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Chapter 23 
 

 

1. THINK This exercise deals with electric flux through a square surface.  

 

EXPRESS The vector area 

A  and the electric field 


E  are shown on the diagram below.  

 

 
 

The electric flux through the surface is given by cos .E A EA      

 

EXPRESS The angle  between 

A  and 


E  is 180° – 35° = 145°, so the electric flux 

through the area is 

 

  
2

3 2 2cos 1800 N C 3.2 10  m cos145 1.5 10  N m C.EA             

 

LEARN The flux is a maximum when 

A  and 


E  points in the same direction ( 0  ), 

and is zero when the two vectors are perpendicular to each other ( 90  ). 

 

2. We use   z 
 
E dA  and note that the side length of the cube is (3.0 m–1.0 m) = 2.0 m. 

 

(a) On the top face of the cube y = 2.0 m and   ĵdA dA . Therefore, we have 

  2ˆ ˆ ˆ ˆ4i 3 2.0 2 j 4i 18jE      . Thus the flux is 

 

      
2 2 2

top top top

ˆ ˆ ˆ4i 18j j 18 18 2.0 N m C 72 N m C.E dA dA dA                 

 

(b) On the bottom face of the cube y = 0 and  dA dA

 b ge jj . Therefore, we have 

 E     4 3 0 2 4 62   i j i jc h . Thus, the flux is 

 

      
2 2 2

bottom bottom bottom

ˆ ˆ ˆ4i 6j j 6 6 2.0 N m C 24 N m C.E dA dA dA              
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(c) On the left face of the cube   îdA dA  . So 

 

      
2 2 2

left left bottom 

ˆ ˆ ˆˆ 4i j i 4 4 2.0 N m C 16 N m C.yE dA E dA dA                
 

(d) On the back face of the cube   k̂dA dA  . But since E  has no z component 

0E dA  . Thus,  = 0. 

 

(e) We now have to add the flux through all six faces. One can easily verify that the flux 

through the front face is zero, while that through the right face is the opposite of that 

through the left one, or +16 N·m
2
/C. Thus the net flux through the cube is  

 

 = (–72 + 24 – 16 + 0 + 0 + 16) N·m
2
/C = – 48 N·m

2
/C. 

 

3. We use   
 
E A , where 


A A  . j m j

2
140b g . 

 

(a)    
2ˆ ˆ6.00 N C i 1.40 m j 0.     

 

(b)    
2 2ˆ ˆ2.00 N C j 1.40 m j 3.92 N m C.        

 

(c)      
2ˆ ˆ ˆ3.00 N C i 400 N C k 1.40 m j 0      

 
. 

 

(d) The total flux of a uniform field through a closed surface is always zero. 

 

4. The flux through the flat surface encircled by the rim is given by 2 .a E   Thus, the 

flux through the netting is 

 
2 3 4 2(0.11 m) (3.0 10  N/C) 1.1 10  N m /Ca E               . 

 

5. To exploit the symmetry of the situation, we imagine a closed Gaussian surface in the 

shape of a cube, of edge length d, with a proton of charge 191.6 10  Cq    situated at 

the inside center of the cube. The cube has six faces, and we expect an equal amount of 

flux through each face. The total amount of flux is net = q/0, and we conclude that the 

flux through the square is one-sixth of that. Thus,  

 
19

9 2

12 2 2

0

1.6 10  C
3.01 10  N m C.

6 6(8.85 10  C N m )

q









     

 
 

 

6. There is no flux through the sides, so we have two “inward” contributions to the flux, 

one from the top (of magnitude (34)(3.0)
2
) and one from the bottom (of magnitude 
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(20)(3.0)
2
). With “inward” flux being negative, the result is  = – 486 Nm

2
/C. Gauss’ 

law then leads to  

 
12 2 2 2 9

enc 0 (8.85 10 C /N m )( 486 N m C) 4.3 10 C.q              

 

7. We use Gauss’ law: 0 q   , where   is the total flux through the cube surface and q 

is the net charge inside the cube. Thus, 

 
6

5 2

12 2 2

0

1.8 10  C
2.0 10  N m C.

8.85 10  C N m

q








     

 
 

 

8. (a) The total surface area bounding the bathroom is 

 

      22 2.5 3.0 2 3.0 2.0 2 2.0 2.5 37 m .A         

 

The absolute value of the total electric flux, with the assumptions stated in the problem, is  

 
2 3 2| | | | | | (600 N/C)(37 m ) 22 10  N m / C.E A E A         

 

By Gauss’ law, we conclude that the enclosed charge (in absolute value) is 
7

enc 0| | | | 2.0 10  C.q       Therefore, with volume V = 15 m
3
, and recognizing that we 

are dealing with negative charges, the charge density is  

 
7

8 3enc

3

2.0 10  C
1.3 10  C/m .

15 m

q

V



 

      

 

(b) We find (|qenc|/e)/V = (2.0  10
–7 

C/1.6  10
–19 

C)/15 m
3
 = 8.2  10

10
 excess electrons 

per cubic meter. 

 

9. (a) Let A = (1.40 m)
2
. Then 

 

           
2 2

=0 1.40

ˆ ˆ ˆ ˆ3.00 j j 3.00 j A j 3.00 1.40 1.40 8.23 N m C.
y y

y A y


          

 

(b) The charge is given by 

 

  12 2 2 2 11

enc 0 8.85 10 C / N m 8.23 N m C 7.29 10  Cq           . 

 

(c) The electric field can be re-written as 0
ˆ3.00 jE y E  , where 0

ˆ ˆ4.00i 6.00jE     is a 

constant field which does not contribute to the net flux through the cube. Thus   is still 

8.23 Nm
2
/C. 
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(d) The charge is again given by 

 

  12 2 2 2 11

enc 0 8.85 10 C / N m 8.23 N m C 7.29 10  Cq           . 

 

10. None of the constant terms will result in a nonzero contribution to the flux (see Eq. 

23-4 and Eq. 23-7), so we focus on the x dependent term only. In Si units, we have 

      

Enonconstant =  3x i
^
  . 

 

The face of the cube located at x = 0 (in the yz plane) has area A = 4 m
2
 (and it “faces” the 

+i
^
 direction) and has a “contribution” to the flux equal to   Enonconstant A = (3)(0)(4) = 0. 

The face of the cube located at x = 2 m has the same area A (and this one “faces” the –i
^
  

direction) and a contribution to the flux:   

 

Enonconstant A = (3)(2)(4) = 24 N·m/C
2
. 

 

Thus, the net flux is  = 0 + 24 = 24 N·m/C
2
.  According to Gauss’ law, we therefore 

have qenc =  = 2.13  10
10 

C.  

 

11. None of the constant terms will result in a nonzero contribution to the flux (see Eq. 

23-4 and Eq. 23-7), so we focus on the x dependent term only: 

      

Enonconstant =  (4.00y
2 

)
 
 i
^
  (in SI units) . 

 

The face of the cube located at y = 4.00 has area A = 4.00 m
2
 (and it “faces” the +j

^
  

direction) and has a “contribution” to the flux equal to   

 

Enonconstant A = (4)(4
2
)(4) = –256 N·m/C

2
. 

 

The face of the cube located at y = 2.00 m has the same area A (however, this one “faces” 

the –j
^
 direction) and a contribution to the flux:   

 

Enonconstant A =  (4)(2
2
)(4) =  N·m/C

2
. 

 

Thus, the net flux is  = (256 + 64) N·m/C
2
 = 192 N·m/C

2
.  According to Gauss’s law, 

we therefore have   

 
12 2 2 2 9

enc 0 (8.85 10 C /N m )( 192 N m C) 1.70 10 C.q              

 

12. We note that only the smaller shell contributes a (nonzero) field at the designated 

point, since the point is inside the radius of the large sphere (and E = 0 inside of a 

spherical charge), and the field points toward the x direction. Thus, with R = 0.020 m 

(the radius of the smaller shell), L = 0.10 m and x = 0.020 m, we obtain 
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 

2 2

2 2

2 2 2

0 0 0

2 6 2
4

12 2 2 2

4ˆ ˆ ˆ ˆ( j) j j j
4 4 ( ) ( )

(0.020 m) (4.0 10 C/m ) ˆ ˆj 2.8 10 N/C j .
(8.85 10 C /N m )(0.10 m 0.020 m)

R Rq
E E

r L x L x

  

  





    
 


   

  

 

 

13. THINK A cube has six surfaces. The total flux through the cube is the sum of fluxes 

through each individual surface. We use Gauss’ law to find the net charge inside the cube.  

 

EXPRESS Let A be the area of one face of the cube, Eu be the magnitude of the electric 

field at the upper face, and El  be the magnitude of the field at the lower face. Since the 

field is downward, the flux through the upper face is negative and the flux through the 

lower face is positive. The flux through the other faces is zero (because their area vectors 

are parallel to the field), so the total flux through the cube surface is 

 

( ).uA E E    

The net charge inside the cube is given by Gauss’ law: 0 .q    

 

ANALYZE Substituting the values given, we find the net charge to be  

 
12 2 2 2

0 0

6

( ) (8.85 10  C / N m )(100 m) (100 N/C 60.0 N/C)

  3.54 10  C 3.54 C.

uq A E E 







       

  
 

 

LEARN Since 0,   we conclude that the cube encloses a net positive charge.  

 

14. Equation 23-6 (Gauss’ law) gives qenc .   

 

(a) Thus, the value 5 22.0 10 N m /C    for small r leads to  

 
12 2 2 5 2 6 6

central 0 (8.85 10 C /N m )(2.0 10 N m /C) 1.77 10 C 1.8 10 Cq                

 

(b) The next value that  takes is 5 24.0 10 N m /C     , which implies that 
6

enc 3.54 10 C.q    But we have already accounted for some of that charge in part (a), so 

the result for part (b) is  

qA = qenc – qcentral = – 5.3  10
6 

C. 

 

(c) Finally, the large r value for  is 5 26.0 10 N m /C    , which implies that 
6

total enc 5.31 10 C.q    Considering what we have already found, then the result is 

total enc central 8.9 .Aq q q C    

 

15. The total flux through any surface that completely surrounds the point charge is q/0.  
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(a) If we stack identical cubes side by side and directly on top of each other, we will find 

that eight cubes meet at any corner. Thus, one-eighth of the field lines emanating from 

the point charge pass through a cube with a corner at the charge, and the total flux 

through the surface of such a cube is q/80. Now the field lines are radial, so at each of 

the three cube faces that meet at the charge, the lines are parallel to the face and the flux 

through the face is zero.  

 

(b) The fluxes through each of the other three faces are the same, so the flux through each 

of them is one-third of the total. That is, the flux through each of these faces is (1/3)(q/80) 

= q/240. Thus, the multiple is 1/24 = 0.0417. 

 

16. The total electric flux through the cube is E dA  . The net flux through the two 

faces parallel to the yz plane is  

 

 
   

2 2

1 1

2 2

1 1

1 3

2 1
0 1

1 3

0 1

( ) ( ) 10 2(4) 10 2(1)

6 6(1)(2) 12.

y z

yz x x
y z

y z

y z

E x x E x x dydz dy dz

dy dz

 

 

 

 

        

  

  

 
 

 

Similarly, the net flux through the two faces parallel to the xz plane is 

 
2 2

1 1

4 3

2 1
1 1

( ) ( ) [ 3 ( 3)] 0
x z

xz y y
x z

E y y E y y dxdz dy dz
 

 
              , 

 

and the net flux through the two faces parallel to the xy plane is 

 

    
2 2

1 1

4 1

2 1
1 0

( ) ( ) 3 2 (3)(1) 6 .
x y

xy z z
x y

E z z E z z dxdy dx dy b b b b
 

 
            

 

Applying Gauss’ law, we obtain 

 

 enc 0 0 0 0( ) (6.00 0 12.0) 24.0xy xz yzq b             

 

which implies that b = 2.00 N/C m . 

 

17. THINK The system has spherical symmetry, so our Gaussian surface is a sphere of 

radius R with a surface area 24 .A R  

 

EXPRESS The charge on the surface of the sphere is the product of the surface charge 

density  and the surface area of the sphere: 2(4 ).q A R     We calculate the total 

electric flux leaving the surface of the sphere using Gauss’ law: 0 .q    

 

ANALYZE (a) With (1.20 m) / 2 0.60 mR    and 6 28.1 10  C/m ,    the charge on 

the surface is  
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 
22 6 2 54 4 0.60 m (8.1 10  C/m ) 3.7 10  C.q R           

 

(b) We choose a Gaussian surface in the form of a sphere, concentric with the conducting 

sphere and with a slightly larger radius. By Gauss’s law, the flux is 

 
5

6 2

12 2 2

0

3.66 10  C
4.1 10 N m /C .

8.85 10  C / N m

q








     

 
 

 

LEARN Since there is no charge inside the conducting sphere, the total electric flux 

through the surface of the sphere only depends on the charge residing on the surface of 

the sphere.   

 

18. Using Eq. 23-11, the surface charge density is 

 

  5 12 2 2 6 2

0 2.3 10  N C 8.85 10 C / N m 2.0 10  C/m .E           

 

19. (a) The area of a sphere may be written 4R
2
= D

2
. Thus, 

 

 

6
7 2

22

2.4 10  C
4.5 10  C/m .

1.3 m

q

D





   
 

 

(b) Equation 23-11 gives 
7 2

4

12 2 2

0

4.5 10  C/m
5.1 10  N/C.

8.85 10  C / N m
E










   

 
 

 

20. Equation 23-6 (Gauss’ law) gives qenc.   

 

(a) The value 5 29.0 10 N m /C      for small r leads to qcentral = – 7.97  10
6 

C  or 

roughly – 8.0 C.   

 

(b) The next (nonzero) value that  takes is 5 24.0 10 N m /C     , which implies 
6

enc 3.54 10 C.q     But we have already accounted for some of that charge in part (a), so 

the result is  

qA = qenc – qcentral = 11.5  10
6 

C 12 C . 

 

(c) Finally, the large r value for  is 5 22.0 10 N m /C,      which implies 
6

total enc 1.77 10 C.q    Considering what we have already found, then the result is   

 

qtotal enc  – qA    qcentral  =  –5.3 C. 

 

21. (a) Consider a Gaussian surface that is completely within the conductor and surrounds 

the cavity. Since the electric field is zero everywhere on the surface, the net charge it 
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encloses is zero. The net charge is the sum of the charge q in the cavity and the charge qw 

on the cavity wall, so q + qw = 0 and qw = –q = –3.0  10
–6

C. 

  

(b) The net charge Q of the conductor is the sum of the charge on the cavity wall and the 

charge qs on the outer surface of the conductor, so Q = qw + qs and 

 

   6 6 510 10  C 3.0 10  C 1.3 10 C.sq Q q
             

 

22. We combine Newton’s second law (F = ma) with the definition of electric field 

( F qE ) and with Eq. 23-12 (for the field due to a line of charge).  In terms of 

magnitudes, we have (if r = 0.080 m and 66.0 10 C/m   )  

 

    ma = eE =  
e 

2o r
            a = 

e 

2o r m
  = 2.1  10

17 
 m/s

2
  . 

 

23. (a) The side surface area A for the drum of diameter D and length h is given by 

A Dh . Thus,  

 

    

0

12 2 2 5

7

8.85 10 C /N m 2.3 10  N/C 0.12 m 0.42 m

3.2 10 C.

q A Dh EDh  

 



  

   

 

 

 

(b) The new charge is 

 

 
  

  
7 7

8.0 cm 28 cm
3.2 10 C 1.4 10 C.

12 cm 42 cm

A D h
q q q

A Dh





 
      

          
      

 

 

24. We imagine a cylindrical Gaussian surface A of radius r and unit length concentric 

with the metal tube. Then by symmetry enc

0

2 .
A

q
E dA rE


     

(a) For r < R, qenc = 0, so E = 0.  

 

(b) For r > R, qenc = , so 0( ) / 2 .E r r   With 82.00 10  C/m   and r = 2.00R = 

0.0600 m, we obtain  

 

 
  

8

3

12 2 2

2.0 10 C/m
5.99 10 N/C.

2 0.0600 m 8.85 10 C / N m
E






  

  
 

 

(c) The plot of E vs. r is shown to the right. Here, the 

maximum value is  
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 
  

8

4

max 12 2 2
0

2.0 10 C/m
1.2 10 N/C.

2 2 0.030 m 8.85 10 C / N m
E

r  






   

 
 

 

25. THINK Our system is an infinitely long line of charge. Since the system possesses 

cylindrical symmetry, we may apply Gauss’ law and take the Gaussian surface to be in 

the form of a closed cylinder. 

 

EXPRESS We imagine a cylindrical Gaussian surface A of radius r and length h 

concentric with the metal tube. Then by symmetry, 

 

0

2 ,
A

q
E dA rhE


    

  

where q is the amount of charge enclosed by the Gaussian cylinder. Thus, the magnitude 

of the electric field produced by a uniformly charged infinite line is  

 

0 0

/

2 2

q h
E

r r



 
   

 

where  is the linear charge density and r is the distance from the line to the point where 

the field is measured.  

 

ANALYZE Substituting the values given, we have  

 

   12 2 2 4

0

6

2 2 8.85 10 C / N m 4.5 10 N/C 2.0 m

5.0 10 C/m.

Er   



    

 
 

 

LEARN Since 0,   the direction of E  is radially outward from the line of charge. 

Note that the field varies with r as 1/ ,E r  in contrast to the 21/ r  dependence due to a 

point charge.    

 

26. As we approach r = 3.5 cm from the inside, we have 

 

internal

0

2
1000 N/C

4
E

r




  . 

    

And as we approach r = 3.5 cm from the outside, we have 

 

external

0 0

2 2
3000 N/C

4 4
E

r r

 

 


     . 
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Considering the difference (Eexternal  –  Einternal ) allows us to find  (the charge per unit 

length on the larger cylinder).  Using r = 0.035 m, we obtain  = –5.8  10
9 

C/m.   

 

27. We denote the radius of the thin cylinder as R = 0.015 m. Using Eq. 23-12, the net 

electric field for r > R is given by 

 

net wire cylinder

0 02 2
E E E

r r

 

 


   

 
 

 

where – = –3.6 nC/m is the linear charge density of the wire and ' is the linear charge 

density of the thin cylinder. We note that the surface and linear charge densities of the 

thin cylinder are related by 

 

cylinder  (2 ) (2 ).q L RL R          

 

Now, Enet outside the cylinder will equal zero, provided that 2R = , or 

 
6

8 23.6 10  C/m
3.8 10  C/m .

2 (2 )(0.015 m)R









   


 

 

28. (a) In Eq. 23-12,  = q/L where q is the net charge enclosed by a cylindrical Gaussian 

surface of radius r. The field is being measured outside the system (the charged rod 

coaxial with the neutral cylinder) so that the net enclosed charge is only that which is on 

the rod. Consequently, 

 
9

2

0 0

2(2.0 10 C/m)
2.4 10  N/C.

4 4 (0.15 m)
E

r



 

 
     

 

(b) Since the field is zero inside the conductor (in an electrostatic configuration), then 

there resides on the inner surface charge –q, and on the outer surface, charge +q (where q 

is the charge on the rod at the center). Therefore, with ri = 0.05 m, the surface density of 

charge is 
9

9 2

inner

2.0 10 C/m
6.4 10  C/m

2 2 2 (0.050 m)i i

q

r L r




  


 

         

 

for the inner surface.  

 

(c) With ro = 0.10 m, the surface charge density of the outer surface is 

 

9 2

outer 3.2 10  C/m .
2 2o o

q

r L r




 


      
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29. THINK The charge densities of both the conducting cylinder and the shell are 

uniform, and we neglect fringing effect. Symmetry can be used to show that the electric 

field is radial, both between the cylinder and the shell and outside the shell. It is zero, of 

course, inside the cylinder and inside the shell. 

 

EXPRESS We take the Gaussian surface to be a cylinder of length L, coaxial with the 

given cylinders and of radius r. The flux through this surface is 2 ,rLE    where E is 

the magnitude of the field at the Gaussian surface. We may ignore any flux through the 

ends. Gauss’ law yields 
enc 0 02 ,q r LE      where qenc is the charge enclosed by the 

Gaussian surface. 

 

ANALYZE (a) In this case, we take the radius of our Gaussian cylinder to be  

 
3 2

2 12.00 20.0 (20.0)(1.3 10  m) 2.6 10  m.r R R         

 

The charge enclosed is  

qenc = Q1+Q2 = –Q1 = –3.4010
12 

C. 

 

Consequently, Gauss’ law yields  
12

enc

12 2 2 2

0

3.40 10  C
0.214 N/C,

2 2 (8.85 10  C / N m )(11.0 m)(2.60 10 m)

q
E

Lr 



 

 
   

   
 

 

or | | 0.214 N/C.E   

 

(b) The negative sign in E indicates that the field points inward.  

 

(c) Next, for r = 5.00 R1, the charge enclosed by the Gaussian surface is qenc = Q1 = 

3.4010
12 

C. Consequently, Gauss’ law yields 0 enc2 ,r LE q    or 

 
12

enc

12 2 2 3

0

3.40 10  C
0.855 N/C.

2 2 (8.85 10  C / N m )(11.0 m)(5.00 1.30 10 m)

q
E

Lr 



 


  

   
 

 

(d) The positive sign indicates that the field points outward.  

 

(e) We consider a cylindrical Gaussian surface whose radius places it within the shell 

itself. The electric field is zero at all points on the surface since any field within a 

conducting material would lead to current flow (and thus to a situation other than the 

electrostatic ones being considered here), so the total electric flux through the Gaussian 

surface is zero and the net charge within it is zero (by Gauss’ law). Since the central rod 

has charge Q1, the inner surface of the shell must have charge Qin = –Q1 = –3.4010
12 

C.  

 

(f) Since the shell is known to have total charge Q2 = –2.00Q1, it must have charge Qout = 

Q2 – Qin = –Q1 = –3.4010
12 

C on its outer surface. 

 



 

  

1051 

LEARN Cylindrical symmetry of the system allows us to apply Gauss’ law to the 

problem. Since electric field is zero inside the conducting shell, by Gauss’ law, any net 

charge must be distributed on the surfaces of the shells.     

 

30. We reason that point P (the point on the x axis where the net electric field is zero) 

cannot be between the lines of charge (since their charges have opposite sign).  We 

reason further that P is not to the left of “line 1” since its magnitude of charge (per unit 

length) exceeds that of “line 2”; thus, we look in the region to the right of “line 2” for P.  

Using Eq. 23-12, we have 

 1 2
net 1 2

0 0

2 2

4 ( / 2) 4 ( / 2)
E E E

x L x L

 

 
   

 
 . 

                   
Setting this equal to zero and solving for x we find  

 

 1 2

1 2

6.0 C/m ( 2.0 C/m) 8.0 cm
8.0 cm

2 6.0 C/m ( 2.0 C/m) 2

L
x

   

   

     
     

    
. 

 

31. We denote the inner and outer cylinders with subscripts i and o, respectively. 

 

(a) Since ri < r = 4.0 cm < ro, 

 
6

6

12 2 2 2

0

5.0 10  C/m
( ) 2.3 10  N/C.

2 2 (8.85 10  C / N m )(4.0 10  m)

iE r
r



 



 


   

  
 

 

(b) The electric field

E r( )  points radially outward. 

 

(c) Since r > ro, 

 
6 6

5

12 2 2 2

0

5.0 10  C/m 7.0 10  C/m
( 8.0 cm) 4.5 10  N/C,

2 2 (8.85 10  C / N m )(8.0 10  m)

i oE r
r

 

 

    
     

    
 

 

or 5| ( 8.0 cm) | 4.5 10  N/C.E r     

 

(d) The minus sign indicates that ( )E r  points radially inward. 

 

32. To evaluate the field using Gauss’ law, we employ a cylindrical surface of area 2 r L 

where L is very large (large enough that contributions from the ends of the cylinder 

become irrelevant to the calculation). The volume within this surface is V =  r
2
 L, or 

expressed more appropriate to our needs: 2 .dV rLdr  The charge enclosed is, with 
6 52.5 10 C/mA   , 

2 4

enc
0

 2 .
2

r

q Ar r L dr ALr


    
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By Gauss’ law, we find enc 0| | (2 ) / ;E rL q      we thus obtain 
3

0

.
4

Ar
E


  

 

(a) With r = 0.030 m, we find | | 1.9 N/C.E   

 

(b) Once outside the cylinder, Eq. 23-12 is obeyed. To find  = q/L we must find the total 

charge q. Therefore, 
0.04

2 11

0

1
 2 1.0 10  C/m.

q
Ar r L dr

L L
     

 

And the result, for r = 0.050 m, is 0| | /2 3.6 N/C.E r    

 

33. We use Eq. 23-13. 

 

(a) To the left of the plates:  

 

 0
ˆ/ 2 ( i)E     (from the right plate) 0

ˆ( / 2 )i   (from the left one) = 0. 

 

(b) To the right of the plates:  

 

 0
ˆ/ 2 iE    (from the right plate)  0

ˆ/ 2 ( i)   (from the left one) = 0. 

 

(c) Between the plates: 

 

 

 

22 2

12 2 2

0 0 0

11

7.00 10 C/mˆ ˆ ˆ ˆ( i) i ( i) i
2 2 8.85 10 C /N m

ˆ7.91 10 N/C i.

E
  

  







       
              

       

  

 

 

34. The charge distribution in this problem is equivalent to that of an infinite sheet of 

charge with surface charge density 4.50 10
12 

C/m
2 

plus a small circular pad of 

radius R = 1.80 cm located at the middle of the sheet with charge density –. We denote 

the electric fields produced by the sheet and the pad with subscripts 1 and 2, respectively. 

Using Eq. 22-26 for 2E , the net electric field E  at a distance z = 2.56 cm along the 

central axis is then 

 

 
1 2

2 2 2 2
0 0 0

12 2 2

12 2 2 2 2 2 2

ˆ ˆ ˆk 1 k k
2 2 2

(4.50 10 C/m )(2.56 10  m) ˆ ˆk (0.208 N/C) k.
2(8.85 10 C /N m ) (2.56 10  m) (1.80 10  m)

z z
E E E

z R z R

 

  

 

  

  
       

    

 
 

    
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35. In the region between sheets 1 and 2, the net field is E1 – E2 + E3  = 2.0  10
5  

N/C . 

 

In the region between sheets 2 and 3, the net field is at its greatest value: 

 

E1 + E2 + E3  = 6.0  10
5  

N/C . 

 

The net field vanishes in the region to the right of sheet 3, where E1 + E2 = E3 .  We note 

the implication that 3 is negative (and is the largest surface-density, in magnitude).  

These three conditions are sufficient for finding the fields: 

           

E1 =  1.0  10
5  

N/C ,  E2 =  2.0  10
5  

N/C ,   E3 =  3.0  10
5  

N/C . 

  

From Eq. 23-13, we infer (from these values of E) 

 

|3|

|2|
  = 

3.0 x 10
5  

N/C

2.0 x 10
5  

N/C
  = 1.5. 

 

Recalling our observation, above, about 3, we conclude that  
3

2
 = –1.5. 

 

36. According to Eq. 23-13 the electric field due to either sheet of charge with surface 

charge density  10
22 

C/m
2
 is perpendicular to the plane of the sheet (pointing 

away from the sheet if the charge is positive) and has magnitude E = /20. Using the 

superposition principle, we conclude: 

 

(a) E = /0 = (10
22

 C/m
2
)/(8.85 10

12 2 2C /N m ) = 2.0010
11 

N/C, pointing in 

the upward direction, or 11 ˆ(2.00 10  N/C)jE   ; 

 

(b) E = 0; 

 

(c) and, E = /0, pointing down, or 11 ˆ(2.00 10  N/C)jE   . 

 

37. THINK To calculate the electric field at a point very close to the center of a large, 

uniformly charged conducting plate, we replace the finite plate with an infinite plate 

having the same charge density. Planar symmetry then allows us to apply Gauss’ law to 

calculate the electric field. 

 

EXPRESS Using Gauss’ law, we find the magnitude of the field to be E = /0, where  

is the area charge density for the surface just under the point. The charge is distributed 

uniformly over both sides of the original plate, with half being on the side near the field 

point. Thus, / 2 .q A   

 

ANALYZE (a) With 66.0 10 Cq    and 2(0.080 m) ,A   we obtain 
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6
4 2

2

6.0 10  C
4.69 10  C/m .

2 2(0.080 m)

q

A





     

 

The magnitude of the field is 

 
4 2

7

12 2 2

0

4.69 10  C/m
5.3 10  N/C.

8.85 10  C / N m
E










   

 
 

 

The field is normal to the plate and since the charge on the plate is positive, it points 

away from the plate. 

 

(b) At a point far away from the plate, the electric field is nearly that of a point particle 

with charge equal to the total charge on the plate. The magnitude of the field is 
2 2

0/ 4 /E q r kq r  , where r is the distance from the plate. Thus, 

 

  
 

9 2 2 6

2

8.99 10 N m / C 6.0 10 C
60 N/C.

30 m
E

  
   

 

LEARN In summary, the electric field is nearly uniform ( 0/E   ) close to the plate, 

but resembles that of a point charge far away from the plate.   

 

38. The field due to the sheet is E = 


2
 .  The force (in magnitude) on the electron (due to 

that field) is F = eE, and assuming it’s the only force then the acceleration is 

 

        a = 
e

2o m
  = slope of the graph  ( = 2.0  10

5 
m/s divided by 7.0  10

12 
s)  . 

 

Thus we obtain  = 2.9 10
6 

C/m
2
. 

 

39. THINK Since the non-conducting charged ball is in equilibrium with the non-

conducting charged sheet (see Fig. 23-49), both the vertical and horizontal components of 

the net force on the ball must be zero.    

 

EXPRESS The forces acting on the ball are shown in the diagram 

to the right. The gravitational force has magnitude mg, where m is 

the mass of the ball; the electrical force has magnitude qE, where q 

is the charge on the ball and E is the magnitude of the electric field 

at the position of the ball; and the tension in the thread is denoted 

by T. The electric field produced by the plate is normal to the plate 

and points to the right. Since the ball is positively charged, the 

electric force on it also points to the right. The tension in the thread 

makes the angle  (= 30°) with the vertical. Since the ball is in 
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equilibrium the net force on it vanishes. The sum of the horizontal components yields 

  

qE – T sin  = 0 

 

and the sum of the vertical components yields  

 

cos 0T mg   . 

 

We solve for the electric field E and deduce , the charge density of the sheet, from E = 

/20 (see Eq. 23-13). 

 

ANALYZE The expression T = qE/sin , from the first equation, is substituted into the 

second to obtain qE = mg tan . The electric field produced by a large uniform sheet of 

charge is given by E = /20, so 

0

tan
2

q
mg





  

and we have 

   12 2 2 6 2

0

8

9 2

2 8.85 10 C / N m 1.0 10 kg 9.8 m/s tan 302 tan

2.0 10 C

5.0 10 C/m .

mg

q

 


 





   
 



 

 

 

LEARN Since both the sheet and the ball are positively charged, the force between them 

is repulsive. This is balanced by the horizontal component of the tension in the thread. 

The angle the thread makes with the vertical direction increases with the charge density 

of the sheet.    

 

 

40. The point where the individual fields cancel cannot be in the region between the sheet 

and the particle (d < x < 0) since the sheet and the particle have opposite-signed charges.  

The point(s) could be in the region to the right of the particle (x > 0) and in the region to 

the left of the sheet (x < d); this is where the condition 

 

 
2

0 0

| |

2 4

Q

r



 
  

 

must hold.  Solving this with the given values, we find r = x = ± 3/2   ± 0.691 m.  

 

If d = 0.20 m (which is less than the magnitude of r found above), then neither of the 

points (x  ± 0.691 m) is in the “forbidden region” between the particle and the sheet.  

Thus, both values are allowed. Thus, we have 

 

(a) x = 0.691 m on the positive axis, and  
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(b) x = 0.691 m on the negative axis. 

 

(c) If, however, d = 0.80 m (greater than the magnitude of r found above), then one of the 

points (x  0.691 m) is in the “forbidden region” between the particle and the sheet and 

is disallowed.  In this part, the fields cancel only at the point x  +0.691 m. 

 

41. The charge on the metal plate, which is negative, exerts a force of repulsion on the 

electron and stops it. First find an expression for the acceleration of the electron, then use 

kinematics to find the stopping distance. We take the initial direction of motion of the 

electron to be positive. Then, the electric field is given by E = /0, where  is the surface 

charge density on the plate. The force on the electron is F = –eE = –e/0 and the 

acceleration is 

0

F e
a

m m




    

 

where m is the mass of the electron. The force is constant, so we use constant acceleration 

kinematics. If v0 is the initial velocity of the electron, v is the final velocity, and x is the 

distance traveled between the initial and final positions, then 2 2

0 2 .v v ax   Set v = 0 and 

replace a with –e/0m, then solve for x. We find 

 
2 2

0 0 0 .
2 2

v mv
x

a e




    

 

Now 21
02

mv  is the initial kinetic energy K0, so 

 

  
  

12 2 2 17

40 0

19 6 2

8.85 10 C / N m 1.60 10 J
4.4 10 m.

1.60 10 C 2.0 10 C/m

K
x

e





 



 

  
   

 
 

 

42. The surface charge density is given by 

 

 12 2 2 10 2

0 0/ 8.85 10 C /N m (55 N/C) 4.9 10  C/m .E E              

 

Since the area of the plates is 21.0 mA , the magnitude of the charge 

on the plate is 104.9 10  C.Q A     

 

43. We use a Gaussian surface in the form of a box with rectangular 

sides. The cross section is shown with dashed lines in the diagram to 

the right. It is centered at the central plane of the slab, so the left and 

right faces are each a distance x from the central plane. We take the 

thickness of the rectangular solid to be a, the same as its length, so 

the left and right faces are squares.  
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The electric field is normal to the left and right faces and is uniform over them. Since  = 

5.80 fC/m
3
 is positive, it points outward at both faces: toward the left at the left face and 

toward the right at the right face. Furthermore, the magnitude is the same at both faces. 

The electric flux through each of these faces is Ea
2
. The field is parallel to the other faces 

of the Gaussian surface and the flux through them is zero. The total flux through the 

Gaussian surface is 22 .Ea   The volume enclosed by the Gaussian surface is 2a
2
x and 

the charge contained within it is 22q a x . Gauss’ law yields 

 

20Ea
2
 = 2a

2
x. 

 

We solve for the magnitude of the electric field: 0/ .E x   

 

(a) For x = 0, E = 0. 

 

(b) For x = 2.00 mm = 2.00  10
3

 m, 

 
15 3 3

6

12 2 2

0

(5.80 10 C/m )(2.00 10  m)
1.31 10  N/C.

8.85 10 C /N m

x
E





 




 
   

 
 

 

(c) For x = d/2 = 4.70 mm = 4.70  10
3

 m, 

 
15 3 3

6

12 2 2

0

(5.80 10 C/m )(4.70 10  m)
3.08 10  N/C.

8.85 10 C /N m

x
E





 




 
   

 
 

 

(d) For x = 26.0 mm = 2.60  10
2

 m, we take a Gaussian surface of the same shape and 

orientation, but with x > d/2, so the left and right faces are outside the slab. The total flux 

through the surface is again 22Ea   but the charge enclosed is now q = a
2
d. Gauss’ 

law yields 20Ea
2
 = a

2
d, so 

 
15 3 3

6

12 2 2

0

(5.80 10 C/m )(9.40 10  m)
3.08 10  N/C.

2 2(8.85 10 C /N m )

d
E





 




 
   

 
 

 

44. We determine the (total) charge on the ball by examining the maximum value (E = 

5.0  10
7 

N/C) shown in the graph (which occurs at r = 0.020 m).  Thus, from 
2

0/ 4 ,E q r  we obtain 

 
2 7

2 6

0 9 2 2

(0.020 m) (5.0 10 N/C)
4 2.2 10 C

8.99 10 N m C
q r E 
   

 
 . 

 

45. (a) Since r1 = 10.0 cm <  r = 12.0 cm < r2 = 15.0 cm, 
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  
 

9 2 2 8

41

22

0

8.99 10  N m /C 4.00 10  C1
( ) 2.50 10  N/C.

4 0.120 m

q
E r

r

  
     

 

(b) Since r1 < r2 < r = 20.0 cm, 

 

   
 

9 2 2 8

41 2

2 2
0

8.99 10  N m / C 4.00 2.00 1 10  C1
( ) 1.35 10  N/C.

4 0.200 m

q q
E r

r

   
     

 

46. The field at the proton’s location (but not caused by the proton) has magnitude E.  

The proton’s charge is  e.  The ball’s charge has magnitude q.  Thus, as long as the proton 

is at r  R then the force on the proton (caused by the ball) has magnitude 

 

F = eE = e 






q

 4o r
2   =  

e q

4o r
2  

 

where r is measured from the center of the ball (to the proton). This agrees with 

Coulomb’s law from Chapter 22.   We note that if r = R then this expression becomes 

 

FR  =  
e q

4o R
2 . 

 

(a) If we require F = 
1

2
 FR , and solve for r, we obtain r = 2 R.  Since the problem asks 

for the measurement from the surface then the answer is  2 R  – R = 0.41R.  

 

(b) Now we require Finside = 
1

2
 FR where Finside = eEinside and Einside is given by Eq. 23-20.  

Thus, 

 e 






q

 4o R
2  r  = 

1

2
  

e q

4o R
2               r = 

1

2
 R = 0.50 R . 

 

47. THINK The unknown charge is distributed uniformly over the surface of the 

conducting solid sphere. 

 

EXPRESS The electric field produced by the unknown charge at points outside the 

sphere is like the field of a point particle with charge equal to the net charge on the sphere. 

That is, the magnitude of the field is given by E = |q|/40r
2
, where |q| is the magnitude of 

the charge on the sphere and r is the distance from the center of the sphere to the point 

where the field is measured.  

 

ANALYZE Thus, we have 

   
2 3

2 9

0 9 2 2

0.15 m 3.0 10  N/C
| | 4 7.5 10  C.

8.99 10  N m / C
q r E 


    

 
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The field points inward, toward the sphere center, so the charge is negative, i.e., 
97.5 10 C.q     

 

 

LEARN The electric field strength as a 

function of r is shown to the right. Inside 

the metal sphere, E = 0; outside the sphere, 
2| | / ,E k q r  where 

01/ 4 .k   

 

 
 

48. Let EA designate the magnitude of the field at r = 2.4 cm.  Thus EA = 2.0  10
7 

N/C, 

and is totally due to the particle. Since 2

particle 0/ 4 ,E q r  then the field due to the 

particle at any other point will relate to EA  by a ratio of distances squared.  Now, we note 

that at r = 3.0 cm the total contribution (from particle and shell) is 8.0  10
7 

N/C.  

Therefore, 

Eshell + Eparticle =  Eshell  +  (2.4/3)
2 
EA = 8.0  10

7 
N/C . 

 

Using the value for EA noted above, we find Eshell = 6.6  10
7 

N/C.  Thus, with r = 0.030 

m, we find the charge Q using 2

shell 0/ 4E Q r : 

 
2 2 7

2 6shell
0 shell 9 2 2

(0.030 m) (6.6 10 N/C)
4 6.6 10 C

8.99 10 N m C

r E
Q r E

k
 

    
 

 

 

49. At all points where there is an electric field, it is radially outward. For each part of the 

problem, use a Gaussian surface in the form of a sphere that is concentric with the sphere 

of charge and passes through the point where the electric field is to be found. The field is 

uniform on the surface, so 24E dA r E   , where r is the radius of the Gaussian surface. 

 

For r < a, the charge enclosed by the Gaussian surface is q1(r/a)
3
. Gauss’ law yields 

 
3

2 1 1

3

0 0

4 .
4

q q rr
r E E

a a


 

  
    

  
 

 

(a) For r = 0, the above equation implies E = 0. 

 

(b) For r = a/2, we have  

 

 
9 2 2 15

21

3 2 2

0

( / 2) (8.99 10 N m /C )(5.00 10 C)
5.62 10  N/C.

4 2(2.00 10 m)

q a
E

a






  
   


 

 

(c) For r = a, we have  
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9 2 2 15

1

2 2 2

0

(8.99 10 N m /C )(5.00 10 C)
0.112 N/C.

4 (2.00 10 m)

q
E

a





  
  


 

 

In the case where a < r < b, the charge enclosed by the Gaussian surface is q1, so Gauss’ 

law leads to 

2 1 1

2

0 0

4 .
4

q q
r E E

r


 
    

(d) For r = 1.50a, we have  

 
9 2 2 15

1

2 2 2

0

(8.99 10 N m /C )(5.00 10 C)
0.0499 N/C.

4 (1.50 2.00 10 m)

q
E

r





  
  

 
 

 

(e) In the region b < r < c, since the shell is conducting, the electric field is zero. Thus, for 

r = 2.30a, we have E = 0.  

 

(f) For r > c, the charge enclosed by the Gaussian surface is zero. Gauss’ law yields 
24 0 0.r E E     Thus, E = 0 at r = 3.50a. 

 

(g) Consider a Gaussian surface that lies completely within the conducting shell. Since 

the electric field is everywhere zero on the surface, 
 
E dA z 0  and, according to Gauss’ 

law, the net charge enclosed by the surface is zero. If Qi is the charge on the inner surface 

of the shell, then q1 + Qi = 0 and Qi = –q1 = –5.00 fC.  

 

(h) Let Qo be the charge on the outer surface of the shell. Since the net charge on the shell 

is –q, Qi + Qo = –q1. This means  

 

Qo = –q1 – Qi = –q1 –(–q1) = 0. 

 

50. The point where the individual fields cancel cannot be in the region between the 

shells since the shells have opposite-signed charges.  It cannot be inside the radius R of 

one of the shells since there is only one field contribution there (which would not be 

canceled by another field contribution and thus would not lead to zero net field).  We note 

shell 2 has greater magnitude of charge (|2|A2) than shell 1, which implies the point is 

not to the right of shell 2 (any such point would always be closer to the larger charge and 

thus no possibility for cancellation of equal-magnitude fields could occur).  Consequently, 

the point should be in the region to the left of shell 1 (at a distance r > R1 from its center); 

this is where the condition 

     1 2
1 2 2 2

0 0

| | | |

4 4 ( )

q q
E E

r r L 
  


 

or  

1 1 2 2

2 2

0 0

| |

4 4 ( )

A A

r r L

 

 



 . 
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Using the fact that the area of a sphere is A = 4R
2
,  this condition simplifies to 

 

r = 
L

(R2 /R1) |2|/1   1
   =  3.3 cm . 

 

We note that this value satisfies the requirement r > R1.  The answer, then, is that the net 

field vanishes at x = r  = 3.3 cm. 

 

51. THINK Since our system possesses spherical symmetry, to calculate the electric field 

strength, we may apply Gauss’ law and take the Gaussian surface to be in the form of a 

sphere of radius r.  

 

EXPRESS To find an expression for the electric field inside the shell in terms of A and 

the distance from the center of the shell, choose A so the field does not depend on the 

distance. We use a Gaussian surface in the form of a sphere with radius rg, concentric 

with the spherical shell and within it (a < rg < b). Gauss’ law will be used to find the 

magnitude of the electric field a distance rg from the shell center. The charge that is both 

in the shell and within the Gaussian sphere is given by the integral q dVs  z  over the 

portion of the shell within the Gaussian surface. Since the charge distribution has 

spherical symmetry, we may take dV to be the volume of a spherical shell with radius r 

and infinitesimal thickness dr: dV r dr 4 2 . Thus, 

 

 2 2 2 24 4   4    2  .
g g gr r r

s g
a a a

A
q r dr r dr A r dr A r a

r
            

 

The total charge inside the Gaussian surface is 

 
2 2

enc 2 ( ).s gq q q q A r a      

 

The electric field is radial, so the flux through the Gaussian surface is 24 ,gr E   where 

E is the magnitude of the field. Gauss’ law yields  

 
2 2 2

enc 0 0/ 4 2 ( ).g gq Er q A r a         

 

We solve for E: 

E
q

r
A

Aa

rg g

  
L
NMM

O
QPP

1

4
2

2

0

2

2

2
 


  .  

 

ANALYZE For the field to be uniform, the first and last terms in the brackets must 

cancel. They do if q – 2Aa
2
 = 0 or A = q/2a

2
. With a = 2.00  10

2 
m and q = 45.0  

10
15 

C, we have 11 21.79 10 C/m .A    
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LEARN The value we have found for A ensures the uniformity of the field strength 

inside the shell. Using the result found above, we can readily show that the electric field 

in the region a r b   is 

 
11 2

12 2 2

0 0

2 1.79 10 C/m
1.01 N/C.

4 2 2(8.85 10 C /N m )

A A
E



 






   

 
 

 

52. The field is zero for 0  r  a as a result of Eq. 23-16. Thus, 

 

(a) E = 0 at r = 0, 

 

(b) E = 0 at r = a/2.00, and  

 

(c) E = 0 at r = a.  

 

For a  r  b the enclosed charge qenc (for a  r  b) is related to the volume by 

 

q
r a

enc  
F
HG

I
KJ

 4

3

4

3

3 3

. 

Therefore, the electric field is 

 

E
q

r r

r a r a

r
  

F
HG

I
KJ 

1

4 4

4

3

4

3 30

2

0

2

3 3

0

3 3

2





  



enc  

for a  r  b.  

 

(d) For r = 1.50a, we have  

 
3 3 9 3

2 12 2 2

0 0

(1.50 ) 2.375 (1.84 10 C/m )(0.100 m) 2.375
7.32 N/C.

3 (1.50 ) 3 2.25 3(8.85 10 C /N m ) 2.25

a a a
E

a

 

 





    
      

    
 

 

(e) For r = b = 2.00a, the electric field is  

 
3 3 9 3

2 12 2 2

0 0

(2.00 ) 7 (1.84 10 C/m )(0.100 m) 7
12.1 N/C.

3 (2.00 ) 3 4 3(8.85 10 C /N m ) 4

a a a
E

a

 

 





    
      

    
 

 

(f) For r  b we have 2

total / 4E q r  or 

 
3

2

0

.
3

b a
E

r






  

 

Thus, for r = 3.00b = 6.00a, the electric field is  
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3 3 9 3

2 12 2 2

0 0

(2.00 ) 7 (1.84 10 C/m )(0.100 m) 7
1.35 N/C.

3 (6.00 ) 3 36 3(8.85 10 C /N m ) 36

a a a
E

a

 

 





    
      

    
 

 

53. (a) We integrate the volume charge density over the volume and require the result be 

equal to the total charge: 

 

2

0
4  .

R

dx dy dz dr r Q        

 

Substituting the expression  =sr/R, with s= 14.1 pC/m
3
, and performing the integration 

leads to 
4

4
4

s R
Q

R




  
  

  
 

or 

 3 12 3 3 15(14.1 10  C/m )(0.0560 m) 7.78 10  C.sQ R         

 

(b) At r = 0, the electric field is zero (E = 0) since the enclosed charge is zero. 

 

At a certain point within the sphere, at some distance r from the center, the field (see Eq. 

23-8 through Eq. 23-10) is given by Gauss’ law: 

 

enc

2

0

1

4

q
E

r
  

 

where qenc is given by an integral similar to that worked in part (a): 

 
4

2

enc
0

4 4 .
4

r
s r

q dr r
R


  

  
    

  
  

Therefore, 
4 2

2

0 0

1 1

4 4

s sr r
E

Rr R

 

 
  . 

 

(c) For r = R/2.00, where R = 5.60 cm, the electric field is 

 
2

0 0

9 2 2 12 3

3

( / 2.00)1 1

4 4 4.00

(8.99 10 N m C ) (14.1 10 C/m )(0.0560 m)

4.00

5.58 10 N/C.

s sR R
E

R

 

 

 



 

  


 

 

 

(d) For r = R, the electric field is 
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2
9 2 2 12 3

0 0

2

1
(8.99 10 N m C ) (14.1 10 C/m )(0.0560 m)

4 4

2.23 10 N/C.

s sR R
E

R

 


 





     

 

 

 

(e) The electric field strength as a function of r is depicted below: 

 

 
 

54. Applying Eq. 23-20, we have 

 

1 1 1
1 13 3 2

0 0 0

| | | | | |1

4 4 2 2 4

q q qR
E r

R R R  

 
   

 
 . 

 

Also, outside sphere 2 we have  

2 2
2 2 2

0 0

| | | |

4 4 (1.50 )

q q
E

r R 
   . 

Equating these and solving for the ratio of charges, we arrive at  
q2

q1
  =  

9

8
  = 1.125.  

 

55. We use 

2enc

2 2 0
0 0

1
( )  ( )4

4 4

rq
E r r r dr

r r


 
    

 

to solve for (r) and obtain 

 


 

( ) ( ) .r
r

d

dr
r E r

r

d

dr
Kr K r  0

2

2 0

2

6

0

36c h  

 

56. (a) There is no flux through the sides, so we have two contributions to the flux, one 

from the x = 2 end (with 2 = +(2 + 2)( (0.20)
2
) = 0.50 N·m

2
/C) and one from the x = 0 

end (with 0 = –(2)( (0.20)
2
)).  

 

(b) By Gauss’ law we have qenc = 0 (2 + 0) = 2.2  10
–12

 C. 
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57. (a) For r < R, E = 0 (see Eq. 23-16). 

 

(b) For r slightly greater than R, 

 

  

 

29 2 7

4

22 2

0 0

8.99 10 N m C 2.00 10 C1
2.88 10 N C.

4 4 0.250m
R

q q
E

r R 

  
      

 

(c) For r > R,  
22

4

2

0

1 0.250  m
2.88 10 N C 200 N C.

4 3.00 m
R

q R
E E

r r

  
      

   
 

 

58. From Gauss’s law, we have  

 
2 9 2 2

2enc

12 2 2

0 0

(8.0 10 C/m ) (0.050 m)
7.1 N m /C

8.85 10 C /N m

q r 

 






     

 
 . 

 

59. (a) At x = 0.040 m, the net field has a rightward (+x) contribution (computed using Eq. 

23-13) from the charge lying between x = –0.050 m and x = 0.040 m, and a leftward (–x) 

contribution (again computed using Eq. 23-13) from the charge in the region from 

0.040 mx  to x = 0.050 m. Thus, since  = q/A = V/A = x in this situation, we have 

 
9 3

12 2 2

0 0

(0.090m) (0.010m) (1.2 10 C/m )(0.090m 0.010m)
5.4 N C.

2 2 2(8.85 10 C /N m )
E

 

 





 
   

 
 

 

(b) In this case, the field contributions from all layers of charge point rightward, and we 

obtain 
9 3

12 2 2

0

(0.100m) (1.2 10 C/m )(0.100m)
6.8N C.

2 2(8.85 10 C /N m )
E










  

 
 

 

60. (a) We consider the radial field produced at points within a uniform cylindrical 

distribution of charge. The volume enclosed by a Gaussian surface in this case is L r 2 . 

Thus, Gauss’ law leads to 

 2

enc

0 cylinder 0 0

| || | | |
.

(2 ) 2

L rq r
E

A rL

  

   
    

 

(b) We note from the above expression that the magnitude of the radial field grows with r. 

 

(c) Since the charged powder is negative, the field points radially inward. 

 

(d) The largest value of r that encloses charged material is rmax = R. Therefore, with 

| | .  0 0011 C m3  and R = 0.050 m, we obtain 
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3
6

max 12 2 2

0

| | (0.0011 C m )(0.050 m)
3.1 10 N C.

2 2(8.85 10 C /N m )

R
E



 
   

 
 

 

(e) According to condition 1 mentioned in the problem, the field is high enough to 

produce an electrical discharge (at r = R). 

 

61. THINK Our system consists of two concentric metal shells. We apply the 

superposition principle and Gauss’ law to calculate the electric field everywhere. 

 

EXPRESS At all points where there is an electric field, it is radially outward. For each 

part of the problem, use a Gaussian surface in the form of a sphere that is concentric with 

the metal shells of charge and passes through the point where the electric field is to be 

found. The field is uniform on the surface, so  

 

2 enc

0

4
q

E dA r E


     , 

 

where r is the radius of the Gaussian surface. 

 

ANALYZE (a) For r < a, the charge enclosed is enc 0,q   so E = 0 in the region inside 

the shell. 

 

(b) For a < r < b, the charged enclosed by the Gaussian surface is enc ,aq q  so the field 

strength is 24 .aE q r   

 

(c) For r > b, the charged enclosed by the Gaussian surface is enc ,a bq q q   so the field 

strength is 2

0( ) / 4 .a bE q q r   

 

(d) Since E = 0 for r < a the charge on the inner surface of the inner shell is always zero. 

The charge on the outer surface of the inner shell is therefore qa. Since E = 0 inside the 

metallic outer shell the net charge enclosed in a Gaussian surface that lies in between the 

inner and outer surfaces of the outer shell is zero. Thus the inner surface of the outer shell 

must carry a charge –qa, leaving the charge on the outer surface of the outer shell to be 

b aq q . 

 

LEARN The concepts involved in this problem are discussed in Section 23-9 of the text. 

In the case of a single shell of radius R and charge q, the field strength is 0E   for r < R, 

and 2

0/ 4E q r  for r R  (see Eqs. 23-15 and 23-16).  

 

62. (a) The direction of the electric field at P1 is away from q1 and its magnitude is 
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9 2 2 7
6

2 2

0 1

(8.99 10 N m C )(1.0 10 C)
4.0 10 N C.

4 (0.015m)

q
E

r

  
     

 

(b) 0E  , since P2 is inside the metal. 

 

63. The proton is in uniform circular motion, with the electrical force of the sphere on the 

proton providing the centripetal force. According to Newton’s second law, F = mv
2
/r, 

where F is the magnitude of the force, v is the speed of the proton, and r is the radius of 

its orbit, essentially the same as the radius of the sphere. The magnitude of the force on 

the proton is F = e|q|/40r
2
, where |q| is the magnitude of the charge on the sphere. Thus, 

 
2

2

0

1 | |

4

e q mv

r r
  

so 

    

  

2
27 52

90

9 2 2 9

1.67 10  kg 3.00 10  m/s 0.0100 m4
| | 1.04 10  C.

8.99 10  N m / C 1.60 10  C

mv r
q

e








 
   

  
 

 

The force must be inward, toward the center of the sphere, and since the proton is 

positively charged, the electric field must also be inward. The charge on the sphere is 

negative: q = –1.04  10
–9

 C. 

 

64. We interpret the question as referring to the field just outside the sphere (that is, at 

locations roughly equal to the radius r of the sphere). Since the area of a sphere is A = 

4r
2
 and the surface charge density is  = q/A (where we assume q is positive for brevity), 

then 

2 2

0 0 0

1 1

4 4

q q
E

r r



   

 
   

 
 

 

which we recognize as the field of a point charge (see Eq. 22-3). 

 

65. (a) Since the volume contained within a radius of  
1

2
 R is one-eighth the volume 

contained within a radius of R, the charge at 0 < r < R/2  is Q/8. The fraction is 1/8 = 

0.125.  

 

(b) At r = R/2, the magnitude of the field is 

 

 
2 2

0 0

/ 8 1

4 ( / 2) 2 4

Q Q
E

R R 
   

 

and is equivalent to half the field at the surface. Thus, the ratio is 0.500. 
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66. (a) The flux is still 2750 N m /C  , since it depends only on the amount of charge 

enclosed. 

 

(b) We use 0/q    to obtain the charge q: 

 

  12 2 2 2 9

0 8.85 10 C /N m 750 N m / C 6.64 10  C.q              

 

67. THINK The electric field at P is due to the charge on the surface of the metallic 

conductor and the point charge Q.   

 

EXPRESS The initial field (evaluated “just outside the outer surface” which means it is 

evaluated at R2 = 0.20 m, the outer radius of the conductor) is related to the charge q on 

the hollow conductor by Eq. 23-15: 2

initial 0 2/ 4 .E q R  After the point charge Q is placed 

at the geometric center of the hollow conductor, the final field at that point is a 

combination of the initial and that due to Q (determined by Eq. 22-3): 

 

final initial 2

0 2

.
4

Q
E E

R
    

 

ANALYZE (a) The charge on the spherical shell is  

 

 
2

2 9

0 2 initial 9 2 2

(0.20 m) (450 N/C)
4 2.0 10 C.

8.99 10 N m C
q R E    

 
 

 

(b) Similarly, using the equation above, we find the point charge to be 

 

 
2

2 9

0 2 final initial 9 2 2

(0.20 m) (180 N/C 450 N/C)
4 1.2 10 C.

8.99 10 N m C
Q R E E 
     

 
 

 

(c) In order to cancel the field (due to Q) within the conducting material, there must be an 

amount of charge equal to –Q distributed uniformly on the inner surface (of radius R1). 

Thus, the answer is +1.2  10
9 

C. 

 

(d) Since the total excess charge on the conductor is q and is located on the surfaces, then 

the outer surface charge must equal the total minus the inner surface charge. Thus, the 

answer is 2.0  10
9 

C – 1.2  10
9 

C = +0.80  10
9 

C. 

 

LEARN The key idea here is to realize that the electric field inside the conducting shell 

( 1 2R r R  ) must be zero, so the charge must be distributed in such a way that the 

charge enclosed by a Gaussian sphere of radius r ( 1 2R r R  ) is zero. 

 

68. Let 0

310 N m C2 . The net flux through the entire surface of the dice is given by 
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              
 

 n

n

n

n

n
1

6

0 0 0

1

6

1 1 2 3 4 5 6 3b g b g . 

 

Thus, the net charge enclosed is 

 

  12 2 2 3 2 8

0 0 03 3 8.85 10 C /N m 10 N m /C 2.66 10 C.q              

 

69. Since the fields involved are uniform, the precise location of P is not relevant; what is 

important is it is above the three sheets, with the positively charged sheets contributing 

upward fields and the negatively charged sheet contributing a downward field, which 

conveniently conforms to usual conventions (of upward as positive and downward as 

negative). The net field is directed upward ˆ( j) , and (from Eq. 23-13) its magnitude is 

 
6 2

431 2

12 2 2

0 0 0

1.0 10 C/m
| | 5.65 10 N C.

2 2 2 2(8.85 10 C /N m )
E

 

  






     

 
 

 

In unit-vector notation, we have 4 ˆ(5.65 10  N/C)jE   . 

 

70. Since the charge distribution is uniform, we can find the total charge q by multiplying 

 by the spherical volume ( 
4

3
 r

3
 ) with r = R =  0.050 m.  This gives q = 1.68 nC. 

 

(a) Applying Eq. 23-20 with r = 0.035 m, we have 3

internal 3

0

| |
4.2 10 N/C

4

q r
E

R
   . 

      

(b) Outside the sphere we have (with r = 0.080 m)  

 
9 2 2 9

3

external 2 2

0

| | (8.99 10 N m C )(1.68 10 C)
2.4 10 N/C

4 (0.080 m)

q
E

r

  
     . 

 

71. We choose a coordinate system whose origin is at the center of the flat base, such that 

the base is in the xy plane and the rest of the hemisphere is in the z > 0 half space. 

 

(a)  2 2 2 2ˆ ˆk k (0.0568 m) (2.50 N/C) 0.0253 N m /C.R E R E           

 

(b) Since the flux through the entire hemisphere is zero, the flux through the curved 

surface is 2 2

base 0.0253 N m /C.c R E     p  

 

72. The net enclosed charge q is given by 

 

   12 2 2 2 10

0 8.85 10 C /N m 48 N m C 4.2 10 C.q              
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73. (a) From Gauss’ law, we get   
 3

enc

3 3

0 0 0

4 31 1
.

4 4 3

r rq r
E r r

r r

 

  
    

 

(b) The charge distribution in this case is equivalent to that of a whole sphere of charge 

density  plus a smaller sphere of charge density – that fills the void. By superposition 

 

 
   

E r
r r a ab g b g

 
 












3 3 30 0 0

( )
.  

 

74. (a) The cube is totally within the spherical volume, so the charge enclosed is  

 

qenc =  Vcube = (500  10
–9

 C/m
3
)(0.0400 m)

3
 = 3.20  10

–11
 C. 

 

By Gauss’ law, we find  = qenc/0 = 3.62 N·m
2
/C. 

 

(b) Now the sphere is totally contained within the cube (note that the radius of the sphere 

is less than half the side-length of the cube). Thus, the total charge is  

 

qenc =  Vsphere = 4.5  10
–10

 C. 

 

By Gauss’ law, we find  = qenc/0 = 51.1 N·m
2
/C. 

 

75. The electric field is radially outward from the central wire. We want to find its 

magnitude in the region between the wire and the cylinder as a function of the distance r 

from the wire. Since the magnitude of the field at the cylinder wall is known, we take the 

Gaussian surface to coincide with the wall. Thus, the Gaussian surface is a cylinder with 

radius R and length L, coaxial with the wire. Only the charge on the wire is actually 

enclosed by the Gaussian surface; we denote it by q. The area of the Gaussian surface is 

2RL, and the flux through it is 2 .RLE   We assume there is no flux through the 

ends of the cylinder, so this   is the total flux. Gauss’ law yields q = 20RLE. Thus, 

 

 12 2 2 4 92 8.85 10 C /N m (0.014 m)(0.16 m) (2.9 10  N/C) 3.6 10  C.q          

 

76. (a) The diagram shows a cross section (or, perhaps more 

appropriately, “end view”) of the charged cylinder (solid circle).  

 

Consider a Gaussian surface in the form of a cylinder with radius 

r and length ,  coaxial with the charged cylinder. An “end view” 

of the Gaussian surface is shown as a dashed circle. The charge 

enclosed by it is 2 ,q V r     where 2V r   is the volume 

of the cylinder. If   is positive, the electric field lines are radially 
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outward, normal to the Gaussian surface and distributed uniformly along it. Thus, the 

total flux through the Gaussian cylinder is cylinder (2 ).EA E r    Now, Gauss’ law 

leads to 

2

0

0

2 .
2

r
r E r E


  


    

 

(b) Next, we consider a cylindrical Gaussian surface of radius r > R. If the external field 

Eext then the flux is ext2 .r E   The charge enclosed is the total charge in a section of 

the charged cylinder with length . That is, 2q R  . In this case, Gauss’ law yields 

 
2

2

0 ext ext

0

2 .
2

R
r E R E

r


  


    

 

77. THINK The total charge on the conducting shell is equal to the sum of the charges on 

the shell’s inner surface and the outer surface. 

 

EXPRESS Let qin be the charge on the inner surface and qout the charge on the outer 

surface. The net charge on the shell is in out .Q q q   

 

ANALYZE (a) In order to have net charge Q = –10 C when the charge on the outer 

surface is out 14 C,q    then there must be  

 

in out 10 C ( 14 C) 4 Cq Q q            

 

on the inner surface (since charges reside on the surfaces of a conductor in electrostatic 

situations). 

 

(b) Let q be the charge of the particle. In order to cancel the electric field inside the 

conducting material, the contribution from the in 4 Cq   on the inner surface must be 

canceled by that of the charged particle in the hollow, that is, enc in 0.q q q    Thus, the 

particle’s charge is in 4 C.q q      

 

LEARN The key idea here is to realize that the electric field inside the conducting shell 

must be zero. Thus, in the presence of a point charge in the hollow, the charge on the 

shell must be redistributed between its inner and outer surfaces in such a way that the net 

charge enclosed by a Gaussian sphere of radius r ( 1 2R r R  , where R1 is the inner 

radius and R2 is the outer radius) remains zero. 

 

78. (a) Outside the sphere, we use Eq. 23-15 and obtain  

 
9 2 2 12

2 2

0

1 (8.99 10 N m C )(6.00 10 C)
15.0 N C.

4 (0.0600 m)

q
E

r

  
    
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(b) With q = +6.00  10
–12

 C, Eq. 23-20 leads to 25.3N CE  . 

 

79. (a) The mass flux is wdv = (3.22 m) (1.04 m) (1000 kg/m
3
) (0.207 m/s) = 693 kg/s. 

 

(b) Since water flows only through area wd, the flux through the larger area is still 

693 kg/s.  

 

(c) Now the mass flux is (wd/2)v = (693 kg/s)/2 = 347 kg/s. 

 

(d) Since the water flows through an area (wd/2), the flux is 347 kg/s. 

 

(e) Now the flux is     cos 693kg s cos34 575 kg swd v     . 

 

80. The field due to a sheet of charge is given by Eq. 23-13. Both sheets are horizontal 

(parallel to the xy plane), producing vertical fields (parallel to the z axis). At points above 

the z = 0 sheet (sheet A), its field points upward (toward +z); at points above the z = 2.0 

sheet (sheet B), its field does likewise. However, below the z = 2.0 sheet, its field is 

oriented downward. 

 

(a) The magnitude of the net field in the region between the sheets is 

 
9 2 9 2

2

12 2 2

0 0

8.00 10 C/m 3.00 10 C/m
| | 2.82 10 N C.

2 2 2(8.85 10 C /N m )

A BE
 

 

 



  
    

 
 

 

(b) The magnitude of the net field at points above both sheets is 

 
9 2 9 2

2

12 2 2

0 0

8.00 10 C/m 3.00 10 C/m
| | 6.21 10 N C.

2 2 2(8.85 10 C /N m )

A BE
 

 

 



  
    

 
 

 

81. (a) The field maximum occurs at the outer surface:  

 

Emax = 






|q|

4o r 2
at r = R

  = 
|q|

4o R 2  

Applying Eq. 23-20, we have      

Einternal  =  
|q|

4o R 3 r = 
1

4
 Emax         r  = 

R

4
 = 0.25 R. 

 

(b) Outside sphere 2 we have  

 

Eexternal = 
|q|

4o r 2  =  
1

4
 Emax           r  = 2.0R.  


