16” (0.188”) diameter pin
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8-25. The hub of a gear is keyed to an 80-mm diameter shaft using a 30 mm long square key. The shaft is
required to operate at 1800 rpm. The shaft and key are made from the same alloy steel, with S, =350 MPa
and z,, =140 MPa.

a. Determine the power that can be transmitted by the key.
b. Determine the power capacity of the shaft assuming K;, =1.8.

Solution
For a square key w~d/4=80/4=20 mm

(@) The force transmitted through the interface of the hub and shaft is related to the toque by
T=Fr=Fd/2,where F =zA. For a shear failure of the key

Tshear = Ta” A(d /2) = Ta" A(2/2) = Ta" A = Ta”WI = 140)(106 (0020)(0030) = 84 kN'm
Failure could also result from bearing stress. The torque in this case is defined by

Tocaring = 0A(d/2) =0 A(2/2) = o(w/2)l =350x10° (0.020/2)(0.030) =105 kN-m

The maximum allowable torque is therefore T, = Tgpear =84 KN-m . Therefore the power that can be
transmitted through the key is determined from

T 84x10°(1800)

kW _ __max

= = ~15834 kw
9549 9549

(b) The horsepower capacity of the shaft is determined by first defining the allowable torque in the shaft
based on its shear strength, z,;, =140 MPa . The maximum torque supported by the shaft is related to the

maximum shear stress in the shaft by

Tan _ (Tovax )spa " _ 16 (T ) g (Toa ) 7d3(zy)
Kir J zd? mexshaft 16K,
3 6
7(0.08)" (140x10°)

(Tmax )shaft = 16(L.8) =7.82 KN-m

The allowable horsepower for the shaft is therefore
3
k= TmaxN _ 7.82x107°(1800) 1474 kw

0549 9549

Since this is significantly smaller than the power that the key will withstand, we conclude that the shaft will
fail before the key.
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8-26. a. A V-pulley is to be mounted on the steel 1,0-inch-diameter engine drive-shaft of a lawn tractor. The
pulley must transmit 14 horsepower to the drive-shaft at a speed of 1200 rpm. If a cup point setscrew
were used to attach the pulley hub to the shaft, what size setscrew would be required? A design safety
factor of 2 is desired.

b. What seating torque would be recommended to properly tighten the setscrew so that it will not slip
when power is being transmitted?

Solution

(@) The rules of thumb in 8.8 suggest that selection is nominally chosen to be almost 1/4 of the shaft diameter,
and set screw length chosen to be about 1/2 the shaft diameter. For a 1” diameter shaft

d =1/4inch and Iy ~1/2 inch

The torque is

_ 63,025(14)
1200

=735.29~ 735 in-Ib

The shear force on the set screw is

F, _2T 239 g0
d
Using the specified design safety factor of ny =2.0
Fy =ngFs =2(1470) = 2940 Ib
From Table 8.5, a 1/2" set screw is needed. This size seems too large for the shaft-hub size. It will be
suggested that 2 set smaller screws be used, which support a load of F; =2940/2=1470 Ib each. The
recommendations is:

Use two 5/16” set screws that are 1/2" long and spaced 90° apart

(b) From Table 8.5, the seating torque is T =165 in-lb
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Chapter 9

9-1. When stresses and strains in a machine element or a structure are investigated, analyses are based on either a
“strength of materials” approach or a “theory of elasticity” model. The theory of elasticity model facilitates
determining the distributions of stresses and strains within the body rather than assuming the distributions are
required by the strength of materials approach. List the basic relationships from elasticity theory needed to
determine the distributions of stress and strains within elastic solids subjected to externally applied forces and
displacements.

Solution

The basic relationships from elasticity theory needed to determine the distributions of stresses and strains within
elastic solids subjected to externally applied forces and displacements include;

(1) Differential equations of force equilibrium

(2) Force-displacement relationships (e.g. Hooke’s Law)
(3) Geometrical compatibility relationships

(4) Boundary conditions
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9-2. Equations for stresses in thin-walled cylinders are less complicated that equations for stress in thick-walled
cylinders because of the validity of two simplifying assumptions made when analyzing thin-walled cylinders. What
are these two assumprtions?

Solution

The thin-walled cylindrical assumptions that must be satisfier are;

(1) The wall must be thin enough to satisfy the assumption that the radial stress component (o, ) at the wall is
negligibly small compared to the tangential ( o; ) stress component.
(2) The wall must be thin enough that o is uniform across it.

342



9-3. a. Athin-walled cylindrical pressure vessel with closed ends is to be subjected to an external pressure p, with
an internal pressure of zero. Starting with the generalized Hooke’s Law equations, develop expressions for
radial, transverse (hoop), and longitudinal (axial) strain in the cylindrical vessel wall as a function of pressure

p, , diameter d, wall thickness t, Young’s modulus E, and Poisson’s ratio v .

b.  Assume the vessel is made from AISI 1018 HR steel [ S, =400 MPa, S,; =220 MPa , v =0.30,

E =207 GPa, and e(50 mm) = 25% ] and if the external pressure is p, = 20 MPa . If the vessel has an outer

diameter of 125 mm, wall thickness of 6 mm, and length of 400 mm, determine if the vessel length increases or
decreases and by how much.

c. Determine if the vessel thickness changes (increase or decrease) and by how much.

d.  Would you predict yielding of the vessel wall? (Neglect stress concentrations and clearly support your
prediction with appropriate calculations.)

Solution
(a) Givenradial (o, ), transverse (o), and longitudinal (o) stress components, the radial, transverse, and

longitudinal strains according to generalized Hooke’ Law are

1 1 1
& :E[Gr —v(oy +o )J, & :E[O-t —v(oy +0 )], € :E[O'I -v(o +Gr)]

For a thin-walled pressure vessel o, =0 . Since the pressure is external (as opposed to the internal pressure for
which the stress-pressure relationships were developed)

Pod __Pd
o 4t

A

Substituting into the Hooke’s Law
g = _L[_ Pod _ pod :| :3_‘/( podj
E 2t 4t E\ 4t
oo )
E 2t 4t E 4t
; :l{_ Pd  -vp.d } :|:2V—1:|( pod)
E 4t 2t E 4t

(b) The change in length of the vessel is determined by AL =1,¢, . Using the date given

6
AL =0.4] 20311 20x107(0.128) 1| _ 416 e length shortens
207x10° 4(0.006)

(c) The change in wall thickness is determined by At =t ¢, . Using the date given

6
At = 0.006 { 2(0.3) [20x10 (0.125)

5 =1.81 umm  The thickness increases
207x10 4(0.006)
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Problem 9-3 (continued)

(d) The material is ductile and the state of stress is biaxial. The principal stresses are

_pod _ 20x10°(0.125)

o, =0; = = =-208 MPa
2t 2(0.006)
o,=0,=0
6
oo M0 200°0125) e
4t 4(0.006)
Using distortional energy, FIPTOI (o;-0,)’ +(0, —03 ) +(03—0,)" > 2(Sy, )2

(—208-0)° + (0 (~104))” + (104 (-208))" > 2(220)*
64896 < 96 800

Therefore yielding is not predicted.

344



9-4. A thin- walled, closed end pressure vessel has an outer diameter of 200 mm, a wall thickness of 10 mm, and
length of 600 mm. The vessel is subjected to an internal pressure of 30 MPa and an external tensile axial force F.
Assume the vessel is made form a steel alloy with S, =460 MPa , S, =270 MPa,v =0.30, E =207 GPa, and

e(50 mm) =25% . Determine the largest force F that can be applied before yielding occurs.

Solution

The state of stress is biaxial as shown. The longitudinal and transverse
stresses are

6
. - Pod __30x10°(0.2) 00 o
2t 2(0.01)

_ p,d _30x10°(0.2)

o =150 MPa
4 4(0.01)

The additional axial stress due to F (assuming F is in kN) is approximated as

P 0.150F MPa if Fisin kN
7(0.2)(0.01)

F.F
A zdt
Therefore we have

o, =300 o, =150+ 0.159F

The principal stresses will be o; =300, o, =0, and o3 =150+ 0.159F , provided F <150/0.159 =943 .

Assuming that F <943 and using the distortional energy failure theory

(0'1—0'2)2 +(0o, —0'3)2 +(o3 —0'1)2 > 2(Syp)2

(300)” +(~150-0.159F )° + (150 + 0.159F —300)° > 2(270)*

0.0506F% >10800 — F >462 kN
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9-5. Based on the concepts utilized to derive expressions for the stresses in the wall of a thin-walled cylindrical
pressure vessel, derive expressions for the stress in the wall of a thin-walled spherical pressure vessel.

Solution

Considering any thin-walled hemisphere with diameter d and wall thickness t, the
stresses in the wall can be modeled as o . The force due to pressure acting on the

back wall ( F,,) must balance the force due to the stress (o ). We can write

Y F=0: o(zdt)-F, =0

. 7d?
Since Fy, = piA=p (TJ

2
o(zdt)-p {%}0 = 0':p4i—;j

This hoop stress is uniform throughout the spherical vessel wall.
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9-6. A steel hydraulic cylinder, closed at the ends, has an inside diameter of 3.00 inches and an outside diameter of
4.00 inches. The cylinder is internally pressurized by an oil pressure of 2000 psi. Calculate (a) the maximum
tangential stress in the cylinder wall, (b) the maximum radial stress in the cylinder wall, and (¢ ) the maximum

longitudinal stress in the cylinder wall.

Solution

(a) Using (9-30)

Ot—max

(2.0)2 - (1.5)2

(b) Using (9-29)
Ct_max = —2000 psi

(c) Using (9-31)

A

Fiemax =2 [(2.0)2 —(15)?

_ 2000[M] 200

00 2.25
1.75
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9-7. A cylindrical pressure vessel made of AISI hot-rolled steel plate is closed at the ends. The cylinder wall has an
outside diameter of 12.0 inches and an inside diameter of 8.0 inches. The vessel is internally pressurized to a gage
pressure of 15,000 psi.

a. Determine, as accurately as you can, the magnitudes of maximum radial stress, maximum tangential stress,
and maximum longitudinal stress in the cylindrical pressure vessel.

b. Making the “usual” thin-walled assumptions, and using a mean cylindrical wall diameter of 10.0 inches, for
your calculations, again determine the magnitude of the maximum radial stress, the maximum tangential stress,
and the maximum longitudinal stress in the cylindrical pressure vessel wall.

c. Compare the results of (a) and (b) by calculating the percentage errors as appropriate, and comment on the
results of your comparison.

Solution

(@) The maximum radial stress isat r =a=4.0" and is o,_,;x =—P; =—15,000 psi . The maximum tangential
stressisat r =a=4.0" and is

52

2 2
MJ 15,000 (5) = 39,000 psi

G = 15,000
e ((6.0)2 —(4.0)2

The maximum longitudinal stress is

(4.0)2

— :15,000(£]=12,000 psi
(6.0)? —(4.0) 20

O\ max :15,000[

(b) For the thin-walled assumption o,_p. =0,

_15,00000.0) _ o7 500 ~15,000(10.0)

Ot-max = 2(2 0) Ol_max = 4(2 0) =18,750 psi

(c) Comparing the thin-wall results with the more accurate thick-wall results, we construct the following table

o (psi) oy (psi) oy (psi)
Thick-walled -15,000 39,000 12,000
Thin-walled 0 37,500 18,750
Differenct 15,000 1500 6750
% error 100 4 56
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9-8. A closed end cylindrical pressure vessel made form AISI 1018 HR steel [ S, =400 MPa, S, =220 MPa,

v=0.30, E =207 GPa, and e(50 mm) =25% ] has in inside diameter of 200 mm and a wall thickness of 100 mm.

It is required to operate with a design factor of safety of ny =2.5. Determine the largest internal pressure that can
be a applied before yielding occurs.

Solution
Since d; =2a =200 mm, and t =100 mm we know a =100 mmand b =200 mm , which results in
_ a’p b? | _ (0.9 p (0:2)° _Pi|, 004
o= Sl G 72 el s R
b*—a r (0.2)"-(0.1) r 3 r
e[ ] 0an [, ear ], o
t b2 _ a2 r2 (0.2)2 _(0.1)2 r2 3 r2
a® (0.2)° P
Gr_pl{bz—azJ_pl{(O.Z)Z—(O_l)Z - 3

The largest stresses occur on the inside surface, where r =a =0.1m. This gives

b 0.04 Pi 004 |_5 Pi
7773 { 0n? |~ " MY IO R rT

From this we note o; = o, =§ Pi, oy =07 =% ,and o3 =0, =—p;. The design stress is

o4 =Sy, /ng =220/2.5=288 MPa. Applying the distortional energy theory

(01—0'2)2 +(02 —03)2 +(0'3 —01)2 > Z(Gd )2

5 1 V(1 ? 5 Y’ 2
(gpi—gpij +[§pi_(_pi)] +[_pi_§pi) >2(88)

%pi222(88)2 — p;=38.1MPa b =38.1 MPa
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9-9. Calculate the maximum tangential stress in the steel hub of a press fit assembly when pressed upon the
mounting diameter of a hollow steel shaft. The unassembled hub dimensions are 3.00 inches for the inside diameter
and 4.00 inches for the outside diameter, and the unassembled dimensions of the shaft at the hub mounting site are
3.030 inches outside diameter and 2.00 inches for the inside diameter. Proceed by first calculating the interfacial
pressure at the mating surfaces caused by the press fit, then calculating the hub tangential stress caused by the
pressure.

Solution
Both the hub and the shaft are steel with E =30x10° psi ,v =0.30, and

A =3.030-3.000 =0.030"

The contact pressure is determined using (9-48)

p:
NS b2+a2+v L d d2+02_v
E, b2 _ a2 h E, d2_c2

p= 0.030 = 48,928 psi

2{ 15 ((2.0)2+(1.5)2+0_30]+ 1515 ((1.515)2+(1-0)2_0_30H

30x10° | (2.0)% - (1.5)° 30x10° | (1.515)% — (1.0)°

The tangential stress in the hub is

2 2 2 2
o =p| 22 |- a8 028) B0 F A 174 743 psi
b (2,02 -(1.5)

The tangential stress in the hub is very high, and the design should be carefully reevaluated.
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9-10. The hub of an aluminum [S, =186 MPa, S,, =76 MPa, v=033, E=71 GPa ] pulley has an inside

diameter of 100 mm and an outside diameter of 150 mm. It is pressed onto a 100.5-mm-diameter hollow steel
[S, =420 MPa, S,, =350 MPa, v =0.30, E =207 GPa] shaft with an unknown inner diameter. Determine the

allowable inside diameter of the steel shaft assuming a design factor of safety of ny; =1.25.

Solution

Since A =0.1005-0.100 = 0.0005 m, the contact pressure between the hub and the shaft is
A
= 2 2 2 2
2 i bi +v. |+ i d;c —v
E, b2 _ a2 h E, d2? _¢2 s

Knowing that a =0.05, b=0.075, ¢ =unknown, d =0.0505, E, =71GPa,v, =0.33 , E; =207 GPa, and
v, = 0.3, the contact pressure is

0.0005
2 2 2 2
) 0.059 (0.075)2+(o.05)2 c033 s 0.05025; (0.05025)2+c2 +0.30
71x10° | (0.075)? - (0.05) 207x10° | (0.05025)2 —c¢

0.00025
p= 1)

2
{2.063><1012 +0.243x1072 (0'002525” + 0.30ﬂ

0.002525 — ¢?

The radial and tangential stresses on the solid shaft are

o= p d?+c? _ (0.05025)% +c? h 0.002525 + ¢ o= p
© d% —c? (0.05025)? —¢? 0.002525—c? "

This yields principal stresses of

0.002525 + ¢2
0.002525 —¢?

01=0, 0y =0 =-pP Uazgts:_p{

Since the shaft is ductile, we use distortional energy with oy =S, /ny =350/1.25 =280 MPa

(0'1—0'2)2+(0'2—0'3)2 +(o3 >2(o

2
(0-(-p))? +| —p—|p[ 2002525 +¢" 0002525+c 0002525+c ol s1568x10°
0.002525 ¢ 0002525 ¢
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Problem 9-10 (continued)

2 2

2 2

02| pep 0.002525+c2 - 0.002525+c2 - 156.8x 1015
0.002525—¢ 0.002525—¢

) [0.002525+c2J {0.002525+c2
2p°l+ +

2
- | 12156.8x10% )
0.002525—-c? ) | 0.002525—¢

Substituting (1) into (2) and iterating to a solution we find that failure is not predicted until ¢ ~ 0.0325 m . Therefore
we can have a hollow steel shaft with an inside diameter of

d; =32.5mm
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9-11. In the design of a jet cargo aircraft, the tail stabilizer, a horizontal flight-control surface, is to be mounted high
up on the tail rudder structure, and it is to be controlled by two actuator units. The aft unit is to provide the major
large-amplitude movement, while the forward unit is to provide the trim action. The forward actuator consists
essentially of a power-screw (see Chapter 12) driven by an electric motor, with , for dual-unit safety purposes, an
alternative drive consisting of a hydraulic motor that can also drive the screw. In addition, a hand drive is provided
in case both the electric drive and the hydraulic drive unit fail.

The screw consists of a hollow tube of high-strength steel with threads turned on the outer surface, and, for
fail-safe dual-load-path purposes, a titanium tube is to be shrink-fitted inside of the hollow steel tube. For
preliminary design purposes, the screw may be considered to be a tube of 4 inches inside diameter and %-inch wall
thickness. The proposed titanium tube would have a 4-inch nominal outside diameter and 1-inch-thick wall. The
tubes are to be assembled by the hot-and-cold shrink assembly method. The linear coefficient of thermal expansion

for the steel material is 6.5x107° in/in/°F , and for linear coefficient of thermal expansion for the titanium is
3.9x107° infin/ °F .
a. Determine the actual dimensions at 70°F that should be specified if the diametral interference must never,
at any temperature within the expected range, be less than 0.002 inch. Expected temperatures range

between the extremes of —60°F and 140°F . Also, the steel tube must not exceed a tangential stress level
of 120,000 psi at either temperature extreme.

b. Determine the temperature to which the screw must be heated for assembly purposes if the titanium tube is
cooled by liquid nitrogen to —310°F , and if the diametral clearance distance between tubes for assembly
purposes should be about 0.005 inch.

Solution
From the problem statement we have

Steel outer tube: a=2.0in,b=25Iin
a, =6.5%x107° infin/ °F , Eg =30x10° psi, v, = 0.30

Titanium inner tube: ¢=1.0in,d =2.0in
a, =3.9x10°° in/in/°F , E, =16x10° psi, v, =0.30

() Specified temperatures are T, = —60°F , Ta = +145°F, T,oom = +70°F. By problem specification, for al |
temperatures within the stated range A >0.002" and the stress in the steel tube at all temperatures in the range must
satisfy the relation o,_q. <120 ksi. Because a, > ¢, the “loss of fit” problem is most serious at T, =+145°F.
Thus

AD;_go) ~ADy i +0.002=A i O Dj_geq) (tAT ) = Dy (4 AT)+0.002 = (A, )min
Since Dj_gee =AD,_; =4.0" and AT =145-70=75°F, we have

—6 n
4(75)(6.5-3.9)x10 +0.002:(A700)min N (Amo)min:o.ooz?s

Therefore, the actual dimensions should be AD,_; = 4.0028" and AD;_ge = 4.0000".

Next, the tangential stress level must be checked in the steel outer tube for the most severe case, which occurs at
Tmin = —60°F . The diametral interference at this temperature is calculated as

A =Agp0 + Di_steel (asAT ) — Dy (O(SAT)

-60°
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Problem 9-11. (continued)

Using AT =70—(—60) =130°F we get
A_gy =0.0028+4(130)(6.5-3.9)x10"® = 0.004152 ~ 0.0042"

0.0042
b= 2.0 ((2.5)?%+(2.0)° 2.0 [ (2.0)%+(1.0)°
y) P— : =/ 4030 |+—= : =/ _0.30
[30><106 [(2.5)2 —(2.0)2 ] 16x10° ((2.0)2 ~(1.0)? ﬂ
0.0042

2| 0.333x10°8( 19-2°
2.25

+ o.3oj +0.125%107° (2 - 0.30)}

_ 0.0042 = 4247 ~ 4250 psi

2[0.3237x10-6 + 0.1708x10-6]

(2.5)% +(2.0)?

=19,361 psi
(2.5)% = (2.0)? J P!

(O'th )_600 = 4250(

This is well below the limiting stress of 120,000 psi

(b) The change in outer diameter of the titanium tube from room temperature (70°F) to —310°F is

AD,_; = 4.0028(3.9><10’6 )(—310 —70) = —0.0059"

The outer diameter of the titanium tube at —310°F is therefore

(Do_ti)_gyqe = 4.0028-0.0059 = 3.9969"

The clearance between the —310°F titanium diameter and the 70°F steel inner diameter is
A, =4.0000-3.9969 = 0.0031"
Since the required clearance in 0.005”, the steel diametral increase required is
A, =0.005-0.0031=0.0019"
Therefore

A, 0.0019

(AT) o = = — =73.03°F
1 Dj_gea@ 4.0000(6.5x107°)

The steel tube must be heated to a temperature of

T =70+73=143°F
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9-12. A component in a machine used to assure quality control consists of several disks mounted to a shaft. As parts
pass under the disks, the acceptable parts pass through, while the unacceptable parts do not. The disks themselves
are subject to wear and require frequent replacement. Replacement time has typically been a lengthy process which
affects productivity. In order to decrease replacement time you have been asked to investigate the feasibility of a
“quick change” shaft in which the disks are slid onto a shaft, which is then subjected to internal pressure, causing it
to expand and create a tight fit with the disk. The disk is required to support a friction torque of 100 N-m. The disks
are made of brass [ S, =510 MPa , S, =414 MPa, v =0.35, E =105 GPa ] and the shaft is made of aluminum

[S, =186 MPa, S,, =76 MPa, v=0.33, E=71GPa]. The hub of the brass disks have an inside diameter of 25

mm and an outside diameter of 50 mm, and a hub length of 25 mm. We initially assume a coefficient of friction
between brass and aluminum to be x = 0.25and an outside shaft diameter of 24.5 mm. Perform a “first pass”

assessment of the feasibility of this design idea.

Solution

In order to perform the “quick change” the outside diameter of the shaft must be small enough to allow the disks to
able to freely slide. We begin by assuming the outside diameter of the shaft is 24.5 mm before it is pressurized.
Once pressurized, the expansion must be sufficient to create enough pressure that the friction torque requirement is
met. The problem becomes one of noting that the hub is modeled as a thick-walled cylinder subjected to internal
pressure and the shaft is a thick-walled cylinder subjected to both internal and external pressure. The contact

pressure required to create a friction torque of 100 N-m is

T, = #p772d52|h I
100 025 piz(0.0§45)2(0.025) > pal?MPa ’ Tn g - 30 mm
Using this information, we can determine a relation between ' \k\‘;‘_

the contact pressure and the interference, A
A

o afbi+a’ ) dfd®+c®
E, b2 _ a2 h E, d? _¢2 s

A
2 2
2{ 0.0125 [(0.025) +(00125)° 0.35} 0.01225 ( (

p=17x10° =

17x108 =

105x10° | (0.025)? - (0.0125)? 71x10° | (C
A

17x10° =

0.00015-c?

2
2{0.240x1012 +0.173x1072 [0'00015“—0.33H

2
A=8.16x107° +5.88x10°° [0'00015“:—0.33] 1)

0.00015—c?

For the hub, &, =[ oy, vy (o + 0w ) |/ Ey, where

2 2 2 2
oy = p[b +a ]— p((O'OZS)Z+(0'0125)2]—1.667p ~1.667(17) = 28.3 MPa» O =—P=-17 MPa, o}, =0
(0.025)% — (0.0125)
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Problem 9-12. (continued)

This results in

1

: M[zs.sxloﬁ ~0.35(-17x10°) | =326.2 samim 2

€th

From (9-46) we know A = 2(‘gth‘a+‘gts‘d) . Begin by assuming the &;, = &, =326.2 gm/m, which results in
A =2(|ep|a+|as|d) = 2(326.2x107°)(0.025+0.0245) = 32.3x10~° m . From (1) we now have

2
32.3x10°° =8.16x10°° +5.88x10™° [0‘00015”—0.33J

0.00015-c?

2
4105 - (0.00015+c

0.00015 _c2 —0.33) — ¢=0.00973 m=9.73 mm
. -c

For the shaft, we use (10-25) and (10-26) to define the stress components o, and o, . We also set o), =0

2 2
0.01225¢ 0.01225¢
pic? — p(0.01225)2 +(r j (p-p) pic? — p(0.01225)? —(r j (p-p)

Ors = Ots =

(0.01225)? —c? (0.01225)2 —c?

Since we are interested in the strains at the interface between the shaft and hub, we set r = 0.01225, resulting in

_ pic? - p(0.01225)° +¢*(p—p;)  (0.00973)% —(0.0125)>
(0.01225)? — c? (0.01225)? — (0.00973)?

p=-1.1p

O-I'S

2 2 2
et p(0012297 2 (p-p) _ (000973 p | (001225)" +(0.00873)" | p sutmn 150
© (0.01225)% —¢? (0.01225)% — (0.00973)? '

This results in

1 1
& = E—[ats ~vs (o +05) ] = W[3.418 p, —4.418p-0.33(-1.1p)]

S

_3.418p; —4.055p

3
71x108 )

s

Having previously assumed that &, = &, =326.2 um/m , we can solve (3)

3.418p; —4.055p

71x10°
p; = 20.175 MPa

326.2x107° = 3.418p; = 23160+ 4.055(17 x10°)

This pressure produces stresses of o, = 03 =-22.2 MPa, o, =0, =—6.15 MPa, and oy, = oy ~ 0 at the shaft/hub
interface. Using distortional energy
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Problem 9-12. (continued)
2
(0'1 -0y )2 +(0'2 —0'3)2 +(O'3 —0'1)2 > Z(Syp)
(0-(-6.15)) +(-6.15- (-22.2))* +(-22.2—-0)* > 2(76)’
1334>11552

Since the failure condition is not met, we initially conclude that the proposed “quick change” shaft idea is feasible.
Additional refinement of the design is required.
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9-13. A steel gear is to be shrink-fitted over a mounting diameter on a solid steel shaft, and its hub abutted against a
shoulder to provide axial location. The gear hub has a nominal inside diameter of 1 ¥ inches and a nominal outside
diameter of 3 inches. The nominal shaft diameter is 1 %2 inches. To transmit the torque, it has been estimated that a
class FN5 force fit (see Table 6.7) will be required. Stresses in the hub must not exceed the yield strength of the hub
material, and a design safety factor of at least 2, based on yielding, is desired.

Two ductile candidate steel materials have been proposed for the gear: AISI 1095 steel quenched and
drawn to a hardness of Rockwell C 42, and AlSI 4620 hot-rolled steel (with case-hardened teeth). Evaluate these
two materials for the proposed application, and decide which material to recommend (see Table 3.3)

Solution
Using Table 3.3, we find the material properties shown Material S, (ksi) Syp (ksi)
for the two candidate materials. From Table 6.7 we find
. AISI 1095 @ RC 41 200 138
<AL
that for a class FN5 force fit 0.0014 < A <0.0040. AISI 4620 HR 7 3

Since we are interested in the larges stress, we use A = 0.0040

p_E[ 32}_ 30><106(0.0040)|: _(0.75)°

_a | =30,000 psi
da | p? 4(0.75) (1.5)° } P

Both oy, and o, are maximum at the inner hub, where b=1.5and a=0.75

2 2 fegi®
oy, = 30,000 M =50,000 psi and o, =—30,000 psi l "
(1.5)° - (0.75) X
-+ —
For this multiaxial state of stress T4
6, =50 ksi, o, =0, and & =30 ks T

Using a factor of safety of 2.0, FIPTOI
1 2 2 2 Syp 2 2
E[(50—0) +(0-{-30})" +(-30-50) }z - = 19,600> (S, )

This gives Sy, =140 ksi . Neither candidate material meets this requirement, but AISI 1095 @ RC 4 is quite close.

Tentatively select AISI 1095 @ RC 4
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9-14. A steel gear has a hub with a nominal bore diameter of 1.0 inch, outer hub diameter of 2.0 inches, and hub
length of 1.5 inches. It is being proposed to mount the gear on a steel shaft of 1.0-inch diameter using a class FN4
force fit (see Table 6.7).

a. Determine the maximum tangential and radial stresses in the hub and the shaft for the condition of loosest
fit.

b. Determine the maximum tangential and radial stresses in the hub and the shaft for the condition of tightest
fit.

c. Estimate the maximum torque that could be transmitted across the press fit connection before slippage
would occur between the gear and the shaft.

Solution

From Table 6.7 we find that for a class FN4 force fit and a
1” nominal shaft diameter, 0.0010 < A <0.0023.

(a) For a loose fit A =0.0010

|
30x10°(0.0010)[ . (0.5) .
= 1- =11,250 psi
P 4(0.5) { (L0)? P shaft
(1.0)2 +(0.5)° . .
O-th :11, 250 W :18| 750 psl O'rh = O'rS = Uts = —p = —11, 250 ps'

(b) For a tight fit A =0.0023

30x10° (0.0023 2
p="2 ( )1 (0'5)2 _ 25,875 psi
4(0.5) (1.0)
(1.0)2 +(0.5)2 . _
Oih = 25;875 W = 43,125 psi Oy =03 =05 = -p= —25,875 psi

(c) Forthe maximum dependable torque that can be transmitted across the press fit by friction, without slip, the
tightest fit should be used. From appendix Table A-1, for lubricated mild steel on steel 4 =0.11

_ uprdll,  0.11(25,875)7(1.0)%(1.5)
2 2

T, ~ 6700 in-Ib
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9-15. The 60-mm-long hub of a steel [ S, =420 MPa, S, =350 MPa, v =0.30, E =207 GPa] pulley has a

rectangular strain gage rosette applied. Strain gages A and C are perpendicular and gage B is at 45° to the other two
gages as illustrated in Figure P9.15. The outside diameter of the hub is 50 mm and the inside diameter is 25 mm.
Each strain gage is zeroed prior to the pulley being press fit to the shaft. The pulley is fit onto a solid steel shaft
made from the same material as the pulley with a diametral interference of A =0.04 mm. Determine the strains
indicated by each strain gage after the shaft and pulley are assembled.

Solution

Since the shaft is solid and is the same material as the pulley, the contact pressure between the pulley and shaft is
approximated by

2] 207x10°(4x107° 2
p=2 [1—[3) ]: ( ){1—(0'012? }:124 MPa

4a| b 4(0.0125) 0.025

The stress components on the outside surface (r =b =0.025 m) of the hub are

= 7a2p1 b270 op=0,=0
O'rh—o-r—bz_az —F = Th |

2 2
oy = 0y = bzaz P {1{?) }: 2(124){( (0.0125) 1: 82.7 MPa

0.025)" ~(0.0125)°

Since the strain gages are surface mounted, they can only measure the tangential and longitudinal strain components.
These two strain are determined to be

1 6
& =———|82.7x10°-0.3(0+0) | =399.5 4m/m ~ 400 xzm/m
' 207x10° [ (0+0)] # #
el "))
g =——|0-0.3(82.7x10° +0) | =-118.8 #um/m—-120 zm/m
' 207x10° ( ) # #
The strains measured by gages A and C are easy to determine based on the strain [
gage orientations. These are _:l e
ep =& =-120 um/m
gx

&c =& =400 um/m

For strain gage B we can use strain transformation equations or Mohr’s circle of
strain to identify the fact that gage B will measure a normal strain that is 90° from
the planes defining ¢, and & . In addition, we note that ¢, and &. are the
principal strains. From Mohr’s circle we determine

&g =140 ym/m |

g5 =140 £
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Chapter 10

10-1. Plain bearings are often divided into four categories, according to the prevailing type of lubrication at the
bearing interface. List the four categories, and briefly describe each one.

Solution

The four main categories are:
1. Hydrodynamic lubrication
2. Boundary Lubrication
3. Hydrostatic lubrication
4. Solid film lubrication

Hydrodynamic lubrication is characterized by a rotating shaft in an annular journal bearing so configured that a
viscous lubricant may be “pumped” into the wedge-shaped clearance space by the shaft rotation to maintain a stable
thick fluid film through which asperities of the rotating shaft cannot contact surface asperities of the journal.

Boundary lubrication may be characterized by a shaft and journal bearing configuration in which the surface area is
too small or too rough, or if the relative velocity is too low, or if temperatures increase too much (so the velocity is
lowered too much), or if loads become too high, asperity contacts may be induced through the (¢4in) oil film.

Hydrostatic lubrication may be characterized by a pair of sliding surfaces in which a thick lubricant film is
developed to separate the surfaces by an external source of pressurized lubricant.

Solid film lubrication may is characterized by bearing for which dry lubricants, such as graphite or molybdenum
disulfide, or self-lubricating polymers, such as Teflon or nylon are used.
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10-2. From a strength-based shaft design calculation, the shaft diameter at on of the bearing sites on a steel shaft has
been found to be 38 mm. The radial load at this bearing site is 675 N, and the shaft rotates at 500 rpm. The operating

temperature of the bearing has been estimated to be about 90°C . It is desired to use a length-to-diameter ratio of 1.5
for this application. Based on environmental factors, the material for the bearing sleeve has been narrowed down to
a choice between nylon and filled Teflon. Which material would you recommend?

Solution

This is a case of continuous rotation, so the sliding velocity V,,,, is
Veone = mdN = (0.038)(500) = 59.7 m/min

From Table 11.1, (V =304.8 m/min - both meet velocity criteria.

max ) nylon

=182.9 m/min and (Vues )0,
W w 675

¥ _ - ~=0312 MPa
dL  d(1.5d) 1.5(0.038)

From Table 11.1, (P,

max )nylon

=13.8 MPa and (PmaX ) , =17.2 MPa - both meet the velocity criteria.

Tefloi

PV =0.312(59.7) = 18.6 MPa-m/min

From Table 11.1, (PV,yy ) = 6.3 MPa-m/min - does not work, ( PV, )., = 21.0 MPa-m/min - acceptable

Teflo

nylo

Filled Teflon is selected

362



10-3. It is being proposed to use a nylon bearing sleeve on a fixed steel shaft to support an oscillating conveyor tray
at equal intervals along the tray, as shown in Figure P10.3. Each bearing bore is top be 12.5 mm, bearing length is to
be 25 mm, and it is estimated that the maximum load to be supported by each bearing is about 2 kN. Each bearing

rotates £10° per oscillation on its fixed steel journal, at a frequency of 60 oscillations per minute. Would the
proposed nylon bearing sleeve be acceptable for this application?

Solution

This is a case of continuous rotation, so the sliding velocity V. is
V.. =¢fd=20 (%)(60)(0.0125) = 0.262 m/min

/4 2000

P=lt=— " __ _64MPa
dL  0.0125(0.025)

PV =6.4(0.262) =1.68 MPa-m/min<(PViugy ), ..

Nylon bearing sleeve is acceptable
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10-4. A local neighborhood organization has become interested in replicating a waterwheel-driven grist mill of the
type that had been used in the community during the nineteenth century, but they have not been able to locate any
detailed construction plans. One of their concerns is with the bearings needed to support the rotating waterwheel.
To give an authentic appearance, they would like to use an oak bearing on each side of the waterwheel to support a
cast-iron waterwheel shaft. The waterwheel weight, including the residual weight of the retained water, is estimated
to be about 12,000 Ib, and the wheel is to rotate at about 30 rpm. It has been estimated on the basis of strength that
the cast-iron shaft should be no less than 3 inches in diameter. The bearings need to be spaced about 36 inches
apart. Propose a suitable dimensional configuration for each of the two proposed oak bearings so that bearing
replacement will rarely be needed. It is anticipated that 68 F river water will be used for lubrication.

Solution

The proposed waterwheel shaft and #7=12,000 b
support bearings may be sketch as N

shown. Since this is a case of Waterwheel g
continuous rotation, the sliding \
velocity V,,, is given as

Dak beating

_zdN 7(3)(30) N
cont — 12 - 12

=24 fpm Castiton shaft —»

Checking Table 10.1 we see that for
wood V.. = 2000 fpm, thus it meets
the velocity criterion.

Also, from Table 10.1 we find for
wood

(PV)_ =12,000 ST

min

, thus

_ PV _ 12,000
v

P

=5,000 psi

Checking Table 10.1 we see for wood that P,,,. = 2000 psi and thus meets the unit load criterion. Since

_R_6000 4.0 inches
Pd  500(3)
then
L_4_ 1.333
d 3
which meets the guidelines
Lelog
2 d

The temperature should not be a problem since 68 F river water is to be used as the lubricant. Therefore, it should
be satisfactory to use two oak bearings, each nominally 3 inches in bore diameter by 4 inches long.
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10-5. The shaft shown in Figure P10.5 is part of a transmission for a small robot. The shaft supports two spur gears
loaded as indicated, is supported by bearings at 4 and D, and rotates at 1200 rpm. A strength based analysis has been
performed and it has been determined that a shaft diameter of 10 mm would be adequate for the steel shaft. You are
considering the use of boundary-lubricated bearings for which L =1.5d . A porous bronze bearing sleeve has been

proposed. Determine if this bearing selection is adequate.

Figure P10.5
Steel shaft supporting two spur
gears

Solution

The reactions at 4 and D are required in order to
determine the radial load in each bearing. Using the free
body diagram shown we can deter mine the reactions.
2 F,=0: 4,+D, =200
(ZMA )Z =0: 50D, +30(300)—-20(500) =0
D,=20N, 4, =180N

SF =0: A +D,=-550
(M), =0: 50D, +30(750)-20(200) = 0
D, =-370N, A4, =—180 N

2
The radial force R supported by each bearing is R, = (AV) + 180 180)2 ~ 255N

=(D, )2 +(D.) =(20 +(-370)° ~370N

Using the maximum bearing reaction force, we now determine

Ry 370 370 _ 370 ~2.5 MPa

Tl d(15d) 154 1.50.01)

The sliding velocity for this continuous rotation application is

Veone = wdN = 7(0.010)(1200) = 37.7 m/min
PV =(2.5)(37.7) = 94.25 MPa-m/min

From Table 10.2 we determine
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P=25 <P, =138
V=377 <V, =365.8

max

PV =9425 <(PV)  =105.1

ma;

Therefore the porous bronze bearing sleeve is adequate for this application
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10-6. From a strength-based analysis, a shaft diameter at one of its support bearing sites must be at least 1.50
inches. The maximum radial load to be supported at this location is estimated to be about 150 Ib. The shaft rotates
at 500 rpm. It is desired to use a Nylon bearing sleeve at this location. Following established design guidelines for
boundary-lubricated bearings, and keeping the bearing diameter as near to the 1.50-inch minimum as possible,
propose a suitable dimensional configuration for the bearing.

Solution

For continuous rotation the sliding velocity is

_wdN 1.57(500)

o = =196 fpm
cont 12 fp

We see from Table 10.1 that Nylon (V,,,, = 600 fpm) meets the velocity criterion. Try a “square bearing”
configuration with L =d = 1.5 inches. Thus,

w150 .
L —67
1515 ™

P:

Again checking Table 10.1 we note that Nylon (P,,,, = 2000 psi) meets the unit load criterion. For P}V we have

psi-ft

min

PV =(67)(196)=13,130

We note that from Table 10.1 that Nylon does not meet the unit load criterion. Try the maximum recommended
bearing length L = 2d = 3.0 inches. Thus, we find

_Ww_ 150
dL  1.5(3.0)

P =33 psi

and

PV =(33)(196) = 6480 2

min

We again see that this still does not meet the (PV),,,. = 3000 requirement for Nylon. Therefore, it will be necessary
to increase the bearing diameter. Start with the upper limiting value L = 24, thus

r_w
dL 2d*
and
PV = [K](ﬁdNJ _ TWN
2d? 12 24d

Solving for the required diameter gives

aWN 15072 (500)

d.. = - =327 inch
<4 " 24(PY)_ | 24(3000) e

max

If a Nylon bearing is used, it dimensions must be at least 3.3 in. bore by 6.6 in. in length.
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10-7. A preliminary result obtained as a possible solution for problem 10-6 indicates that the smallest acceptable
bearing diameter for the specifications given is about 3.3 inches. Engineering management would prefer to have a
bearing diameter of about 1.50 inches (the minimum based on shaft strength requirements), and they are asking
whether it would be possible to find another polymeric bearing material that might be satisfactory for this
application. Using Table 10.1 as your resource, can you find a polymeric bearing material other than Nylon that will
meet established design guidelines and function properly with a diameter of 1.50 inches?

Solution

For Problem 10-6 we had

_zdN _ 1.57(500)

o =5 =196 fpm
w 150
P=—= =33 psi
d 1530)
psi-ft
PV =(33)(196) = 6480
(33)(196) = 6450 21

From Table 10.1 we see that the potential candidates are based on allowable (PV)yax:

Phenolics (PV)max =15,000
Filled Teflon (PV)max =10,000
Teflon Fabric (PV)yax = 25,000

Checking allowable unit loads Py, all three candidates qualify. Checking the allowable sliding velocity Viax ,
Phenolics and filled Teflon qualify but Teflon Fabric does not meet the velocity criterion. Thus, either Phenolics or
filled Teflon would be acceptable. Cost would probably govern the choice (Phenolics would probably win).
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10-8. A plain bearing is to be designed for a boundary-lubricated application in which a 75-mm-diameter steel
shaft rotating at 1750 rpm must support a radial load of 1 kN. Using established design guidelines for boundary-
lubricated bearings and Table 10.1 as your resource, select an acceptable bearing material for this application.

Solution

This is a case of continuous rotation, so the sliding velocity V,,,, is
Veone = mdN = 7(0.075)(1750) = 412.3 m/min
Using L=d

w 1000

P=2=— " _(.178 MPa
dL  0.075(0.075)

PV =0.178(412.3) = 73.4 MPa-m/min

Checking Table 10.1, Porous lead-bronze appears appropriate.
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10-9. A plain bearing is to be designed for boundary-lubrication applications in which a 0.5-inch-diameter steel
shaft rotating at 1800 rpm must support a radial load of 75 1b. Using established design guidelines for boundary-
lubricated bearings, and using Table 10.1 as your resource, select an acceptable bearing material for this application
if the operating temperature is estimated to be about 350 F.

Solution

Since this is a case of continuous rotation the sliding velocity is

_zdN _ 7(0.5)(1800)
cont 12 -
/4 75

P=""=—"__ =300 psi
L~ (05)(05) ™

=236 fpm

We have that

PV =(300)(236) = 70,800 25
min

Checking Table 10.1, we see that no material meets the (PV)n. criterion. Therefore, make a new assumption on the
L/d ratio using the upper limit, L = 2d. Thus,

w 75

P=——=——"__ =150 psi
d~(05)(10)

psi-ft

PV =(150)(236) = 35,400

min
Checking Table 10.1, materials now meeting all three criteria include:

Porous bronze
Porous lead-bronze
Porous lead-iron
Porous aluminum

bl

However, we see from Table 10.1 that Porous aluminum does not meet the specified operating temperature of 300 F.
Thus, a selection would be made among the first three candidates based on cost.
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10-10. A proposed flat belt drive system (see Chapter 17) is being considered for an application in which the driven
steel shaft is to rotate at a speed of 1440 rpm, and the power to be transmitted is 800 W. As shown in Figure P10.10,
the power is transmitted to the 10-mm-diameter (driven) shaft by a flat belt running on a shaft-mounted pulley. The
pulley has a nominal pitch diameter of 60 mm, as sketched in Figure P10.10. It is desired to support the driven shaft
using two grease-lubricated plain bearings, one adjacent to each side of the pulley (see Figure P10.10). The two
bearings share the belt load equally. It has been determined that the initial belt tension, 7, should be 150 N ( in
each side of the belt) to achieve optimum performance, and it may reasonably be assumed that the sum of tight side
and slack side belt tension will remain approximately equal to 27}, for all operating conditions. Select satisfactory
plain bearings for this application, including their diameter, their length, and an acceptable material from which to
make them (see Table 10.1).

Solution

Since this is a case of continuous rotation, the sliding velocity is

V., = zdN = 7(0.010)(1440) = 45 —

cont mln
W _ 150
dL ~ 10(10)

=1.5 MPa

PV =(1.5)(45) = 67.5 MPamn

min
Checking Table 10.1, materials meeting all three criteria include:

Porous bronze
Porous lead-bronze
Porous bronze-iron
Porous lead-iron
Aluminum

A e e

The final selection would be based on cost (probably porous bronze). The preliminary recommendation will be:

Use porous bronze bearings, both sides, with bore diameter of 10 mm and length of 10 mm.
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10.11. It is desired to use a hydrodynamically lubricated 360° babbit-metal plain bearing for use in supporting the
crankshaft (see Chapter 19) of an automotive-type internal combustion engine for an agricultural application. Based
on strength and stiffness calculations, the minimum nominal journal diameter is 50 mm, and a length-to-diameter
ratio of 1.0 has been chosen. The maximum radial load on the bearing is estimated to be 3150 N and the journal
rotates in the bearing sleeve at 1200 rpm. High load-carrying ability is regarded as much more important than low
friction. Tentatively, an SAE 30 oil has been chosen, and the average bearing operating temperature has been

determined to be about 65°C . Estimate the power loss due to bearing friction.

Solution
360° bearing with r =25 mm, L/d =1.0, W =3150 N, n=1200 rpm = 20 rev/sec
Vot = 7dN = 7(0.050)(1200) =188.5 m/min
From Table 11.2 for a 50 mm diameter bearing, ¢ = 38.1x10™ mm and ¢/r =0.0381/25=0.00152.

From Figure 11.14 with L/d =1.0, for maximum loading, &, joaa = 047 .

From Figure 11.9 with L/d =1.0 and £ =047, fz = %[5) ~ 7.4 . Using this
nUu\ r

749U

I
clr

U =27rn = 272(0.025)(20) = 3.142 m/sec
From Figure 10.3, with 65°C ~150° F and SAE grade 30, we get 77 ~3.4x107 rehns . Converting
1 ~3.4x107° rehn (6895 Pa-s/rehn ) = 0.02344 Pa-s

_7.4(0.02344)(3.142)
0.00152

=385.6 Pa-m =385.6 N/m

1

The tangential friction force is
F, = F{L =385.6(0.05)=19.28 N
The friction torque is

T, = F,r =19.28(0.025) = 0.488 N-m

Therefore the power is

Tn  0.488(1200)

= = =0.258 kw
9549 9549
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10.12. Text In an automobile crankshaft application, a hydrohydynamic full 360 journal bearing must be 2 inches
in nominal diameter based on strength requirements, and the bearing length being considered is 1.0 inch. The
journal is to be made of steel and the bearing sleeve is to be made of a copper-lead alloy (see Table 10.2). The
bearing must support a radial load of 1000 Ib, and the journal rotates at 3000 rpm. The lubricant is to be SAE 20 oil,
and the average operating temperature at the bearing interface has been estimated to be about 130 F. Load-carrying
ability and low friction loss are regarded as about equally important.

a. Find the minimum film thickness required for this application.

b. What manufacturing processes would you recommend for finishing the journal and the sleeve
to provide hydrodynamic lubrication at the bearing interface? Justify your recommendations.
(Hint: Examine Figure 6.11).

c. Estimate the power loss resulting from bearing friction.

d.  What oil flow rate must be supplied to the bearing clearance space?

Solution

(a)

. _d _2.0000
2

=1.0000 inch

n=3000 rpm = 50 ~¥
sec

From Table 10.2, for an automotive crankshaft application using a copper-lead alloy bearing sleeve and a steel
journal, for a 2-inch diameter bearing

¢ =0.0014 inch
c _0.0014

—-= =0.0014
r 1.0000

From Figure 10.4, for L/d = 0.5, read € corresponding to minimum friction drag and maximum load carrying ability
as
=0.57

=0.89

&

max —load

&,

max — friction
Since these values are regarded as being of equal importance select a midrange value of ¢ = 0.7. Then
h,=c(1-£)=0.0014(1-0.7) = 0.0004 inch
h,=pR, +p,R, >50(R, +R,)

R + &, < 20004

=84 p-inch

If the sleeve were reamed, then from Figure 6.11 R, = 63 p-inch and the journal roughness should be
R; =84-63=21 p-inch or less
The minimum film thickness required is

h, >5.0(63+16) = 0.0004 inch
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(b) Recommendations for acceptable manufacturing are based on the values for R; and R,

1. Ream the sleeve to 63 p-inch or less
2. Grind the journal to 16 p-inch or less

(¢) From Figure 10.3, for SAE 20 oil at 130 F
7 =3.8x10" rehns

From Figure 10.9, for L/d = 0.5 and ¢ = 0.7

F (c
=—-|—1=94
I UU(J
in
U=2 =27(1.0000)(50)=314 —
m =27(1.0000)(50) =314 =
9.4(3.8x107%)(314
F = ( ) )( ):8.0,13
0.0014 in

The tangential force, friction torque, and power loss is

F =FL=80(1.0)=801b

T, =Fr= 8.0(1.0)=8.0 in-lb
T .
(hp)/_ __n 8 0(3000) = 0.38 horsepower

63,025 63,025
(d) From Figure 10.11, with L/d = 0.5 and ¢ = 0.7

9 s,

renl

0

i3

0 =5.1(renL) =5.1(1.0)(0.0014)(50)(1.0) = 0.36 :};

374



10-13. A hydrodynamic journal bearing rotates at 3600 rpm. The bearing sleeve has a 32 mm-diameter and is 32
mm long. The bearing radial clearance is to be 20 um, and the radial load on the bearing is said to be 3 kN. The
lubricant chosen is SAE oil supplied at an average temperature of 60 C. Estimate the friction-generated heating rate
for this bearing if the eccentricity ratio has been determined to be 0.65.

Solution

u -rry 1 NM
£ s s

or Watts

We have
U= zdn _ 7r(0.032)(3600) 60
60 60

m
S

From Figure 10.9, with L/d =1 and ¢ = 0.65,

From Figure 10.3, for SAE 10 oil at 140 F

7 =2.7x10" rehn =18.6 mPa-s
9.2(18.6x107)6.0
92 60 g N

b 20%107° m
0.016

J
H, =821(0.032)(6.0) =157
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10-14. It is desired to design a hydrodynamically lubricated 360° plain bearing for a special factory application in
which a rotating steel shaft must be at least 3.0 inches nominal diameter and the bushing (sleeve) is to be bronze,
reamed to size. The radial bearing load is to be 1000 1b. The desired ratio of length to diameter is 1.5. The shaft is
to rotate at a speed of 1000 rpm. It has been estimated that an eccentricity ratio of 0.5 should be a good starting
point for designing the bearing, based on an evaluation of the optimal design region of Figure 10.14 for a length-to-
diameter ration of 1.5.

Solution
From Table 10.2, for “general machine practice-continuous rotation motion”, and d > 3.0 in., then

¢ =0.004 to 0.007

£ 20.003 t0 0.005

r

Initially select c¢/r = 0.003. Using Table 6.11, and initially deciding to grind the steel journal, (sleeve is reamed),

R, =63 p-in.
R, =16 p-in.
Writing all pertinent expressions as functions of d gives:
L= (£j d=1.5d
d

W _1000 667 Ib

L 154 d in

d (1000 i
y - min _7d(1000) ¢ org B0
60 60 sec

4,=C A =8(zdL)=127d* in’

h*"p

c= f(ij - o.oos(ij =0.0015d
2 2

7

1

Use Figures 10.7 and 10.9 to evaluate f,, and f,. . Note however that there is no curve presented for the specified

value of L/d = 1.5. Thus, it will be necessary to utilize the interpolation equation to find value of f,, and f; for L/d
=1.5. Hence,

[—é(l—1.5)(1—2><1.5)(1—4><1-5)fx+§(1_2X1'5)(1_4X1'5)f]‘0

(1s)
—%(1—1.5)(1—4><1.5)f0_5 +%(1—1.5)(1—2><1.5)f0_25}

f=0.185f, +0.987f,, —0.185 f,, —0.012f, .

From Figure 10.7 with £ = 0.5, values of le at L/d ratios of o0, 1.0, 0.5, and 0.25 are

f.,=70
Sio=18
Jfos =0.69
Jfoas =0.18

Thus,
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(/3 )o_,, =0.185(7.0)+0.987(1.8)-0.185(0.69) ~0.012(0.18) = 2.94
d

From Figure 10.9 with £ = 0.5, values of fF1 at L/d ratios of «0, 1.0, 0.5, and 0.25 are

f. =85
fio=78
Jos =15
fo.zs =73

and

(fFI )izl.s = 0.185(8.5)+ 0.987(7.8)—0.185(7.5)—0.012(7.3) =7.79
d
Thus,

2
ﬁ(fj =2.94
nU\r

667/d
u(o.om)z =2.94
77(16.677rd
667(0.003)°  [3.89x10°
2.94( 16 677z

Combining equations and assuming that the ambient air is ®, = 75" F we have

231x107 (127rd2)(®“2_75j9336

kA4, (@ -0, )J®

F= : = =8.62x107 (O,

60UL 60(16.677d)(1.5d )

We have also that

i(£j=7,79
nUu\r
7.791(16.67xd
_T7m(16677d) 1ot [
0.003 in

Equating yields
8.62x107°(©, —75)=1.35x10°nd
6.39x10*

d="""_(®,-175
“2(e,-73)

Now equating the expressions for the diameter yields

, s -8
3.89%x10 :6.39><10 (®0_75)
n n

n=1.05x10""(®,~75)" rehns

From Figure 10.3
1= [y (©,,0il)  rehns
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Solve these by trial and error. As a first try select SAE 10 oil.

Qil Spec. 0,,°F 1, rehns from eq. 1, rehns from Fig 10.3 Comment
SAE 10 175 1.04x10° 1.0x10° Close
SAE 10 176 1.06x10° 1.05x10° Adequate
Thus,
-8
d= w(l%—ﬁ) =6.14 inch
1.05x10°°

Tentatively, the following dimensions and parameters would be recommended:

d=6.14 inch
L=9.2 inch
Oil; SAE 10
0,=176F

Checking Table 10.2 for this larger shaft we see that it may be desired to increase the clearance. However, we shall
keep ¢ = 0.003 in. for now. Checking the minimum film thickness gives

() g =€(1-£)=0.003(1-0.5) = 0.0015 inch
(7)) ogured = 3-0(63+16)(10) = 0.0004 inch

The existing film thickness is about four times the required film thickness, therefore the recommendations should
hold for a ground journal.
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10-15. For the design result you found in solving problem 10-14,
a.  Find the friction drag torque.
b. Find the power dissipated as a result of friction drag.

Solution

From Problem 10-14 the following parameters are pertinent:

d=6.14 inch

L=92 inch

Oil; SAE 10

0,=176F

F =8.62x10" (@0 - 75)

Based on these results:
(a) The friction drag torque is

T, =Fr=(FL)r= 0.87(9.2)[6’—214j =24.6 in-lb

(b) The power dissipated by the friction drag is

Ton 24.6(1000)
hp) =—L—=
(kp), 63.025  63.025

=0.39 horsepower
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10-16. A hydrodynamically lubricated 360° plain bearing is to be designed for a machine tool application in which a
rotating steel spindle must be at least 1.00 inch nominal diameter, the bushing is to be bronze, and the steel spindle
is to be lapped into the bronze bushing. The radial bearing load is 40 Ib, and the spindle is to rotate at 2500 rpm.
The desired ratio of length to Diameter is 1.0. Conduct a preliminary design study to determine a combination of
dimensions and lubricant parameters for this application.

Solution

The steel spindle is to be lapped into the bronze bushing and the bearing has a 360° configuration. The sliding
surface velocity is

1.00)(2500
p,, -2V _Z(L0)E0) 5, 1
12 12 min
W 40
L 40 psi
P=ar " Too(ro)” T

From Table 10.2 we see that for precision spindle practice, with hardened and ground spindle lapped into a bronze
bushing and for diameters under 1 inch; with velocity above 500 ft/min and pressure under 500 psi that the data are
split between the first two lines of the table. As a start let’s pick ¢ = 0.0015 inch. In addition, from Figure 6.11,
lapping produces a finish of R; = R, = 8 p-in. Also, ¢/r =0.0015/0.50 = 0.003.

From Figure 10.14, for L/d = 1.0, we read the values of € corresponding to maximum load carrying ability and
maximum friction drag, respectively as

=0.47
=0.70

&

max —/load

&

max — friction

Since no specification is given for ¢, a midrange value will be assumed, i.e., ¢ = 0.6. From Figure 10.9, for L/d = 1.0
and e =0.6

Writing all pertinent expressions as a function of d gives:

L :(éjd =d inch
d

y W40
L d in
d (2500 i
U:”_"I”:M:m,m”dﬂ
60 60 sec

4, =C,A, =8(ndL)=8zd* in’

c= 5@] = 0.003 (1] ~0.0015d
r\2 2

Combining and assuming ambient air is @, = 70 F
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. [ ©, =70
kA, (0, -0,)J, 2.31x10 (87rd )( j9336 .
F = = =3.45x107 (O,
60UL 60(41.677d)(d)
Also, we have
Sn(41.
_8Sn(3L677d) oy 2
0.003 in

Equating the two values gives

3.45><10‘3(®0 —70):3.71x10577d
-9
d :M(@)o _70)
n

From Figure 10.7, using L/d = 1.0 and ¢ = 0.6

A
=L 2] =27
I UU(VJ
(40/d)(0.003)"
n(41.67zd)
40( 0003 102><10_6
2.7( 41 677r

-6 -9
}1.02><10 :9.30><10 (®0_70)
n n

7=848x10"(®,~70)" rehns

~70) —

b
in

From Figure 10.3 77 = f,,.., (©,,0il) in rehns . Solve by trial and error. As a first try select SAE 10 oil.

0?2

Qil Spec. 0,,°F 1, rehns from eq. 1N, rehns from Fig 10.3 Comment
SAE 10 175 9.35x107 1.1x10° Close
SAE 10 180 1.03x10° 1.0x10° Adequate
Thus,
~9.30x107

oo (180-70)=1.02 inch
.UX

Tentatively, the following dimensions and parameters would be recommended:
d=1.00 inch
L=1.00 inch
Oil; SAE 10
0,=180F

Checking the minimum film thickness gives
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(B, ) e = €(1-£)=0.0015(1-0.6) = 0.0006 inch
(7)) rgurea = 5-0(8+8)(10°) = 0.00008 inch

The existing film thickness is about seven times the required film thickness, therefore the recommendations should
hold for a lapped bearing pair.
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10-17. For your proposed design result found in solving problem 10-16

(a) Find the friction drag torque
(b) Find the power dissipated as a result of friction drag.

Solution

The following results for problem 10-16 which are pertinent are;

d=1.00 inch
L=1.00 inch
Oil; SAE 10
0,=180F
3 Ib
F, =3.45x107(©, -70)=0.38 —
m

(a) Friction drag torque

T, =Fr=(FL)r= O.38(1.0)(%) =0.19 in-Ib

(b) Power dissipated by friction is

T.n 0.19(2500
(hp)f _ f _ ( )

= = =0.008 horsepower
63,025 63,025
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10-18. A hydrodynamically lubricated 360° plain bearing is to be designed for a conveyor-roller support
application in which the rotating cold-rolled steel shaft must be at least 100 mm nominal diameter and the bushing is
to be made of poured Babbitt, reamed to size. The radial bearing load is to be 18.7 kN. The desired ratio of length
to diameter is 1.0. The shaft is to rotate continuously at a speed of 1000 rpm. Low friction drag is regarded as more
important than high load-carrying capacity. Find a combination of dimensions and lubricant parameters suitable for
this conveyor application.

Solution

The spindle is cold rolled steel and the bushing is poured Babbitt, reamed to size. From table 10.2, for general
machine practice, continuous rotation, cold rolled steel journal in poured Babbitt bushing reamed to size, and for a
100 mm diameter select a clearance as 0.005 inches or 0.127 mm. We have that ¢/r =0.127/50 = 0.0025. From
Figure 10.14, for L/d = 1.0, read values of € corresponding to minimum friction drag and maximum load carrying
capacity as

=047
=0.70

&

max —load

&

ma-— friction

We note that for this application that low friction drag is regarded as more important than high load carrying
capacity. Thus, select € = 0.65.

(h, )mmg =c(1-£)=0.127(1-0.65) = 0.04445 mm
(hﬂ )r@quir@d 2 SO(R/ + Rb )
Using Figure 6.11 for a cold rolled journal Rj = 1.6 pm and for a reamed bushing R, = 1.6 um. Thus,

(7, pirea =35-0(1.6+1.6) pm =16 pm = 0.016 mm

It is noted that (%, )existing €Xc€€ds (A,)required b @ factor of about 3 which is an acceptable margin. From Figure 10.7
and 10.9, for L/d = 1.0 and ¢ = 0.65 we have

F
f. = —l(fj =93
S/ VAN
=—-|—| =35
T = (rj
3
W BT e N
L 0.100 m
0.100)(1000
y = zdn_7(0.100)(1000) 5., m
60 60 S
2 5 2
1.87x10”(0.0025
nzﬂ(ﬁj - (0.0025) _ 64 Pa-s
35U\ r 3.5(5.24)
Using 1 rehn = 6895 Pa-s, the required viscosity is
n= 0064 _ 5 2810 rehns
6895

From Figure 10.3, one of several oil selections that would be satisfactory is SAE 50 oil operating at about 152°F or
67°C.
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In summary we have:
d =100 mm
L =100 mm
Oil: SAE 50
0,=67C
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10-19. For your proposed design result found in solving problem 10-18, find the friction drag torque.

Solution
From problem 10-18 we had

d =100 mm

L =100 mm

Oil: SAE 50

0,=67"C

1 =0.064 Pa-s = 9.28x10° rehns
U=524m/s

¢/r=0.0025

F(c
=21[f)=93
T UU(VJ

Based on these results the friction drag torque is

_9:3(0.064)(5.24)(0.100)(0.050) _
0.0025
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Chapter 11

11-1. For each of the following applications, select two possible types of rolling element bearings that might make
a good choice.

(a) High-speed flywheel (see Chapter 18) mounted on a shaft rotating about a horizontal centerline.

(b) High-speed flywheel mounted on a shaft rotating about a vertical centerline.

(c) Low-speed flywheel mounted on a shaft rotating about a vertical centerline.

Solution

Utilizing Table 11.1, and deducing primary design requirements from problem statements, the following potential
bearing types may be selected:

(a) Design requirements: moderate to high radial capacity, moderate to low thrust capacity, high limiting
speed, moderate to high radial stiffness, moderate to low axial stiffness. Bearing candidates:
(1) Maximum capacity ball bearing
(2) Spherical roller bearing

(b) Design requirements: moderate radial capacity, moderate —one-direction thrust capacity, high limiting
speed, and moderate radial stiffness, moderate to high axial stiffness. Bearing candidates:
(1) Angular contact ball bearings
(2) Single-row tapered roller bearings

(c) Design requirements: low to no radial capacity, moderate to high thrust capacity- one direction, limiting
speed low, radial stiffness low to none, moderate to high axial stiffness. Bearing candidates:
(1) Roller thrust bearing
(2) Tapered roller thrust bearing
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11-2. A single-row radial ball bearing has a basic dynamic load rating of 11.4 kN for an L, life of 1 million
revolutions. Calculate its Ly life if it operates with an applied radial load of 8.2 kN.

Solution

11.4Y
(Llo)s_sz = (EJ x10° =2.69x10° rev
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11-3. a. Determine the required basic dynamic load rating for a bearing mounted on a shaft rotating at 1725 rpm if
it must carry a radial load of 1250 Ib and the desired design life is 10,000 hours.

b. Select a single-row radial ball bearing from table 11.5 that will be satisfactory for this application if the outside
diameter of the bearing must not exceed 4.50 inches.

Solution

(a) From (11-1)

1
L. )3
c1, (5] 2

L, =(10" hr)(1725rev/min) (60 min/hr) = 1.04x 10" rev

[1.04x109

10°

1
T (1250) = 12,700 Ib

[Cd ]req =
(b) Selecting Bearing No. 6310

C,=13,900 Lb> 12,700 Ib
d,=4.3307 in. <4.50 in.
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11-4. A single-row radial ball bearing must carry a radial load of 2250 N and no thrust load. If the shaft that the
bearing is mounted to rotates at 1175 rpm, and the desired L, life of the bearing is 20,000 hr, select the smallest

bearing from Table 11.5 that will satisfy the design requirements.

Solution

From (11-1)

and

So

Ly =(20,000 hr)(1175 rev/min)(60 min/hr) = 1.41x10” rev

9 1/3
[c,] =20 9950y 2523 kN
d req 106

From Table 11.5, the smallest bearing with C,; = 25.23 kN is bearing # 6306, while bearing #6207 is the next

smallest.
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11-5. In a preliminary design calculation, a proposed deep-groove ball bearing had been tentatively selected to

support one end of a rotating shaft. A mistake has been discovered in the load calculation, and the correct load turns
out to be about 25 percent higher than the earlier incorrect load used to select the ball bearing. To change to a larger
bearing at this point means that a substantial redesign of all the surrounding components will probably be necessary.

If no change is made to the original bearing selection, estimate how much reduction in bearing life would be
expected.

Solution

3
From (11-1) % = (Qj . Setting correct load P, equal to incorrect load P;, then

P
3 3
L C, L C,
10° | P 10° | P

LP =C)x10° LP =C;x10°
LE =LF

L_FB__F !

==t = -=0.51

LB (125R) (1.25)

Thus, life would be reduced by approximately 50 %.
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11-6. A number 6005 single-row radial deep-groove ball bearing is to rotate at a speed of1750 rpm. Calculate the
expected bearing life in hours for radial loads of 400, 450, 500, 550, 600, 650, and 700 1b, and make a plot of life
versus load. Comment on the results.

Solution

From Table 11.5, the basic dynamic load rating for a 6005 single-row radial deep groove ball bearing is Cy4 = 2520
Ib. From (11-1)

_CIx10° (2520)’x10°  1.6x10"

(L)rev - P3 P3 P3
At n= 1750 rpm, the life in hours is
L 16 11
(L) - (L), __ 16x10 : :1.52><310 "
" (1750)(60) (1750)(60)P P
so for the specific loads:
P, Ib p? (L)nr
400 6.4x 10’ 2375
450 9.1x 10’ 1670
500 1.3x 10° 1170
550 1.7x 108 890
600 22x 10 690
650 2.7x 10 545
700 34x10° 450
2500 C
& 2000 -
S -
o] -
] L
—_ 1500
= B
& 1000 :—
i i
500 :—
o B | L 1 L | L L L |
a 200 400 800 800
Load, Lb

Note how rapidly the expected life decreases even for relatively small increases in load.
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11-7. Repeat problem 11-6, except use a number 205 single-row cylindrical roller bearing instead of the 6005
radial ball bearing.

Solution

From Table 11.6, the basic dynamic load rating for a 205 single-row cylindrical roller bearing is Cy4 = 6430 Ib.

Cx10°  (6430)’ x10°  2.66x10"”
( )revz P3 = P3 = P3

Atn = 1750 rpm, the life in hours is

(L), 2.66x107  2.53x10"
(L) = = 3 3 hr
v = (1750)(60) _ (1750)(60)P° P

so for the specific loads:

P, Ib p? (L)nr
400 6.4x 10’ 39,531
450 9.1x 10’ 27,800
500 1.3x 10® 19,460
550 1.7x 10® 14,900
600 22x 10 11,500
650 2.7x 10 9,035
700 34x10° 7,440
4E+04 [
§ 3E+04 f—
an r No. 205 Bearing
3 -
~ 2E+04 [
— r
1E+04 [

o
[\
o
o
-
o
o
[=>]
o
o
.
o
o

Note how rapidly the expected life decreases even for relatively small increases in load.
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11-8. A number 207 single-row cylindrical roller bearing has tentatively been selected for an application in which
the design life corresponds to 90 percent reliability (L, life) is 7500 hr. Estimate what the corresponding lives
would be for reliabilities of 50 percent, 95 percent, and 99 percent.

Solution

Using (11-2), for the 207 roller bearing,

L,=K,L,
From Table 11.2,

K, =5.0

Ky =0.62

Ky =0.21

The L life is given as 7500 hours, so from the above

Ly, =5.0(7500) = 35,000 hr
Lys =0.62(7500) = 4,650 hr
Ly, =0.21(7500) = 1,575 hr
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11-9. Repeat problem 11-8, except use a number 6007 single-row radial ball bearing instead of the 207 roller
bearing.

Solution

Using (11-2), for the 6007 ball bearing,

From Table 11.2,

K, =50
K,, =0.62
K, =021

The L life is given as 7500 hours, so from the above

Ly, =5.0(7500) = 35,000 hr
Lys =0.62(7500) = 4,650 hr
Ly, =0.21(7500) = 1,575 hr
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11-10. A solid steel spindle shaft of circular cross section is to be used to support a ball bearing idler pulley as
shown in Figure P11.10. The shaft may be regarded as simply supported at the ends and the shaft does not rotate.
The pulley is to be mounted at the center of the shaft on a single-row radial ball bearing. The pulley must rotate at
1725 rpm and support a load of 800 Ib, as shown in the sketch. A design life of 1800 hours is required and a
reliability of 90 percent is desired. The pulley is subjected to moderate shock loading conditions.
(a) Pick the smallest acceptable bearing from Table 11.5 if the shaft at the bearing site must be at least 1.63
inches in diameter.
(b) Again using Table 11.5, select the smallest bearing that would give an infinite operating life, if you can find
one. Ifyou find one, compare its size with the 1800-hour bearing.

Solution

(a) The design life is to be

L, = (1725 ﬂj{60ﬂj(1soo hr)=1.86x10° rev
min hr
And moderate shock loading exists. A single row radial ball bearing is to be selected. From (11-3)
P.=X,F+Y,F,
From Table 11.4, for a single row radial ball bearing:
X, =1 Y, =0
X, =055 Y, =145

Hence,

(P.), =1(800)+0(0) =800 Ib
(P), =0.55(800)+1.45(0) =440 Ib

e

Since (P,); > (P.), P.= (P.); = 800 Ib. Calculating the basic dynamic radial load rating requirement from (11-4),

[C.(90)],., = lﬁiof,)}} (IF)P

From Table 11.3, IF = 1.75 and from Table 11.2 Kz = 1.0 for R =90. Thus, we find

1.86x10° |
[C,(90)] ., :[W] (1.75)(800) = 7990 b

The smallest acceptable bearing, with a bore of at least 1.63, from Table 11.5 is bearing No. 6309 (limiting speed
ok). Checking the static load rating Py, using (11-5) and Table 11.4

Py, =800 1b
From Table 11.5, for bearing No. 6309, C; = 7080 Ib. Since P, < C; the static load rating is also acceptable.

Therefore select bearing No. 6309 and locally increase the shaft diameter at the bearing site to d = 1.7717 inches,
with appropriate tolerances.
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(b) From Table 11.5, looking for
(P)(IF)=800(1.75) =1400 < P,

the infinite life requirement is satisfied by bearing No. 6040. Comparing sizes:

No. 6309 No. 6040
Bore 1.77 in. 7.87 in.
Outside Diameter 3.94 in. 12.20 in.
Width 0.98 in. 2.01 in.
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11-11. A helical idler gear (see Chapter 15) is to be supported at the center of a short hollow circular shaft using a
single-row radial ball bearing. The inner race is presses on the fixed non-rotating shaft, and the rotating gear is
attached to the outer race of the bearing. The gear is to rotate at 900 rpm. The forces in the gear produce a resultant
radial force on the bearing of 1800 N and a resultant thrust force on the bearing if 1460 N. The assembly is subjected
to light shock loading conditions. Based on preliminary stress analysis of the shaft, it must have at least a 50-mm
outside diameter. It is desired to use a bearing that will have a life of 3000 hours with 99% reliability. Select the
smallest acceptable bearing (bore) from Table 11.5.

Solution

Given (dp,, ). 250 mm, F, =1800 N, F, =1460 N, n =900 rpm, and R = 99% , the design life is

mi
Ly =(3000 hr)(900 rev/min )(60 min/hr) =1.62x10° rev
Moderate shock exists and a single-row ball bearing is to be selected. From (11-3)
P, =X,F +Y,F,

From Table 11.4; X, =1.0,Y, =0 and X, =0.55,Y, =1.45. Therefore

(), =1.0(1800) +0(1460) = 1800 N
(), =0.55(1800) +1.45(1460) = 3107 N

Since (P, )2 >(P, )1 , P = (Pe)2 =3107 N . The radial load rating is

[€i(99)],, = ﬁ (1F)E,

From Tables 11.2 and 11.3: K =0.21 and /F =1.4. Therefore

1/3
1.62x10°
[C, (99)]@ = {W} (1.4)(3107) ~ 28.5 kN

From Table 11.5, the smallest acceptable bearing with (d,,,, ) . >50 mm a #6210, where the limiting speed is

acceptable (7000 — 8500 rpm). Checking static load

min

By = X Fy + X F,

st sr

From Table 11.4; X =1.0,Y =0 and X, =0.60,Y, =0.50. Therefore

(P,

Se

), =1.0(1800)+0(1460) = 1800 N
(P,), =0.60(1800)+0.50(1460) = 1810 N

se

Since (P, ), >(P.),> P.=(P.), =1810 N . From Table 11.4, C, =23.2 kN for a #6210 bearing

se se
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11-12. An industrial punching machine is being designed to operate 8 hours per day, 5 days per week, at 1750 rpm.
A 10-year design life is desired. Select an appropriate Conrad type single-row ball bearing to support the drive shaft
if bearing loads have been estimated as 1.2 kN radial and 1.5 kN axial, and light impact conditions prevail. Standard
Lo bearing reliability is deemed to be acceptable for this application.

Solution

The design life is to be

L= (1750 ﬂj{ﬁo@j g (5 daysj(sz wk)=2.18x10° rev
min hr day wk

And light impact loading exists. and a single-row ball bearing is to be selected From (11-3)

From Table 11.4; X, =1.0,Y, =0 and X, =0.55,Y, =1.45. Therefore

(P),=1.001.2)+0(1.5) =1.2 kN
(P), =0.55(1.2)+1.45(1.5) = 2.84 kN

Since (P,), >(R),» B, =(B,), =2.84 kN. The basic dynamic radial load rating is

[Ci(90)],, = ﬁf(ﬁ) (IF)F,

From Tables 11.2 and 11.3: K, =1.0 for R =90% and IF =1.4. Therefore

1/3

[Ci(90)] = 281x10° (1.4)(2.84) =23.93 kN

| (1.0)(10°)

From Table 11.5, an appropriate bearing would be bearing 6306, having a bore of 30 mm, outside diameter of 72
mm, and width of 19 mm. Limiting speed of 9000 rpm is ok. Checking static load rating P, using (11-5) and Table
11.4,

by = X Fy, + X,

§T Ssr

From Table 11.4; X =1.0,Y =0 and X, =0.60,Y, =0.50. Therefore

(P.),=1.0(1.2)+0(1.5) =12 kN
(P, ), =0.60(1.2) +0.50(1.5) =1.47 kN

Since (P, )2 > (P, )1 , P,=(P, )2 =1.47 kN . From Table 11.5 we find C; =16 kN for a No. 6306 bearing.

Assuming that the 30 mm bore is large enough to accommodate the strength-based shaft diameter requirement, the
final selection is bearing No. 6306.
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11-13. The shaft shown in Figure P11.13 is to be supported by two bearings, one at location 4 and the other
location B. The shaft is loaded by a commercial-quality driven helical gear (see Chapter 15) mounted as shown.
The gear imposes a radial load of 700 Ib and a thrust load of 2500 Ib applied at a pitch radius of 3 inches. The thrust
load is to be fully supported by bearing 4 (bearing B takes no thrust load). It is being proposed to use a single-row
tapered roller bearing at location 4, and another one at location B. The devise is to operate at 350 rpm, 8 hours per
day, 5 days per week, for 3 years before bearing replacement is necessary. Standard L, reliability is deemed
acceptable. A strength-based analysis has shown that the minimum shaft diameter must be 1.375 inches at both
bearing sites. Select suitable bearings for both location 4 and location B.

Solution

Before proceeding with bearing selection, the bearing reactions must be found at both A and B using equilibrium
concepts. Thus,

F = -7000 th (ie., down)

F =20010
| -
(R :] ; L
A > } . N
|
g ._;‘ 40

Summing moments about 4 and B yield:

10(R, ) +6(~7000)~3(2500) = 0

( ):42,000+7,500
BIr 10

10(R,) —4(7000)+3(2500)=0

28,000 7,500
(R,), = = = 2,050 b(up)

=4,950 1b (up)

Summing forces horizontally gives

(R,), +2500=0
(R,). =-2500 Ib(left)

a

Thus we have for bearings A and B:

Bearing A: Bearing A:

F =20501b F =49501b
F =25001b F =01b

n =350 rpm n =350 rpm
R =90 percent R =90 percent
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For both bearings the design life is to be

L= (350 ﬁ)[m%)[s EJ[S da—fJ[sz W—k](3 yr) = 1.31x10° rev

min r day w yr

From Table 11.3, for commercial gearing IF = 1.2 and from Table 11.2, for R=90% , K; =1.0. For bearing A
then, from (11-3)

136 :XdFr +YdFa

From Table 11.4, for single row roller bearing (a # 0), which is a good assumption for tapered roller bearings;
X4 =1.0,Y, =0 and X 4 = 04, de =0.4cota . Since a is not known till the bearing is selected, first assume

that Y, ~15, and revise later when a becomes known. Hence,

(P.), =1.0(2050) +0(2500) = 2050 Ib
(P.), =0.4(2050) +1.5(2500) = 4570 Ib

Since (P,), >(R),» B, =(P,), =4570 1b. The basic dynamic radial load rating from (11-4) is

a

L
C,;(90)| =|—4—1 (IF)P,
|: d ( )]req KR (106) ( )
Using a = 10/3 for roller bearings, we find
3/10

1.3x108

(10)(10%)

From Table 11.7, tentatively select bearing No. 32307, which has a value of Cy = 24,100 Ib. However, it must be
noted that this bearing has a value of ¥, =1.9 which is significantly different from the value assumed before.

[C (90)]req =

(1.2)(4570) = 23,620 Ib

Using this value and recalculating P, = (P, ), as

(P.), =0.4(2050)+1.9(2500) = 5570 Ib

and

3/10

8
[C.(00)],, = L30T (g 2)(5570) = 28,800 Ib

(10)(10%)

Looking again at Table 11.7, an appropriate selection appears to be bearing No. 32309. Note that for this bearing
thatY, =1.74. This value is close to the value 1.9 and a little smaller so that this bearing selection is satisfactory.

Further, the bore diameter is 1.7717 inches, greater than the minimum shaft size of 1.375 inches. Thus, the
recommendation for bearing site A is:

Bearing No. 32309
Bore: 1.7717 inches
Outside diameter: 3.937 inches
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Width: 1.5059 inches

Checking static capacity, from Table 11.7 C; = 38,600 b is an acceptable value.

Repeating the procedure just completed for bearing B. From (11-3)

(), =1.0(4950) +0(2500) = 4950 Ib
(P,), =0.4(4950)+1.5(0) = 1980 Ib

Since(P,), >(R,),, B, =(P,), =4950 Ib. Calculating the basic dynamic radial load rating requirement from (11-4),

using a = 10/3,
3/10

8
1.3x10 (1.2)(4950) = 25,6001b

(1.0)(10%)

From Table 11.7, tentatively select bearing No. 32308 which has a value of Cqy = 27,700 Ib, and C, = 33,700 lb, both
acceptable values. The recommendation for bearing site B is

[ca(00)],, =

Bearing No. 32309

Bore: 1.5748 inches
Outside diameter: 3.150 inches
Width: 0.7776 inches
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11-14. From a stress analysis of a rotating shaft, it has been determined that the shaft diameter at one particular

bearing site must be at least 80 mm. Also, from a force analysis and other design specifications, a duty cycle is well

approximated by three segments, each segment having the characteristics defined in Table P11.14.

The total design life for the bearing is to be 40,000 hours and the desired reliability is 95 percent. A single-

row deep groove ball bearing is preferred.

a. Select an appropriate bearing for this application, using the spectrum loading procedure.

b. Compare the result of (a) with bearing selection for this site using the steady load procedure,
assuming that a constant radial load (and corresponding axial load) is applied to the bearing
throughout all segments of its operation.

Table P11.14 Duty Cycle Definition

Variable Segment 1 Segment 2 Segment 3
F, kN 7 3 5

F,, kN 3 0 0

IF light impact heavy impact moderate impact
n; per duty cycle 100 500 300

Nop, TpM 500 1000 1000
Solution

(a) Following the approach of Example 11.2, the following table may be constructed (for single-row deep-

groove ball bearing)

Variable Segment 1 Segment 2 Segment 3
F., kN 7 3 5
F., kN 3 0 0
f 1 1 1
Y, 0 0 0
X, 0.55 0.55 0.55
Y, 1.45 1.45 1.45
X, 1 1 1
Y, 0 0 0
X, 0.6 0.6 0.6
Y, 0.5 0.5 0.5
(Pe)l = F; 7 3 5
(5)2 =0.55F, +1.45F, 8.2 1.65 2.75
P, kN 8.2 3 5
(P,),=F. 7 3 5
( ge)2=06F,-+0~5Fa 5.7 1.8 3
Py, kKN 7 3 5
n, /duty cycle 100 500 300
@, =n, /900 0.11 0.56 0.33
IF 1.35 3.5 1.75
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Also, from table 11.2, for R = 95%, K = 0.62 and therefore the design life is, by problem specification H; = 40,000
hr. To find L,, first find the duration of one cycle, as follows:

For segment 1, 100 revolutions at 500 rpm give time t, for segment 1 as

; _ 1000 Y _ 0.2 min
1= =Y.
500 V.

min

Similarly,

500 rev .
t, =————=0.5 min
1000 1Y

min

300 rev .
t; =————=0.3 min
1000 =¥

min

So the time for one duty cycle is
tcycle = tl +t2 +t3 = 02+05 + 03 = l min

Hence the design life in revolutions is

L, =(40,000 hr)(m@J[l L?lej(%o v jzz,mxlog rev
hr min cycle

From (11-5), for a ball bearing (a = 3)

[Ca(99)],, = %X(izz) 3 3/0.11[1.35(1.8)]3 +0.056[3.5(3)] +033[1.75(5)]

[C,(95)] =15.163149.2+648.3+221.1 =152.5 kN
req

From Table 11.5, the smallest acceptable bearing is No. 6320. This bearing has
dpore = 100 mm

doutside =215 mm
width = 47mm

Checking limiting speed for bearing No. 6320, 3000 rpm is acceptable. The basic static load rating of 140 kN > 7
kN is acceptable.

Also, the bore diameter of 100 mm is acceptable because it will govern the strength-based minimum shaft diameter
of 80 mm.

(b) Using the simplified method, choosing segment 2 loading data from the table above, (11-4) gives

1

9 |3
[Ca(95)],, = 2AOA0 |5 5)(3) 21592 kN

(0.62)(10°)
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From Table 11.5, the smallest acceptable bearing is No. 6320. In this case the simplified method selects the same
bearing with a lot less work. This result will not always be achieved however, as demonstrated by Example 11.2.

405



11-15. A preliminary stress analysis of the shaft for a rapid-return mechanism has established that the shaft
diameter at a particular bearing site must be at least 0.70 inch. From a force analysis and other design specifications,
one duty cycle for this device last 10 seconds, and is well approximated by two segments, each segment having the
characteristics defined in Table P11.5.

The total design life for the bearing is to be 3000 hours. A single-row tapered roller bearing is preferred,
and a standard L, reliability is acceptable.

a. Select an appropriate bearing for this application, using the spectrum loading procedure.

b. Compare the result of (a) with a bearing selection for this site using the steady load procedure, assuming
that a constant radial load equal to the largest spectrum load (and corresponding axial load) is applied to
the bearing throughout the full duty cycle.

Variable Segment 1 Segment 2
F,, kKN 800 600

F,, kKN 400 0

IF light impact steady load
Operating time per cycle, sec 2 8

Nop, Ipm 900 1200

Solution

(a) Following the approach of Example 11.2, the following table may be constructed (for single row tapered

roller bearing).

Variable Segment 1 Segment 2
F.,1b 800 600
Fy, 1b 400 0

i 1 1
Y, 0 0
X, 0.4 0.4
de~ 0.4cota 0.4cota
X, 1 1
Y, 0 0
X, 0.5 0.5
Y, 0.2cotax 0.2cotax
(P, )1 =F 800 600
(P), =(0.4F, +1.5F,) 920 240
P, kN 920 600
(R.) =F 800 600
(P,.), =0.5F, +0.75F, 700 300
Py, 1b 800 600
t,[cycle, s%ycle 2 8
Nop, rpm 900 1200
n, /duty cycle 30 160
a, =n, /900 0.16 0.84
IF 1.35 (light impact) 1.0 (steady)
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To calculate n;, for segment 1,

n =(2 sec)[ﬂ E) =30 rev
60 sec
For segment 2
n, = (8 sec)(@ re_vj =160 rev
60 sec

Also, from Table 11.2, for Ly (R =90), K = 1.0. The design life is, by problem specification, H; = 3000 hr, so

L, =(3000 hr)[éoﬁ)(m sec Y1 eyeledfI90TeV 1) 5108 rev
hr min J\ 10 sec cycle

From (11-15, for a roller bearing (a = 10/3)

3
10

[C.(90)] = % 10{(0.16){(1.35)(920)}130 +(0.84){(1.0)(600)}3:|m

3
[Ca(90)],, =4.94[3.30x10° +1.53x10° [0 =3971 Ib

res

From Table 11.7, the smallest acceptable bearing is No. 30204. Actually a smaller bearing would be acceptable but
this is the smallest bearing in the table. Note that for this bearing ¥, =1.74 which is higher than the value assumed

in the tabled value of (P,),. Recalculating gives

P.=(P), =0.4(800)+1.74(400) = 1016 Ib

e e

ES 3

[C,(90)] = [2'05—“08)}10 [(0.16){(1.35)(1016)}130 +(0.84){(1.0)(600)}130T

(1.0)(10°

C, (90 =4.94]4.59x10° +1.53x10° |1* = 4263 1b
[€.(00)],, =494

so bearing 30204 remains acceptable and the bore diameter of 0.7874 will go over the maximum shaft diameter of
0.70 inch, so it is acceptable on that basis too.

The tentative selection then will be bearing No. 30204. However, it would be advisable to search for manufacture’s
catalogs for smaller bearings before making a final choice.

(b) Using the simplified method, choosing segment 1 loading data from the table above, then (11-4) gives

2.05x10%

(1.0)(10%)

From Table 11.7, the smallest acceptable bearing is No. 3034. So the simplified method results in a smaller required
bearing.

(1.35)(1016) = 6770 I

[ci(0)],, =
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11-16. A preliminary analysis of the metric equivalent of bearing A in Figure P11.13 has indicated that a 30209
tapered roller bearing will provide a satisfactory L, bearing life of 3 years (operating at 350 rpm for 8 hours per
day, 5 days per week) before bearing replacement is necessary. A lubrication consultant has suggested that if an
ISO/ASTM viscosity-grade-46 petroleum oil is sprayed into the smaller end of the bearing (tapered roller bearings
provide a geometry-based natural pumping action, including oil flow from their smaller ends toward their larger
ends), a minimum elastohydrodynamic film thickness ( 4, ) of 250 nanometers can be maintained. If the bearing
races and the tapered rollers are all lapped into a surface roughness height of 100 nanometers, estimate the bearing
life for the 30209 tapered roller bearing under these elastohydrodynamic conditions.

Solution

From 11-16

O 250

= = ~1.77
JRZ+REJ(100)* +(100)?

This results in an ABMA L, prediction of approximately 285%. Therefore

Ljust0 = 2.85(3) =8.55 years

408



11.17. A rotating steel disk, 40 inches in diameter and 4 inches thick, is to be mounted at midspan on a 1020 hot-
rolled solid steel shaft, having S, = 65,000 psi, e = 36 percent elongation in 2 inches, and fatigue properties as shown
in Figure 2.19. A reliability of 90 percent is desired for the shaft and bearings, and a design life of 5 x 10® cycles
has been specified. The shaft length between symmetrical bearing centers [see (b) below for proposed bearings] is
to be 5 inches. The operating speed of the rotating system is 4200 revolutions per minute. When the system
operates at steady-state full load, it has been estimated that about three horsepower of input to the rotating shaft
required.

a. Estimate the required shaft diameter and the critical speed for the rotating system, assuming that the
support bearings and the frame are rigid in the radial direction. The bending fatigue stress concentration
factor has been estimated as Ky, = 1.8, and the composite strength-influencing factor, k5X108, used in (2-28),
has been estimated as 0.55. A design safety factor of 1.9 has been chosen. Is the estimated critical speed
acceptable?

b. Make a second estimate for the critical speed of the rotating system, this time including the bearing
stiffness (elasticity). Based on the procedure outlined in Example 11.1, a separate study has suggested
that a single-row deep-groove ball bearing number 6209 (see Table 11.5), with oil lubrication, may be
used for this application. In addition, an experimental program has indicated that the force-deflection data
shown in Figures 11.8 and 11.9 are approximately correct for the tentatively selected bearing. Is your
second estimate of critical speed acceptable? Comment on your second estimate, and if not acceptable,
suggest some design changes that might make it acceptable.

€. Make a third estimate for critical speed of the rotating system if a medium preload is included by the way
the bearings are mounted. Comment on your third estimate.

Solution

(a) Using (8-11)

1
2K, M 3
(d,), = {E{ng T_mH

Vs Sy S
From Figure 5.31, and the problem specification

T ) =0.55(33,000) = 18,150 psi

5108

The disk weight is
2
7r(40)
W, =0.283 — (4.0) =1,423 1b
From Table 4.1, Case 1, the maximum moment at midspan is

142
o Wl _(1423)(5) 431)(5) ~1779 in-Ib

Ry=R, =22 198 515
2 2
The torque on the shaft is
63,025(3) )
=———~=451in-lb
4200
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Then we have using the fatigue equation

(d,),, = {2{1'9(2)(1'8)(1779) 3B H; ~1.51 inches

T 18,150 65,000

From Table 4.1, Case 1, the midspan (maximum) deflection is

wr (1423)(5)’

T 48El 3
48(3O><106)£”(1'51)]
64

(D) e =0.00048 inch

The critical shaft frequency, assuming bearing and housing to be infinitely stiff is

(n,),  =187.7,] L _gse7 IV
nompre 0.00048 min

(1), e _ 8567
" 4200

op

and

=2.04

This is within the guidelines of section 8.6, and therefore acceptable.

(b) Using Figure 11.9 as the basis, and using the radial bearing reaction of 712 1b, the radial deflection for a
single bearing with no preload may be read as

(Vi) =0.00048 inch

so the total midspan lateral displacement of the disk center for the unloaded shaft centerline becomes

(¥ )1y re = 0.00048-+0.00048 = 0.00096 inch

(n,)  =187.7 1 _60ss =¥
no-pre 0.00096 min

and

(1) e _ 6058 _
n 4200

op

1.44

This is below the recommended guideline of section 8.6, and must be regarded as a risky design, requiring
improvement or experimental verification. To improve, use larger shaft or preload bearings.

(¢) Again using Figure 11.9 as a basis, when a medium preload is induced

(¥e), , =0.00015 inch
(¥,),., =0.00042+0.00015 = 0.00057 inch

and from (8-xx)
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(n, ), =187.7,|—— = 7862 =<~
et 0.00057 min

(ncr )light _ & =1.87

n_ 4200

op

giving

This is slightly below the recommended guidelines of section 8.6, but would probably be acceptable. Note that
preloading has significantly improved the system.
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Chapter 12

12-1. Figures 12.5, 12.6, and 12.7 depict a power screw assembly in which the rotating screw and
nonrotating nut will raise the load W when the torque 7% is applied in the direction shown (CCW rotation of
screw if viewed from bottom end). Based on a force analysis of the power screw system shown in the three
figures cited, the torque required to raise the load is given by (12-7).
a. List the changes that must be made in the free-body diagrams shown in Figures 12.6 and 12.7 if
the load is to be lowered by reversing the sense of the applied torque.
b. Derive the torque equation for Jowering the load in this power screw assembly. Compare your
results with (12-8).

Solution

(a) Required changes are:
(1) Reverse direction of applied torque 7.
(2) Reverse direction of collar friction force, u. W;.
(3) Reverse direction of thread friction force, u, F, (hence, components u, F, cos o and (u, F, sin
a).
(b) Incorporating the changes listed in (a), (12-4) may be rewritten as:

ZFZ =—W—-F usina—F,cosf cosa=0
ZMZ =—T, + uWr,—r,F, cos6 sina+r,F,u cosa=0

and
w
F=—
M, sina +cos 6, cosa
—cosd, sina + u, cosa
]’L — er - n ﬂl +ILICW}/,C
M, sina +cos B, cosa

This agrees with (12-8).
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12-2. The power lift shown in Figure P12.2 utilizes a motor drive Acme power screw to raise the platform,
which weighs a maximum of 3000 1b when loaded. Note that the nut, which is fixed to the platform, does
not rotate. The thrust collar of the power screw presses against the support structure, as shown, and the
motor drive torque is supplied to the drive shaft below the thrust collar, as indicated. The thread is 1 % -
inch Acme with 4 threads per inch. The thread coefficient of friction is 0.40. The mean collar radius is 2.0
inches, and the collar coefficient of friction is 0.30. If the rated power output of the motor drive unit is 7.5
hp, what maximum platform lift speed (ft/min) could be specified without exceeding the rated output power
of the motor drive unit? (Note any approximations used in your calculations.)

Solution
From (4-39)
_TIn
P 63,025
o 63,025(7.5)  4.73x10°  rev
max TR TR min
cosd, sina + u, cosa
T, =Wr, - +uWr, (from12-7)
cos@, cosa — p, sina
W =3000 1b
r, = 1.50 =0.751n
2
_ p
rp =7, _Z
1 0.25 in
p 4
r,=0.75 _05 0.688 in
4
Using (12-2)
a=tan L —an' — 02 ___33p
2zr, 27(0.688)

Since a is small, §, = 8 = 14.5° (From Figure 12.2 ¢). Thus,

c0s14.5sin3.31+0.40cos3.31
cos14.5¢0s3.31-0.40sin3.31
=995.9+1,800=2796 in-Ib

5
n = 4.73x10 169 rey
2796 min

T, = 3000(0.688)[ } 3000(2.0)(0.3)

The lift speed “s” in ft/min is related to the rotational speed 7,,, as follows:

in rev \[ 1ft .. [ ft
S=NP— | Pox || T |7 | —
rev min /{ 12in 12 min
0.25(169) ft
§=———=

=352 —
12 min
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12-3. A power lift similar to the one shown in Figure P12.2 uses a single-start square-thread power screw
to raise a load of 50 kN. The screw has a major diameter of 36 mm and a pitch of 6 mm. The mean radius
of the thrust collar is 40 mm. The static thread coefficient of friction is estimated as 0.15 and the static
collar coefficient of friction as 0.12.

a. Calculate the thread depth.

b. Calculate the lead angle.

c. Calculate the helix angle.

d. Estimate the starting torque required to raise the load.
Solution

(a) From Figure 12.2(a), the thread depth is

=3 mm

SRS
| o

(b) Since this is a single-start thread, the lead angle a may be determined from (12-2)

(c) Since the helix angle y is the complement of the lead angle a,
¥=90-3.31=286.69

(d) The starting torque required to raise the load may be obtained from (12-7) as

T, =Wr

P

uwr,

c

{cos@n sina + 4, cosa}r
cos @, cosa — y, sina ‘
6, =0=0,s0cosf, =1
sin3.31+0.15c0s3.31
c0s3.31-0.15sin3.31
=173+240=413 N-m

T, =50,000(0.0165)[ }50,000(0.040)(0.12)
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12-4. 1In a design review of the power lift assembly shown in Figure P12.2, a consultant has suggested that
the buckling of the screw might become a problem if the lift height (screw length) becomes “excessive.”
He also has suggested that for buckling considerations the lower end of the steel screw, where the collar
contacts the support structure, may be regarded as fixed, and at the upper end where the screw enters the
nut, the screw may be regarded as pinned but guided vertically. If a safety factor of 2.2 is desired, what
would be the maximum acceptable lift height L,?

Solution
From the specifications of problem 12-2,

W =3000 Ib

r :ﬂ: 0.75 in.
2

o

1
=-=025 in.
P=3

From Figure 12.2(c)

P _P_ 0,75_%: 0.625 in.
2 2

root

d, =2(0.625)=1.25 in.
Using Euler’s equation (2-36), with L, = 0.7L; (see Figure 2.7 (d)),

2

(p,)="EL
(0.7L,)
Since n, =2.2
_ (RY )ryq'd

¢ 22
[T z(1.25)"

T 64 64
=22P, =2.2(W)=22(3000) = 6600 Ib

=0.12 in* and E=30x10° psi

(})CV )req'd

T’ El
(0.7L,)’

L \/;ﬁ (30x10°)(0.12)

(0.7 (6600)

=6600

=104.8 in. (maximum acceptable lift height)
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12-5. Replot the family of efficiently curves shown in Figure 12.8, except do the plot for square threads
instead of Acme threads. Use the same array of friction coefficients, and again assume the collar friction to
be negligibly small.

Solution

Using (12-19) for a square thread (6 = 0),

-y tana

“ 14 u cota

Calculating e, _ as a function of a (0 < o < 90) for each value of i, shown in Figure 12.3, the following

table may be constructed.

H a, deg €,-0 H a, deg €, =0
0.01 0 0 0.10 0 0
10 0.95 10 0.63
20 0.97 20 0.76
30 0.98 30 0.80
40 0.99 40 0.82
50 0.99 50 0.81
60 0.98 60 0.78
70 0.97 70 0.70
80 0.94 80 0.67
90 -0 90 -
0.02 0 0 0.15 0 0
10 0.89 10 0.50
20 0.94 20 0.65
30 0.96 30 0.71
40 0.98 40 0.74
50 0.96 50 0.77
60 0.95 60 0.72
70 0.94 70 0.66
80 0.89 80 0.51
90 -0 90 -0
0.05 0 0 0.20 0 0
10 0.77 10 0.43
20 0.88 20 0.58
30 0.89 30 0.64
40 0.90 40 0.67
50 0.90 50 0.67
60 0.89 60 0.63
70 0.85 70 0.55
80 0.71 80 0.36
90 -0 90 -0

Using the format of Figure 12.8, these values may be plotted for square-thread screws, as shown below,

note that negative efficiencies are undefined.
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12-6. A 50-mm single-start power screw with a pitch of 10 mm is driven by a 0.75 kw drive unit at a
speed of 20 rpm. The thrust is taken by a rolling element bearing, so collar friction may be neglected. The
thread coefficient of friction is g, = 0.20 . Determine the maximum load that can be lifted without stalling
the drive, the efficiency of the screw, and determine if the power screw will “overhaul” under maximum
load if the power is disconnected.

Solution

r,=50/2=25mm, p=/=10mm , g =020, kw=0.75kw, n=20rpm

r,=r,—p/4=25-10/4=22.5 mm

p
T,
Wmax = i R
- cosd,sina + y, cosa
71 cos@, cosa — u, sina
where o =tan™' —2— = tan™" _10 4.1°. Since «r is small, 6, ~ 6 =14.5°. In addition
27, 27(22.5)
. 4
TR = m =358 N-m
20
Wmax = 358 = 358 =56.4 kN
0.0225| 0814:5° sin4.1° +0.2c0s 4.1° 0.0225[0.26839}
c0s14.5° cos4.1° —0.2sin 4.1° 0.95137
Wax =56.4 kKN
_ o _ 0
_ cos@— y, tanx _ cosl4.5" —0.2tan4.1°  0.95381 02538

e =
He0 cos@+ p, cotar cos14.5° +02cot4.1°  3.75829

e

4, =~ 0.25 (25% efficiency)

The screw will overhaul if

lcos@ _ 10cos14.5 — 0.0685

2zr, 27(22.5)

Hy

Since g, =0.20, it will not overhaul
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12-7. A standard 1 1/2 —inch rotating power screw with triple square threads is to be used to lift a 4800-1b
load at a lift speed of 10 ft/min. Friction coefficients for both the thread and the collar have been
experimentally determined to be 0.12. The mean thrust collar friction diameter is 2.75 inches.

a.  What horsepower would you estimate to be required to drive this power screw assembly?
b.  What motor horsepower would you recommend for this installation?

Solution

(a) r,=1.50/2=0.751n.,r,=2.75/2=1.38 in. For a square thread, r,=r, —%. From Table 12.1,

for a standard 1- ' inch square thread should have 3 threads per inch, so p = 1/3 = 0.33 in. and

ro=r, - :0.75—%=0.67 in.

a=tan"| P | = tan™ M =13.2°
2rr 271'(0.67)

P

ENGILS

For a square thread 8 = 0, so (12-7) becomes

T, =Wr

P

cos@ sina + u, cosa
[ ,sinar-+ ¢ } I
cos@, cosa — p, sina

co0s13.2-0.12sin13.2
=1173+795 =1968 in-lb
_Tn_1968(n)
63,025 63,025

- 4800(0.67)[Sin13'2 i O'IZCOSB'Z} +4800(1.38)(0.12)

horsepower

hp
From (12-1) I =np =3(0.33) = 1.0 in/rev. To find the speed n in rpm to produce a lift of 10 ft/min, then

n= (I.O r.e_Vj(IZ 1nj(10.ftj =120 rpm
in ft min

1968(120)
hp=———
63,025

=3.75 horsepower

(b) Installed motor horsepower should incorporate a safety factor on the power required, and should
specify a “standard” available motor probably a 5-horsepower motor in this case. A motor
manufactures catalog should be consulted. In fact, a gear motor would probably be required to

supply 5-horsepower at 120 rpm.
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12-8. Repeat problem 12-7 if everything remains the same except that the power screw has double square
threads.

Solution

(a) r,=150/2=0.751n.,r,=2.75/2=1.38 in. For a square thread, r,=r, —%. From Table 12.1,

for a standard 1- % inch square thread should have 3 threads per inch, so p = 1/3 = 0.33 in. and

2 _075-933 _067 in.
4 4

a =tan " tan™* M =8.9°
27r, 271(0.67)

For a square thread 6 = 0, so (12-7) becomes

c

T, =wr, [cos 6 sina+ u, c?sa} -
cos@, cosa — p, sina
sin8.9+0.12¢c0s8.9
c0s8.9-0.12sin8.9

=907 +795=1702 in-lb
1702
hp = In _ (11)
63,025 63,025

= 4800(0.67)[ }4800(1.38)(0.12)

horsepower

From (12-1) I=np =2(0.33) = 0.66 in/rev. To find the speed n in rpm to produce a lift of 10 ft/min, then

1 rev)(12in (10 ft
n= —_ — | =182 rpm
0.66 in ft min

1702(182)
hp =———==4.91 horsepower
63,025

(c) Installed motor horsepower should incorporate a safety factor on the power required, and should
specify a “standard” available motor probably a 7.5-horsepower motor in this case. A motor
manufactures catalog should be consulted. In fact, a gear motor would probably be required to
supply 5-horsepower at 182 rpm.
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12-9. A 40-mm rotating power screw with triple square threads has a pitch of p =8 mm . The screw is to

be used to lift a 22 kN load at a speed of 4 meters/min. Friction coefficients for both the collar and threads
have been determined to be 4, = x4, =0.15. The mean thrust collar friction diameter is 70 mm. Determine

the power required to drive the assembly.

Solution

r,=40/2=20mm, p=8mm , g =x.=0.15, r.=70/2=35mm

r,=r,—p/4=20-8/4=18 mm

For square threads, =0, SO

sina + 4, cosa
Tp=Wr,| ——————— |+ Wr.u,
cosa — y, sinx

where @ =tan"' = — tan™! 3@ ~12°

2zr, 27(18)

: o [}
T, =22(0.018)| M2 FOI5COSIZ 1, 55 (5 035)(0.15) = 0.1484 +0.1155 = 0.2639 KN-m
cos12° —0.15sin12°

With / = np = 3(8) = 24 mm/rev , the rotational speed to lift the load at a rate of 4 meters/min is

n=| L Vg ™) 167 pm
0.024 m min

_ Ten 263.9(167)

(kw) —=—RC = = 4.62 kw
9549 9549

You would probably specify a 5 kw motor.
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12-10. Find the torque required to drive a 16-mm single-start square thread power screw with a 2 mm
pitch. The load to be lifter is 3.6 kN. The collar has a mean friction diameter of 25 mm, and the coefficients

of collar and thread friction are g, =0.12and g, =0.15.

Solution
r,=16/2=8mm, p=2mm, px =012, 14, =015, r,=25/2=125mm
r,=r,—p/4=16-2/4=15.5 mm

For square threads, 4 =0, SO

ina +
T, = r, {sm a+ C(.)S a } Wi,
cosa — y, sina
where a =tan™' —2— — tan™! 2 ~1.2°
27, 27(15.5)

sin1.2° +0.15co0s1.2°
cos1.2° —0.15sin1.2°

Ty = 3.6(0.0155){ :|+3.6(0.0125)(0.12) =0.00957 +.0054 = .01496 kN-m

Ty =14.96 N-m ~ 15 N-m

422



12-11. A mild-steel C-clamp has a standard single-start Y2-inch Acme thread and mean collar radius of
5/16 inch. Estimate the force required at the end of a 6-inch handle to develop a 300-1b clamping force.
(Hint: see Appendix Table A.1 for friction coefficients.)

Solution

From Table A-1, for mild steel on mild steel, general application, dry sliding, the typical value is given as
te =, =0.35, r,=0.50/2=0.25 in. From Figure 12.2(c), for an Acme thread, r, = r, —p/4. From Table
12.1, a standard 2-inch Acme thread has 10 threads per inch. Thus, p =1/10=0.10 in. and , = 0.25 —
0.10/4 =0.225 in. Utilizing (12-2), with n =1 for a single thread

a=tan"'| 22 |=tan"' _010 =4.05
27r, 27[(0.225)

For small o 6, = 8 and 6 =14.5°

T - cosé sina + u, cosa
R~y

: — |+ W
cos@, cosa — u, sina

cosl14.5sin4.5+0.35c0s4.05
cos14.5¢c0s4.05—-0.35sin4.05
= 67.5(0.444)+ 32.8=30+32.8=62.8 in-lb

= 300(0.225)[ }300(0.3125)(0.35)

At the end of a 6-inch handle, the force F required would be approximately

F:%le.S b
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12-12. Design specifications for a power screw lifting device require a single-start square thread having a
major diameter of 20 mm and a pitch of 4 mm. The load to be lifted is 18 kN, and it is to be lifter at a rate
of 12 mm/s. The coefficients thread and collar friction are estimated to be x4, = 1. = 0.15, and the mean
collar diameter is 25 mm. Calculate the required rotational speed of the screw and the power required to
drive it.

Solution

r,=20/2=10mm, p=4mm, g =p, =015, r,=25/2=12.5mm ,

r,=r,—pl/4=9 mm

For square threads, =0, SO

ina +
Ty =Wr, {—sma £ C(,)sa}+Wrc,uc
cosa — 4, sina
4
where a =tan™' —2— — tan™! ~4.1°
2zr, 27(9)

sin4.1° +0.15co0s4.1°
c0s4.1° =0.15sin4.1°

Ty = 18(0.009){ } 18(0.0125)(0.15) = 0.09362+0.03375 = 0.1274 kN-m

With [ = p =4 mm/rev , the rotational speed to lift the load at a rate of 12 mm/s is

n:(l_re_VJ(lz @j(éo ﬁj:lgo rpm n =180 rpm
4 mm sec min

_ Ten _127.4(180)

(kw) = = =2.4kw (kw) —=24%kw
49549 9549

req
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12-13. A 20-mm power screw for a hand-cranked arbor press is to have a single-start square thread with
a pitch of 4mm. The screw is to be subjected to an axial load of 5 kN. The coefficient of friction for both
threads and collar is estimated to be about 0.09. The mean friction diameter for the collar is to be 30 mm.

a. Find the nominal thread width, thread height, mean thread diameter, and the lead.
b. Estimate the torque required to “raise” the load.
c. Estimate the torque required to “lower” the load.
d. Estimate the efficiency of this power screw system.
Solution

(@) r, =20/2=10in. andr.=302=151in.,and r, =1, - p/4 = 10-4/4 =9 mm. Utilizing (12-3),

with n =1 for a single thread, gives

o =tan”'| 2P| = tan™! 4| 4.05°
27r, 27(9)

Referring to Figure 12.2(a), W, = p/2 =4/2 =2 mm and h, = p/2 = 4/2 =2 mm. We have that /=
np =(1)(4) =4 mm.

(b) From (12-7), since 8 = 0 for a square thread,

sina + p, cosa
Ty = er — |+Wr.u,
cosa — 4, sina

sin4.5+0.09cos4.5
cos4.5-0.09sin 4.5
T, =45(0.17)+6.75=144 N-m

= 5000(0.009)[ }5000(0.015)(0.09)

(c) From (12-8), since since 8 = 0 for a square thread,

—sina + 4, cos

TL:er{ }+Wrc,uc

cosa + 4, sina
—sin4.5+0.09cos 4.5
cos4.5+0.09sin4.5
T, = 45(0.01 1)+ 6.75="7.25 N-m

= 5000(0.009)[ }5000(0.015)(0.09)

(d) From (12-8), noting § = 8, = 0 for a square thread

1

cos0+0.09cotd.ST, o (15|
cos0—0.09tan4.5 9

1
C2.16+1.91

=0.25 (25 percent)
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12-14. Based on design specifications and loads, a standard single-start 2 inch Acme power screw
with 4 threads per inch has tentatively been chosen. Collar friction is negligible. The screw is
in tension and the torque require to raise a load of 12,000 b at the specified lift speed has been
calculated to be 2200 in-Ib. Concentrating your attention on critical point B shown in Figure
12.9, calculate the following:

a. Nominal torsional shear stress in the screw.
. Nominal direct stress in the screw.
¢. Maximum transverse shearing stress due to thread bending. Assume that three threads carry the
full load.
d. Principal stresses at critical point B.

Solution

We have 7, =2.00/2 = 1.00 in. and p = %4 = 0.25 in. Referring to critical point B shown in Figure
12.9

(a) From (12-21), with 4. =0

T
’ zr 7
r=r 2210022 _0875 in,
2 2
2(2200
T =M= 2,100 psi (2.1 kpsi)
s 3
71'(0.875)
(b) From (12-22)
o, == 12000 4 990 psi (4.99 kpsi)

zr; 7(0.875)

(¢) From (12-23)

3(12,000 - i
w ( ) =8,730 psi (8.73 kpsi)

T S, 27(0875)(025)(3)

(d) Using the stress cubic equation (5-1)

o' -0"(4.99)+0(-2.10"-8.73*) =0
o’ —4.995" ~80.620 =0
o(0? —4.990-80.62)=0

4.99+1/(4.99)" +4(80.62)
o, = 5
0, =2.50+9.32=11.82 kpsi
o,=0

o, =2.5-9.32 =-6.82 kpsi

(e) From Table 3.3, for 1020 C.D. steel, S,, = 70 ksi. For the specified safety factor n, = 2.3,
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A
o, :i=%:30.4 ksi

n;

The state of stress at critical point B will be acceptable if

o,<0,

1 12
o, =$[(0'1 ~0,) +(0,-0,) +(0-0,)’]

1

:E[(ll_Sz_o)z +(0—{—6.82})2 +(—6.82—11_82)2:|]/2

o, =1634 kpsi <o, =30.3 kpsi

Based on yielding, therefore, the state of stress is acceptable.
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12-15. Based on design specifications and loads, a single-start 48-mm diameter Acme power screw with an
8 mm pitch has been tentatively selected. Collar friction is negligible. The screw is in tension and the
torque required to raise a load of 54 kN at the specified lift speed has bee calculated to be 250 N-m.
Concentrate on point C shown in Figure 13.9and calculate:

The torsional shear stress in the screw

The direct stress in the screw

The bending stress in the thread assuming 3 threads carry the full load

. The principal stresses at critical point C assuming stress concentration factors of
K,=25,K;,=28,and K, =22 .

a0 o

Solution

r,=48/2=24mm, p=8mm , u =0, r,=r,—-p/4=22mm, 1, =r,-p/2=20 mm
W =54kN, T, =250 N-m

; :4—2:&0)3:9.95 MPa
v, 7(0.020)
4
b. oy = lz = L()Oz =39.8 MPa
zr.  7(0.020)

120 (r, 1) 12(54000)(0.022-0.020)

_ 7 =107.4 MPa
hnp 7(0.020)(3)(0.008)

C. Gb
d 7=K,r, =2.2(9.95)=21.89 MPa
c=K,0,+K,0;, =2.8(39.8)+2.5107.4) ~ 380 MPa
From the stress cubic equation

o’ —3800% +(21.89)°0 =0
0'(0'2 —3800+479)=O
o0, =379 MPa, o, x1.5MPa,0; =0
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12-16. A special square-thread single-start power screw is to be use to raise a 10-ton load. The screw is
to have a mean thread diameter of 1.0 inch, and four threads per inch. The mean collar radius is to be 0.75
inch. The screw, the nut, and the collar are all to be made of mild steel, and all sliding surfaces are
lubricated. (See Appendix Table A.1 for typical coefficients of friction.) It is estimated that three threads
carry the full load. The screw is in tension.

a. Calculate the outside diameter of this power screw.

b. Estimate the torque required to raise the load.

c. Estimate the torque required to lower the load.

d. Ifarolling element bearing were installed at the thrust collar (gives negligible collar friction),

what would be the minimum coefficient of thread friction needed to prevent overhauling of the fully

loaded screw?

e. Calculate, for the conditions of (d), the nominal values of torsional shearing stress in the screw,

direct axial stress in the screw, the thread bearing pressure, maximum transverse shearing stress in the

thread, and thread bending stress.

Solution

We note that r, = 1.0/2 = 0.50 in. and from Table A-1, for mild steel on mild steel, lubricated, that zis,,c =
0.11 and f,ypning = 0.08.

(a) From Figure 12.2(a)
d =2r =2 r +2|=2]050+222 | 1,125 in.
Py 4
(b) Utilizing (12-3), with n=1 for a single thread,

a=tan"| 2| = tan™ _ 025 =4.55°
2ﬂ'l”p 272’(0.50)

Since 8 = 0 for a square thread,

ina+
T, - er {sma H, c9sa } W,
cosa—y, sina
sin4.55+0.08cos 4.55

c0s4.55-0.08sin4.55
Ty =10, 000(0.16)+1200 =2800 in-1b

= 20,000(0.50){ }20,000(0.75)(0.08)

(¢) From (12-8), and since 6§ = 0 for a square thread,

—sina + i, cosa
T, =Wr {—”’

P :|+WrC/LlC

cosa + 4, sina
—sin4.55+0.08cos4.55
co0s4.55+0.08sin4.55
T, =10,000(0.000672)+1200 =1207 in-lb

= 20,000(0.50)[ }+20,000(0.75)(0.08)

(d) From (12-15), the minimum value of 4, to prevent overhauling (with . = 0) is

=lcosé?= P _ 0.25 008
2zr, 2mr, 2m(0.5)

t
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(e) From (12-21), with . = 0, torsional shearing stress in the screw is
2T,

s 3
mr,

(TR )ﬂ(:O =1600 in-lb (7, with g =0)

ror -2 _050-92 _ 04375 in,
4 4

’ P
2(1600)

7 =L =12,164 psi
7(0.4375)

From (12-22), the direct axial stress in the screw is

oy == 2000 53960 psi
zr” 7(0.4375)
From (12-20), the thread bearing pressure is
" = 20,000 =17,400 psi

Tp =Py = w17 =1 )n, - 7(0.56° ~0.4375%)(3)

4 i

From (12-23), the maximum transverse shearing stress due to thread bending is

I 3(20,000) 20100 sl
r—max > pSl
2zr.pn,  27(0.4375)(0.25)(3)

From (12-24), the thread bending stress is

12w (r,-1,) 12(20,000)(0.50—0.4375)

O,
" annp’ 7(0.4375)(3)(0.25)°

=58,200 psi
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12-17. A power screw lift assembly is to be designed to lift and lower a heavy cast-iron lid for a 10-
foot-diameter pressure cooker used to process canned tomatoes in a commercial caning factory. The
proposed lift assembly is sketched in Figure P12.17. The weight of the cast iron lid is estimated to be 4000
1b, to be equally distributed between two support lugs as shown in Figure P12.17. It may be noted that the
screw is in tension, and it has been decided that a standard Acme thread form should be used. Preliminary
calculations indicate that the nominal tensile stress in the screw should not exceed a design stress of 8000
psi, based on yielding. Stress concentration and safety factor have both been included in the specification
of the 8000 psi design stress. Fatigue may be neglected as a potential failure mode because of the
infrequent use of the life assembly. The rotating steel screw is supported on a rolling element bearing
(negligible friction), as shown, and the nonrotating nut is to be made of porous bronze (see Table 10.1).
The coefficient of friction between the screw and the nut has been estimated to be 0.08.

a. Estimate the tentative minimum root diameter for the screw, based on yielding due to direct tensile
load alone as the governing failure mode.

b. From the results of (a), what Acme thread specification would you suggest as a first-iteration
estimate for this application?

¢.  What would be the maximum driving torque, 7y, for Acme thread specified in (b)?

d.  What torsional shearing stress would be induced in the root cross-section of the suggested power
screw by driving torque 7.

e. Identify the critical points that should be investigated in the Acme thread power screw.

f. Investigate the contact zone between screw threads and nut threads, and resize the screw if
necessary. Assume that the full load is carried by three threads. If resizing is necessary,
recalculate the driving torque for the revised screw size.

g.  What horsepower input would be required to drive the screw, as sized in (f), if it is desired to raise
the lid 18 inches in no more than 15 seconds?

Solution
(a) The direct stress in the body of the screw is

w AW

o
dir A ﬂ_d)z d
4(4000
(d) = [ (38000 o p
el 7o, 72'(8000)
(b) From Figure 12.2(c), for an Acme thread d,/2 = r, =r, + p/2. Note that from Table 12.1 that the

standard Acme screws in this size range (see (b)) have around 5 threads per inch,
p~1/5=0.20 in. Thus,

d =2

o

(—0'80 + —O'ZOJ =1.00 in.
2 2

For a first iteration, select a standard 1-inch Acme thread with 5 threads per inch.

(c) From Figure 12.2(c), for a standard 1-inch Acme thread r, =1, — p/4 = 0.5 - 0.20/4 =0.45 in.
Using (12-2), assuming a single-start thread,

a=tan"'| —2— | = tan™! _020 4.05°
277, 27(0.45)

Since o is small, 8, = @ =14.5", hence,
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R — P

— {cosﬁn sina + 4, cosa}
cos@, cosa — p, sina

_ 4000(0_45)[00514.5 sin4.05+0.08 cos 4.05}

cos14.5¢c0s4.05—-0.08sin 4.05
= 1800(0.151) =272 in-lb

(d) From (12-21), for u. =0

21, 2(272) 173

s 3 3 3

ap ap 7
r, =r0—£=0.5—@=0.4 in
2 2
173
T, = - =2700 psi
0.4)

(e) The critical points to be investigated are those shown as “4”, “B”, and “C” in Figure 12.9.

(f) The contact zone is represented by critical point “4” of Figure 12.9. The governing wear equation
is given by (12-20) as

o-B:pB:ﬂ( 2W = 4,000 =4,715 psi

r2=r?)n,  x(0.50% -0.40°)(3)

o i

From Table 10.1, porous bronze has an allowable maximum pressure of p,,,, = 2000 psi. So the
screw must be resized to bring pz down to 2000 psi or less. Sticking with the standard Acme
screws (Table 12.1) we see that the next larger screw is 1 %2 -inch with 4 threads. For this larger
screw

1.50

r,=——=0.75 in.
2

_L 0.25 in
p=7,=0 .
r, = 0.75—E =0.625 in.

2

thus
Oy =Dy = 4,000 =2,563 psi

7(0.75 -0.65°)(3)

This is still too high compared to the 2000 psi allowable, so the next larger standard size is taken .
A 2-inch Acme thread with 4 threads per inch. Thus, we have
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1
=—=0.25 in
P 4
r,=1 O—%—O 875 in
2
thus
Oy =py = 4,000 =1,810 psi

(1.0° -0.875%)(3)

Thus, the screw to be selected is a 2-inch Acme screw with 4 threads per inch. Using (12-7) to
calculate the torque requires first the following for the 2-inch screw:

=1. 0—£:O9375 in.

v
4
a =tan” n' _ 02 =243
27(0.9375)
{cos 6’,1 sina + 4, cosa } W

000(0. 9375)[cosl4.5 sin 2.43 + 0.08 cos 2.43}
cos14.5¢c0s2.43-0.08sin2.43

=3750(0.124) = 465 in-Ib

cos@, cosa — p, sina

(g) From (12-1)

I=np=(1.0)(0.25) lf:jl

(L v [ 18I0 160 S 588 rpm
0.25 in )\ 15 sec min

Tn _465(288)
63,025 63,025

(hp)req y =2.12 horsepower
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Chapter 13

13-1. You have been assigned the task of examining a number of large flood gates installed in 1931 for
irrigation control at a remote site on the Indus River in Pakistan. Several large steel bolts appear to have
developed cracks, and you have decided that they should be replaced to avert a potentially serious failure of
one or more of the flood gates. Your Pakistani assistant has examined flood gate specifications, and has
found that the original bolts may be well characterized as 32-mm medium carbon quenched and tempered
steel bolts, of property class 8.8. you have brought with you only a limited number of replacement bolts in
this size range, some of which are ASTM Class A325, type 3. Which, if either, of these replacement bolts
would you recommend as a substitute for the cracked originals? Justify your recommendation.

Solution
From Table 13.5, the minimum bolt properties for class 8.8 are:

S =830 MPa (120 ksi)

u

S =660 MPa (95.7 ksi)

w
S =600 MPa (87 ksi)

proof

From Table 13.3, for SAE Grade 7 bolts in the size range % - 1 4 inch diameter, they have the following
minimum properties:

S, =133 ksi
s, =115ksi
S =105 ksi

proof

From table 13.4, ASTM Class A325, type 3 bolts in the size range 1 1/8 — 1 4 inch diameter , have the
following minimum properties:

S, =105 ksi
S, = 8lksi
ooy = T4 ksi

Comparing properties, The SAE Grade 7 bolts exceed the original bolt strength specifications; ASTM Class
A325 type 3 bolts fall short. Therefore, recommend SAE Grade 7 bolts.
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13-2. A high-speed “closing machine” is used in a tomato canning factory to install lids and seal the cans.
It is in the middle of the “pack” season and a special bracket has separated from the main frame of the
closing machine because the 3/8-24 UNF-2A hex-cap screws used to hold the bracket in place have failed.
The head markings on the failed cap screws consist of the letters BC in the center of the head. No cap
screws with this head marking can be found in the storeroom. The 3/8-24 UNF-2A cap screws that can be
found in the “high-strength” bin have five equally spaced radial lines on the heads. Because is so important
to get up-and-running immediately to avoid spoilage, you are being asked, as an engineering consultant,
whether the available cap screws with head markings of five radial lines can be safely substituted for the
broken originals. How do you respond? Justify your recommendation.

Solution

From Figure 13.6, the “BC” head marking identifies ASTM class A354 grade BC bolts, and five equally
spaced radial lines identifies SAE grade 7 bolts.

From Tables 13.3 and 13.4, the minimum strength properties for the two head markings are:

S, =125 ksi S, =133 ksi
S, =109 ksi S, =115 ksi
S ooy =105 ksi S 0y =105 ksi

Thus, the substitution can be made safely.
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13-3. A cylindrical flange joint requires a total clamping force between two mating flanges of 45 kN. It is
desired to use six equally spaced cap screws around the flange. The cap screws pass through clearance
holes in the top flange and thread into tapped holes in the bottom flange.

a. Select a set of suitable cap screws for this application.
b. Recommend a suitable tightening torque for the cap screws.

Solution

(a) The force per bolt is

Fo— 45000

t =7500 N

As a starting point, select a class 4.8 bolt with a proof strength of 310 MPa. Based on proof strength

F, ) 3
qotp T30 49 mm?

C Sy 310x10°

From Table 13.2 the appropriate screw selection would be a size 8.0

(b) Using 13-30

T, = 0.2F,d, = 0.2(7500)(0.008) =12 N-m
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13-4. It is desired to use a set of four bolts to attach the bracket shown in Figure P13.4 to a stiff steel
column. For purposes of economy, all bolts are to be the same size. It is desired to use ASTM Class
A307 low-carbon steel material and standard UNC threads. A design safety factor of 2.5 has been
selected, based on yielding as the governing failure mode.

a.  What bolt-hole pattern would you suggest and what bolt specification would you recommend?
b. What tightening torque would you recommend if it is desired to produce a preload force in each
bolt equal to 85 percent of the minimum proof strength?

Solution

(a) Based on judgment, it has been decided (somewhat arbitrarily) to place bolt centerlines at 1-inch
in from each edge of the vertical 7” x 3 plate sketched in Figure P13.4. That is,

Using (13-31)

P 6000 1500

24: 4 44, A4,

Using (13-37),assuming all bolts are the same size

() = 0N

A y.2

i

( 17)max = (60020)(5)(6) 2 :2’432 lb
_2A17(1) +2A17(6)
(F)) e _ 2,432

4, A4,

b

Gb:

Using (x-xx), with yielding as the failure mode and n, = 2.5 (per problem specification)
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N
2 2 wp
o, =40, +37, = "

d

2
36,000 [(2432) (1500
25 4 4,

1 2 2
14400 =—,/(2432 3(1500
2y 050

4, =0.247 in®

The minimum bolt diameter is

[4(0.24
a. = |3 HO24) 561 i
T T

From Table 13.1, using the UNC series, the above value corresponds to a nominal % inch coarse
thread. The recommended bolt specification, therefore, would be

%—10 UNC-24 ASTM Class A307

(b) From Table 13.4, the proof strength of the bolt specified above is Syt = 33,000 psi, so the design
strength, specified to be 85 percent of proof strength, is

S, =0.85(33,000) = 28,000 psi
Using 4, = 0.3020 in from Table 13.1, the design load for the bolt is
F, =8,4,=(28,000)(0.3020) = 8,456 Ib
Using (13-30), the suggest initial tightening torque would be

T = 0.2F,d, = 0.2(8456)(0.7500) = 1,268 in-Ib
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13-5. Estimate the nominal size of the smallest SAE Grade 1 standard UNC bolt that will not yield under a
tightening torque of 1000 in-Ib. Neglect stress concentration.

Solution

From Table 13.3, for SAE Grade 1 material Sy, = 36,000 psi. From (13-30)

T =02F,d,
Foo T, 1000 5000
" 02d, 02d, d,
F
o,=0,=—"t= 5000/, _ 6366 (axial stress in bolt)

Y4, mdl/A 4
The torsional shear stress in the bolt due to tightening is from (4-33) and (4-35)

T.(d,/2) 16T 16(1000) 5093
T, =7, = = = =

» [ﬂd;) Cadd xdd 4

32

With yielding as the failure mode we have

S
_ 2 2 _ “w
o, =40, +37, —n—

d

2 2
6 f6 +3|2 0?3 =36,000
db db

%\/(6366)2 +3(5093)" =36,000
b

d, =0.671 in. (nominal diameter)
From Table 13.1, the smallest SAE Grade 1 bolt that would not yield is

%—10 UNC-2A SAE Gradel

439



13-6. A standard fine-thread metric machine screw made of steel has a major diameter of 8.0 mm and a
head marking of 9.8. Determine the tensile proof force (kN) for this screw. It may be assumed that
the coefficient of friction is about 0.15 for both the threads and the collar.

Solution

From Table 13.5, for “property class” 9.8, S,,0¢= 650 MPa. From Table 13.2, for a 8.0 mm, fine series
metric screw, the tensile stress area is 4, = 40 mm>. The proof force for this bolt is

oo =S, 04, =650x10° 10
1000

p proof “°r

] =26,000 N (26 kN)
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13-7. A standard coarse-thread metric cap screw made of steel has a major diameter of 10.0 mm. Ifa
torque wrench is use to tighten the cap screw to a torque of 35 N-m, estimate the axial preload force
induced in the cap screw. It may be assumed that the coefficient of friction is about 0.15 for both
thread and collar.

Solution
From (13-30)

T
F=—ti 35 _j750N (175 kN)
0.2d, 02(0.010))
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13-8. Engineering specifications for a machine tool bracket application call for a nonlubricated M30 x 2
threaded fastener of property class 8.8 to be tightened to 100 percent of proof load. Calculate the
torque required to accomplish this. It may be assumed that the coefficient of friction is about 0.15 for
both the threads and the collar.

Solution

For a fine thread we have from Table 13.2 d, = 30 mm, and 4, = 628 mm’. From table 13.5, for “property
class” 8.8, the proof stress is S,,,,,= 600 MPa and the proof force for the bolt is

F L, =S8 A:600x106( 6282
1000

proof proof * 7t

]: 376,800 N (376.8 kN)

T, =0.2(376,800)(0.030) = 2,260 N-m
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13-9. A 3-16 SAE Grade 2 steel bolt is to be used to clamp two 1.00-inch-thick steel flanges together
with a 1/16-inch-thick special lead-alloy gasket between the flanges, as shown in Figure P13.9. The
effective load-carrying area of the steel flanges and of the gasket may be taken as 0.75 sq. in.
Young’s modulus for the gasket is 5.3 x 10° psi. If the bolt is initially tightened to induce an axial
preload force in the bolt of 6000 Ib, and if an external force of 8000 1b is then applied as shown,

a. What is the force on the bolt?
b. What is the force on each of the steel flanges?
c.  What is the force on the gasket?
d. If the stress concentration factor for the bolt thread root is 3.0, would local yielding at the thread
root be expected?
Solution

(a) Using (13-15)

F=| o |per
k, +k

m

The sketch shows the arrangement, dimensions, and forces

F=120001h

sl

I?in. lead zasket
1 .

External
force

2= in. S ;
15 i 1116 i
lin.
L L External

F =40001s

The load carrying areas of steel flanges and lead gasket are 4,y = A, = 0.75 in*. The modulii are
E,=53x 10° psi, Ey = E, =30 x 10° psi. The spring rate of the bolt flanges and gasket are

2 6
J*E. 7(0.75) (30x10
ko, = T2 (075) ( ):6.425><106_1£
4L, 4(2.0625) in
A E 0.75(30x10°
= st stl — ( ) — 1 125><106 E
L, 2(1.0) in
AE.  0.75(5.3x10°
k,=—2"E= ( ):63.6><106.1£
& L, 0.0625 in
and
k, = ! = ! =9.56x10° E
" 1 1 1 1 in
—+— +
ky Kk, 11.25x 10°  63.6x10°
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The bolt force is then

=l |per
k,+k,

B [ 6.425x10°

< - (8000)+6000:9,215 Ib (tension)
6.425x10° +9.56x10

(b) From (13-16)

9.56x10°
F, = 3 3
6.425%10°4+9.56x10

J(SOOO) —6000 =—1215 1b(compression)

(c) The gasket is in series with the flange member so F, = F,, =-1215 Ib (compression)

(d) From Table 13.1, for a standard %-16 bolt, A, = 0.3513 in” so the actual stress at the root is, using
(5-25)

o.,=Ko,, =30

t~ nom

( 9215 j: 78,690 psi
13

From Table 13.3, SAE Grade 2 for a % inch size gives Sy, = 57,000 psi. Since 6, =78,690 > Syp
= 57,000 local yielding at the thread root would be expected.
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13-10. A special reduced-body bolt is to be used to clamp two ¥4-inch-thick steel flanges together with a
1/8-inch-thich copper-asbestos gasket between the flanges in an arrangement similar to the one shown
in Figure P13.9. The effective are for both the steel flanges and the copper-asbestos gasket may be
taken as 0.75 square inch. Young’s modulus of elasticity for the copper-asbestos gasket is 13.5 x 10°
psi. The special bolt has %-16 UNF threads but the body of the bolt is reduced to 0.4375 inch in
diameter and generously filleted, so stress concentration may be neglected. The bolt material is AISI
4620 cold-drawn steel.

a. Sketch the joint, showing the reduced-body bolt, and the loading.

b. If the bolt is tightened to produce a preload in the joint of 5000 b, what external force Py, could
be applied to the assembly before the joint would start to separate?

c. Ifthe external load P fluctuates from 0 to 555 Ib at 3600 cycles per minute, and the desired design
life is 7 years of continuous operation, would you predict failure of the bolt by fatigue?

Solution
(a) The joint configuration may be sketched as shown below. Note the reduced body diameter of the

bolt. Dimensions and loading are also shown.

External Fotce= F

B e

3din

|

P ! I 1F2 it
I
|

| External
. force

F =35000 &

(b) Utilizing (13-16), the joint will start to separate when F,, = 0, so separation occurs when

0 = km Pmax - F;
k, +k,

or when

P, =(k” ”‘WJE
l k”l

The spring rates are given by the following

0.4375)’ (30x10°
b:”( ) (30~ ):2.78><10" ,l—b
4(1.625) in
0.75)(30x10°
m:—( )( )=15.00><106 ,1—b
2(0.75) in
0.75)(13.5x10°
kg:( (135~ )=81.00x106 ,13
0.125 n
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Combining the spring rates gives for the members

k = ! =12.7x10° E
" 1 1 n
6 + 6

15.00x10° 81.00x10

P _(2.78><106 +12.7x10°
sep

T j(SOOO):6094 Ib
X

(c) Since P, 5555 < Py, = 6094 the joint never separates and (13-15) is valid for the whole range of
applied cyclic loading. Hence

=l |per
k,+k,

_( 2.78x10°

2.78x10° +12.7x10°
F, =0.18P+5000
(F,),.. =0.18(5555)+5000=5998 Ib
(F,).. =0.18(0)+5000 = 5000 Ib

JP—i— 5000

The corresponding maximum and minimum stresses in the 0.4375-inch diameter bolt body are

F,
o, =( o = 5998 — =39,900 psi
4, 7(0.4375)
4
F)
amm=( w5000 — =33,260 psi
4 7(0.4375)
4
S 39,900;33,260 36,580 psi
o, :w:im psi

The bolt material is AISI 4620 cold drawn steel, so from Table 3.3, S, = 101,000 psi, and S,,, = 85,000 psi.
Thus, using (5-72)

O-eq—CR = G:; _for O-m > O and O-max < Syp
| ——h
Sll
we have
3320
- 7" _52 .
O-eq—CR N 36,580 5, 05 psi
101,000
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From “Estimating S-N Curves” in section xx 2.6, Sy= S, =0.5S, = 50,500 psi. Even with adjustments of
the type shown in (5-55) and (5-56) would suggest that the bolt would be predicted to have infinite life.
Hence failure would not be predicted to occur after 7 years.
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13-11. A typical bolted joint of the type shown in Figure 13.9 uses a %2-13 UNC bolt, and the length of
the bolt and length of the housing is the same. The threads stop immediately above the nut. The bolt
is steel with S, 101,000 psi, S, = 85,000 psi, and S;= 50,000 psi. The thread stress concentration
factor is 3. The effective area of the steel housing is is 0.88 in”. The load fluctuates cyclically from 0
to 2500 1b at 2000 cpm.

a. Find the existing factor of safety for the bolt if no preload is present.
b. Find the minimum required value of preload to prevent loss of compression in the housing.
c. Find the existing factor of safety for the bolt if the preload in the bolt is 3000 Ib.

Solution
The load P fluctuates cyclically from P,,;, = 0 to P,,.. = 2500 Ib at n = 2000 cpm.
(a) From Table 13.1 A, = 0.1257 in>. With no preload, when P is applied the joint separates and the

bolt takes the full loading range. The bolt thread at the inner end of the nut is the critical point,
and has a stress concentration factor of 3, so

P
Omax = (O-“Ct )max = K{f { Zax J = 3( 2500 J = 59, 670 pSl

] 0.1257

Pmin 0
O-min = (Gaé'f )min = K’:f [A_J - 3[01257} - O

59,670+0

= 29,835 psi

m

_3%,670-0 _ 29,835 psi

a

Thus, we have

o
_ a
Cecr = foro,20and o, <S,
1——2
S,

u

29,835 .
O'eerR = 1_2’%— 42,343 ps1
101,000
S, 50,000
n = —

o . 42,343

eq—CR

=1.18 (existing safety factor)

(b) From (13-16), the minimum preload F; to prevent loss of compression in the housing (F,, = 0) is

k
F) = “— |P,
( l)mm (kb‘FkMJ max

The spring rates are given by

2 0.5 2 30x10°
kbzfrdb 2”( ) ( )=5,g9x106 .13
4L 4L mn
0.88(30x10°
i = A _ (30~ ):26,40><106 b

" L L in
(F) - 26.4x10°
Hmin 1 '5.89x10° +26.40x10°

jZSOO =20441b
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(c) IfF,=3000 Ib, from (13-15)

(F) . - 5.89x10°
Pmax | 5.89%10° +26.40x10°

(F,),. =34561b and (F,)  =3000 Ib

j2500+3000 =34561b

O =3 3456 = 82,482 psi
0.1257
O = 3( 3000 j: 71,600 psi
0.1257
- 82,482 +71,600 — 77,040 psi
o, = 82,482 —-71,600 _ 5,441 psi
2
Cuycr = o foro,20and o, <S